
Sentaurus™ Device User 
Guide
Version N-2017.09, September 2017



Copyright and Proprietary Information Notice
© 2017 Synopsys, Inc. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc. and may only be 
used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use, reproduction, 
modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America. 
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to 
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH 
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse 
and is not responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043
www.synopsys.com 
 

ii Sentaurus™ Device User Guide
N-2017.09

https://www.synopsys.com/company/legal/trademarks-brands.html
https://www.synopsys.com


Contents

About This Guide xli

Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xli
Conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xlii
Customer Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xlii

Accessing SolvNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xlii
Contacting Synopsys Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xliii
Contacting Your Local TCAD Support Team Directly. . . . . . . . . . . . . . . . . . . . . . . xliii

Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xliii

Part I Getting Started 1

Chapter 1 Introduction to Sentaurus Device 3

Functionality of Sentaurus Device  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Creating and Meshing Device Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Tool Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Starting Sentaurus Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
From the Command Line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
From Sentaurus Workbench  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Simulation Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2 Specifying Physical Devices 9

Reading a Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Abrupt and Graded Heterojunctions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Doping Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Material Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

User-Defined Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Mole-Fraction Materials  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Mole-Fraction Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Physical Models and the Hierarchy of Their Specification  . . . . . . . . . . . . . . . . . . . . . . . 18

Region-Specific and Material-Specific Models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Interface-Specific Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Electrode-Specific Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Physical Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Search Strategy for Parameter Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Parameters for Composition-Dependent Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Ternary Semiconductor Composition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Sentaurus™ Device User Guide iii
N-2017.09



Contents
Quaternary Semiconductor Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Default Model Parameters for Compound Semiconductors. . . . . . . . . . . . . . . . . . 29

Combining Parameter Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Materialwise Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Regionwise Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Material Interface–Wise Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Region Interface–Wise Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Electrode-Wise Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Generating a Copy of Parameter File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Undefined Physical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Default Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Named Parameter Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Auto-Orientation Framework  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Changing Orientations Used With Auto-Orientation . . . . . . . . . . . . . . . . . . . . . . . 38
Auto-Orientation Smoothing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Chapter 3 Mixed-Mode Sentaurus Device 41

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Compact Models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Hierarchical Description of Compact Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Netlist Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Structure of Netlist File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Comments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Continuation Lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
The INCLUDE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Numeric Constants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Parameters and Expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Subcircuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Model Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Physical Devices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Netlist Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

SPICE Circuit Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Device Section  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
System Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Physical Devices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Circuit Devices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Electrical and Thermal Netlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Set, Unset, Initialize, and Hint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
iv Sentaurus™ Device User Guide
N-2017.09



Contents
System Plot  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
AC System Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

File Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
SPICE Circuit Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
User-Defined Circuit Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Mixed-Mode Math Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Using Mixed-Mode Simulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

From Single-Device File to Multidevice File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
File-Naming Convention: Mixed-Mode Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 4 Performing Numeric Experiments 67

Specifying Electrical Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Changing Boundary Condition Type During Simulation  . . . . . . . . . . . . . . . . . . . . . . 68
Mixed-Mode Electrical Boundary Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Specifying Thermal Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Break Criteria: Conditionally Stopping the Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Global Contact Break Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Global Device Break Criteria  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Sweep-Specific Break Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Mixed-Mode Break Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Quasistationary Ramps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Ramping Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Ramping Quasi-Fermi Potentials in Doping Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Ramping Physical Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Quasistationary in Mixed Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Saving and Plotting During a Quasistationary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Continuation Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Transient Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Numeric Control of Transient Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Time-Stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Ramping Physical Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Transient Ramps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Large-Signal Cyclic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Description of Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Using Cyclic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Small-Signal AC Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
AC Analysis in Mixed-Mode Simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
AC Analysis in Single-Device Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Sentaurus™ Device User Guide v
N-2017.09



Contents
Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Optical AC Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Harmonic Balance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Modes of Harmonic Balance Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

MDFT Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
SDFT Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Performing Harmonic Balance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Solve Spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Convergence Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Harmonic Balance Analysis Output  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Device Instance Currents, Voltages, Temperatures, and Heat Components  . . . . 105
Circuit Currents and Voltages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Solution Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Application Notes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Chapter 5 Simulation Results 107

Current File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
When to Write to the Current File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Example: CurrentPlot Statements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
NewCurrentPrefix Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Tracking Additional Data in the Current File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
CurrentPlot Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Example: Mixed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Example: Advanced Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Example: Plotting Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
CurrentPlot Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Tcl Formulas  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Dataset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Init. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Formula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Finish  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Device Plots  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
What to Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
When to Plot  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Interface Plots  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
vi Sentaurus™ Device User Guide
N-2017.09



Contents
Log File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Extraction File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Extraction File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Analysis Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
File Section  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Electrode Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Extraction Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Solve Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Chapter 6 Numeric and Software-Related Issues 133

Structure of Command File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Inserting Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Solve Section: How the Simulation Proceeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Nonlinear Iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Coupled Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Convergence and Error Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Damped Newton Iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Incomplete Newton Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Additional Equations Available in Mixed Mode . . . . . . . . . . . . . . . . . . . . . . . . . 141
Selecting Individual Devices in Mixed Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Relaxed Newton Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Plugin Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Linear Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Nonlocal Meshes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Specifying Nonlocal Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Visualizing Nonlocal Meshes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Visualizing Data Defined on Nonlocal Meshes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Constructing Nonlocal Meshes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Specification Using Barrier  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Specification Using a Reference Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Special Handling of 1D Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Special Handling of Nonlocal Tunneling Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Unnamed Meshes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Performance Suggestions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Monitoring Convergence Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
CNormPrint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
NewtonPlot  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Automatic Activation of CNormPrint and NewtonPlot. . . . . . . . . . . . . . . . . . . . . . . 155
Simulation Statistics for Plotting and Output  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Simulation Statistics in Current Plot Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Sentaurus™ Device User Guide vii
N-2017.09



Contents
Simulation Statistics in DOE Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Save and Load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Tcl Command File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
sdevice Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
sdevice_init Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
sdevice_solve Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
sdevice_finish Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
sdevice_parameters Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Available Inspect Tcl Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Output Redirection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Known Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Extended Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
System Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Part II Physics in Sentaurus Device 171

Chapter 7 Electrostatic Potential and Quasi-Fermi Potentials 173

Electrostatic Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Dipole Layer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Equilibrium Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Quasi-Fermi Potential With Boltzmann Statistics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Fermi Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Using Fermi Statistics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Initial Guess for Electrostatic Potential and Quasi-Fermi Potentials in Doping Wells  . 178

Regionwise Specification of Initial Quasi-Fermi Potentials . . . . . . . . . . . . . . . . . . . 179
Electrode Charge Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Chapter 8 Carrier Transport in Semiconductors 181

Introduction to Carrier Transport Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Drift-Diffusion Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Thermodynamic Model for Current Densities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Hydrodynamic Model for Current Densities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Numeric Parameters for Continuity Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Numeric Approaches for Contact Current Computation  . . . . . . . . . . . . . . . . . . . . . . . . 185
viii Sentaurus™ Device User Guide
N-2017.09



Contents
Current Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Chapter 9 Temperature Equations 189

Introduction to Temperature Equations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Uniform Self-Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Using Uniform Self-Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Default Model for Lattice Temperature  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Thermodynamic Model for Lattice Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Total Heat and Its Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Using the Thermodynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Hydrodynamic Model for Temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Hydrodynamic Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Using the Hydrodynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Numeric Parameters for Temperature Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Validity Ranges for Lattice and Carrier Temperatures . . . . . . . . . . . . . . . . . . . . . . . 199
Scaling of Lattice Heat Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Chapter 10 Boundary Conditions 201

Electrical Boundary Conditions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Ohmic Contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Modified Ohmic Contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Contacts on Insulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Schottky Contacts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Fermi-Level Pinning at Schottky Contacts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Barrier Lowering at Schottky Contacts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Resistive Contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Resistive Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Boundaries Without Contacts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Floating Contacts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Floating Metal Contacts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Floating Semiconductor Contacts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Thermal Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Boundary Conditions for Lattice Temperature  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Boundary Conditions for Carrier Temperatures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Periodic Boundary Conditions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Robin PBC Approach  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Mortar PBC Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Specifying Periodic Boundary Conditions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Sentaurus™ Device User Guide ix
N-2017.09



Contents
Specifying Robin Periodic Boundary Conditions  . . . . . . . . . . . . . . . . . . . . . . . . 229
Specifying Mortar Periodic Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 230

Application Notes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Specialized Linear Solver for MPBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Discontinuous Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Representation of Physical Quantities Across Interfaces  . . . . . . . . . . . . . . . . . . . . . 231
Interface Conditions at Discontinuous Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Critical Points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Chapter 11 Transport in Metals, Organic Materials, and Disordered Media 235

Singlet Exciton Equation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Boundary and Continuity Conditions for Singlet Exciton Equation . . . . . . . . . . . . . 236
Using the Singlet Exciton Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Transport in Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Electric Boundary Conditions for Metals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Metal Workfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Metal Workfunction Randomization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Temperature in Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Conductive Insulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Chapter 12 Semiconductor Band Structure 249

Intrinsic Density  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Band Gap and Electron Affinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Selecting the Bandgap Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Bandgap and Electron-Affinity Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Bandgap Narrowing for Bennett–Wilson Model . . . . . . . . . . . . . . . . . . . . . . . . . 251
Bandgap Narrowing for Slotboom Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Bandgap Narrowing for del Alamo Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Bandgap Narrowing for Jain–Roulston Model. . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Table Specification of Bandgap Narrowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Schenk Bandgap Narrowing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Bandgap Narrowing With Fermi Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Bandgap Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Effective Masses and Effective Density-of-States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Electron Effective Mass and DOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Formula 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Formula 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Electron Effective Mass and Conduction Band DOS Parameters . . . . . . . . . . . . . . . 262
Hole Effective Mass and DOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
x Sentaurus™ Device User Guide
N-2017.09



Contents
Formula 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Formula 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Hole Effective Mass and Valence Band DOS Parameters  . . . . . . . . . . . . . . . . . . . . 263
Gaussian Density-of-States for Organic Semiconductors . . . . . . . . . . . . . . . . . . . . . 264

Multivalley Band Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Nonparabolic Band Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Bandgap Widening  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Monte Carlo Density-of-States  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Using Multivalley Band Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Chapter 13 Incomplete Ionization 277

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Using Incomplete Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Multiple Lattice Sites  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Incomplete Ionization Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Physical Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Chapter 14 Quantization Models 283

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
van Dort Quantization Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

van Dort Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Using the van Dort Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

1D Schrödinger Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Nonlocal Mesh for 1D Schrödinger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Using 1D Schrödinger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
1D Schrödinger Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Explicit Ladder Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Automatic Extraction of Ladder Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Visualizing Schrödinger Solutions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
1D Schrödinger Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
1D Schrödinger Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

External 2D Schrödinger Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Application Notes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Density Gradient Quantization Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Density Gradient Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Using the Density Gradient Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Named Parameter Sets for Density Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Auto-Orientation for Density Gradient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Sentaurus™ Device User Guide xi
N-2017.09



Contents
Density Gradient Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Modified Local-Density Approximation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

MLDA Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Interface Orientation and Stress Dependencies  . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Heterojunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Nonparabolic Bands and Geometric Quantization . . . . . . . . . . . . . . . . . . . . . . . . 303

Using MLDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
MLDA Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Quantum-Well Quantization Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
LayerThickness Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

Combining LayerThickness Command and ThinLayer Subcommand . . . . . . . . . . . 311
Geometric Parameters of LayerThickness Command . . . . . . . . . . . . . . . . . . . . . . . . 312

Thickness Extraction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Chapter 15 Mobility Models 317

How Mobility Models Combine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Mobility due to Phonon Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
Doping-Dependent Mobility Degradation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Using Doping-Dependent Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Using More Than One Doping-Dependent Mobility Model  . . . . . . . . . . . . . . . . 320

Masetti Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
Arora Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
University of Bologna Bulk Mobility Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
The pmi_msc_mobility Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
PMIs for Bulk Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Low-Field Ballistic Mobility Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Carrier–Carrier Scattering  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Using Carrier–Carrier Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Conwell–Weisskopf Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Brooks–Herring Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Physical Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Philips Unified Mobility Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Using the Philips Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Using an Alternative Philips Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Philips Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Screening Parameter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Philips Model Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Mobility Degradation at Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
Using Mobility Degradation at Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Enhanced Lombardi Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
xii Sentaurus™ Device User Guide
N-2017.09



Contents
Stress Factors for Mobility Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Named Parameter Sets for Lombardi Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Auto-Orientation for Lombardi Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Inversion and Accumulation Layer Mobility Model . . . . . . . . . . . . . . . . . . . . . . . . . 337
Coulomb Scattering  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Phonon Scattering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Surface Roughness Scattering  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Stress Factors for Mobility Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Using Inversion and Accumulation Layer Mobility Model . . . . . . . . . . . . . . . . . 343
Named Parameter Sets for IALMob. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Auto-Orientation for IALMob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

University of Bologna Surface Mobility Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Mobility Degradation Components due to Coulomb Scattering . . . . . . . . . . . . . . . . 347

Stress Factors for Mobility Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Using Mobility Degradation Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Remote Coulomb Scattering Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Stress Factors for Mobility Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Remote Phonon Scattering Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Stress Factors for Mobility Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

Computing Transverse Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
Normal to Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Normal to Current Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Field Correction on Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

Thin-Layer Mobility Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
Using the Thin-Layer Mobility Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Physical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
Stress Factors for Mobility Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
Auto-Orientation and Named Parameter Sets  . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
Geometric Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

High-Field Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Using High-Field Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

Named Parameter Sets for High-Field Saturation  . . . . . . . . . . . . . . . . . . . . . . . . 362
Auto-Orientation for High-Field Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Extended Canali Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Transferred Electron Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Transferred Electron Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Basic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Meinerzhagen–Engl Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Physical Model Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
Lucent Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
Sentaurus™ Device User Guide xiii
N-2017.09



Contents
Velocity Saturation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Selecting Velocity Saturation Models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Driving Force Models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Electric Field Parallel to the Current  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
Gradient of Quasi-Fermi Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
Electric Field Parallel to the Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
Hydrodynamic Driving Force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
Electric Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Interpolation of Driving Forces to Zero Field  . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Interpolation of the GradQuasiFermi Driving Force . . . . . . . . . . . . . . . . . . . . . . 373
Interpolation of the Eparallel Driving Force  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
Field Correction Close to Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Non-Einstein Diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
High-Field Saturation Mobility Scaling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

Ballistic Mobility Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Channel Length–Dependent Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Kinetic Velocity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
Fermi–Dirac Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Frensley Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Using the Ballistic Mobility Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Monte Carlo–Computed Mobility for Strained Silicon  . . . . . . . . . . . . . . . . . . . . . . . . . 380
Monte Carlo–Computed Mobility for Strained SiGe in npn-SiGe HBTs. . . . . . . . . . . . 381
Incomplete Ionization–Dependent Mobility Models  . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Poole–Frenkel Mobility (Organic Material Mobility)  . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Mobility Averaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
Mobility Doping File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
Effective Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

EffectiveMobility PMI Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
Using the EffectiveMobility PMI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

Chapter 16 Generation–Recombination 391

Shockley–Read–Hall Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Using SRH Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
SRH Doping Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Lifetime Profiles From Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Improved Nakagawa Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
SRH Temperature Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
SRH Doping- and Temperature-Dependent Parameters . . . . . . . . . . . . . . . . . . . . . . 395
SRH Field Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

Using Field Enhancement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
xiv Sentaurus™ Device User Guide
N-2017.09



Contents
Schenk Trap-Assisted Tunneling (TAT) Model. . . . . . . . . . . . . . . . . . . . . . . . . . 397
Schenk TAT Density Correction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
Hurkx TAT Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

Dynamic Nonlocal Path Trap-Assisted Tunneling  . . . . . . . . . . . . . . . . . . . . . . . . . . 400
Recombination Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
Using Dynamic Nonlocal Path TAT Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

Trap-Assisted Auger Recombination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Surface SRH Recombination  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Coupled Defect Level (CDL) Recombination  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Using CDL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
CDL Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

Radiative Recombination  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
Using Radiative Recombination  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
Radiative Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

Auger Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
Intrinsic Recombination Model for Silicon  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
Constant Carrier Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
Avalanche Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

Using Avalanche Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
van Overstraeten – de Man Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
Okuto–Crowell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
Lackner Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
University of Bologna Impact Ionization Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
New University of Bologna Impact Ionization Model  . . . . . . . . . . . . . . . . . . . . . . . 421
Hatakeyama Avalanche Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

Driving Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
Anisotropic Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
Usage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

Driving Force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
Interpolation of Avalanche Driving Forces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

Avalanche Generation With Hydrodynamic Transport . . . . . . . . . . . . . . . . . . . . . . . 427
Approximate Breakdown Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

Using Breakdown Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Approximate Breakdown Analysis With Carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

Band-to-Band Tunneling Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
Using Band-to-Band Tunneling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
Schenk Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Schenk Density Correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
Simple Band-to-Band Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
Hurkx Band-to-Band Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
Tunneling Near Interfaces and Equilibrium Regions  . . . . . . . . . . . . . . . . . . . . . . . . 435
Sentaurus™ Device User Guide xv
N-2017.09



Contents
Dynamic Nonlocal Path Band-to-Band Tunneling Model  . . . . . . . . . . . . . . . . . . . . 436
Band-to-Band Generation Rate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
Using Nonlocal Path Band-to-Band Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
Handling of Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
Postprocessing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Frozen Tunneling Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Visualizing Nonlocal Band-to-Band Generation Rate . . . . . . . . . . . . . . . . . . . . . 443

Bimolecular Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
Physical Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
Using Bimolecular Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

Exciton Dissociation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
Physical Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
Using Exciton Dissociation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

Chapter 17 Traps and Fixed Charges 449

Basic Syntax for Traps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
Trap Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
Energetic and Spatial Distribution of Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

Specifying Single Traps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
Trap Randomization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

Trap Models and Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Trap Occupation Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Local Trap Capture and Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

J-Model Cross Sections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
Hurkx Model for Cross Sections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
Poole–Frenkel Model for Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
Local Capture and Emission Rates Based on Makram-Ebeid–Lannoo Phonon-

Assisted Tunnel Ionization Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
Local Capture and Emission Rates From PMI . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

Trap-to-Trap Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
Tunneling and Traps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

Trap Numeric Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
Visualizing Traps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
Explicit Trap Occupation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
Options to Include Traps in Doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
Trap Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
Insulator Fixed Charges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
xvi Sentaurus™ Device User Guide
N-2017.09



Contents
Chapter 18 Phase and State Transitions 473

Multistate Configurations and Their Dynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
Specifying Multistate Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

Multistate Configurations on Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
Additional Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

Transition Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
The pmi_ce_msc Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
Transitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

Interaction of Multistate Configurations With Transport . . . . . . . . . . . . . . . . . . . . . . . . 483
Apparent Band-Edge Shift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

The pmi_msc_abes Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
Thermal Conductivity, Heat Capacity, and Mobility  . . . . . . . . . . . . . . . . . . . . . . . . 485

Manipulating MSCs During Solve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
Explicit State Occupations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
Manipulating Transition Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Example: Two-State Phase-Change Memory Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

Chapter 19 Degradation Models 489

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
Trap Degradation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

Trap Formation Kinetics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
Power Law and Kinetic Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
Si-H Density–Dependent Activation Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
Diffusion of Hydrogen in Oxide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

Model Equations and Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
Reaction Enhancement Factors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
Using the Trap Degradation Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

Device Lifetime and Simulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
Degradation in Insulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

MSC–Hydrogen Transport Degradation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
Hydrogen Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
Reactions Between Mobile Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
Reactions With Multistate Configurations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
The CEModel_Depassivation Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
Using MSC–Hydrogen Transport Degradation Model . . . . . . . . . . . . . . . . . . . . . . . 507

Two-Stage NBTI Degradation Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
Sentaurus™ Device User Guide xvii
N-2017.09



Contents
Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
Using Two-Stage NBTI Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512

Extended Nonradiative Multiphonon Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
eNMP Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
Using the eNMP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

eNMP Quantities Available for Plotting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
eNMP Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
eNMP Transition Rates PMI Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

Hot-Carrier Stress Degradation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

Single-Particle and Multiple-Particle Interface-Trap Densities . . . . . . . . . . . . . . 520
Field-Enhanced Thermal Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
Carrier Distribution Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
Bond Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

Using the HCS Degradation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

Chapter 20 Organic Devices 529

Introduction to Organic Device Simulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

Chapter 21 Optical Generation 533

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
Specifying the Type of Optical Generation Computation  . . . . . . . . . . . . . . . . . . . . . . . 534

Optical Generation From Monochromatic Source. . . . . . . . . . . . . . . . . . . . . . . . . . . 536
Illumination Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

Multidimensional Illumination Spectra  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
Enhanced Spectrum Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538

Loading and Saving Optical Generation From and to File  . . . . . . . . . . . . . . . . . . . . 542
Constant Optical Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
Quantum Yield Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

Optical Absorption Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
Specifying Time Dependency for Transient Simulations . . . . . . . . . . . . . . . . . . . . . 547

Optical Turning Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
Solving the Optical Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

Specifying the Optical Solver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
Transfer Matrix Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
Finite-Difference Time-Domain Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
Raytracing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
Beam Propagation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
xviii Sentaurus™ Device User Guide
N-2017.09



Contents
Loading Solution of Optical Problem From File . . . . . . . . . . . . . . . . . . . . . . . . . 558
Optical Beam Absorption Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
Composite Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

Setting the Excitation Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
Illumination Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
Spatial Intensity Function Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568

Choosing Refractive Index Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
Extracting the Layer Stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
Controlling Computation of Optical Problem in Solve Section  . . . . . . . . . . . . . . . . 572

Parameter Ramping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
Accurate Absorbed Photon Density for 1D Optical Solvers. . . . . . . . . . . . . . . . . . . . . . 575
Complex Refractive Index Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

Physical Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
Wavelength Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
Temperature Dependency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
Carrier Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
Gain Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

Using Complex Refractive Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
Complex Refractive Index Model Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586

C++ Application Programming Interface (API). . . . . . . . . . . . . . . . . . . . . . . . . . 586
Shared Object Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
Command File of Sentaurus Device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592

Raytracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
Raytracer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
Ray Photon Absorption and Optical Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
Using the Raytracer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
Terminating Raytracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
Monte Carlo Raytracing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
Multithreading for Raytracer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
Compact Memory Model for Raytracer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
Window of Starting Rays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600

User-Defined Window of Rays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
Distribution Window of Rays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

Cylindrical Coordinates for Raytracing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
Boundary Condition for Raytracing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

Fresnel Boundary Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
Constant Reflectivity and Transmittivity Boundary Condition . . . . . . . . . . . . . . 606
Raytrace PMI Boundary Condition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
Thin-Layer-Stack Boundary Condition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
TMM Optical Generation in Raytracer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609
Diffuse Surface Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
Sentaurus™ Device User Guide xix
N-2017.09



Contents
Periodic Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
Virtual Regions in Raytracer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
External Material in Raytracer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
Additional Options for Raytracing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
Redistributing Power of Stopped Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
Weighted Interpolation for Raytrace Optical Generation . . . . . . . . . . . . . . . . . . . . . 617
Visualizing Raytracing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
Reporting Various Powers in Raytracing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
Plotting Interface Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
Far Field and Sensors for Raytracing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
Dual-Grid Setup for Raytracing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

Transfer Matrix Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
Physical Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

Rough Surface Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
Using Transfer Matrix Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630

Using Scattering Solver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
Loading Solution of Optical Problem From File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

Importing 1D Profiles Into Higher-Dimensional Grids. . . . . . . . . . . . . . . . . . . . . . . 642
Ramping Profile Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643

Optical Beam Absorption Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
Physical Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
Using Optical Beam Absorption Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646

Beam Propagation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647
Physical Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

Bidirectional BPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648
Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

Using Beam Propagation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
Bidirectional BPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
Boundary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
Ramping Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
Visualizing Results on Native Tensor Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655

Composite Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656
Using the Composite Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657

Controlling Interpolation When Loading Optical Generation Profiles. . . . . . . . . . . . . . 659
Optical AC Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
xx Sentaurus™ Device User Guide
N-2017.09



Contents
Chapter 22 Radiation Models 665

Generation by Gamma Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
Using Gamma Radiation Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
Yield Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666

Alpha Particles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666
Using Alpha Particle Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666
Alpha Particle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667

Heavy Ions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668
Using Heavy Ion Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668
Heavy Ion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669
Examples: Heavy Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671

Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673

Chapter 23 Noise, Fluctuations, and Sensitivity 675

Using the Impedance Field Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
Specifying Variations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
Specifying the Solver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
Analysis at Frequency Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
Output of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678

Noise Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680
Common Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680
Diffusion Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
Equivalent Monopolar Generation–Recombination Noise . . . . . . . . . . . . . . . . . . . . 682
Bulk Flicker Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682
Trapping Noise  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682
Random Dopant Fluctuations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
Random Geometric Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684
Random Trap Concentration Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687
Random Workfunction Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687
Random Band Edge Fluctuations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688
Random Metal Conductivity Fluctuations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689
Random Dielectric Constant Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690
Noise From SPICE Circuit Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690

Statistical Impedance Field Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691
Options Common to sIFM Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692
Spatial Correlations and Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693
Doping Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
Sentaurus™ Device User Guide xxi
N-2017.09



Contents
Trap Concentration Variations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696
Workfunction Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
Geometric Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698
Band Edge Variations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699
Metal Conductivity Variations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
Dielectric Constant Variations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
Doping Profile Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702

Deterministic Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
Deterministic Doping Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
Deterministic Geometric Variations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705
Parameter Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706

IFM Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
Impedance Field Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709
Noise Output Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713

Chapter 24 Tunneling 715

Tunneling Model Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715
Fowler–Nordheim Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716

Using Fowler–Nordheim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716
Fowler–Nordheim Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717
Fowler–Nordheim Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718

Direct Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718
Using Direct Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719
Direct Tunneling Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719

Image Force Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
Direct Tunneling Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721

Nonlocal Tunneling at Interfaces, Contacts, and Junctions  . . . . . . . . . . . . . . . . . . . . . . 722
Defining Nonlocal Meshes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722
Specifying Nonlocal Tunneling Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724
Nonlocal Tunneling Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726
Visualizing Nonlocal Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
Physics of Nonlocal Tunneling Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729

WKB Tunneling Probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729
Schrödinger Equation–Based Tunneling Probability . . . . . . . . . . . . . . . . . . . . . . 731
Density Gradient Quantization Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
Multivalley Band Structure and Geometric Quantization  . . . . . . . . . . . . . . . . . . 732
Nonlocal Tunneling Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733
Band-to-Band Contributions to Nonlocal Tunneling Current  . . . . . . . . . . . . . . . 734
Carrier Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736
xxii Sentaurus™ Device User Guide
N-2017.09



Contents
Chapter 25 Hot-Carrier Injection Models 737

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737
Destination of Injected Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738
Injection Barrier and Image Potential  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740
Effective Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742

Classical Lucky Electron Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742
Fiegna Hot-Carrier Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743
SHE Distribution Hot-Carrier Injection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744

Spherical Harmonics Expansion Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746
Using Spherical Harmonics Expansion Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750
Visualizing Spherical Harmonics Expansion Method . . . . . . . . . . . . . . . . . . . . . . . . 757

Carrier Injection With Explicitly Evaluated Boundary Conditions for Continuity 
Equations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760

Chapter 26 Heterostructure Device Simulation 763

Thermionic Emission Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
Using Thermionic Emission Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
Thermionic Emission Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764
Thermionic Emission Model With Fermi Statistics  . . . . . . . . . . . . . . . . . . . . . . . . . 765

Gaussian Transport Across Organic Heterointerfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . 766
Using Gaussian Transport at Organic Heterointerfaces  . . . . . . . . . . . . . . . . . . . . . . 766
Gaussian Transport at Organic Heterointerface Model . . . . . . . . . . . . . . . . . . . . . . . 767

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768

Chapter 27 Energy-Dependent Parameters 769

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
Energy-Dependent Energy Relaxation Time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769

Spline Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771
Energy-Dependent Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772

Spline Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774
Energy-Dependent Peltier Coefficient  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775

Spline Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776

Chapter 28 Anisotropic Properties 779

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779
Anisotropic Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780

AverageAniso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780
Sentaurus™ Device User Guide xxiii
N-2017.09



Contents
TensorGridAniso  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780
AnisoSG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
StressSG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781

Crystal and Simulation Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
Cylindrical Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782

Anisotropic Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783
Anisotropic Directions for Density Gradient Model  . . . . . . . . . . . . . . . . . . . . . . 784
Orthogonal Matrix From Eigenvectors Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785

Anisotropic Mobility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786
Anisotropy Factor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786
Current Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786
Driving Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
Total Anisotropic Mobility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789
Self-Consistent Anisotropic Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789
Plot Section  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791

Anisotropic Avalanche Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
Anisotropic Electrical Permittivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793
Anisotropic Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794
Anisotropic Density Gradient Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795

Chapter 29 Ferroelectric Materials 797

Using Ferroelectrics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797
Ferroelectrics Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
Ginzburg–Landau Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801

Using the Ginzburg–Landau Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803

Chapter 30 Ferromagnetism and Spin Transport 805

A Brief Introduction to Spintronics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805
Transport Through Magnetic Tunnel Junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806

Magnetic Direct Tunneling Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806
Using the Magnetic Direct Tunneling Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807
Physics Parameters for Magnetic Direct Tunneling  . . . . . . . . . . . . . . . . . . . . . . . . . 807
Math Parameters for Magnetic Direct Tunneling  . . . . . . . . . . . . . . . . . . . . . . . . . . . 808

Magnetization Dynamics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809
Spin Dynamics of a Free Electron in a Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . 809
Magnetization Dynamics in a Ferromagnetic Layer . . . . . . . . . . . . . . . . . . . . . . . . . 810
Contributions of the Magnetic Energy Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811
Energy Density and Effective Field in Macrospin Approximation . . . . . . . . . . . . . . 812
Using Magnetization Dynamics in Device Simulations  . . . . . . . . . . . . . . . . . . . . . . 813
xxiv Sentaurus™ Device User Guide
N-2017.09



Contents
Domain Selection and Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813
Plotting of the Time-Dependent Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . 814

Parameters for Magnetization Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814
Time-Step Control for Magnetization Dynamics  . . . . . . . . . . . . . . . . . . . . . . . . . . . 815

Thermal Fluctuations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815
Using Thermal Fluctuations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816

Parallel and Perpendicular Spin Transfer Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816
Magnetization Dynamics Beyond Macrospin: Position-Dependent Exchange and Spin 

Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817
Using Position-Dependent Exchange  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818

User-Defined Contributions to the Effective Magnetic Field of the LLG Equation  . . . 818
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819

Chapter 31 Modeling Mechanical Stress Effect 821

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821
Stress and Strain in Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821

Using Stress and Strain  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823
Stress Tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824
Strain Tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824
Stress Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825
Crystallographic Orientation and Compliance Coefficients. . . . . . . . . . . . . . . . . 825

Deformation of Band Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826
Using Deformation Potential Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829
Strained Effective Masses and Density-of-States  . . . . . . . . . . . . . . . . . . . . . . . . . . . 830

Strained Electron Effective Mass and DOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831
Strained Hole Effective Mass and DOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833
Using Strained Effective Masses and DOS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834

Multivalley Band Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835
Using Multivalley Band Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837

Mobility Modeling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 838
Multivalley Electron Mobility Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839

Intervalley Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840
Effective Mass  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842
Inversion Layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844
Using Multivalley Electron Mobility Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846

Multivalley Hole Mobility Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849
Effective Mass  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849
Scattering  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850
Using Multivalley Hole Mobility Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852

Intel Stress-Induced Hole Mobility Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854
Stress Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855
Sentaurus™ Device User Guide xxv
N-2017.09



Contents
Generalization of Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856
Using Intel Mobility Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 858

Piezoresistance Mobility Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859
Doping and Temperature Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860
Using Piezoresistance Mobility Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861
Named Parameter Sets for Piezoresistance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863
Auto-Orientation for Piezoresistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863
Enormal- and MoleFraction-Dependent Piezo Coefficients  . . . . . . . . . . . . . . . . 863
Using Piezoresistive Prefactors Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864

Isotropic Factor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 870
Using Isotropic Factor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871
Piezoresistance Factor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872
Effective Stress Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872
Mobility Stress Factor PMI Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875
SFactor Dataset or PMI Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 876
Isotropic Factor Model Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 876
Factor Models Applied to Mobility Components. . . . . . . . . . . . . . . . . . . . . . . . . 876

Stress Mobility Model for Minority Carriers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877
Dependency of Saturation Velocity on Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879
Mobility Enhancement Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880
Plotting Mobility Enhancement Factors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881

Numeric Approximations for Tensor Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881
Tensor Grid Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881
Stress Tensor Applied to Low-Field Mobility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882

Piezoelectric Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883
Strain Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883

Simplified Strain Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884
Stress Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885
Poisson Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885
Parameter File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 886
Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887
Converse Piezoelectric Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888
Piezoelectric Datasets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888

Discontinuous Piezoelectric Charge at Heterointerfaces . . . . . . . . . . . . . . . . . . . 888
Gate-Dependent Polarization in GaN Devices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 889

Two-Dimensional Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 889
Mechanics Solver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 890
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894
xxvi Sentaurus™ Device User Guide
N-2017.09



Contents
Chapter 32 Galvanic Transport Model 897

Model Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897
Using Galvanic Transport Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897
Discretization Scheme for Continuity Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898

Chapter 33 Thermal Properties 899

Heat Capacity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 899
The pmi_msc_heatcapacity Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900

Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901
The AllDependent Thermal Conductivity Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . 902

Bulk Thermal Conductivity Computation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 903
Example of Parameter File Segment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904
Bulk Relaxation Time With Doping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905
Thin-Layer Relaxation Time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909
Mole Fraction–Dependent Relaxation Time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910

The ConnellyThermalConductivity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910
Layer Thickness Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911
Bulk Thermal Conductivity Computation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911
Example of Parameter File Segment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912

The pmi_msc_thermalconductivity Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912
Thermoelectric Power (TEP)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913

Physical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914
Table-Based TEPower Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914
Analytic TEPower Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914
PMI_ThermoElectricPower Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915
Thermoelectric Power in Metals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915

Using Thermoelectric Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915
Heating at Contacts, Metal–Semiconductor and Conductive Insulator–Semiconductor 

Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918

Part III Physics of Light-Emitting Diodes 919

Chapter 34 Light-Emitting Diodes 921

Modeling Light-Emitting Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921
Coupling Electronics and Optics in LED Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 922

Single-Grid Versus Dual-Grid LED Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922
Electrical Transport in LEDs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923
Sentaurus™ Device User Guide xxvii
N-2017.09



Contents
Spontaneous Emission Rate and Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923
Spontaneous Emission Power Spectrum  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924

Current File and Plot Variables for LED Simulation  . . . . . . . . . . . . . . . . . . . . . . . . 925
LED Wavelength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927
Optical Absorption Heat  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928
Quantum Well Physics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 929
Accelerating Gain Calculations and LED Simulations . . . . . . . . . . . . . . . . . . . . . . . 930
Discussion of LED Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930

LED Optics: Raytracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931
Compact Memory Raytracing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 932

Isotropic Starting Rays From Spontaneous Emission Sources . . . . . . . . . . . . . . . . . 933
Anisotropic Starting Rays From Spontaneous Emission Sources . . . . . . . . . . . . . . . 934
Randomizing Starting Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935

Pseudorandom Starting Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935
Reading Starting Rays From File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936
Moving Starting Rays on Boundaries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936
Clustering Active Vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937

Plane Area Cluster  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937
Nodal Clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938
Optical Grid Element Clustering  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938
Using the Clustering Feature  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939

Debugging Raytracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939
Print Options in Raytracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 940
Interfacing LED Starting Rays to LightTools®. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 941

Example: n99_000000_des_lighttools.txt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943
LED Radiation Pattern  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943

Two-Dimensional LED Radiation Pattern and Output Files . . . . . . . . . . . . . . . . . . . 945
Three-Dimensional LED Radiation Pattern and Output Files . . . . . . . . . . . . . . . . . . 946

Staggered 3D Grid LED Radiation Pattern  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947
Spectrum-Dependent LED Radiation Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 949
Tracing Source of Output Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 950

Interfacing Far-Field Rays to LightTools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 951
Example: farfield_lighttools.txt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952

Nonactive Region Absorption (Photon Recycling)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 953
Device Physics and Tuning Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 953

Example of 3D GaN LED Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 954
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 960

Chapter 35 Modeling Quantum Wells 961

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 961
Radiative Recombination and Gain Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 962
xxviii Sentaurus™ Device User Guide
N-2017.09



Contents
Stimulated and Spontaneous Emission Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 962
Active Bulk Material Gain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 964
Stimulated Recombination Rate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 964
Spontaneous Recombination Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965
Fitting Stimulated and Spontaneous Emission Spectra . . . . . . . . . . . . . . . . . . . . . . . 965

Gain-Broadening Models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965
Lorentzian Broadening  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965
Landsberg Broadening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 966
Hyperbolic-Cosine Broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 966
Syntax to Activate Broadening  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 966
Electronic Band Structure for Wurtzite Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967

Optical Transition Matrix Element for Wurtzite Crystals  . . . . . . . . . . . . . . . . . . 971
Simple Quantum-Well Subband Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 973

Syntax for Simple Quantum-Well Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975
Strain Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976

Syntax for Quantum-Well Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 977
Localized Quantum-Well Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978
Nonlocal Quantum-Well Model Using 1D Schrödinger Solver . . . . . . . . . . . . . . . . . . . 980
Importing Gain and Spontaneous Emission Data With PMI  . . . . . . . . . . . . . . . . . . . . . 982

Implementing Gain PMI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 982
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985

Part IV Mesh and Numeric Methods 987

Chapter 36 Automatic Grid Generation and Adaptation Module AGM 989

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989
General Adaptation Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 990
Adaptation Scheme  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 991

Adaptation Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 991
Adaptation Criteria  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 991

Refinement on Local-Field Variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992
Refinement on Residual Error Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992

Solution Recomputation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992
Device-Level Data Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 993
System-Level Data Smoothing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 993

Specifying Grid Adaptations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 993
Adaptive Device Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 994

Device Structure Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 994
Initialization From Sentaurus Mesh Boundary and Command Files . . . . . . . . . . 995
Initialization From Element Grid File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995
Parameters Affecting Initialization From Element Grid  . . . . . . . . . . . . . . . . . . . 996
Sentaurus™ Device User Guide xxix
N-2017.09



Contents
Device Adaptation Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 996
Parameters Affecting Grid Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997
Parameters Affecting Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997
Parameters Affecting Meshing Engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 998

Adaptation Criteria  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 998
Global Adaptation Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 999
Parameters Common to All Refinement Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 999
Criterion Type: Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000
Criterion Type: Integral0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1001
Criterion Type: Residual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1002
Mesh Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1002

Adaptive Solve Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1003
General Adaptive Solve Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1003
Adaptive Coupled Solve Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1004
Adaptive Quasistationary Solve Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1004

Performing Adaptive Simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005
Rampable Adaptation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005
Command File Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005

Limitations and Recommendations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1006
Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1006
Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007

Initial Grid Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007
Accuracy of Terminal Currents as Adaptation Goal  . . . . . . . . . . . . . . . . . . . . . 1007
AGM Simulation Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007
Large Grid Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1008
Convergence Problems After Adaptation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1008
AGM and Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1008
3D Grid Adaptation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1008

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1008

Chapter 37 Numeric Methods 1011

Discretization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1011
Extended Precision  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012

Box Method Coefficients in 3D Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1013
Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1013
Element Intersection Box Method Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015
Truncated Obtuse Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016
Weighted Box Method Coefficients  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019

Weighted Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019
Weighted Voronoï Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020

Saving and Restoring Box Method Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021
xxx Sentaurus™ Device User Guide
N-2017.09



Contents
Statistics About Non-Delaunay Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022
Region Non-Delaunay Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023
Interface Non-Delaunay Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023
Plot Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024

AC Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024
AC Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025
AC Current Density Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026

Harmonic Balance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027
Harmonic Balance Equation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027
Multitone Harmonic Balance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028

Multidimensional Fourier Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028
Quasi-Periodic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029
Multidimensional Frequency Domain Problem . . . . . . . . . . . . . . . . . . . . . . . . . 1029
One-Tone Harmonic Balance Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030

Solving HB Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030
Solving HB Newton Step Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031

Restarted GMRES Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031
Direct Solver Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1032

Transient Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1032
Backward Euler Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1032
TRBDF Composite Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033
Controlling Transient Simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034

Floating Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035
Nonlinear Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036

Fully Coupled Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036
‘Plugin’ Iterations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1039

Part V External Interfaces 1041

Chapter 38 Physical Model Interface 1043

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1043
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045
Simplified C++ Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049

Numeric Data Type pmi_float . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049
Pseudo-Implementation of a Simplified PMI Model. . . . . . . . . . . . . . . . . . . . . . . . 1050

Nonlocal Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1053
Jacobian Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1054
Example: Point-to-Point Tunneling Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056

Shared Object Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065
Command File of Sentaurus Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065
Sentaurus™ Device User Guide xxxi
N-2017.09



Contents
Runtime Support for Vertex-Based PMI Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067
Runtime Support at Model Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068

Reaction–Diffusion Species Interface (Model Scope) . . . . . . . . . . . . . . . . . . . . 1069
Runtime Support at Compute Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070

Reaction–Diffusion Species Interface (Compute Scope) . . . . . . . . . . . . . . . . . . 1074
Experimental Runtime Support Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074
Vertex-Based Runtime Support for Multistate Configuration–Dependent Models 1075

Mesh-Based Runtime Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076
Device Mesh  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077

Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077
Edge  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079
Element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079
Region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081
Region Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082
Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083

Device Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1084
Parameter File of Sentaurus Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1088
Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091

Thread-Local Storage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091
Debugging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1092
Generation–Recombination Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1094

Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1094
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1095
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1096
Example: Auger Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1097

Nonlocal Generation–Recombination Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1097
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1097
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1098
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1099
Example: Point-to-Point Tunneling Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1100

Avalanche Generation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1100
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1100
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1101
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1102
Example: Okuto Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1103

Mobility Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107
Doping-Dependent Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107

Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1108
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1109
Example: Masetti Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1110
xxxii Sentaurus™ Device User Guide
N-2017.09



Contents
Multistate Configuration–Dependent Bulk Mobility  . . . . . . . . . . . . . . . . . . . . . . . . . . 1113
Command File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1114
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1115

Mobility Degradation at Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1116
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1116
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1119
Example: Lombardi Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1120

High-Field Saturation Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1126
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1128
Example: Canali Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129

High-Field Saturation With Two Driving Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1134
Command File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1134
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1134
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1136
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1137

Band Gap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1139
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1139
Example: Default Bandgap Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1140

Bandgap Narrowing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1141
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1141
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1142
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1142
Example: Default Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1143

Apparent Band-Edge Shift  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1144
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1146

Multistate Configuration–Dependent Apparent Band-Edge Shift  . . . . . . . . . . . . . . . . 1147
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147
Additional Functionality  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148

Using Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148
Updating Actual Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148

Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1150
Sentaurus™ Device User Guide xxxiii
N-2017.09



Contents
Electron Affinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1151
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1151
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1151
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1152
Example: Default Affinity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1153

Effective Mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1154
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1154
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1155
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1155
Example: Linear Effective Mass Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156

Energy Relaxation Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1158
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1159
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1159
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1160
Example: Constant Energy Relaxation Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1160

Lifetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1162
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1163
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1163
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1164
Example: Doping- and Temperature-Dependent Lifetimes. . . . . . . . . . . . . . . . . . . 1165

Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1167
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1167
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1168
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1168
Example: Temperature-Dependent Thermal Conductivity . . . . . . . . . . . . . . . . . . . 1169
Example: Thin-Layer Thermal Conductivity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1171

Multistate Configuration–Dependent Thermal Conductivity . . . . . . . . . . . . . . . . . . . . 1173
Command File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1173
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1174
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1176

Heat Capacity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1177
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1177
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1178
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1178
Example: Constant Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1179

Multistate Configuration–Dependent Heat Capacity  . . . . . . . . . . . . . . . . . . . . . . . . . . 1180
Command File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1180
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1180
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1181
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1182
xxxiv Sentaurus™ Device User Guide
N-2017.09



Contents
Optical Quantum Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1183
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1183
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1184
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1185

Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188
Example: Constant Stress Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188

Space Factor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1190
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1191
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1191
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1192
Example: PMI User Field as Space Factor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1192

Mobility Stress Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1193
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1194
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1194
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195
Example: Effective Stress Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195

Trap Capture and Emission Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1200
Traps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1201
Multistate Configurations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1201
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1201
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1202
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1203
Example: CEModel_ArrheniusLaw  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1204

Trap Energy Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1205
Command File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1205
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1205
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1206
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1206

eNMP Transition Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1207
Distinction Between Electron and Hole Transitions . . . . . . . . . . . . . . . . . . . . . . . . 1208
Transition Rates for All Sample Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1209
Parameter Randomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1209
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1210
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1212
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1213
Example: eNMP Model Transition Rates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1214

Piezoelectric Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1219
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1219
Sentaurus™ Device User Guide xxxv
N-2017.09



Contents
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1220
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1220
Example: Gaussian Polarization Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1221

Incomplete Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1222
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1222
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1223
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1224
Example: Matsuura Incomplete Ionization Model  . . . . . . . . . . . . . . . . . . . . . . . . . 1225

Hot-Carrier Injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1230
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1230
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1230
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1231
Example: Lucky Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1232

Piezoresistive Coefficients  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1237
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1237
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1238
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1238

Current Plot File of Sentaurus Device  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1239
Structure of Current Plot File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1240
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1240
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1241
Example: Average Electrostatic Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1242

Postprocess for Transient Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1244
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1244
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1245
Example: Postprocess User-Field  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1245

Preprocessing for Newton Iterations and Newton Step Control . . . . . . . . . . . . . . . . . . 1246
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1247

Function PMI_Newton::GetLogFile() and Class PMI_Newton::Info . . . . . . . . 1248
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1248
PMI_NewtonStep Iterations: Flowchart of Computation . . . . . . . . . . . . . . . . . . . . 1249

Special Contact PMI for Raytracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1250
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1251
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1253
Example: Assessing and Modifying a Ray  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1254

Spatial Distribution Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1257
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1257
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1258
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1258
Example: Gaussian Spatial Distribution Function. . . . . . . . . . . . . . . . . . . . . . . . . . 1259

Metal Resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1260
xxxvi Sentaurus™ Device User Guide
N-2017.09



Contents
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1261
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1261
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1262
Example: Linear Metal Resistivity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1263

Heat Generation Rate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1264
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1265
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1265
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1267
Example: Dependency on Electric Field and Gradient of Temperature  . . . . . . . . . 1268

Thermoelectric Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1269
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1269
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1270
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1270
Example: Analytic TEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1271

Metal Thermoelectric Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1274
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1274
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1275
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1276
Example: Linear Field Dependency of Metal TEP . . . . . . . . . . . . . . . . . . . . . . . . . 1277

Diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1279
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1279
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1280
Example: Field-Dependent Hydrogen Diffusivity. . . . . . . . . . . . . . . . . . . . . . . . . . 1280

Gamma Factor for Density Gradient Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1283
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1283
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1284
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1285
Example: Solution-Dependent Gamma Factor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1286

Schottky Resistance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1288
Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1289
Standard C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1290
Simplified C++ Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1291
Example: Built-in Schottky Resistance Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1292

Ferromagnetism and Spin Transport. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294
User-Defined Interlayer Exchange Coupling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294

Syntax of Command File and Parameter File. . . . . . . . . . . . . . . . . . . . . . . . . . . 1294
Base Class for Interlayer Exchange PMIs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1295
Example: ILE Model With a Simple Oscillatory Thickness Dependency . . . . . 1296

User-Defined Bulk or Interface Contributions to the Effective Magnetic Field . . . 1298
Syntax of Command File and Parameter File. . . . . . . . . . . . . . . . . . . . . . . . . . . 1298
Base Class for Generic Bulk or Interface for Effective Magnetic Field PMIs. . 1298
Sentaurus™ Device User Guide xxxvii
N-2017.09



Contents
Example: Exchange Bias  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1300
Example: Interface Anisotropy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1303
Example: Local Demagnetizing Field  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1305

User-Defined Magnetostatic Potential Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 1307
Syntax of Command File and Parameter File. . . . . . . . . . . . . . . . . . . . . . . . . . . 1307

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1308

Chapter 39 Tcl Interfaces 1309

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1309
Mesh-Based Runtime Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1309

Device Mesh  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1310
Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1311
Edge  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1312
Element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1312
Region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1313
Region Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1314

Device Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1315
One-Dimensional Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1316
Two-Dimensional Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1317

Current Plot File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1317
Tcl Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1317

tcl_cp_constructor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1318
tcl_cp_destructor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1318
tcl_cp_Compute_Dataset_Names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1318
tcl_cp_Compute_Function_Names  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319
tcl_cp_Compute_Plot_Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319

Part VI Appendices 1323

Appendix A Mathematical Symbols 1325

Appendix B Syntax 1329

Appendix C File-Naming Conventions 1331

File Extensions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1331
xxxviii Sentaurus™ Device User Guide
N-2017.09



Contents
Appendix D Command-Line Options 1333

Starting Sentaurus Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1333
Command-Line Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1333

Appendix E Runtime Statistics 1337

The sdevicestat Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1337

Appendix F Data and Plot Names 1339

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1339
Scalar Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1340
Vector Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1372
Special Vector Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1376
Tensor Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1376

Appendix G Command File Overview 1377

Organization of Command File Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1377
Top Levels of Command File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1379

Device  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1379
File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1381
Solve  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1384
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1398

Boundary Conditions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1399
IFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1402
Math  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1403
Physics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1427

Generation and Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1436
LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1453
Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1458
Radiation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1463
Various. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1464

Plotting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1495
Various  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1498
Sentaurus™ Device User Guide xxxix
N-2017.09



Contents
xl Sentaurus™ Device User Guide
N-2017.09



About This Guide

The Synopsys Sentaurus™ Device tool is a full-featured, electrothermal, mixed-mode device
and circuit simulator for one-dimensional, two-dimensional, and three-dimensional
semiconductor devices. It incorporates advanced physical models and robust numeric methods
for the simulation of most types of semiconductor device ranging from very deep-submicron
silicon MOSFETs to large bipolar power structures. In addition, SiC and III–V compound
homostructure and heterostructure devices are fully supported.

The user guide is divided into parts:

■ Part I presents information about how to start Sentaurus Device and how it interacts with
other Synopsys tools.

■ Part II describes the physics in Sentaurus Device.

■ Part III describes the physical models used in light-emitting diode simulations.

■ Part IV presents the automatic grid generation facility and provides background
information on the numeric methods used in Sentaurus Device.

■ Part V describes the physical model interface, which provides direct access to certain
models in the semiconductor transport equations and the numeric methods in Sentaurus
Device.

■ Part VI contains the appendices.

This guide assumes familiarity with working on UNIX-like systems and requires a basic
understanding of semiconductor device physics and its terminology.

Related Publications

For additional information, see:

■ The TCAD Sentaurus release notes, available on the Synopsys SolvNet® support site (see
Accessing SolvNet on page xlii).

■ Documentation available on SolvNet at https://solvnet.synopsys.com/DocsOnWeb.
Sentaurus™ Device User Guide xli
N-2017.09

https://solvnet.synopsys.com/DocsOnWeb


About This Guide 
Conventions
Conventions

The following conventions are used in Synopsys documentation. 

Customer Support

Customer support is available through the Synopsys SolvNet customer support website and by
contacting the Synopsys support center.

Accessing SolvNet

The SolvNet support site includes an electronic knowledge base of technical articles and
answers to frequently asked questions about Synopsys tools. The site also gives you access to
a wide range of Synopsys online services, which include downloading software, viewing
documentation, and entering a call to the Support Center.

To access the SolvNet site:

1. Go to the web page at https://solvnet.synopsys.com.

2. If prompted, enter your user name and password. (If you do not have a Synopsys user name
and password, follow the instructions to register.)

If you need help using the site, click Help on the menu bar.

Convention Description

Blue text Identifies a cross-reference (only on the screen).

Bold text Identifies a selectable icon, button, menu, or tab. It also indicates the name of a field or an 
option.

Courier font Identifies text that is displayed on the screen or that the user must type. It identifies the names 
of files, directories, paths, parameters, keywords, and variables.

Italicized text Used for emphasis, the titles of books and journals, and non-English words. It also identifies 
components of an equation or a formula, a placeholder, or an identifier.

Menu > Command Indicates a menu command, for example, File > New (from the File menu, select New).
xlii Sentaurus™ Device User Guide
N-2017.09

https://solvnet.synopsys.com


About This Guide
Acknowledgments
Contacting Synopsys Support

If you have problems, questions, or suggestions, you can contact Synopsys support in the
following ways:

■ Go to the Synopsys Global Support Centers site on synopsys.com. There you can find e-
mail addresses and telephone numbers for Synopsys support centers throughout the world.

■ Go to either the Synopsys SolvNet site or the Synopsys Global Support Centers site and
open a case online (Synopsys user name and password required).

Contacting Your Local TCAD Support Team Directly

Send an e-mail message to:

■ support-tcad-us@synopsys.com from within North America and South America.

■ support-tcad-eu@synopsys.com from within Europe.

■ support-tcad-ap@synopsys.com from within Asia Pacific (China, Taiwan, Singapore,
Malaysia, India, Australia).

■ support-tcad-kr@synopsys.com from Korea.

■ support-tcad-jp@synopsys.com from Japan.

Acknowledgments

Parts of Sentaurus Device were codeveloped by Integrated Systems Laboratory of ETH Zurich
in the joint research project LASER with financial support by the Swiss funding agency CTI
and in the joint research project VCSEL with financial support by the Swiss funding agency
TOP NANO 21. The GEBAS Library was codeveloped by Integrated Systems Laboratory of
ETH Zurich in the joint research project MQW with financial support by the Swiss funding
agency TOP NANO 21.

The third-party software ARPACK (ARnoldi PACKage) by R. Lehoucq, K. Maschhoff,
D. Sorensen, and C. Yang is used in Sentaurus Device 
(http://www.caam.rice.edu/software/ARPACK).

Sentaurus Device contains the QD library for double-double and quad-double floating-point
arithmetic (http://crd-legacy.lbl.gov/~dhbailey/mpdist). The QD library requires the following
copyright notice:
Sentaurus™ Device User Guide xliii
N-2017.09

http://crd-legacy.lbl.gov/~dhbailey/mpdist
http://www.caam.rice.edu/software/ARPACK
https://www.synopsys.com/support/global-support-centers.html
https://solvnet.synopsys.com/support/open_case.action


About This Guide 
Acknowledgments
This work was supported by the Director, Office of Science, Division of Mathematical,
Information, and Computational Sciences of the U.S. Department of Energy under contract
number DE-AC03-76SF00098.

Copyright © 2003, The Regents of the University of California, through Lawrence
Berkeley National Laboratory (subject to receipt of any required approvals from U.S. Dept.
of Energy) 

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

(3) Neither the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor
the names of its contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sentaurus Device contains the ARPREC library for arbitrary floating-point arithmetic (http://
crd-legacy.lbl.gov/~dhbailey/mpdist). The ARPREC library requires the following copyright
notice:

This work was supported by the Director, Office of Science, Division of Mathematical,
Information, and Computational Sciences of the U.S. Department of Energy under contract
numbers DE-AC03-76SF00098 and DE-AC02-05CH11231.

Copyright © 2003-2009, The Regents of the University of California, through Lawrence
Berkeley National Laboratory (subject to receipt of any required approvals from U.S. Dept.
of Energy)
xliv Sentaurus™ Device User Guide
N-2017.09

http://crd-legacy.lbl.gov/~dhbailey/mpdist
http://crd-legacy.lbl.gov/~dhbailey/mpdist


About This Guide
Acknowledgments
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the copyright notice, this list of conditions
and the following disclaimer.

(2) Redistributions in binary form must reproduce the copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

(3) Neither the name of the University of California, Lawrence Berkeley National
Laboratory, U.S. Dept. of Energy nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to
the features, functionality or performance of the source code ("Enhancements") to anyone;
however, if you choose to make your Enhancements available either publicly, or directly to
Lawrence Berkeley National Laboratory, without imposing a separate written license
agreement for such Enhancements, then you hereby grant the following license: a non-
exclusive, royalty-free perpetual license to install, use, modify, prepare derivative works,
incorporate into other computer software, distribute, and sublicense such enhancements or
derivative works thereof, in binary and source code form.

Sentaurus Device uses the LAPACK linear algebra package (http://www.netlib.org/lapack),
which requires the following copyright notice:

Copyright © 1992-2011 The University of Tennessee and The University of Tennessee
Research Foundation. All rights reserved.

Copyright © 2000-2011 The University of California Berkeley. All rights reserved.

Copyright © 2006-2012 The University of Colorado Denver. All rights reserved.
Sentaurus™ Device User Guide xlv
N-2017.09

http://www.netlib.org/lapack


About This Guide 
Acknowledgments
Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer listed in this license in the documentation and/or
other materials provided with the distribution.

(3) Neither the name of the copyright holders nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

The copyright holders provide no reassurances that the source code provided does not
infringe any patent, copyright, or any other intellectual property rights of third parties. The
copyright holders disclaim any liability to any recipient for claims brought against recipient
by any third party for infringement of that parties intellectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sentaurus Device uses code adapted from the SLATEC/FNLIB routines daie.f, daide.f, dbie.f,
and dbide.f by Wayne Fullerton for the evaluation of exponentially scaled Airy functions and
their derivatives.
xlvi Sentaurus™ Device User Guide
N-2017.09



Part I Getting Started

This part of the Sentaurus™ Device User Guide contains the following chapters:

Chapter 1 Introduction to Sentaurus Device on page 3

Chapter 2 Specifying Physical Devices on page 9

Chapter 3 Mixed-Mode Sentaurus Device on page 41

Chapter 4 Performing Numeric Experiments on page 67

Chapter 5 Simulation Results on page 107

Chapter 6 Numeric and Software-Related Issues on page 133





CHAPTER 1 Introduction to Sentaurus Device

This chapter describes how Sentaurus Device integrates into the
TCAD tool suite and presents some complete simulation examples.

Functionality of Sentaurus Device

Sentaurus Device simulates numerically the electrical behavior of a single semiconductor
device in isolation or several physical devices combined in a circuit. Terminal currents,
voltages, and charges are computed based on a set of physical device equations that describes
the carrier distribution and conduction mechanisms. A real semiconductor device, such as a
transistor, is represented in the simulator as a ‘virtual’ device whose physical properties are
discretized onto a nonuniform ‘grid’ (or ‘mesh’) of nodes.

Therefore, a virtual device is an approximation of a real device. Continuous properties such as
doping profiles are represented on a sparse mesh and, therefore, are only defined at a finite
number of discrete points in space. The doping at any point between nodes (or any physical
quantity calculated by Sentaurus Device) can be obtained by interpolation. Each virtual device
structure is described in the Synopsys TCAD tool suite by a TDR file containing the following
information:

■ The grid (or geometry) of the device contains a description of the various regions, that is,
boundaries, material types, and the locations of any electrical contacts. It also contains the
locations of all the discrete nodes and their connectivity.

■ The data fields contain the properties of the device, such as the doping profiles, in the form
of data associated with the discrete nodes. Figure 1 on page 4 shows a typical example: the
doping profile of a MOSFET structure discretized by a mixed-element grid. By default, a
device simulated in 2D is assumed to have a ‘thickness’ in the third dimension of .

The features of Sentaurus Device are many and varied. They can be summarized as:

■ An extensive set of models for device physics and effects in semiconductor devices (drift-
diffusion, thermodynamic, and hydrodynamic models).

■ General support for different device geometries (1D, 2D, 3D, and 2D cylindrical).

■ Mixed-mode support of electrothermal netlists with mesh-based device models and SPICE
circuit models.

1 μm
Sentaurus™ Device User Guide 3
N-2017.09



1: Introduction to Sentaurus Device 
Functionality of Sentaurus Device
Figure 1 Two-dimensional doping profile that is discretized on the nodes of simulation grid

Nonvolatile memory simulations are accommodated by robust treatment of floating electrodes
in combination with Fowler–Nordheim and direct tunneling, and hot-carrier injection
mechanisms.

Hydrodynamic (energy balance) transport is simulated rigorously to provide a more physically
accurate alternative to conventional drift-diffusion formulations of carrier conduction in
advanced devices.

Floating semiconductor regions in devices such as thyristors and silicon-on-insulator (SOI)
transistors (floating body) are handled robustly. This allows hydrodynamic breakdown
simulations in such devices to be achieved with good convergence.

The mixed device and circuit capabilities give Sentaurus Device the ability to solve three basic
types of simulation: single device, single device with a circuit netlist, and multiple devices with
a circuit netlist (see Figure 2). 

Figure 2 Three types of simulation

5.8e+20

5.6e+17

5.5e+14

5.9e+10

-4.9e+14

-5.0e+17

N [cm−3]

Single Device Single Device With Circuit Multiple Devices With Circuit
4 Sentaurus™ Device User Guide
N-2017.09



1: Introduction to Sentaurus Device
Functionality of Sentaurus Device
Multiple-device simulations can combine devices of different mesh dimensionality, and
different physical models can be applied in individual devices, providing greater flexibility. In
all cases, the circuit netlists can contain an electrical and a thermal section.

Creating and Meshing Device Structures

Device structures can be created in various ways, including 1D, 2D, or 3D process simulation
(Sentaurus Process), 2D or 3D process emulation (Sentaurus Structure Editor), and 2D or 3D
structure editors (Sentaurus Structure Editor).

Regardless of the means used to generate a virtual device structure, it is recommended that the
structure be remeshed using Sentaurus Structure Editor (2D and 3D meshing with an
interactive graphical user interface (GUI)) or Sentaurus Mesh (1D, 2D, and 3D meshing
without a GUI) to optimize the grid for efficiency and robustness.

For maximum efficiency of a simulation, a mesh must be created with a minimum number of
vertices to achieve the required level of accuracy. For any given device structure, the optimal
mesh varies depending on the type of simulation.

It is recommended that to create the most suitable mesh, the mesh must be densest in those
regions of the device where the following are expected:

■ High current density (MOSFET channels, bipolar base regions)

■ High electric fields (MOSFET channels, MOSFET drains, depletion regions in general)

■ High charge generation (single event upset (SEU) alpha particle, optical beam)

For example, accurate drain current modeling in a MOSFET requires very fine, vertical, mesh
spacing in the channel at the oxide interface (of the order ) when using advanced mobility
models. For reliable simulation of breakdown at a drain junction, the mesh must be more
concentrated inside the junction depletion region for good resolution of avalanche
multiplication.

Generally, a total node count of 2000 to 4000 is reasonable for most 2D simulations. Large
power devices and 3D structures require a considerably larger number of elements.

Tool Flow

In a typical device tool flow, the creation of a device structure by process simulation (Sentaurus
Process) is followed by remeshing using Sentaurus Structure Editor or Sentaurus Mesh. In this
scheme, control of mesh refinement is handled automatically through the file _dvs.cmd.

1Å
Sentaurus™ Device User Guide 5
N-2017.09



1: Introduction to Sentaurus Device 
Starting Sentaurus Device
Sentaurus Device is used to simulate the electrical characteristics of the device. Finally,
Sentaurus Visual is used to visualize the output from the simulation in 2D and 3D, and Inspect
is used to plot the electrical characteristics.

Figure 3  Typical tool flow with device simulation using Sentaurus Device

Starting Sentaurus Device

You can start Sentaurus Device from either the command line or Sentaurus Workbench.

From the Command Line

Sentaurus Device is driven by a command file and run by the command:

sdevice <command_filename>

Various options exist at start-up and are listed by using:

sdevice -h

By default, sdevice runs the latest version in the current release of Sentaurus Device. To run
a particular version in the current release, use the command-line option -ver. For example:

sdevice -ver 1.4 nmos_des.cmd

starts version 1.4 of the latest release of Sentaurus Device.

boundary
_fps.tdr

command
_dvs.cmd

command
_des.cmd

parameter
name.par

grid
_msh.tdr

current
_des.plt

plot
_des.tdr

output
_msh.log

output
_des.log

Sentaurus
Structure
Editor

Sentaurus
Device
6 Sentaurus™ Device User Guide
N-2017.09



1: Introduction to Sentaurus Device
Starting Sentaurus Device
To run the latest version in a particular release, use the command-line option -rel. For
example:

sdevice -rel N-2017.09 nmos_des.cmd

starts the latest version available in release N-2017.09. To run a particular version in a
particular release, combine -ver and -rel. For example:

sdevice -rel M-2016.12 -ver 1.2 nmos_des.cmd

starts Sentaurus Device, release M-2016.12, version 1.2.

When the release or the version requested is not installed, the available releases or versions are
listed, and the program aborts.

Appendix D on page 1333 lists the command options of Sentaurus Device, which include:

sdevice -versions 

Checks which versions are in the installation path.

sdevice -P and sdevice -L 

Extract model parameter files (see Generating a Copy of Parameter File on page 32).

sdevice --parameter-names 

Prints names of parameters that can be ramped (see Ramping Physical Parameter Values
on page 78).

When Sentaurus Device starts, the command file is checked for correct syntax, and the
commands are executed in sequence. Character strings starting with * or # are ignored by
Sentaurus Device, so that these characters can be used to insert comments in the simulation
command file.

From Sentaurus Workbench

Sentaurus Device is launched automatically through the Scheduler when working inside
Sentaurus Workbench.

Sentaurus Workbench interprets # as a special marker for conditional statements (for example,
#if..., #elif..., and #endif...).
Sentaurus™ Device User Guide 7
N-2017.09



1: Introduction to Sentaurus Device 
Simulation Projects
Simulation Projects

The Sentaurus Device module of the TCAD Sentaurus Tutorial provides various projects
demonstrating the capabilities of Sentaurus Device.

To access the TCAD Sentaurus Tutorial, open Sentaurus Workbench and either choose Help >
Training or click the corresponding toolbar button.

Alternatively, to access the TCAD Sentaurus Tutorial, go to:

$STROOT/tcad/$STRELEASE/Sentaurus_Training/index.html

where the STROOT environment variable indicates where the Synopsys TCAD distribution has
been installed, and STRELEASE indicates the Synopsys TCAD release number.
8 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 2 Specifying Physical Devices

This chapter describes how to specify physical devices.

Before performing a simulation, Sentaurus Device needs to know which device will actually
be simulated. This chapter describes what Sentaurus Device needs to know and how to specify
it. This includes obvious information, such as the size and shape of the device, the materials of
which the device is made, and the doping profiles. It also includes less obvious aspects such as
which physical effects must be taken into account, and by which models and model parameters
this should be performed.

Reading a Structure

A device is defined by its shape, material composition, and doping. This information is defined
on a grid and contained in a TDR file that you specify with the keyword Grid in the File
section of the command file, for example:

File {
Grid = "mosfet.tdr"
...

}

The following keywords affect the interpretation of the geometry in the Grid file:

■ CoordinateSystem in the global Math section specifies the coordinate system that is
used for explicit coordinates in the Sentaurus Device command file. Many features such as
current plot statements (see Tracking Additional Data in the Current File on page 110) or
LatticeParameters in the parameter file (see Crystal and Simulation Coordinate
Systems on page 781) use explicit coordinates, and they are based on an implicit
assumption regarding the orientation of the device. By specifying the following keyword,
you can indicate the required orientation of the device:

Math {
CoordinateSystem { <option> }

} 

Table 1 Options of the CoordinateSystem keyword

Option Description

AsIs (Default) This option specifies that the coordinate system of the device is compatible with the explicit 
coordinates used in the Sentaurus Device command file. No transformation is applied to the structure.
Sentaurus™ Device User Guide 9
N-2017.09



2: Specifying Physical Devices 
Reading a Structure
If the coordinate system of the device is incompatible with the specification in the Math
section, Sentaurus Device automatically transforms the device into the required coordinate
system.

■ Cylindrical in the global Math section specifies that the device is simulated using
cylindrical coordinates. In this case, a 3D device is specified by a 2D mesh and the vertical
or horizontal axis around which the device is rotated.

■ AreaFactor in the global Physics section specifies a multiplier for currents and charges.
For 1D or 2D simulations, it typically specifies the extension of the device in the remaining
one or two dimensions. In simulations that exploit the symmetry of the device, it can also
be used to account for the reduction of the simulated device compared to the real device.
AreaFactor is also available in the Electrode and Thermode sections, with the same
meaning; if both AreaFactors are present, Sentaurus Device multiplies them.

TDR units are taken into account when loading from a .tdr file. Thereby, the units read from
files are converted to the appropriate units used in Sentaurus Device. The TDR unit is ignored
in the case of a conversion failure. Use the keyword IgnoreTdrUnits in the Math section to
disregard TDR units during loading. This applies not only to the Grid file, but also to other
loaded files (see Save and Load on page 157).

Abrupt and Graded Heterojunctions

Sentaurus Device supports both abrupt and graded heterojunctions, with an arbitrary mole
fraction distribution. In the case of abrupt heterojunctions, Sentaurus Device treats
discontinuous datasets properly by introducing double points at the heterointerfaces.

This option is switched on automatically when thermionic emission (see Thermionic Emission
Current on page 763) is selected, or when the keyword HeteroInterface is specified in the
Physics section of a selected heterointerface. By default, this double points option is switched
off.

DFISE In 2D, the x-axis points across the surface, and the y-axis points down into the device. In 3D, the x-
axis and y-axis span the surface of the device, and the z-axis points upwards away from the device.

UCS The unified coordinate system (UCS) uses the convention of the simulation coordinate system as 
established by Sentaurus Process. The x-axis always points down into the device. In 2D, the y-axis 
runs across the surface of the device. In 3D, the z-axis is added to obtain a right-handed coordinate 
system.

Table 1 Options of the CoordinateSystem keyword (Continued)

Option Description
10 Sentaurus™ Device User Guide
N-2017.09



2: Specifying Physical Devices
Doping Specification
NOTE The keyword HeteroInterface provides equilibrium conditions
(continuous quasi-Fermi potentials) for the double points. It does not
provide realistic physics at the interface for high-current regimes. Using
the HeteroInterface option without thermionic emission or a
tunneling model is discouraged.

To illustrate the double points option, Figure 4 shows the conduction band near an abrupt
heterointerface. The wide line shows a case without double points, which requires a very fine
mesh to avoid a large barrier error ( ).

Figure 4 Band edge at a heterointerface with and without double points

Doping Specification

Sentaurus Device relies on the Variables section of the file datexcodes.txt to determine
its doping species. A variable is identified as a doping species by a doping field that shows
whether it is an acceptor or a donor. Chemical concentrations are linked to their corresponding
active concentrations by an active field. Similarly, ionized concentrations are specified by an
ionized field.

A typical declaration would be:

BoronConcentration, BoronChemicalConcentration {
doping = acceptor (

active = BoronActiveConcentration
ionized = BoronMinusConcentration

)
...

}

BoronActiveConcentration {
...

}

δEC

EC1

Dc

EC2

δEC

Mesh Nodes
Sentaurus™ Device User Guide 11
N-2017.09



2: Specifying Physical Devices 
Doping Specification
BoronMinusConcentration {
...

}

It is also possible to limit doping species to certain substrate materials. For example, to restrict
SiliconConcentration as a donor for GaN substrates only, you would specify the
following:

SiliconConcentration, SiliconChemicalConcentration {
doping = donor (

active = SiliconActiveConcentration
ionized = SiliconPlusConcentration
material = GaN

)
}

The TCAD Sentaurus tool suite provides a default datexcodes.txt file in the directory
$STROOT_LIB (or $STROOT/tcad/$STRELEASE/lib). Many common doping species are
already predefined in this file. To add user-defined doping species or to modify an existing
specification, you can use a datexcodes.txt file in the local directory. The local
datexcodes.txt file only needs to contain the variables that you want to add or modify.

If the incomplete ionization model is activated (see Chapter 13 on page 277), the model
parameters of the user-defined species must be specified in the Ionization section of the
material parameter file.

Sentaurus Device loads doping distributions from the Grid file specified in the File section
(see Reading a Structure on page 9) and reads the following datasets:

■ Net doping (DopingConcentration in the Grid file)

■ Total doping (TotalConcentration in the Grid file)

■ Concentrations of individual species

Sentaurus Device supports the following rules of doping specification:

■ Sentaurus Device takes the net doping dataset from the file if this dataset is present.
Otherwise, net doping is recomputed from the concentrations of the separate species. To
force the recomputation of the net doping based on individual species, use the keyword
ComputeDopingConcentration in the global Math section.

■ The same rule is applied for the total doping dataset.

NOTE Total concentration, which originates from process simulators (for
example, Sentaurus Process), is the sum of the chemical concentrations
of dopants. However, if the total concentration is recomputed inside
Sentaurus Device, active concentrations are used.
12 Sentaurus™ Device User Guide
N-2017.09



2: Specifying Physical Devices
Material Specification
■ Sentaurus Device takes the active concentration of a dopant if it is in the Grid file (for
example, BoronActiveConcentration). Otherwise, the chemical dopant concentration
is used (for example, BoronConcentration).

To perform any simulation, Sentaurus Device must prepare four major doping arrays:

■ The net doping concentration, .

■  and , the donor and acceptor concentrations.

■ The total doping concentration, .

After loading the doping file, Sentaurus Device uses the following scheme to compute the
doping arrays:

1. If the Grid file does not have any species:  is initialized from
DopingConcentration,  is initialized from TotalConcentration or  if
TotalConcentration was not read, , and

.

2. If the Grid file has individual species:  and  are computed as the sum of
individual donor and acceptor concentrations,  is initialized from
DopingConcentration or  if DopingConcentration was not read, and

 is initialized from TotalConcentration or  if TotalConcentration
was not read.

3. Doping concentration is also affected if the Physics section includes trap specifications
with the Add2TotalDoping or Add2TotalDoping(ChargedTraps) option (see
Options to Include Traps in Doping on page 469 for a description of these options).

Material Specification

Sentaurus Device supports all materials that are declared in the datexcodes.txt file (see
Utilities User Guide, Chapter 1 on page 1). The following search strategy is observed to locate
the datexcodes.txt file:

■ Either $STROOT_LIB/datexcodes.txt or $STROOT/tcad/$STRELEASE/lib/
datexcodes.txt if the environment variable STROOT_LIB is not defined (lowest
priority)

■ $HOME/datexcodes.txt (medium priority)

■ datexcodes.txt in local directory (highest priority)

Definitions in later files replace or add to the definitions in earlier files.

Nnet ND,0 NA,0–=

ND,0 NA,0

Ntot ND ,0 NA,0+=

Nnet

Ntot Nnet

ND,0 Ntot Nnet+( ) 2⁄=
NA,0 Ntot Nnet–( ) 2⁄=

NA,0 ND,0

Nnet

ND,0 NA,0–
Ntot NA,0 ND,0+
Sentaurus™ Device User Guide 13
N-2017.09



2: Specifying Physical Devices 
Material Specification
User-Defined Materials

New materials can be defined in a local datexcodes.txt file. To add a new material, add its
description to the Materials section of datexcodes.txt:

Materials {
Silicon {

label = "Silicon"
group = Semiconductor
color = #ffb6c1

}
Oxide {

label = "SiO2"
group = Insulator
color = #7d0505

}
...

}

The label value is used as a legend in visualization tools.

The group value identifies the type of new material. The available values are:

Conductor
Insulator
Semiconductor

The field color defines the color of the material in visualization tools. This field must have
the syntax:

color = #rrggbb

where rr, gg, and bb denote hexadecimal numbers representing the intensity of red, green, and
blue, respectively. The values of rr, gg, and bb must be in the range 00 to ff. 

Table 2 Sample values for color

Color code Color Color code Color

#000000 Black #ffffff White

#ff0000 Red #40e0d0 Turquoise

#00ff00 Green #7fff00 Chartreuse

#0000ff Blue #b03060 Maroon

#ffff00 Yellow #ff7f50 Coral
14 Sentaurus™ Device User Guide
N-2017.09



2: Specifying Physical Devices
Material Specification
Mole-Fraction Materials

Sentaurus Device reads the file Molefraction.txt to determine mole fraction–dependent
materials. The following search strategy is used to locate this file:

1. Sentaurus Device looks for Molefraction.txt in the current working directory.

2. If the environment variables STROOT and STRELEASE are defined, Sentaurus Device tries
to read the file:

$STROOT/tcad/$STRELEASE/lib/Molefraction.txt

3. If these previous strategies are unsuccessful, Sentaurus Device uses the built-in defaults
that follow.

The default Molefraction.txt file has the following content:

# Ge(x)Si(1-x)
SiliconGermanium (x=0) = Silicon
SiliconGermanium (x=1) = Germanium

# Al(x)Ga(1-x)As
AlGaAs (x=0) = GaAs
AlGaAs (x=1) = AlAs

# In(1-x)Al(x)As
InAlAs (x=0) = InAs
InAlAs (x=1) = AlAs

# In(1-x)Ga(x)As
InGaAs (x=0) = InAs
InGaAs (x=1) = GaAs

# Ga(x)In(1-x)P
GaInP (x=0) = InP
GaInP (x=1) = GaP

# InAs(x)P(1-x)
InAsP (x=0) = InP
InAsP (x=1) = InAs

#ff00ff Magenta #da70d6 Orchid

#00ffff Cyan #e6e6fa Lavender

Table 2 Sample values for color (Continued)

Color code Color Color code Color
Sentaurus™ Device User Guide 15
N-2017.09



2: Specifying Physical Devices 
Material Specification
# GaAs(x)P(1-x)
GaAsP (x=0) = GaP
GaAsP (x=1) = GaAs

# Hg(1-x)Cd(x)Te
HgCdTe (x=0) = HgTe
HgCdTe (x=1) = CdTe

# In(1-x)Ga(x)As(y)P(1-y)
InGaAsP (x=0, y=0) = InP
InGaAsP (x=1, y=0) = GaP
InGaAsP (x=1, y=1) = GaAs
InGaAsP (x=0, y=1) = InAs

To add a new mole fraction–dependent material, the material (and its side and corner materials)
must first be added to datexcodes.txt. Afterwards, Molefraction.txt can be updated.

Quaternary alloys are specified by their corner materials in the file Molefraction.txt. For
example, the 2:2 III–V quaternary alloy In1–xGaxAsyP1–y is given by:

InGaAsP (x=0, y=0) = InP
InGaAsP (x=1, y=0) = GaP
InGaAsP (x=1, y=1) = GaAs
InGaAsP (x=0, y=1) = InAs

and the 3:1 III–V quaternary alloy AlxInyGa1–x–yAs is defined by:

AlInGaAs (x=0, y=0) = GaAs
AlInGaAs (x=1, y=0) = AlAs
AlInGaAs (x=0, y=1) = InAs

When the corner materials of an alloy have been specified, Sentaurus Device determines the
corresponding side materials automatically. In the case of In1–xGaxAsyP1–y , the four side
materials are InAsxP1–x , GaAsxP1–x , GaxIn1–xP, and In1–xGaxAs. Similarly, for AlxInyGa1–x–yAs,
the three side materials are In1–xAlxAs, AlxGa1–xAs, and In1–xGaxAs.

NOTE All side and corner materials must appear in datexcodes.txt, and
their mole dependencies must be specified in Molefraction.txt (see
Material Specification on page 13).

NOTE If it cannot parse the file Molefraction.txt, Sentaurus Device
reverts to the defaults shown above. This may lead to unexpected
simulation results.
16 Sentaurus™ Device User Guide
N-2017.09



2: Specifying Physical Devices
Mole-Fraction Specification
Mole-Fraction Specification

In Sentaurus Device, the mole fraction of a compound semiconductor or insulator is defined in
two ways:

■ In the Grid file (<name>.tdr) of the device structure

■ Internally, in the Physics section of the command file

If the mole fraction is loaded from the .tdr file and an internal mole fraction specification is
also applied, the loaded mole fraction values are overwritten in the regions specified in the
MoleFraction sections of the command file.

The internal mole fraction distribution is described in the MoleFraction statement inside the
Physics section:

Physics { ...
MoleFraction(<MoleFraction parameters>)

}

The parameters for the mole fraction specification and grading options are described in
Table 310 on page 1480.

The specification of an xFraction is mandatory in the MoleFraction statement for binary
or ternary compounds; a yFraction is also mandatory for quaternary materials. If the
MoleFraction statement is inside a default Physics section, the RegionName must be
specified. If it is inside a region-specific Physics section, by default, it is applied only to that
region. If a MoleFraction statement is inside a material-specific Physics section and the
RegionName is not specified, this composition is applied to all regions containing the specified
material. If RegionName is specified inside a region-specific and material-specific Physics
section, this specification is used instead of the default regions. 

NOTE Similar to all statements, only one MoleFraction statement is allowed
inside each Physics section. By default, grading is not included. 

An example of a mole fraction specification is:

Physics {
MoleFraction(RegionName = ["Region.3" "Region.4"]

xFraction=0.8
yFraction=0.7
Grading(

(xFraction=0.3 GrDistance=1 
RegionInterface=("Region.0" "Region.3"))

(xFraction=0.2 yFraction=0.1 GrDistance=1
RegionInterface=("Region.0" "Region.5"))

(yFraction=0.4 GrDistance=1 
Sentaurus™ Device User Guide 17
N-2017.09



2: Specifying Physical Devices 
Physical Models and the Hierarchy of Their Specification
RegionInterface=("Region.0" "Region.3"))
)

)
}
Physics (Region = "Region.6") {

MoleFraction(xFraction=0.1 yFraction=0.7 GrDistance=0.01)
}

Physical Models and the Hierarchy of Their Specification

The Physics section is used to select the models that are used to simulate a device. Table 233
on page 1427 lists the keywords that are available, and Part II and Part III discuss the models
in detail.

Physical models can be specified globally, per region or material, per interface, or per
electrode.

Some models (for example, the hydrodynamic transport model) can only be activated for the
whole device. Regionwise or materialwise specifications are syntactically possible, but
Sentaurus Device silently ignores them. Likewise, some specifications are syntactically
possible for all locations, but they are semantically valid only for interfaces or bulk regions. In
the tables in Appendix G on page 1377, the validity of specifications is indicated in the
description column by characters in parentheses. For example, (g) denotes models that can be
activated only for the entire device, but not for individual parts of it.

Some specifications are syntactically possible everywhere, but are valid for certain materials
only. For example, Mobility is only valid in semiconductors.

Region-Specific and Material-Specific Models

In Sentaurus Device, different physical models for different regions and materials within a
device structure can be specified. The syntax for this feature is:

Physics (material="material") {
<physics-body>

}

or:

Physics (region="region-name") {
<physics-body>

}

18 Sentaurus™ Device User Guide
N-2017.09



2: Specifying Physical Devices
Physical Models and the Hierarchy of Their Specification
This feature is also available for the Math section:

Math (material="material") {
<math-body>

}

or:

Math (region="region-name") {
<math-body>

}

A Physics section without any region or material specifications is considered the default
section.

NOTE You can edit region names in Sentaurus Structure Editor (see
Sentaurus™ Structure Editor User Guide, Changing the Name of a
Region on page 109).

The Physics (and Math) sections for different locations are related as follows:

■ Physical models defined in the global Physics section (that is, in the section without any
region or material specifications) are applied in all regions of the device.

■ Physical models defined in a material-specific Physics section are added to the default
models for all regions containing the specified material.

■ The same applies to the physical models defined in a region-specific Physics section: all
regionwise defined models are added to the models defined in the default section.

NOTE If for a region, both a region-specific Physics section and a material-
specific Physics section for the material of the region are present, the
region-specific declaration overrides the material-specific declaration,
that is, the region-specific Physics section will not inherit any models
from the material-specific section.

For example:

Physics {<Default models>}
Physics (Material="GaAs") {<GaAs models>}
Physics (Region="Emitter"){<Emitter models>}

If the "Emitter" region is made of GaAs, the models in this region are <Default models>
and <Emitter models>, that is, whatever <GaAs models> contains is ignored in region
"Emitter".

For some models, the model specification and numeric values of the parameters are defined in
the Physics sections. Examples of such models are Traps and the MoleFraction
Sentaurus™ Device User Guide 19
N-2017.09



2: Specifying Physical Devices 
Physical Models and the Hierarchy of Their Specification
specifications. For these models, the specifications in region or material Physics sections
overwrite previously defined values of the corresponding parameters.

If in the default Physics section, xMoleFraction is defined for a given region and,
afterward, is defined for the same region again, in a region or material Physics section, the
default definition is overwritten. The hierarchy of the parameter specification is the same as
discussed previously.

Interface-Specific Models

A special set of models can be activated at the interface between two different materials or two
different regions. In Table 233 on page 1427, pure interface models are flagged with ‘(i)’ in the
description column.

As physical phenomena at an interface are not the same as in the bulk of a device, not all models
are allowed inside interface-specific Physics sections. For example, it is not possible to define
any mobility models or bandgap narrowing at interfaces.

NOTE Although the Recombination(surfaceSRH) statement and the
GateCurrent statement describe pure interface phenomena, they can
be defined in a region-specific Physics section. In this case, the
models are applied to all interfaces between this region and all adjacent
insulator regions. If specified in the global Physics section, these
models are applied to all semiconductor–insulator interfaces.

Interface models are specified in interface-specific Physics sections. Their respective
parameters are accessible in the parameter file. The syntax for specification of an interface
model is:

Physics (MaterialInterface="material-name1/material-name2") {
<physics-body>

}

or:

Physics (RegionInterface="region-name1/region-name2") {
<physics-body>

}

The following is an example illustrating the specification of fixed charges at the interface
between the materials oxide and aluminum gallium arsenide (AlGaAs):

Physics(MaterialInterface="Oxide/AlGaAs") {
Traps(Conc=-1.e12 FixedCharge)

}

20 Sentaurus™ Device User Guide
N-2017.09



2: Specifying Physical Devices
Physical Model Parameters
If no region interface Physics section is present for a given region interface, the material
interface section is used if present. If the material interface Physics section is missing as well,
built-in defaults are used. Similar to what holds for regions and materials, if a region interface
section is present, it is used for the region interface, ignoring material interface settings
completely, even when a material interface Physics section is present. However, other than
for regions and materials, the global Physics section is not used automatically to determine
interface Physics settings.

Electrode-Specific Models

Electrode-specific Physics sections can be defined, for example:

Physics(Electrode="Gate"){
Schottky
eRecVel = <float>
hRecVel = <float>
Workfunction = <float>

}

Physical Model Parameters

Most physical models depend on parameters that can be adjusted in a file given by Parameter
in the File section:

File {
Parameter = <string>
...

}

The name of the parameter file conventionally has the extension .par.

Model parameters are split into sets, where a particular set corresponds to a particular physical
model. The available parameter sets and the individual parameters they contain are described
along with the description of the related model (see Part II and Part III).

Parameters can be specified globally, materialwise, regionwise, material interface–wise, region
interface–wise, and electrode-wise. The following example shows each of these possibilities:

LatticeHeatCapacity {
cv = 1.1

}
Material = "Silicon" {

LatticeHeatCapacity {
cv = 1.63
Sentaurus™ Device User Guide 21
N-2017.09



2: Specifying Physical Devices 
Physical Model Parameters
}
}
Region = "Oxide" {

LatticeHeatCapacity {
cv = 1.67

}
}
MaterialInterface = "Silicon/Oxide" {

LatticeHeatCapacity {
cv = -1

}
}
RegionInterface = "Oxide/Bulk" {

LatticeHeatCapacity {
cv = -2

}
}
Electrode = "gate" {

LatticeHeatCapacity {
cv = -3

}
}

As for the models themselves, not all parameters are valid in all locations, even though it is
syntactically possible to specify them. For example, the heat capacity is not used for interfaces
and electrodes. Therefore, it does not matter that the values provided in the example above are
nonsensical.

To specify parameters for multiple parameter sets for the same location, put all these
specifications together into one section for that location, as in the following example for
dielectric permittivity and heat capacity:

Material = "Silicon" {
Epsilon{

epsilon= 11.6
}
LatticeHeatCapacity {

cv = 1.63
}

}

Parameter files support an Insert statement to insert other parameter files. Inserted files
themselves can use Insert. You can change parameters after an Insert statement. This is
useful to provide standard values through the inserted file and to make the changes to those
standards explicit. Insert is used as in the following example:

Material = "Silicon" { Insert = "Silicon.par" }
22 Sentaurus™ Device User Guide
N-2017.09



2: Specifying Physical Devices
Physical Model Parameters
Search Strategy for Parameter Files

Sentaurus Device uses the following strategy to search for inserted files, from highest to lowest
priority as follows:

1. Local directory.

2. The ParameterPath variable in the File section can specify a list of releases, for
example:

File {
ParameterPath = "2016.03 2016.12 2017.09"

}

In this case, the following directories are added to the search path:

$STROOT/tcad/$STRELEASE/lib/sdevice/MaterialDB/2016.03
$STROOT/tcad/$STRELEASE/lib/sdevice/MaterialDB/2016.12
$STROOT/tcad/$STRELEASE/lib/sdevice/MaterialDB/2017.09

3. Sentaurus Device checks whether the environment variable SDEVICEDB is defined. This
variable must contain a directory or a list of directories separated by whitespace or colons,
for example:

SDEVICEDB="/home/usr/lib /home/tcad/lib"

Sentaurus Device scans the directories in the given order until the inserted file is found.

NOTE The environment variable SDEVICEDB also is used for the insert
directive in Sentaurus Device command files (see Inserting Files on
page 134).

4. The default library directory:

$STROOT/tcad/$STRELEASE/lib/sdevice/MaterialDB

In all cases, Sentaurus Device prints the path to the actual file and displays an error message if
it cannot be found.

NOTE The insert directive is also available for command files (see Inserting
Files on page 134).
Sentaurus™ Device User Guide 23
N-2017.09



2: Specifying Physical Devices 
Physical Model Parameters
Parameters for Composition-Dependent Materials

The following parameter sets provide mole fraction dependencies. All models are available for
compound semiconductors only, except where otherwise noted:

■ Epsilon (also available for compound insulators)

■ LatticeHeatCapacity (also available for compound insulators)

■ Kappa (lattice thermal conductivity, also available for compound insulators)

■ EnergyRelaxationTime 

■ Bandgap 

■ Bennett (bandgap narrowing)

■ delAlamo (bandgap narrowing)

■ OldSlotboom (bandgap narrowing)

■ Slotboom (bandgap narrowing)

■ JainRoulston (bandgap narrowing)

■ eDOSMass 

■ hDOSMass 

■ ConstantMobility 

■ DopingDependence (mobility model)

■ HighFieldDependence (mobility model)

■ TransferredElectronEffect2 (mobility model)

■ Enormal (mobility model)

■ ToCurrentEnormal (mobility model)

■ PhuMob (mobility model)

■ ThinLayerMobility 

■ StressMobility (hSixBand model parameters)

■ vanOverstraetendeMan (impact ionization model)

■ MLDAQMModel 

■ SchroedingerParameters 

■ Band2BandTunneling 

■ DirectTunneling (for semiconductor–insulator interfaces only)

■ AbsorptionCoefficient 

■ QWStrain (see Electronic Band Structure for Wurtzite Crystals on page 967 and Syntax
for Quantum-Well Strain on page 977)

■ RefractiveIndex (also available for compound insulators)
24 Sentaurus™ Device User Guide
N-2017.09



2: Specifying Physical Devices
Physical Model Parameters
■ Radiative recombination

■ Shockley–Read–Hall recombination

■ Auger recombination

■ Piezoelectric polarization

■ QuantumPotentialParameters 

■ Deformation potential (elasticity modulus, the parameters for the electron band: xis, dbs,
xiu, xid and, for hole band: adp, bdp, ddp, dso)

■ SHEDistribution 

■ ComplexRefractiveIndex 

■ BandstructureParameters (see Electronic Band Structure for Wurtzite Crystals on
page 967)

Sentaurus Device supports the suppression of the mole fraction dependence of a given model
and the use of a fixed (mole fraction–independent) parameter set instead. To suppress mole
fraction dependency, specify the (fixed) values for the parameter (for example, Eg0=1.53) and
omit all other coefficients associated with the interpolation over the mole fraction (for example,
Eg0(1), B(Eg0(1)), and C(Eg0(1))) from this section of the parameter file. It is not
necessary to set them to zero individually.

NOTE When specifying a fixed value for one parameter of a given model, all
other parameters for the same model must be fixed.

In summary, if the mole fraction dependence of a given model is suppressed, the parameter
specification for this model is performed in exactly the same manner as for mole
fraction–independent material.

Ternary Semiconductor Composition

To illustrate a calculation of mole fraction–dependent parameter values for ternary materials,
consider one mole interval from  to . For mole fraction value ( ) of this interval, to
compute the parameter value ( ), Sentaurus Device uses the expression:

(1)

where , , ,  are values defined in the parameter file for each mole fraction interval,
,  is the parameter value (at ) specified using the same manner as for mole

xi 1– xi x
P

P Pi 1– A Δx Bi Δx
2

Ci Δx
3⋅+⋅+⋅+=

A
ΔPi

Δxi
--------- Bi Δxi Ci– Δxi

2⋅⋅–=

ΔPi Pi Pi 1––=

Δxi xi xi 1––=

Δx x xi 1––=

Pi Bi Ci xi

x0 0= P0 x 0=
Sentaurus™ Device User Guide 25
N-2017.09



2: Specifying Physical Devices 
Physical Model Parameters
fraction–independent material (for example, Eg0=1.53). As in the formulas above, you are not
required to specify coefficient  of the polynomial because it is easily recomputed inside
Sentaurus Device.

In the case of undefined parameters (these can be listed by printing the parameter file),
Sentaurus Device uses linear interpolation using two parameter values of side materials (for

 and ):

(2)

Figure 5 Parameter value as a function of mole fraction

Example 1: Specifying Electric Permittivity

This example provides the specification of dielectric permittivity for AlxGa1–xAs:

Epsilon
{ * Ratio of the permittivities of material and vacuum

epsilon = 13.18 # [1]
* Mole fraction dependent model.
* The linear interpolation is used on interval [0,1].

epsilon(1) = 10.06 # [1]
}

A linear interpolation is used for the dielectric permittivity, where epsilon specifies the value
for the mole fraction , and epsilon(1) specifies the value for .

Example 2: Specifying Band Gap

This example provides a specification of the bandgap parameters for AlxGa1–xAs. A
polynomial approximation, up to the third degree, describes the mole fraction–dependent band
parameters on every mole fraction interval. In the following example, two intervals are used,
namely, [Xmax(0), Xmax(1)] and [Xmax(1), Xmax(2)]. The parameters Eg0, Chi0, …
correspond to the values for = Xmax(0); while the parameters Eg0(1), Chi0(1), …

A

x 0= x 1=

P 1 x–( )Px0 xPx1+=

10

Parameter Value

xi–1 xi

Pi

Pi–1

Mole Fraction

x 0= x 1=

X

26 Sentaurus™ Device User Guide
N-2017.09



2: Specifying Physical Devices
Physical Model Parameters
correspond to the values for = Xmax(1) and, finally, Eg0(2), Chi0(2), … correspond to
the values for = Xmax(2).

The coefficients and  of the polynomial:

(3)

are determined from the values at both ends of the intervals, while the coefficients  and 
must be specified explicitly. You can introduce additional intervals:

Bandgap *temperature dependent*
{ * Eg = Eg0 - alpha T^2 / (beta + T) + alpha Tpar^2 / (beta + Tpar)
* Eg0 can be overwritten in below bandgap narrowing models,
* if any of the BGN model is chosen in physics section.
* Parameter 'Tpar' specifies the value of lattice 
* temperature, at which parameters below are defined.

Eg0 = 1.42248 # [eV]
Chi0 = 4.11826 # [eV]
alpha = 5.4050e-04 # [eV K^-1]
beta = 2.0400e+02 # [K]
Tpar = 3.0000e+02 # [K]

* Mole fraction dependent model.
* The following interpolation polynomial can be used on interval 
[Xmin(I),Xmax(I)]:
* F(X) = F(I-1)+A(I)*(X-Xmin(I))+B(I)*(X-Xmin(I))^2+C(I)*(X-Xmin(I))^3,
* where Xmax(I), F(I), B(I), C(I) are defined below for each interval.
* A(I) is calculated for a boundary condition F(Xmax(I)) = F(I).
* Above parameters define values at the following mole fraction: 

Xmax(0) = 0.0000e+00 # [1]
* Definition of mole fraction intervals, parameters, and coefficients:

Xmax(1) = 0.45 # [1]
Eg0(1) = 1.98515 # [eV]
B(Eg0(1)) = 0.0000e+00 # [eV]
C(Eg0(1)) = 0.0000e+00 # [eV]
Chi0(1) = 3.575 # [eV]
B(Chi0(1)) = 0.0000e+00 # [eV]
C(Chi0(1)) = 0.0000e+00 # [eV]
alpha(1) = 4.7727e-04 # [eV K^-1]
B(alpha(1)) = 0.0000e+00 # [eV K^-1]
C(alpha(1)) = 0.0000e+00 # [eV K^-1]
beta(1) = 1.1220e+02 # [K]
B(beta(1)) = 0.0000e+00 # [K]
C(beta(1)) = 0.0000e+00 # [K]
Xmax(2) = 1 # [1]
Eg0(2) = 2.23 # [eV]
B(Eg0(2)) = 0.143 # [eV]
C(Eg0(2)) = 0.0000e+00 # [eV]
Chi0(2) = 3.5 # [eV]

X
X

A F

F A X Xmin I( )–( ) B X Xmin I( )–( )2
C X Xmin I( )–( )3

+ + +

B C
Sentaurus™ Device User Guide 27
N-2017.09



2: Specifying Physical Devices 
Physical Model Parameters
B(Chi0(2)) = 0.0000e+00 # [eV]
C(Chi0(2)) = 0.0000e+00 # [eV]
alpha(2) = 4.0000e-04 # [eV K^-1]
B(alpha(2)) = 0.0000e+00 # [eV K^-1]
C(alpha(2)) = 0.0000e+00 # [eV K^-1]
beta(2) = 0.0000e+00 # [K]
B(beta(2)) = 0.0000e+00 # [K]
C(beta(2)) = 0.0000e+00 # [K]

}

Quaternary Semiconductor Composition

Sentaurus Device supports 1:3, 2:2, and 3:1 III–V quaternary alloys. A 1:3 III–V quaternary
alloy is given by:

(4)

where  is a group III element, and , , and  are group V elements (usually listed
according to increasing atomic number). Conversely, a 3:1 III–V quaternary alloy can be
described as:

(5)

where , , and  are group III elements, and  is a group V element.

The composition variables , , and  are nonnegative, and they are constrained by:

(6)

An example would be AlxGayIn1–x–yAs, where  corresponds to .

Sentaurus Device uses the symmetric interpolation scheme proposed by Williams et al. [1] to
compute the parameter value  of a 3:1 III–V quaternary alloy as a weighted sum
of the corresponding ternary values:

(7)

where:

(8)

ABxCyDz

A B C D

AxByCzD

A B C D

x y z

x y z+ + 1=

1 x– y– z

P AxByCzD( )

P AxByCzD( )
xyP A1 u– BuD( ) yzP B1 v– CvD( ) xzP A1 w– CwD( )+ +

xy yz xz+ +
------------------------------------------------------------------------------------------------------------------------------------=

u
1 x– y+

2
-------------------- v, 1 y– z+

2
-------------------- w, 1 x– z+

2
--------------------= = =
28 Sentaurus™ Device User Guide
N-2017.09



2: Specifying Physical Devices
Physical Model Parameters
The parameter values  for 1:3 III–V quaternary alloys are computed similarly. A
general 2:2 III–V quaternary alloy is given by:

(9)

where  and  are group III elements, and and  are group V elements. The composition
variables  and  satisfy the inequalities  and . As an example, the material
In1–xGaxAsyP1–y is mentioned.

The parameters  of a 2:2 III–V quaternary alloy are determined by
interpolation between the four ternary side materials:

(10)

The interpolation of model parameters for quaternary alloys is also discussed in the
literature [2][3][4][5]. A comprehensive survey paper is available [6].

Default Model Parameters for Compound Semiconductors

It is important to understand how the default values for different physical models in different
materials are determined. The approach used in Sentaurus Device is summarized here. For
example, consider the material Material. Assume that no default parameters are defined for
this material and a given physical model Model.

In this case, use the command sdevice -P:Material to see for which models specific
default parameters are predefined in the material Material:

1. Silicon parameters are used, by default, in the model Model if the material Material is
mole fraction independent.

2. If Material is a compound material and dependent on the mole fraction , the default
values of the parameters for the model Model are determined by a linear interpolation
between the values of the respective parameters of the corresponding ‘pure’ materials (that
is, materials corresponding to  and ). For example, for AlxGa1–xAs, values of
the parameters of GaAs and AlAs are used in the interpolation formula.

3. If Material is a quaternary material and dependent on x and y, an interpolation formula,
which is based on the values of all corresponding ternary materials, is used. For example,
for InGaAsP, the values of four materials (InAsP, GaAsP, GaInP, and InGaAs) are used in
the interpolation procedure to obtain the default values of the parameters.

Additional details for each model and specific materials are found in the comments of the
parameter file.

P ABxCyDz( )

AxB1 x– CyD1 y–

A B C D
x y 0 x 1≤ ≤ 0 y 1≤ ≤

P AxB1 x– CyD1 y–( )

P AxB1 x– CyD1 y–( )
x 1 x–( ) yP AxB1 x– C( ) 1 y–( )P AxB1 x– D( )+( ) y 1 y–( ) xP ACyD1 y–( ) 1 x–( )P BCyD1 y–( )+( )+

x 1 x–( ) y 1 y–( )+
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

x

x 0= x 1=
Sentaurus™ Device User Guide 29
N-2017.09



2: Specifying Physical Devices 
Physical Model Parameters
Combining Parameter Specifications

Sentaurus Device has built-in values for many parameters, can read parameters from files in a
default location, and can read a user-supplied parameter file that can specify parameters for
various locations. This section discusses the rules for combining all these specifications.

Parameter handling is affected by the presence of the flag DefaultParametersFromFile
(specified in the global Physics section) and the value of ParameterInheritance
(specified in the global Math section). By default, ParameterInheritance=Flatten; by
setting ParameterInheritance=None, the rules for combining parameter specifications
can be altered.

Materialwise Parameters

To determine materialwise parameters, follow these steps:

1. The parameters are initialized from built-in values. These values can depend on the
material. For many materials, no appropriate built-in values exist, and silicon values are
used instead.

2. If the DefaultParametersFromFile flag is present, Sentaurus Device reads the default
parameter file for the material. This file can add parameters (for example, add intervals to
a mole fraction specification) or overwrite built-in values (for details, see Default
Parameters on page 35).

3. If ParameterInheritance=Flatten and specifications outside any location-specific
section are present, they can add or overwrite the parameter values obtained through the
previous two steps, and they also contribute to a separate, global, default parameter set.

4. If your parameter file contains a section for the material, specifications in this section can
add to or overwrite the parameter values obtained through the previous three steps. If
ParameterInheritance=None, specifications outside any location-specific section are
handled as if they occurred in a section for the material silicon.

Materialwise specifications in your parameter file are read even when the material is not
contained in the structure to be simulated. This is useful, for example, to provide parameters
for corner and side materials for materials that are present in the structure.

Apart from corner and side materials, materialwise parameters are rarely used directly;
physical bulk models access parameters regionwise, not materialwise. However, materialwise
settings can affect regionwise parameters. The next section explains this in detail.
30 Sentaurus™ Device User Guide
N-2017.09



2: Specifying Physical Devices
Physical Model Parameters
Regionwise Parameters

When your parameter file does not contain a section for a certain region, the parameter values
for this region are the same as for the material of the region. In this case, if
ParameterInheritance=None, the regionwise parameters are discarded entirely and the
material parameters are accessed instead. If ParameterInheritance=Flatten, the region
parameters are a copy of the material parameters (the subtle distinction of these two cases
becomes important only when ramping parameters).

If your parameter file does contain a section for a certain region, the parameters for this region
are initialized executing Steps 1 and 2 as for the materialwise parameters, using the material of
the region to select the built-in values and the default parameter file. If
ParameterInheritance=Flatten, and a section for this material is present in your
parameter file, Steps 3 and 4 are taken as well. Finally, in any case, the section for the region
is evaluated and can add to or overwrite the values previously obtained.

NOTE If ParameterInheritance=None and a section for a region is
present in your parameter file, none of the settings for any parameter in
the section for the material of the region (if such a section exists) has an
effect on the parameters for that region. In other words, if
ParameterInheritance=None, the region parameters do not
‘inherit’ user settings from the material parameters.

Material Interface–Wise Parameters

Material interface–wise parameters are handled similarly to materialwise parameters, simply
replace the term ‘material’ by ‘material interface’ in the description of the handling of
materialwise parameters.

Region Interface–Wise Parameters

Region interface–wise parameters are handled similarly to regionwise parameters, and the
relation between region interface–wise parameters and material interface–wise parameters is
analogous to the relation between regionwise and materialwise parameters. As an additional
complication, if ParameterInheritance=None and neither a section for the region
interface nor for its material interface is present in your parameter file, the region interface
parameters are discarded, and the parameters for material silicon are accessed instead.

Electrode-Wise Parameters

Electrode-wise parameters are handled similarly to materialwise parameters, simply replace
the term ‘material’ by ‘electrode’ in the description of the handling of materialwise parameters.
Sentaurus™ Device User Guide 31
N-2017.09



2: Specifying Physical Devices 
Physical Model Parameters
Generating a Copy of Parameter File

To redefine a parameter value for a particular material, a copy of the default parameter file must
be created. To do this, the command sdevice -P prints the parameter file for silicon, with
insulator properties. Table 3 lists the principal options for the command sdevice -P. 

For regionwise and materialwise parameter specifications, any model and parameter from the
default section is usable, even if it is not printed for the particular material.

For mole fraction–dependent parameters, for people, it is difficult to read a parameter file and
to obtain the final values of parameters (for example, the band gap) for a particular composition
mole fraction. By using the command sdevice -M <inputfile.cmd>, Sentaurus Device
creates a models-M.par file that will contain regionwise parameters with only constant
values (instead of the polynomial coefficients) for regions where the composition mole fraction
is constant. For regions where the composition is not a constant, Sentaurus Device prints the
default material parameters.

As an alternative to the command sdevice -P, Sentaurus Device provides the command
sdevice -L, which supports the same options as described in Table 3 on page 32 for
sdevice -P. However, rather than generating a single file, it creates separate files for each
material and each material interface. Typically, these files are edited and used to provide default
parameters (see Default Parameters on page 35).

For example, assume the command file pp1_des.cmd is for a simple silicon MOSFET with
four electrodes, one silicon region, and one oxide region. By using the command:

sdevice -L pp1_des.cmd

Table 3 Principal options for generating parameter file

Option Description

-P:All Prints a copy of the parameter file for all materials. Materials are taken from the file 
datexcodes.txt.

-P:Material Prints model parameters for the specified material.

-P:Material:x Prints model parameters for the specified material for mole fraction x.

-P:Material:x:y Prints model parameters for the specified material for mole fractions x and y.

-P filename Prints model parameters for materials and interfaces used in the command file 
filename.

-r Reads parameters from default locations (see Search Strategy for Parameter Files on 
page 23) before printing parameters. This is analogous to using the 
DefaultParametersFromFile flag (see Materialwise Parameters on page 30).
32 Sentaurus™ Device User Guide
N-2017.09



2: Specifying Physical Devices
Physical Model Parameters
a parameter file is created in the current directory for each material, material interface, and
electrode found in nmos_mdr.tdr. In this example, the appropriate files are Silicon.par,
Oxide.par, Oxide%Silicon.par, and Electrode.par.

In addition, the following models.par file is created in the current directory:

Region = "Region0" { Insert = "Silicon.par" }
Region = "Region1" { Insert = "Oxide.par" }
RegionInterface = "Region1/Region0" { Insert = "Oxide%Silicon.par" }
Electrode = "gate" { Insert = "Electrode.par" }
Electrode = "source" { Insert = "Electrode.par" }
Electrode = "drain" { Insert = "Electrode.par" }
Electrode = "substrate" { Insert = "Electrode.par" }

This models.par file can be renamed. It is only used in the simulation if it is specified in the
File section of the command file of Sentaurus Device:

File {...
Parameter = "models.par"
...

Undefined Physical Models

For a nonsilicon simulation, the default behavior of Sentaurus Device is to use silicon
parameters for models that are not defined in a material used in the simulation. It is useful for
noncritical models, but it can lead to confusion, for example, if the semiconductor band gap is
not defined, and Sentaurus Device uses that of silicon. Therefore, Sentaurus Device has a list
of critical models and stops the simulation, with an error message, if these models are not
defined.

NOTE The model is defined in a material if it is present in the default parameter
file of Sentaurus Device for the material or it is specified in a user-
defined parameter file.

Table 4 lists the critical models (with names from the parameter file of Sentaurus Device) with
materials where these models are checked. 

Table 4 List of critical models

Model Insulator Semiconductor Conductor

Auger x

Bandgap x

ConstantMobility x

DopingDependence x
Sentaurus™ Device User Guide 33
N-2017.09



2: Specifying Physical Devices 
Physical Model Parameters
The models Bandgap, DOSmass, and Epsilon are checked always. For other models, this
check is performed for each region, but only if appropriate models in the Physics section and
equations in the Solve section are activated. The thermal conductivity model Kappa is
checked only if the lattice temperature equation is included.

Drift-diffusion or hydrodynamic simulations activate the checking mobility models
ConstantMobility and DopingDependence (with appropriate models in the Physics
section).

NOTE This checking procedure can be switched off by the keyword
-CheckUndefinedModels in the Math section.

The models eDOSmass and hDOSmass also must be defined for insulators to support tunneling
(see Nonlocal Tunneling Parameters on page 726). Only the following specifications are
acceptable for insulators:

eDOSmass {
Formula = 1
a = 0
ml = 0
mm = <effective mass> # default 0.42

}

hDOSmass {
Formula = 1
a = 0
b = 0
c = 0
d = 0
e = 0
f = 0
g = 0

eDOSmass
hDOSmass

x

Epsilon x x

Kappa x x x

RadiativeRecombination x

RefractiveIndex x x

Scharfetter x

SchroedingerParameters x x

Table 4 List of critical models (Continued)

Model Insulator Semiconductor Conductor
34 Sentaurus™ Device User Guide
N-2017.09



2: Specifying Physical Devices
Physical Model Parameters
h = 0
i = 0
mm = <effective mass> # default 1

}

NOTE In general, the models eDOSmass and hDOSmass only need to be
specified for user-specified insulators. The correct values are predefined
for standard insulators.

Default Parameters

Sentaurus Device provides built-in default parameters for many models and materials.
However, Sentaurus Device also offers the option to overwrite the built-in values with default
parameters from files. This option is activated by DefaultParametersFromFile in the
global Physics section:

Physics {
DefaultParametersFromFile
...

} 

Sentaurus Device uses the same search strategy as for inserted files (see Physical Model
Parameters on page 21). Sentaurus Device ships with a selection of parameter files in the
directory $STROOT/tcad/$STRELEASE/lib/sdevice/MaterialDB. This directory also
contains release-specific subdirectories, for example:

$STROOT/tcad/$STRELEASE/lib/sdevice/MaterialDB/2016.03
$STROOT/tcad/$STRELEASE/lib/sdevice/MaterialDB/2016.12
$STROOT/tcad/$STRELEASE/lib/sdevice/MaterialDB/2017.09

You can request that the parameter files from a specific release are taken by specifying the
ParameterPath variable in the File section:

File {
ParameterPath = "2017.09"

}

Table 5 File names that are used to initialize default parameters

Location of parameters File name

Materials <material>.par, for example, Silicon.par, GaAs.par 

Material interfaces <material1>%<material2>.par, for example, 
InAlAs%AlGaAs.par (Instead of %, a comma or space can also be used.)

Contacts Contact.par or Electrode.par 
Sentaurus™ Device User Guide 35
N-2017.09



2: Specifying Physical Devices 
Physical Model Parameters
If a matching file is not found, the built-in default parameters are used unaltered. Check the log
file of Sentaurus Device to see which files were actually used.

Named Parameter Sets

Some models in Sentaurus Device support the use of parameter sets that can be named. For
example, EnormalDependence is the unnamed parameter set used with the Lombardi
mobility model. In the parameter file, you can write the following to declare a parameter set
for the Lombardi mobility model with the name myset:

EnormalDependence "myset" {
B = 3.6100e+07 , 1.5100e+07 # [cm/s]
C = 1.7000e+04 , 4.1800e+03 # [cm^(5/3)/(V^(2/3)s)]
...

}

Typically, named parameter sets are used to store alternative parameterizations for a model.
They can be selected from the command file by specifying the name with
ParameterSetName as an option to a model that supports this feature. For example:

Physics {
Mobility (

PhuMob
Enormal( Lombardi (ParameterSetName="myset") )
HighFieldSaturation

)
}

If ParameterSetName is not specified, the unnamed parameter set associated with the model
is used by default. 
36 Sentaurus™ Device User Guide
N-2017.09



2: Specifying Physical Devices
Physical Model Parameters
Auto-Orientation Framework

Some models in Sentaurus Device support an auto-orientation framework that automatically
switches between different named parameter sets for model evaluation, based on the surface
orientation of the nearest interface.

When the AutoOrientation option is activated for a model, by default, Sentaurus Device
looks for and uses parameter sets named "100", "110", and "111" corresponding to surface
orientations of {100}, {110}, and {111}. If the nearest interface orientation is {110}, for
example, the model is evaluated using the parameter set "110". For surface orientations that
fall between {100}, {110}, and {111}, the named parameter set that most closely corresponds
to the actual surface orientation is used.

Table 6 Models that support named parameter sets

Model name Parameter set (unnamed)

eQuantumPotential
hQuantumPotential

QuantumPotentialParameters

Mobility
eMobility
hMobility

Enormal(Lombardi)
ToCurrentEnormal(Lombardi)

EnormalDependence

ThinLayer(Lombardi) EnormalDependence
ThinLayerMobility

Enormal(IALMob)
ToCurrentEnormal(IALMob)

IALMob

ThinLayer(IALMob) IALMob
ThinLayerMobility

HighFieldSaturation
eHighFieldSaturation
hHighFieldSaturation
Diffusivity
eDiffusivity
hDiffusivity

HighFieldDependence
HydroHighFieldDependence

Piezo(Mobility) Tensor
eTensor
hTensor

Piezoresistance

Factor
eFactor
hFactor

Piezoresistance
EffectiveStressModel

Recombination(Band2Band) Band2BandTunneling
Sentaurus™ Device User Guide 37
N-2017.09



2: Specifying Physical Devices 
Physical Model Parameters
Models that support the auto-orientation framework include:

■ Density-gradient quantization model (eQuantumPotential, hQuantumPotential)

■ Lombardi and IALMob mobility models

■ HighFieldSaturation and Diffusivity

■ ThinLayer mobility model

■ Piezoresistance models (Tensor, eTensor, hTensor, Factor, eFactor, hFactor)

■ EffectiveStressModel (Factor, eFactor, hFactor)

In the Plot section of the command file, the quantities InterfaceOrientation and
NearestInterfaceOrientation can be specified to see the orientation that is used, at each
interface face vertex and at every vertex, respectively, when auto-orientation is enabled for a
model.

Changing Orientations Used With Auto-Orientation

The auto-orientation framework can be modified to use surface orientations other than {100},
{110}, and {111}. This is accomplished by providing a definition for AutoOrientation in
the Math section of the command file:

Math {
AutoOrientation=(ori1, ori2, ...)

}

In the above specification, the orii values are three-digit integers that represent Miller indices
for families of equivalent planes (a cubic lattice structure is assumed). For example, to modify
AutoOrientation to use the surface orientations {100}, {110}, {111}, and {211}, specify:

Math {
AutoOrientation=(100, 110, 111, 211)

}

In this case, models that support AutoOrientation will switch between the parameter sets
named "100", "110", "111", and "211", depending on the surface orientation of the nearest
interface.

Auto-Orientation Smoothing

By default, the switch from one parameter set to another when using auto-orientation occurs
abruptly. To enable a smooth transition between different parameter sets, specify a nonzero
value for the auto-orientation smoothing distance in the Math section:

Math {
AutoOrientationSmoothingDistance = 0.005 # [micrometers]

}

38 Sentaurus™ Device User Guide
N-2017.09



2: Specifying Physical Devices
References
The smoothing distance is an approximate measure of the distance over which the transition
between different parameter sets will occur. For convenience, specifying
AutoOrientationSmoothingDistance < 0 uses the average interface vertex spacing as
the smoothing distance. In many cases, this is a reasonable choice.

When auto-orientation smoothing is used, weights are calculated at each vertex for each
orientation-dependent parameter set based on the proximity to the different supported surface
orientations:

(11)

The summation is over all interface vertices associated with orientation :

■  is the minimum distance to the interface.

■  is the distance to the interface vertex .

■  is the smoothing distance.

■  is the area associated with the interface vertex .

■  is the total interface area.

At each vertex, very small weights are set to zero, and the remaining weights are normalized
so that their sum is equal to one.

During model evaluation, the weights for each orientation at a vertex are used to obtained a
weighted average of the quantity being calculated.

In the Plot section of the command file, the quantity AutoOrientationSmoothing can be
specified to see the vertices where auto-orientation smoothing is used and the dominant
orientation at those vertices.

References

[1] C. K. Williams et al., “Energy Bandgap and Lattice Constant Contours of III-V
Quaternary Alloys of the Form AxByCzD or ABxCyDz,” Journal of Electronic Materials,
vol. 7, no. 5, pp. 639–646, 1978.

[2] T. H. Glisson et al., “Energy Bandgap and Lattice Constant Contours of III-V
Quaternary Alloys,” Journal of Electronic Materials, vol. 7, no. 1, pp. 1–16, 1978.

[3] M. P. C. M. Krijn, “Heterojunction band offsets and effective masses in III–V
quaternary alloys,” Semiconductor Science and Technology, vol. 6 , no. 1, pp. 27–31,
1991.

wi vertex( )
Aj

Atotal
------------ 
  dj dmin–

dsmooth
---------------------– 

   , i = 100, 110, ...exp

j 1=

Ni

=

i

dmin

dj j

dsmooth

Aj j

Atotal
Sentaurus™ Device User Guide 39
N-2017.09



2: Specifying Physical Devices 
References
[4] S. Adachi, “Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb:
Key properties for a variety of the 2–4-mm optoelectronic device applications,” Journal
of Applied Physics, vol. 61, no. 10, pp. 4869–4876, 1987.

[5] R. L. Moon, G. A. Antypas, and L. W. James, “Bandgap and Lattice Constant of
GaInAsP as a Function of Alloy Composition,” Journal of Electronic Materials, vol. 3,
no. 3, pp. 635–644, 1974.

[6] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V
compound semiconductors and their alloys,” Journal of Applied Physics, vol. 89, no. 11,
pp. 5815–5875, 2001.
40 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 3 Mixed-Mode Sentaurus Device

This chapter describes the specification of circuits and compact
devices.

Overview

Sentaurus Device is a single-device simulator, and a mixed-mode device and circuit simulator.
A single-device command file is defined through the mesh, contacts, physical models, and
solve command specifications.

For a multidevice simulation, the command file must include specifications of the mesh (File
section), contacts (Electrode section), and physical models (Physics section) for each
device. A circuit netlist must be defined to connect the devices (see Figure 6), and solve
commands must be specified that solve the whole system of devices.

Figure 6 Each device in a multidevice simulation is connected with a circuit netlist

The Device command defines each physical device. A command file can have any number of
Device sections. The Device section defines a device, but a System section is required to
create and connect devices.

Sentaurus Device also provides a number of compact models for use in mixed-mode
simulations.

Sentaurus Device supports different ways of specifying compact models:

■ System section of the command file

Electrical and thermal circuits can be defined in the System section. Initial conditions for
the circuit nodes can be specified, as well as Plot statements to generate output (see
System Section on page 55).

Single Device Multiple Devices

Netlist

File {...}
Electrode {...}
Physics {...}

File {...}
Electrode {...}
Physics {...}
Sentaurus™ Device User Guide 41
N-2017.09



3: Mixed-Mode Sentaurus Device 
Overview
■ Netlist file

Netlist files support a subset of the Synopsys HSPICE® language. They can be used to
specify parameter sets and instances of SPICE and HSPICE models (see Netlist Files on
page 45).

■ SPICE circuit files

SPICE circuit files (extension .scf) are available for SPICE and HSPICE models, as well
as for built-in models. Both parameter sets and instances can be specified (see SPICE
Circuit Files on page 51).

■ Compact circuit files

Compact circuit files (extension .ccf) support the compact model interface in Sentaurus
Device. Devices and parameter sets for user-defined models must be specified in compact
circuit files. Instances may appear either in compact circuit files or in the System section
of the command file (see User-Defined Circuit Models on page 63).

Compact Models

Sentaurus Device provides four different types of models:

■ SPICE

These include compact models from Berkeley SPICE 3 Version 3F5. The BSIM3v3.2,
BSIM4.1.0, and BSIMPDv2.2.2 MOS models are also available (see Table 8 on page 43).

■ HSPICE

Several frequently used HSPICE models are provided (see Table 9 on page 44).

■ Built-in

There are several special-purpose models (see Table 7 on page 43).

■ User-defined

A compact model interface (CMI) is available for user-defined models. These models are
implemented in C++ and linked to Sentaurus Device at runtime. No access to the source
code of Sentaurus Device is necessary (see User-Defined Circuit Models on page 63).

This section describes the incorporation of compact models in mixed-mode simulations. The
Compact Models User Guide provides references for the different model types.
42 Sentaurus™ Device User Guide
N-2017.09



3: Mixed-Mode Sentaurus Device
Overview
Hierarchical Description of Compact Models

In Sentaurus Device, the compact models comprise three levels:

■ Device

This describes the basic properties of a compact model and includes the names of the
model, electrodes, thermodes, and internal variables; and the names and types of the
internal states and parameters. The devices are predefined for SPICE models and built-in
models. For user-defined models, you must specify the devices.

■ Parameter set

Each parameter set is derived from a device. It defines default values for the parameters of
a compact model. Usually, a parameter set defines parameters that are shared among
several instances. Most SPICE and built-in models provide a default parameter set, which
can be directly referenced in a circuit description. For more complicated models, such as
MOSFETs, you can introduce new parameter sets.

■ Instance

Instances correspond to the elements in the Sentaurus Device circuit. Each instance is
derived from a parameter set. If necessary, an instance can override the values of its
parameters.

For SPICE and built-in models, you define parameter sets and instances. For user-defined
models, it is possible (and required) to introduce new devices. This is described in the Compact
Models User Guide.

Table 7 lists the built-in models, whereas Table 8 and Table 9 on page 44 present an overview
of the available SPICE and HSPICE models. 

Table 7 Built-in models in Sentaurus Device

Model Device Default parameter set

Electrothermal resistor Ter Ter_pset

Parameter interface Param_Interface_Device Param_Interface

SPICE temperature interface Spice_Temperature_Interface_Device Spice_Temperature_Interface

Table 8 SPICE models in Sentaurus Device

Model Device Default parameter set

Resistor Resistor Resistor_pset

Capacitor Capacitor Capacitor_pset

Inductor Inductor Inductor_pset
Sentaurus™ Device User Guide 43
N-2017.09



3: Mixed-Mode Sentaurus Device 
Overview
Coupled inductors mutual mutual_pset

Voltage-controlled switch Switch Switch_pset

Current-controlled switch CSwitch CSwitch_pset

Voltage source Vsource Vsource_pset

Current source Isource Isource_pset

Voltage-controlled current source VCCS VCCS_pset

Voltage-controlled voltage source VCVS VCVS_pset

Current-controlled current source CCCS CCCS_pset

Current-controlled voltage source CCVS CCVS_pset

Junction diode Diode Diode_pset

Bipolar junction transistor BJT BJT_pset

Junction field-effect transistor JFET JFET_pset

MOSFET Mos1 Mos1_pset

Mos2 Mos2_pset

Mos3 Mos3_pset

Mos6 Mos6_pset

BSIM1 BSIM1_pset

BSIM2 BSIM2_pset

BSIM3 BSIM3_pset

BSIM4 BSIM4_pset

B3SOI B3SOI_pset

GaAs MESFET MES MES_pset

Table 9 HSPICE models in Sentaurus Device

Model Device

HSPICE Level 1 HMOS_L1

HSPICE Level 2 HMOS_L2

HSPICE Level 3 HMOS_L3

HSPICE Level 28 HMOS_L28

Table 8 SPICE models in Sentaurus Device (Continued)

Model Device Default parameter set
44 Sentaurus™ Device User Guide
N-2017.09



3: Mixed-Mode Sentaurus Device
Netlist Files
Netlist Files

Sentaurus Device accepts HSPICE netlists that are provided in a separate file. A netlist is
specified in the System section as follows:

System {
Netlist = "spice_netlist.sp"

}

Sentaurus Device can process only a subset of the HSPICE netlist syntax. The recognized
syntax is described in the following sections.

Structure of Netlist File

The first line of a netlist file is assumed to be a title line and is always ignored:

.TITLE 'amplifier netlist'

HSPICE Level 49 HMOS_L49

HSPICE Level 53 HMOS_L53

HSPICE Level 54 HMOS_L54

HSPICE Level 57 HMOS_L57

HSPICE Level 59 HMOS_L59

HSPICE Level 61 HMOS_L61

HSPICE Level 62 HMOS_L62

HSPICE Level 64 HMOS_L64

HSPICE Level 68 HMOS_L68

HSPICE Level 69 HMOS_L69

HSPICE Level 72 HMOS_L72

HSPICE Level 73 HMOS_L73

HSPICE Level 76 HMOS_L76

Table 9 HSPICE models in Sentaurus Device (Continued)

Model Device
Sentaurus™ Device User Guide 45
N-2017.09



3: Mixed-Mode Sentaurus Device 
Netlist Files
The title line is followed by a sequence of HSPICE statements, and the netlist is terminated by
an optional .END statement:

.END

Everything after the final .END statement is ignored.

The netlist parser is case insensitive, except for string literals or file names in .INCLUDE
statements:

.PARAM s = str('This is a case sensitive string.')

.INCLUDE 'Case/Sensitive/Filename'

Comments

A line starting with either the $ or * character is a comment line, for example:

* This is a comment.

You can use in-line comments after the $ character:

R1 1 2 R=100 $ drain resistor

Continuation Lines

Use a + character in the first column to indicate a continuation line:

R1 1 0
+ R=500

The INCLUDE Statement

Use the .INCLUDE statement to include another netlist in the current netlist:

.INCLUDE models.sp

Numeric Constants

You can enter numbers in one of the following formats:

■ Integer

■ Floating point
46 Sentaurus™ Device User Guide
N-2017.09



3: Mixed-Mode Sentaurus Device
Netlist Files
■ Floating point with an integer exponent

■ Integer with a scale factor

■ Floating point with a scale factor listed in Table 10. 

NOTE The scale factor a is not a scale factor in a character string that contains
amps. For example, the expression 20amps is interpreted as 20 amperes
of current, not as 20e-18mps.

Examples

7
-4.5
3e8
-1.2e-9
6k
-8.9meg

Parameters and Expressions

Parameters in HSPICE are names that you associate with a value. Numeric and string
parameters are supported:

.PARAM a = 4

.PARAM b = '2*a + 7'

Table 10 Scale factors

Scale factor Description Multiplying factor

t tera

g giga

meg or x mega

k kilo

mil one-thousandth of an inch

m milli

u micro

n nano

p pico

f femto

a atto

10
12

10
9

10
6

10
3

25.4 10
6–⋅

10
3–

10
6–

10
9–

10
12–

10
15–

10
18–
Sentaurus™ Device User Guide 47
N-2017.09



3: Mixed-Mode Sentaurus Device 
Netlist Files
.PARAM s = str('This is a string')

.PARAM t = str(s)

The following built-in mathematical functions are supported:

sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, abs, sqrt, pow, pwr, log, 
log10, exp, db, int, nint, sgn, sign, floor, ceil, min, max

Subcircuits

Reusable cells can be specified as subcircuits. The general definition is given by:

.SUBCKT name n1 n2 ... [param1=val] [param2=val] ...

.ENDS

or:

.MACRO name n1 n2 ... [param1=val] [param2=val] ...

.EOM

String parameters are supported as well:

.SUBCKT name n1 n2 ... [param=str('string')] ...

.ENDS

Examples

.PARAM P5=5 P2=10

.SUBCKT SUB1 1 2 P4=4
R1 1 0 P4
R2 2 0 P5
X1 1 2 SUB2 P6=7
X2 1 2 SUB2

.ENDS

.MACRO SUB2 1 2 P6=11
R1 1 2 P6
R2 2 0 P2

.EOM

X1 1 2 SUB1 P4=6

X2 3 4 SUB2 P6=15
48 Sentaurus™ Device User Guide
N-2017.09



3: Mixed-Mode Sentaurus Device
Netlist Files
Model Statements

A .MODEL statement has the following general syntax:

.MODEL model_name type [level=num]
+ [pname1=val1] [pname2=val2] ... 

Examples

.MODEL mod1 NPN BF=50 IS=1e-13 VFB=50 PJ=3 N=1.05

.MODEL mod2 PMOS LEVEL=72
+ aigbinv = 0.0111
+ at = -0.00156

Elements

Element names must begin with a specific letter for each element type. 

Table 11 Recognized model types

Type Description Type Description

c Capacitor model npn NPN BJT model

csw Current-controlled switch pjf P-channel JFET model

d Diode model pmf P-channel MESFET

l Mutual inductor model pmos P-channel MOSFET model

njf N-channel JFET model pnp PNP BJT model

nmf N-channel MESFET r Resistor model

nmos N-channel MOSFET model sw Voltage-controlled switch

Table 12 Supported HSPICE element types

First letter Element Example

c Capacitor Cbypass 1 0 10pf

d Diode D7 3 9D1 

e Voltage-controlled voltage source Ea 1 2 3 4 K

f Current-controlled current source Fsub n1 n2 vin 2.0

g Voltage-controlled current source G12 4 0 3 0 10

h Current-controlled voltage source H3 4 5 Vout 2.0
Sentaurus™ Device User Guide 49
N-2017.09



3: Mixed-Mode Sentaurus Device 
Netlist Files
Physical Devices

Sentaurus Device supports an extension of the HSPICE netlist format so that physical devices
can be specified within an HSPICE netlist. An .SDEVICE command declares the name of the
physical device and its contacts:

.SDEVICE device_name drain gate source bulk

Instances of a physical device can be inserted into the netlist using the subcircuit command:

x1 d g s b device_name

An .SDEVICE statement and a subcircuit instantiation are equivalent to the following
specification in the System section of a Sentaurus Device command file:

System {
device_name x1 (drain=d gate=g source=s bulk=b)

}

i Current source IA 2 6 1e-6

j JFET or MESFET J1 7 2 3 model_jfet w=10u l=10u

k Linear mutual inductor K1 L1 L2 0.98

l Linear inductor Lx a b 1e-9

m MOS transistor M834 1 2 3 4 N1

q Bipolar transistor Q5 3 6 7 8 pnp1

r Resistor R10 21 10 1000

v Voltage source V1 8 0 5

x Subcircuit call X1 2 4 17 31 MULTI WN=100 LN=5

Table 13 Supported Berkeley SPICE element types

First letter Element Example

s Voltage-controlled switch S1 1 2 3 4 SWITCH1 ON

w Current-controlled switch W1 1 2 VCLOCK SWITCHMOD1

z GaAs MESFET Z1 7 2 3 ZM1 AREA=2

Table 12 Supported HSPICE element types (Continued)

First letter Element Example
50 Sentaurus™ Device User Guide
N-2017.09



3: Mixed-Mode Sentaurus Device
SPICE Circuit Files
NOTE HSPICE names are case insensitive, and the netlist parser converts all
identifiers to lowercase. As a consequence, physical devices in
Sentaurus Device must be specified in lowercase as well.

Netlist Commands

A limited set of netlist commands is recognized.

To make node names global across all subcircuits, use a .GLOBAL statement:

.GLOBAL node1 node2 node3 ...

Use the .OPTION PARHIER statement to specify scoping rules:

.OPTION PARHIER=GLOBAL|LOCAL

Other HSPICE netlist commands, which have not been explicitly mentioned already, are
ignored.

SPICE Circuit Files

Compact models can be specified in an external SPICE circuit file, which is recognized by the
extension .scf. The declaration of a parameter set can be:

PSET pset
DEVICE dev
PARAMETERS
parameter0 = value0
parameter1 = value1
...

END PSET

This declaration introduces the parameter set pset that is derived from the device dev. It
assigns default values for the given parameters. The device dev should have already declared
the parameter names. Furthermore, the values assigned to the parameters must be of the
appropriate type. 

Table 14 Parameters types in SPICE circuit files

Parameter type Example Parameter type Example

char c = 'n' char[] cc = ['a' 'b' 'c']

double d = 3.14 double[] dd = [1.2 -3.4 5e6]
Sentaurus™ Device User Guide 51
N-2017.09



3: Mixed-Mode Sentaurus Device 
SPICE Circuit Files
Similarly, the circuit instances can be declared as:

INSTANCE inst
PSET pset
ELECTRODES e0 e1 ...
THERMODES t0 t1 ...
PARAMETERS

parameter0 = value0
parameter1 = value1
...

END INSTANCE

According to this declaration, the instance inst is derived from the parameter set pset. Its
electrodes are connected to the circuit nodes e0, e1, …, and its thermodes are connected to t0,
t1, …

This instance also defines or overrides parameter values.

See Compact Models User Guide, Syntax of Compact Circuit (.ccf) Files on page 174 for the
complete syntax of the input language for SPICE circuit files.

Example

Consider the following simple rectifier circuit: 

The circuit comprises three compact models and can be defined in the file rectifier.scf as:

PSET D1n4148
DEVICE Diode
PARAMETERS

is = 0.1p   // saturation current
rs = 16     // Ohmic resistance

int i = 7 int[] ii = [1 2 3]

string s = "hello world" string[] ss = ["hello" "world"]

Table 14 Parameters types in SPICE circuit files (Continued)

Parameter type Example Parameter type Example

in out
52 Sentaurus™ Device User Guide
N-2017.09



3: Mixed-Mode Sentaurus Device
SPICE Circuit Files
cjo = 2p    // junction capacitance
tt = 12n    // transit time
bv = 100    // reverse breakdown voltage
ibv = 0.1p // current at reverse breakdown voltage

END PSET

INSTANCE v
PSET Vsource_pset
ELECTRODES in 0
PARAMETERS sine = [0 5 1meg 0 0]

END INSTANCE

INSTANCE d1
PSET D1n4148
ELECTRODES in out
PARAMETERS temp = 30

END INSTANCE

INSTANCE r
PSET Resistor_pset
ELECTRODES out 0
PARAMETERS resistance = 1000

END INSTANCE

The parameter set D1n4148 defines the parameters shared by all diodes of type 1n4148.
Instance parameters are usually different for each diode, for example, their operating
temperature.

NOTE A parameter set must be declared before it can be referenced by an
instance.

The Compact Models User Guide further explains the SPICE parameters in this example. The
command file for this simulation can be:

File {
SPICEPath = ". lib spice/lib"

}
System {

Plot "rectifier" (time() v(in) v(out) i(r 0))
}
Solve {

Circuit
NewCurrentPrefix = "transient_"
Transient (InitialTime = 0 FinalTime = 0.2e-5

InitialStep = 1e-7 MaxStep = 1e-7) {Circuit}
}

The SPICEPath in the File section is assigned a list of directories. All directories are scanned
for .scf files (SPICE circuit files).
Sentaurus™ Device User Guide 53
N-2017.09



3: Mixed-Mode Sentaurus Device 
Device Section
Check the log file of Sentaurus Device to see which circuit files were found and used in the
simulation.

The System section contains a Plot statement that produces the plot file
rectifier_des.plt. The simulation time, the voltages of the nodes in and out, and the
current from the resistor r into the node 0 are plotted. The Solve section describes the
simulation. The keyword Circuit denotes the circuit equations to be solved.

The instances in a circuit also can appear directly in the System section of the command file,
for example:

System {
Vsource_pset v (in 0) {sine = (0 5 1meg 0 0)}
D1n4148 d1 (in out) {temp = 30}
Resistor_pset r (out 0) {resistance = 1000}

Plot "rectifier" (time() v(in) v(out) i(r 0))
}

Device Section

The Device sections of the command file define the different device types used in the system
to be simulated. Each device type must have an identifier name that follows the keyword
Device. Each Device section can include the Electrode, Thermode, File, Plot,
Physics, and Math sections. For example:

Device "resist" {
Electrode {
...
}
File {
...
}
Physics {
...
}

...
}

If information is not specified in the Device section, information from the lowest level of the
command file is taken (if defined there), for example:

# Default Physics section
Physics{
...
}

54 Sentaurus™ Device User Guide
N-2017.09



3: Mixed-Mode Sentaurus Device
System Section
Device resist {
# This device contains no Physics section
# so it uses the default set above
Electrode{
...
}
File{
...
}

}

System Section

The System section defines the netlist of physical devices and circuit elements to be solved.
The netlist is connected through circuit nodes. By default, a circuit node is electrical, but it can
be declared to be electrical or thermal:

Electrical { enode0 enode1 ... }
Thermal { tnode0 tnode1 ... }

Each electrical node is associated with a voltage variable, and each thermal node is associated
with a temperature variable. Node names are numeric or alphanumeric. The node 0 is
predefined as the ground node ( ).

Compact models can be defined in HSPICE netlist files (see Netlist Files on page 45) or in
SPICE circuit files (see SPICE Circuit Files on page 51). However, instances of compact
models can also appear directly in the System section of the command file:

parameter-set-name instance-name (node0 node1 ...) {
<attributes>

}

The order of the nodes in the connectivity list corresponds to the electrodes and thermodes in
the SPICE device definition (refer to the Compact Models User Guide).

The connectivity list is a list of contact-name=node-name connections, separated by white
space. Contact-name is the name of the contact from the grid file of the given device, and node-
name is the name of the circuit netlist node as previously defined in the definition of a circuit
element.

Physical devices are defined as:

device-type instance-name (connectivity list) {<attributes>}

0 V
Sentaurus™ Device User Guide 55
N-2017.09



3: Mixed-Mode Sentaurus Device 
System Section
The connectivity list of a physical device explicitly establishes the connection between a
contact and node. For example, the following defines a physical diode and circuit diode:

Diode_pset circuit_diode (1 2) {...} # circuit diode
Diode243   device_diode (anode=1 cathode=2) {...} # physical diode

Both diodes have their anode connected to node 1 and their cathode connected to node 2. In the
case of the circuit diode, the device specification defines the order of the electrodes (see
Compact Models User Guide, Syntax of Compact Circuit (.ccf) Files on page 174). Conversely,
the connectivity for the physical diode must be given explicitly. The names anode and
cathode of the contacts are defined in the grid file of the device. The device types of the
physical devices must be defined elsewhere in the command file (with Device sections) or an
external .device file.

The System section can contain the initial conditions of the nodes. Three types of initialization
can be specified:

■ Fixed values (Set)

■ Fixed until transient (Initialize)

■ Initialized only for the first solve (Hint)

In addition, the Unset command is available to free a node after a Set command. The fixed
value set by a Set command remains fixed during all subsequent simulations until a Set or an
Unset command is used in the Solve section or the node itself becomes a Goal of a
Quasistationary.

The System section can also contain Plot statements to generate plot files of node values,
currents through devices, and parameters of internal circuit elements. For a simple case of one
device without circuit connections (besides resistive contacts), the keyword System is not
required because the system is implicit and trivial given the information from the Electrode,
Thermode, and File sections at the base level.

Physical Devices

A physical device is instantiated using a previously defined device type, name, connectivity
list, and optional parameters, for example:

device_type instance-name (<connectivity list>) {
<optional device parameters>

}

If no extra device parameters are required, the device is specified without braces, for example:

device-type instance-name (<connectivity list>)
56 Sentaurus™ Device User Guide
N-2017.09



3: Mixed-Mode Sentaurus Device
System Section
The device parameters overload the parameters defined in the device type. As for a device type
of Sentaurus Device, the parameters can include Electrode, Thermode, File, Plot,
Physics, and Math sections.

NOTE Electrodes have Voltage statements that set the voltage of each
electrode. If the electrodes are connected to nodes through the
connectivity list, these values are only hints (as defined by the keyword
Hint) for the first Newton solve, but do not set the electrodes to those
values as with the keyword Set. By default, an electrode that is
connected to a node is floating.

Electrodes must be connected to electrical nodes and thermodes to
thermal nodes. This enables electrodes and thermodes to share the same
contact name or number.

Circuit Devices

SPICE instances can be declared in HSPICE netlist files (see Netlist Files on page 45) or in
SPICE circuit files as discussed in SPICE Circuit Files on page 51. They can also appear
directly in the System section of the command file, for example:

pset inst (e0 e1 ... t0 t1 ...) {
parameter0 = value0
parameter1 = value1
...

}

This declaration in the command file provides the same information as the equivalent
declaration in an HSPICE netlist file or a SPICE circuit file.

Array parameters must be specified with parentheses, not braces, for example:

dd = (1.2 -3.4 5e6)
ss = ("hello" "world")

Certain SPICE models have internal nodes that are accessible through the form
instance_name.internal_node. For example, a SPICE inductance creates an internal
node branch, which represents the current through the instance. Therefore, the expression
v(l.branch) can be used to gain access to the current through the inductor l. This is useful
for plotting internal data or initializing currents through inductors (refer to the Compact Models
User Guide for a list of the internal nodes for each model).
Sentaurus™ Device User Guide 57
N-2017.09



3: Mixed-Mode Sentaurus Device 
System Section
Electrical and Thermal Netlist

Sentaurus Device allows both electrical and thermal netlists to coexist in the same system, for
example:

System {
Thermal (ta tc t300)
Set (t300 = 300)
Hint (ta = 300 tc = 300)

Isource_pset i (a 0) {dc = 0}
PRES pres ("Anode"=a "Cathode"=0 "Anode"=ta "Cathode"=tc)
Resistor_pset ra (ta t300) {resistance = 1}
Resistor_pset rc (tc t300) {resistance = 1}

Plot "pres" (v(a) t(ta) t(tc) h(pres ta) h(pres tc) i(pres 0))
}

The current source i drives a resistive physical device pres. This device has two contacts
Anode and Cathode that are connected to the circuit nodes a and 0, and are also used as
thermodes, which are connected to the heat sink t300 through two thermal resistors ra and rc. 

The Plot statement accesses the voltage of the node a, the temperature of the nodes ta and
tc, the heat flux from pres into ta and tc, and the current from pres into the ground node 0.

Many SPICE models provide a temperature parameter for
electrothermal simulations. In Sentaurus Device, a temperature
parameter is connected to the thermal circuit by a parameter
interface.

For example, in this simple circuit, the resistor r is a SPICE
semiconductor resistor whose resistance depends on the value of
the temperature parameter temp:

(12)

To feed the value of the thermal node t as a parameter into the resistor r, a parameter interface
is required:

System {
Thermal (t)
Set (t = 300)

Isource_pset i (1 0) {dc = 1}

1

0

t

r0 rsh
l narrow–
w narrow–
---------------------------⋅=

r temp( ) r0 1 tc1 temp tnom–( ) tc2 temp tnom–( )2⋅+⋅+( )⋅=
58 Sentaurus™ Device User Guide
N-2017.09



3: Mixed-Mode Sentaurus Device
System Section
cres_pset r (1 0) {temp = 27 l = 0.01 w = 0.001}
Param_Interface rt (t) {parameter = "r.temp" offset = -273.15}

Plot "cres" (t(t) p(r temp) i(r 0) v(1))
}

The parameter set cres_pset for the resistor r is defined in an external SPICE circuit file:

PSET cres_pset
DEVICE Resistor
PARAMETERS

rsh = 1
narrow = 0
tc1 = 0.01
tnom = 27

END PSET

The parameter interface rt updates the value of temp in r when the variable t is changed. This
is the general mechanism in Sentaurus Device, which allows a circuit node to connect to a
model parameter.

NOTE It is important to declare the parameter interface after the instance to
which it refers. Otherwise, Sentaurus Device cannot establish the
connection between the parameter interface and the instance.

Temperatures in Sentaurus Device are defined in kelvin. SPICE temperatures are measured in
degree Celsius. Therefore, an offset of –273.15 must be used to convert kelvin to degree
Celsius.

The parameter Spice_Temperature in the Math section is used to initialize the global
SPICE circuit temperature at the beginning of a simulation. It cannot be used to change the
SPICE temperature later. To modify the SPICE temperature during a simulation, a so-called
SPICE temperature interface must be used.

A SPICE temperature interface has one contact that can be connected to an electrode or a
thermode. When the value  of the electrode or thermode changes, the global SPICE
temperature is updated according to:

(13)

By default,  and . Therefore, the SPICE temperature interface
ensures that the global SPICE temperature is identical to the value .

u

Spice temperature offset c1u c2u2 c3u3+ + +=

offset c2 c3 0= = = c1 1=
u

Sentaurus™ Device User Guide 59
N-2017.09



3: Mixed-Mode Sentaurus Device 
System Section
In the following example, a SPICE temperature interface is used to ramp the global SPICE
temperature from  to 

System {
Set (st = 300)
Spice_Temperature_Interface ti (st) { }

}
Solve {

Quasistationary (Goal {Node = st Value = 400} DoZero
InitialStep = 0.1 MaxStep = 0.1) {
Coupled {Circuit}
}

}

Set, Unset, Initialize, and Hint

The keywords Set, Initialize, and Hint are used to set nodes to a specific value.

Set establishes the node value. This value remains fixed during all subsequent simulations
until a Set or an Unset command is used in the Solve section (see Mixed-Mode Electrical
Boundary Conditions on page 69), or the node becomes a Goal of a Quasistationary,
which controls the node itself (see Quasistationary in Mixed Mode on page 80). For a set node,
the corresponding equation (that is, the current balance equation for electrical nodes and the
heat balance equation for thermal nodes) is not solved, unlike an unset node.

NOTE The Set and Unset commands exist in the Solve section. These act
like the System-level Set but allow more flexibility (see System
Section on page 55).

The Set command can also be used to change the value of a parameter in a compact model.
For example, the resistance of the resistor r1 changes to 

Set (r1."resistance" = 1000)

Initialize is similar to the Set statement except that node values are kept only during
nontransient simulations. When a transient simulation starts, the node is released with its actual
value, that is, the node is unset.

NOTE The keyword Initialize can be used with an internal node to set a
current through an inductor before a transient simulation. For example,
the keyword:

Inductor_pset L2 (a b){ inductance = 1e-5 }
Initialize (L2.branch = 1.0e-4)

300 K 400 K:

1000 Ω:
60 Sentaurus™ Device User Guide
N-2017.09



3: Mixed-Mode Sentaurus Device
System Section
Hint provides a guess value for an unset node for the first Newton step only. The numeric
value is given in volt, ampere, or kelvin. A current value only makes sense for internal current
nodes in circuit devices. The commands are used as follows:

Set ( <node> = <float> <node> = <float> ... )
Unset (<node> <node> ... )
Initialize ( <node> = <float> <node> = <float> ... )
Hint ( <node> = <float> <node> = <float> ... )

For example:

Set ( anode = 5 )

System Plot

The System section can contain any number of Plot statements to print voltages at nodes,
currents through devices, or circuit element parameters. The output is sent to a given file name.
If no file name is provided, the output is sent to the standard output file and the log file. The
Plot statement is:

Plot (<plot command list>)
Plot <filename> (<plot command list>)

where <plot command list> is a list of nodes or plot commands as defined in Table 205
on page 1399.

NOTE Plot commands are case sensitive.

Two examples are:

Plot (a b i(r1 a) p(r1 rT) p(v0 "sine[0]"))
Plot "plotfile" (time() v(a b) i(d1 a))

NOTE The Plot command does not print the time by default. When plotting a
transient simulation, the time() command must be added.

AC System Plot

An ACPlot statement in the System section can be used to modify the output in the Sentaurus
Device AC plot file:

System {
ACPlot (<plot command list>)

}

Sentaurus™ Device User Guide 61
N-2017.09



3: Mixed-Mode Sentaurus Device 
File Section
The <plot command list> is the same as the system plot command discussed in System
Plot on page 61.

If an ACPlot statement is present, the given quantities are plotted in the Sentaurus Device AC
plot file with the results from the AC analysis. Otherwise, only the voltages at the AC nodes
are plotted with the results from the AC analysis.

File Section

In the File section, one of the following can be specified:

■ Output file name and the small-signal AC extraction file name (keywords Output and
ACExtract)

■ Sentaurus Device directory path (keyword DevicePath)

■ Search path for SPICE models and compact models (keywords SPICEPath and CMIPath)

■ Default file names for the devices

The syntax for these keywords is shown in Table 185 on page 1381.

The variables Output and ACExtract can be assigned a file name. Only a file name without
an extension is required. Sentaurus Device automatically appends a predefined extension:

File {
Output = "mct"
ACExtract = "mct"

}

The variables DevicePath, SPICEPath, and CMIPath represent search paths. They must be
assigned a list of directories for which Sentaurus Device searches, for example:

File {
DevicePath = "../devices:/usr/local/tcad/devices:."
SPICEPath = ". lib lib/spice"
CMIPath = ". libcmi"

}

Device files (extension .device) in DevicePath are loaded. The devices found can then be
used in the System section.

SPICE circuit files (extension .scf) in SPICEPath are parsed and added to the System
section of the command file.
62 Sentaurus™ Device User Guide
N-2017.09



3: Mixed-Mode Sentaurus Device
SPICE Circuit Models
The compact circuit files (extension .ccf) and the corresponding shared object files
(extension .so.arch) in CMIPath are parsed and are added to the System section of the
command file.

Device-specific keywords are defined under the file entry in the Device section.

SPICE Circuit Models

Sentaurus Device supports SPICE circuit models for mixed-mode simulations. These models
are based on Berkeley SPICE 3 Version 3F5. Several frequently used HSPICE models are also
available. A detailed description of the SPICE models can be found in the Compact Models
User Guide.

User-Defined Circuit Models

Sentaurus Device provides a compact model interface (CMI) for user-defined circuit models.
The models are implemented in C++ by you and linked to Sentaurus Device at runtime. Access
to the source code of Sentaurus Device is not required.

To implement a new user-defined model:

1. Provide a corresponding equation for each variable in the compact model. For electrode
voltages, compute the current flowing from the device into the electrode. For an internal
model variable, use a model equation.

2. Write a formal description of the new compact model. This compact circuit file is read by
Sentaurus Device before the model is loaded.

3. Implement a set of interface subroutines C++. Sentaurus Device provides a runtime
environment.

4. Compile the model code into a shared object file, which is linked at runtime to Sentaurus
Device. A cmi script executes this compilation.

5. Use the variable CMIPath in the File section of the command file to define a search path.

6. Reference user-defined compact models in compact circuit files (with the extension .ccf)
or directly in the System section of the command file.
Sentaurus™ Device User Guide 63
N-2017.09



3: Mixed-Mode Sentaurus Device 
Mixed-Mode Math Section
Mixed-Mode Math Section

The following SPICE circuit parameters can be specified in the global Math section:

Spice_Temperature = ...
Spice_gmin = ...

The value of Spice_Temperature denotes the global SPICE circuit temperature. Its default
value is  The parameter Spice_gmin refers to the minimum conductance in SPICE.
The default value is .

Using Mixed-Mode Simulation

In Sentaurus Device, mixed-mode simulations are handled as a direct extension of single
device simulations.

From Single-Device File to Multidevice File

The command file of Sentaurus Device accepts both single-device and multidevice problems.
Although the two forms of input look different, they fit in the same input syntax pattern. This
is possible because the command file has multiple levels of definitions and there is a built-in
default mechanism for the System section. 

Figure 7 Three levels of device definition

300.15 K.
10 12– Ω 1–

}
}

}

Global

Device

Instance

File {...}
Electrode {...}

...

Device <type> {
File {...}
Electrode {...}
...

}

System {
<type> <name> {
File {...}
Electrode {...}
}

}

64 Sentaurus™ Device User Guide
N-2017.09



3: Mixed-Mode Sentaurus Device
Using Mixed-Mode Simulation
The complete input syntax allows for three levels of device definition: global, device, and
instance (see Figure 7 on page 64). The three levels are linked in that the global level is the
default for the device level and instance level. 

By default, if no Device section exists, a single device is created with the content of a global
device. If no System section exists, one is created with this single device. In this way, single
devices are converted to multidevice problems with a single device and no circuit.

NOTE The device that is created by default has the name " " (that is, an empty
string).

This translation process can be performed manually by creating a Device and System section
with a single entry (see Figure 8). 

Figure 8 Translating a single device syntax to mixed-mode form

The Solve section can also be converted if the flag NoAutomaticCircuitContact is used
(see Figure 9).

Figure 9 Translating a default solve syntax to a NoAutomaticCircuitContact form

In this case, all occurrences of the keyword Poisson must be expanded to the three keywords
Poisson Contact Circuit.

Electrode {
{name="anode" Voltage=0}
{name="cathode" Voltage=1}

}

File {
Grid = "diode.tdr"
Output = "diode"

}

File {
Output = "diode"

}
Device diode {

Electrode {
{name="anode" Voltage=0}
{name="cathode" Voltage=1}

}
File {

Grid = "diode.tdr"
}

}

System {
diode diode1 ...

}

Solve {
Poisson
Coupled {Poisson Electron Hole}
}

Math {
NoAutomaticCircuitContact
}
Solve {
Coupled {Poisson Contact Circuit}
Coupled {Poisson Contact Circuit Electron Hole}

}

Sentaurus™ Device User Guide 65
N-2017.09



3: Mixed-Mode Sentaurus Device 
Using Mixed-Mode Simulation
File-Naming Convention: Mixed-Mode Extension

A File section can be defined at all levels of a command file. Therefore, a default file name
can be potentially included by more than one device, for example:

Device res {
File { Save="res" ... }
...

}
System {

res r1
res r2

}

Both r1 and r2 use the save device parameters set up in the definition of res. Therefore, they
have in principle the same default for Save (that is, res). Since it is impractical to save both
devices under the same name, names of device instances (that is, r1 and r2) are concatenated
to the file name to produce the files res.r1 and res.r2. This process of file name extension
is performed for the file parameters Save, Current, Path, and Plot, and is also performed
when the file name is copied from the global default to a device type declaration.

In practice, the following possibilities exist:

■ The file name is defined at the instance level, in which case, it is unchanged.

■ The file name is defined at the device type level, in which case, the instance name is
concatenated to the original file name.

■ The file name is defined at the global command file level, in which case, the device name
and instance name are concatenated to the original file name. 

Table 15 Summary of file modifications for Save, Current, Path, and Plot commands

Level File name format

Instance <given name>

Device <given name>.<instance name>

Global <given name>.<device type>.<instance name>
66 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 4 Performing Numeric Experiments

This chapter describes how to perform numeric experiments.

Performing a simulation is the virtual analog to performing an experiment in the real world.
This chapter describes how to specify the parameters that constitute such an experiment, in
particular, bias conditions and their variation. It also describes how to perform important types
of experiment that involve periodic signals, such as small-signal analysis. Some experiments
described here have no real-world analogy, for example, continuous change of physical
parameters and device-internal quantities.

Specifying Electrical Boundary Conditions

Electrical boundary conditions are specified in the Electrode section. Only one Electrode
section must be defined for each device. Each electrode is defined in a subsection enclosed by
braces and must include a name and default voltage. For example, a complete Electrode
section is:

Electrode {
{ name = "source" Voltage = 1.0 Current = 1e-3}
{ name = "drain" Voltage = 0.0 }
{ name = "gate" Voltage = 0.0 Material = "PolySi"(P=6.0e19) }

}

Table 206 on page 1399 lists all keywords that can be specified for each electrode. Keywords
that relate to the physical properties of electrodes are discussed in Electrical Boundary
Conditions on page 201.

Contacts in the Electrode section can be specified alternatively by a user-defined regular
expression instead of a well-defined name. In this case, all the matching contacts in the
structure file (TDR file) will be given the properties defined by the contact with the matching
pattern. For example, in a device with nine drain contacts named drain1 ... drain9, you can
define them simultaneously with:

Electrode {
...
{ name = regexp("drain[1-9]") Voltage = 0.0 }
...

}

Sentaurus™ Device User Guide 67
N-2017.09



4: Performing Numeric Experiments 
Specifying Electrical Boundary Conditions
The regular expressions must be specified following the rules defined by the boost::regex
library with Perl regular expression syntax enabled [1].

Internally, Sentaurus Device matches the regular expressions defined in the Electrode
section against the contacts in the structure file as a preprocessing step before the simulation.
The list of matched structure contacts is expanded as valid contacts, and the simulation
proceeds as usual. When structure contacts are matched by more than a regular expression, the
last defined in the Electrode section succeeds. When a contact is specified in the standard
way using the Name keyword and also is matched by a regular expression, the last defined in
the Electrode section succeeds.

You can specify time-dependent boundary conditions, by providing a list of voltage–time pairs.
For example:

{ name = "source" voltage = (5 at 0, 10 at 1e-6) }

specifies the voltage at source to be  at , increasing linearly to  at . In
addition, you can specify a separate ‘static’ voltage, for example:

{ name = "source" voltage = 0 voltage = (5 at 0, 10 at 1e-6) }

This combination is useful where an initial quasistationary command ramps source from 
to , before source increases to  during a subsequent transient analysis.

The parameters Charge and Current determine the boundary condition type as well as the
value for an electrode By default, electrodes have a voltage boundary condition type. The
keyword Current changes the boundary to current type, and the keyword Charge changes it
to charge type. Note that for current boundary conditions, you still must specify Voltage; this
value is used as an initial guess when the simulation begins, but it has no impact on the final
results. Charge and Current support time-dependent specifications in the same manner as
explained for Voltage.

Changing Boundary Condition Type During Simulation

The Set command in the Solve section changes the boundary condition type for an electrode.
To change the boundary condition of a current contact <name> to voltage type, use
Set(<name> mode voltage). To change the boundary condition of a voltage contact
<name> to current type or charge type, use Set(<name> mode current) or Set(<name>
mode charge), respectively. To change the boundary condition of a charge contact <name>
to voltage type, use Set(<name> mode voltage). Changing the boundary condition of a
current contact <name> directly to charge type or from a charge contact <name> directly to
current type is not allowed. For example, use:

Solve { ...
Set ("drain" mode current)

5 V 0 s 10 V 1 μs

0 V
5 V 10 V
68 Sentaurus™ Device User Guide
N-2017.09



4: Performing Numeric Experiments
Specifying Electrical Boundary Conditions
...
}

to change the boundary condition for the voltage contact drain from voltage type to current
type. If the boundary condition for drain was of current type before the Set command is
executed, nothing happens.

The Set command does not change the value of the voltages and currents at the electrodes. The
boundary value for the new boundary condition type results from the solution previously
obtained for the bias point at which the Set command appears.

An alternative method to change the boundary condition type of a contact is to use the
Quasistationary statement (see Quasistationary Ramps on page 74). This alternative is
usually more convenient. However, a goal value for the boundary condition must be specified,
whereas the Set command allows you to fix the current, charge, or voltage at a contact to a
value reached during the simulation, even if this value is not known beforehand.

Mixed-Mode Electrical Boundary Conditions

In mixed-mode simulations, an additional possibility to specify electrical boundary conditions
is to connect electrodes to a circuit (see Electrical and Thermal Netlist on page 58).

The Set command in the Solve section can be used to determine the boundary conditions at
circuit nodes (see Set, Unset, Initialize, and Hint on page 60). The Set command takes a list
of nodes with optional values as parameters. If a value is given, the node is set to that value. If
no value is given, the node is set to its current value. The nodes are set until the end of the
Sentaurus Device run or the next Unset command with the specified node.

The Unset command takes a list of nodes and ‘frees’ them (that is, the nodes are floating). In
practice, the Set command is used in the Solve section to establish a complex system of steps,
circuit region by circuit region.

The SPICE voltage and current sources use vector parameters to define the properties of
various source types. For example:

System {
Vsource_pset v0 (n1 n0) { sine = (0.5 1 10 0 0) }

}

defines a voltage source with an offset vo = sine[0] =  an amplitude va = sine[1] =
 a frequency freq = sine[2] =  a delay td = sine[3] =  and a damping

factor theta = sine[4] =  Components of such vectors can be set in the Solve section.

0.5 V,
1 V, 10 Hz, 0 s,

0 s 1– .
Sentaurus™ Device User Guide 69
N-2017.09



4: Performing Numeric Experiments 
Specifying Thermal Boundary Conditions
The following example sets the offset of the sine voltage source v0 to :

Solve { ...
Set (v0."sine[0]" = 0.75) ...

}

Specifying Thermal Boundary Conditions

The Thermode section defines the thermal contacts of a device. The Thermode section is
defined in the same way as the Electrode section. By default, the temperature specified with
Temperature is the temperature of the thermode. If, in addition, Power (in ) is
specified in the Thermode section, a heat flux boundary condition is imposed instead, and the
specified temperature serves as an initial guess only, for example:

Thermode {
{ Name = "top" Temperature = 350 }
{ Name = "bottom" Temperature = 300 Power = 1e6 }

}

Thermal contacts in the Electrode section can be specified alternatively by a user-defined
regular expression instead of a well-defined name. In this case, all the matching thermal
contacts in the structure file (TDR file) will be given the properties defined by the thermal
contact with the matching pattern. The matching process is similar to that of electrical contacts
(see Specifying Electrical Boundary Conditions on page 67).

Time-dependent thermal boundary conditions are specified using the same syntax as for
electrical boundary conditions (see Specifying Electrical Boundary Conditions on page 67).

Table 209 on page 1402 lists the keywords available for the Thermode section. Thermal
Boundary Conditions on page 226 discusses the physical options. In mixed-mode device
simulation, an additional possibility to specify thermal boundary conditions is to connect
thermodes to a thermal circuit (see Electrical and Thermal Netlist on page 58).

NOTE Only thermodes with a thermal resistive boundary condition can be
connected to a circuit. Thermodes with a heat flux boundary condition
are not available for circuit connections. 

0.75 V

W cm2⁄
70 Sentaurus™ Device User Guide
N-2017.09



4: Performing Numeric Experiments
Break Criteria: Conditionally Stopping the Simulation
Break Criteria: Conditionally Stopping the Simulation

Sentaurus Device prematurely terminates a simulation if certain values exceed a given limit.
This feature is useful during a nonisothermal simulation to stop the calculations when the
silicon starts to melt or to stop a breakdown simulation when the current through a contact
exceeds a predefined value.

The following values can be monitored during a simulation:

■ Contact voltage (inner voltage)

■ Contact current

■ Lattice temperature

■ Current density

■ Electric field (absolute value of field)

■ Device power

It is possible to specify values to a lower bound and an upper bound. Similarly, a bound can be
specified on the absolute value. The break criteria can have a global or sweep specification. If
the break is in sweep, you can have multiple break criteria in one simulation. The break can be
specified in a single device and in mixed mode.

Global Contact Break Criteria

The limits for contact voltages and contact currents can be specified in the global Math section:

Math {
BreakCriteria {

Voltage (Contact = "drain" absval = 10)

Table 16 Various thermode declarations

Command statement Description

{ Name = "surface" Temperature = 310
SurfaceResistance = 0.1 }

This is a thermal resistive boundary condition with 
 thermal resistance, which is specified at the 

thermode ‘surface.’

{ Name = "body" Temperature = 300
Power = 1e6 }

Heat flux boundary condition.

{ Name = "bulk" Temperature = 300
Power = 1e5
Power = (1e5 at 0, 1e6 at 1e-4,

1e3 at 2e-4) }

Thermode with time-dependent heat flux boundary condition.

0.1cm
2
K/W
Sentaurus™ Device User Guide 71
N-2017.09



4: Performing Numeric Experiments 
Break Criteria: Conditionally Stopping the Simulation
Current (Contact = "source" minval = -0.001 maxval = 0.002)
}
...

}

In this example, the stopping criterion is met if the absolute value of the inner voltage at the
drain exceeds . In addition, Sentaurus Device terminates the simulation if the source
current is less than  or greater than .

NOTE The unit depends on the device dimension. It is  for 1D, 
for 2D, and  for 3D devices.

Global Device Break Criteria

The device power is equal to , where:

■  is the index of a device contact.

■  is the current.

■  is the inner or outer voltage at this contact.

Examples of the device power criteria are:

Math {
BreakCriteria { DevicePower( Absval=6e-5) }
BreakCriteria { OuterDevicePower( Absval=6e-5) }
BreakCriteria { InnerDevicePower( Absval=2e-6) }
...

}

The keywords DevicePower and OuterDevicePower are synonyms. In this example, the
stopping criterion is met if the absolute value of the outer power exceeds  or the
inner power exceeds .

The break criteria for lattice temperature, current density, and electric field can be specified by
region and material. If no region or material is given, the stopping criteria apply to all regions.
A sample specification is:

Math (material = "Silicon") {
BreakCriteria {

LatticeTemperature (maxval = 1000)
CurrentDensity (maxval = 1e7)

}
...

}
Math (region = "Region.1") {

BreakCriteria {

10 V
0.001– A/μm 0.002A/μm

A/μm2 A/μm
A

P Ik Vk⋅
k
=

k

Ik

Vk

6 5–×10 W/μm
2 6–×10 W/μm
72 Sentaurus™ Device User Guide
N-2017.09



4: Performing Numeric Experiments
Break Criteria: Conditionally Stopping the Simulation
ElectricField (maxval = 1e6)
}
...

}

Sentaurus Device terminates the simulation if the lattice temperature in silicon exceeds
, the current density in silicon exceeds , or the electrical field in the region

Region.1 exceeds .

An upper bound for the lattice temperature can also be specified in the Physics section, for
example:

Physics {
LatticeTemperatureLimit = 1693 # melting point of Si
...

}

NOTE The break criteria of the lattice temperature are only valid for
nonisothermal simulations, that is, the keyword Temperature must
appear in the corresponding Solve section.

Sweep-Specific Break Criteria

Sweep-specific break criteria can be specified as an option of Quasistationary,
Transient, and Continuation:

solve {
Quasistationary(

BreakCriteria {
Current(Contact = "drain" AbsVal = 1e-8)
DevicePower(Absval = 1e-5)

}
Goal { Name="drain" Voltage = 5 }

)
{ coupled { poisson electron hole } }

Quasistationary(
BreakCriteria { CurrentDensity( AbsVal = 0.1) }
Goal { Name = "gate" Voltage = 2 }

)
{ coupled { poisson electron hole } }
...

}

This example contains multiple break criteria. As soon as either the drain current or the device
power exceeds the limit, Sentaurus Device stops the first Quasistationary computations

1000 K 107A/cm2

106 V/cm
Sentaurus™ Device User Guide 73
N-2017.09



4: Performing Numeric Experiments 
Quasistationary Ramps
and switches to the second Quasistationary. As soon as the current density exceeds its
limit, Sentaurus Device exits this section and switches to the next section.

Mixed-Mode Break Criteria

All the abovementioned break criteria are also available in mixed mode. In this case, the
BreakCriteria section must contain the circuit device name (an exception are voltage
criteria on circuit nodes). Examples of the break criteria conditions in mixed mode are:

Quasistationary(
BreakCriteria {

# mixed-mode variables
Voltage( Node = a MaxVal = 10)
Current( DevName = resistor Node = b MinVal = -1e-5)

# device variables
Voltage(DevName = diode Contact = "anode" MaxVal=10)
LatticeTemperature(DevName = mos MaxVal=1000)
ElectricField(DevName = mos MaxVal=1e6)
DevicePower(DevName = resistor AbsVal=1e-5)

}
...

)

Quasistationary Ramps

The Quasistationary command ramps a device from one solution to another through the
modification of its boundary conditions (such as contact voltages) or parameter values.

The simulation continues by iterating between the modification of the boundary conditions or
parameter values, and re-solving the device (see Figure 10). The command to re-solve the
device at each iteration is given with the Quasistationary command.

Figure 10 Quasistationary ramp

Step Boundary Re-Solve Device
74 Sentaurus™ Device User Guide
N-2017.09



4: Performing Numeric Experiments
Quasistationary Ramps
Ramping Boundary Conditions

To ramp boundary conditions, such as voltages on electrodes, the Quasistationary
command is:

Quasistationary ( <parameter-list> ) { <solve-command> }

The possibilities for <parameter-list> are summarized in Table 197 on page 1394.
<solve-command> is Coupled, Plugin, ACCoupled, HBCoupled, or possibly another
Quasistationary.

For example, ramping a drain voltage of a device to  is performed by:

Quasistationary( Goal {Voltage=5 Name=Drain } ){
Coupled { Poisson Electron Hole }

}

Internally, the Quasistationary command works by ramping a variable  from 0.0 to 1.0.
The voltage at the contact changes according to the formula , where 
is the initial voltage and  is the final voltage, which is specified in the Goal statement.

Control of the stepping is expressed in terms of the  variable. The control is not made over
contact values because more than one contact can be ramped simultaneously.

The step control parameters are MaxStep, MinStep, InitialStep, Increment, and
Decrement in <parameter-list>:

■ MaxStep and MinStep limit the step size.

■ InitialStep controls the size of the first step of the ramping. The step size is
automatically augmented or reduced depending on the rate of success of the inner solve
command. 

■ The rate of increase is controlled by the number of performed Newton iterations and by the
factor Increment.

■ The step size is reduced by the factor Decrement, when the inner solve fails. The ramping
process aborts when the step becomes smaller than MinStep.

■ If the dynamic nonlocal path band-to-band model is activated, the NonlocalPath section
can be included (see Handling of Derivatives on page 442).

Each contact has a type, which can be voltage, current, or charge. Each Quasistationary
command has a goal, which can also be voltage, current, or charge. If the goal and contact type
do not match, Sentaurus Device changes the contact type to match the goal. However,
Sentaurus Device cannot change a contact of charge type to current type, or a contact of current
type to charge type.

5 V

t
V V0 t V1 V0–( )+= V0

V1

t

Sentaurus™ Device User Guide 75
N-2017.09



4: Performing Numeric Experiments 
Quasistationary Ramps
Contacts in the Goal section of each Quasistationary can be specified alternatively by a
user-defined regular expression instead of a well-defined name. In this case, all the matching
valid contacts in the Electrode section will be ramped.

For example, the following statement will ramp all contacts named d1 ... d9 to 5 V:

Quasistationary( Goal {Voltage=5 Name=Regexp("d[1-9]") } ){
Coupled { Poisson Electron Hole }

}

For more details on the matching process, see Specifying Electrical Boundary Conditions on
page 67.

The initial value (for ) is the current or voltage computed for the contact before the
Quasistationary command starts. Contacts keep their boundary condition type after the
Quasistationary command finishes. To change the boundary condition type of a contact
explicitly, use the Set command (see Changing Boundary Condition Type During Simulation
on page 68).

If all equations to be solved in a Quasistationary also have been solved in the solve
statement immediately before, Sentaurus Device omits the point , as the solution is
already known. Otherwise, this point is computed at the beginning of the Quasistationary.
You can explicitly force or prevent this point from being computed using DoZero or -DoZero
in the <parameter-list>.

Ramping Quasi-Fermi Potentials in Doping Wells

Electron and hole quasi-Fermi potentials in specified doping wells can also be ramped in a
Quasistationary statement. This is a quick and robust way to deplete doping wells without
having to solve the continuity equation for the carrier to be depleted. Its main application is in
CMOS image sensor (CIS) and charge-coupled device (CCD) simulations.

To ramp a quasi-Fermi potential, specify the keyword WellContactName or DopingWell
followed by eQuasiFermi or hQuasiFermi in the Goal section of the Quasistationary
command:

Goal { [ WellContactName = <contact name> | DopingWell(<point coordinates>)]
[eQuasiFermi = <value> | hQuasiFermi = <value>] }

The DopingWell specification is more general and can be used for both semiconductor wells
with or without contacts (buried wells). In this case, the coordinates of a point in the well must
be given to select the well (see code above).

t 0=

t 0=
76 Sentaurus™ Device User Guide
N-2017.09



4: Performing Numeric Experiments
Quasistationary Ramps
When the semiconductor well where the quasi-Fermi potential is ramped is connected to a
contact, the WellContactName specification can be used. Now, the contact associated with
the well must be specified to select the well (see code above).

The starting value of the Goal for the quasi-Fermi potential ramping in the specified well is
taken as the well averaged value of the quasi-Fermi potential at the end of the previous
Quasistationary command. This starting value can be changed using a Set statement:

Solve {
Set(DopingWell(0.5 0.5) eQuasiFermi=5.0)
Quasistationary(... Goal {DopingWell(0.5 0.5) eQuasiFermi=10.0})

) {Coupled {poisson hole}}
}

The Set statement has the same options and syntax as the Goal statement above.

In mixed-mode simulations, the feature still can be used for each device separately. In this case,
the keywords DopingWell and WellContactName must be prefixed by the device name:

System {
MOSCAP1 "mc1" (

"gate_contact" = gate1
"substrate_contact" = sub

)
...

}

Solve {
Set(mc1.DopingWell(0.5 0.5) eQuasiFermi=5.0)
Quasistationary(...

Goal {mc1.DopingWell(0.5 0.5) eQuasiFermi=10.0}

) {Coupled {poisson hole circuit}}
}

In addition, Sentaurus Device supports multiple-well ramping, activated by the keyword
DopingWells with an option in parentheses. The syntax is: 

Quasistationary(... 
Goal {DopingWells([Region=<region> | Material=<material> | Semiconductor]) 

eQuasiFermi=<value>}
) {Coupled {poisson hole}}

As can be seen from this syntax description, wells in a region, wells having the same material,
or all semiconductor wells in the device can be ramped to a specified value of the electron or
hole quasi-Fermi potential. A well is considered to be in a region if it has one or more vertices
in common with the region. A well belongs to a region even if it is not entirely in the region.
Sentaurus™ Device User Guide 77
N-2017.09



4: Performing Numeric Experiments 
Quasistationary Ramps
For multiple-well ramping, the Set command is used to change the quasi-Fermi potential in a
group of wells before a Quasistationary ramping:

Set(DopingWells([Region=<region> | Material=<material> | Semiconductor])
eQuasiFermi=5.0)

In the case of mixed-mode simulations, DopingWells must be prefixed with the device
instance name and a "." similar to single-well syntax. 

Electron and hole quasi-Fermi potentials can be simultaneously ramped using multiple Goal
statements and solving for the Poisson equation only.

When the continuity equation has been solved for a carrier whose quasi-Fermi potential is to
be ramped, the initial value of the quasi-Fermi potential for all vertices in the well is computed
from the carrier density in the point specified when the well was defined. For multiple-well
ramping, the same scheme applies well-wise.

Ramping Physical Parameter Values

A Quasistationary command allows parameters from the parameter file of Sentaurus
Device to be ramped. The Goal statement has the form:

Goal { [ Device = <device> ]
[ Material = <material> | MaterialInterface = <interface> |
Region = <region> | RegionInterface = <interface> ]
Model = <model> Parameter = <parameter> Value = <value> }

Specifying the device and location (material, material interface, region, or region interface) is
optional. However, the model name and parameter name must always be specified.

A list of model names and parameter names is obtained by using:

sdevice --parameter-names

This list of parameters corresponds to those in the Sentaurus Device parameter file, which can
be obtained by using sdevice -P (see Generating a Copy of Parameter File on page 32).

The following command produces a list of model names and parameter names that can be
ramped in the command file:

sdevice --parameter-names <command file>

Sentaurus Device reads the devices in the command file and reports all parameter names that
can be ramped. However, no simulation is performed. The models in Table 17 on page 79
contain command file parameters that can be ramped. 
78 Sentaurus™ Device User Guide
N-2017.09



4: Performing Numeric Experiments
Quasistationary Ramps
NOTE Certain models such as traps must be specified with an index, for
example:

Model="Traps(1)"

The index denotes the exact model for which a parameter should be ramped. Usually, Sentaurus
Device assigns an increasing index starting with zero for each optical beam, trap, and so on.
However, the situation becomes more complex if material and region specifications are present.
To confirm the value of the index, using the following command is recommended:

sdevice --parameter-names <command file>

Mole fraction–dependent parameters can be ramped. For example, if the parameter p is mole
fraction–dependent, the parameter names listed in Table 18 can appear in a Goal statement. 

Mole fraction–dependent parameters can be ramped in all materials. In mole
fraction–dependent materials, the interpolation values p(...) and the interpolation

Table 17 Command file parameters

Model name Parameters

DeviceTemperature Temperature

GalvanicTransport MagneticFieldx, MagneticFieldy, MagneticFieldz

Optics Wavelength, Intensity, Theta, Phi, Polarization

PEPolarization activation

RadiationBeam Dose, DoseRate, DoseTSigma, DoseTime_end, DoseTime_start

Strain StrainXX, StrainXY, StrainXZ, StrainYY, StrainYZ, StrainZZ

Stress StressXX, StressXY, StressXZ, StressYY, StressYZ, StressZZ

Traps(<index>) Conc, EnergyMid, EnergySig, eGfactor, eJfactor, eXsection, 
hGfactor, hJfactor, hXsection

Table 18 Mole fraction–dependent parameters as Quasistationary Goals

Parameter in Goal statement Description

Parameter=p Parameter p in non-mole fraction–dependent materials.

Parameter="p(0)"
Parameter="p(1)"
...

Interpolation value of p at Xmax(0), Xmax(1), …

Parameter="B(p(1))"
Parameter="C(p(1))"
Parameter="B(p(2))"
Parameter="C(p(2))"
...

Quadratic and cubic interpolation coefficients of p in intervals [Xmax(0), 
Xmax(1)], [Xmax(1), Xmax(2)], …
Sentaurus™ Device User Guide 79
N-2017.09



4: Performing Numeric Experiments 
Quasistationary Ramps
coefficients B(p(...)) and C(p(...)) must be ramped. In a non-mole fraction–dependent
material, only the parameter p can be ramped.

If a parameter is not found, Sentaurus Device issues a warning, and the corresponding goal
statement is ignored.

Parameters in PMI models can also be ramped.

To ramp optical parameters, see Parameter Ramping on page 573.

Quasistationary in Mixed Mode

The Quasistationary command is extended in mixed mode to include goals on nodes and
circuit model parameters. Table 192 on page 1389 shows the syntax of these goals.

The goal is usually used on a node that has been fixed with the Set or Initialize command
in the System section. The keyword Goal{Node=<string> Voltage=<float>} assigns
a new target voltage to a specified node. For example, the node a is set to  and ramped to

System {
Resistor_pset r1(a 0){resistance = 1}
Set(a=1)

}

Solve {
Circuit
Quasistationary( Goal{Node=a Voltage=10} ){ Circuit }

}

A goal on circuit model parameters can be used to change the configuration of a system. The
keyword Goal{Parameter=<i-name>.<p-name> value=<float>} assigns a new target
value to a specified parameter p-name of a device instance i-name. Any circuit model
parameter can be changed.

For example, the resistor r1 is ramped from  to  and the offset of the sine voltage
source is ramped to 

System {
Resistor_pset r1(a 0){resistance = 1}
Vsource_pset v0 (n1 n0) { sine = (0.5 1 10 0 0) }
Set(a=1)

}

Solve {
Circuit

1 V
10 V:

1Ω 0.1Ω,
1.5 V:
80 Sentaurus™ Device User Guide
N-2017.09



4: Performing Numeric Experiments
Quasistationary Ramps
Quasistationary(
Goal { Parameter = r1."resistance" Value = 0.1 }
Goal { Parameter = v0."sine[0]" Value = 1.5 })
{ Circuit }

}

NOTE When a node is used in a goal, it is set during the quasistationary
simulation. At the end of the ramp, the node reverts to its previous ‘set’
status, that is, if it was not set before, it is not set afterward. This can
cause unexpected behavior in the Solve statement following the
Quasistationary statement. Therefore, it is better to set the node in
the Quasistationary statement using the Set command.

Saving and Plotting During a Quasistationary

Data can be saved and plotted during a Quasistationary ramping process by using the
Plot command. Plot is placed with the other Quasistationary parameters, for example:

Quasistationary(
Goal {Voltage=5 Name=Drain}
Plot {Range = (0 1) Intervals=5})

{Coupled{ Poisson Electron Hole }}

In this example, six plot files are saved at five intervals: = 0, 0.2, 0.4, 0.6, 0.8, and 1.0.

Another way to plot data is with Plot in the Quasistationary body rather than inside the
Quasistationary parameters (see When to Plot on page 123). Plot is added after the
equations to solve, such as:

Quasistationary( Goal {Voltage=5 Name=Drain } ){
Coupled { Poisson Electron Hole }
Plot ( Time= ( 0.2; 0.4; 0.6; 0.8; 1.0 ) NoOverwrite )

}

Extrapolation

The Quasistationary command can use extrapolation to predict the next solution based on
the values of the previous solutions. Extrapolation can be switched on globally in the Math
section:

Math { Extrapolate }

t

Sentaurus™ Device User Guide 81
N-2017.09



4: Performing Numeric Experiments 
Quasistationary Ramps
Alternatively, it can be switched on for a specific Quasistationary command only:

Quasistationary (
Goal { ... }
Extrapolate

) { Coupled { Poisson Electron Hole } }

By default, Sentaurus Device uses linear extrapolation, but you also can request higher order
extrapolation. For example, quadratic extrapolation is obtained by specifying:

Extrapolate (Order = 2)

The extrapolation information is preserved between Quasistationary commands, and it
also is saved and loaded automatically by the Save and Load commands. A subsequent
Quasistationary command can use this extrapolation information if the following
conditions are met:

1. The previous and current Quasistationary commands have the same number of goals.

2. The previous and current Quasistationary commands ramp the same quantities.

3. The previous and current Quasistationary commands are contiguous, that is, for all
goals, the current initial value is equal to the goal value in the previous command.

4. Multiple goals are ramped at the same rate in the current Quasistationary command
compared to the previous Quasistationary command. As an example, assume that all
contact voltages have zero initial values. Then, the following two Quasistationary
commands satisfy this condition:

Quasistationary (
Goal { Name = "gate"   Voltage = 1 }
Goal { Name = "drain" Voltage = 2 }

) { Coupled { Poisson Electron Hole } }

Quasistationary (
Goal { Name = "gate"   Voltage = 3 }
Goal { Name = "drain" Voltage = 6 }

) { Coupled { Poisson Electron Hole } }

On the other hand, the following two Quasistationary commands violate this
condition:

Quasistationary (
Goal { Name = "gate"   Voltage = 1 }
Goal { Name = "drain" Voltage = 2 }

) { Coupled { Poisson Electron Hole } }

Quasistationary (
Goal { Name = "gate"   Voltage = 3 }
Goal { Name = "drain" Voltage = 10 }

) { Coupled { Poisson Electron Hole } }
82 Sentaurus™ Device User Guide
N-2017.09



4: Performing Numeric Experiments
Continuation Command
In the second Quasistationary command, the drain voltage is ramped at a higher rate
than the gate voltage. Therefore, the extrapolation information from the previous
Quasistationary command cannot be used.

5. The values of the solution variables have not changed between the two
Quasistationary commands, for example, by a Load command.

If the extrapolation information from a previous Quasistationary command can be used
successfully, the following message appears in the log file:

Reusing extrapolation from a previous quasistationary

The Quasistationary options in Table 19 control the handling of extrapolation information. 

Continuation Command

The Continuation command enables automated tracing of arbitrarily shaped  curves of
complicated device phenomena such as breakdown or latchup. Simulation of these phenomena
usually requires biasing conditions tracing a multivalued  curve with abrupt changes. The
implementation is based on a dynamic load-line technique [2] adapting the boundary
conditions along the traced  curve to ensure convergence. An external load resistor is
connected to the device electrode at which the  curve is traced, the device being indirectly
biased through the load resistance. The boundary condition consists of an external voltage
applied to the other end of the load resistor not connected to device. By monitoring the slope
of the traced  curve, an optimal boundary condition (external voltage) is determined by
adjusting the load line so it is orthogonal to the local tangent of the  curve. The boundary
conditions are generated automatically by the algorithm without prior knowledge of the 
curve characteristics.

An important part of the continuation method consists of computing the slope in each point of
the  curve. This is equivalent with computing the inverse of the device differential
resistance when a small-voltage perturbation is applied to the contact undergoing continuation.

Table 19 Extrapolation options

Option Description

ReadExtrapolation Tries to use the extrapolation information from a previous command if it is 
available and compatible. This is the default.

-ReadExtrapolation Do not use the extrapolation information from a previous command.

StoreExtrapolation Stores the extrapolation information internally at the end of the command, so that 
it will be available for a subsequent command, or can be written to a save or plot 
file. This is the default.

-StoreExtrapolation Do not store the extrapolation information internally at the end of the command.

I V( )

I V( )

I V( )
I V( )

I V( )
I V( )

I V( )

I V( )
Sentaurus™ Device User Guide 83
N-2017.09



4: Performing Numeric Experiments 
Continuation Command
The simulation advances to the next operating point if the solution has converged. Before
moving to the next step, the load line is recalibrated so that it is orthogonal to the local tangent
of the  curve. This ensures an optimal boundary condition. A user-defined window
specifies the limits for curve tracing. The tracing window is specified by user-defined lower
and upper values for the voltage and current of the operating point at the continuation electrode:
MinVoltage, MaxVoltage, MinCurrent, and MaxCurrent. The simulation ends when the
operating point is outside the tracing window.

The continuation method is activated by using the keyword Continuation in the Solve
section. Some control parameters must be given in parentheses in the same way as for the
Plugin statement, for example:

Continuation (<Control Parameters>) {
Coupled (iterations=15) { poisson electron hole }

}

Table 188 on page 1386 summarizes the control parameters of the Continuation command.
The method works with both single-device and mixed-mode setups, with only one electrode
undergoing continuation at a time. 

The first step of the continuation is always a voltage-controlled step. For this, you must supply
an initial voltage step in the control parameter list using the InitialVstep statement. The
continuation proceeds automatically until the values given by any of the MinVoltage,
MaxVoltage, MinCurrent, or MaxCurrent parameters are exceeded. In addition, the
parameters Increment, Decrement, Error and Digits can be specified. Their definitions
are the same as for Transient and Quasistationary statements except that they measure
the  curve arc length.

In the regions where the  curve becomes vertical (close to current boundary condition) and
the current extends over several orders of magnitude for almost the same applied voltage,
another parameter, MinVoltageStep, may need to be adjusted. MinVoltageStep is the
minimum-allowed voltage difference between two adjacent operating points on the 
curve. In such cases, increasing the parameter value produces a smoother curve over the
vertical range. 

Tracing successfully an  curve with the continuation method depends on how accurately
the local slope of the traced  curve is computed. As slope computation involves using
inverted Jacobian and current derivatives at the electrode, an accurate computation of the
contact current and a low numeric noise in Jacobian are prerequisites for continuation.

At low-biasing voltages, current at the continuation electrode is very small and, in general,
noisy. This leads to an inaccurate computation of the slope, which in turn causes the
continuation method to backtrace. To overcome this problem, Sentaurus Device allows you to
divide the continuation window into two regions separated by a threshold current with a value
specified by the parameter Iadapt. The lower region is a low-current range where the slope

I V( )

I V( )

I V( )

I V( )

I V( )
I V( )
84 Sentaurus™ Device User Guide
N-2017.09



4: Performing Numeric Experiments
Continuation Command
computation is inaccurate, and the upper region is now the region where the continuation
method is expected to work as designed.

From MinCurrent to Iadapt (the lower region of the simulation window), the adaptive
algorithm is switched off and a fixed-value resistor is used instead. In this range, the simulation
proceeds as a voltage ramping through a fixed-value resistor attached to the continuation
electrode. Because no slope computation is necessary, the sensitivity of the simulation to
current noise is eliminated. When the current increases to the value specified by Iadapt, the
adaptive continuation is switched on and the curve tracing proceeds as previously described.
The default value for the fixed resistor used in the lower region is , and it can be
changed by either using the continuation parameter Rfixed or specifying the Resist
keyword in the Electrode section of the continuation electrode.

An example of a Solve entry for continuation is:

Electrode {
...
{Name="collector" Voltage=0.0}

}

Solve { ...
Continuation ( Name="collector" InitialVstep=-0.001

MaxVoltage=0 MaxCurrent=0
MinVoltage=-10 MinCurrent=-1e-3
Iadapt=-1e-13) {
Coupled (iterations=10) { poisson electron hole }

}
}

This specifies that the  curve must be traced at the electrode "collector". The initial
voltage-controlled step is  the voltage range is  to  and the current range
is  to . The adaptive algorithm is switched on when the current reaches

 to avoid low-current regime noise.

The step along the traced  curve is controlled primarily by the convergence. The step
increases by a factor Increment if the problem has converged. When the problem does not
converge, the step is cut by a factor Decrement and the problem is re-solved. The step cut
continues until the problem converges. The continuation parameters Increment and
Decrement are available for adjustment in the Continuation section, and the default values
are 2.0 for Increment and 1.5 for Decrement.

Sentaurus Device also allows a more complex step control based on both convergence and
curve smoothness. This is activated by specifying the keyword Normalized in the
Continuation section. The angle between the last two segments on the  is computed in
a local scaled I–V plane, with the scaling factors depending on the current point on the 
curve. If the angle is smaller than the continuation parameter IncrementAngle, the step

0.001 Ω

I V( )
0.001– V, 10V– 0V,

1mA– 0 A
1.0 10 13–× A–

I V( )

I V( )
I V( )
Sentaurus™ Device User Guide 85
N-2017.09



4: Performing Numeric Experiments 
Continuation Command
increases by the factor Increment. If the angle is greater than IncrementAngle but smaller
than DecrementAngle, the step is kept constant. Finally, if the angle is greater than
DecrementAngle, the step decreases by the factor Decrement. Default values for
IncrementAngle and DecrementAngle are 2.5 and 5 degrees, respectively.

A few more options are available for limiting the step (arclength) along the traced  curve.
By specifying the continuation parameter MaxVstep, the step along the  curve is limited
to an upper value such that the step projection on the V-axis is smaller in absolute value than
MaxVstep. This option is particularly useful for a low-voltage range when a curve with more
points is needed. In the higher-current range, one of the continuation parameters MaxIstep,
MaxIfactor, or MaxLogIfactor can be used to limit the step along the curve. When
MaxIstep is specified, the step is limited such that the step projection on the I-axis is smaller
in absolute value than MaxIstep. MaxIfactor specifies how many times the current is
allowed to increase for two adjacent points on the  curve. Similarly, MaxLogIfactor
specifies by how many orders of magnitude the current is allowed to increase for two adjacent
points on the  curve. MaxVstep can be combined with one of MaxIstep, MaxIfactor,
or MaxLogIfactor.

In mixed mode, the continuation method allows you to have all other contacts except the
continuation contact connected in a circuit. The continuation contact should not be connected
to any circuit node. In this case, the Name keyword in the Continuation section specifying
the continuation contact name is replaced by dev_inst.Name, where dev_inst represents
the device instance of the respective contact. For example, for device mos1 with electrodes
named source, drain, gate, and substrate undergoing continuation on the drain electrode, the
possible syntax is:

Device mos1 {
Electrode {

{Name="source" Voltage=0.0}
{Name="drain" Voltage=0.0}
{Name="gate" Voltage=0.0}
{Name="substrate" Voltage=0.0}

}
...

}

System {
mos1 d1 (source=s1 gate=g1 substrate=s1)
set (s1=0 g1=0 b1=0)

}

Solve {
...
Continuation(d1.Name="drain"

...
) {Coupled {Poisson Electron Hole}}

}

I V( )
I V( )

I V( )

I V( )
86 Sentaurus™ Device User Guide
N-2017.09



4: Performing Numeric Experiments
Transient Command
In mixed-mode simulations, sometimes the continuation electrode must be biased to a certain
voltage using a Quasistationary simulation before the continuation starts. In mixed mode,
because the continuation electrode is not allowed to be connected to any node, special syntax
must be used to avoid biasing the contact as a node.

For example, in the above syntax, the drain electrode needs to be biased to  before the
continuation. Instead of Name, the Contact keyword is used to identify the drain contact:

Quasistationary ( InitialStep=1e-3
...
Goal {Contact=d1."drain" Voltage=3}

) {Coupled {Poisson Electron Hole}}

Transient Command

The Transient command is used to perform a transient time simulation. The command must
start with a device that has already been solved. The simulation continues by iterating between
incrementing time and re-solving the device (see Figure 11). The command to solve the device
at each iteration is given with the Transient command. 

Figure 11 Transient simulation

The syntax of the Transient command is:

Transient ( <parameter-list> ) { <solve-command> }

Table 201 on page 1396 lists the possible parameters.

In the above command, <solve-command> is Coupled or Plugin.

An example of performing a transient simulation for  is:

Transient( InitialTime = 0.0 FinalTime=1.0e-5 ){
Coupled { Poisson Electron Hole }

}

The Transient command allows you to overwrite time-step control parameters, which have
default values or are globally defined in the Math section. The error control parameters that are
accepted by the Transient command are listed in Table 232 on page 1426.

3 V

Increment Time Re-Solve Device

10 μs
Sentaurus™ Device User Guide 87
N-2017.09



4: Performing Numeric Experiments 
Transient Command
The parameters TransientError, TransientErrRef, and TransientDigits control the
error over the transient integration method. This differs from the error control for the Coupled
command, which only controls the error of each nonlinear solution. As with the error
parameters for the Coupled command, the transient error controls can be both absolute and
relative. Absolute values are parameterized according to equation–variable type.

The plot controls of the Transient command are the same as for the Quasistationary
command, except the  is the real time (in seconds), and is not restricted to an interval from 0
to 1.

Plot can be given as a Transient parameter, for example:

Transient( InitialTime = 0.0 FinalTime = 1.0e-5
Plot { Range = (0 3.0e-6) Intervals=3 } )
{ Coupled { Poisson Electron Hole } }

This example saves four plot files at t = 0.0, 1.0e–6, 2.0e–6, and 3.0e–6. Alternatively,
Plot can be put into the Transient solve command (see When to Plot on page 123):

Transient( InitialTime = 0.0 FinalTime = 1.0e-5 )
{ Coupled{ Poisson Electron Hole }
Plot ( Time=( 1.0e-6; 2.0e-6; 3.0e-6 ) NoOverwrite )

}

Numeric Control of Transient Analysis

A set of keywords is available in the Math section to control transient simulation. Sentaurus
Device uses implicit discretization of nonstationary equations and supports two discretization
schemes: the trapezoidal rule/backward differentiation formula (TRBDF), which is the default,
and the simpler backward Euler (BE) method. To select a particular transient method, specify
Transient=<transient-method>, where <transient-method> can be TRBDF or BE.

In transient simulations, in addition to numeric errors of the nonlinear equations, discretization
errors due to the finite time-step occur (see Transient Simulation on page 1032). By default,
Sentaurus Device does not control the time step to limit this discretization error (that is, that
time step depends only on convergence of Newton iterations).

To activate time-step control, CheckTransientError must be specified. For time-step
control, Sentaurus Device uses a separate set of criteria, but as with Newton iterations, the
control of both relative and absolute errors is performed. Relative transient error  is defined
similarly to  in Eq. 32, p. 138:

(14)

t

εR,tr

εR

εR,tr 10 TransientDigits–=
88 Sentaurus™ Device User Guide
N-2017.09



4: Performing Numeric Experiments
Transient Command
Similarly, for  and , the equation:

(15)

is valid. The keyword TransientDigits must be used to specify relative error  in
transient simulations. An absolute error in time-step control can be specified by either the
keyword TransientError ( ) or TransientErrRef ( ), and their values can be
defined independently for each equation variable. The same flag as in Newton iteration control,
RelErrControl, is used to switch to unscaled (TransientErrRef) absolute error
specification.

For simulations with floating gates, Sentaurus Device can monitor the errors in the floating-
gate charges as well. The details are described in Floating Gates on page 1035.

NOTE All transient parameters in the Math section, except Transient, can be
overwritten in the Transient command of the Solve section (see
Transient Command on page 87).

Time-Stepping

A transient simulation computes the status of the system or device as a function of time for a
finite time range, specified by InitialTime and FinalTime, by advancing from a status at
a given time to the status at a later time point. The time step is chosen dynamically. The time
step is bounded by MinStep and MaxStep from below and above, respectively; while
InitialStep specifies the first time step at start time.

If the computation of the system status for a given time step fails, the time step is reduced
iteratively until either the system status can be computed successfully or the minimum time
step is reached. In the later case, the Transient terminates with an error. The factor by which
a step is reduced can be set with the Decrement keyword.

After a successful computation of the system status, the time step is typically increased,
depending on the computational effort for the actual time step. The maximum factor by which
a step is increased can be controlled with the Increment keyword.

The effective time step can be smaller than the advancing time step, for example, if time points
are specified for plotting, where a system status must be computed. However, these effective
time steps do not reduce the advancing time step, that is, the subsequent effective time step may
be as large as the advancing time step. You can bound (from above) the advancing time step at
certain conditions by specifying turning points as a parameter in the Transient.

xref,tr εA,tr

xref,tr

εA,tr

εR,tr
----------x*=

εR,tr

εA,tr xref,tr
Sentaurus™ Device User Guide 89
N-2017.09



4: Performing Numeric Experiments 
Transient Command
These conditions can be a list of arbitrary time points or time ranges (see Table 201 on
page 1396), for example:

Transient ( ...
TurningPoints (

( Condition ( Time ( 1.e-7 ; 2.e-7 ; 3.e-7 ) ) Value = 1.1e-9 )
( Condition ( Time ( Range = (1.e-7 2.e-7 ) ) ) Value = 2.1e-9 )

)
)

The advancing time step is limited by the specified Value (in seconds) for the corresponding
Condition. Here, the first condition limits the value for a list of time points. The second
condition limits the time step for a whole range. Observe that, for time points, the computation
of the transient is triggered; while for Range, this is not the case. Time takes the same options
as the Time keyword in Plot in Solve. The specification:

TurningPoints ( ... (1.e-9 1.e-10) )

serves as shorthand for a single time-point condition:

TurningPoints ( ... ( Condition ( Time ( 1.e-9 ) ) Value = 1.e-10 ) )

NOTE Turning points related to optical simulations, specified using the unified
interface for optical generation computation (see Chapter 21 on
page 533), are described in Optical Turning Points on page 552.

Ramping Physical Parameter Values

A Transient command allows parameters from the parameter file of Sentaurus Device to be
ramped linearly. The Bias statement (similar to the subsection Goal in a Quasistationary
command, see Ramping Physical Parameter Values on page 78) has the form:

Bias { [ Device = <device> ]
[ Material = <material> | MaterialInterface = <interface> |
Region = <region> | RegionInterface = <interface> ]
Model = <model> Parameter = <parameter> Value = <value_list>

}

Specifying the device and location (material, material interface, region, or region interface) is
optional. However, the model name and parameter name must always be specified. Example:

Transient (
InitialTime = 0 FinalTime = 1
Bias( Material = "Silicon"

Model = DeviceTemperature Parameter = "Temperature"
Value = (300 at 0.1, 400 at 0.2, 450 at 0.5)

)

90 Sentaurus™ Device User Guide
N-2017.09



4: Performing Numeric Experiments
Transient Ramps
Bias( Region = "Channel"
Model = DeviceTemperature Parameter = "Temperature"
Value = (550 at 0.6, 400 at 0.8, 300 at 0.9)

)
) { Coupled { Poisson Electron Hole } }

For a list of parameters that can be ramped in a Transient command, see Ramping Physical
Parameter Values on page 78.

Extrapolation

If the Extrapolate option is present in the Math section, the Transient command uses the
linear extrapolation of the last two solutions to predict the next solution. This extrapolation
information is preserved between Transient commands, and it is also saved and loaded
automatically by the Save and Load commands.

A Transient command can use this extrapolation information if the following conditions are
met:

1. The previous and current Transient commands are contiguous, that is, the final time of
the previous Transient is equal to the initial time of the current Transient.

2. The values of the solution variables have not changed between the two Transient
commands, for example, by a Load command.

If the extrapolation information from a previous Transient command can be used
successfully, the following message appears in the log file:

Reusing extrapolation from a previous transient

The options to control the handling of extrapolation information described in Table 19 on
page 83 are available for Transient as well.

Transient Ramps

As an alternative, Sentaurus Device provides Transient command syntax very similar to the
Quasistationary command. This Transient command simplifies switching from
quasistationary simulations to slow transient ones with minimal user effort. Replacing a
quasistationary simulation with a slow transient is particularly useful in modeling wide-
bandgap semiconductor devices, devices with trap states, breakdown simulations, and in
general where convergence can be improved by switching to transient.
Sentaurus™ Device User Guide 91
N-2017.09



4: Performing Numeric Experiments 
Transient Ramps
The transient ramp is activated by a Quasistationary-like command where the
Quasistationary keyword is replaced by Transient and two optional parameters
InitialTime and FinalTime can be used to control the ramp rate:

Solve { ...
Transient (

InitialTime = 0
FinalTime = 1
InitialStep = 0.01
MaxStep = 0.1
MinStep = 0.001
Goal {name="gate" Voltage=5.0}
Goal {name="drain" Voltage=5.0}

) { Coupled {...} }
}

The default value for InitialTime is 0 or the final simulation time from a previous transient
ramp simulation. The FinalTime default value is InitialTime + 1 second.

When a quasistationary ramp is inserted between two transient ramps, the time for the transient
ramp after the quasistationary will be reset to zero if InitialTime is not specified.

If the dynamic nonlocal path band-to-band model is activated, the NonlocalPath section can
be included (see Handling of Derivatives on page 442).

In the following example, the last transient will bias the contact anode from 3 V at t = 0 to 0 V
at t = 2 s:

Solve { ...
Transient (

FinalTime = 2
InitialStep = 0.01
MaxStep = 0.1
MinStep = 0.001
Goal {name="anode" Voltage=2.0}

) { Coupled {...} }

Quasistationary(
InitialStep = 0.01
MaxStep = 0.1
MinStep = 0.001
Goal {name="anode" Voltage=3.0}

) { Coupled {...} }

Transient (
FinalTime = 2
InitialStep = 0.01
MaxStep = 0.1
92 Sentaurus™ Device User Guide
N-2017.09



4: Performing Numeric Experiments
Large-Signal Cyclic Analysis
MinStep = 0.001
Goal {name="anode" Voltage=0.0}

) { Coupled {...} }
}

The electrode bias time dependency is computed internally for the electrodes specified in the
Goal section, so no time-dependent bias specification is allowed in the Electrode section for
those contacts. InitialStep, MaxStep, and MinStep are like those in the
Quasistationary case represented on a 0 to 1 scale. Sentaurus Device converts them
internally to a scale from InitialTime to FinalTime. 

This feature supports voltage, current, or charge ramps. Therefore, in the Goal section, only
voltage, current, and charge contacts are allowed.

Large-Signal Cyclic Analysis

For high-speed and high-frequency operations, devices are often evaluated by cyclic biases.
After a time, device variables change periodically. This cyclic-bias steady state [3] is a
condition that occurs when all parameters of a simulated system return to the initial values after
one cycle bias is applied.

In fact, such a cyclic steady state is reached by using standard transient simulation. However,
this is not always effective, especially if some processes in the system have very long
characteristic times in comparison with the period of the signal.

For example, deep traps usually have relatively long characteristic times. A suggested
approach [4] allows for significant acceleration of the process of reaching a cyclic steady state
solution. The approach is based on iterative correction of the initial guess at the beginning of
each period of transient simulation, using previous initial guesses and focusing on reaching a
cyclic steady state. This approach is implemented in Sentaurus Device. An alternative
frequency-domain approach is harmonic balance (see Harmonic Balance on page 101).

Description of Method

The original method [4] is summarized. Transient simulation starts from some initial guess. A
few periods of transient simulation are performed and, after each period, the change over the
period of each independent variable of the simulated system is estimated (that is, the potential
at each vertex of all devices, electron and hole concentrations, carrier temperatures, and lattice
temperature if hydrodynamic or thermodynamic models are selected, trap occupation
probabilities for each trap type and occupation level, and circuit node potentials in the case of
mixed-mode simulation).
Sentaurus™ Device User Guide 93
N-2017.09



4: Performing Numeric Experiments 
Large-Signal Cyclic Analysis
If  denotes the value of any variable in the beginning of the -th period, and  denotes the
same value at the end of the period, the cyclic steady state is reached when:

(16)

is equal to zero.

Considering linear extrapolation and that the goal is to achieve , the next initial
guess can be estimated as:

(17)

where  is a user-defined relaxation factor to stabilize convergence.

As Eq. 17 contains uncertainty such as 0/0, especially when  is close to zero (when the
solution is close to the steady state), special precautions are necessary to provide robustness of
the algorithm.

Consider the derivation of Eq. 17 in a different fashion – near the cyclic steady state. If such a
steady state exists, the initial guess  is expected to behave with time as

, where . It is easy to show that Eq. 17 gives , that is, a
desirable cyclic steady-state solution. 

It follows that the ratio :

(18)

can be estimated as . From this, it is clear that because  is positive, the
condition  must be valid. Moreover,  can be very large if some internal characteristic
time (like the trap characteristic time) is much longer than the period of the cycle.

Using the definition of  from Eq. 18, Eq. 17 can be rewritten as:

(19)

Although Eq. 18 and Eq. 19 are equivalent to Eq. 17, it is more convenient inside Sentaurus
Device to use Eq. 18 and Eq. 19. Sentaurus Device never allows  to be less than 1 because of
the above arguments.

To provide convergence and robustness, it is reasonable also not to allow  to become very
large. In Sentaurus Device,  cannot exceed a user-specified parameter . You can also
specify the value of the parameter .

xn
I n xn

F

Δxn xn
F

xn
I

–=

Δxn 1+ 0=

xn 1+
I

xn
I γ

xn
I

xn 1–
I

–

Δxn Δxn 1––
-------------------------------Δxn–=

γ

Δx

y xI=
y a αt–( ) b+exp= α 0> xI b=

r

r
xn

I
xn 1–

I
–

Δxn Δxn 1––
-------------------------------–=

r 1 1 αt–( )exp–( )⁄≈ α
r 1≥ r

r

xn 1+
I

xn
I γrΔxn+=

r

r
r rmax

rmin
94 Sentaurus™ Device User Guide
N-2017.09



4: Performing Numeric Experiments
Large-Signal Cyclic Analysis
An extrapolation procedure, which is described by Eq. 18 and Eq. 19, is performed for every
variable of all the devices, in each vertex of the mesh. Instead of densities, which can spatially
vary over the device by many orders of magnitude, the extrapolation procedure is applied to the
appropriate quasi-Fermi potentials.

For the trap equations, extrapolation can be applied either to the trap occupation probability 
(the default) or, optionally, to the ‘trap quasi-Fermi level,’ . The cyclic
steady state is supposedly reached if the following condition is satisfied:

(20)

Values of  are the same as ErrRef values of the Math section. For every object  of the
simulated system (that is, every variable of all devices), an averaged value  of the ratio  is
estimated and can be optionally printed. Estimation of  is performed only at such vertices
of the object, where the condition:

 (21)

is fulfilled, that is, the same condition as Eq. 20, but with a possibly different tolerance
.

The following extrapolation procedures are allowed: 

1. Use of averaged extrapolation factors for every object. This is the default option.

2. Use of the factor  independently for every mesh vertex of all objects. If for some reason,
the criterion in Eq. 21 is already reached, the value of factor  is replaced by the user-
defined parameter . The option is activated by the keyword -Average in the
Extrapolate statement inside the Cyclic specification.

3. The same as Step 2, but for the points where Eq. 21 is fulfilled, the value of factor  is
replaced by the averaged factor . The option is activated by the keyword -Average in
the Extrapolate statement inside the Cyclic specification, accompanied by the
specification of the parameter 

Using Cyclic Analysis

Cyclic analysis is activated by specifying the parameter Cyclic in the parameter list of the
Transient statement. Cyclic is a complex structure–like parameter and contains cyclic
options and parameters in parentheses:

Transient( InitialTime=0 FinalTime=2.e-7 InitialStep=2.e-14 MinStep=1.e-16
Cyclic( <cyclic-parameters> )

) { ... }

fT

ΦT 1 fT–( ) fT⁄( )ln–=

Δx
x xref+
----------------- εcyc<

xref o
rav

o r
rav

o

Δx
x xref+
-----------------

εcyc

f
---------<

ε1cyc εcyc f⁄=

r
r

rmin

r
rav

o

rmin 0.=
Sentaurus™ Device User Guide 95
N-2017.09



4: Performing Numeric Experiments 
Small-Signal AC Analysis
With sub-options to the optional parameter Extrapolate to the Cyclic keyword, details of
the cyclic extrapolation procedure are defined. Table 190 on page 1388 lists all options for
Cyclic.

An example of a Transient command with Cyclic specification is:

Transient( InitialTime=0 FinalTime=2.e-7 InitialStep=2.e-14 MinStep=1.e-16
Cyclic( Period=8.e-10 StartingPeriod=4

Accuracy=1.e-4 RelFactor=1
Extrapolate (Average Print MaxVal=50) )

) { ... }

NOTE The value of the parameter Period in the Cyclic statement must be
divisible by the period of the bias signal. A periodic bias signal must be
specified elsewhere in the command file.

Small-Signal AC Analysis

An ACCoupled solve section is an extension of a Coupled section with an extra set of
parameters allowing small-signal AC analysis. Table 187 on page 1385 describes these
parameters. In general, an ACCoupled is used in mixed mode. AC Simulation on page 1024
provides technical background information for the method.

AC Analysis in Mixed-Mode Simulations

AC analysis computes the frequency-dependent admittance matrix  between circuit nodes of
the specified electrical system. For a given excitation frequency , it describes the equivalent
small-signal model by:

(22)

where  and  are the vectors of (complex-valued) voltage and current excitations at
selected nodes, respectively. The admittance matrix can be represented as:

(23)

by the real-valued conductance matrix  and capacitance matrix .

Y
ν

δI YδV=

δV δI

Y A i2πν  C+=

A C
96 Sentaurus™ Device User Guide
N-2017.09



4: Performing Numeric Experiments
Small-Signal AC Analysis
Within an ACCoupled, you need to specify the frequencies of interest and the circuit nodes
considered in the admittance matrix. Furthermore, you may have to exclude some circuit
instances from the given electrical system to describe the proper AC system:

■ StartFrequency, EndFrequency, NumberOfPoints, Linear, and Decade: Select
the frequencies at which the AC analysis is performed.

■ Node: Specify the list of AC nodes considered in the admittance matrix. For admittance
matrix computations, a nonempty node list must be specified.

■ Exclude: Specify a list of system instances that should not be part of the AC system.

■ ACExtract: Specify an ACCoupled-specific file-name prefix for the extraction file,
where the admittance matrices will be stored. If not specified, the ACCoupled writes into
the global extraction file (given by ACExtract in File, which defaults to the extraction
file extraction_ac_des.plt). The extraction file contains the frequency, the voltages
at the nodes, and the entries of the matrices  (denoted by a) and  (denoted by c).

■ ACPlot: Invoke device plots containing AC response functions (solution variables and
current densities). Here, you specify a file-name prefix, which generates a corresponding
plot file for each AC node voltage excitation and frequency.

The Exclude list is used to remove a set of circuit or physical devices from the AC analysis.
Typically, the power supply is removed so as not to short-circuit the AC analysis, but the list
can also be used to isolate a single device from a whole circuit.

NOTE The system analyzed consists of the equations specified in the body of
the ACCoupled statement, without the instances removed by the
Exclude list. The Exclude list only specifies instances, therefore, all
equations of these instances are removed.

The ACCompute option controls AC or noise analysis performances within a
Quasistationary or Transient ramp. The parameters in ACCompute are identical to the
parameters in the Plot and Save commands (see Table 194 on page 1392), for example:

Quasistationary (...) {
ACCoupled (...

ACCompute (Time = (0; 0.01; 0.02; 0.03; 0.04; 0.05)
Time = (Range = (0.9 1.0) Intervals = 4)
Time = (Range = (0.1 0.2); Range = (0.7 0.8))
When (Node = in Voltage = 1.5))

{...}
}

In this example, an AC analysis is performed only for the time points:

t = 0, 0.01, 0.02, 0.03, 0.04, 0.05
t = 0.9, 0.925, 0.95, 0.975, 1.0

A C
Sentaurus™ Device User Guide 97
N-2017.09



4: Performing Numeric Experiments 
Small-Signal AC Analysis
and for all time points in the intervals [0.1, 0.2] and [0.7, 0.8]. Additionally, an AC analysis is
triggered whenever the voltage at the node in reaches the  threshold.

If the AC or noise analysis is suppressed by the ACCompute option, an ACCoupled command
behaves like an ordinary Coupled command.

The Quasistationary or Transient ramp that contains the ACCoupled also can contain
a CurrentPlot specification (see When to Write to the Current File on page 107) to select
the steps at which current output should occur. The CurrentPlot and an ACCompute
statement that the ACCoupled command may contain are completely independent.

Example

This example illustrates AC analysis of a simple device. A 1D resistor is connected to ground
(through resistor to_ground) and to a voltage source drive at reverse bias of  After
calculating the initial voltage point at  the left voltage is ramped to  in 
increments. The AC parameters between nodes left and right are calculated at frequencies

, , , and . The circuit element drive and to_ground are
excluded from the AC calculation.

By including circuits, complete Bode plots can be performed:

Device "Res" { ...
Electrode {{Name=anode Voltage=-3 resist=1}

{Name=cathode Voltage= 0 resist=1}
}
File {Grid = "resist.tdr"}
Physics {...}

}

System {
"Res" "1d" (anode="left" cathode="right")
Vsource_pset drive("left" "right"){dc = -3}
Resistor_pset to_ground ("right" 0){resistance=1}

}

Math {
Method=Blocked SubMethod=Super # 1D, 2D default solvers for Coupled
ACMethod=Blocked ACSubMethod=Super # 1D, 2D default solvers for AC analysis
NoAutomaticCircuitContact

}

Solve { ...
ACCoupled (

StartFrequency=1e3 EndFrequency=1e6 NumberOfPoints=4 Decade
Node("left" "right")
Exclude(drive to_ground)
ACMethod=Blocked ACSubMethod("1d")=ParDiSo

1.5 V

3 V.–
3 V,– 1 V 0.1 V

f 103 Hz= 104 Hz 105 Hz 106 Hz
98 Sentaurus™ Device User Guide
N-2017.09



4: Performing Numeric Experiments
Small-Signal AC Analysis
) { Poisson Electron Hole Contact Circuit }
Quasistationary ( ...

Goal{Parameter=drive.dc Value=1}
) {

ACCoupled(
StartFrequency=1e3 EndFrequency=1e6 NumberOfPoints=4 Decade
Node("left" "right")
Exclude(drive to_ground)
ACMethod=Blocked ACSubMethod("1d")=ParDiSo

) { Poisson Electron Hole Circuit Contact }
}

}

AC Analysis in Single-Device Mode

As previously described, AC analysis requires in general a mixed-mode simulation, that is, a
System section must be defined. For single-device simulations, a simple AC system is
constructed for you if you use ImplicitACSystem in the global Math section.

This implicit AC system is built internally and is essentially invisible to users. The implicit AC
system has the following properties:

■ For each voltage-controlled electrode of the device under test (DUT), an electrical circuit
node is constructed and connected to the device contact. For other contact types, no nodes
are constructed.

■ Each implicit node is connected with a system instance describing the stationary and
(possibly) transient voltage boundary conditions. Data provided for the device contacts is
transferred implicitly to the system instances.

In the case of an implicit AC system generation, the ACCoupled provides slightly different
default behavior:

■ Node: If no AC nodes are specified, all implicit system nodes are used as AC nodes.
Specified device contact names are interpreted implicitly as the corresponding node name.

■ Exclude: If no exclude instances are specified, all implicit system instances attached to
the AC nodes are excluded. Specified device contact names are interpreted as the
corresponding system instance name.

Additional remarks:

■ Goal statements in Quasistationary: Goal statements for the electrode-voltage values
for the device are interpreted as Goal statements for the implicit system instance connected
to the corresponding node of the electrode.

■ The implicit AC system is extracted before the Solve section is executed. Therefore, solve
statements that change the mode of the contact type are not supported.
Sentaurus™ Device User Guide 99
N-2017.09



4: Performing Numeric Experiments 
Small-Signal AC Analysis
Example

Math {
ImplicitACSystem * build implicit AC system

}

Electrode { ...
{ Name="c1" Voltage=1 Voltage=(1 at 0. , 2. at 1.e-8) ... }
{ Name="c2" Current=0. } * contact without implicit node connection

}

Solve { ...
Quasistat ( ...

Goal { Name= "c1" Voltage=2"} * contact goals are mapped onto instances
) { Coupled {...} }

* AC analysis: use all implicit AC nodes
ACCoupled ( StartFrequency=1.e6 EndFrequency=1.e9 NumberOfPoints=4 Decade

ACExtract="AC1" ) {...}
* AC analysis: use only one AC node
ACCoupled ( StartFrequency=1.e6 EndFrequency=1.e9 NumberOfPoints=4 Decade

Node ( "c1" )
ACExtract="AC2" ) {...}

}

Optical AC Analysis

Optical AC analysis calculates the quantum efficiency as a function of the frequency of the
optical signal. This technique is based on the AC analysis technique, and provides real and
imaginary parts of the quantum efficiency versus the frequency.

To start optical AC analysis, add the keyword Optical in an ACCoupled statement, for
example:

ACCoupled ( StartFrequency=1.e4 EndFrequency=1.e9
NumberOfPoints=31 Decade Node(a c)
Optical Exclude(v1 v2) )
{ poisson electron hole }

For more details, see Optical AC Analysis on page 661.
100 Sentaurus™ Device User Guide
N-2017.09



4: Performing Numeric Experiments
Harmonic Balance
Harmonic Balance

Harmonic balance (HB) analysis is a frequency domain method to solve periodic or quasi-
periodic, time-dependent problems. Compared to transient analysis (see Transient Command
on page 87), HB is computationally more efficient for problems with time constants that differ
by many orders of magnitude. Compared to AC analysis (see Small-Signal AC Analysis on
page 96), the periodic excitation is not restricted to infinitesimally small amplitudes. An
alternative to HB for the periodic case is cyclic analysis (see Large-Signal Cyclic Analysis on
page 93).

NOTE Harmonic balance is not supported for traps (see Chapter 17 on
page 449) or ferroelectrics (see Chapter 29 on page 797).

The time-dependent simulation problems take the form:

(24)

where  and  are nonlinear functions that describe the circuit and the devices,  is the vector
of solution variables, and  is a time-dependent excitation. 

Assuming  is quasi-periodic with respect to , the vector of the positive base
frequencies , and , the vector of nonnegative maximal numbers of
harmonics , the solution  is approximated by a truncated Fourier series:

(25)

where .

In Fourier space, Eq. 24 becomes:

(26)

where  is the frequency matrix, and  and  are the Fourier series of  and . The function
 depends nonlinearly on  and, therefore, solving Eq. 26 requires a nonlinear (Newton)

iteration. For more details on the numerics of harmonic balance, see Harmonic Balance
Analysis on page 1027.

Modes of Harmonic Balance Analysis

Sentaurus Device supports two different modes to perform harmonic balance simulations: the
MDFT mode and the SDFT mode.

td
d

q r u t r,( ),[ ] f r u t r,( ) w t r,( ),,[ ]+ 0=

f q u
w

w f f̂1 … f̂M, ,( )T
=

f̂m H H1 … HM, ,( )T=
Hm u

u t( ) U0 Uh iωht( )exp

H– h H≤ ≤
+=

ωh 2πh f̂⋅=

L U( ) := iΩQ U( ) F U( )+ 0=

Ω F Q f q
L U
Sentaurus™ Device User Guide 101
N-2017.09



4: Performing Numeric Experiments 
Harmonic Balance
MDFT Mode

The MDFT mode is suitable for multitone analysis and one-tone analysis, and is enabled by the
MDFT option in the HB section of the global Math section. It uses the multidimensional Fourier
transformation (MDFT) to switch between the frequency and time domain of the system.

This mode requires compact models defined by the compact model interface (CMI), which
support assembly routines in the frequency domain, that is, the CMI-HB-MDFT function set
as described in Compact Models User Guide, Analytical Description of CMI Models on
page 125.

Sentaurus Device provides a basic set of compact models that support this functional behavior
(see Compact Models User Guide, CMI Models With Frequency-Domain Assembly on
page 167). Standard SPICE models are not supported in this mode.

SDFT Mode

The SDFT mode supports only one-tone HB analysis. The mixed-mode circuit may contain
SPICE models and CMI models that do not provide the CMI-HB-MDFT functional set. It is
used if the MDFT mode is disabled.

Performing Harmonic Balance Analysis

Harmonic balance simulations are enabled through the keyword HBCoupled in the Solve
section. The syntax of HBCoupled is the same as for Coupled (see Coupled Command on
page 136). In addition, HBCoupled supports the options summarized in Table 193 on
page 1391.

NOTE Not all HBCoupled options are supported by both modes.

The Tone option is mandatory, as no default values are provided.

Specifying several Tone options in MDFT mode enables multitone analysis. The base
frequencies for the analysis can be given by explicit numeric constants or can refer to the
frequencies of time-dependent sources in the System section.

An example of a two-tone analysis is:

Math {
HB { MDFT } * enable MDFT mode
...

}
System {
102 Sentaurus™ Device User Guide
N-2017.09



4: Performing Numeric Experiments
Harmonic Balance
...
sd_hb_vsource2_pset "va" ( na 0 ) * two-tone voltage source

{ dc = 1.0 freq = 1.e9 mag = 5.e-3 phase = -90.
freq2 = 1.e3 mag2 = 1.e-3 phase2 = -90.}

HBPlot "hbplot" ( v(na) i(va na) ... ) * HB circuit output
}
Solve {

* solve the DC problem
...
Coupled { Poisson Electron Hole }

* solve the HB problem
HBCoupled ( * two-tone analysis

Tone ( Frequency = "va"."freq" NumberOfHarmonics = 5 )
Tone ( Frequency = "va"."freq2" NumberOfHarmonics = 1 )
Initialize = DCMode
Method = ILS
GMRES ( Tolerance = 1.e-2 MaxIterations = 30 Restart = 30 )

) { Poisson Electron Hole }
}

The base frequencies  and  in this example are taken from the time-dependent voltage
source va.

HBCoupled can be used as a top-level Solve statement, or within Plugin,
QuasiStationary.

NOTE If a QuasiStationary controls other Solve statements besides a
single HBCoupled, step reduction due to convergence problems works
correctly only when no HBCoupled in the failing step has converged
before the statement that caused the failure is run.

Solve Spectrum

The spectrum to be solved is determined by the specified tones. For different HBCoupled
statements, the number of tones and their number of harmonics are allowed to change (where
the -th tone is identified with the -th tone of the next spectrum, regardless of the value of
its frequency, that is, the order of tones is significant).

For some applications, you may be interested only in a few spectrum components or you may
want to reduce the computational burden in the Newton process. For such situations, you can
reduce the solve spectrum (only for the MDFT mode) by applying spectrum truncation. 

f̂1 f̂2

m m
Sentaurus™ Device User Guide 103
N-2017.09



4: Performing Numeric Experiments 
Harmonic Balance
This is performed by specifying a list of spectrum (multi-)indices by using SolveSpectrum
in the HB section of the global Math section, and referencing to this spectrum in the
HBCoupled statement, for example:

Math { ...
HB { ... SolveSpectrum ( Name = "sp1" ){ (0 0) (1 0) (0 1) (2 1) (2 -1) } }

}
Solve { ...

HBCoupled ( ... SolveSpectrum = "sp1" ) { ... }
}

where, for example, the multi-index (2 -1) corresponds to the intermodulation frequency
.

Convergence Parameters

The convergence behavior of HBCoupled can be analyzed and influenced independently of
specifications for the convergence of Coupled solve statements. Some parameters can be set
exclusively in the HB section of the global Math section (see Table 223 on page 1422), others
can be set exclusively in the HBCoupled statement (see Table 193 on page 1391), and some
can be set in both places.

CNormPrint is used to print the residuum, the update error, and the number of corrections (the
number of grid points where a correction of computed sample points is necessary) in each
Newton step for all solved equations of all instances. This information can be used to adjust the
numeric convergence parameters.

The Derivative flag in HBCoupled overwrites the Derivative flag of the Math section
and determines whether all derivatives are included in the HB Newton process.

With RhsScale and UpdateScale, you can scale the residuum and the update error of
individual equations, respectively, which are used as Newton convergence criteria. This is often
necessary for the electron and hole continuity equations, and the values differ for different
applications and devices.

The parameters ValueMin and ValueVariation are used for positive solution variables to
specify the allowed minimum value in the time domain, and the corresponding ratio of
maximum and minimum values, respectively. The number of corrections (given by
CNormPrint) indicates how many grid points violate the specified bounds.

2 f̂1 1 f̂2–
104 Sentaurus™ Device User Guide
N-2017.09



4: Performing Numeric Experiments
Harmonic Balance
Harmonic Balance Analysis Output

All frequency-domain output data refers to the one-sided Fourier series representation for real-
valued quantities, that is, it refers to  of:

(27)

where the sum is taken over all multi-indices , which results in a positive frequency
.

Device Instance Currents, Voltages, Temperatures, and Heat 
Components

Each converged HBCoupled plots the results (contact currents and voltages, temperatures, and
heat components) both in the time domain and frequency domain into a separate file. The
names of the files for the time domain contain a component Tdom; those for the frequency
domain contain a component Hdom.

Circuit Currents and Voltages

Additionally, the keyword HBPlot in the System section allows you to plot circuit quantities.
The syntax of HBPlot is identical to that of Plot in the System section (see System Plot on
page 61). In MDFT mode, each converged HBCoupled plots its results in a Tdom and an Hdom
file as for device instances, while in SDFT mode, it will write four files containing all Fourier
coefficients (files with the name component Fdomain), the time domain data (Tdomain), the
harmonic magnitude (Hmag), and the harmonic phase (Hphase).

Solution Variables

Plotting solution variables is only supported for one-tone HB simulations. This is implicitly
done if the HB section in the Math section is present. Sentaurus Device will plot the coefficients

 of Eq. 27 as a real-valued vector with components , , and
 (for ), with names composed of a prefix HB, a suffix _C<i> with

component <i>, and the names of the solution variables. Additionally, the magnitude and
phase of  (for ) are plotted, with the prefixes Mag and Phase to the variable names
and suffixes _C<h>.

Ũh

u t( ) Ũ0 Re Ũh iωht( )exp( )

h K
+∈

+=

Ũ0 Re Ũh( ) ωht( )cos Im Ũh( ) ωht( )sin–
 
 
 

h K
+∈

+=

h
ωh h ω̂⋅=

Ũi U0 Ũ0= U2h 1– Re Ũh( )=
U2h Im Ũh( )= 1 h≤ 3≤

Ũh 0 h≤ 3≤
Sentaurus™ Device User Guide 105
N-2017.09



4: Performing Numeric Experiments 
References
Application Notes

Note that:

■ Convergence: Typically, the nonlinear convergence improves with an increasing number of
harmonics  for one-tone HB simulations.

■ Linear solvers: Benefiting both memory requirements and simulation time, you can use the
iterative linear solver GMRES for most simulations. Only for very small problems, in terms
of grid size and number of harmonics, will the direct solver method be sufficient.

References

[1] For information about Perl regular expression syntax, go to http://www.boost.org/doc/
libs/1_55_0/libs/regex/doc/html/boost_regex/syntax/perl_syntax.html.

[2] R. J. G. Goossens et al., “An Automatic Biasing Scheme for Tracing Arbitrarily Shaped
I-V Curves,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 13, no. 3, pp. 310–317, 1994.

[3] K. S. Kundert, J. K. White, and A. Sangiovanni-Vincentelli, Steady-State Methods for
Simulating Analog and Microwave Circuits, Boston: Kluwer Academic Publishers,
1990.

[4] Y. Takahashi, K. Kunihiro, and Y. Ohno, “Two-Dimensional Cyclic Bias Device
Simulator and Its Application to GaAs HJFET Pulse Pattern Effect Analysis,” IEICE
Transactions on Electronics, vol. E82-C, no. 6, pp. 917–923, 1999.

H

106 Sentaurus™ Device User Guide
N-2017.09

http://www.boost.org/doc/libs/1_55_0/libs/regex/doc/html/boost_regex/syntax/perl_syntax.html
http://www.boost.org/doc/libs/1_55_0/libs/regex/doc/html/boost_regex/syntax/perl_syntax.html


CHAPTER 5 Simulation Results

This chapter describes the output of Sentaurus Device, which
contains the simulation results.

Sentaurus Device provides several forms of output. Most importantly, the current file contains
the terminal characteristics obtained during the numeric experiment. Plot files allow you to
visualize device internal quantities, and thereby provide information not available in real
experiments. Other output, such as the log file, allows you to investigate the simulation
procedure itself and provides an important tool to understand and resolve problems with the
simulation itself. 

This chapter only describes the most important output that Sentaurus Device provides. Many
more specific output files exist. They are described in context in other parts of the user guide.

Current File

When to Write to the Current File

By default, currents are output after each iteration in a Plugin, Quasistationary, or
Transient command. This behavior can be modified by a CurrentPlot statement in the
body of these commands. The CurrentPlot statement in the Solve section provides full
control over the plotting of device currents and circuit currents. If a CurrentPlot statement
is present, it determines exactly which points are written to the current file. Sentaurus Device
can still perform computations for intermediate points, but they are not written to the file.

NOTE Do not confuse the CurrentPlot statement in the Solve section with
the CurrentPlot section as described in Tracking Additional Data in
the Current File on page 110.

The syntax of the CurrentPlot statement is:

CurrentPlot (<parameters-opt>) {<system-opt>}
Sentaurus™ Device User Guide 107
N-2017.09



5: Simulation Results 
Current File
Both <parameters-opt> and <system-opt> are optional and can be omitted.
<parameters-opt> is a space-separated list, which can consist of the following entries:

Time = (<entry> ; <entry> ; <entry> ;) 

The list of time entries enumerates the times for which a current plot is requested. The
entries are separated by semicolons. A time entry can have these forms:

floating point number 
The time value for which a current plot is requested.

Range = (a b) 
This option specifies a free plot range between a and b. All the time points in this range
are plotted.

Range = (a b) Intervals = n 
This option specifies n intervals in the range between a and b. In other words, these plot
points are generated:

(28)

Iterations = (<integer>; <integer>; <integer>;) 

The list of integers specifies the iterations for which a plot is required. This option is
available for the Plugin command.

IterationStep = <integer> 

This option requests a current plot every n iterations. It is available for the Plugin
command.

When (<when condition>) 

A When option can be used to request a current plot whenever a condition has been met.
This option works in the same way as in a Plot or Save command (see Table 194 on
page 1392).

<system-opt> is a space-separated list of devices. If <system-opt> is not present,
Sentaurus Device plots all device currents and the circuit (in mixed-mode simulations). If
<system-opt> is present, only the currents of the given devices are plotted. The keyword
Circuit can be used to request a circuit plot.

t a t, a
b a–

n
------------ … t, ,+ b

b a–
n

------------– t, b= = = =
108 Sentaurus™ Device User Guide
N-2017.09



5: Simulation Results
Current File
Example: CurrentPlot Statements

A CurrentPlot statement by itself creates a current plot for each iteration:

Quasistationary (InitialStep=0.2 MinStep=0.2 MaxStep=0.2
Goal { Name="drain" Voltage=0.5 })

{ Coupled { Poisson Electron Hole }
CurrentPlot }

If no current plots are required, a current plot for the ‘impossible’ time  can be
specified:

Quasistationary (InitialStep=0.2 MinStep=0.2 MaxStep=0.2
Goal { Name ="drain" Voltage=0.5 })

{ Coupled { Poisson Electron Hole }
CurrentPlot ( Time = (-1)) }

In this example, the currents of the device nmos are plotted for , , and

Transient ( MaxStep=1e-8 InitialTime=0 FinalTime=1e-6 )
{ Coupled { Poisson Circuit }
CurrentPlot ( Time = (0 ; 1e-8; 1e-7)) { nmos } }

This CurrentPlot statement produces 11 equidistant plot points in the interval 0, :

Transient ( MaxStep = 1e-8 InitialTime=0 FinalTime=1e-5 )
{ Coupled { Poisson Circuit }
CurrentPlot ( Time = (range = (0 1e-5) intervals = 10)) }

In this example, a current plot for iteration 1, 2, 3, and for every tenth iteration is specified:

Plugin { Poisson Electron Hole
CurrentPlot ( Iterations = (1; 2; 3) IterationStep = 10 ) }

A CurrentPlot statement can also appear at the top level in the Solve section. In this case,
the currents are plotted when the flow of control reaches the statement.

A CurrentPlot statement is also recognized within a Continuation command. In this
case, the time in the CurrentPlot statement corresponds to the arc length in the
Continuation command. However, only free plot ranges are supported.

t 1–=

t 0= t 10 8–=
t 10 7– :=

10 5–
Sentaurus™ Device User Guide 109
N-2017.09



5: Simulation Results 
Current File
NewCurrentPrefix Statement

By default, Sentaurus Device saves all current plots in one file (as defined by the variable
Current in the File section). This behavior can be modified by the NewCurrentPrefix
statement in the Solve section:

NewCurrentPrefix = prefix 

This statement appends the given prefix to the default, current file name, and all subsequent
Plot statements are directed to the new file. Multiple NewCurrentPrefix statements can
appear in the Solve section, for example:

Solve {
Circuit
Poisson
NewCurrentPrefix = "pre1"
Coupled {Poisson Electron Hole Contact Circuit}
NewCurrentPrefix = "pre2"
Transient (

MaxStep= 2.5e-6 InitialStep=1.0e-6
InitialTime=0.0 FinalTime=0.0001
Plot {range=(10e-6,40e-6) Intervals=10}

)
{Coupled {Poisson Electron Hole Contact Circuit}}

}

In this example, the current files specified in the File and System sections contain the results
of the Circuit and Poisson solves. The results of the Coupled solution are saved in a new
current file with the same name but prefixed with pre1. The last current file contains the
results of the Transient solve with the prefix pre2.

NOTE The file names for current plots defined in the System section, and the
plot files of AC analyses are also modified by a NewCurrentPrefix
statement.

Tracking Additional Data in the Current File

The CurrentPlot section on the top level of the command file is used to include selected
parameter values and mesh data into the current plot file (.plt). Sentaurus Device provides the
following options:

■ You can list the desired quantities directly in the CurrentPlot section (see CurrentPlot
Section on page 111).

■ You can use a current plot PMI (see Current Plot File of Sentaurus Device on page 1239).
110 Sentaurus™ Device User Guide
N-2017.09



5: Simulation Results
Current File
■ You can use a Tcl formula (see Tcl Formulas on page 115).

■ You can use the current plot Tcl interface, which represents an alternative to the current plot
PMI (see Current Plot File on page 1317).

CurrentPlot Section

Sentaurus Device can add the scalar data listed in Appendix F on page 1339 to the current plot
file.

Data can be plotted according to coordinates. A coordinate is given as one to three (depending
on device dimensions) numbers in parentheses. When plotting according to coordinates, the
plotted values are interpolated as required. 

Furthermore, it is possible to output averages, integrals, maximum, and minimum of quantities
over specified domains. To do this, specify the keyword Average, Integrate, Maximum, or
Minimum, respectively, followed by the specification of the domain in parentheses. A domain
specification consists of any number of the following:

■ Region specification: Region=<regionname> 

■ Material specification: Material=<materialname> 

■ Region interface specification: RegionInterface=<regioninterfacename> 

■ Material interface specification: MaterialInterface=<materialinterfacename> 

■ Any of the keywords Semiconductor, Insulator, and Everywhere, which match all
semiconductor regions, all insulator regions, or the entire device, respectively

■ Window specification: Window[(x1 y1 z1) (x2 y2 z2)] 

■ Well specification: DopingWell(x1 y1 z1) (for the definition of the doping well
boundary, see Initial Guess for Electrostatic Potential and Quasi-Fermi Potentials in
Doping Wells on page 178)

The average, integral, maximum, and minimum are applied to all of the specified parts of the
device. Multiple specifications of the same part of the device are insignificant. In addition,
Name=<plotname> is used to specify a name under which the average, integral, maximum,
and minimum are written to the .plt file. (By default, the name is automatically obtained from
a concatenation of the names in the domain specification, which yields impractically long
names for complicated specifications.)

For maximum and minimum, Sentaurus Device can write coordinates where the maximum and
minimum occur to the .plt file.
Sentaurus™ Device User Guide 111
N-2017.09



5: Simulation Results 
Current File
In the case of average and integral, Sentaurus Device can write the coordinates ( )
of the centroid of a data field  defined:

(29)

where the integration covers the specified domain. The values of  and  are defined
similarly. Output of coordinates is activated by adding the keyword Coordinates in the
parentheses where the domain is specified.

The average, integral, maximum, and minimum can be confined to a window by using the
window specification. A one-dimensional, 2D, or 3D window is defined by the coordinates (in
micrometers) of two opposite corners of the window. In addition, it is possible to confine the
domain in a well using the well specification. In this case, the well is defined by the coordinates
of a point inside the well. When a list of domains is specified in addition to the window or well,
the domains are neglected if the window or well is a valid one.

The length unit for integration and the number of digits used for names in the current plot file
can be specified in the Math section (see CurrentPlot Options on page 114 for details).

Parameters from the parameter file of Sentaurus Device can also be added to the current plot
file. The general specification looks like:

[ Material = <material> | MaterialInterface = <interface> |
Region = <region> | RegionInterface = <interface> ]

Model = <model> Parameter = <parameter>

Specifying the location (material, material interface, region, or region interface) is optional.
However, the model name and parameter name must always be present.

NOTE The order of specification is fixed. An optional location specification
(material, material interface, region, or region interface) must be
followed by a model name and a parameter name. Otherwise, Sentaurus
Device will report a syntax error.

Ramping Physical Parameter Values on page 78 describes how model names and parameter
names can be determined.

Finally, Sentaurus Device also provides a current plot PMI (see Current Plot File of Sentaurus
Device on page 1239).

NOTE Do not confuse the CurrentPlot section with the CurrentPlot
statement in the Solve section introduced in When to Write to the
Current File on page 107.

x  y  z , ,
f

x 
xf x y z, ,( ) Vd
f x y z, ,( ) Vd

---------------------------------=

y  z 
112 Sentaurus™ Device User Guide
N-2017.09



5: Simulation Results
Current File
Example: Mixed Mode

In mixed-mode simulations, the CurrentPlot section can appear in the body of a physical
device within the System section (it is also possible to have a global CurrentPlot section),
for example:

System {
Set (gnd = 0)
CAP Cm (Top=node2 Bot=gnd) { CurrentPlot { Potential ((0.7, 0.8, 0.9)) } }
...

}

Example: Advanced Options

This example is a 2D device that uses the more advanced CurrentPlot features:

CurrentPlot {
hDensity((0 1)) * hole density at position (0um, 1um)
ElectricField/Vector((0 1)) * Electric Field Vector
Potential (

(0.1 -0.2) * coordinates need not be integers
Average(Region="Channel") * average over a region
Average(Everywhere)        * average over entire device
Maximum(Material="Oxide") * Maximum in a material
Maximum(Semiconductor)     * in all semiconductors
* minimum in a material and a region, output under the name "x":
Minimum(Name="x" Material="Oxide" Region="Channel")

)
eDensity(

* average and coordinates of centroid
Average(Semiconductor Coordinates) 
* maximum and coordinates of maximum in well
Maximum(DopingWell(-0.1 0.3) Coordinates)
* integral over the semiconductor regions
Integrate(Semiconductor)

)
SpaceCharge(

* maximum over 2D window
Maximum(Window[(-0.2 0) (0.2 0.2)]) 
* integral over well
Integrate( DopingWell(-0.1 0.3) )

)
}

Sentaurus™ Device User Guide 113
N-2017.09



5: Simulation Results 
Current File
Example: Plotting Parameter Values

The following example adds five curves to the current plot file:

CurrentPlot {
Model = DeviceTemperature Parameter = "Temperature"
Material = Silicon Model = Epsilon Parameter = epsilon
MaterialInterface = "AlGaAs/InGaAs"

Model = "SurfaceRecombination" Parameter = "S0_e"
Region = "bulk" Model = LatticeHeatCapacity Parameter = cv
RegionInterface = "Region.0/Region.1"

Model = "SurfaceRecombination" Parameter = "S0_h"
}

This example also shows the fixed order of specification. An optional location (material,
material interface, region, or region interface) is followed by a model name and a parameter
name. Therefore this example adds the following five parameter values to the current plot file:

1. Global device temperature

2. Dielectric constant  in silicon

3. Surface recombination parameter  for electrons on AlGaAS–InGaAs material interfaces

4. Lattice heat parameter cv for region ‘bulk’

5. Surface recombination parameter  for holes on the region interface Region.0–Region.1

CurrentPlot Options

The length unit used during a current plot integration (see Tracking Additional Data in the
Current File on page 110) can be selected as follows:

Math {
CurrentPlot (IntegrationUnit = um)

}

The possible choices are cm (centimeters) and um (micrometers). The default is
IntegrationUnit=um. This option is useful when quantities such as densities (unit of )
are integrated. In a 2D simulation, the unit of the integral is either 
(IntegrationUnit=um) or  (IntegrationUnit=cm).

The number of digits in the names of quantities in the current plot file can be specified as
follows:

Math {
CurrentPlot (Digits = 6)

}

ε

s0

s0

cm 3–

μm2cm 3–

cm 1–
114 Sentaurus™ Device User Guide
N-2017.09



5: Simulation Results
Current File
The default is Digits=6.

This option is useful when the names of two quantities become equal due to rounding. In the
following example, you want to monitor the valence band energy in two points:

CurrentPlot {
ValenceBandEnergy ((5.0, 199.011111) (5.0, 199.011112))

}

However, with the default setting of Digits=6, both quantities are assigned the same name
due to rounding:

Pos(5,199.011) ValenceBandEnergy

By increasing the number of digits, the names in the current plot file become distinct.

Specifying Digits affects the names of the following quantities in the current plot file:

■ Coordinates

■ Well specification

■ Window specification

Tcl Formulas

Sentaurus Device can evaluate Tcl formulas and add the results to the current plot file. The Tcl
interpreter has access to the data listed in Appendix F on page 1339, and you can provide Tcl
commands to compute derived quantities. For example, it is possible to compute the electron
conductivity  given by:

(30)

The following operations can be performed with a Tcl formula:

■ Evaluation at a given vertex

■ Evaluation at a location specified by its coordinates

■ Compute the minimum/maximum/average/integral over a domain

■ Plot output to a PMI user field

In the case of a minimum/maximum/average/integral operation or plot operation, the domain
of the evaluation can be restricted as follows:

■ Region

■ Material

■ Region interface

σn

σn qnμn=
Sentaurus™ Device User Guide 115
N-2017.09



5: Simulation Results 
Current File
■ Material interface

■ Contact

■ Semiconductor, insulator, or metal regions

■ Entire device

■ Doping well

■ Window

In the case of a minimum/maximum/average/integral operation, the location of the minimum
or maximum, or the centroid of the average or integral operation (see Eq. 29) also will be added
to the current plot file.

The following example shows how to compute the average electron conductivity  in the
channel region:

CurrentPlot {
Tcl (

Dataset   = "Ave_channel eConductivity"
Function = "Conductivity"
Formula   = "set q 1.602e-19

set n [tcl_cp_ReadScalar eDensity]
set mu [tcl_cp_ReadScalar eMobility]
set value [expr $q * $n * $mu]"

Operation = "Average Region = channel"
)

}

The Tcl statement supports the following options:

CurrentPlot {
Tcl (

Dataset = "..."
Function = "..."
Unit = "..."
Init = "..."
Formula = "..."
Finish = "..."
Operation = "..."

)
}

Dataset

Use this option to specify the dataset name that appears in the header section of the current plot
file. If this option is not specified, Sentaurus Device generates the name
Tcl_Dataset_<index> where <index> is a unique integer.

σn
116 Sentaurus™ Device User Guide
N-2017.09



5: Simulation Results
Current File
Example:

Dataset = "channel eConductivity"

Function

This is the function name that appears in the header section of the current plot file. If
Function is not specified, Sentaurus Device generates the name Tcl_Function_<index>
where <index> is a unique integer.

Example:

Function = "Conductivity"

Unit

This is the unit of the current plot quantity. Currently, the .plt file format does not support
units. However, a future file format may add this support.

Example:

Unit = "cm/s"

Init

The Tcl code in this option is executed first for each plot time point. It can be used to initialize
quantities that will be referenced in Formula.

Example:

Init = "set counter 0"

Formula

The Tcl code in this option is executed on individual mesh vertices. It must evaluate a formula
and assign the result to the Tcl variable value.

The following Tcl functions and variables are available:

■ tcl_cp_dim: The dimension of the mesh. Possible values are 1, 2, or 3.

■ tcl_cp_vertex: The mesh index of the current vertex.

■ tcl_cp_ContactOuterVoltage: This Tcl function returns the value of the contact
voltage for the local contact vertex (the evaluation domain must be contact).
Sentaurus™ Device User Guide 117
N-2017.09



5: Simulation Results 
Current File
■ tcl_cp_ContactInnerVoltage: This Tcl function returns the value of the contact
inner voltage for the local contact vertex (the evaluation domain must be contact).

■ proc tcl_cp_ReadScalar {dataname}: This Tcl function returns the value of a
scalar data field for the local vertex. Valid data names can be found in Appendix F on
page 1339.

■ proc tcl_cp_ReadVector {dataname index}: This Tcl function returns a
component of a vector data field for the local vertex.

The parameter index must satisfy 0 <= $index < $tcl_cp_dim. Valid data names can
be found in Appendix F on page 1339.

■ proc tcl_cp_WriteScalar {dataname value}: This Tcl function defines the value
of a scalar field for the local vertex. This is a side effect of the Tcl current plot statement,
and it is typically used to compute the values of a PMI user field.
Alternatively, you can use the Plot operation (see Operation on page 118).

Example:

Formula = "incr counter
set value [tcl_cp_ReadScalar ElectrostaticPotential]"

Finish

The Tcl code in this option is executed last for each plot time point. It can be used for
postprocessing purposes. It has access to the Tcl list result, which contains the final current
plot value.

Example:

Finish = "puts \"Used $counter calls\""

Operation

This option determines how the current plot formula is evaluated. The recognized operations
are:

■ Node = <integer>: Evaluate formula at specified node.

■ Coordinate = (...): Evaluate formula at specified coordinates.

■ Minimum: Compute minimum over specified domain.

■ Maximum: Compute maximum over specified domain.

■ Average: Compute average over specified domain.

■ Integrate: Compute integral over specified domain.

■ Plot = <name>: Output formula to PMI user field.
118 Sentaurus™ Device User Guide
N-2017.09



5: Simulation Results
Current File
Only one of the above operations must be specified.

To obtain the value of the current plot formula at specified coordinates, Sentaurus Device
evaluates the formula at nearby vertices and interpolates these values. The required
interpolation scheme can be selected as follows:

■ Interpolation = <method>: Specify interpolation scheme.

The available interpolation schemes are: Arsinh, Linear (default), Logarithmic.

A scaling factor for arsinh interpolation also can be specified:

■ ArsinhFactor = <value>: Specify arsinh scaling factor. The default is 1.

The length unit when computing an integral can be selected as follows:

■ IntegrationUnit = <unit>: Specify integration unit.

The possible choices are cm (centimeter) and um (micrometer). The default is
IntegrationUnit=um. This option is useful when quantities such as densities (unit of

) are integrated. In a 2D simulation, the unit of the integral is either 
(IntegrationUnit=um) or  (IntegrationUnit=cm).

In the case of a minimum/maximum/average/integral operation or plot operation, the required
domain also can be specified as follows:

■ Region = <regionname>: Region domain.

■ Material = <materialname>: Material domain.

■ RegionInterface = <region1/region2>: Region interface domain.

■ MaterialInterface = <material1/material2>: Material interface domain.

■ Contact = <contactname>: Contact domain (for minimum, maximum, average, or
integral operation only).

■ Semiconductor: Use all semiconductor regions as domain.

■ Insulator: Use all insulator regions as domain.

■ Conductor: Use all metal regions as domain.

■ Everywhere: Use entire device as domain (default).

■ DopingWell = (...): Doping well domain.

■ Window = [(...) (...)]: Window domain.

If multiple domains are specified, Sentaurus Device will only evaluate the current plot formula
where the domains intersect. For example, it is possible to specify:

Operation = "Average Region=drain DopingWell=(1 2)"

In this case, the formula is only evaluated for those vertices in the drain region that also lie
within the specified doping well.

cm 3– μm2cm 3–

cm 1–
Sentaurus™ Device User Guide 119
N-2017.09



5: Simulation Results 
Current File
Region interface, material interface, and contact specifications cannot be combined with other
domains.

Example:

Operation = "Average Window=[(1 2) (3 4)]"

For the contact specification, when the contact is connected to multiple regions, you have the
option to select a subset of the contact vertices involved in the operation (the intersection
between the contact and a selected region). The selected region is specified by the
RegionName keyword. For example, to integrate a formula over the intersection of contact
anode and region r1, specify:

Operation = "Integrate Contact=\"anode\" RegionName=\"r1\""

Examples

Evaluate the electrostatic potential  at ( , ):

CurrentPlot {
Tcl (

Formula   = "set value [tcl_cp_ReadScalar ElectrostaticPotential]"
Operation = "Coordinate = (7.2 2.1)"
Dataset   = "7.2_2.1 ElectrostaticPotential"
Function = "ElectrostaticPotential"

)
}

Save the electron conductivity  in semiconductor (see Eq. 30, p. 115) as a PMI user
field:

CurrentPlot {
Tcl (

Formula   = "set q 1.602e-19
set n [tcl_cp_ReadScalar eDensity]
set mu [tcl_cp_ReadScalar eMobility]
set value [expr $q * $n * $mu]"

Unit      = "Ohm^-1*cm^-1"
Operation = "Plot = PMIUserField5 Semiconductor"

)
}

Plot the integral of the space charge  in the window [( , ) ( , )]:

CurrentPlot {
Tcl (

Formula   = "set value [tcl_cp_ReadScalar SpaceCharge]
Operation = "Integrate Window = [(0 6) (2.5 7)] IntegrationUnit = cm"

φ 7.2 μm 2.1 μm

σn qnμn=

ρ 0 μm 6 μm 2.5 μm 7 μm
120 Sentaurus™ Device User Guide
N-2017.09



5: Simulation Results
Current File
Dataset   = "Integral_Window SpaceCharge"
Function = "SpaceCharge"

)
}

Compute the integral of the electron Joule heat  in semiconductor regions:

CurrentPlot {
Tcl (

Formula   = "set value 0
for {set d 0} {$d < $tcl_cp_dim} {incr d} {

set j [tcl_cp_ReadVector eCurrentDensity $d]
set f [tcl_cp_ReadVector ElectricField $d]
set value [expr $value + $j * $f]

}"
Operation = "Integrate Semiconductor IntegrationUnit = cm"
Dataset   = "Integral_Semiconductor eJouleHeat"
Function = "JouleHeat"

)
}

Compute the distributed conductance of the contact anode:

CurrentPlot {
Tcl (

Formula = "set value 0
set Vext [tcl_cp_ContactOuterVoltage \"anode\"]
set QF [tcl_cp_ReadScalar \"QuasiFermiPotential\"]
for {set d 0} {$d < $tcl_cp_dim} {incr d} {

set j [tcl_cp_ReadVector eCurrentDensity $d]
set N [tcl_cp_ReadVector ContactSurfaceNormal $d]
set value [expr $value + $j * $N]

}
set value [expr $value / ($Vext - $QF + 0.0001)]"

Operation = "Integrate Contact=\"top1\" RegionName=\"r2\"
IntegrationUnit = cm"

Dataset   = "Conductance"
Function = "Conductance"

)
}

JnE
Sentaurus™ Device User Guide 121
N-2017.09



5: Simulation Results 
Device Plots
Device Plots

Device plots show spatial-dependent datasets in the device and provide a view of the inside of
the device.

What to Plot

The Plot section specifies the data that is saved at the end of or, optionally, during the
simulation to the Plot file specified in the File section or by the Plot command in the Solve
section. Consecutive plots can be collected in a single file, or written to separate enumerated
files, or written to a single file by overwriting the previous plot. To collect consecutive plots in
a single file, specify Plot(collected)=<filename> in the File section. The keywords
Overwrite and noOverwrite, specified as options in the Plot command in the Solve
section (see When to Plot on page 123), control whether plots are written to separate files or to
a single file.

NOTE You can control further compression, beyond a basic standard
compression of Plot files, by specifying CompressTDR in the Math
section. However, further compression might not always lead to a
significantly reduced file size and, depending on the content of the file,
it might lead to a slightly increased file size.

NOTE Specifying CompressTDR in the Math section applies to all types of
plot commands that generate files containing spatial-dependent
datasets.

Vector data can be plotted by appending /Vector to the corresponding keyword, for example:

Plot {
ElectricField/Vector

}

Element-based scalar data can be plotted by appending /Element to the corresponding
keyword, for example:

Plot {
eMobility/Element

}

Some quantities (such as the carrier densities) are put into the Plot file even when they are not
listed in the Plot section. The keyword PlotExplicit in the global Math section suppresses
this behavior.
122 Sentaurus™ Device User Guide
N-2017.09



5: Simulation Results
Device Plots
By default, the plot file also contains additional information required by Load to restart a
simulation (see Save and Load on page 157). To suppress writing this additional information,
specify -PlotLoadable in the global Math section.

You can specify the keyword DatasetsFromGrid to copy quantities from the TDR grid file
directly to the plot file. You can copy all datasets by specifying DatasetsFromGrid by itself:

Plot {
DatasetsFromGrid

}

Alternatively, you can copy selected quantities by listing their names:

Plot {
DatasetsFromGrid (dataset1 dataset2 dataset3)

}

A dataset is only copied from the TDR grid file if it is not computed by Sentaurus Device.
Otherwise, the dataset computed by Sentaurus Device takes precedence.

NOTE The keyword DatasetsFromGrid only copies entire datasets from the
TDR grid file to the plot file. You cannot copy partial datasets, for
example, the components of tensor and vector datasets.

See Table 328 on page 1495 for all possible plot options.

When to Plot

The simplest way to create a device plot is to define Plot in the File section. By default, the
output to the Plot file will occur at the end of the simulation only.

The commands for Quasistationary and Transient analysis support an option Plot that
allows you to write plots while these commands are executing. The plot file name is derived
from the one specified with Plot in the File section. See Saving and Plotting During a
Quasistationary on page 81 and Transient Command on page 87 for the syntax.

The most flexible way to create device plots is through the Plot statement in the Solve
section. It provides full control of when to plot and limited control of the file names. The Plot
statement can be used at any level of the Solve section. The command takes the form:

Plot (<parameters-opt>) <system-opt>

If <system-opt> is not specified, all physical devices and circuits are plotted. Use
<system-opt> to specify an optional list of devices delimited by braces (see Table 186 on
page 1384).
Sentaurus™ Device User Guide 123
N-2017.09



5: Simulation Results 
Device Plots
If <parameters-opt> is omitted, defaults are used. The keywords Loadable and
Explicit provide plot-specific overrides for PlotLoadable and PlotExplicit in the
global Math section (see What to Plot on page 122). For a summary of all options, see
Table 194 on page 1392.

Example

Solve {
Plugin {

Poisson
Plot ( FilePrefix = "output/poisson")
Coupled { Poisson Electron Hole }
Plot (FilePrefix = "output/electric" noOverwrite)

}
Transient {

Coupled { Poisson Electron Hole Temperature }
Plot ( FilePrefix = "output/trans"

Time = ( range = (0 1) ;
range = (0 1) intervals = 4 ; 0.7 ; 
range = (1.e-3 1.e-1) intervals = 2 decade )
NoOverwrite )

}
...

}

The first Plot statement in Plugin writes (after the computation of the Poisson equation) to a
file named output/poisson_des.tdr. The second Plot statement in Plugin writes to a
file called output/electric_0000_des.tdr and increases the internal number for each
call.

The Plot statement in the transient specifies three different types of time entries (separated by
semicolons). The first entry indicates all the times within this range when a plot file must be
written. The second time entry forces the transient simulation to compute solutions for the
given times. In this example, the given times are 0.25, 0.5, 0.75, and 1.0. The third entry is for
the single time of 0.7. The fourth entry triggers the plotting at time points given by subdividing
the range on the logarithmic scale, resulting for this example in plots at 1.e-3, 1.e-2, and 1.e-1.

Snapshots

Sentaurus Device offers the possibility to save snapshots interactively during a simulation. This
can be undertaken by sending a POSIX signal to the Sentaurus Device process. Depending on
whether Plot or Save or both is specified in the File section, the signal invokes a request to
write a plot (.tdr) file or a save (.sav) file after the actual time step is finished.
124 Sentaurus™ Device User Guide
N-2017.09



5: Simulation Results
Device Plots
The following signals are supported to save snapshots:

■ USR1: The occurrence of the USR1 signal initiates Sentaurus Device to write a plot file or
a save file after the simulation has finished its actual time step. The simulation will continue
afterwards.

■ INT: By default, sending the INT signal causes a process to exit. This behaviour changes
if Interrupt=BreakRequest or Interrupt=PlotRequest is specified in the Math
section (see Table 211 on page 1403). In both cases, the occurrence of the INT signal
initiates Sentaurus Device to write a plot file or a save file. Interrupt=BreakRequest
causes Sentaurus Device to abort the actual solve statement after the snapshot is saved. If
Interrupt=PlotRequest is specified, the simulation continues.

A signal can be sent to a process by invoking the kill command (see the corresponding man
page of your operating system). The process ID can be extracted from the .log file.

Interface Plots

Data fields defined on interfaces can be plotted by using the modifier /RegionInterface:

Plot {
HotElectronInj/RegionInterface

}

The following fields are available for interface plots:

SurfaceRecombination
HotElectronInj
HotHoleInj

NOTE These fields can also be plotted on regions by omitting the qualifier 
/RegionInterface. However, they are zero inside bulk regions, and
nonzero values are only produced for vertices along interfaces.

Interface plots are only generated if interface regions appear in the grid file. For TDR files, the
following command is available:

snmesh -u -AI input.tdr
Sentaurus™ Device User Guide 125
N-2017.09



5: Simulation Results 
Log File
Log File

The name of the log file is specified by Output in the File section. The log file contains a
copy of the messages that Sentaurus Device prints while a simulation runs. The log file
contains a variety of information, including:

■ Technical information such as the version of Sentaurus Device that is running, the machine
where it is running, and the process ID.

■ Confirmation as to which structure is simulated, which physical models have been selected,
and which parameters are used.

■ Detailed information about how the simulation proceeds, including timing and
convergence information.

■ Warning messages.

The log file is of minor interest as long as your simulations are set up well, and no convergence
problems occur. It is an indispensable diagnostic tool during simulation setup, or when
convergence problems occur.

A log file annotated with XML tags can be generated by specifying the --xml command-line
option. This file contains the same information as the regular log file, but features additional
XML tags to organize its content. The XML log file uses the same file name as the regular log
file, but with the  extension .xml instead of .log.

The XML log file is best displayed with the TCAD Logfile Browser. For more information, see
Utilities User Guide, Chapter 2 on page 5.

Extraction File

Sentaurus Device supports a special-purpose file format (extension .xtr) for the extraction of
MOSFET compact model parameters.

Extraction File Format

The extraction file consists of the following parts:

1. A header identifying the file format.

2. A section containing the process information of the MOSFET such as channel length or
channel width.
126 Sentaurus™ Device User Guide
N-2017.09



5: Simulation Results
Extraction File
3. A collection of curves containing the values of a dependent variable as a function of an
independent variable, for example, drain current versus gate voltage in an Id–Vg ramp. In
addition, each curve contains the corresponding bias conditions, for example, , , and

 in an Id–Vg ramp.

A sample extraction file is:

# Synopsys Extraction File Format Version 1.1
# Copyright (C) 2008 Synopsys, Inc.
# All rights reserved.

$ Process
AD 31.50f
AS 31.50f
D NMOS
L 90.00n
NF 1.000
NRD 0.000
NRS 0.000
PD 880.0n
PS 880.0n
SA 500.0n
SB 500.0n
SC 0.000
SCA 0.000
SCB 0.000
SCC 0.000
SD 0.000
W 90.00n

$ Data
Curve: Id_Vg
Bias : Vb = 0 , Vd = 0.5 , Vs = 0
    1.60000000000000E+00    7.95091490486384E-05
    1.63750000000000E+00    8.27433425335473E-05
    1.67500000000000E+00    8.59289596870642E-05
    1.71250000000000E+00    8.90665609661286E-05
    1.75000000000000E+00    9.21567959785304E-05

Curve: Is_Vg
Bias : Vb = 0 , Vd = 0.5 , Vs = 0
    1.60000000000000E+00   -7.95091490484525E-05
    1.63750000000000E+00   -8.27433425333610E-05
    1.67500000000000E+00   -8.59289596868774E-05
    1.71250000000000E+00   -8.90665609659414E-05
    1.75000000000000E+00   -9.21567959783428E-05

Vb Vd

Vs
Sentaurus™ Device User Guide 127
N-2017.09



5: Simulation Results 
Extraction File
Analysis Modes

Sentaurus Device supports different analysis modes. 

Table 20 Analysis modes

Analysis Curve1

1. Underscores are optional and are used to improve legibility.

Description

DC Ii_Vj The -th terminal current versus -th terminal voltage.
i,j=b (bulk), d (drain), g (gate), or s (source)
Bias conditions: all terminal voltages other than -th terminal voltage.

AC Ai_j_Vk Admittance  versus -th terminal voltage.
i,j,k=b (bulk), d (drain), g (gate), or s (source)
Bias conditions: all terminal voltages other than -th terminal voltage and frequency.

Ai_j_F Admittance  versus frequency.
i,j=b (bulk), d (drain), g (gate), or s (source)
Bias conditions: , , , .

Ci_j_Vk Capacitance  versus -th terminal voltage.
where i,j,k=b (bulk), d (drain), g (gate), or s (source)
Bias conditions: all terminal voltages other than -th terminal voltage and frequency.

Ci_j_F Capacitance  versus frequency.
i,j=b (bulk), d (drain), g (gate), or s (source)
Bias conditions: , , , .

Noise noise_Vi_Vj Autocorrelation noise voltage spectral density (NVSD) for electrode  versus -th 
terminal voltage.
i,j=b (bulk), d (drain), g (gate), or s (source)
Bias conditions: all terminal voltages other than -th terminal voltage and frequency.

noise_Vi_F Autocorrelation noise voltage spectral density (NVSD) for electrode  versus 
frequency.
i=b (bulk), d (drain), g (gate), or s (source)
Bias conditions: , , , .

noise_Ii_Vj Autocorrelation noise current spectral density (NISD) for electrode  versus -th 
terminal voltage.
i,j=b (bulk), d (drain), g (gate), or s (source)
Bias conditions: all terminal voltages other than -th terminal voltage and frequency.

noise_Ii_F Autocorrelation noise current spectral density (NISD) for electrode  versus 
frequency.
i=b (bulk), d (drain), g (gate), or s (source)
Bias conditions: , , , .

i j

j

Aij k

k

Aij

Vb Vd Vg Vs

Cij k

k

Cij

Vb Vd Vg Vs

i j

j

i

Vb Vd Vg Vs

i j

j

i

Vb Vd Vg Vs
128 Sentaurus™ Device User Guide
N-2017.09



5: Simulation Results
Extraction File
File Section

The name of the extraction file can be specified in the File section of the Sentaurus Device
command file:

File {
Extraction = "mosfet_des.xtr"
...

}

The default file name is extraction_des.xtr.

Electrode Section

Sentaurus Device automatically recognizes the four electrodes of a MOSFET if they are called
"bulk", "drain", "gate", and "source", or "b", "d", "g", and "s" (case insensitive).
For other contact names, it is possible to specify the mapping in the Electrode section:

Electrode {
{ Name = "contact_bulk" Voltage = 0.0 Extraction {bulk} }
{ Name = "contact_drain" Voltage = 0.0 Extraction {drain} }
{ Name = "contact_gate" Voltage = 0.0 Extraction {gate} }
{ Name = "contact_source" Voltage = 0.0 Extraction {source} }

}

All four MOSFET electrodes (bulk, drain, gate, and source) must be present. Additional
electrodes are allowed, but they will be ignored for extraction purposes.

Extraction Section

The process parameters can be part of the Sentaurus Device grid/doping file. It is also possible
to specify the same information in an Extraction section:

Extraction {
AD 31.50f
AS 31.50f
D NMOS
L 90.00n
NF 1.000
NRD 0.000
NRS 0.000
PD 880.0n
PS 880.0n
Sentaurus™ Device User Guide 129
N-2017.09



5: Simulation Results 
Extraction File
SA 500.0n
SB 500.0n
SC 0.000
SCA 0.000
SCB 0.000
SCC 0.000
SD 0.000
W 90.00n

}

Each line in the Extraction section consists of a name–value pair. All entries are copied to
the extraction file as is.

NOTE The process parameters in the Extraction section of the Sentaurus
Device command file take precedence over the information in the grid/
doping file.

Solve Section

The Quasistationary command in the Solve section supports an Extraction option to
request voltage-dependent extraction curves. Multiple curves can be generated during a single
ramp. No extraction curves are produced if the Extraction option is missing:

Solve {
# ramp contributes to extraction
Quasistationary (

Goal { Name="contact_gate" Voltage=1.5 }
Extraction { IdVg IsVg ... }

)
{ Coupled { Poisson Electron }

CurrentPlot (Time = (Range=(0 1) Intervals=10))
}

# ramp does not contribute to extraction
Quasistationary (

Goal { Name="contact_base" Voltage=0.5 }
)

{ Coupled { Poisson Electron } }

# ramp contributes to extraction
Quasistationary (

Goal { Name="contact_drain" Voltage=1.5 }
Extraction { IdVd IbVd ... }

)
{ Coupled { Poisson Electron } }

}

130 Sentaurus™ Device User Guide
N-2017.09



5: Simulation Results
Extraction File
AC and noise simulations must be performed in mixed mode. Only one physical device is
supported in the circuit. Voltage-dependent curves are specified as an option to the
Quasistationary statement; whereas, frequency-dependent curves appear within the
ACCoupled statement:

Solve {
Quasistationary (

...
Extraction { Ads_Vg Agg_Vg Cgd_Vg

noise_Id_Vg noise_Ig_Vg }
)

{ ACCoupled (
...
Extraction { Add_F Cgd_F Csd_F

noise_Vd_F noise_Vg_F noise_Is_F }
)

{ Poisson Electron }
}

}

The recognized curves in the Extraction option are shown in Table 20 on page 128.
Sentaurus™ Device User Guide 131
N-2017.09



5: Simulation Results 
Extraction File
132 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 6 Numeric and Software-Related 
Issues

This chapter discusses technical issues of simulation that do not
have real-world equivalents.

To successfully perform an experiment, apart from understanding the device under
investigation, the experimenter must understand, control, and skillfully use the measurement
equipment. The same holds for numeric experiments. This chapter describes the equipment
available in Sentaurus Device for numeric experiments: linear and nonlinear solvers, control of
accuracy, convergence monitors, and other software-related facilities. Additional background
information on numerics is available in Chapter 37 on page 1011.

Structure of Command File

The Sentaurus Device command file is divided into sections that are defined by a keyword and
braces (see Figure 12). A device is defined by the File, Electrode, Thermode, and
Physics sections. The solve methods are defined by the Math and Solve sections. Two
sections are used in mixed-mode circuit and device simulation, see Chapter 3 on page 41. This
part of the manual concentrates on the input to define single device simulations. 

Figure 12 Different sections of a Sentaurus Device command file

File {
...

}
Electrode {

...
}
Thermode {

...
}
Physics {

...
}

Plot {
...

}
CurrentPlot {

...
}
Math {

...
}

Solve {
...

}

Sentaurus™ Device User Guide 133
N-2017.09



6: Numeric and Software-Related Issues 
Structure of Command File
Inserting Files

An insert directive is available in the command file of Sentaurus Device to incorporate other
files:

Insert = "filename"

This directive can appear at the top level in the command file, or inside any of the following
sections:

■ CurrentPlot 

■ Device 

■ Electrode 

■ File 

■ Math 

■ MonteCarlo 

■ NoisePlot 

■ NonlocalPlot 

■ Physics 

■ Plot 

■ RayTraceBC 

■ Solve 

■ System 

■ Thermode 

The following search strategy is used to locate a file:

■ The current directory is checked first (highest priority).

■ If the environment variable SDEVICEDB exists, the directory associated with the variable is
checked (medium priority).

■ Finally, the $STROOT/tcad/$STRELEASE/lib/sdevice/MaterialDB directory is
checked (lowest priority).

NOTE The insert directive is also available for parameter files (see Physical
Model Parameters on page 21).
134 Sentaurus™ Device User Guide
N-2017.09



6: Numeric and Software-Related Issues
Solve Section: How the Simulation Proceeds
Solve Section: How the Simulation Proceeds

The Solve section is the only section in which the order of commands are important. It
consists of a series of simulation commands to be performed that are activated sequentially,
according to the order of commands in the command file. Many Solve commands are high-
level commands that have lower level commands as parameters. Figure 13 shows an example
of these different command levels:

■ The Coupled command (the base command) is used to solve a set of equations.

■ The Plugin command is used to iterate between a number of coupled equations.

■ The Quasistationary command is used to ramp a solution from one boundary condition
to another.

■ The Transient command is used to run a transient simulation.

Furthermore, small-signal AC analysis can be performed with the ACCoupled command. An
advanced ramping by continuation method can be performed with the command
Continuation. (The ACCoupled and Continuation commands are presented in Small-
Signal AC Analysis on page 96 and Continuation Command on page 83, respectively.) 

Figure 13 Different levels of Solve commands

Coupled

PluginContinuation

Transient

ACCoupled

Base CommandsIterative LevelRamping Commands Base Options

Quasistationary

Super
Pardiso
ILS
Blocked

Poisson
Electron
Hole
Temperature
eTemperature
hTemperature
eQuantumPotential
hQuantumPotential
Sentaurus™ Device User Guide 135
N-2017.09



6: Numeric and Software-Related Issues 
Nonlinear Iterations
Nonlinear Iterations

Coupled Command

The Coupled command activates a Newton-like solver over a set of equations. Available
equations include the Poisson equation, continuity equations, and the different thermal and
energy equations. The syntax of the Coupled command is:

Coupled ( <optional parameters> ){ <equation> }

or:

<equation>

This last form uses only the keyword equation, which is equivalent to a coupled with default
parameters and the single equation. For example, if the following command is used:

Coupled {Poisson Electron}

the electrostatic potential and electron density are computed from the resolution of the Poisson
equation and electron continuity equation (using the default parameters).

If the following command is used, only the electrostatic potential is computed using the
Poisson equation:

Poisson

The Coupled command is based on a Newton solver. This is an iterative algorithm in which a
linear system is solved at each simulation step. Parameters of the command determine:

■ The maximum number of iterations allowed.

■ The desired precision of the solution.

■ The linear solver that must be used.

■ Whether the solution is allowed to worsen over a number of iterations.

These parameters and others are summarized in Table 189 on page 1387.

Th e following example limits the previous Coupled {Poisson Electron} example to ten
iterations and uses the ILS linear solver:

Coupled ( Iterations=10 Method=ILS ) {Poisson Electron}
136 Sentaurus™ Device User Guide
N-2017.09



6: Numeric and Software-Related Issues
Nonlinear Iterations
NOTE Use a large number of iterations when the coupled iteration is not inside
a ramping process. This allows the Newton algorithm to proceed as far
as possible. Inside a ramping command (for example,
Quasistationary, Transient), the maximum number of iterations
should be limited to approximately ten because if the Newton process
does not converge rapidly, it is preferable to try again with a smaller step
size than to pursue an iterative process that is not likely to converge.

The best linear method to use in a coupled iteration depends on the type and size of the problem
solved. Table 224 on page 1423 lists the solvers and the size of the problems for which they are
designed.

Convergence and Error Control

The Coupled command is sensitive to the following Math parameters that determine when a
coupled solution diverges or converges:

■ Iterations 

■ RhsAndUpdateConvergence 

■ RhsFactor, RhsMin, RhsMax 

■ CheckRhsAfterUpdate 

■ RelErrControl 

■ Digits 

■ ErrRef 

■ Error 

■ UpdateIncrease, UpdateMax 

The parameter Iterations in the global Math section sets the default for Iterations of
the Coupled command. Iterations limits the number of Newton iterations. If the equation
being solved is converging quadratically, the number of iterations might increase beyond this
limit. For Iterations=0, only one iteration is performed. 

Convergence of a solution in Sentaurus Device is determined by calculating and examining the
following quantities at each Newton iteration:

■ RHS norm is the norm of the right-hand-side (that is, the residual of the equations).

■ Update error is a measure of the updates to the equation variables.

These quantities are printed in the log file for each Newton iteration during a solution. By
default, a solution is considered converged if the RHS norm < RhsMin or if the update error <
1. If RhsAndUpdateConvergence is specified, both of these criteria must be satisfied.
Sentaurus™ Device User Guide 137
N-2017.09



6: Numeric and Software-Related Issues 
Nonlinear Iterations
During a single Newton step, the solution is considered diverged if the RHS norm increases by
more than a factor of RhsFactor. For transient simulations, the solution is considered
diverged if the RHS norm exceeds RhsMax.

Specify CheckRhsAfterUpdate to force Sentaurus Device to perform an additional check on
the RHS norm after the update error criteria is satisfied. If Sentaurus Device assesses that the
RHS norm can be made smaller, additional iterations will be performed. This can sometimes
improve the quality of a solution and may result in better overall convergence.

NOTE CheckRhsAfterUpdate usually adds no more than one or two extra
iterations. However, when convergence is slow or when using extended-
precision accuracy, this option can result in several additional iterations
if the RHS norm continues to be reduced. In such cases, a larger value
for Iterations might be needed. In all cases, however, Sentaurus
Device will accept a converged solution when the maximum number of
iterations is reached, even if the RHS norm is still improving.

There are two formulations of the update error calculations used in Sentaurus Device,
depending on whether RelErrControl (the default) or -RelErrControl is specified. For
both formulations, Sentaurus Device tries to determine the value of an equation variable ,
such that the computed update  is small enough to satisfy an error criterion:

(31)

where:

■  is the relative error.

■  is the reference error parameter.

■  is the absolute error parameter.

■  is a scaling constant for the equation variable.

For large values of  ( ), the conditions in Eq. 31 become relative error criteria:

(32)

Conversely, for small values of  ( ), they become absolute error criteria:

     or     (33)

Therefore, Eq. 31 ensures a smooth transition between absolute and relative error control.

x
Δx

Δx
x xref+
-------------------- εR< , RelErrControl

Δx x
*⁄

εR x x
*⁄ εA+

--------------------------------- 1< , -RelErrControl

εR 10 Digits–=

xref ErrRef(<equation>)=

εA Error(<equation>)=

x*

x x ∞→

Δx
x

--------- εR<

x x 0→

Δx xref εR⋅< Δx x*⁄ εA<
138 Sentaurus™ Device User Guide
N-2017.09



6: Numeric and Software-Related Issues
Nonlinear Iterations
To account for all coupled equations  at all vertices , Sentaurus Device extends the
conditions in Eq. 31 and defines the update error as:

(34)

where:

■  is the number of coupled equations.

■  is the number of vertices being solved for equation .

The value of  is defined by specifying the keyword Digits.

The values of  and  can be defined commonly or independently for each equation with
the keywords ErrRef and Error, respectively. Default values are listed in Table 191 on
page 1388.

The parameters UpdateMax and UpdateIncrease are used to detect divergence of the
Newton algorithm. If the update error is larger than UpdateMax, or its increase from Newton
step to Newton step exceeds UpdateIncrease, the Newton is regarded as diverged.

Damped Newton Iterations

Line search damping and Bank–Rose damping are two different damping methods. These
approaches try to achieve convergence of the coupled iteration far from the final solution by
changing the solution by smaller amounts than a normal Newton iteration would. Damping is
useful to find an initial solution, but during Quasistationary or Transient ramps, using
smaller time steps is usually preferable.

Line search damping is switched off by default. It is activated when the value of
LineSearchDamping is set to a value smaller than one. This value determines the minimum
factor by which the normal Newton update  can be damped. The damping method
determines the actual damping factor automatically in each Newton step. If the actual factor
falls below the minimum specified by LineSearchDamping, line search damping is
considered to fail and is disabled for the following Newton iterations.

Bank–Rose damping is a method that automatically adjusts the size of the update based on how
the RHS changes [1]. It can be used sometimes to improve convergence when large bias steps

i j

update error

Δxi j,
εR xi j, xref,i+( )
--------------------------------------- 
 

2

j 1=

Nvi


i 1=

Ni


 
 
 
 

Nvi

i 1=

Ni


 
 
 
 

⁄ , RelErrControl

Δxi j, xi
*⁄

εR xi j, xi
*⁄ εA,i+

------------------------------------------
 
 
 

2

j 1=

Nvi


i 1=

Ni


 
 
 
 

Nvi

i 1=

Ni


 
 
 
 

⁄ , -RelErrControl













=

Ni

Nvi i

εR

xref εA

Δx
Sentaurus™ Device User Guide 139
N-2017.09



6: Numeric and Software-Related Issues 
Nonlinear Iterations
are taken. Bank–Rose damping becomes activated when the number of iterations exceeds the
value specified with NotDamped in the Math section (default is 1000).

LineSearchDamping and NotDamped are set in the global Math section and by parameters
of the Coupled command. The former specification sets the defaults for the latter.

Derivatives

For most problems, Newton iterations converge best with full derivatives. Furthermore, for
small-signal analysis, and noise and fluctuation analysis, using full derivatives is mandatory.
Therefore, by default, Sentaurus Device takes full derivatives into account. For rare occasions
where omission of derivatives improves convergence or performance significantly, use the
keywords -AvalDerivatives and -Derivatives in the global Math section to switch off
mobility and avalanche derivatives.

The derivatives are usually computed analytically, but a numeric computation can be used by
specifying Numerically. This does not work with the method Blocked and, generally, is
discouraged.

Incomplete Newton Algorithm

Certain simple simulations, such as Id–Vg ramps, can be accelerated by using a modified
Newton algorithm (see Fully Coupled Solution on page 1036 for a description of the standard
Newton algorithm). The incomplete Newton algorithm, also known as the Newton–Richardson
method, tries to reuse the Jacobian matrix to avoid the expense of evaluating derivatives and
computing matrix factorizations.

It can be switched on either in the global Math section:

Math {
IncompleteNewton
...

}

or it can be used as an option in a Coupled command:

Coupled (IncompleteNewton) {poisson electron hole}

The Jacobian matrix is reused if the following two conditions are satisfied:

(35)

(36)

Rhsk RhsFactor Rhsk 1–⋅<

Updatek UpdateFactor Updatek 1–⋅<
140 Sentaurus™ Device User Guide
N-2017.09



6: Numeric and Software-Related Issues
Nonlinear Iterations
where  denotes the iteration index, Rhs denotes the right-hand side of the nonlinear
equations, and Update denotes the Newton step. The values of  and  are
displayed in the log file of Sentaurus Device during Newton iterations in the columns |Rhs|
and |step|.

The parameters RhsFactor and UpdateFactor can be specified as arguments to the
IncompleteNewton keyword:

IncompleteNewton (UpdateFactor=0.1 RhsFactor=10)

The default values are UpdateFactor=0.1 and RhsFactor=10.

Additional Equations Available in Mixed Mode

The Contact, Circuit, TContact and TCircuit equations are introduced for mixed-mode
problems. The keyword Circuit activates the solution of the electrical circuit models and
nodes. Contact activates the solution of the electrical interface condition at the contacts.
Similarly, TContact and TCircuit activate the solution of the thermal interface condition
and thermal circuit, respectively.

By default, the keywords Contact and Circuit are not required because the Poisson
equation also covers the contact and circuit domains. If only the Poisson equation is solved, no
additional equations are added. Only if additional equations to Poisson appear in a Coupled
statement, the circuit and contact equations are also added. Therefore:

Coupled { Poisson Electron Hole }

is equivalent to:

Coupled { Poisson Electron Hole Circuit Contact }

NOTE Sentaurus Device does not add the circuit and contact equations if
Poisson is restricted to instances, for example:

Coupled {device1.Poisson device1.Electron
device1.Hole
device2.Poisson device2.Electron
device2.Hole}

k
Rhsk Updatek
Sentaurus™ Device User Guide 141
N-2017.09



6: Numeric and Software-Related Issues 
Nonlinear Iterations
If the keyword NoAutomaticCircuitContact appears in the Math section, Sentaurus
Device does not add the circuit and contact equations automatically (see Figure 14). 

Figure 14 Range of equation keywords Circuit, Contact, Poisson, Electron, and Hole

Selecting Individual Devices in Mixed Mode

The default usage of an equation keyword such as Poisson activates the given equations for
all devices. With complex multiple-device systems, such an action is not always desirable
especially when a fully consistent solution has not yet been found. Sentaurus Device allows
each equation to be restricted to a specific device by adding the name of the device instance to
the equation keyword separated with a period. The syntax is:

<identifier>.<equation>

Device-specific solutions are used to obtain the initial solution for the whole system. For
example, with two or more devices, it is often better to solve each device individually before
coupling them all. Such a scheme can be written as:

System {
... device1 ...
... device2 ...

}
Solve {

# Solve Circuit equation Circuit

# Solve poisson and full coupled for each device
Coupled { device1.Poisson device1.Contact }
Coupled { device1.Poisson device1.Contact 

device1.Electron device1.Hole }
Coupled { device2.Poisson device2.Contact }
Coupled { device2.Poisson device2.Contact 

device2.Electron device2.Hole }

# Solve full coupled over all devices
Coupled { Circuit Poisson Contact Electron Hole }

}

Circuit

Contact

Poisson 

Poisson 

Default NoAutomaticCircuitContact

Electron
Hole

Electron Hole
142 Sentaurus™ Device User Guide
N-2017.09



6: Numeric and Software-Related Issues
Nonlinear Iterations
Relaxed Newton Method

The relaxed Newton method allows Sentaurus Device to consider whether a solution that has
neither converged nor diverged by the final Newton iteration should be accepted as a converged
solution based on relaxed convergence criteria. This method applies to Quasistationary,
Transient, and Continuation ramps.

Relaxed convergence criteria are established from relaxed Newton parameters that are
specified by users in the AcceptNewtonParameter (ANP) statement of the global Math
section. These parameters are used to calculate an ANP RhsMin and an ANP error that will be
used to test for relaxd convergence:

Math { ...
AcceptNewtonParameter (
[RhsAndUpdateConvergence] * Use -RhsAndUpdateConvergence to relax

* convergence
[RhsMin=<float>] * The ANP RhsMin that is used for relaxed 

* convergence
[UpdateScale=<float>] * This multiplies update error to give 

* a relaxed ANP error
[RelErrControl] * Specifies the error control method for

* calculating the ANP error
[Digits=<integer>] * The number of relative error digits in the

* ANP error calculation
[ErrRef ( * Reference error parameters to use in the ANP

* error calculation
[Poisson=<float>] [Electron=<float>] [Hole=<float>]
[Temperature=<float>] [eTemperature=<float>] [hTemperature=<float>]
[eQuantumPotential=<float>] [hQuantumPotential=<float>]

)]
[Error ( * Absolute error parameters to use in the ANP

* error calculation
[Poisson=<float>] [Electron=<float>] [Hole=<float>]
[Temperature=<float>] [eTemperature=<float>] [hTemperature=<float>]
[eQuantumPotential=<float>] [hQuantumPotential=<float>]

)]
[InvokeAtDivergence] * Allows relaxed convergence for diverging

* solutions
)

}

Sentaurus™ Device User Guide 143
N-2017.09



6: Numeric and Software-Related Issues 
Nonlinear Iterations
To activate the relaxed Newton method, specify AcceptNewtonParameter in the
Quasistationary, Transient, or Continuation statements of the Solve section, along
with a ReferenceStep (except for Continuation). For example:

Solve { ...
Quasistationary ( ...

AcceptNewtonParameter ( ReferenceStep = 1.e-3 )
) { Coupled { ... } }

}

or:

Solve { ...
Transient ( ...

AcceptNewtonParameter ( ReferenceStep = 1.e-9 )
) { Coupled { ... } }

}

or:

Solve { ...
Continuation ( ...

AcceptNewtonParameter
) { Coupled { ... } }

}

During the simulation, if the Quasistationary or Transient step size is reduced below
the value specified with ReferenceStep, Sentaurus Device will begin to calculate an ANP
error in addition to the standard update error for each Newton iteration during a solution. This
will be used to determine whether relaxed convergence has been achieved if the solution fails
to converge using the standard error criteria. For Continuation, the check for relaxed
convergence is activated for all step sizes.

Relaxed convergence is considered achieved if the calculated ANP error < 1 or the RHS norm
< ANP RhsMin, for any iteration. If relaxed convergence is achieved, Sentaurus Device will
store the solution obtained from the iteration with the smallest standard update error occurring
after relaxed convergence is triggered. In most cases, this is a reasonable choice for the “best”
solution.

Note the following:

■ The relaxed Newton parameters are passed only to the next-level Coupled statements, that
is, Coupled statements in Plugin statements do not use the relaxed Newton parameters.

■ Only specified parameter values are passed to the Coupled statement, that is, no default
values are used.
144 Sentaurus™ Device User Guide
N-2017.09



6: Numeric and Software-Related Issues
Linear Solvers
Plugin Command

The Plugin command controls an iterative loop over two or more Coupled commands. It is
used when a fully coupled method would use too many resources of a given machine, or when
the problem is not yet solved and a full coupling of the equations would diverge.

The Plugin syntax is defined as:

Plugin ( <options> ) ( <list-of-coupled-commands> )

Plugin commands can have any complexity but, usually, only a few combinations are
effective. One standard form is the Gummel iteration in which each basic semiconductor
equation is solved consecutively. 

With the Plugin command, this is written as:

Plugin { Poisson Electron Hole }

Table 196 on page 1393 summarizes the options of Plugin.

Plugin commands can be used with other Plugin commands, such as:

Plugin{ Plugin{ ... } Plugin { ... } }

Figure 15 illustrates the corresponding loop structure. A hierarchy of Plugin commands
allows more complex iterative solve patterns to be created. 

Figure 15 Example of hierarchy of Plugin commands

Linear Solvers

The Math parameters to the solution algorithms are device independent and must only appear
in the base Math section. These can be grouped by solver type. The control parameters for the
linear solvers are Method and SubMethod. The keyword Method selects the linear solver to
be used, and the keyword SubMethod selects the inner method for block-decomposition
methods (see Table 224 on page 1423 for available linear solvers). 

Plugin Plugin

Plugin
Sentaurus™ Device User Guide 145
N-2017.09



6: Numeric and Software-Related Issues 
Nonlocal Meshes
The keywords ACMethod and ACSubMethod determine the linear solver used for AC analysis.

NOTE ACMethod=Blocked is the only valid choice for ACMethod. However,
any of the available linear solvers can be selected for ACSubMethod.

Table 224 on page 1423 lists the options that are available for the linear solver PARDISO. The
options are specified in parentheses after the solver specification:

Method = ParDiSo (NonsymmetricPermutation IterativeRefinement)

The default options NonsymmetricPermutation, -IterativeRefinement, and
-RecomputeNonsymmetricPermutation provide the best compromise between speed and
accuracy. To improve speed, select -NonsymmetricPermutation.

To improve accuracy, at the expense of speed, activate IterativeRefinement, or
RecomputeNonsymmetricPermutation, or both.

All ILS options can be specified within an ILSrc statement in the global Math section:

Math {
ILSrc = "

set (...) {
iterative (...);
preconditioning (...);
ordering (...);
options (...);

};
...

"
...

}

Additional ILS options can be found in Table 224 on page 1423.

The two linear solvers PARDISO and ILS support the option MultipleRHS to solve linear
systems with multiple right-hand sides. This option is only appropriate for AC analysis. ILS
may produce a small parallel speedup or slightly more accurate results if this option is selected.

Use the Math option PrintLinearSolver to obtain additional information regarding the
linear solver being used.

Nonlocal Meshes

Nonlocal meshes are one-dimensional, special-purpose meshes that Sentaurus Device needs to
implement one-dimensional, nonlocal physical models. A nonlocal mesh consists of nonlocal
146 Sentaurus™ Device User Guide
N-2017.09



6: Numeric and Software-Related Issues
Nonlocal Meshes
lines. Each nonlocal line is subdivided by nonlocal mesh points, to allow for the discretization
of the equations that constitute the physical models. Sentaurus Device performs this
subdivision automatically to obtain optimal interpolation between the nonlocal mesh and the
normal mesh.

The 1D Schrödinger equation (see 1D Schrödinger Solver on page 285), the nonlocal tunneling
model (see Nonlocal Tunneling at Interfaces, Contacts, and Junctions on page 722), and the
trap tunneling model (see Tunneling and Traps on page 463) use nonlocal meshes. The
documentation of the former two models introduces the use of nonlocal meshes in the context
of the particular model and is restricted to typical cases. This section describes the construction
of nonlocal meshes in detail.

Specifying Nonlocal Meshes

Nonlocal meshes are specified by the keyword Nonlocal in the global Math section.
Nonlocal is followed by a string that gives the name of the nonlocal mesh and a list of options
that control the construction of the nonlocal mesh. You can specify any number of nonlocal
meshes; individual specifications are independent. For example, with:

Math {
Nonlocal "GateNonLocalMesh" (

Electrode="Gate"
Length=5e-7

)
}

Sentaurus Device constructs a nonlocal mesh named GateNonLocalMesh that consists of
nonlocal lines for semiconductor vertices up to a distance of  from the Gate electrode,
and:

Math {
Nonlocal "for_tunneling" (

Barrier(Region="gateoxide")
)

}

constructs a nonlocal mesh named for_tunneling that consists of lines that connect the
different sides of the region gateoxide.

For a summary of available options, see Table 228 on page 1424. For a comprehensive
description of the construction of a nonlocal mesh, see Constructing Nonlocal Meshes on
page 149. 

5 nm
Sentaurus™ Device User Guide 147
N-2017.09



6: Numeric and Software-Related Issues 
Nonlocal Meshes
Visualizing Nonlocal Meshes

Sentaurus Device can visualize the nonlocal meshes it constructs. This feature is used to verify
that the nonlocal mesh constructed is the one actually intended. For visualizing data defined on
nonlocal meshes, see Visualizing Data Defined on Nonlocal Meshes on page 148.

To visualize nonlocal meshes, use the keyword NonLocal in the Plot section (see Device
Plots on page 122). The keyword causes Sentaurus Device to write two vector fields to the plot
file that represent the nonlocal meshes constructed in the device.

For each vertex (of the normal mesh) for which a nonlocal line exists, the first vector field
NonLocalDirection contains a vector that points from the vertex to the end of the nonlocal
line in the direction of the reference surface for which the nonlocal line was constructed. The
vector in the second field NonLocalBackDirection points from the vertex to the other end
of the nonlocal line. The unit of both vectors is .

For vertices for which no nonlocal line exists, both vectors are zero. For vertices for which
more than one nonlocal line exists, Sentaurus Device plots the vectors for one of these lines.

Visualizing Data Defined on Nonlocal Meshes

To visualize data defined on nonlocal meshes:

■ In the File section, specify a file name using the NonLocalPlot keyword.

■ On the top level of the command file, specify a NonLocalPlot section. There,
NonLocalPlot is followed by a list of coordinates in parentheses and a list of datasets in
braces.

Sentaurus Device writes nonlocal plots at the same time it writes normal plots. Nonlocal plot
files have the extension .plt or .tdr.

Sentaurus Device picks nonlocal lines close to the coordinates specified in the NonLocalPlot
section for output. The datasets given in the NonLocalPlot section are the datasets that can
be used in the Plot section (see Device Plots on page 122). NonLocalPlot does not support
the /Vector option. Additionally, the Schrödinger equation provides special-purpose datasets
available only for NonLocalPlot (see Visualizing Schrödinger Solutions on page 290).

In addition to the datasets explicitly specified, Sentaurus Device automatically includes the
Distance dataset in the output. It provides the coordinate along the nonlocal line. The values
in the Distance dataset are measured in . The interface or contact for which a nonlocal
mesh line was constructed is located at zero, and its mesh vertex is located at positive

μm

μm
148 Sentaurus™ Device User Guide
N-2017.09



6: Numeric and Software-Related Issues
Nonlocal Meshes
coordinates. The following example plots electron and hole densities for the nonlocal lines
close to the coordinates  and  in the device:

NonLocalPlot(
(0 0) (0 1)

){
eDensity hDensity

}

Constructing Nonlocal Meshes

Nonlocal meshes are specified in the global Math section:

Math {
NonLocal <string> (

Barrier(...)
RegionInterface=<string>
MaterialInterface=<string>
Electrode=<string>
...

)
}

The string following NonLocal is the name of the nonlocal mesh. The name relates the
nonlocal mesh to the physical models defined on it.

Sentaurus Device supports two ways to specify nonlocal meshes: 

■ By specifying the regions and materials that form the tunneling barrier (keyword
Barrier).

■ By specifying a reference surface (keywords RegionInterface, MaterialInterface,
and Electrode).

The Barrier specification is simpler but less general, and it is only suitable for nonlocal
meshes used for direct tunneling through insulator barriers.

Specification Using Barrier

As an option to Barrier, specify all regions that belong to the tunneling barrier, using any
number of Region=<string> or Material=<string> specifications. Sentaurus Device
connects each side of the barrier to any other with nonlocal lines. Here, side means a
conductively connected part of the surface of the barrier.

By default, semiconductor regions, metal regions, and electrodes are considered to be
conductive. To enforce that a particular region (such as a wide-bandgap semiconductor region)

0 0 0, ,( ) 0 1 0, ,( )
Sentaurus™ Device User Guide 149
N-2017.09



6: Numeric and Software-Related Issues 
Nonlocal Meshes
is treated as not conductive, use the option -Endpoint, which accepts as an option a list of
regions and materials, using the same syntax as for Barrier. For example:

Nonlocal "NLM" (
...
-Endpoint(Material="GaN" Region="buffer1" Region="buffer2")

)

will cause regions buffer1 and buffer2, and all GaN regions to be considered
nonconductive when constructing the nonlocal mesh NLM.

Use Length=<float> (in centimeters) to restrict the length on nonlocal lines (to suppress
very long tunneling paths).

Specification Using a Reference Surface

RegionInterface, MaterialInterface, and Electrode specify a region interface
name, material interface name, or electrode name. All interfaces and electrodes together form
the reference surface that determines where in the device the nonlocal mesh is constructed.

The nonlocal lines link vertices of the normal mesh to the reference surface on the
geometrically shortest path. The parameter Length of NonLocal determines the maximum
distance of the vertex to the reference surface (in centimeters). Sentaurus Device provides no
default value for Length; all nonlocal meshes must specify Length explicitly.

Length and Permeation are limited to the value of the parameter NonLocalLengthLimit,
which is specified in centimeters in the global Math section and defaults to . This
parameter is used to capture cases where users accidentally specify lengths in micrometers
rather than centimeters.

The property that nonlocal lines connect a vertex to the reference surface on the geometrically
shortest path is fundamental. If any of the other rules described in this section inhibits the
construction of a nonlocal line for this path, but a longer connection obeys all these restrictions,
Sentaurus Device still does not use this connection to construct an alternative nonlocal line.

The parameter Permeation specifies a length by which Sentaurus Device extends the
nonlocal lines, across the reference surface, towards the opposite of the side for which the line
is constructed. Permeation defaults to zero. Sentaurus Device never extends the lines outside
the device or into regions flagged with -Permeable (see below). The extension is not affected
by the Transparent and Endpoint options (see below).

The Direction parameter specifies a direction that the nonlocal lines approximately should
have. Nonlocal lines with directions that deviate from the specified direction by an angle
greater than MaxAngle are suppressed. If Direction is the zero vector or MaxAngle

10 4–
150 Sentaurus™ Device User Guide
N-2017.09



6: Numeric and Software-Related Issues
Nonlocal Meshes
exceeds 90 (this is the default), nonlocal lines can have any direction. The length and sign of
the direction vector are otherwise insignificant.

Discretization specifies the maximum spacing of the nonlocal mesh vertices. When
necessary, Sentaurus Device further refines the mesh created on a nonlocal line according to
the built-in rules to yield a spacing no bigger than Discretization demands.

The flags Transparent, Permeable, Endpoint, and Refined, as well as their negation,
specify flags for regions or materials that control nonlocal mesh construction. Each of the flags
can be specified in two different ways:

■ As an option to the main specification in the global Math section.

■ As an option to NonLocal in a region-specific or material-specific Math section. 

In the former case, the flag is followed by a list of region or material specifications that
determine where the flag applies. In the latter case, the region or material of applicability is the
location of the Math specification. Specifications of the latter style provide defaults that can be
overwritten by specifications of the former style.

The part of a nonlocal line between the mesh vertex for which the line is constructed and the
reference surface must not pass through regions flagged with -Transparent. By default, all
regions are Transparent. For the exterior of the device, the flag Outside has the same
meaning; this flag is an option to the main NonLocal specification.

The -Permeable flag limits extension on nonlocal lines across the reference surface. By
default, all regions are Permeable.

For regions flagged with -Endpoint, Sentaurus Device does not construct nonlocal lines that
end in this region. The default is -Endpoint for insulator regions, and Endpoint for other
regions.

Inside regions flagged as -Refined, the generation of nonlocal mesh points at element
boundaries is suppressed. By default, all regions are Refined.

Special Handling of 1D Schrödinger Equation

For performance reasons, Sentaurus Device solves the 1D Schrödinger equation (see 1D
Schrödinger Solver on page 285) only on a reduced subset of nonlocal lines that still cover all
vertices of the normal mesh for which nonlocal lines are constructed according to the rules
outlined above.

To avoid artificial geometric quantization, Sentaurus Device extends nonlocal lines used for the
1D Schrödinger equation that are shorter than Length to reach full length. Sentaurus Device
Sentaurus™ Device User Guide 151
N-2017.09



6: Numeric and Software-Related Issues 
Nonlocal Meshes
never extends the lines outside the device or into regions flagged by the -Permeable option.
The extension is not affected by the Transparent and Endpoint options.

For nonlocal line segments in regions not marked by -Refined and -Endpoint, Sentaurus
Device computes the intersections with the boxes of the normal mesh. Sentaurus Device needs
this information to interpolate results from the 1D Schrödinger equation back to the normal
mesh. Therefore, in regions where -Refined or -Endpoint is specified, 1D Schrödinger
density corrections are not available, even when the regions are covered by nonlocal lines.

Special Handling of Nonlocal Tunneling Model

Sentaurus Device computes the intersections of the nonlocal lines with the boxes (see
Discretization on page 1011); to this end, some lines may become longer than Length. The
nonlocal tunneling model (see Nonlocal Tunneling at Interfaces, Contacts, and Junctions on
page 722) uses the intersection points to limit the spatial range of the integrations Sentaurus
Device must perform to compute the contribution to tunneling that comes from the particular
vertex. For mesh points that border regions flagged with -Endpoint, the integration range is
extended into that region, to pick up the Fowler–Nordheim current that enters it.

For nonlocal meshes used only for nonlocal tunneling, when Permeation is zero, Sentaurus
Device assumes that the nonlocal lines cross the reference plane by an infinitesimal length.
Therefore, if -Endpoint is specified for one of the regions that border the reference plane,
Sentaurus Device suppresses nonlocal lines that point into that region. 

If Permeation is positive, for nonlocal lines at nonmetal interfaces, Sentaurus Device
switches to a nonlocal mesh construction mode similar to the one used for the Schrödinger
equation: Sentaurus Device constructs only as many lines as needed to cover all vertices that
must be covered, and extends all those lines to their maximum length. Furthermore, for
nonlocal meshes not used for tunneling to traps, the integration range for tunneling covers the
entire line. Tunneling to and from segments of the line marked by –Endpoint or –Refined
will be assigned to the vertices for boxes crossed immediately outside those segments, to pick
up Fowler–Nordheim currents in a similar manner as for the line construction mode with
Permeation=0.

Unnamed Meshes

For backward compatibility, Sentaurus Device also allows you to specify nonlocal meshes in
interface-specific or electrode-specific Math sections. For this kind of specification, the
location of the mesh is the location of the Math section and, therefore, no interface or electrode
specification must appear as an option to NonLocal.
152 Sentaurus™ Device User Guide
N-2017.09



6: Numeric and Software-Related Issues
Monitoring Convergence Behavior
Furthermore, the name of the nonlocal mesh must be omitted; physical models are associated
with the nonlocal mesh by activating them in a Physics section specific to the same interface
or electrode for which the nonlocal mesh was constructed.

For unnamed nonlocal meshes, vertices in regions with the trap tunneling model (see Tunneling
and Traps on page 463) are connected irrespective of the material of the region or the
Endpoint specification.

Performance Suggestions

To limit the negative performance impact of the nonlocal tunneling model, it is important to
limit the number of nonlocal lines. To this end, most importantly, select Length and
Permeation to be only as long as necessary. The option –Endpoint can be used to suppress
the construction of lines to regions for which you know, in advance, that will not receive much
tunneling current. The option -Transparent allows you to neglect tunneling through
materials with comparatively high tunneling barrier, for example, oxides near a Schottky
contact or heterointerface for which nonlocal tunneling has been activated.

Another use of the option -Transparent is at heterointerfaces, where there is no tunneling to
the side of the material with the lower band edge (as there is no barrier to tunnel through). To
restrict the construction of nonlocal lines to lines that go through the larger band-edge material,
declare the lower band-edge material as not transparent by using -Transparent.

The option -Refined does not reduce the number of nonlocal lines, but it can reduce the size
of the Jacobian matrix. The option -Refined is most useful for insulator regions, where the
band-edge profile is approximately linear.

Monitoring Convergence Behavior

When Sentaurus Device has convergence problems, it can be helpful to know in which parts of
the device and for which equations the errors are particularly large. With this information, it is
easier to make adjustments to the mesh or the models used, to improve convergence.

Sentaurus Device can print the locations in the device where the largest errors occur (see
CNormPrint on page 154). This provides limited information and has negligible performance
impact. Sentaurus Device can also plot solution error information for the entire device after
each Newton step (see NewtonPlot on page 154). This information is comprehensive, but can
generate many files and can take significant time to write.
Sentaurus™ Device User Guide 153
N-2017.09



6: Numeric and Software-Related Issues 
Monitoring Convergence Behavior
Both approaches provide access to the internal data of Sentaurus Device. Therefore, in both
cases, the output is implementation dependent. Its proper interpretation can change between
different Sentaurus Device releases.

CNormPrint

To obtain basic error information, specify the CNormPrint keyword in the global Math
section. Then, after each Newton step and for each equation solved, Sentaurus Device prints to
the standard output:

■ The largest error according to Eq. 33, p. 138 that occurs anywhere in the device for the
equation.

■ The vertex where the largest error occurs.

■ The coordinates of the vertex.

■ The current value of the solution variable for that vertex.

NewtonPlot

Sentaurus Device can write the spatial values of solution variables, the errors, the right-hand
sides, and the solution updates to a NewtonPlot file after each Newton step. NewtonPlot
files then can be read into Sentaurus Visual for examination. To use this feature:

■ Use the NewtonPlot keyword in the File section to specify a file name for the plot. This
name can contain up to two C-style integer format specifiers (for example, %d). If present,
for the file name generation, the first one is replaced by the iteration number in the current
Newton step and the second, by the number of Newton steps in the simulation so far.
Sentaurus Device does not enforce any particular file name extension, but prepends the
device instance name to the file name in mixed mode.

■ Sentaurus Device writes Newton information to a NewtonPlot file during execution of a
Quasistationary or Transient command when the step size decreases below a
certain value. By default, the criterion is , where MinStep is the
lower limit for the step size that is set in a Quasistationary or Transient command.
This condition usually occurs immediately before a simulation is about to fail.

■ Alternatively, use the NewtonPlotStep parameter to specify the step-size criterion.
NewtonPlotStep can be specified as an option to the NewtonPlot keyword in the Math
section of the command file, in which case, it applies to all Quasistationary and
Transient commands. It also can be specified as an option to a particular
Quasistationary or Transient command, in which case, it only applies to that
particular command.

step size 2 MinStep×<
154 Sentaurus™ Device User Guide
N-2017.09



6: Numeric and Software-Related Issues
Monitoring Convergence Behavior
■ By default, when the step-size criterion is met, Sentaurus Device writes the current values
of the solution variables only to the NewtonPlot file. Additional data can be included in
the output by specifying options to NewtonPlot in the Math section. See Table 211 on
page 1403 for a list of available options.

■ In addition, MinError can be specified as an option to NewtonPlot. If present, Sentaurus
Device writes the NewtonPlot file only if the error of the actual iteration is smaller than
all previous errors within the current Newton step. In this case, the first %d format specifier
in the NewtonPlot file name will be replaced with min instead of the iteration number.

Automatic Activation of CNormPrint and NewtonPlot

By default, CNormPrint and NewtonPlot are activated automatically when certain criteria
are met:

■ For CNormPrint: 

■ For NewtonPlot: 

where the step size is calculated during the execution of a Quasistationary or Transient
command, and AutoCNPMinStepFactor and AutoNPMinStepFactor are parameters that
can be specified in the Math section of the command file:

Math {
AutoCNPMinStepFactor = <float> #default = 2.0
AutoNPMinStepFactor = <float> #default = 2.0

}

You can disable the automatic activation of CNormPrint and NewtonPlot by specifying
values of zero for the above parameters.

When NewtonPlot files are created as a result of automatic activation, the Error, Residual,
Update, and MinError options for NewtonPlot will be used by default. However, any user-
specified options for NewtonPlot in the Math section of the command file will override the
default behavior.

In addition, NewtonPlot will be activated automatically for solutions that are not part of a
Quasistationary or Transient when the maximum-allowed iterations for the solution
have been reached. The same output options described in the previous paragraph will be used
in this case as well (except for MinError), and the iteration number will replace the %d format
specifier in the file name.

step size AutoCNPMinStepFactor MinStep×<
step size AutoNPMinStepFactor MinStep×<
Sentaurus™ Device User Guide 155
N-2017.09



6: Numeric and Software-Related Issues 
Monitoring Convergence Behavior
Simulation Statistics for Plotting and Output

Simulation Statistics in Current Plot Files

To include various simulation statistics in current plot files for visualization, specify the
SimStats option in the Math section of the command file:

Math {SimStats}

When this option is specified, Sentaurus Device will write a SimStats group of datasets to the
current plot file (*.plt file) after each successful solution. The following datasets are included
in the SimStats group: 

Restarts Number of consecutive restarts before the solution converged

CumulativeRestarts Total number of restarts so far

Stepsize Step size used for quasistationary or transient solution

Rhs Final RHS norm for the solution

error Final error for the solution

Iterations Number of iterations required for solution

CumulativeIterations Total number of iterations so far

AssemblyTime CPU time spent building RHS and Jacobian for the solution

SolveTime CPU time used by solver for the solution

TotalTime Total CPU time for the solution (includes overhead time)

CumulativeAssemblyTime Total assembly time so far

CumulativeSolveTime Total solve time so far

CumulativeTotalTime Total CPU time so far

AssemblyTime_wall Wallclock time spent building RHS and Jacobian for the solution

SolveTime_wall Wallclock time used by solver for the solution

TotalTime_wall Total wallclock time for the solution (includes overhead time)

CumulativeAssemblyTime_wall Total wallclock assembly time so far

CumulativeSolveTime_wall Total wallclock solve time so far

CumulativeTotalTime_wall Total wallclock time so far

PeakMemory Peak memory (watermark) so far

AverageMemory Average memory for the time step
156 Sentaurus™ Device User Guide
N-2017.09



6: Numeric and Software-Related Issues
Save and Load
Simulation Statistics in DOE Variables

Cumulative simulation statistics can be written to the end of a Sentaurus Device output file
(*.log file) as DOE variables by specifying the WriteDOE option to SimStats in the Math
section:

Math {
SimStats ( WriteDOE [DOE_prefix = <string>] )

}

When WriteDOE is specified, the following DOE variables will be written:

DOE: Restarts <value>
DOE: Iterations <value>
DOE: AssemblyTime <value>
DOE: SolveTime <value>
DOE: TotalTime <value>
DOE: AssemblyTime_wall <value>
DOE: SolveTime_wall <value>
DOE: TotalTime_wall <value>

The option DOE_prefix allows a string to be prepended to the DOE variable names. For
example, specifying DOE_prefix = "test_" writes the DOE variable test_Restarts
instead of Restarts.

Save and Load

The Save and Load statements allow you to store the current simulation state of a device in a
file and later (often, from another simulation run) to reload it, and to resume from where you
stopped. By default, Plot files can be reloaded as well (see Device Plots on page 122). The
Save statement generates files of type .sav, which only contain the information required to
restart a simulation:

■ Contact biases and currents

■ The values of solution variables

■ Occupation probability of traps

■ Ferroelectric history (electric field and polarization) if the ferroelectric model is switched
on

Loading traps is supported only if the specifications of traps for the saving and loading
simulation are identical, that is, the set of traps and their order in the command file must be
identical, as well as their types. A mismatch of trap specifications is silently ignored and could
lead to partially correctly, incorrectly, or not loaded trap occupations. In this case, you must
verify if the traps are initialized as intended.
Sentaurus™ Device User Guide 157
N-2017.09



6: Numeric and Software-Related Issues 
Save and Load
When the file is loaded, all this information is restored.

NOTE Contact voltages stored in the loaded file overwrite the bias conditions
that are specified in the command file.

When you specify a Save file in the File section, the simulation state is saved automatically
to that file at the end of the simulation. When you specify a Load file in the File section, the
state stored in that file is loaded at the beginning of the simulation. The geometry of a loaded
file must match the geometry specified in the Grid file.

NOTE Interfaces regions are required in the grid file to save and load data on
interfaces (see Interface Plots on page 125).

More control is possible with Save and Load commands in the Solve section. The commands
are defined as:

Save(<parameters-opt>) <system-opt>
Load(<parameters-opt>) <system-opt>

The options are as for Plot, see When to Plot on page 123. Save statements can be used at
any level of the Solve section, the Load statement can only be used as a base level of the
Solve statement. 

For example, in the case of a transient simulation, Load can only be used before or after the
transient, not during it. Multiple Load and Save commands are allowed in a Solve statement.
For example:

Solve {
...
# Ramp the gate and save structures
# First gate voltage
Quasistationary (InitialStep=0.1 MaxStep=0.1 MinStep=0.01

Goal {Name="gate" Voltage=1})
{Coupled {Poisson Electron Hole}}
Save(FilePrefix="vg1")

# Second gate voltage
Quasistationary (InitialStep=0.1 Maxstep=0.1 MinStep=0.01

Goal {Name="gate" Voltage=3})
{Coupled {Poisson Electron Hole}}
Save(FilePrefix="vg2")

# Load the saved structures and ramp the drain
# First curve
Load(FilePrefix="vg1")
NewCurrentPrefix="Curve1"
Quasistationary (InitialStep=0.1 MaxStep=0.5 MinStep=0.01

Goal {Name="drain" Voltage=2.0})
{Coupled {Poisson Electron Hole}}
158 Sentaurus™ Device User Guide
N-2017.09



6: Numeric and Software-Related Issues
Tcl Command File
# Second curve
Load(FilePrefix="vg2")
NewCurrentPrefix="Curve2"
Quasistationary (InitialStep=0.1 MaxStep=0.5 MinStep=0.01

Goal {Name="drain" Voltage=2.0})
{Coupled {Poisson Electron Hole}}

}

Tcl Command File

The Sentaurus Device command-line option --tcl invokes the Tcl interpreter to execute the
command file. Tcl provides valuable extensions to the standard command file of Sentaurus
Device, including:

■ Variables

■ Expressions

■ Control structures

In addition, all of the Inspect Tcl commands are available (refer to the Inspect User Guide for
more information). These commands are useful for the purpose of parameter extraction (see
Extraction on page 163). However, the graphical functionality of the Inspect commands has
been disabled.

Overview

An entire device simulation can be performed by the Tcl command sdevice. The following
example shows a quasistationary ramp to computed contact values:

set vd 0.2
set vg [expr {10*$vd}]

sdevice "
Electrode{

{ Name = \"source\" Voltage = 0.0 }
{ Name = \"gate\" Voltage = 0.0 }
{ Name = \"drain\" Voltage = $vd }
{ Name = \"bulk\" Voltage = 0.0 }

}

File{
Grid    = \"mosfet.tdr\"
Plot    = \"mosfet_des.tdr\"
Current = \"mosfet_des.plt\"
Output = \"mosfet_des.log\"
Sentaurus™ Device User Guide 159
N-2017.09



6: Numeric and Software-Related Issues 
Tcl Command File
}

Physics {
Mobility (DopingDependence)
Recombination (SRH (DopingDependence))

}

Solve{
Poisson
QuasiStationary (Goal {Name=\"gate\" Voltage=$vg})
{ Coupled {Poisson Electron Hole} }

}
"

Sometimes, it is more useful to perform a device simulation in stages. In this case, the
sdevice_init command is used for initialization, and multiple sdevice_solve commands
are used to drive the simulation. 

In the following example, an Id–Vg sweep is performed, and the threshold voltage is extracted
from the current plot file:

# initialize Sentaurus Device simulation
sdevice_init {

Electrode{
{ Name = "source" Voltage = 0.0 }
{ Name = "gate" Voltage = 0.0 }
{ Name = "drain" Voltage = 0.2 }
{ Name = "bulk" Voltage = 0.0 }

}

File{
Grid    = "mosfet.tdr"
Plot    = "extract_VT_des.tdr"
Current = "extract_VT_des.plt"
Output  = "extract_VT_des.log"

}

Physics{
EffectiveIntrinsicDensity (Slotboom)
Mobility (DopingDependence)
Recombination (SRH (DopingDependence))

}
}

# compute idvgs curve
sdevice_solve {

Solve{
NewCurrentPrefix = "initial_"
160 Sentaurus™ Device User Guide
N-2017.09



6: Numeric and Software-Related Issues
Tcl Command File
Poisson
Coupled {Poisson Electron Hole}

Save (FilePrefix = "extract_VT_inital_save")

NewCurrentPrefix = ""
QuasiStationary (

InitialStep=0.05 Increment=1.3
MaxStep=0.05 MinStep=1e-4
Goal {Name="gate" Voltage=2}

)
{ Coupled {Poisson Electron Hole} }

}
}

# extract threshold voltage
set VT [extract_VT extract_VT_des.plt gate drain]

# ramp gate voltage to threshold voltage
sdevice_solve "

Solve{
NewCurrentPrefix = \"ignore_\"

Load (FilePrefix = \"extract_VT_inital_save\")

QuasiStationary (
InitialStep=0.25 Increment=1.3
MaxStep=0.25 MinStep=1e-4
Goal {Name=\"gate\" Voltage=$VT}

)
{ Coupled {Poisson Electron Hole} }

}
"

# save final plot file
sdevice_finish

The final command sdevice_finish signals the end of a sequence of sdevice_solve
statements, and Sentaurus Device saves the final plot files.

sdevice Command

The Tcl sdevice command expects a single argument. This argument describes an entire
device simulation, that is, it includes a File section, Physics section, and Solve section.

The sdevice command returns 1 if the device simulation converges. Otherwise, the value 0 is
returned.
Sentaurus™ Device User Guide 161
N-2017.09



6: Numeric and Software-Related Issues 
Tcl Command File
sdevice_init Command

The Tcl sdevice_init command expects a single argument. This argument initializes a
device simulation, that is, it can contain all of the sections of a standard command file of
Sentaurus Device (except a Solve section). 

No return value is computed by sdevice_init. If an error is encountered, Sentaurus Device
will abort.

sdevice_solve Command

The Tcl sdevice_solve command expects a single argument. It can only be used after an
sdevice_init command. The argument must contain a single Solve section. All the
commands in the Solve section are executed.

The sdevice_solve command returns 1 if the device simulation converges. Otherwise, the
value 0 is returned.

sdevice_finish Command

The Tcl sdevice_finish command expects no arguments, and it can be called after a series
of sdevice_solve commands. It indicates that the device simulation performed by the
sdevice_solve commands is finished, and the final plot file is generated. All open current
plot files are closed.

sdevice_parameters Command

The Tcl sdevice_parameters command expects two arguments: a file name and the
contents of a Sentaurus Device parameter file. It is an auxiliary function, which writes the
parameter file to the given file name.

The following example generates the file models.par containing a permittivity parameter:

sdevice_parameters models.par {
Epsilon {

epsilon = 11.7
}

}

162 Sentaurus™ Device User Guide
N-2017.09



6: Numeric and Software-Related Issues
Tcl Command File
Flowchart

Figure 16 shows the sequence in which the various Tcl sdevice commands can be invoked. 

Figure 16 Flowchart of sequence for Tcl commands

Extraction

The Tcl interpreter in Sentaurus Device provides access to all of the Inspect commands. In this
way, you can easily analyze .plt files generated by Sentaurus Device and extract parameters.
The following example shows a gate ramp followed by the extraction of the threshold voltage:

sdevice {
Electrode {

{ Name = "source" Voltage = 0.0 }
{ Name = "gate" Voltage = 0.0 }
{ Name = "drain" Voltage = 0.2 }
{ Name = "bulk" Voltage = 0.0 }

}

File {
Grid    = "mosfet.tdr"
Plot    = "extract_VT_des.tdr"
Current = "extract_VT_des.plt"
Output = "extract_VT_des.log"

}

Physics { ... }

start

end

sdevice

sdevice_init

sdevice_solve

sdevice_finish
Sentaurus™ Device User Guide 163
N-2017.09



6: Numeric and Software-Related Issues 
Tcl Command File
Solve {
QuasiStationary (

InitialStep=0.05 MaxStep=0.05
Goal {Name="gate" Voltage=2}
)
{ Coupled {Poisson Electron Hole} }

}
}

proj_load extract_VT_des.plt proj
cv_create idvgs "proj gate OuterVoltage" "proj drain TotalCurrent"
set VT [f_VT idvgs]
puts stdout "threshold voltage VT = ${VT}V"

Available Inspect Tcl Commands

Inspect Tcl commands can be used in Sentaurus Device. 

Table 21 Inspect Tcl commands available for use in Sentaurus Device

Command functions Tcl commands

Reading and writing files graph_load, graph_write, load_library, param_load, param_write, 
proj_getDataSet, proj_getList, proj_getNodeList, proj_load, 
proj_unload, proj_write

Curve commands cv_abs, cv_compute, cv_create, cv_createFromScript, 
cv_createWithFormula, cv_delete, cv_delPts, cv_getVals, 
cv_getValsX, cv_getValsY, cv_getXaxis, cv_getYaxis, cv_getZero, 
cv_inv, cv_log10Scale, cv_logScale, cv_printVals, cv_rename, 
cv_renameCurve, cv_reset, cv_scaleCurve, cv_set_interpol, 
cv_split, cv_split_disc, cv_write, macro_define

Parameter extraction f_Gamma, f_gm, f_IDSS, f_KP, f_Ron, f_Rout, f_TetaG, f_VT, 
f_VT1, f_VT2, ft_scalar

Curve comparison library 
(load_library 
curvecomp)

cvcmp_CompareTwoCurves, cvcmp_DeltaTwoCurves

Extraction library 
(load_library 
EXTRACT)

cv_linTransCurve, cv_scaleCurve, ExtractBVi, ExtractBVv, 
ExtractEarlyV, ExtractGm, ExtractGmb, ExtractIoff, ExtractMax, 
ExtractRon, ExtractSS, ExtractValue, ExtractVtgm, ExtractVtgmb, 
ExtractVti
164 Sentaurus™ Device User Guide
N-2017.09



6: Numeric and Software-Related Issues
Tcl Command File
Output Redirection

The Tcl commands sdevice, sdevice_init, sdevice_solve, and sdevice_finish
allow you to redirect standard output and standard errors. 

Known Restrictions

The following solve commands only apply to the subsequent statements within a single Solve
section. They do not apply beyond an sdevice_solve command:

■ NewCurrentPrefix (see NewCurrentPrefix Statement on page 110)

■ Set (TrapFilling=...) (see Explicit Trap Occupation on page 468)

If a transient simulation is performed using several sdevice_solve commands, the correct
initial time must be specified. Sentaurus Device does not remember the last transient time from
the previous sdevice_solve command.

RF extraction library 
(load_library RFX)

rfx_abs_c, rfx_abs2_c, rfx_add_c, rfx_con_c, rfx_div_c, 
rfx_Export2csv, rfx_ExtractVal, rfx_GetFK1, rfx_GetFmax, 
rfx_GetFt, rfx_GetK_MSG_MAG, rfx_GetMUG, rfx_GetNearestIndex, 
rfx_GetRFCList, rfx_im_c, rfx_load, rfx_mag_phase, rfx_mul_c, 
rfx_PolarBackdrop, rfx_re_c, rfx_ReIm2Abs, rfx_ReIm2Phase, 
rfx_S2K, rfx_sign, rfx_SmithBackdrop, rfx_sub_c, rfx_Y2H, 
rfx_Y2K, rfx_Y2S, rfx_Y2U, rfx_Y2Z, rfx_Z2U

IC-CAP model parameter 
extraction library 
(load_library 
ise2iccap)

iccap_Write

Table 22 Syntax for output redirection

Syntax Description

> filename Writes standard output to filename.

2> filename Writes standard error to filename.

>& filename Writes both standard output and standard error to filename.

>> filename Appends standard output to filename.

2>> filename Appends standard error to filename.

>>& filename Appends both standard output and standard error to filename.

Table 21 Inspect Tcl commands available for use in Sentaurus Device (Continued)

Command functions Tcl commands
Sentaurus™ Device User Guide 165
N-2017.09



6: Numeric and Software-Related Issues 
Parallelization
Parallelization

Sentaurus Device uses thread parallelism to accelerate simulations on shared memory
computers. Table 23 gives an overview of the components of Sentaurus Device that have been
parallelized. 

The number of threads can be specified in the global Math section of the Sentaurus Device
command file:

Math {
NumberOfThreads = number of threads 

}

You can specify a constant for the number of threads, such as:

NumberOfThreads = 2

or:

NumberOfThreads = maximum

where maximum is equivalent to the number of processors available on the execution platform.

If required, the number of threads also can be specified separately for both the assembly and
the linear solvers:

Math {
NumberOfAssemblyThreads = number of assembly threads 
NumberOfSolverThreads = number of solver threads 

}

In addition, the values of the following environment variables are checked:

SDEVICE_NUMBER_OF_THREADS, SNPS_NUMBER_OF_THREADS
SDEVICE_NUMBER_OF_ASSEMBLY_THREADS
SDEVICE_NUMBER_OF_SOLVER_THREADS
OMP_NUM_THREADS

Table 23 Areas of parallelization

Area Description

Matrix assembly Computation of mobility, avalanche, current density, energy flux; assembly of Poisson, 
continuity, lattice, and temperature equations; modified local-density approximation 
(MLDA); computation of box method coefficients.

Linear solver Direct solver PARDISO; iterative solver ILS.
166 Sentaurus™ Device User Guide
N-2017.09



6: Numeric and Software-Related Issues
Parallelization
Table 24 summarizes the priority of the various methods for specifying the number of threads. 

The stack size per assembly thread can be specified in the global Math section of the Sentaurus
Device command file:

Math {
StackSize = stacksize in bytes 

}

Alternatively, the following UNIX environment variables are recognized:

SDEVICE_STACKSIZE, SNPS_STACKSIZE

By default, Sentaurus Device uses only one thread and the stack size is 1 MB. For most
simulations, the default stack size is adequate. 

Sentaurus Device requires one parallel license for every four threads. For example, a parallel
simulation with 2–4 threads requires one parallel license, 5–8 threads require two licenses,
9–12 threads require three licenses, and so on. In the Math section, you can specify the
behavior if there are not enough parallel licenses available:

Math {
ParallelLicense (option)

} 

Table 24 Specification of number of threads

Priority Matrix assembly Linear solver

Highest NumberOfAssemblyThreads NumberOfSolverThreads

NumberOfThreads NumberOfThreads

SDEVICE_NUMBER_OF_ASSEMBLY_THREADS SDEVICE_NUMBER_OF_SOLVER_THREADS

SDEVICE_NUMBER_OF_THREADS SDEVICE_NUMBER_OF_THREADS

SNPS_NUMBER_OF_THREADS SNPS_NUMBER_OF_THREADS

Lowest OMP_NUM_THREADS

Table 25 Available options if insufficient parallel licenses are available

Option Description

Abort Abort the simulation.

Serial (Default) Continue the simulation in serial mode.

Wait Wait until enough parallel licenses become available.
Sentaurus™ Device User Guide 167
N-2017.09



6: Numeric and Software-Related Issues 
Extended Precision
NOTE These options apply only to the initial checkout of parallel licenses.
Under certain circumstances, Sentaurus Device may later check in and
check out parallel licenses as well. This might occur when another
required license is temporarily unavailable. In this case, Sentaurus
Device checks in all the licenses that have been checked out so far
(including parallel licenses), waits until all the required licenses become
available, and checks them out again.

Observe the following recommendations to obtain the best results from a parallel Sentaurus
Device run:

■ Speedups are only obtained for sufficiently large problems. In general, the device grid
should have at least 5000 vertices. Three-dimensional problems are good candidates for
parallelization.

■ It is sensible to run a parallel Sentaurus Device job on an empty computer. As soon as
multiple jobs compete for processors, performance decreases significantly.

■ Use the keyword Wallclock in the Math section of the Sentaurus Device command file
to display wallclock times rather than CPU times.

■ The parallel execution produces different rounding errors. Therefore, the number of
Newton iterations might change.

Extended Precision

Sentaurus Device allows you to perform simulations using extended precision floating-point
arithmetic. This option is switched on in the global Math section by the keyword
ExtendedPrecision. Table 26 lists the available options, the size of a floating-point
number, and the precision.

On Linux, 80-bit extended precision arithmetic is supported in hardware with no noticeable
degradation in performance. However, the gain in accuracy compared to normal precision (19
decimal digits versus 16 decimal digits) is limited.

Table 26 Extended precision floating-point arithmetic

Option Description Size Precision

-ExtendedPrecision double (default) 64 bits

ExtendedPrecision long double 80 bits (Linux)

ExtendedPrecision(128) double-double 128 bits

ExtendedPrecision(256) quad-double 256 bits

ExtendedPrecision(Digits=<digits>) arbitrary 320 + 4.5<digits> bits

2.22
16–×10

1.08
19–×10

4.93
32–×10

1.22
63–×10

10
<digits>–
168 Sentaurus™ Device User Guide
N-2017.09



6: Numeric and Software-Related Issues
Extended Precision
The data types double-double and quad-double are implemented in software on all platforms.
They provide significant improvements in accuracy (32 and 63 decimal digits, respectively).
However, the runtimes increase by a factor of 10 and 100, respectively.

Arbitrary precision supports floating-point arithmetic with an arbitrary number of digits. It can
be used for small research problems where even quad-double may not provide sufficient
accuracy, for example, ultrawide-bandgap semiconductors.

The storage requirements of arbitrary precision increase linearly with the number of digits. The
runtimes, however, increase quadratically with the number of digits.

Extended precision can be a powerful tool to simulate wide-bandgap semiconductors, where it
is necessary to resolve accurately small currents and very low carrier concentrations. It may or
may not be beneficial for general convergence problems.

When using extended precision, the following points should be observed for the best results:

■ In general, the direct linear solver SUPER provides the best accuracy. Additional choices
include the direct linear solver PARDISO and the iterative linear solver ILS. Other linear
solvers do not support extended precision.

■ In the Math section:

• Increase the value of Digits. Possible values are Digits=15 for
ExtendedPrecision(128) and Digits=25 for ExtendedPrecision(256). The
value of Digits can be increased even further with arbitrary precision.

• Decrease the value of RhsMin. Possible values are RhsMin=1e-15 for
ExtendedPrecision(128) and RhsMin=1e-25 for ExtendedPrecision(256).
The value of RhsMin can be decreased even further with arbitrary precision.

• Slightly increase Iterations, for example, from 15 to 20.

• In the case of arbitrary precision, you may need to increase the maximum-allowed error
(UpdateMax parameter) as well as to increase Digits. For example,
UpdateMax=1e220 is recommended for Digits=200.

Some features of Sentaurus Device do not take advantage of extended precision, including:

■ Input and output to files

■ Compact circuit models (refer to the Compact Models User Guide)

■ CMI and the standard C++ interface in the PMI (see Part V of this user guide)

■ Monte Carlo (refer to the Sentaurus™ Device Monte Carlo User Guide)

■ Optical simulations

■ Integration of beam distribution for optical generation (see the keyword RecBoxIntegr
in Transfer Matrix Method on page 625)
Sentaurus™ Device User Guide 169
N-2017.09



6: Numeric and Software-Related Issues 
System Command
System Command

The System command allows UNIX commands to be executed during a Sentaurus Device
simulation:

System ("UNIX command")

The System command can appear as an independent command in the Solve section, as well
as within a Transient, Plugin, or Quasistationary command. The string argument of
the System command is passed to a UNIX shell for evaluation.

By default, the return status of the UNIX command is ignored. If the variant:

+System ("UNIX command")

is used, Sentaurus Device examines the return status. The System command is considered to
have converged if the return status is zero. Otherwise, it has not converged.

References

[1] R. E. Bank and D. J. Rose, “Global Approximate Newton Methods,” Numerische
Mathematik, vol. 37, no. 2, pp. 279–295, 1981.
170 Sentaurus™ Device User Guide
N-2017.09



Part II Physics in Sentaurus Device

This part of the Sentaurus™ Device User Guide contains the following chapters:

Chapter 7 Electrostatic Potential and Quasi-Fermi Potentials on page 173

Chapter 8 Carrier Transport in Semiconductors on page 181

Chapter 9 Temperature Equations on page 189

Chapter 10 Boundary Conditions on page 201

Chapter 11 Transport in Metals, Organic Materials, and Disordered Media on page 235

Chapter 12 Semiconductor Band Structure on page 249

Chapter 13 Incomplete Ionization on page 277

Chapter 14 Quantization Models on page 283

Chapter 15 Mobility Models on page 317

Chapter 16 Generation–Recombination on page 391

Chapter 17 Traps and Fixed Charges on page 449

Chapter 18 Phase and State Transitions on page 473

Chapter 19 Degradation Models on page 489

Chapter 20 Organic Devices on page 529

Chapter 21 Optical Generation on page 533

Chapter 22 Radiation Models on page 665

Chapter 23 Noise, Fluctuations, and Sensitivity on page 675

Chapter 24 Tunneling on page 715

Chapter 25 Hot-Carrier Injection Models on page 737

Chapter 26 Heterostructure Device Simulation on page 763

Chapter 27 Energy-Dependent Parameters on page 769

Chapter 28 Anisotropic Properties on page 779



Chapter 29 Ferroelectric Materials on page 797

Chapter 31 Modeling Mechanical Stress Effect on page 821

Chapter 32 Galvanic Transport Model on page 897

Chapter 33 Thermal Properties on page 899



CHAPTER 7 Electrostatic Potential and Quasi-
Fermi Potentials

This chapter discusses electrostatic potential and the quasi-Fermi
potentials.

In all semiconductor devices, mobile charges (electrons and holes) and immobile charges
(ionized dopants or traps) play a central role. The charges determine the electrostatic potential
and, in turn, are themselves affected by the electrostatic potential. Therefore, each electrical
device simulation at the very least must compute the electrostatic potential.

When all contacts of a device are biased to the same voltage, the device is in equilibrium, and
the electron and hole densities are described by a constant quasi-Fermi potential. Therefore,
together with the electrostatic potential, the relation between the quasi-Fermi potentials and the
electron and hole densitìies is sufficient to perform the simplest possible device simulation.

Maxwell–Boltzmann statistics is the default in Sentaurus Device, and you can choose to use
Fermi–Dirac statistics as described in Fermi Statistics on page 176.

Electrostatic Potential

The electrostatic potential is the solution of the Poisson equation, which is:

(37)

where:

■  is the electrical permittivity.

■  is the ferroelectric polarization (see Chapter 29 on page 797).

■  is the elementary electronic charge.

■  and  are the electron and hole densities.

■  is the concentration of ionized donors.

■  is the concentration of ionized acceptors.

■  is the charge density contributed by traps and fixed charges (see Chapter 17 on
page 449).

∇ ε∇φ P+( )⋅ q p n– ND NA–+( )– ρtrap–=

ε
P

q

n p

ND

NA

ρtrap
Sentaurus™ Device User Guide 173
N-2017.09



7: Electrostatic Potential and Quasi-Fermi Potentials 
Electrostatic Potential
The dataset name for the electrostatic potential is ElectrostaticPotential. The right-
hand side of Eq. 37 (divided by ) is stored in the SpaceCharge dataset. The keyword for
the Poisson equation in the Solve section is Poisson.

The dimensionless relative permittivity (that is, the permittivity in units of the vacuum
permittivity ) is given by the parameter epsilon in the Epsilon parameter set. The
boundary conditions for the Poisson equation are discussed in Chapter 10 on page 201.

Dipole Layer

At material interfaces, dipole layers of immobile charges can occur, leading to a potential jump
across the interface. They are modeled by:

(38)

where:

■  and  refer to the electrostatic potential at both sides of the interface (index 1 is the
reference side).

■  is the dipole surface density.

■  is the free space permittivity.

■  is the relative interface permittivity.

■  is the elementary electronic charge.

The dipole interface model can be invoked for insulator–insulator interfaces by specifying:

Dipole ( Reference = "R1" )

in the Physics section of the interface. Reference denotes the reference side of the interface,
and it can be either a region name or the material name.

The parameters of the model are given in the Dipole parameter set of the region or material
interface section in the parameter file, and are listed in Table 27. 

Table 27 Dipole model parameters

Symbol Parameter name Default value Unit

sigma_D 0.

epsilon 3.9 1

q–

ε0

φ2 φ1–
qσD

εrε0
----------=

φ1 φ2

σD

ε0

εr

q

σD cm
1–

εr
174 Sentaurus™ Device User Guide
N-2017.09



7: Electrostatic Potential and Quasi-Fermi Potentials
Quasi-Fermi Potential With Boltzmann Statistics
NOTE At critical points, where heterointerfaces and dipole interfaces intersect,
the semiconductor regions must be interface connected. Interface traps
with tunneling cannot be located on dipole interfaces.

Equilibrium Solution

For some models (see Conductive Insulators on page 244 or Modified Ohmic Contacts on
page 202), the equilibrium electrostatic potential is required internally. In this case, the Poisson
equation is solved with equilibrium boundary conditions before any other Coupled statement
and the solution is saved for use during the simulation.

Sentaurus Device allows you to control the parameters of the nonlinear solver for the
equilibrium Poisson equation. The parameters Iterations, Digits, NotDamped,
LineSearchDamping, and RelErrControl described in Table 189 on page 1387 can be
specified as options to the keyword EquilibriumSolution in the Math section (see
Table 220 on page 1421) to control the Newton solver behavior. The following example forces
the Newton solver to solve for an equilibrium solution with 7 digits as the target accuracy and
a maximum number of 100 iterations:

Math {
...
EquilibriumSolution(Iterations=100 Digits=7)
...

}

Quasi-Fermi Potential With Boltzmann Statistics

Electron and hole densities can be computed from the electron and hole quasi-Fermi potentials,
and vice versa. If Boltzmann statistics is assumed, the formulas read:

 (39)

 (40)

where:

■  and  are the effective density-of-states.

■  and  are the quasi-Fermi energies for electrons and holes.

■ and  are electron and hole quasi-Fermi potentials, respectively.

n NC

EF,n EC–

kT
----------------------- 
 exp=

p NV

EV EF,p–

kT
----------------------- 
 exp=

NC NV

EF,n qΦn–= EF,p qΦp–=

Φn Φp
Sentaurus™ Device User Guide 175
N-2017.09



7: Electrostatic Potential and Quasi-Fermi Potentials 
Fermi Statistics
■  and  are conduction and valence band edges, defined as:

(41)

(42)

where  denotes the electron affinity,  is the effective band gap, and  is a constant
reference potential, see below. The zero level for the quasi-Fermi potential agrees with the zero
level for the voltages applied at the contacts.

In unipolar devices, such as MOSFETs, it is sometimes possible to assume that the value of
quasi-Fermi potential for the minority carrier is constant in certain regions. In this case, the
concentration of the minority carrier can be directly computed from Eq. 39 or Eq. 40. This
strategy is applied in Sentaurus Device if one of the carriers (electron or hole) is not specified
inside the Coupled statement of the Solve section. Sentaurus Device uses an approximation
scheme to determine the constant value of the quasi-Fermi potential.

NOTE In many cases if avalanche generation is important, the one carrier
approximation cannot be applied even for unipolar devices.

The datasets for . , , and  are named eQuasiFermiEnergy,
eQuasiFermiPotential, hQuasiFermiEnergy, and hQuasiFermiPotential,
respectively.

The ConstRefPot parameter allows you to specify  explicitly. Otherwise, Sentaurus
Device computes  from the vacuum level, using the following rules:

■ If there is silicon in any simulated semiconductor structure, the intrinsic Fermi level of
silicon is selected as reference, .

■ Otherwise, if any simulated device structure contains GaAs, 

■ In all other cases, Sentaurus Device selects the material with the smallest band gap
(assuming a mole fraction of 0) and takes the value of its intrinsic Fermi level as .

Fermi Statistics

For the equations presented in the previous section, Boltzmann statistics was assumed for
electrons and holes. Physically more correct, Fermi (also called Fermi–Dirac) statistics can be
used. Fermi statistics becomes important for high values of carrier densities, for example,

 in the active regions of a silicon device.

EC EV

EC χ– q φ φref–( )–=

EV χ– Eg,eff– q φ φref–( )–=

χ Eg,eff φref

EF,n Φn EF,p Φp

φref

φref

φref Φintr Si( )=

φref Φintr GaAs( ).=

φref

n 1 19×10> cm 3–
176 Sentaurus™ Device User Guide
N-2017.09



7: Electrostatic Potential and Quasi-Fermi Potentials
Fermi Statistics
For Fermi statistics, Eq. 39 and for Eq. 40 are replaced by:

 (43)

 (44)

where  is the Fermi integral of order 1/2.

Alternatively, you can write these expressions as:

(45)

(46)

where  and  are the functions of  and :

(47)

(48)

(49)

(50)

Using Fermi Statistics

To activate Fermi statistics, the keyword Fermi must be specified in the global Physics
section:

Physics {
...
Fermi

}

n NCF1 2⁄
EF,n EC–

kT
----------------------- 
 =

p NVF1 2⁄
EV EF,p–

kT
----------------------- 
 =

F1 2⁄

n γnNC

EF,n EC–

kT
----------------------- 
 exp=

p γpNV

EV EF,p–

kT
----------------------- 
 exp=

γn γp ηn ηp

γn
n

NC
------- ηn–( )exp=

γp
p

NV
------- ηp–( )exp=

ηn

EF,n EC–

kT
-----------------------=

ηp

EV EF,p–

kT
-----------------------=
Sentaurus™ Device User Guide 177
N-2017.09



7: Electrostatic Potential and Quasi-Fermi Potentials 
Initial Guess for Electrostatic Potential and Quasi-Fermi Potentials in Doping Wells
NOTE Fermi statistics can be activated only for the whole device. Region-
specific or material-specific activation is not possible, and the keyword
Fermi is ignored in any Physics section other than the global one. 

Initial Guess for Electrostatic Potential and Quasi-Fermi 
Potentials in Doping Wells

To determine an initial guess for the electrostatic potential and quasi-Fermi potentials, the
device is divided into doping well regions, where a doping well region is a semiconductor
region consisting of a set of connected semiconductor elements bounded by nonsemiconductor
elements or by vacuum (a doping well region may contain several mesh semiconductor
regions). Then, each doping well region is further subdivided into wells of n-type and p-type
doping, such that p-n junctions (DopingConcentration=0) serve as dividers between wells.
For doping wells with more than one contact, the wells are further subdivided, such that no well
is associated with more than one contact. Every well is connected uniquely to a contact or it
has no contact (floating well).

NOTE Sentaurus Device uses integers to enumerate all doping wells. You can
visualize the indices of the doping wells by plotting the DopingWells
field.

In wells with contacts, the quasi-Fermi potential of the majority carrier is set to the voltage on
the contact associated with the well. For wells that have no contacts, the following equations
define the quasi-Fermi potential for the majority carriers:

(51)

(52)

where  and  are the minimum and maximum of the contact voltages of the
semiconductor wells with contacts in the doping well region, where the contactless well under
consideration is located. The coefficient  is an adjustable parameter with a default value
of 0. To change the value of , use the keyword FloatCoef in the Physics section.

If a well has a contact and it is the only well in the doping well region to which it belongs, then
the quasi-Fermi potential of the minority carrier is set equal to the quasi-Fermi potential of the
majority carrier. For all other wells, the quasi-Fermi potential of the minority carrier is set to

 or  if the well is n-type or p-type, respectively, with  and  described above.

The electrostatic potential in a well is set to the value of the quasi-Fermi potential of the
majority carrier adjusted by the built-in potential, that is, the initial solution will obey charge
neutrality in all semiconductor regions.

Φp kfloatVmax 1 kfloat–( )Vmin+=

Φn 1 kfloat–( )V
max

kfloatVmin+=

Vmin Vmax

kfloat

kfloat

Vmin Vmax Vmin Vmax
178 Sentaurus™ Device User Guide
N-2017.09



7: Electrostatic Potential and Quasi-Fermi Potentials
Electrode Charge Calculation
Regionwise Specification of Initial Quasi-Fermi Potentials

You can set initial quasi-Fermi potentials regionwise. This is especially useful in CCD
simulations, where a CCD cell or region must be initially in a certain state (usually, deep
depletion). By specifying an initial quasi-Fermi potential, the region or set of regions can be
brought to the proper state or states at the start of the simulation.

The initial quasi-Fermi potentials for electrons and holes can be specified regionwise in the
Physics section using eQuasiFermi for electrons and hQuasiFermi for holes, followed by
the value in volts:

Physics(Region="region_1") {
eQuasiFermi = 10

}

The initial quasi-Fermi potential is recomputed when the continuity equation for the respective
carrier is solved. If the continuity equation for the carrier whose quasi-Fermi potential has been
specified is not solved, then the quasi-Fermi potential does not change. In this case, the device
can be biased to an initial state through a quasistationary or transient simulation, while keeping
the initial specified quasi-Fermi potential.

Electrode Charge Calculation

Sentaurus Device outputs the electrode charge to the current plot file (*.plt file) after each
bias or time point.

For an electrode that contacts an insulator region only, the charge is computed from Gauss’s
law and represents the charge that would sit on the surface of a real contact to the device.

For an electrode that contacts a semiconductor region, the charge also is computed from
Gauss’s law; however, the Gaussian surface used for the integration includes the doping well
associated with the electrode. In this case, the electrode charge represents the charge that sits
on the electrode plus the space charge in the doping well.
Sentaurus™ Device User Guide 179
N-2017.09



7: Electrostatic Potential and Quasi-Fermi Potentials 
Electrode Charge Calculation
180 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 8 Carrier Transport in 
Semiconductors

This chapter discusses carrier transport models for electrons and
holes in inorganic semiconductors.

Introduction to Carrier Transport Models

Sentaurus Device supports several carrier transport models for semiconductors. They all can
be written in the form of continuity equations, which describe charge conservation:

(53)

where:

■  and  are the electron and hole net recombination rate, respectively.

■  and  are the electron and hole net generation rate, respectively.

■  is the electron current density.

■  is the hole current density.

■  and  are the electron and hole density, respectively.

The transport models differ in the expressions used to compute  and . These expressions
are the topic of this chapter. Additional equations to compute temperatures are usually also
considered part of a transport model but are deferred to Chapter 9 on page 189. Models for

 and  are discussed in Chapter 16 on page 391, Chapter 17 on page 449, and
Chapter 24 on page 715. The boundary conditions for Eq. 53 are discussed in Chapter 10 on
page 201.

Depending on the device under investigation and the level of modeling accuracy required, you
can select different transport models:

■ Drift-diffusion

Isothermal simulation, suitable for low-power density devices with long active regions.

■ Thermodynamic

Accounts for self-heating. Suitable for devices with low thermal exchange, particularly,
high-power density devices with long active regions.

∇ Jn⋅ q Rnet,n Gnet,n–( ) q
n∂
t∂

-----+= ∇– Jp⋅ q Rnet,p Gnet,p–( ) q
p∂
t∂

-----+=

Rnet,n Rnet,p

Gnet,n Gnet,p

Jn

Jp

n p

Jn Jp

Rnet,n Rnet,p
Sentaurus™ Device User Guide 181
N-2017.09



8: Carrier Transport in Semiconductors 
Drift-Diffusion Model
■ Hydrodynamic

Accounts for energy transport of the carriers. Suitable for devices with small active regions.

■ Monte Carlo

Solves the Boltzmann equation for a full band structure.

The numeric approach for the Monte Carlo method (and the physical models usable with it)
differs significantly from the other transport models. Therefore, the Monte Carlo method is
described in a separate manual (see Sentaurus™ Device Monte Carlo User Guide).

For all other transport models, the solution of Eq. 53 is requested by the keywords Electron
and Hole in the Solve section. When the equation for a density is not solved in a Solve
statement, the quasi-Fermi potential for the respective carrier type remains fixed, unless the
keyword RecomputeQFP is present in the Math section and the equation for the other density
is solved.

The solutions of the densities  and  are stored in the datasets eDensity and hDensity,
respectively. The current densities  and  are stored in the vector datasets
eCurrentDensity and hCurrentDensity, their sum is stored in
ConductionCurrentDensity, and the total current density (including displacement
current) is stored in TotalCurrentDensity. An alternative representation of the total current
density is described in Current Potential on page 185.

NOTE Maxwell–Boltzmann statistics is the default for transport models in
Sentaurus Device, and you can choose to use Fermi–Dirac statistics as
described in Fermi Statistics on page 176.

Drift-Diffusion Model

The drift-diffusion model is the default carrier transport model in Sentaurus Device. For the
drift-diffusion model, the current densities for electrons and holes are given by:

(54)

(55)

The first term takes into account the contribution due to the spatial variations of the
electrostatic potential, the electron affinity, and the band gap. The remaining terms take into
account the contribution due to the gradient of concentration, and the spatial variation of the
effective masses  and . For Fermi statistics,  and  are given by Eq. 47 and Eq. 48,
p. 177. For Boltzmann statistics, .

n p
Jn Jp

Jn μn n∇EC 1.5nkT∇ mnln–( ) Dn ∇n n∇ γnln–( )+=

Jp μp p∇EV 1.5pkT∇ mpln+( ) Dp– ∇p p∇ γpln–( )=

mn mp γn γp

γn γp 1= =
182 Sentaurus™ Device User Guide
N-2017.09



8: Carrier Transport in Semiconductors
Thermodynamic Model for Current Densities
By default, the diffusivities  and  are given through the mobilities by the Einstein
relation,  and . However, it is possible to compute them independently
(see Non-Einstein Diffusivity on page 376).

When the Einstein relation holds, the current equations can be simplified to:

(56)

(57)

where and  are the electron and hole quasi-Fermi potentials, respectively (see Quasi-
Fermi Potential With Boltzmann Statistics on page 175).

It is possible to use the drift-diffusion model together with a lattice temperature equation, but
it is not mandatory. It is not possible to use the drift-diffusion model for a particular carrier type
and to solve the carrier temperature for the same carrier type; the hydrodynamic model is
required for that (see Hydrodynamic Model for Current Densities on page 184).

Thermodynamic Model for Current Densities

In the thermodynamic model [1], the relations Eq. 56 and Eq. 57 are generalized to include the
temperature gradient as a driving term:

(58)

(59)

where  and  are the absolute thermoelectric powers [2] (see Thermoelectric Power (TEP)
on page 913), and  is the lattice temperature.

The model differs from drift-diffusion when the lattice temperature equation is solved (see
Thermodynamic Model for Lattice Temperature on page 193). However, it is possible to solve
the lattice temperature equation even when using the drift-diffusion model.

To activate the thermodynamic model, specify the Thermodynamic keyword in the global
Physics section.

Dn Dp

Dn kTμn= Dp kTμp=

Jn nqμn Φn∇–=

Jp pqμp Φp∇–=

Φn Φp

Jn nqμn Φn∇ Pn T∇+( )–=

Jp pqμp Φp∇ Pp T∇+( )–=

Pn Pp

T

Sentaurus™ Device User Guide 183
N-2017.09



8: Carrier Transport in Semiconductors 
Hydrodynamic Model for Current Densities
Hydrodynamic Model for Current Densities

In the hydrodynamic model, current densities are defined as:

(60)

(61)

The first term takes into account the contribution due to the spatial variations of electrostatic
potential, electron affinity, and the band gap. The remaining terms in Eq. 60 and Eq. 61 take
into account the contribution due to the gradient of concentration, the carrier temperature
gradients, and the spatial variation of the effective masses  and . For Fermi statistics, 
and  are given by Eq. 47 and Eq. 48, p. 177, and  and

 (with  and  from Eq. 49 and Eq. 50, p. 177); for Boltzmann
statistics, .

The thermal diffusion constants  and  are available in the ThermalDiffusion
parameter set. They default to zero, which corresponds to the Stratton model [3][4].

Eq. 60 and Eq. 61 assume that the Einstein relation  holds (  is the diffusion
constant), which is true only near the equilibrium. Therefore, Sentaurus Device provides the
option to replace the carrier temperatures in Eq. 60 and Eq. 61 by , an average
of the carrier temperature (  or ) and the lattice temperature. This can be useful in devices
where the carrier diffusion is important. The coefficient  for electrons and holes can be
specified in the ThermalDiffusion parameter set. It defaults to one.

To activate the hydrodynamic model, the keyword Hydrodynamic must be specified in the
global Physics section. If only one carrier temperature equation is to be solved,
Hydrodynamic must be specified with an option, either Hydrodynamic(eTemperature)
or Hydrodynamic(hTemperature).

Numeric Parameters for Continuity Equation

Carrier concentrations must never be negative. If during a Newton iteration a concentration
erroneously becomes negative, Sentaurus Device applies damping procedures to make it
positive. The concentration that finally results from a Newton iteration is limited to a value that
can be specified (in ) by DensLowLimit=<float> in the global Math section; the
default is .

Jn μn n∇EC kTn∇n nkTn∇ γnln– λn fn
td

kn∇Tn 1.5nkTn∇ mnln–+ + 
 =

Jp μp p∇EV kTp∇p pkTp∇ γpln+– λp fp
td

kp∇Tp– 1.5pkTp∇ mpln+( )=

mn mp γn

γp λn F1 2⁄ ηn( ) F 1– 2⁄ ηn( )⁄=
λp F1 2⁄ ηp( ) F 1– 2⁄ ηp( )⁄= ηn ηp

γn γp λn λp 1= = = =

fn
td fp

td

D μkT= D

gTc 1 g–( )T+
Tn Tp

g

cm 3–

10 100– cm 3–
184 Sentaurus™ Device User Guide
N-2017.09



8: Carrier Transport in Semiconductors
Numeric Approaches for Contact Current Computation
Numeric Approaches for Contact Current Computation

By default, Sentaurus Device computes the contact current as the sum of the integral of the
current density over the surface of the doping well associated with the contact and the integral
of the charge generation rate over the volume of the doping well. The following alternative,
mutually exclusive approaches can be selected in the global Math section:

■ CurrentWeighting activates a domain-integration method that uses a solution-
dependent weighting function to minimize numeric errors (see [5] for details). 

■ DirectCurrent activates computation of the current as the surface integral of the current
density over the contact area.

NOTE The current that flows into nodes in mixed-mode simulations is always
computed with the DirectCurrent approach, regardless of the
specification in the Math section.

Current Potential

The total current density:

(62)

satisfies the conservation law:

(63)

Consequently,  can be written as the curl of a vector potential :

(64)

In a 2D simulation,  only has a nonzero component along the z-axis, which is written simply
as . The total current density is then given by:

(65)

J Jn Jp JD+ +=

∇ J⋅ 0=

J W

J ∇ W×=

W
Wz W=

J

∂W
∂y
--------

∂W
∂x
--------–

=

Sentaurus™ Device User Guide 185
N-2017.09



8: Carrier Transport in Semiconductors 
References
The function  has the following important properties:

■ The contour lines of  are the current lines of .

■ The difference between the values of  at any two points equals the total current flowing
across any line linking these points.

Sentaurus Device computes the 2D current potential according to the approach proposed by
Palm and Van de Wiele [6].

To visualize the results, add the keyword CurrentPotential to the Plot section:

Plot {
CurrentPotential

}

Figure 17 displays plots of the total current density and current potential for a simple square
device. 

Figure 17 (Left) Total current density [Acm–1] and (right) current potential [Acm–1]

References

[1] G. Wachutka, “An Extended Thermodynamic Model for the Simultaneous Simulation
of the Thermal and Electrical Behaviour of Semiconductor Devices,” in Proceedings of
the Sixth International Conference on the Numerical Analysis of Semiconductor Devices
and Integrated Circuits (NASECODE VI), Dublin, Ireland, pp. 409–414, July 1989.

[2] H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, New York:
John Wiley & Sons, 2nd ed., 1985.

W

W J

W

186 Sentaurus™ Device User Guide
N-2017.09



8: Carrier Transport in Semiconductors
References
[3] R. Stratton, “Diffusion of Hot and Cold Electrons in Semiconductor Barriers,” Physical
Review, vol. 126, no. 6, pp. 2002–2014, 1962.

[4] Y. Apanovich et al., “Numerical Simulation of Submicrometer Devices Including
Coupled Nonlocal Transport and Nonisothermal Effects,” IEEE Transactions on
Electron Devices, vol. 42, no. 5, pp. 890–898, 1995.

[5] P. D. Yoder et al., “Optimized Terminal Current Calculation for Monte Carlo Device
Simulation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 16, no. 10, pp. 1082–1087, 1997.

[6] E. Palm and F. Van de Wiele, “Current Lines and Accurate Contact Current Evaluation
in 2-D Numerical Simulation of Semiconductor Devices,” IEEE Transactions on
Electron Devices, vol. ED-32, no. 10, pp. 2052–2059, 1985.
Sentaurus™ Device User Guide 187
N-2017.09



8: Carrier Transport in Semiconductors 
References
188 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 9 Temperature Equations

This chapter describes the equations for lattice and carrier
temperatures.

Introduction to Temperature Equations

Sentaurus Device can compute up to three different temperatures: lattice temperature, electron
temperature, and hole temperature. Lattice temperature describes self-heating of devices. The
electron and hole temperatures are required to model nonequilibrium effects in deep-
submicron devices (in particular, velocity overshoot and impact ionization).

The following options are available:

■ The lattice temperature can be computed from the total dissipated heat, assuming the
temperature is constant throughout the device.

■ The lattice temperature can be computed nonuniformly using the default model, or the
thermodynamic model, or the hydrodynamic model.

■ One or both carrier temperatures can be computed using the hydrodynamic model.

Irrespective of the model used, the lattice temperature is stored in the dataset Temperature,
and the electron and hole temperatures are stored as eTemperature and hTemperature,
respectively.

To solve the lattice temperature, it is necessary to specify a thermal boundary condition (see
Thermal Boundary Conditions on page 226). To solve the carrier temperatures, no thermal
boundary conditions are required.

By default (and as an initial guess), the lattice temperature is set to  throughout the
device, or to the value of Temperature set in the Physics section. If the device has one or
more defined thermodes, an average temperature is calculated from the temperatures at the
thermodes and is set throughout the device. As an initial guess, electron and hole temperatures
are set to the lattice temperature. Carrier temperatures that are not solved are assumed to equal
the lattice temperature throughout the simulation.

300 K
Sentaurus™ Device User Guide 189
N-2017.09



9: Temperature Equations 
Uniform Self-Heating
Uniform Self-Heating

A simple self-heating model is available to account for self-heating effects without solving the
lattice heat flow equation. The self-heating effect can be captured with a uniform temperature,
which is bias dependent or current dependent. The global temperature is computed from a
global heat balance equation where the dissipated power  is equal to the sum of the
boundary heat fluxes (on thermodes with finite thermal resistance):

(66)

where:

■  is the device global temperature.

■  and  are the temperature and thermal resistivity of thermode  not connected
in a thermal circuit.

■  and  are the temperature and thermal resistivity of thermode  connected in a
thermal circuit.

The second sum in Eq. 66 becomes zero when the device is not connected to any thermal
circuit.

For a thermode  connected in a thermal circuit, an additional thermal circuit equation is
solved for the temperature at the respective thermode . The thermal circuit equation solved
is derived from the condition that the heat flux through the connected thermode is equal to the
flux flowing through the thermal circuit element to which the thermode is connected.

In the case of thermode  connected to a thermal resistor, the thermal circuit equation
becomes:

(67)

where:

■ The left-hand side represents the thermal flux at thermode .

■ The right-hand side represents the heat flux flowing through the thermal resistor with
thermal resistivity .

■  is the temperature drop across the thermal resistor.

For a thermal capacitor, the thermal equation becomes 
where  is the voltage drop across the thermal capacitor in a transient
simulation.

Pdiss

Pdiss

T Tthermode
i( )

–

Rth
i( )------------------------------

T Tcirc
k( )

–

Rth
k( )-------------------

k
+

i
=

T

Tthermode
i( ) Rth

i( ) i

Tcirc
k( ) Rth

k( ) k

k
Tcirc

k( )

k

T Tcirc
k( )

–( ) Rth
k( )⁄ T∇ resistor

Rth⁄=

k

Rth

T∇ resistor Tresistor Tcirc
k( )–=

T Tcirc
k( )–( ) Rth

k( )⁄ Cth td
d

T∇
capacitor

=
T∇ capacitor Tcapacitor Tcirc

k( )–=
190 Sentaurus™ Device User Guide
N-2017.09



9: Temperature Equations
Uniform Self-Heating
If a thermode does not specify a thermal resistance or a thermal conductance, then by default,
a zero surface conductance is assumed. In this case, the thermode is not accounted for in the
sum on the right-hand side of Eq. 66 because the respective heat flux is zero. When none of the
thermodes specifies any thermal resistance or conductance, Eq. 66 cannot be solved.

The dissipated power  can be calculated as either the sum of all terminal currents
multiplied by their respective terminal voltages ( ), the sum of s from the user-specified
node, or the total Joule heat .

The global temperature  for the point  (in transient or quasistationary simulations) is
computed based on the estimation of  at the previous point  and the solution temperature

 at the same point .

NOTE For uniform self-heating, the temperature is obtained by postprocessing,
rather than computed self-consistently with all other solution variables.
Therefore, the simulation results may depend on the simulation time
step used in quasistationary or transient simulations. In addition,
uniform self-heating must not be used for AC, noise, or harmonic
balance (HB) simulations.

Using Uniform Self-Heating

The uniform self-heating equation is activated in the global Physics section using the
PostTemperature keyword:

Physics {
PostTemperature
...

}

The heat fluxes at thermodes are defined in the Thermode sections by specifying
Temperature and SurfaceResistance or SurfaceConductance:

Thermode {
{Name= "top" Temperature=300 SurfaceConductance=0.1}
...
{Name= "bottom" Temperature=300 SurfaceResistance=0.01}

}

Pdiss

IV IV
J F⋅( ) vd

V


Ti ti

Ti ti 1–

Ti 1– ti 1–
Sentaurus™ Device User Guide 191
N-2017.09



9: Temperature Equations 
Default Model for Lattice Temperature
The way  is computed can be chosen by options to PostTemperature in the command
file:

■ As  over all electrodes:

Physics {
PostTemperature(IV_diss)
...

}

■ As  at user-selected electrodes:

Physics {
PostTemperature(IV_diss("contact1" "contact2"))
...

}

■ As the integral of Joule heat over the device volume:

Physics {
PostTemperature
...

}

Uniform self-heating can be used during a quasistationary or transient simulation. As the
feature replaces the lattice heat flow equation (Eq. 68, Eq. 69, and Eq. 75, p. 196), it cannot be
used with the lattice temperature equation activated in the Coupled section.

Default Model for Lattice Temperature

Sentaurus Device can compute a spatially dependent lattice temperature even when neither the
thermodynamic nor the hydrodynamic model is activated. The equation for the temperature is:

(68)

(See Hydrodynamic Model for Current Densities on page 184 for an explanation of the
symbols.) That is, the model is similar to the hydrodynamic model, but all temperatures merge
into the lattice temperature, and all heating terms are accounted for in the lattice temperature
equation.

To use this model, specify the keyword Temperature in the Solve section. You do not have
to specify a model in the Physics section.

Pdiss

IV

IV

∂WL

∂t
----------- ∇ SL⋅+

dWL

dt
-----------

coll

1
q
---Jn ∇EC⋅

dWn

dt
----------

coll

1
q
---Jp ∇EV⋅

dWp

dt
----------

coll

+ + + +=
192 Sentaurus™ Device User Guide
N-2017.09



9: Temperature Equations
Thermodynamic Model for Lattice Temperature
To account for Peltier heat at a contact, or a metal–semiconductor interface, or a conductive
insulator–semiconductor interface, switch on the Peltier heating model explicitly. See Heating
at Contacts, Metal–Semiconductor and Conductive Insulator–Semiconductor Interfaces on
page 916 for more details.

Thermodynamic Model for Lattice Temperature

With the thermodynamic model, the lattice temperature  is computed from:

(69)

where:

■  is the thermal conductivity (see Thermal Conductivity on page 901).

■  is the lattice heat capacity (see Heat Capacity on page 899).

■  and  are the conduction and valence band energies, respectively.

■  is the optical generation rate from photons with frequency  (see Chapter 21 on
page 533).

■  and  are the electron and hole net recombination rates, respectively.

■ The current densities  and  are computed as described in Thermodynamic Model for
Current Densities on page 183.

In metals, Eq. 69 degenerates into:

(70)

where:

■  is the metal thermoelectric power.

■  is the Fermi potential in the metal.

■ is the metal current density as defined in Eq. 148, p. 239.

T

t∂
∂

cLT( ) ∇ κ∇T( )⋅– ∇ PnT Φn+( )Jn PpT Φp+( )Jp+[ ]⋅–=

    
1
q
--- EC

3
2
---kT+ 

  ∇ Jn⋅ qRnet,n–( )–

    
1
q
--- EV–

3
2
---kT+ 

  ∇ Jp⋅– qRnet,p–( )– hωG
opt

+

κ
cL

EC EV

Gopt ω

Rnet,n Rnet,p

Jn Jp

t∂
∂

cLT( ) ∇ κ∇T( )⋅– ∇ PT ΦM+( )JM[ ]⋅–=

P

ΦM

JM
Sentaurus™ Device User Guide 193
N-2017.09



9: Temperature Equations 
Thermodynamic Model for Lattice Temperature
Total Heat and Its Contributions

The RHS of Eq. 69 is the total heat . In the stationary case, the second term and the third term
disappear, that is, the total heat is then given by:

(71)

The electron part can be rewritten as:

(72)

where:

■  is the surface normal at region interface .

■  denotes the surface delta function at region interface .

■  denotes the jump of a function  across the region interface .

The resulting four terms are often denoted as the electron part of the Joule heat, Thomson heat,
Peltier heat, and recombination heat, respectively.

Using the Thermodynamic Model

To use the thermodynamic model, the keyword Temperature must be specified inside the
Coupled command of the Solve section. Use the keyword Thermodynamic in the Physics
section to activate extra terms in the current density equations (due to the gradient of the
temperature).

To account for Peltier heat at a contact, or a metal–semiconductor interface, or a conductive
insulator–semiconductor interface, switch on the Peltier heating model explicitly. See Heating
at Contacts, Metal–Semiconductor and Conductive Insulator–Semiconductor Interfaces on
page 916 for more details.

Sentaurus Device allows the total heat generation rate to be plotted and the separate
components of the total heat to be estimated and plotted. The total heat generation rate is the
term on the right-hand side of Eq. 69. It is plotted using the TotalHeat keyword in the Plot
section. The total heat is calculated only when Sentaurus Device solves the temperature
equation. Table 28 on page 195 shows the formulas to estimate individual heating mechanisms
and the appropriate keywords for use in the Plot section of the command file (see Device Plots
on page 122). The individual heat terms that are used for plotting and that are written to
the .log file are less accurate than those Sentaurus Device uses to solve the transport equations.
They serve as illustrations only. 

H

H ∇ PnT Φn+( )Jn PpT Φp+( )Jp+[ ] hωG
opt

+⋅–=

∇ PnT Φn+( )Jn[ ]⋅–
1

qnμn
------------ Jn

2
qT∇Pn Jn⋅– PnT Φn+( )Jn nS⋅[ ]SδS q PnT Φn+( )Rnet,n–+=

nS S

δS S

α[ ]S α S
194 Sentaurus™ Device User Guide
N-2017.09



9: Temperature Equations
Hydrodynamic Model for Temperatures
Here . To plot the lattice heat flux vector , specify the keyword
lHeatFlux in the Plot section (see Device Plots on page 122).

Hydrodynamic Model for Temperatures

Deep-submicron devices cannot be described properly using the conventional drift-diffusion
transport model. In particular, the drift-diffusion approach cannot reproduce velocity overshoot
and often overestimates the impact ionization generation rates. In this case, the hydrodynamic
(or energy balance) model provides a good compromise between physical accuracy and
computation time.

Since the work of Stratton [2] and Bløtekjær [3], there have been many variations of this
model. The full formulation includes the so-called convective terms [4]. Sentaurus Device
implements a simpler formulation without convective terms. In addition to the Poisson
equation (Eq. 37, p. 173) and continuity equations (Eq. 53, p. 181), up to three additional
equations for the lattice temperature  and the carrier temperatures  and  can be solved.
The energy balance equations read:

(73)

Table 28 Terms and keywords used in Plot section of command file

Heat name Keyword Formula

Electron Joule heat eJouleHeat

Hole Joule heat hJouleHeat

Joule heat in conductive 
insulators

JouleHeat

Recombination heat RecombinationHeat

Net recombination heat netRecombinationHeat

Thomson plus Peltier heat [1] ThomsonHeat

Peltier heat PeltierHeat

Jn
2

qnμn
------------

Jp
2

qpμp
------------

JCI
2

σ
-------------

qRtotal Φp TPp+( ) Φn TPn+( )–( )

qRnet,p Φp TPp+( ) qRnet,n Φn TPn+( )–

Jn T Pn∇⋅– Jp T Pp∇⋅–

T
Pn∂
n∂

---------Jn ∇n
Pp∂
p∂

---------Jp ∇p⋅+⋅ 
 –

Rtotal 0.5 Rnet,p Rnet,n+( )= κ T∇

T Tn Tp

∂Wn

∂t
---------- ∇ Sn⋅+ Jn ∇EC q⁄⋅

dWn

dt
----------

coll

+=
Sentaurus™ Device User Guide 195
N-2017.09



9: Temperature Equations 
Hydrodynamic Model for Temperatures
(74)

(75)

where the energy fluxes are:

(76)

(77)

(78)

(79)

(80)

and and  are defined as for Eq. 60 and Eq. 61, p. 184. The parameters , , ,and
 are accessible in the parameter file of Sentaurus Device. Different values of these

parameters can significantly influence the physical results, such as velocity distribution and
possible spurious velocity peaks. By changing these parameters, Sentaurus Device can be
tuned to a very wide set of hydrodynamic/energy balance models as described in the literature.
The default parameter values of Sentaurus Device are:

(81)

(82)

By changing the constants  and , the convective contribution and the diffusive
contributions can be changed independently. With the default set of transport parameters of
Sentaurus Device, the prefactor of the diffusive term has the form:

(83)

∂Wp

∂t
---------- ∇ Sp⋅+ Jp ∇EV q⁄⋅

dWp

dt
----------

coll

+=

∂WL

∂t
----------- ∇ SL⋅+

dWL

dt
-----------

coll

=

Sn
5rnλn

2
--------------

kTn

q
--------Jn fn

hfκ̂n Tn∇+
 
 
 

–=

Sp
5rpλp

2
--------------

k– Tp

q
------------Jp fp

hfκ̂p Tp∇+
 
 
 

–=

SL κL: TL∇–=

κ̂n
k

2

q
-----nμnTn=

κ̂p
k

2

q
-----pμpTp=

λn λp rn rp fn
hf

fp
hf

rn rp 0.6= =

f
hf
n f

hf
p 1= =

fhf
n rn

κn
3
2
---

k
2λn

q
-----------nμnTn⋅=
196 Sentaurus™ Device User Guide
N-2017.09



9: Temperature Equations
Hydrodynamic Model for Temperatures
The collision terms are expressed by this set of equations:

(84)

(85)

(86)

Here, , , and  are the energy gain/loss terms due to generation–recombination
processes. The expressions used for these terms are based on approximations [5] and have the
following form for the major generation–recombination phenomena:

(87)

(88)

(89)

where:

■  is the Shockley–Read–Hall (SRH) recombination rate (see Shockley–Read–Hall
Recombination on page 391).

■  is the radiative recombination rate (see Radiative Recombination on page 407).

■  and  are Auger recombination rates related to electrons and holes (see Auger
Recombination on page 408).

■  is the photon energy (see Hydrodynamic Model Parameters on page 198).

■  is a dimensionless parameter that describes how the surplus energy of the photon splits
between the bands (see Hydrodynamic Model Parameters on page 198).

■  and  are impact ionization rates (see Avalanche Generation on page 413).

■  and  are the recombination rates through trap levels (see Chapter 17 on
page 449).

■  is the optical generation rate (see Chapter 21 on page 533).

Surface recombination is taken into account in a way similar to bulk SRH recombination.
Usually, the influence of , , and  is small, so they are not activated by default. To take
these energy sources into account, the keyword RecGenHeat must be specified in the
Physics section.

∂Wn

∂t
----------

coll
Hn– ξn

Wn Wn0–

τen
-----------------------–=

∂Wp

∂t
----------

coll
Hp– ξp

Wp Wp0–

τep
-----------------------–=

∂WL

∂t
-----------

coll
HL ξn

Wn Wn0–

τen
----------------------- ξp

Wp Wp0–

τep
-----------------------+ +=

Hn Hp HL

Hn 1.5kTn Rnet
SRH

Rnet
rad

+ Rn net,
trap

+( ) E– g,eff Rn
A

Gn
ii

–( ) α– hω Eg,eff–( )G
opt

=

Hp 1.5kTp Rnet
SRH

Rnet
rad

+ Rp net,
trap

+( ) Eg,eff– Rp
A

Gp
ii

–( ) 1 α–( )– hω Eg,eff–( )G
opt

=

HL Rnet
SRH

0.5 Rn net,
trap

Rp net,
trap

+( )+[ ] Eg,eff 1.5kTn 1.5kTp+ +( )=

Rnet
SRH

Rnet
rad

Rn
A Rp

A

hω
α

Gn
ii Gp

ii

Rn net,
trap Rp net,

trap

Gopt

Hn Hp HL
Sentaurus™ Device User Guide 197
N-2017.09



9: Temperature Equations 
Hydrodynamic Model for Temperatures
The energy densities , , and  are given by:

(90)

(91)

(92)

The corresponding equilibrium energy densities are:

(93)

(94)

The parameters  and  in Eq. 84 to Eq. 86 improve numeric stability.

They speed up relaxation for small densities and they approach  for large densities:

(95)

and likewise for . Here,  and  are adjustable small density parameters.

Hydrodynamic Model Parameters

The default set of transport coefficients (Eq. 81 and Eq. 82, p. 196) can be changed in the
parameter file. The coefficients  and  are specified in the EnergyFlux and HeatFlux
parameter sets, respectively. Energy relaxation times  and  can be modified in the
EnergyRelaxationTime parameter set.

 in Eq. 87 and Eq. 88 divides the contribution of the optical generation rate into the energy
gain or loss terms  and . OptGenOffset specifies , which can take values between 0
and 1 (default is 0.5). The angular frequency  in Eq. 87 and Eq. 88 corresponds to the
wavelength specified to compute the optical generation rate. This wavelength is defined by
OptGenWavelength if the optical generation is loaded from a file (see Optical AC Analysis
on page 661). OptGenOffset and OptGenWavelength are both options to RecGenHeat
(see Table 233 on page 1427).

Wn Wp WL

Wn nwn n
3kTn

2
------------ 
 = =

Wp pwp p
3kTp

2
------------ 
 = =

WL cLT=

Wn0 nw0 n
3kT

2
---------= =

Wp0 pw0 p
3kT

2
---------= =

ξn ξp

1

ξn 1
nmin

n
----------

n0

nmin
---------- 
 

max 0 T Tn–( ) 100 K⁄,[ ]
+=

ξp nmin n0

r fhf

τen τep

α
Hn Hp α

ω

198 Sentaurus™ Device User Guide
N-2017.09



9: Temperature Equations
Numeric Parameters for Temperature Equations
The parameters  and  in Eq. 95 are set with RelTermMinDensity and
RelTermMinZeroDensity, respectively, in the global Math section. The default values for

 and  are  and , respectively.

Using the Hydrodynamic Model

To activate the hydrodynamic model, the keyword Hydrodynamic must be specified in the
Physics section. If only one carrier temperature equation is to be solved, Hydrodynamic
must be specified with the appropriate parameter, either Hydrodynamic(eTemperature) or
Hydrodynamic(hTemperature). If the hydrodynamic model is not activated for a particular
carrier type, Sentaurus Device merges the temperature for this carrier with the lattice
temperature. That is, these temperatures are equal, and their heating terms (see the right-hand
sides of Eq. 73, Eq. 74, and Eq. 75) are added.

In addition, the keywords eTemperature, hTemperature, and Temperature must be
specified inside the Coupled command of the Solve section (see Coupled Command on
page 136) to actually solve a carrier temperature equation or the lattice temperature equation.
Temperatures remain fixed during Solve statements in which their equation is not solved.

By default, the energy conservation equations of Sentaurus Device do not include
generation–recombination heat sources. To activate them, the keyword RecGenHeat must be
specified in the Physics section.

To plot the electron, hole, and lattice heat flux vectors  (see Eq. 76, Eq. 77, and
Eq. 78), specify the corresponding keywords eHeatFlux, hHeatFlux, and lHeatFlux in
the Plot section (see Device Plots on page 122).

Numeric Parameters for Temperature Equations

Validity Ranges for Lattice and Carrier Temperatures

Lower and upper limits for the lattice temperature and the carrier temperatures exist. The
allowed temperature ranges are specified (in ) by lT_Range=(<float> <float>) (with
defaults  and ) and cT_Range=(<float> <float>) (with defaults  and

). These ranges apply both to the temperatures during the Newton iterations and to the
final results.

nmin n0

nmin n0 103 cm 3– 2 108×  cm 3–

Sn Sp SL, ,

K
50 K 5000 K 10 K

80000 K
Sentaurus™ Device User Guide 199
N-2017.09



9: Temperature Equations 
References
Scaling of Lattice Heat Generation

For the lattice heat equation, you have the possibility to disable the heat term by using:

Physics ( Region="Bulk" ) { ... HeatPreFactor = 0. }

This reduces or even eliminates the strong coupling, given by the Joule heat, of the lattice heat
equation with the carrier continuity equations, and leads in general to smooth temperature
profiles. This simplified coupled system of carrier transport and lattice temperature might
converge easier than the fully coupled system including the heat term. Instead of ramping the
fully coupled system to a required bias condition, it might be easier to ramp first the simplified
coupled system to the required bias condition, and ramp subsequently the HeatPreFactor
from zero to one. In the command file, this second ramp could be:

Quasistationary (
Goal { Region="Bulk" ModelParameter="Physics/HeatPreFactor" Value=1 }

) { Coupled { Poisson Electron Hole Temperature } }

NOTE The Goal statement requires the specification of a Region, and a
Physics section for the corresponding region must be specified in the
command file.

References

[1] K. Kells, General Electrothermal Semiconductor Device Simulation, Series in
Microelectronics, vol. 37, Konstanz, Germany: Hartung-Gorre, 1994.

[2] R. Stratton, “Diffusion of Hot and Cold Electrons in Semiconductor Barriers,” Physical
Review, vol. 126, no. 6, pp. 2002–2014, 1962.

[3] K. Bløtekjær, “Transport Equations for Electrons in Two-Valley Semiconductors,”
IEEE Transactions on Electron Devices, vol. ED-17, no. 1, pp. 38–47, 1970.

[4] A. Benvenuti et al., “Evaluation of the Influence of Convective Energy in HBTs Using
a Fully Hydrodynamic Model,” in IEDM Technical Digest, Washington, DC, USA,
pp. 499–502, December 1991.

[5] D. Chen et al., “Dual Energy Transport Model with Coupled Lattice and Carrier
Temperatures,” in Simulation of Semiconductor Devices and Processes (SISDEP),
vol. 5, Vienna, Austria, pp. 157–160, September 1993.
200 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 10 Boundary Conditions

This chapter describes the boundary conditions available in
Sentaurus Device.

This chapter describe the properties of electrical contacts, thermal contacts, floating contacts,
as well as boundary conditions at other borders of a domain where an equation is solved.
Continuity conditions (how the solutions of one equation on two neighboring regions are
matched at the region interface) are discussed elsewhere (see, for example, Dipole Layer on
page 174). This chapter is restricted to the boundary conditions for the equations presented in
Chapter 7 on page 173, Chapter 8 on page 181, and Chapter 9 on page 189. Boundary
conditions for less important equations are discussed with the equations themselves (see, for
example, Chapter 11 on page 235).

Electrical Boundary Conditions

Ohmic Contacts

By default, contacts on semiconductors are Ohmic, with a resistance of  when
connected to a circuit node, and no resistance otherwise.

Charge neutrality and equilibrium are assumed at Ohmic contacts:

(96)

(97)

For Boltzmann statistics, these conditions can be expressed analytically:

(98)

, (99)

where  are the electron and hole equilibrium concentrations, and  is the Fermi
potential at the contact (which equals the applied voltage if it is not a resistive contact; see

0.001 Ω

n0 p0– ND NA–=

n0p0 ni,eff
2

=

φ φF
kT
q

------
ND NA–

2ni,eff
---------------------
 
 
 

asinh+=

n0

ND NA–( )2

4
---------------------------- ni,eff

2
+

ND NA–

2
---------------------+= p0

ND NA–( )2

4
---------------------------- ni,eff

2
+

ND NA–

2
---------------------–=

n0 p0, φF
Sentaurus™ Device User Guide 201
N-2017.09



10: Boundary Conditions 
Electrical Boundary Conditions
Resistive Contacts on page 213). For Fermi statistics, Sentaurus Device computes the
equilibrium solution numerically.

By default,  are applied for concentrations at the Ohmic contacts. If the
electron or hole recombination velocity is specified, Sentaurus Device uses the following
current boundary conditions:

(100)

where  are the electron and hole recombination velocities. In the command file, the
recombination velocities can be specified as:

Electrode { ...
{ Name="Emitter" Voltage=0 eRecVelocity =  hRecVelocity =  }

}

NOTE If the values of the electron and hole recombination velocities equal zero
( ), then . That is, the electrode only
defines the electrostatic potential (which is useful for SOI devices).

By specifying Poisson=Neumann for an electrode, the boundary condition for the Poisson
equation at a contact can be switched to a homogeneous Neumann boundary condition, that is,
Eq. 98 is not applied.

Modified Ohmic Contacts

Ohmic contacts, as described in Ohmic Contacts on page 201, can often lead to incorrect
results around p-n junctions and heterointerfaces. The main cause is the charge neutrality
condition imposed at the contact vertices located within the charged depletion region of the p-n
junction or heterointerface. Ideally, the carrier densities at such contacts should be an extension
of bulk densities with no sharp jump along the contact.

Sentaurus Device supports an alternative for Ohmic contacts that does not impose the charge
neutrality condition. In this approach, the equilibrium nonlinear Poisson equation is solved at
the beginning of the simulation with the Ohmic contacts under consideration removed. The
equilibrium electrostatic potential  obtained in this way is used instead of the built-in
potential  on the vertices of the Ohmic contacts under
consideration. The boundary conditions for the continuity equations remain formally the same
as in the case of Ohmic contacts but with the built-in potential  replaced by .

n n0 p, p0= =

Jn n̂⋅ qvn n n0–( )= Jp n̂⋅ qvp p p0–( )–=

vn vp,

vn vp

vn 0= vp, 0= Jn n̂⋅ 0= Jp n̂⋅ 0=,

φeq

φbi kT ND NA–( ) 2ni,eff⁄[ ]asinh q⁄=

φbi φeq
202 Sentaurus™ Device User Guide
N-2017.09



10: Boundary Conditions
Electrical Boundary Conditions
The modified Ohmic contacts can be set in the Electrode section with the keyword
EqOhmic:

Electrode {
...
{Name="drain" Voltage=0 EqOhmic}

}

NOTE Currently, the feature is only supported for isothermal simulations.

Contacts on Insulators

For contacts on insulators (for example, gate contacts), the electrostatic potential is:

(101)

where  is the Fermi potential at the contact (which equals the applied voltage if it is not a
resistive contact, see Resistive Contacts on page 213), and  is the workfunction difference
between the metal and an intrinsic reference semiconductor.

NOTE If an Ohmic contact touches both an insulator and a semiconductor, the
electrostatic potential along the contact can be discontinuous because
the boundary conditions (Eq. 98 and Eq. 101) usually contradict. Eq. 98
takes precedence over Eq. 101.

 can be specified in the Electrode section, either directly with Barrier, by specifying
the metal workfunction with WorkFunction, or by specifying the electrode material:

Electrode { ...
{ Name="Gate" Voltage=0 Barrier = 0.55 }

}
Electrode { ...

{ Name="Gate" Voltage=0 WorkFunction = 5 }
}
Electrode { ...

{ Name="Gate" Voltage=0 Material="Gold" }
}

In the last case, the value for the workfunction is obtained from the parameter file:

Material = "Gold" {
Bandgap { WorkFunction = 5 }

}

φ φF ΦMS–=

φF

ΦMS

ΦMS
Sentaurus™ Device User Guide 203
N-2017.09



10: Boundary Conditions 
Electrical Boundary Conditions
To emulate a poly gate, a semiconductor material and doping concentration can be specified in
the Electrode section:

Electrode { ...
{ Name="Gate" Voltage=0 Material="Silicon" (N = 5e19) }

}

where N is used to specify the doping in an n-type semiconductor material. The built-in
potential is approximated by . A p-type doping can be selected, similarly, by
the letter P. If the value of the doping concentration is not specified (only N or P), the Fermi
potential of the electrode is assumed to equal the conduction or valence band edge.

NOTE If the keyword -MetalConductivity is used in the Math section, the
electrostatic potential  in Eq. 101 is computed as . In this case,

 specified in the Electrode section as previously described is
neglected.

Schottky Contacts

The physics of Schottky contacts is considered in detail in [1] and [2]. In this section, a typical
model for Schottky contacts [3] is considered. The following boundary conditions hold:

(102)

(103)

(104)

where:

■  is the Fermi potential at the contact that is equal to an applied voltage  if it is not
a resistive contact (see Resistive Contacts on page 213).

■  is the barrier height (the difference between the contact workfunction and the electron
affinity of the semiconductor in n-type semiconductors, or the difference between the band
gap and the barrier as defined for n-type semiconductors in the case of p-type
semiconductors).

■  and  are the thermionic emission velocities.

■  and  are the equilibrium densities.

kT q⁄( ) N ni⁄( )ln

φ φ φF=
ΦMS

φ φF ΦB–
kT
q

------
NC

ni,eff
----------
 
 
 

ln+=

Jn n̂⋅ qvn n n0
B–( )= Jp n̂⋅ qvp p p0

B–( )–=

n0
B NC

qΦB–

kT
-------------- 
 exp= p0

B NV

Eg,eff qΦB+–

kT
--------------------------------- 
 exp=

φF Vapplied

ΦB

vn vp

n0
B p0

B

204 Sentaurus™ Device User Guide
N-2017.09



10: Boundary Conditions
Electrical Boundary Conditions
The default values for the thermionic emission velocities  and  are  and
, respectively.

The recombination velocities can be set in the Electrode section, for example:

Electrode { ...
{ Name="Gate" Voltage=0 Schottky Barrier =  eRecVelocity = 

hRecVelocity = }
}

NOTE The Barrier specification can produce wrong results if the Schottky
contact is connected to several different semiconductors. In such cases,
use WorkFunction instead of Barrier. See Contacts on Insulators on
page 203 for more details.

Sentaurus Device also allows thermionic emission velocities  and  to be defined as
functions of lattice temperature:

(105)

where:

■  and  are the temperature-dependent electron and hole DOS effective masses.

■  and  are the recombination velocities at 300 K specified in the
Electrode section by eRecVelocity and hRecVelocity.

The default values for the thermionic emission velocities  and  are
 and , respectively.

To activate the temperature-dependent recombination velocity, specify eRecVel(TempDep),
or hRecVel(TempDep), or RecVel(TempDep) in the electrode-specific Physics section:

Physics (Electrode = "cathode") { RecVel(TempDep) }

Fermi-Level Pinning at Schottky Contacts

At a metal semiconductor contact or interface, there is a charge transfer between the metal and
the interface states located inside the semiconductor bandgap. The charge transfer creates an
interfacial dipole, which can change the Schottky barrier. This phenomenon, known as Fermi-
level pinning, can be modeled by a Schottky pinning parameter .

vn vp 2.573 6×10 cm/s
1.93 6×10 cm/s

ΦB vn

vp

vn vp

vn T( ) vn 300 K( )
mn 300 K( )

mn T( )
---------------------------

T
300 K
---------------= vp T( ) vp 300 K( )

mp 300 K( )
mp T( )

---------------------------
T

300 K
---------------=

mn mp

vn 300 K( ) vp 300 K( )

vn 300 K( ) vp 300 K( )
2.573 6×10 cm/s 1.93 6×10 cm/s

S

Sentaurus™ Device User Guide 205
N-2017.09



10: Boundary Conditions 
Electrical Boundary Conditions
The Schottky potential barrier accounting for the correction due to the charge transfer between
the metal and the interface states in the semiconductor bandgap (pinning effect) is modeled as:

(106)

where:

■  is the metal workfunction in V.

■  is the charge neutrality level with respect to the vacuum level in eV.

■  is the Schottky pinning parameter. For  (no pinning), there is no charge transfer,
and the Schottky barrier becomes the classical Schottky limit. For  (strong pinning),
you obtain the Bardeen limit where the metal Fermi level is pinned by the interface states
at .

The models available in Sentaurus Device for the Schottky pinning parameter  are the Sze
model and the Mönch model.

The Sze model is defined as [4]:

(107)

where  is the semiconductor permittivity,  is the density of interface states per unit energy,
and  is their extent into the semiconductor. The parameters  and  are mole fraction
dependent and can be modified in the Schottky section of the parameter file.

The Mönch model, which is the default, is an empirical formula and is defined as [5]:

(108)

where  is the high-frequency limit of the permittivity (set to 12 for most materials), and
and  are mole fraction–adjustable parameters that you can modify in the Schottky section
of the parameter file. You can set  in the Epsilon_Inf section of the parameter file:

Epsilon_Inf {
epsilon_inf = 12

}

The charge neutrality level  is also a mole fraction–dependent parameter adjustable in the
parameter file.

ΦB S ΦM

ECNL

q
-------------– 

  ECNL

q
-------------

χ
q
---– 

 +=

ΦM

ECNL

S S 1=
S 0=

ECNL

S

S
1

1
q

2
NId( )

εε0
-------------------+

-----------------------------=

ε NI

d NI d

S
1

1 A ε∞ 1–( )B
+

------------------------------------=

ε∞ A
B

ε∞

ECNL
206 Sentaurus™ Device User Guide
N-2017.09



10: Boundary Conditions
Electrical Boundary Conditions
NOTE In general,  is tabulated for standard materials, so  can be reliably
determined from Eq. 108 for those materials. Using the  equivalency
between Eq. 107 and Eq. 108 values for  can be inferred.

To activate the pinning effect at the Schottky contacts, specify the Pinning keyword in the
Electrode section, with the model defined as an option for the keyword Model:

Electrode { ...
{ name = "cnt1" voltage = 0 Schottky(Pinning(Model="Sze"))
Workfunction=4.75 }

}

If the keyword Model is omitted, the Mönch model is used. The pinning model specification
in the Electrode section has a higher priority. If the pinning model is specified in both the
Electrode section and the electrode Physics section, the specification in the Electrode
section is chosen.

The pinning model parameters in Eq. 107 and Eq. 108 are accessible in the Schottky
subsection in the Electrode section of the parameter file. 

For example, to specify a mole fraction–dependent CNL on the contact drain, which is on the
top of a mole fraction–dependent SiGe region r3 defined as:

Physics(Region = "r3") { # Ge(x)Si(1-x)
* Mole-dependent material: SiGe(x=0) = Silicon
* Mole-dependent material: SiGe(x=1) = Germanium

MoleFraction(
xFraction=0.35

)
}

Table 29 Parameters and their default values for Schottky pinning

Symbol Parameter name Default value Unit

A Pinning_A 0.1 1

B Pinning_B 2 1

Pinning_Nint

d Pinning_d cm

Pinning_CNL 5.01964 eV

ε∞ S
S

NId

NI 10
10

cm
2–

eV
1–

2
7–×10

ECNL
Sentaurus™ Device User Guide 207
N-2017.09



10: Boundary Conditions 
Electrical Boundary Conditions
specify in the parameter file something like:

Region = "r3" {
Schottky {

Xmax(0)=0.0
Xmax(1)=0.8
Xmax(2)=1.0

Electrode = "drain" {
Pinning_CNL(0) = 3.5
Pinning_CNL(1) = 3.7
Pinning_CNL(2) = 3.8

}
}

}

See Resistive Contacts on page 213 for a detailed description on how to specify mole-fraction
parameters on contacts and interfaces.

Barrier Lowering at Schottky Contacts

The barrier-lowering model for Schottky contacts can account for different physical
mechanisms. The most important one is the image force [3], but it can also model tunneling
and dipole effects. 

The barrier lowering seen by the electron being emitted from metal into the conduction band
and for the hole being emitted into the valence are given by:

(109)

(110)

where:

■  is the normal component of the electric field on the local exterior normal pointing
from semiconductor region to metal contact, .

■  are the model coefficients that can be
specified in the parameter file of Sentaurus Device. Their default values are

ΔΦB,e F( ) aa1 e,
F n̂⋅
F0

--------------
 
 
 

pp1 e,

aa2 e,
F n̂⋅
F0

--------------
 
 
 

pp2 e,

+ if F n̂ 0>⋅

0 if F n̂ 0≤⋅







=

ΔΦB,h F( ) aa1 h,
F n̂⋅
F0

--------------
 
 
 

pp1 h,

aa2 h,
F n̂⋅
F0

--------------
 
 
 

pp2 h,

+ if F n̂ 0≤⋅

0 if F n̂ 0>⋅







=

F n̂⋅
F0 1 Vcm 1–=

aa1 e, aa2 e, pp1 e, pp, 2 e, aa1 h, aa2 h, pp1 h, pp, 2 h,, , , , ,
208 Sentaurus™ Device User Guide
N-2017.09



10: Boundary Conditions
Electrical Boundary Conditions
, , , and
.

The final value of the Schottky barrier is computed as  for the electrons in the
conduction band and as  for the holes in the valence band. The barrier lowering
also affects the equilibrium concentration of electrons  and holes  corresponding to its
formula (Eq. 104), through the correction in barrier  described above.

In addition, Sentaurus Device implements a simplified model for barrier lowering. In this case,
the barrier lowering is:

(111)

where , and  are the model coefficients that can be
specified in the parameter file of Sentaurus Device. Their default values are

, , , and . For fields smaller
than  (where  is one by default), barrier lowering is zero. The final value of the Schottky
barrier is computed as  for n-doped contacts and  for p-doped
contacts, because a difference between the metal workfunction and the valence band must be
considered if holes are majority carriers. This model does not account for the direction of the
electric field that determines in which band the barrier forms. For example, assume a Schottky
contact on an n-type semiconductor with Schottky barrier  The flat band condition is at
a forward bias of approximately  For a reverse bias and forward bias less than  the
barrier is in the conduction band, so the barrier lowering is applied correctly for electrons. On
the other hand, for a forward bias greater than  the barrier is now in the valence band, so
the barrier lowering should be applied to holes, not to electrons as the model does. In this case,
this simplified model fails. This model is tuned to work properly for reverse biases, where the
barrier lowering produces a sizable change in I–V characteristics of the Schottky device.

You can use the weight parameter to combine one of the barrier models with the barrier
lowering with interfacial insulator layer model described by Eq. 112. If the barrier-lowering
model is the only model specified (no interfacial insulator layer model), the value of weight
is 1 regardless of the value specified in the parameter file by c_weight. 

Table 30 Parameters and their default values for the barrier-lowering models

Symbol Parameter name Default value Unit

aa1 eV

aa1 eV

aa2 0 eV

aa1 e, aa1 h, 2.6 10 4–× eV= = pp1 e, pp1 h, 0.5= = aa2 e, aa2 h, 0 eV= =
pp2 e, pp2 h, 1= =

ΦB ΔΦB,e F( )–
ΦB ΔΦB,h F( )+

n0
B p0

B

ΦB

ΔΦB F( ) a1
F
F0
------ 
 

p1 Feq

F0
-------- 
 

p1 eq,
– a2

F
F0
------ 
 

p2 Feq

F0
-------- 
 

p2 eq,
–+ if F ηFeq>

0 if F ηFeq≤






=

F0 1 Vcm 1–= a1 a2 p1 p1 eq, p, , 2 and p2 eq,, , ,

a1 2.6 10 4–× eV= p1 p1 eq, 0.5= = a2 0 eV= p2 p2 eq, 1= =
ηFeq η

ΦB ΔΦB F( )– ΦB ΔΦB F( )+

0.8 V.
0.8 V. 0.8 V,

0.8 V,

aa1 e, a1 2.6 10
4–×=

aa1 h, a1 2.6 10
4–×=

aa2 e,
Sentaurus™ Device User Guide 209
N-2017.09



10: Boundary Conditions 
Electrical Boundary Conditions
To activate the barrier-lowering model, specify BarrierLowering in the electrode-specific
Physics section for the simplified model:

Physics(Electrode = "Gate") { BarrierLowering }

and for the complete model, specify:

Physics(Electrode = "Gate") { BarrierLowering(Full) }

To specify parameters of the model, create the following parameter set:

Electrode = "Gate"{
BarrierLowering {

a1 = a1 * [eV]
p1 = p1 * [1]
p1_eq = * [1]
a2 = a2 * [eV]
p2 = p2 * [1]
p2_eq = 
eta = * [1]
aa1 = aa1,e , aa1,h * [eV]
pp1 = pp1,e , pp1,h * [1]

aa2 0 eV

pp1 0.5 1

pp1 0.5 1

pp2 1 1

pp2 1 1

a1 eV

a2 0 eV

p1 0.5 1

p2 1 1

p1_eq 0.5 1

p2_eq 1 1

eta 1 1

weight c_weight 1 1

Table 30 Parameters and their default values for the barrier-lowering models (Continued)

Symbol Parameter name Default value Unit

aa2 h,

pp1 e,

pp1 h,

pp2 e,

pp2 h,

a1 a1 2.6 10
4–×=

a2

p1

p2

p1 eq,

p2 eq,

η

p1 eq,

p2 eq,
η

210 Sentaurus™ Device User Guide
N-2017.09



10: Boundary Conditions
Electrical Boundary Conditions
aa2 = aa2,e , aa2,h * [eV]
pp2 = pp2,e , pp2,h * [1]

}
}

To emulate the barrier-lowering effect at a metal-semiconductor contact, with a thin virtual
interfacial layer between the metal and the semiconductor, Sentaurus Device supports another
barrier-lowering model that takes into account such an insulating interface layer. The model [6]
assumes that a finite insulator layer is present between the metal and the semiconductor, and it
includes both images with respect to the metal–insulator and insulator–semiconductor
interfaces.

Sentaurus Device implements the barrier lowering with interfacial insulating layer model
described in detail in [6] as:

(112)

where:

■ .

■ .

■  is the semiconductor layer permittivity.

■  is the insulator layer permittivity.

■  is the conforming insulator layer thickness.

■  is the distance from the metal surface (contact) to the point where the barrier lowering
is evaluated.

■  is a computational-adjustable parameter used to handle critical points in the model.

The second branch in Eq. 112 represents the barrier lowering due to the image-force potential
of the electron in the insulator layer, where a numeric adjustment is applied to the edges of the
layer to avoid infinite values. The first branch is introduced to saturate the value of the image-
force potential close to the metal surface (contact), which otherwise would become infinite for

. The last branch represents the barrier lowering due to the image-force potential of the

ΔΦB d0( )

q
16πεins
------------------

1
dε
-----

β
tox dε–
-----------------+ 

                            0 d0 dε≤ ≤

q
16πεins
------------------

1
d0
-----

β
tox d0–
------------------+ 

                                    dε d0< tox d– ε≤

q
16πεins
------------------

1
tox dε–
-----------------

β
dε
-----+ 

  A
tox dε–

2dε
-----------------–

A
2dε
--------d0          tox d– ε d0< tox d+ ε≤+

q
16πεsem
--------------------

1
d0
-----

β
tox d0–
------------------+ 

                         d0 tox d+ ε>
















=

β
εsem εins–
εsem εins+
----------------------=

A
q

16πεsem
-------------------

1
tox dε+
-----------------

β
dε
----– 

  q
16πεins
-----------------

1
tox dε–
----------------

β
dε
----+ 

 –=

εsem

εins

tox

do

dε

do 0→
Sentaurus™ Device User Guide 211
N-2017.09



10: Boundary Conditions 
Electrical Boundary Conditions
electron in the semiconductor layer. To avoid discontinuity and infinite values at the
insulator–semiconductor interface, a linear transitional region is introduced (the third branch).

The  parameter, which should be smaller than  for geometric reasons, allows you to adjust
the functional shape of the model around the model critical points).

For consistency, when , the model reverts to , which is
the typical image-force barrier lowering for a metal–semiconductor interface.

As an option, you can select to compute a barrier-lowering average based on Eq. 112 over the
distance  from the contact or an average around .

The barrier lowering with interfacial insulator layer model can be combined as a weighted sum
with any of the barrier-lowering models described by Eq. 109 (or Eq. 110) or Eq. 111, but not
with both.

To activate the barrier lowering with interfacial insulator layer model, specify
InsBarrierLowering in the Schottky subsection of the Electrode or the electrode-
specific Physics section:

Electrode { ...
{ name = "cnt1" voltage = 0 Schottky(InsBarrierLowering))
Workfunction=4.75 }

}

Physics(Electrode = "cnt1") { ...
Schottky(InsBarrierLowering)

}

To compute an average based on Eq. 112 over the distance , specify also the keyword
Average:

Physics(Electrode = "Gate") { InsBarrierLowering(Average) }

To compute an average based on Eq. 112 over a symmetric interval delta, centered around
, specify the keyword DeltaAverage in the InsBarrierLowering section of the

command file:

Physics(Electrode = "Gate") { InsBarrierLowering(DeltaAverage) }

The parameter InsBL_delta can be adjusted in the Schottky section of the parameter file:

Electrode = "anode" {
Schottky {

InsBL_delta = 1.0000e-08 * [cm]
}

}

dε tox

tox 0= ΔΦB d0 d0 0>,( ) q
16πεsemd0
------------------------=

do do

do

do
212 Sentaurus™ Device User Guide
N-2017.09



10: Boundary Conditions
Electrical Boundary Conditions
The model parameters , , , , and nn can be specified in the Schottky section of
the parameter file (see Table 31). The parameter nn controls the number of equidistant intervals
over which the integration is performed using the trapezoidal rule in the case of averaging. The

, , and  parameters are mole fraction dependent.

You can use the weight parameter to combine the barrier lowering with the interfacial
insulator layer model with either the barrier model described by Eq. 109 (or Eq. 110) or
Eq. 111. If only the barrier lowering with interfacial insulator layer model is specified (by
InsBarrierLowering in the electrode-specific Physics section), the value of weight is 1
regardless of the value specified in the parameter file by InsBL_c_weight. If the model is
used together with other barrier-lowering models, the weight parameters in both models can
be adjusted individually such that their sum is 1. The overall barrier-lowering effect would be
a weighted sum of the models. 

Resistive Contacts

By default, contacts have a resistance of  when they are connected to a circuit node, and
no resistance otherwise. The resistance can be changed with Resist or DistResist or both
in the Electrode section. 

The following example defines an emitter as a contact with resistance  (assuming that
AreaFactor is one):

Electrode { ...
{ name = "emitter" voltage = 2 Resist=1 }

}

Table 31 Parameters of barrier lowering with interfacial insulator layer model

Symbol Parameter name Default value Unit

InsBL_tox cm

InsBL_epsins 3.9 1

InsBL_d0 cm

InsBL_d_eps cm

nn InsBL_nn 20 1

weight InsBL_c_weight 1 1

delta InsBL_delta cm

tox εins dε d0

tox εins dε

tox 2 10× 7–

εins

d0 1 10
7–×

dε 1 10× 8–

1 10× 8–

1 mΩ

1 Ω
Sentaurus™ Device User Guide 213
N-2017.09



10: Boundary Conditions 
Electrical Boundary Conditions
The following example defines an emitter as a contact with a distributed resistance of
 in series with a  lump resistor, with the  external voltage applied to

the lump resistor:

Electrode { ...
{ name = "emitter" voltage = 2 Resist=100 DistResist=2e-4 }

}

If  is applied to the contact through a resistor  (Resist in the Electrode section) or
distributed resistance  (DistResist in the Electrode section), there is an additional
equation to compute  in Eq. 98, Eq. 101, and Eq. 102.

For a distributed resistance,  is different for each mesh vertex of the contact and is computed
as a solution of the following equation for each contact vertex, self-consistently with the system
of all equations:

(113)

For a resistor,  is a constant over the contact and only one equation per contact is solved self-
consistently with the system of all equations:

(114)

where  is a contact area used in a Sentaurus Device simulation to compute a total current
through the contact.

When both a lump resistor  and a distributed resistance  are specified,  is computed for
each mesh vertex of the contact as a solution of the following equations, self-consistently with
the system of all equations:

(115)

(116)

where  depends on  along the contact (on all contact vertices) and  is
the total current on the contact.

NOTE In 2D simulations,  must be specified in units of . In 3D
simulations,  must be specified in units of .  is given in 
(see Table 206 on page 1399).

0.0002 Ωcm2 100 Ω 2 V

Vapplied R
Rd

φF

φF

n̂ Jp φF( ) Jn φF( ) JD φF( )+ +[ ]⋅
Vapplied φF–( )

Rd
----------------------------------=

φF

n̂ Jp φF( ) Jn φF( ) JD φF( )+ +[ ]⋅ sd

s


Vapplied φF–( )
R

----------------------------------=

s

R Rd φF

n̂ Jp φF( ) Jn φF( ) JD φF( )+ +[ ]⋅
Vinternal φF–( )

Rd
----------------------------------=

Vapplied Vinternal–

R
-----------------------------------------

Vinternal φF–

Rd
------------------------------ sd

S
=

Vinternal φF

Vinternal φF–
Rd

--------------------------- sd
S


R Ωμm
R Ω Rd Ωcm2
214 Sentaurus™ Device User Guide
N-2017.09



10: Boundary Conditions
Electrical Boundary Conditions
To emulate the behavior of a Schottky contact [7], Schottky contact resistivity at zero bias was
derived and a doping-dependent resistivity model of such contacts was obtained. This model is
activated for Ohmic contacts by the keyword DistResist=SchottkyResist in the
Electrode section. The model is expressed as:

(117)

where:

■  is the Schottky barrier (in this model, for electrons, this is the difference between the
metal workfunction and the electron affinity of the semiconductor; for holes, this is the
difference between the valence band energy of the semiconductor and the metal
workfunction).

■  is the Schottky resistance for an infinite doping concentration at the contact (or zero
Schottky barrier).

■  is the semiconductor permittivity.

■  is the tunneling mass.

■  is the device lattice temperature defined in the Physics section (see Table 233 on
page 1427).

The parameters , , and  can be mole dependent, and they can be specified in the
region or material sections of the parameter file. If the parameters are mole independent, they
also can be specified directly in the electrode section of the parameter file.

For example, if the contact "top" covers two semiconductor regions "reg1" and "reg2", the
mole dependency of parameter  can be defined as:

Region = "reg1" {
SchottkyResistance {

Xmax(0) = 0.0
Xmax(1) = 0.6
Electrode = "top" {

Rinf = 2.4000e-09 , 5.2000e-09 # [Ohm*cm^2]
Rinf(1) = 2.5000e-09 , 5.2000e-09 # [Ohm*cm^2]

}
}

}

Region = "reg2" {
SchottkyResistance {

Xmax(0) = 0.0

Rd R∞
300 K

T0
--------------

qΦB

E0
----------- 
 exp=

E0 E00coth
E00

kT0
-------- 
 =

E00
qh
4π
------

ND,0 NA,0–

εsmt
-------------------------------=

ΦB

R∞

εs

mt

T0

ΦB R∞ mt

R∞
Sentaurus™ Device User Guide 215
N-2017.09



10: Boundary Conditions 
Electrical Boundary Conditions
Xmax(1) = 0.1
Xmax(2) = 0.6
Electrode = "top" {

Rinf = 2.5000e-09 , 5.2000e-09 # [Ohm*cm^2]
Rinf(1) = 2.6000e-09 , 5.2000e-09 # [Ohm*cm^2]
Rinf(2) = 2.9000e-09 , 5.2000e-09 # [Ohm*cm^2]

}
}

}

In the example, the parameter  of contact "top" is defined in "reg1" and "reg2" with
different mole dependencies.

If the Schottky resistance parameters are not mole fraction dependent, the parameters can be
specified regionwise or materialwise in the SchottkyResistance section:

Region = "reg1" {
SchottkyResistance {

Rinf = 2.4000e-09 , 5.2000e-09 # [Ohm*cm^2]
}

}

For backward compatibility, the Schottky resistance parameters that are not mole fraction
dependent also can be defined directly in the Electrode section of the Schottky resistive
contact:

Electrode = "gate" {
# no mole fraction dependency allowed
SchottkyResistance {

Rinf = 2.4000e-09 , 5.2000e-09 # [Ohm*cm^2]
PhiB = 0.6 , 0.51 # [eV]

}
}

When multiple definitions of the Schottky resistance parameters are found in the parameter
file, a priority scheme is used:

1. If a Region section contains a SchottkyResistance subsection with an Electrode
section, the parameters specified here are chosen.

2. If there is no Region section with a SchottkyResistance subsection having an
Electrode specification, Material sections are searched next. If a Material section
contains a SchottkyResistance subsection with an Electrode subsection, the
parameters specified are chosen.

R∞
216 Sentaurus™ Device User Guide
N-2017.09



10: Boundary Conditions
Electrical Boundary Conditions
3. If there is no Region section or Material section with a SchottkyResistance
subsection having an Electrode section, only constant parameters can be specified. First,
the global Electrode sections are searched for constant parameters:

Electrode = "gate" {
# no mole fraction dependency allowed
SchottkyResistance {

Rinf = 2.4000e-09 , 5.2000e-09 # [Ohm*cm^2]
}

}

If this section is found, the parameters here are chosen. If not, a Region section with a
SchottkyResistance subsection and constant parameters is searched for:

Region = "reg1" {
SchottkyResistance {

Rinf = 2.4000e-09 , 5.2000e-09 # [Ohm*cm^2]
}

}

If a Region section is found, the parameters are chosen here. If not, a Material section
with a SchottkyResistance subsection and constant parameters is the last possible
specification:

Material = "Silicon" {
SchottkyResistance {

Rinf = 2.4000e-09 , 5.2000e-09 # [Ohm*cm^2]
}

}

4. If nothing is specified at all, the default values are chosen, with their values:

a) , ,  for electrons

b) , ,  for holes [7]

These parameters can be specified independently in different sections as previously
described. The priority scheme is applied independently of each of them.

When multiple regions are connected to a Schottky resist contact, the value of the Schottky
resistance at the common vertices on the contact is taken as a maximum of the region Schottky
resistances. In other words, the Schottky resistance at the common vertices is computed for
each region with the region parameters, and the maximum value among regions is chosen.

In the case of alloys, parameters are interpolated from the composing materials. For example,
in the case of , the value of  is computed from the two side materials and the
corresponding mole-fraction specification. The command file is:

Physics (Material = "SiliconGermanium") { # Gex(x)Si(1-x)
* Mole fraction material: SiGe(x=0) = Silicon
* Mole fraction material: SiGe(x=1) = Germanium

mt 0.19= R∞ 2.4 10 9–×  Ωcm2= ΦB 0.6 eV=

mt 0.19= R∞ 5.2 10 9–×  Ωcm2= ΦB 0.51 eV=

GexSi1 x– R∞
Sentaurus™ Device User Guide 217
N-2017.09



10: Boundary Conditions 
Electrical Boundary Conditions
MoleFraction(
xFraction = 0.35

)
}

The parameter file is:

Material = "Silicon" {
SchottkyResistance {

Rinf = 2.3000e-09 , 5.1000e-09 # [Ohm*cm^2]
}

}

Material = "Germanium" {
SchottkyResistance {

Rinf = 2.4000e-09 , 5.0000e-09 # [Ohm*cm^2]
}

}

The model is applied to each contact vertex and checks the sign of the doping concentration
. If the sign is positive, the electron parameters are used to compute  for the

vertex. If the sign is negative, the hole parameters are used.

As an option, you can specify a constant metal workfunction parameter instead of a mole
fraction–dependent Schottky barrier parameter . In this case, Sentaurus Device computes
the Schottky barrier  in Eq. 117 as the difference between the specified contact
workfunction and the electron affinity of the semiconductor (in the case of n-type
semiconductors), or as the difference between the valence band energy and the contact
workfunction (in the case of p-type semiconductors). Although only a constant contact
workfunction is allowed, the computed Schottky barrier  captures the mole-fraction
dependency more physically through the electron affinity and the bandgap mole-fraction
dependencies.

To use the metal contact workfunction option to compute the Schottky barrier , specify the
Workfunction keyword in the SchottkyResistance subsection, of the Electrode
section, of the parameter file. For example, to compute the Schottky barrier  corresponding
to a 4.1 eV workfunction at the contact top2, specify in the parameter file:

Electrode = "top2" {
SchottkyResistance {

# PhiB = 0.6 , 0.51 # [eV]
Workfunction = 4.1

}
}

In this case, the values of the Schottky barrier  in the parameter file (if specified by PhiB)
are ignored because they are internally computed.

ND,0 NA,0– Rd

ΦB

ΦB

ΦB

ΦB

ΦB

ΦB
218 Sentaurus™ Device User Guide
N-2017.09



10: Boundary Conditions
Electrical Boundary Conditions
For convenience, the workfunction can also be specified in the contact section of the region or
material:

Region = "reg2" {
SchottkyResistance {

Workfunction = 4.1
Xmax(0) = 0.0
Xmax(1) = 0.1
Xmax(2) = 0.6
Electrode = "top" {

Rinf = 2.5000e-09 , 5.2000e-09 # [Ohm*cm^2]
Rinf(1) = 2.6000e-09 , 5.2000e-09 # [Ohm*cm^2]
Rinf(2) = 2.9000e-09 , 5.2000e-09 # [Ohm*cm^2]

}
}

}

In this case, note that the workfunction option is applied to reg2 only. If the contact extends
over multiple regions, the workfunction option can only be activated in certain regions by
explicitly specifying Workfunction in the respective region.

When the workfunction option is specified in both the Electrode section and the Region or
Material sections, the Electrode section takes precedence.

A more general model for Schottky resistance can be implemented using the Schottky
resistance PMI (see Schottky Resistance Model on page 1288). In this case, Schottky-
distributed resistance  can be an arbitrary function of lattice temperature, electron
temperature, hole temperature, electron affinity, band gap, bandgap narrowing, conduction-
band effective density-of-states, valence-band effective density-of-states, and effective
intrinsic density, . The PMI model can access the
built-in Schottky resistance model parameters (constant or mole fraction–dependent) using the
vertex-based PMI support function InitModelParameter() (see Runtime Support for
Vertex-Based PMI Models on page 1067).

Resistive Interfaces

A distributed resistance model is supported for metal–metal, semiconductor–semiconductor,
and metal–semiconductor interfaces. The distributed resistance interface model is similar to the
thermionic current model with the exponential dependency on the interface barrier height
replaced by a linear dependency on the voltage drop across the interface. The interfaces are
treated as discontinuous double-point interfaces.

The model is activated by specifying the keyword eDistResistance for electrons and the
keyword hDistResistance for holes in the Physics section of the resistive interface. For

Rd

Rd Rd T Tn Tp χ Eg Ebgn NC NV ni,eff, , , , , , , ,( )=
Sentaurus™ Device User Guide 219
N-2017.09



10: Boundary Conditions 
Electrical Boundary Conditions
metal–metal interfaces, only eDistResistance is allowed because only electrons are
involved in transport across the interface:

Physics (MaterialInterface="Germanium/Silicon") {
eDistResistance=1e-3
hDistResistance=1e-3

}

If the interface is between material 1 and material 2, in the following equations, it is assumed
that the normal component of the carrier current density leaves material 1 and enters material 2.
For semiconductor–semiconductor interfaces, the boundary conditions can be written as the
following for electrons:

(118)

(119)

and for holes:

(120)

(121)

where  and  are the electron- and hole-distributed resistance at the interface.

For metal–metal resistive interfaces, the resistive boundary conditions take the form:

(122)

(123)

Finally, at metal–semiconductor interfaces, you have:

(124)

(125)

(126)

Jn 2, Jn 1,=

Jn 1,
Φn ,1 Φn ,2–

Rd n,
----------------------------=

Jp 2, Jp 1,=

Jp 1,
Φp ,1 Φp ,2–

Rd p,
----------------------------=

Rd n, Rd p,

Jn 2, Jn 1,=

Jn 1,
ΦM,1 ΦM,2–

Rd n,
-------------------------------=

Jn 1,
Φn ,1 ΦM,2–

Rd n,
-----------------------------=

Jp 1,
Φp ,1 ΦM,2–

Rd p,
-----------------------------=

JM 2, Jn 1, Jp 1,+=
220 Sentaurus™ Device User Guide
N-2017.09



10: Boundary Conditions
Electrical Boundary Conditions
Like Schottky contacts, the behavior of a Schottky interface can be emulated using the doping-
dependent resistivity model described by Eq. 117, p. 215. The model is activated for Ohmic
metal–semiconductor interfaces by the keyword DistResist=SchottkyResistance in the
Physics section of the interface:

Physics(MaterialInterface="AlGaAs/Aluminum") {
DistResist=SchottkyResistance

}

The Schottky resistance parameters can be mole dependent or constant. When the parameter
file contains multiple definitions of the Schottky resistance parameters, the same priority
scheme used for contacts is applied.

As for the contacts, you can specify a constant metal workfunction parameter instead of a mole
fraction–dependent Schottky barrier parameter . The syntax is similar to contacts, but the
Workfunction keyword must be specified in the RegionInterface section or the
MaterialInterface section instead of the Electrode section.

A doping-dependent Schottky barrier model is supported for metal–semiconductor Schottky
barriers. Image force lowering of the potential energy barrier is included in Schottky contacts.
The model is based on the distributed resistance interface model. The Schottky barrier height
is dependent on the doping on the semiconductor side.

NOTE This model works at the metal–semiconductor interface. It does not
work for contacts.

The effects of image force rounding of the potential energy barrier are included. The magnitude
of the bias-dependent image force lowering ( ), relative to the band bending ( ), is defined
as [8]:

(127)

(128)

(129)

(130)

where  is the static dielectric constant,  is the high-frequency dielectric constant,  is
a constant of the material with the unit of energy, and  is the electron density.

ΦB

Δϕ Eb

Δϕ
Eb
------- 16π

Eb

E11
-------- 
 

3 2⁄ xm

ω
------

1 2⁄–
1 3

xm

ω
------+ 

 =

E11 9.05 10× 7– N

KsKd
2

---------------
1 3⁄

=

xm

ω
------

2
3
---

1
3
---

δ
3
---

1

3
-------

δ
3
---sin–cos+=

δcos 1
27

32π Eb E11⁄( )3 2⁄-----------------------------------------–=

Ks Kd E11

N

Sentaurus™ Device User Guide 221
N-2017.09



10: Boundary Conditions 
Electrical Boundary Conditions
The syntax can be used in either the RegionInterface or MaterialInterface section.
You can activate the model by specifying the keyword DistResist=SchottkyResistance
(or eDistResistance=eSchottkyResistance for electrons and
hDistResistance=hSchottkyResistance for holes) and SRDoping. The keyword
DistResist=SchottkyResistance (or eDistResistance=eSchottkyResistance
and hDistResistance=hSchottkyResistance) activates the Schottky interface
resistance model, and SRDoping activates the image-force potential lowering model in
Schottky contacts. For example:

Physics(MaterialInterface="AlGaAs/Aluminum") {
DistResist=SchottkyResistance
SRDoping

}

Physics(MaterialInterface="AlGaAs/Aluminum") {
eDistResistance=eSchottkyResistance
hDistResistance=hSchottkyResistance
SRDoping

}

A more general model for interface Schottky resistance can be implemented using the Schottky
resistance PMI (see Schottky Resistance Model on page 1288). In this case, Schottky-
distributed resistance  can be an arbitrary function of lattice temperature, electron
temperature, hole temperature, electron affinity, band gap, bandgap narrowing, conduction-
band effective density-of-states, valence-band effective density-of-states, and effective
intrinsic density, . The PMI model can access the
built-in Schottky resistance model parameters using the vertex-based PMI support function
InitModelParameter() (see Runtime Support for Vertex-Based PMI Models on
page 1067).

Boundaries Without Contacts

Outer boundaries of the device that are not contacts are treated with ideal Neumann boundary
conditions:

(131)

(132)

Eq. 132 also applies to semiconductor–insulator interfaces.

Rd

Rd Rd T Tn Tp χ Eg Ebgn NC NV ni eff,, , , , , , , ,( )=

ε∇φ P+ 0=

Jn n̂⋅ 0= Jp n̂⋅ 0=
222 Sentaurus™ Device User Guide
N-2017.09



10: Boundary Conditions
Floating Contacts
Floating Contacts

Floating Metal Contacts

The charge on a floating contact (for example, a floating gate in an EEPROM cell) is specified
in the Electrode section:

Electrode { ...
{ name="FloatGate" charge=1e-15 }

}

In the case of a floating metal contact (a contact not in touch with any semiconductor region),
the electrostatic potential is determined by solving the Poisson equation with the following
charge boundary condition:

(133)

where  is the normal vector on the floating contact surface , and  is the specified charge
on the floating contact. The electrostatic potential on the floating-contact surface is assumed to
be constant.

An additional capacitance between floating contact and control contact is necessary if, for
example, EEPROM cells are simulated in a 2D approximation, to account for the additional
influence on the capacitance from the real 3D layout. The additional capacitance can be
specified in the Electrode section using the keyword FGcap.

For example, if you have ContGate and FloatGate contacts, additional ContGate/
FloatGate capacitance is specified as:

Electrode {
{ name="ContGate" voltage=10 }
{ name="FloatGate" charge=0 FGcap=(value=3e-15 name="ContGate") }

}

where value is the capacitance value between FloatGate and ContGate. For the 1D case,
the capacitance unit is ; for the 2D case, ; and for the 3D case, . 

If the floating-contact capacitance is specified, Eq. 133 changes to:

(134)

εn̂ ∇φ Sd⋅ Q=

n̂ S Q

F/μm2 F/μm F

εn̂ ∇φ S CFC φCC φFC– φB+( )+d⋅ Q=
Sentaurus™ Device User Guide 223
N-2017.09



10: Boundary Conditions 
Floating Contacts
where:

■  is the specified floating-contact capacitance.

■  is the floating-contact potential.

■  is the potential on the control electrode (specified in the FGcap statement).

■  is a barrier specified in the Electrode section for the floating contact, which can be
used as a fitting parameter (default value is zero).

NOTE If the control contact is a metal, the value of  is defined by the
applied voltage and the metal barrier/workfunction (see Contacts on
Insulators on page 203). However, if the control contact touches a
semiconductor region,  is equal to the applied voltage with an
averaged built-in potential on the contact.

Floating contacts can have several capacitance values for different control contacts, for
example:

Electrode {
{ name="source" voltage=0 }
{ name="ContGate" voltage=10 }
{ name="FloatGate" charge=0 FGcap( (value=3e-15 name="ContGate")

(value=2e-15 name="source") }
}

In transient simulations, Sentaurus Device takes the charge specified in the Electrode section
as an initial condition. After each time step, the charge is updated due to tunneling and hot-
carrier injection currents. For a description of tunneling and hot-carrier injection, see
Chapter 24 on page 715 and Chapter 25 on page 737, respectively.

Floating Semiconductor Contacts

Sentaurus Device can simulate floating semiconductor contacts by connecting an electrode
with charge boundary condition to an insulated semiconductor region. Within that floating-
contact region, Sentaurus Device solves the Poisson equation with the following charge
boundary condition:

(135)

where  denotes the total charge on the floating gate and  is the charge density
contributed by traps and fixed charges (see Chapter 17 on page 449). The integral is calculated
over all nodes of the floating-contact region [9].

CFC

φFC

φCC

φB

φCC

φCC

q p n– ND NA–+( ) ρtrap+[ ] Vd

FC
 QFC=

QFC ρtrap
224 Sentaurus™ Device User Guide
N-2017.09



10: Boundary Conditions
Floating Contacts
The charge  is a boundary condition that must be specified in a Sentaurus Device
Electrode statement in exactly the same way as for a floating metal contact:

Electrode {
{ name="floating_gate" Charge=1e-14 }

}

It is also possible to use the charge as a goal in a Quasistationary command:

Quasistationary (Goal {Name="floating_gate" Charge = 1e-13})
{ Coupled {Poisson Electron} }

Sentaurus Device automatically identifies a floating semiconductor contact based on
information in the geometry (.tdr) file. It is not necessary for the charge contact to cover the
entire boundary of the floating semiconductor region. A small contact is sufficient if the
floating region has the same doping type throughout. However, if both n-type and p-type
volumes exist in the floating region, both volumes must be associated with the floating contact
defining the floating region. This can be achieved by having a contact in touch with both
volumes.

It is assumed that no current flows within the floating region. Therefore, the quasi-Fermi
potential for electrons and holes is identical and constant within the floating region:

(136)

Therefore, the electron and hole densities  and  are functions of the electrostatic potential
 and the quasi-Fermi potential  as discussed in Quasi-Fermi Potential With Boltzmann

Statistics on page 175 and Fermi Statistics on page 176. Sentaurus Device does not solve the
electron and hole continuity equations within a floating region. 

In transient simulations, Sentaurus Device takes the charge specified in the Electrode section
as an initial condition. After each time step, the charge is updated due to hot-carrier injection
or tunneling currents including tunneling to traps. For a description of tunneling models and
how to enable them, see Chapter 24 on page 715. For hot-carrier injection models, see
Chapter 25 on page 737. 

The floating-contact capacitance can be specified in the Electrode statement in exactly the
same way as for the floating metal contact (see Floating Metal Contacts on page 223). The only
difference is that the potential on the semiconductor floating contact is not always a constant.
Therefore, defining a constant capacitance may not be strictly correct, and it gives only
approximate results. Sentaurus Device uses the semiconductor floating-contact Fermi level to
compute the charge associated with the floating-contact capacitance and solves an equilibrium
problem (zero voltages and zero charges) at the beginning to find a reference Fermi level.

For plotting purposes, floating semiconductor contacts are handled differently from other
electrodes. Instead of the voltage, the value of the quasi-Fermi potential  is displayed.

QFC

Φn Φp Φ= =

n p
φ Φ

Φ

Sentaurus™ Device User Guide 225
N-2017.09



10: Boundary Conditions 
Thermal Boundary Conditions
Thermal Boundary Conditions

Boundary Conditions for Lattice Temperature

For the solution of Eq. 67, p. 190, Eq. 68, p. 192, Eq. 69, p. 193, and Eq. 75, p. 196, thermal
boundary conditions must be applied. Wachutka [10] is followed, but the difference in thermo-
powers between the semiconductor and metal at Ohmic contacts is neglected. For free,
thermally insulating, surfaces:

(137)

where  denotes a unit vector in the direction of the outer normal.

At thermally conducting interfaces, thermally resistive (nonhomogeneous Neumann) boundary
conditions are imposed:

(138)

where  is the external thermal resistance, which characterizes the thermal contact between
the semiconductor and adjacent material. 

For the special case of an ideal heat sink ( ), Dirichlet boundary conditions are
imposed:

(139)

By default, . Other values can be specified with the keyword SurfaceResistance
in the specification of the Thermode (see Table 209 on page 1402). Alternatively,
SurfaceConductance can be used to specify .

When the lattice temperature equation is solved, the lattice temperature (Temperature) and
lattice heat flux (lHeatFlux) at thermodes are added automatically to the .plt file in the
corresponding Thermode section. The unit for heat flux is  for 3D,  for 2D, and

 for 1D.

At insulator–insulator, insulator–semiconductor, semiconductor–semiconductor,
metal–semiconductor, metal–metal, and metal–insulator interfaces, a distributed thermal
resistance is supported as well.

κn̂ ∇T⋅ 0=

n̂

κn̂ ∇T⋅
Text T–

Rth
------------------=

Rth

Rth 0→

T Text=

Rth 0=

1 Rth⁄

W W μm⁄
W μm⁄ 2
226 Sentaurus™ Device User Guide
N-2017.09



10: Boundary Conditions
Periodic Boundary Conditions
This feature is activated by specifying the distributed resistance using the keyword
DistrThermalResist in the Physics section of the respective interface. For example:

Physics (RegionInterface="reg1/reg2") {
DistrThermalResist=1e-3

}

activates a distributed thermal resistance at the interface between region "reg1" and region
"reg2" with the value . As for thermionic emission, double points are used at
the interfaces where distributed thermal resistance has been activated. In this case, double
points allow a discontinuity in the lattice temperature on the two sides of the interface.
Assuming an interface between materials 1 and 2 such that , if  is the
heat flux density entering material 1 and  is the heat flux density leaving material 2, the
thermal boundary condition at the interface between materials 1 and 2 can be written as:

(140)

(141)

where  is the interface-distributed resistance defined with DistrThermalResist as
described here.

Boundary Conditions for Carrier Temperatures

For the carrier temperatures  and , at the thermal contacts, fast relaxation to the lattice
temperature (boundary condition ) is assumed.

For other boundaries, adiabatic conditions for carrier temperatures are assumed:

(142)

When the hydrodynamic model is used, the lattice temperature (Temperature), the lattice
heat flux (lHeatFlux), and the carrier heat fluxes (eHeatFlux and hHeatFlux) at
thermodes are added automatically to the .plt file in the corresponding Thermode section.
The unit for heat fluxes is  for 3D,  for 2D, and  for 1D.

Periodic Boundary Conditions

The use of periodic boundary conditions (PBCs) can be helpful for simulations of periodic
device structures, for example, lines or arrays of cells. Instead of building a periodic simulation
domain, you can supply PBCs at the lower and upper boundary planes (perpendicular to the

0.001 cm2K/W

ΔT T2 T1 0>–= SL 1,

SL 2,

SL 2, SL 1,=

SL 1,
T2 T1–

Rd th,
-----------------=

Rd th,

Tn Tp

Tn Tp T= =

κnn̂ ∇Tn⋅ κpn̂ ∇Tp⋅ 0= =

W W/μm W/μm2
Sentaurus™ Device User Guide 227
N-2017.09



10: Boundary Conditions 
Periodic Boundary Conditions
main axis of the coordinate system) of a single cell. Periodicity of the solution means that the
two boundary planes are virtually identified, thereby forming a PBC interface: The solution is
(weakly) continuous across this interface, and currents (or fluxes in the general case) can flow
from one side to the other.

You can select between two different numeric PBC approaches, referred to as the Robin PBC
(RPBC) approach and mortar PBC (MPBC) approach. Both approaches support:

■ Several transport models, namely, drift-diffusion, thermodynamic, and hydrodynamic
transport.

■ Both conforming and nonconforming geometries and meshes.

■ Two-dimensional and 3D device structures.

■ The conservation of the fluxes (for example, current conservation for the continuity
equations).

■ Both one-fold and two-fold periodicity, that is, PBC can be applied in one axis direction
and simultaneously in two directions for 3D structures.

Robin PBC Approach

The RPBC approach uses a current (or flux) model between both sides of the PBC interface of
the form:

(143)

where:

■  and  are the solution variables of an equation at both sides of the PBC interface.

■  is the flux density of the equation across the PBC interface.

■  represents a user-provided tuning parameter. The tuning parameter allows you to
determine how strongly the local current density across the interface reduces the
discontinuity of the solution variable. A large  reduces the jumps of the solution variable,
while for , no continuity is enforced at all and no current will flow across the
interface.

Mortar PBC Approach

In the MPBC approach, both sides of the PBC interface are effectively glued together on one
side (the mortar side), while on the other side (the nonmortar side), a weak continuity condition
for the equation potential (mostly, the solution variable) is imposed. Therefore, the MPBC
approach is not symmetric with respect to the selection of the mortar side if the mesh is
nonconforming. The side where the accuracy requirements are larger (and, typically, the mesh

α u1 u2–( ) j12– 0=

u1 u2

j12

α

α
α 0=
228 Sentaurus™ Device User Guide
N-2017.09



10: Boundary Conditions
Periodic Boundary Conditions
is finer) should be selected as the mortar side. The equation potential for the carrier continuity
equations are the corresponding quasi-Fermi potentials, while for the other equations, the
solution variable is chosen. The MPBC approach does not require a current model across the
PBC interface.

Specifying Periodic Boundary Conditions

Periodic boundary conditions are activated by using PeriodicBC in the global or device Math
section. Table 211 on page 1403 provides a complete list of possible options.

Specifying Robin Periodic Boundary Conditions

RPBCs can be activated individually for all supported equations (see Electrostatic Potential on
page 173, Chapter 8 on page 181, and Chapter 9 on page 189). The solution variable  of the
selected equation (for example, the electrostatic potential  of the Poisson equation), and the
corresponding flux density  are listed in Table 32. 

An RPBC is typically activated by PeriodicBC(<options>), where <options> provides
a selection of the equations and boundaries. Multiple specifications of <options> are possible
to select several equations: PeriodicBC( (<options1>) ... (<optionsN>) ).

NOTE If the material parameters or the doping concentration differ on both
sides of the interface, RPBC may result in nonphysical solutions.

An example of specifying RPBCs for different equations and boundaries is:

Math {
PeriodicBC(

(Direction=0 Coordinates=(-1.0 2.0))
(Poisson Direction=1 Coordinates=(-1e50 1e50))
(Electron Direction=1 Coordinates=(-1e50 1e50) Factor=2.e8)

Table 32 Solution variables and fluxes used in periodic boundary conditions

Description

Electrostatic Potential on page 173

Chapter 8 on page 181

Chapter 9 on page 189

Chapter 9 on page 189

u
φ

j

u j

φ ε φ∇

n Jn

p Jp

Tn Sn

Tp Sp

T κ T∇
Sentaurus™ Device User Guide 229
N-2017.09



10: Boundary Conditions 
Periodic Boundary Conditions
)
}

Here, the first option applies periodic boundary conditions to all equations in the direction of
the x-axis and for the coordinates  and  The next two options specify periodic
boundary conditions for the electron and hole continuity equations in the y-direction and for
the device side coordinates. Factor determines the tuning parameter  in the flux density
model and defaults to 1.e8.

Specifying Mortar Periodic Boundary Conditions

Periodic boundary conditions using the MPBC approach are activated in the global or device
Math section by:

PeriodicBC ( ( Type=MPBC Direction=1 MortarSide=Ymax ) )

Direction selects the coordinate axis where the PBC interface is created (that is, here the y-
axis). MortarSide specifies that the plane at maximum coordinate values is taken as the
mortar side (the default is the minimum coordinate plane). The maximum and minimum
coordinate planes are extracted automatically. Using MortarSide implies the MPBC
approach (making Type and Direction redundant), which means the following specification
enables a two-fold MPBC simulation:

PeriodicBC( ( MortarSide=Xmin MortarSide=Ymax ) )

Application Notes

Note that:

■ The RPBC approach supports, in contrast to the MPBC approach, some flexibility with
respect to the involved equations.

■ The MPBC approach treats the PBC interface essentially as a heterointerface. Conductor
regions touching the PBC interface are not supported in MPBC. Heterointerfaces touching
the PBC interface are allowed, but there are cases where the periodicity is further relaxed.

■ If the device structure forms a heterointerface at the PBC interface, the MPBC approach
must be used. The RPBC approach provides nonphysical results.

Specialized Linear Solver for MPBC

Using MPBC in combination with iterative linear solvers (such as ILS), you may observe some
convergence problems. If feasible, using a direct solver (such as PARDISO) should resolve the
problem. Otherwise, an improved preconditioner or the use of extended precision improves the
convergence behavior in many cases.

1.0– μm 2.0 μm.

α

230 Sentaurus™ Device User Guide
N-2017.09



10: Boundary Conditions
Discontinuous Interfaces
There is a specialized linear solver available for MPBC simulations that utilizes the advantages
of the iterative solver ILS and improves the robustness of the simulations. This solver can be
enabled by a (temporary) user interface. Specifying UseSchurSolver in the global Math
section replaces the Blocked method by the specialized MPBC solver for all Coupled
statements. Coupled statements using other methods are not affected. Note that this solver is
not yet available for AC analysis.

Discontinuous Interfaces

Discontinuous interfaces generalize the framework used for the simulation of heterointerfaces
at semiconductor–semiconductor interfaces (see Abrupt and Graded Heterojunctions on
page 10 and Heterostructure Device Simulation on page 763). They build the basis for models
generating discontinuities of physical quantities across region interfaces.

Representation of Physical Quantities Across Interfaces

Several interface conditions result in discontinuous physical quantities across these interfaces.
An interface is a discontinuous interface if all physical quantities use a discontinuous
representation across this interface. The continuity of selected quantities is guaranteed by
applying (often implicitly) corresponding interface conditions. By default, the interface
conditions at discontinuous interfaces imply continuity for the solution variable.

You can enforce every interface to be a discontinuous interface by using Discontinuity in
any Physics section, for example:

Physics ( MaterialInterface= "Silicon/Oxide" ) {
Discontinuity * applies to all interfaces of the two materials

}

Physics ( Material= "Silicon" ) {
Discontinuity * applies to all interfaces to other materials

}

Discontinuous interfaces are allowed between any two regions, independent of their material
or material group (semiconductor, insulator, or conductor). They are implicitly or explicitly
used for the following interface models:

■ Dipole (see Dipole Layer on page 174)

■ Discontinuity 

■ DistrThermalResist (see Boundary Conditions for Lattice Temperature on page 226)

■ HeteroInterface (see Abrupt and Graded Heterojunctions on page 10)
Sentaurus™ Device User Guide 231
N-2017.09



10: Boundary Conditions 
References
■ Thermionic, eThermionic, hThermionic (see Heterostructure Device Simulation on
page 763)

■ Concept of ‘semiconductor floating gate’ (see Destination of Injected Current on page 738)

■ Optics standalone simulations (see Controlling Computation of Optical Problem in Solve
Section on page 572)

Interface Conditions at Discontinuous Interfaces

At general discontinuous interfaces (that is, involving arbitrary material groups), not all
interface conditions are yet supported. So far, the interface conditions related to drift-diffusion,
thermodynamic, and hydrodynamic transport are allowed. Simulations using only
heterointerfaces (that is, semiconductor–semiconductor interfaces including the
HeteroInterface flag) as discontinuous interfaces support the full set of transport equations
and interface conditions. Note that a discontinuous semiconductor–semiconductor interface
must be a heterointerface.

Critical Points

Geometric locations, where several interfaces intersect or an interface intersects the boundary
or contact, are so-called critical points. At such critical points, not all interface conditions can
be fulfilled, in general, and conflicts are resolved by implicit rules.

Critical points are supported if the set of discontinuous interfaces either is empty, or is the
entire set of involved interfaces, or consists of heterointerfaces.

References

[1] A. Schenk and S. Müller, “Analytical Model of the Metal-Semiconductor Contact for
Device Simulation,” in Simulation of Semiconductor Devices and Processes (SISDEP),
vol. 5, Vienna, Austria, pp. 441–444, September 1993.

[2] A. Schenk, Advanced Physical Models for Silicon Device Simulation, Wien: Springer,
1998.

[3] S. M. Sze, Physics of Semiconductor Devices, New York: John Wiley & Sons, 2nd ed.,
1981.

[4] A. M. Cowley and S. M. Sze, “Surface states and barrier height of metal-semiconductor
systems,” Journal of Applied Physics, vol. 36, no. 10, pp. 3212–3220, 1965.
232 Sentaurus™ Device User Guide
N-2017.09



10: Boundary Conditions
References
[5] W. Mönch, “Chemical trends of barrier heights in metal-semiconductor contacts: on the
theory of the slope parameter,” Applied Surface Science, vol. 92, pp. 367–371, February
1996.

[6] A. Tugulea and D. Dascalu, “The image-force effect at a metal-semiconductor contact
with an interfacial insulator layer,” Journal of Applied Physics, vol. 56, no. 10,
pp. 2823–2831, 1984.

[7] K. Varahramyan and E. J. Verret, “A Model for Specific Contact Resistance Applicable
for Titanium Silicide–Silicon Contacts,” Solid-State Electronics, vol. 39, no. 11,
pp. 1601–1607, 1996.

[8] V. L. Rideout and C. R. Crowell, “Effects of Image Force and Tunneling on Current
Transport in Metal–Semiconductor (Schottky Barrier) Contacts,” Solid-State
Electronics, vol. 13, no. 7, pp. 993–1009, 1970.

[9] S. Sugino et al., “Analysis of Writing and Erasing Procedure of Flotox EEPROM Using
the New Charge Balance Condition (CBC) Model,” in Workshop on Numerical
Modeling of Processes and Devices for Integrated Circuits (NUPAD IV), Seattle, WA,
USA, pp. 65–69, May 1992.

[10] G. K. Wachutka, “Rigorous Thermodynamic Treatment of Heat Generation and
Conduction in Semiconductor Device Modeling,” IEEE Transactions on Computer-
Aided Design, vol. 9, no. 11, pp. 1141–1149, 1990.
Sentaurus™ Device User Guide 233
N-2017.09



10: Boundary Conditions 
References
234 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 11 Transport in Metals, Organic 
Materials, and Disordered Media

This chapter describes transport in materials other than low-defect,
inorganic semiconductors.

Singlet Exciton Equation

In organic semiconductor devices, besides the simulation of the electrical part consisting of
solving the Poisson and continuity equations, the singlet exciton equation is introduced to
account for optical properties of these materials related to Frenkel excitons.

This equation takes into account only singlet excitons because triplet excitons do not contribute
directly to light emission. The equation models the dynamics of the generation, diffusion,
recombination, and radiative decay of singlet excitons in organic semiconductors.

The singlet exciton equation, governing the transport of excitons in organic semiconductors, is
given by:

(144)

where:

■  is the singlet exciton density.

■  is the carrier bimolecular recombination rate acting as a singlet exciton generation
term.

■  is the singlet exciton diffusion constant.

■ ,  are the singlet exciton lifetimes.

■  is the net singlet exciton recombination rate.

The first term on the right-hand side of Eq. 144 accounts for the creation of excitons through
bimolecular recombination (see Bimolecular Recombination on page 444). The second term
describes exciton diffusion; while radiative decay associated with light emission is accounted
for by the third and fourth terms.

nse∂
t∂

---------- Rbimolec ∇ Dse nse∇⋅
nse nse

eq
–

τ
--------------------–

nse nse
eq

–

τtrap
--------------------– Rse–+=

nse

Rbimolec

Dse

τ τtrap

Rse
Sentaurus™ Device User Guide 235
N-2017.09



11: Transport in Metals, Organic Materials, and Disordered Media 
Singlet Exciton Equation
Nonradiative exciton destruction and conversion of excitons to free electron and free hole
populations are described by the net exciton recombination rate (fifth term):

(145)

where:

■ ,  are the exciton recombination rate due to free electron and free hole
populations, respectively.

■  is the exciton velocity.

■  and  are the electron and hole velocities. ,
, and  are set in the parameter file.

■  and  are the reaction cross sections between the singlet exciton, and the
electron and hole, respectively.

In addition, the net exciton recombination rate  may contain exciton interface dissociation
rates converted to volume terms if the exciton interface dissociation model is activated (see
Exciton Dissociation Model on page 445).

Boundary and Continuity Conditions for Singlet Exciton 
Equation

At electrodes and thermodes, equilibrium is assumed for the singlet exciton population:

(146)

where , and and  are the singlet exciton degeneracy factor and binding
energy, respectively.

Conditions for the singlet exciton equation at interfaces depend on the interface type. The
interface type is dictated by the two regions adjacent to the interface. 

For interfaces where the singlet exciton equation is solved only in one of the regions of the
interface, the boundary conditions imposed are either Eq. 146 (default) or  (zero
flux), depending on the user selection.

For a heterointerface where the singlet exciton equation is solved in both regions, the continuity
conditions imposed are thermionic-like. In this case, you can select the barrier  to be the

Rse Rse nf– Rse pf–+=

Rse nf– vse vn+( )σse n– nsen=

Rse pf– vse vp+( )σse p– nsep=

Rse nf– Rse pf–

vse vse 0,=

vn vn 0, T 300 K⁄= vp vp 0, T 300⁄ K= vse 0,
vn 0, vp 0,

σse n– σse p–

Rse

nse T( ) nse
eq

T( ) γgex NC T( ) NV T( )+( )
Eg,eff Eex–

kT
--------------------------– 

 exp= =

γ 1 4⁄= gex Eex

nse∇ n̂⋅ 0=

ΔE
236 Sentaurus™ Device User Guide
N-2017.09



11: Transport in Metals, Organic Materials, and Disordered Media
Singlet Exciton Equation
difference between the band gaps, the conduction bands, or the valence bands of the two
regions. 

Assuming that at heterointerfaces between materials 1 and 2 (that is, regions 1 and 2), 
(  for example), and  is the singlet exciton flux leaving material 2 and  is
the singlet exciton flux entering material 1, the interface boundary condition can be written as:

(147)

where  and  are the singlet exciton densities of materials 2 and 1 at the
heterointerface.  is the organic heterointerface emission velocity defined in the parameter
file.

Using the Singlet Exciton Equation

To activate the singlet exciton equation, the keyword SingletExciton must be specified in
the Coupled statement of the Solve section (see Coupled Command on page 136). Then, the
regions where the equation will be solved are selected by specifying the keyword
SingletExciton with different options in the Physics section of the respective regions (by
default, none of the regions is selected for solving the singlet exciton equation, so you must
select at least one region).

The singlet exciton generation and recombination terms in Eq. 144 are switched off by default.
They can be activated regionwise by specifying the corresponding keyword as an option for
Recombination in the SingletExciton section of the respective region Physics section
(see Table 254 on page 1449).

The keyword Bimolecular activates the bimolecular generation (first term). The keywords
Radiative and TrappedRadiative switch on radiative decay of singlet excitons either
directly or trap-assisted (third and fourth terms). Nonradiative exciton destruction (fifth term)
is activated by eQuenching and hQuenching. An example is:

Physics(Region="EML-ETL") {
SingletExciton(Recombination(Bimolecular eQuenching hQuenching))

}

For interfaces where the singlet exciton equation is solved only in one of the regions of the
interface, the default boundary conditions are defined by Eq. 146.

ΔE 0>
Eg 2, Eg 1,> jse 2, jse 1,

jse 1, jse 2,=

jse 2, vsi nse 2, nse 1,
ΔE
kT
-------– 

 exp– 
 =

nse 2, nse 1,
vsi
Sentaurus™ Device User Guide 237
N-2017.09



11: Transport in Metals, Organic Materials, and Disordered Media 
Singlet Exciton Equation
To switch to zero flux boundary condition , the keyword FluxBC must be
specified as an option for SingletExciton in the interface Physics section:

Physics(RegionInterface="Region_0/Region_2") {
SingletExciton(FluxBC)

}

For heterointerfaces, the default barrier type for the singlet exciton flux injection across the
interface (defined in Eq. 147) is the bandgap energy difference. 

The barrier can be switched to conduction band or valence band type by specifying the
keyword BarrierType with the option CondBand or ValBand in the SingletExciton
section of the heterointerface Physics section:

Physics(RegionInterface="Region_0/Region_2") {
SingletExciton(BarrierType(CondBand)

}

Parameters used with the singlet exciton equation must be specified in the SingletExciton
section of the parameter file. 

Table 33 Parameters and their default values for singlet exciton equation

Symbol Parameter name Default value Location Unit

gamma 0.25 region 1

tau region s

tau_trap region s

l_diff region cm

region

ex_cXsection region

ex_cXsection region

Eex 0.015 region eV

gex 4 region 1

vth region cm/s

vth_car region cm/s

vth_car region cm/s

vel interface cm/s

nse∇ n̂⋅ 0=

γ

τ 1
7–×10

τtrap 1
8–×10

Ldiff 1
3–×10

Dse Ldiff
2 τ⁄= cm

2
/s

σse n– 1
8–×10 cm

2

σse p– 1
8–×10 cm

2

Eex

gex

vse 0, 1
7×10

vn 0, 1
3×10

vp 0, 1
3×10

vsi 1
8×10
238 Sentaurus™ Device User Guide
N-2017.09



11: Transport in Metals, Organic Materials, and Disordered Media
Transport in Metals
Transport in Metals

The simulation of current transport in metals or semi-metals is important for interconnection
problems in ICs. The current density in metals is given by:

(148)

where:

■  is the metal conductivity.

■  is the Fermi potential in the metal.

■  is the metal thermoelectric power.

■  is the lattice temperature.

The second term in Eq. 148 accounts for the Seebeck effect, and it is nonzero only when
computation of metal thermoelectric power is enabled (see Thermoelectric Power (TEP) on
page 913). For the steady-state case, . Therefore, the equation for the Fermi
potential inside of metals is:

(149)

The following temperature dependence is applied for :

(150)

All these resistivity parameters can be specified in the parameter file as:

Resistivity {
* Resist(T) = Resist0 * ( 1 + TempCoef * ( T - 273 ) )

Resist0 = <value> # [Ohm*cm]
TempCoef = <value> # [1/K]

}

No specific keyword is required in the command file because Sentaurus Device recognizes all
conductor regions and applies the appropriate equations to these regions and interfaces. The
metal conductivity equation Eq. 149 is a part of the Contact equation, which is solved
automatically by default. If the keyword NoAutomaticCircuitContact is specified in the
Math section or only the Poisson equation is solved, the Contact equation must be added
explicitly in the Coupled statement to account for conductivity in metals.

To switch off current transport in metals, specify the keyword -MetalConductivity in the
Math section.

JM σ– ∇ΦM P T∇+( )=

σ
ΦM

P

T

∇ J⋅ M 0=

∇ σ ∇ΦM P T∇+( )( )⋅ 0=

ρ 1 σ⁄=

ρ ρ0 1 αT T 273 K–( )+( )=
Sentaurus™ Device User Guide 239
N-2017.09



11: Transport in Metals, Organic Materials, and Disordered Media 
Transport in Metals
Electric Boundary Conditions for Metals

The following boundary conditions are used:

■ At contacts connected to metal regions, the Dirichlet condition  is applied for
the Fermi potential.

■ Interface conditions always include the displacement current  to ensure conservation of
current.

■ For interfaces between metal and insulator, the equations are:

(151)

where  is the workfunction difference between the metal and an intrinsic
semiconductor selected (internally by Sentaurus Device) as a reference material, and  is
the unit normal vector to the interface. The electrostatic potential inside metals is computed
as .

■ At metal–semiconductor interfaces, by default, there is an Ohmic boundary condition.
Schottky boundary conditions can be selected as an option.

The Ohmic boundary condition at metal–semiconductor interfaces reads:

(152)

where:

■  is the equilibrium electrostatic potential (the built-in potential).

■  are the electron and hole equilibrium concentrations (see Ohmic Contacts on
page 201).

There are several options for the Schottky interface (refer to the equations in Schottky Contacts
on page 204). The potential barrier between metal and semiconductor is computed
automatically and the barrier tunneling (see Nonlocal Tunneling at Interfaces, Contacts, and
Junctions on page 722) and barrier lowering (see Barrier Lowering at Schottky Contacts on
page 208) models can be applied.

ΦM Vapplied=

JD

JM n̂⋅ JD n̂⋅=

φ ΦM Φ– MS=

ΦMS

n̂

φ ΦM Φ– MS=

JM n̂⋅ Jn Jp JD+ +( ) n̂⋅=

φ ΦM φ0+=

n n0=

p p0=

φ0

n0 and p0
240 Sentaurus™ Device User Guide
N-2017.09



11: Transport in Metals, Organic Materials, and Disordered Media
Transport in Metals
To select these models, use the following syntax in the command file:

Physics(MaterialInterface = "Metal/Silicon") { Schottky eRecVelocity=1e6
hRecVelocity=1e6 }

Physics(MaterialInterface = "Metal/Silicon") { Schottky BarrierLowering }
Physics(MaterialInterface = "Metal/Silicon") { Schottky }

The default values of the electron and hole surface recombination velocities are eRecVel =
2.573e6 and hRecVel = 1.93e6, respectively. Similarly to Electrode conditions, if
Schottky is not specified but the SurfaceSRH keyword is specified, Sentaurus Device will
apply Ohmic boundary conditions to the electrostatic potential and the surface recombination
for both electron and hole carrier current densities on such interfaces.

NOTE At nonmetal interfaces, the keyword SurfaceSRH activates a different
model from the one described in this section (see Surface SRH
Recombination on page 404).

Both Ohmic and Schottky interfaces support a distributed resistance model similar to the one
described in Resistive Contacts on page 213. If a distributed resistance is specified at the
interface, a distributed voltage drop  is applied to the existing
boundary condition for potential, where  is the voltage drop across the interface, and

 is the distributed resistance at the interface. In addition, for Ohmic interfaces, emulation of
a Schottky interface using a doping-dependent resistivity model is possible. These options are
activated as following:

# Distributed resistance at Ohmic interface
Physics(MaterialInterface = "Metal/Silicon") {DistResist=1e-6}
# Distributed resistance at Schottky interface
Physics(MaterialInterface = "Metal/Silicon") {Schottky DistResist=1e-6}
# Distributed resistance at Ohmic interface emulating a Schottky interface
Physics(MaterialInterface = "Metal/Silicon") 

{DistResist = SchottkyResist}

For Schottky interfaces, the distributed resistance model works with all other options
previously described.

For all other metal boundaries, the Neumann condition  is applied.

NOTE By default, Sentaurus Device computes output currents through a
contact using integration over the associated wells. For metal contacts,
the integration can be switched off and the local current can be used
instead by specifying the keyword DirectCurrent in the Math
section. This option may produce a wrong current at the metal contact.

Δφ Rd( ) Rd Jn Jp JD+ +( ) n̂⋅=
Δφ Rd( )

Rd

JM n̂⋅ 0=
Sentaurus™ Device User Guide 241
N-2017.09



11: Transport in Metals, Organic Materials, and Disordered Media 
Transport in Metals
Metal Workfunction

To specify the metal workfunction, use the Bandgap parameter set, for example:

Material = "Gold" {
Bandgap { WorkFunction = 5 # [eV] }

}

It is also possible to account for workfunction variations within the metal.

If such variations can be characterized by mole-fraction variations and if the metal is treated as
a mole fraction–dependent material (see Mole-Fraction Materials on page 15), then
WorkFunction in the Bandgap parameter set can be specified as a mole fraction–dependent
quantity, for example:

Material = "Metal" {
Bandgap {

Xmax(0)=0.0
Xmax(1)=0.2
WorkFunction(0) = 4.53# [eV]
WorkFunction(1) = 4.38# [eV]

}
}

The positional dependency of the workfunction in metals also can be specified directly in the
Physics section of the command file using one of three different methods:

Physics (Material = "<name>" | Region = "<name>") {
MetalWorkfunction (

[ Workfunction=<wf> ] |
[ Workfunction=(<wf1>, <x1>, <y1>, <z1>)

Workfunction=(<wf2>, <x2>, <y2>, <z2>)
...
Workfunction=(<wfN>, <xN>, <yN>, <zN>) ] |

[ SFactor= "<dataset_name-or-pmi_model_name>" [Factor=<scale>]
[Offset=<offset>] ]

)
}

The first method (Workfunction=<wf>) simply specifies a constant workfunction value for
the material or region that overrides any specification from the parameter file.

The next method allows the specification of an arbitrary number of workfunction–position
quadruplets. The workfunction at a vertex in the metal is assigned the value of the workfunction
from the quadruplet whose position is closest to the vertex.
242 Sentaurus™ Device User Guide
N-2017.09



11: Transport in Metals, Organic Materials, and Disordered Media
Transport in Metals
Alternatively, the SFactor parameter can be used to specify a dataset name (which includes
the PMI user fields PMIUserField0 through PMIUserField299) from which the vertex
workfunction values will be taken, or a space factor PMI model can be specified that calculates
the vertex workfunction values directly (see Space Factor on page 1190). If Factor=<scale>
is specified, the SFactor values are normalized and then are multiplied by this factor. If
Offset=<offset> is specified, this value is added to the raw or scaled SFactor values.

Metal Workfunction Randomization

The workfunction in metal regions can be randomized using specifications in the command
file:

Physics (Material = "<name>" | Region = "<name>") {
MetalWorkfunction (

Randomize (
AverageGrainSize=<size> # [micrometers]
GrainProbability=(<P1>, <P2>, ...)
GrainWorkfunction=(<wf1>, <wf2>, ...) #[eV]
RandomSeed=<seed>
AtInsulatorInterface
UniformDistribution

)
)

}

The approach taken assumes that the metal consists of randomized grains of varying size and
shape that can be characterized with an average grain size. It also assumes that the grains in the
metal occur with a finite number of orientations, and the number of grains for each orientation
can be characterized with a probability of occurrence. All grains of the same orientation are
assumed to have the same workfunction, but the workfunction can be different for each
orientation.

AverageGrainSize is used to determine the average number of grains for a region, which
then is used as the expectation value for a Poisson distribution, random number generator to
determine the actual number of grains for the region. Each grain can have a different shape and
size.

An arbitrary number of GrainProbability values can be specified, but their sum must be
equal to one. In addition, there must be a one-to-one correspondence between
GrainProbability values and GrainWorkfunction values.

By default, the seed for the random number generator used in the randomization process is
different for every simulation. However, RandomSeed can be specified if required. This allows
a particular randomization to be repeated if the same seed is used in a subsequent simulation
of the same device on the same computer.
Sentaurus™ Device User Guide 243
N-2017.09



11: Transport in Metals, Organic Materials, and Disordered Media 
Conductive Insulators
The AtInsulatorInterface option confines the randomization to the metal–insulator
interface vertices. However, the resulting workfunction values at the interface will be exactly
the same as those obtained when the entire metal region is randomized.

The UniformDistribution option attempts to use grains with a uniform size that are
distributed uniformly. The success of this is highly dependent on the grid used in the metal
region.

The workfunction in metal regions can be saved in a plot file for visualization by specifying
MetalWorkfunction in the Plot section of the command file.

Temperature in Metals

In metals, only the lattice temperature is defined. If the lattice temperature is solved, in metals,
it obeys the following equation:

(153)

where  is the thermal conductivity (see Thermal Conductivity on page 901). If current
transport in metals is switched off, the right-hand side of Eq. 153 vanishes. However, a heat
flow in metals can still be simulated.

Conductive Insulators

Leakage currents in dielectrics can be modeled by allowing dielectrics to have conductive
properties. The conductive insulator (leaky insulator) model implements dielectrics that have
nonzero (but typically low) conductivity (a metal-like property), besides the pure dielectric
properties.

In a conductive insulator, the electrostatic potential is computed using the Poisson equation,
similar to a pure dielectric. As in metals, conductivity is modeled by the Fermi potential
(solving Eq. 149) and then the leakage current is computed using Eq. 148. Since the model
does not allow net charge in the conductive insulator, the Poisson equation remains unchanged
by adding conductive properties to the insulator.

The equation for the Fermi potential inside a conductive insulator is the same used for metals
(see Eq. 149), where  is now the conductivity of the conductive insulator and  is
the Fermi potential in the conductive insulator.

cL t∂
∂T ∇ κ⋅ T∇– ∇ψM JM⋅–=

κ

σ ΦM ΦCI=
244 Sentaurus™ Device User Guide
N-2017.09



11: Transport in Metals, Organic Materials, and Disordered Media
Conductive Insulators
The following boundary conditions are used for this equation:

■ At contacts connected to conductive insulator regions, the Dirichlet condition
 is applied for the Fermi potential.

■ Interface conditions always include the displacement current  in insulators, conductive
insulators, and semiconductors to ensure conservation of current.

■ For conductive insulator–semiconductor interfaces, Ohmic-like boundary conditions,
thermionic-like boundary conditions, and boundary conditions for floating regions are
available.

Leakage from or to a semiconductor to or from a conductive insulator is mainly determined by
two factors: the conductive properties of the interface and the bulk resistivity of the conductive
insulator. The bulk resistivity-limited conduction corresponds to the case when the current flow
is limited by the high resistivity of the conductive insulator region, and the interface has zero
resistivity. This case is modeled by the Ohmic-like boundary conditions:

(154)

where:

■  and  are the Fermi potential and current density on the interface.

■  is the electrostatic potential (the solution of the Poisson equation in insulator and
semiconductor regions).

■  is the built-in potential.

■  is the unit normal vector to the interface.

■  and  are the electron and hole currents on the semiconductor side of the interface.

■  is the fraction ( ) of the current density of the conductive insulator going to the
electron current density.

Thermionic-like emission at the interface models the case where conduction is limited by both
interface properties and the bulk resistivity of the conductive insulator. Thermionic boundary
conditions read:

(155)

ΦCI Vapplied=

JD

JCI n̂⋅ αJn 1 α–( )Jp+( ) n̂⋅=

ΦCI φ φ0–=

ΦCI JCI

φ

φ0

n̂

Jn Jp

α 0 α 1≤ ≤

JCI n̂⋅ Jn th, Jp th,+( ) n̂⋅=

Jn th, aq vn Tn( )n vn T( ) T
Tn
----- 
  1.5

NC

EF
CI

EC–

kT
---------------------
 
 
 

exp–=

Jp th, aq vp Tp( )p vp T( ) T
Tp
----- 
  1.5

NV

EV E–
F
CI

kT
---------------------
 
 
 

exp–=
Sentaurus™ Device User Guide 245
N-2017.09



11: Transport in Metals, Organic Materials, and Disordered Media 
Conductive Insulators
where:

■  and  are the electron and hole thermionic-emission current densities on the
interface from the semiconductor side.

■  and  are ‘emission velocities’ at the
interface.

■ , , and  are the lattice, electron and hole temperatures, respectively.

■ , , and  are the conductive insulator Fermi-level energy, conduction band energy,
and valence band energy, respectively.

■  is a constant set through the parameter file, which has the default value of 2.

By using a conductive insulator layer between a semiconductor floating region and a
semiconductor region, leakage from a semiconductor floating-gate can be emulated. The
boundary condition used in this case is:

(156)

where  is the Fermi potential close to the interface. In this case, during transient simulations,
the charge update on the floating gate is computed as , where  is the total current at
the conductive insulator–floating gate interface, and  is the current time step. The activation
of this type of boundary condition is automatic if the boundary condition at the conductive
insulator–semiconductor floating-gate interface is Ohmic and the simulation is transient (to
allow for charging and discharging of the floating gate).

The model is activated by using the keyword CondInsulator in the Physics section to
make the dielectric conductive and by adding the CondInsulator equation in the Solve
section to actually solve the Fermi potential:

Physics(Region="insulator"){
...
CondInsulator
...

}

Solve {
...
Coupled {Poisson Electron Hole Contact CondInsulator}
...

}

The parameters for the resistivity of conductive insulators (see Eq. 150) are specified in the
Resistivity parameter set:

Material = "Si3N4" {
Resistivity {

* Resist(T) = Resist0 * (1 + TempCoef * (T-273))

Jn th, Jp th,

vn T( ) kT 2πmn⁄( )0.5= vp T( ) kT 2πmp⁄( )0.5=

T Tn Tp

EF
CI EC EV

a

JCI n̂⋅ σ– ∇Φ=

Φ
JCIΔt JCI

Δt
246 Sentaurus™ Device User Guide
N-2017.09



11: Transport in Metals, Organic Materials, and Disordered Media
Conductive Insulators
Resist0 = 3.0e9 # [Ohm*cm]
TempCoef = 43.0e-4 # [1/K]

}
}

Boundary conditions according to Eq. 154 are used by default. The parameter  in Eq. 154 is
given by the value of curw in the CondInsCurr parameter set:

MaterialInterface = "Si3N4/AlGaN" {
CondInsCurr {

curw = 1.0 # [1]
}

}

Thermionic emission at the semiconductor–conductive insulator interface is enabled by adding
eThermionic or hThermionic in the Physics section:

Physics(MaterialInterface="Si3N4/AlGaN") {
*----- Insulator/AlGaN -----
...
eThermionic 
hThermionic
...

}

where the parameter  (see Eq. 155) is specified in the parameter file:

MaterialInterface = "Si3N4/AlGaN" {
ThermionicEmission {

A = 2, 2
}

}

For nonthermionic interfaces, an equilibrium solution is needed internally to solve the
CondInsulator equation. The equilibrium solution is computed automatically by a nonlinear
iteration. Sentaurus Device allows you to specify numeric parameters of the nonlinear iteration
as options to the keyword EquilibriumSolution in the Math section (see Equilibrium
Solution on page 175 and Table 220 on page 1421). The following example forces the Newton
solver to solve up to 100 iterations:

Math {
...
EquilibriumSolution(Iterations=100)
...

}

α

a

Sentaurus™ Device User Guide 247
N-2017.09



11: Transport in Metals, Organic Materials, and Disordered Media 
Conductive Insulators
248 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 12 Semiconductor Band Structure

This chapter discusses the relevance of band structure to the
simulation of semiconductor devices.

For device simulation, the most fundamental property of a semiconductor is its band structure.
Realistic band structures are complex and can be fully accounted for only in Monte Carlo
simulations (refer to the Sentaurus™ Device Monte Carlo User Guide). In Sentaurus Device,
the band structure is simplified to four quantities: the energies of the conduction and valence
band edges (or, in a different parameterization, band gap and electron affinity), and the density-
of-states masses for electrons and holes (or, parameterized differently, the band edge density-
of-states). The models for these quantities are discussed in Band Gap and Electron Affinity and
Effective Masses and Effective Density-of-States on page 261.

Intrinsic Density

The band gap and band edge density-of-states are summarized in the intrinsic density 
(for undoped semiconductors):

(157)

and the effective intrinsic density (including doping-dependent bandgap narrowing):

(158)

In devices that contain different materials, the electron affinity  (see Band Gap and Electron
Affinity) is also important. Along with the band gap, it determines the alignment of conduction
and valence bands at material interfaces.

Band Gap and Electron Affinity

The band gap is the difference between the lowest energy in the conduction band and the
highest energy in the valence band. The electron affinity is the difference between the lowest
energy in the conduction band and the vacuum level.

ni T( )

ni T( ) NC T( )NV T( )
Eg T( )
2kT

--------------– 
 exp=

ni eff, ni

Ebgn

2kT
----------
 
 
 

exp=

χ

Sentaurus™ Device User Guide 249
N-2017.09



12: Semiconductor Band Structure 
Band Gap and Electron Affinity
Selecting the Bandgap Model

Sentaurus Device supports different bandgap models: BennettWilson, delAlamo,
OldSlotboom, and Slotboom (the same model with different default parameters),
JainRoulston, and TableBGN. The bandgap model can be selected in the
EffectiveIntrinsicDensity statement in the Physics section, for example:

Physics {
EffectiveIntrinsicDensity(BandGapNarrowing (Slotboom))

}

activates the Slotboom model. The default model is BennettWilson.

By default, bandgap narrowing is active. Bandgap narrowing can be switched off with the
keyword NoBandGapNarrowing:

Physics {
EffectiveIntrinsicDensity(NoBandGapNarrowing)

}

NOTE To plot the band gap including the bandgap narrowing, specify
EffectiveBandGap in the Plot section of the command file. The
quantity that Sentaurus Device plots when BandGap is specified does
not include bandgap narrowing.

Table 36 on page 260 and Table 37 on page 261 list the model parameters available for
calibration (see Bandgap and Electron-Affinity Models).

Bandgap and Electron-Affinity Models

Sentaurus Device models the lattice temperature–dependence of the band gap as [1]:

(159)

where  is the bandgap energy at , and and  are material parameters (see Table 36
on page 260).

To allow  to differ for different bandgap models, it is written as:

(160)

Eg T( ) Eg 0( ) αT2

T β+
-------------–=

Eg 0( ) 0 K α β

Eg 0( )

Eg 0( ) Eg 0, δEg 0,+=
250 Sentaurus™ Device User Guide
N-2017.09



12: Semiconductor Band Structure
Band Gap and Electron Affinity
 is an adjustable parameter common to all models. For the TableBGN and JainRoulston
models, . Each of the other models offers its own adjustable parameter for 
(see Table 36 on page 260).

The effective band gap results from the band gap reduced by bandgap narrowing:

(161)

The electron affinity  is the energy separation between the conduction band and the vacuum.
For BennettWilson, delAlamo, OldSlotboom, Slotboom, and TableBGN, the affinity is
temperature dependent and is affected by bandgap narrowing:

(162)

where  and Bgn2Chi are adjustable parameters (see Table 36 on page 260). Bgn2Chi
defaults to  and, therefore, bandgap narrowing splits equally between conduction and
valence bands.

In the case of the JainRoulston model, the electron affinity depends also on the doping
concentration (especially at high dopings) because bandgap narrowing is doping dependent:

(163)

where  is the shift in the conduction band due to the JainRoulston bandgap narrowing
and  is an adjustable parameter as previously defined.

The main difference of the bandgap models is how they handle bandgap narrowing. Bandgap
narrowing in Sentaurus Device has the form:

(164)

where  is determined by the particular bandgap narrowing model used, and  is an
optional correction to account for carrier statistics (see Eq. 178, p. 259).

Bandgap Narrowing for Bennett–Wilson Model

Bandgap narrowing for the Bennett–Wilson [2] model (keyword BennettWilson) in
Sentaurus Device reads:

(165)

Eg, 0

δEg 0, 0= δEg 0,

Eg,eff T( ) Eg T( ) Ebgn–=

χ

χ T( ) χ0

α α2+( )T2

2 T β β2+ +( )
--------------------------------- Bgn2Chi Ebgn⋅+ +=

χ0

0.5

χ T NA 0, ND 0,, ,( ) χ0

α α2+( )T2

2 T β β2+ +( )
--------------------------------- Ebgn

cond
+ +=

Ebgn
cond

χ0

Ebgn ΔEg
0 ΔEg

Fermi+=

ΔEg
0 ΔEg

Fermi

Eg
0Δ Eref

Ntot

Nref
--------- 
 ln

2
Ntot Nref≥

0 otherwise





=

Sentaurus™ Device User Guide 251
N-2017.09



12: Semiconductor Band Structure 
Band Gap and Electron Affinity
The model was developed from absorption and luminescence data of heavily doped n-type
materials. The material parameters  and  are accessible in the Bennett parameter set
in the parameter file of Sentaurus Device (see Table 37 on page 261).

Bandgap Narrowing for Slotboom Model

Bandgap narrowing for the Slotboom model (keyword Slotboom or OldSlotboom) (the only
difference is in the parameters) in Sentaurus Device reads:

(166)

The models are based on measurements of  in n-p-n transistors (or  in p-n-p
transistors) with different base doping concentrations and a 1D model for the collector current
[3]–[6]. The material parameters  and  are accessible in the Slotboom and
OldSlotboom parameter sets in the parameter file (see Table 37 on page 261).

Bandgap Narrowing for del Alamo Model

Bandgap narrowing for the del Alamo model (keyword delAlamo) in Sentaurus Device reads:

(167)

This model was proposed [7]–[11] for n-type materials. The material parameters  and 
are accessible in the delAlamo parameter set in the parameter file (see Table 37 on page 261).

Bandgap Narrowing for Jain–Roulston Model

Bandgap narrowing for the Jain–Roulston model (keyword JainRoulston) in Sentaurus
Device is implemented based on the literature [12] and is given by:

(168)

where , , , and  are material-dependent coefficients that can be specified in the
parameter file.

Eref Nref

Eg
0Δ Eref

Ntot

Nref
--------- 
 ln

Ntot

Nref
--------- 
 ln 

 
2

0.5++=

μnni
2 μpni

2

Eref Nref

Eg
0Δ Eref

Ntot

Nref
---------
 
 
 

ln Ntot Nref≥

0 otherwise







=

Eref Nref

Eg
0Δ A Ntot

1 3⁄⋅ B Ntot
1 4⁄⋅ C Ntot

1 2⁄⋅ D Ntot
1 2⁄⋅+ + +=

A B C D
252 Sentaurus™ Device User Guide
N-2017.09



12: Semiconductor Band Structure
Band Gap and Electron Affinity
The coefficients , , , and  are derived from the quantities defined and described in the
literature [12]:

(169)

(170)

(171)

(172)

where  is the effective Bohr radius,  is the Rydberg energy,  is the number of valleys in
the conduction or valence band,  is the Rydberg energy for the minority carrier band,
and  is a correction factor.

In general, papers on bandgap narrowing define the Jain–Roulston bandgap narrowing as
. Comparing this definition to Eq. 168, the

coefficients , , and  can be mapped to the ones of Sentaurus Device: ,
, and .

If, on the other hand, , , and  are given, then computing the corresponding Sentaurus
Device coefficients , , , and  requires splitting  into  and  using Eq. 171 and
Eq. 172.

Sentaurus Device needs four coefficients instead of three to compute  and the doping-
dependent affinity (Eq. 163) internally. The expression of  is given by:

(173)

A B C D

A 1.83
Λ

Nb
1 3⁄------------

aR

3
4π
------ 
  1 3⁄--------------------    [eV cm]⋅=

B
0.95Ra

3 4⁄

3
4π
------ 
  1 4⁄-------------------------    [eV cm

3 4⁄
]⋅=

C
1.57Ra

3 2⁄

Nb
3

4π
------ 
  1 2⁄---------------------------    [eV cm

3 2⁄
]⋅=

D
1.57R mino( )a

3 2⁄

Nb
3

4π
------ 
  1 2⁄---------------------------------------    [eV cm

3 2⁄
]⋅=

a R Nb

R mino( )
Λ

Eg
0Δ C1 Ntot

1 3⁄⋅ C2 Ntot
1 4⁄⋅ C3 Ntot

1 2⁄⋅+ +=
C1 C2 C3 C1 A=

C2 B= C3 C D+=

C1 C2 C3

A B C D C3 C D

Ebgn
cond

Ebgn
cond

Ebgn
cond A N⋅ tot

1 3⁄
C Ntot

1 2⁄⋅+ ND 0, NA,0>

B N⋅ tot
1 4⁄

D Ntot
1 2⁄⋅+ otherwise






=

Sentaurus™ Device User Guide 253
N-2017.09



12: Semiconductor Band Structure 
Band Gap and Electron Affinity
The coefficients , , , and  are specified in the JainRoulston section of the parameter
file:

Material = "Silicon" {
JainRoulston {

* n-type
A_n = 1.02e-8     # [eV cm]
B_n = 4.15e-7     # [eV cm^(3/4)]
C_n = 1.45e-12    # [eV cm^(3/2)]
D_n = 1.48e-12    # [eV cm^(3/2)]
* p-type
A_p = 1.11e-8     # [eV cm]
B_p = 4.79e-7     # [eV cm^(3/4)]
C_p = 3.23e-12    # [eV cm^(3/2)]
D_p = 1.81e-12    # [eV cm^(3/2)]

}
} 

Table Specification of Bandgap Narrowing

It is possible to specify bandgap narrowing by using a table, which can be defined in the
TableBGN parameter set. This table gives the value of bandgap narrowing as a function of
donor or acceptor concentration, or total concentration (the sum of acceptor and donor
concentrations).

When specifying acceptor and donor concentrations, the total bandgap narrowing is the sum of
the contributions of the two dopant types. If only acceptor or only donor entries are present in
the table, the bandgap narrowing contribution for the missing dopant type vanishes. Total
concentration and donor or acceptor concentration must not be specified in the same table.

Table 34 Coefficients and their default values for Jain–Roulston bandgap narrowing model

Symbol Parameter name Default value for material Unit

Si Ge GaAs All others

A_n 1.02e-8 7.30e-9 1.65e-8 0.0

A_p 1.11e-8 8.21e-9 9.77e-9 0.0

B_n 4.15e-7 2.57e-7 2.38e-7 0.0

B_p 4.79e-7 2.91e-7 3.87e-7 0.0

C_n 1.45e-12 2.29e-12 1.83e-11 0.0

C_p 3.23e-12 3.58e-12 3.41e-12 0.0

D_n 1.48e-12 2.03e-12 7.25e-11 0.0

D_p 1.81e-12 2.19e-12 4.84e-13 0.0

A B C D

A eVcm

eVcm

B eVcm
3 4⁄

eVcm
3 4⁄

C eVcm
3 2⁄

eVcm
3 2⁄

D eVcm
3 2⁄

eVcm
3 2⁄
254 Sentaurus™ Device User Guide
N-2017.09



12: Semiconductor Band Structure
Band Gap and Electron Affinity
Each table entry is a line that specifies a concentration type (Donor, Acceptor, or Total)
with a concentration in , and the bandgap narrowing for this concentration in . The
actual bandgap narrowing contribution for each concentration type is interpolated from the
table, using a scheme that is piecewise linear in the logarithm of the concentration. 

For concentrations below (or above) the range covered by table entries, the bandgap narrowing
of the entry for the smallest (or greatest) concentration is assumed, for example:

TableBGN {
Total 1e16, 0
Total 1e20, 0.02

}

means that for total doping concentrations below , the bandgap narrowing vanishes,
then increases up to  at  concentration and maintains this value for even
greater concentrations. The interpolation is such that, in this example, the bandgap narrowing
at  is .

Tabulated default parameters for bandgap narrowing are available only for GaAs. For all other
materials, you can specify the tabulated data in the parameter file.

NOTE It is not possible to specify mole fraction–dependent bandgap narrowing
tables. In particular, Sentaurus Device does not relate the parameters for
ternary compound semiconductor materials to those of the related
binary materials.

Schenk Bandgap Narrowing Model

BennettWilson, delAlamo, OldSlotboom, Slotboom, JainRoulston, and TableBGN
are all doping-induced bandgap narrowing models. They do not depend on carrier
concentrations. High carrier concentrations produced in optical excitation or high electric field
injection can also cause bandgap narrowing. This effect is referred to as plasma-induced
bandgap narrowing.

The Schenk bandgap narrowing model described in [13] also takes into account the plasma-
induced narrowing effect in silicon. In this model, the bandgap narrowing is the sum of two
parts:

■ An exchange-correlation part, which is a function of plasma density and temperature.

■ An ionic part, which is a function of activated doping concentration, plasma density, and
temperature.

Sentaurus Device supports two versions of the Schenk model: a simplified version where
bandgap narrowing is computed at  and does not depend on temperature, and the full
model where temperature dependence is accounted for. You can switch from the simplified

cm 3– eV

1016 cm 3–

20 meV 1020 cm 3–

1018 cm 3– 10 meV

T 0 K=
Sentaurus™ Device User Guide 255
N-2017.09



12: Semiconductor Band Structure 
Band Gap and Electron Affinity
model (the default) to the full model by setting IsSimplified=-1 in the Schenk bandgap
narrowing section of the parameter file.

The full-model exchange correlation and ionic terms are described by:

(174)

(175)

and, for the simplified model by:

(176)

(177)

where  is the index for the carrier type, , ,
, and . The default values (silicon) and units for the

parameters that can be changed in Sentaurus Device in this model are listed in Table 35 on
page 258.

Sentaurus Device implements the Schenk bandgap narrowing model using the framework of
the density gradient model (see Density Gradient Model on page 294). If you want to suppress
the quantization corrections contained in this model, set the density gradient model parameter

 (see Eq. 231, p. 295).

The Schenk model is switched on separately for electrons (conduction band correction) and
holes (valence band correction). The complete bandgap narrowing correction is the sum of
conduction and valence band corrections, and it can be obtained by switching on the Schenk
model for both electrons and holes.

First, in the Physics section of silicon regions, SchenkBGN_elec must be specified as the
LocalModel (that is, the model for  in Eq. 231, p. 295) for eQuantumPotential
(conduction bandgap correction), and SchenkBGN_hole must be specified as the
LocalModel for hQuantumPotential (valence band correction).

Δa
xc

n p T, ,( )
4π( )3

nΣ
2 48na

πga
----------- 
 

1 3⁄
ca 1 danp

pa+( )ln+
8παa

ga
------------- 
  naϒ2

8πnΣϒ5 2⁄
+ +

4π( )3
nΣ

2 ϒ3
ba nΣϒ2

40nΣ
3 2⁄ ϒ+ + +

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------–=

Δa
i

Ntot n, p T, ,( )
Ntot 1 U

i
nΣ ϒ,( )+[ ]

ϒnΣ 2π( )⁄ 1 ha 1 nΣ ϒ⁄+( ) jaU
i

nΣ ϒ,( )np
3 4⁄

1 kanp
qa+( )+ln+[ ]

-----------------------------------------------------------------------------------------------------------------------------------------------------------------–=

Δa
xc

n p T 0=, ,( )
48na

πga
----------- 
 

1 3⁄
ca 1 danp

pa+( )ln+–=

Δa
i

Ntot n p T 0=, , ,( ) Ntot

0.799αa

np
3 4⁄--------------------–=

a e h,= ϒ kT Ryex⁄= nΣ n p+=
np αen αhp+= Ui nΣ ϒ,( ) nΣ

2 ϒ3⁄=

γ 0=

ΛPMI
256 Sentaurus™ Device User Guide
N-2017.09



12: Semiconductor Band Structure
Band Gap and Electron Affinity
In addition, because the Schenk model is a bandgap narrowing model itself, all other models
must be switched off by specifying the keyword NoBandGapNarrowing as the argument for
EffectiveIntrinsicDensity:

Physics(Region = "Region1_Si") {
...
EffectiveIntrinsicDensity (NoBandGapNarrowing)
eQuantumPotential(LocalModel=SchenkBGN_elec)
hQuantumPotential(LocalModel=SchenkBGN_hole)
...

}

Apart from switching on quantum corrections in the Physics section, the equations for
quantum corrections must be solved to compute the corrections. This is performed by
specifying eQuantumPotential (for electrons) or hQuantumPotential (for holes) or both
in the Solve section:

Solve {
Coupled (LineSearchDamping=0.01){Poisson eQuantumPotential}
Coupled {Poisson eQuantumPotential hQuantumPotential}
quasistationary ( Goal {name="base" voltage=0.4}

 Goal {name="collector" voltage=2.0}
 Initialstep=0.1 Maxstep=0.1 Minstep=1e-6

 )
{coupled {poisson electron hole eQuantumPotential hQuantumPotential}}

}

Finally, to ignore the quantization corrections by the density gradient model, in the parameter
file,  is set to zero. Then, the Schenk model parameter IsSimplified is set to 1 if the
simplified model ( ) is used or -1 for the full model (temperature dependent):

Material = "Silicon" {
...
*turn off everything in density gradient model except
*apparent band-edge shift 
QuantumPotentialParameters {gamma = 0 , 0}
...
SchenkBGN_elec {

...
* Selects simplified model (1) or complete Schenk model (-1)
IsSimplified = 1

}
SchenkBGN_hole {

...
* Selects simplified model (1) or complete Schenk model (-1)
IsSimplified = 1

}
}

γ
T 0 K=
Sentaurus™ Device User Guide 257
N-2017.09



12: Semiconductor Band Structure 
Band Gap and Electron Affinity
The Schenk bandgap narrowing model is specifically for silicon. Sentaurus Device permits the
model parameters to be changed in the parameter file (the SchenkBGN_elec and
SchenkBGN_hole sections) as an option for also using this bandgap narrowing model for
other materials. A full description of the parameters is given in the literature [13] and their
default values are summarized in Table 35.

The Schenk bandgap narrowing can be visualized by specifying the data entry eSchenkBGN
or hSchenkBGN or both in the Plot section of the command file. 

Table 35 Default parameters for Schenk bandgap narrowing model

Symbol Parameter name Default value 
(silicon)

Unit

SchenkBGN_elec

alpha_e 0.5187 1

g_e 12 1

Ry_ex 16.55 meV

a_ex 3.719e-7 cm

b_e 8 1

c_e 1.3346 1

d_e 0.893 1

p_e 0.2333 1

h_e 3.91 1

j_e 2.8585 1

k_e 0.012 1

q_e 0.75 1

SchenkBGN_hole

alpha_h  0.4813 1

g_h 4 1

Ry_ex 16.55 meV

a_ex 3.719e-7 cm

b_h 1 1

c_h 1.2365 1

d_h 1.1530 1

p_h 0.2333 1

αe

ge

Ryex

aex

be

ce

de

pe

he

je

ke

qe

αh

gh

Ryex

aex

bh

ch

dh

ph
258 Sentaurus™ Device User Guide
N-2017.09



12: Semiconductor Band Structure
Band Gap and Electron Affinity
Bandgap Narrowing With Fermi Statistics

Parameters for bandgap narrowing are often extracted from experimental data assuming
Maxwell–Boltzmann statistics. However, in the high-doping regime for which bandgap
narrowing is important, Maxwell–Boltzmann statistics differs significantly from the more
realistic Fermi statistics.

The bandgap narrowing parameters are, therefore, systematically affected by using the wrong
statistics to interpret the experiment. For use in simulations that do not use Fermi statistics, this
‘error’ in the parameters is desirable, as it partially compensates the error by using the ‘wrong’
statistics in the simulation. However, for simulations using Fermi statistics, this compensation
does not occur.

Therefore, Sentaurus Device can apply a correction to the bandgap narrowing to reduce the
errors introduced by using Maxwell–Boltzmann statistics for the interpretation of experiments
on bandgap narrowing (see Eq. 164, p. 251):

(178)

where the right-hand side is evaluated at .

By default, correction Eq. 178 is switched on for simulations using Fermi statistics and
switched off (that is, ) for simulations using Maxwell–Boltzmann statistics. To
switch off the correction in simulations using Fermi statistics, specify
EffectiveIntrinsicDensity(NoFermi) in the Physics section of the command file.
This is recommended if you use parameters for bandgap narrowing that have been extracted
assuming Fermi statistics. Sometimes for III–IV materials, the correction Eq. 178 is too large,
and it is recommended to switch it off in these cases. For Maxwell–Boltzmann statistics,
EffectiveIntrinsicDensity(NoFermi) or EffectiveIntrinsicDensity()
means that the correction of Eq. 178 is set to zero.

h_h 4.20 1

j_h 2.9307 1

k_h  0.19 1

q_h 0.25 1

Table 35 Default parameters for Schenk bandgap narrowing model (Continued)

Symbol Parameter name Default value 
(silicon)

Unit

hh

jh

kh

qh

ΔEg
Fermi k300K ln

NVNC

NA,0ND,0
---------------------- 
  F1 2⁄

1–
NA,0

NV
----------- 
  F1 2⁄

1–
ND,0

NC
----------- 
 + +=

300 K

ΔEg
Fermi 0=
Sentaurus™ Device User Guide 259
N-2017.09



12: Semiconductor Band Structure 
Band Gap and Electron Affinity
Bandgap Parameters

The band gap  and values of  for each model are accessible in the BandGap section
of the parameter file, in addition to the electron affinity  and the temperature coefficients 
and . As an extension to what Eq. 159 and Eq. 162 suggest, the parameters  and  can
be specified at any reference temperature . By default, .

To prevent abnormally low (or negative) band gap, the calculated value of the band gap 
(which may include bandgap narrowing and stress effects) is limited if :

(179)

Table 36 Bandgap models: Parameters and their default values for silicon

Symbol Parameter name Default Unit Band gap at 0 K Reference

Eg0 1.1696 eV – Eq. 160, p. 250

dEg0(Bennett) 0.0 eV 1.1696 Eq. 160

dEg0(Slotboom) eV 1.1648

dEg0(OldSlotboom) eV 1.1537

dEg0(delAlamo) eV 1.1556

alpha eV/K – Eq. 159, p. 250, 
Eq. 162, p. 251

alpha2 0 eV/K – Eq. 162

beta 636 K – Eq. 159, Eq. 162

beta2 0 K – Eq. 162

Chi0 4.05 eV – Eq. 162

Bgn2Chi Bgn2Chi 0.5 1 – Eq. 162

Tpar 0 K –

EgMin 0 eV – Eq. 179

dEgMin 0.01 eV – Eq. 179

Eg 0, δEg 0,
χ0 α

β Eg 0, χ0

Tpar Tpar 0 K=

Eg

Eg Eg min, δEg min,+<

Eg limited, Eg min, δEg min, Eg Eg min,– δEg min,–( ) δEg min,⁄[ ]exp+=

Eg,0 δEg 0,
αTpar

2

β Tpar+
-------------------+ +

Eg 0,

δEg 0,

4.795–
3–×10

1.595–
2–×10

1.407–
2–×10

α 4.73
4–×10

α2

β

β2

χ0

Tpar

Eg min,

δEg min,
260 Sentaurus™ Device User Guide
N-2017.09



12: Semiconductor Band Structure
Effective Masses and Effective Density-of-States
Table 37 summarizes the silicon default parameters for the analytic bandgap narrowing models
available in Sentaurus Device. 

Effective Masses and Effective Density-of-States

Sentaurus Device provides two options for computing carrier effective masses and densities of
states. The first method, selected by specifying Formula=1 in the parameter file, computes an
effective density-of-states (DOS) as a function of carrier effective mass. The effective mass
may be either independent of temperature or a function of the temperature-dependent band gap.
The latter is the most appropriate model for carriers in silicon and is the default for simulations
of silicon devices.

In the second method, selected by specifying Formula=2 in the parameter file the effective
carrier mass is computed as a function of a temperature-dependent density-of-states. The
default for simulations of GaAs devices is Formula=2.

Electron Effective Mass and DOS

Formula 1

The lattice temperature–dependence of the DOS effective mass of electrons is modeled by:

(180)

where the temperature-dependent effective mass component  is best described in silicon
by the temperature dependence of the energy gap [14]:

(181)

The coefficient  and the mass  are defined in the parameter file with the default values
provided in Table 38 on page 262. The parameter , which defaults to zero, allows  to be
defined as a temperature-independent quantity if required.

Table 37 Bandgap narrowing models: Parameters and their default values for silicon

Symbol Parameter Bennett Slotboom Old Slotboom del Alamo Unit

Ebgn eV

Nref

Eref 6.84
3–×10 6.92

3–×10 9.0
3–×10 18.7

3–×10

Nref 3.162
18×10 1.3

17×10 1.0
17×10 7.0

17×10 cm
3–

mn 6
2 3⁄

mt
2
ml( )

1 3⁄
mm+=

mt T( )

mt T( )
m0

-------------- a
Eg 0( )
Eg T( )
--------------=

a ml

mm mn
Sentaurus™ Device User Guide 261
N-2017.09



12: Semiconductor Band Structure 
Effective Masses and Effective Density-of-States
The effective densities of states (DOS) in the conduction band  follows from:

(182)

Formula 2

If Formula=2 is specified in the parameter file, the value for the DOS is computed from
, which is read from the parameter file:

(183)

and the electron effective mass is simply a function of :

(184)

Electron Effective Mass and Conduction Band DOS 
Parameters

Table 38 lists the default coefficients for the electron effective mass and conduction band DOS
models. The values can be modified in the eDOSMass parameter set.

NOTE The default setting for the Formula parameter depends on the
materials, for example, it is equal to 1 for silicon and 2 for GaAs. 

Table 38 Default coefficients for effective electron mass and DOS models

Option Symbol Parameter name Electrons Unit

Formula=1 a 0.1905 1

ml 0.9163 1

mm 0 1

Formula=2 Nc300

NC

NC mn Tn,( ) 2.5094 10
19 mn

m0
-------
 
 
 

3
2
--- Tn

300 K
--------------
 
 
 

3
2
---

cm
3–×=

NC 300 K( )

NC Tn( ) NC 300 K( )
Tn

300 K
--------------
 
 
 

3
2
---

=

NC 300 K( )

mn

m0
------

NC 300 K( )

2.5094 10
19

cm
3–×

------------------------------------------------
 
 
 

2
3
---

=

a

ml

mm

NC 300 K( ) 2.890
19×10 cm

3–
262 Sentaurus™ Device User Guide
N-2017.09



12: Semiconductor Band Structure
Effective Masses and Effective Density-of-States
Hole Effective Mass and DOS

Formula 1

For the DOS effective mass of holes, the best fit in silicon is provided by the expression [15]:

(185)

where the coefficients are listed in Table 39 on page 264. The parameter , which defaults
to zero, allows  to be defined as a temperature-independent quantity. The effective DOS for
holes  follows from:

(186)

Formula 2

If Formula=2 in the parameter file, the temperature-dependent DOS is computed from
 as given in the parameter file:

(187)

and the effective hole mass is given by:

(188)

Hole Effective Mass and Valence Band DOS Parameters

The model coefficients for the hole effective mass and valence band DOS can be modified in
the parameter set hDOSMass. Table 39 on page 264 lists the default parameter values.

NOTE The default setting for the Formula parameter depends on the
materials, for example, it is equal to 1 for silicon and it is equal to 2 for
GaAs. 

mp T( )
m0

---------------
a bT cT

2
dT

3
eT

4
+ + + +

1 fT gT
2

hT
3

iT
4

+ + + +
--------------------------------------------------------------
 
 
 
 

2
3
---

mm+=

mm

mp

NV

NV mp Tp,( ) 2.5094 10
19 mp

m0
------
 
 
 

3
2
--- Tp

300 K
--------------
 
 
 

3
2
---

cm
3–×=

NV 300 K( )

NV Tp( ) NV 300 K( )
Tp

300 K
--------------
 
 
 

3
2
---

=

mp

m0
------

NV 300 K( )

2.5094 10
19

cm
3–×

------------------------------------------------
 
 
 

2
3
--

=

Sentaurus™ Device User Guide 263
N-2017.09



12: Semiconductor Band Structure 
Effective Masses and Effective Density-of-States
Gaussian Density-of-States for Organic Semiconductors

Gaussian density-of-states (DOS) has been introduced to better represent electron and hole
effective DOS in disordered organic semiconductors. Within the Gaussian disorder model,
electron and hole DOS are represented by:

(189)

where  is the total number of hopping sites with  for electrons (LUMO is the
lowest unoccupied molecular orbital) and  for holes (HOMO is the highest
occupied molecular orbital),  and are the energy center and the width of the DOS
distribution, respectively.

Electron and hole densities in the most general case (Fermi–Dirac statistics) then are computed
using Gaussian distribution from Eq. 189 as:

(190)

Table 39 Default coefficients for hole effective mass and DOS models

Option Symbol Parameter name Holes Unit

Formula=1 a 0.4435870 1

b

c

d

e

f

g

h

i

mm 0 1

Formula=2 Nv300

a

b 0.3609528
2–×10 K

1–

c 0.1173515
3–×10 K

2–

d 0.1263218
5–×10 K

3–

e 0.3025581
8–×10 K

4–

f 0.4683382
2–×10 K

1–

g 0.2286895
3–×10 K

2–

h 0.7469271
6–×10 K

3–

i 0.1727481
8–×10 K

4–

mm

NV 300 K( ) 3.140
19×10 cm

3–

Γ E( )
Nt

2πσDOS

------------------------
E E0–( )2

2σDOS
2

-----------------------–
 
 
 

exp=

Nt Nt NLUMO=
Nt NHOMO=

E0 σDOS

n
NLUMO
-----------------

1

2πσn

-----------------
E E0n–( )2

2σn
2

--------------------------–
 
 
  1

1 e
E EF n,–( ) kT( )⁄

+
-------------------------------------------exp Ed

∞–

∞

 Gn ζn sn
ˆ;( )= =
264 Sentaurus™ Device User Guide
N-2017.09



12: Semiconductor Band Structure
Effective Masses and Effective Density-of-States
(191)

where , , , .

Sentaurus Device computes Gauss–Fermi integrals  and  using an analytic
approximation [16]. The approximation covers both the nondegenerate and degenerate cases:

(192)

where the index  is  or , and the analytic functions  and  are given by:

(193)

(194)

The model is activated regionwise, materialwise, or globally by specifying the keyword
GaussianDOS_Full in the respective Physics section together with the Fermi keyword in
the global Physics section:

Physics(Region="Organic_sem1") {
GaussianDOS_full

}

Physics {
Fermi

}

The model parameters used in Eq. 190 and Eq. 191 are listed in Table 40 on page 266. They
can be specified in the GaussianDOS_full section of the parameter file. 

p
NHOMO
------------------

1

2πσp

-----------------
E E0p–( )2

2σp
2

--------------------------–
 
 
  1

1 e
EF p, E–( ) kT( )⁄

+
-------------------------------------------exp Ed

∞–

∞

 Gp ζp sp
ˆ;( )= =

ζn

EF n, E0n–
kT

-----------------------= ζp

E0p EF p,–
kT

------------------------= sn̂

σn

kT
------= sp̂

σp

kT
------=

Gn ζn sn̂;( ) Gp ζp sp̂;( )

Gc ζc sc
ˆ;( )

sc
ˆ 2

2
------- ζc+
 
 
 

exp

1 K sc
ˆ( ) ζc sc

ˆ 2
+( )( )exp+

-------------------------------------------------------------   ζc sc
ˆ 2

  (nondegenerate region)–≤

1
2
---erfc

ζc

sc
ˆ 2
------------H sc

ˆ( )–
 
 
 

  ζc sc
ˆ 2

        (degenerate region)–>












=

c n p H K

H s( ) 2
s

-------erfc
1– s

2

2
----– 

 exp 
 =

K s( ) 2 1
H s( )

s
-----------

2
π
---

1
2
---s

2
1 H

2
s( )–( )exp– 

 =
Sentaurus™ Device User Guide 265
N-2017.09



12: Semiconductor Band Structure 
Effective Masses and Effective Density-of-States
In the case of nondegenerate semiconductors (Maxwell–Boltzmann approximation can be used
for carrier densities), a simplified version based on a correction of standard densities-of-states

 and  is available as well. The densities-of-states are corrected so that equivalent carrier
densities are obtained when Gaussian densities-of-states described by Eq. 189, p. 264 are used
instead of standard densities-of-states. Introducing the notations:

(195)

the electron and hole effective DOS are computed in the Maxwell–Boltzmann approximation
as:

(196)

and:

(197)

Table 40 Gaussian DOS model parameters

Parameter symbol Parameter name Default value Unit

 (electron)

 (hole)
Nt

sigmaDOS
0.052

0.052

eV

 (electron)

 (hole)
E0

0.1

0.1

eV

Nt

NLUMO

NHOMO

1
21×10

1
21×10

cm
3–

σDOS

σn

σp

E0n E0 EC–=

E0p EV E0–=

NC NV

Ae

σn
2

2k
2

--------=

Be

E0n EC–

k
---------------------=

Ce

E0n EC–

2σn

---------------------=

Ah

σp
2

2k
2

--------=

Bh

EV E0p–

k
----------------------=

Ch

EV E0p–

2σp

----------------------=

NC T( )
NLUMO

2
-----------------

Ae

T
2

-----
Be

T
-----–

 
 
 

erfc
Ae

T
---------- Ce– 
 exp=

NV T( )
NHOMO

2
------------------

Ah

T
2

------
Bh

T
------–

 
 
 

erfc
Ah

T
---------- Ch– 
 exp=
266 Sentaurus™ Device User Guide
N-2017.09



12: Semiconductor Band Structure
Multivalley Band Structure
The simplified model can be activated regionwise or globally by specifying the keyword
GaussianDOS for EffectiveMass in the Physics section of the command file:

Physics(Region="Organic_sem1") {
EffectiveMass(GaussianDOS)

}

The model parameters used in Eq. 189, p. 264 and Eq. 195 and their default values are
summarized in Table 41. 

Multivalley Band Structure

Eq. 43 and Eq. 44, p. 177 give a dependency of electron and hole concentrations on the
quasi–Fermi level for a single-valley representation of the semiconductor band structure.
Stress-induced change of the silicon band structure and the nature of low bandgap materials
require you to consider several valleys in the conduction and valence bands to compute the
correct dependency of the carrier concentration on the quasi–Fermi level.

With the parabolic band assumption and Fermi–Dirac distribution function applied to each
valley, the multivalley electron and hole concentrations are represented as follows:

(198)

 (199)

where  and  are the electron and hole numbers of valleys,  and  are the electron and
hole DOS valley factors, and  and  are the electron and hole valley energy shifts

Table 41 Simplified Gaussian DOS model parameters

Parameter symbol Parameter name Default value Unit

 (electron)

 (hole)

N_LUMO

N_HOMO

sigmaDOS_e

sigmaDOS_h

0.052

0.052

eV

E0_c

E0_v

0.1

0.1

eV

Nt

NLUMO

NHOMO

1
21×10

1
21×10

cm
3–

σDOS

σn

σp

E0cn E0 EC–=

E0v EV E0–=

n NCF
MV n,

EF,n EC–

kT
----------------------- 
  NC gn

i
F1 2⁄

EF,n EC– ΔEn
i

–

kT
---------------------------------------
 
 
 

i 1=

Nn

= =

p NVFMV p,
EV EF,p–

kT
----------------------- 
  NV gp

i
F1 2⁄

ΔEp
i

E+ V EF,p–

kT
----------------------------------------
 
 
 

i 1=

Np

= =

Nn Np gn
i gp

i

ΔEn
i ΔEp

i

Sentaurus™ Device User Guide 267
N-2017.09



12: Semiconductor Band Structure 
Multivalley Band Structure
relative to the band edges  and , respectively. All other variables in these equations are
the same as in Eq. 43 and Eq. 44, p. 177. Without Fermi statistics, the Fermi–Dirac integrals

 in these equations are replaced by exponents that correspond to the Boltzmann statistics
for each valley.

Similarly to the Fermi statistics, the inverse functions of  and  are used to define
the variables  and  that bring an additional drift term with  as it is expressed in
Eq. 47 and Eq. 48, p. 177:

(200)

(201)

To compute the inverse functions  and , an internal Newton solver is
used.

Together with the fast Joyce–Dixon approximation of the Fermi–Dirac integral , the
multivalley model of Sentaurus Device provides an option for a numeric integration over the
energy to compute the carrier density using Gauss–Laguerre quadratures. This extends
applicability of the model to account for band nonparabolicity (see Nonparabolic Band
Structure) and the MOSFET channel quantization effect using the multivalley MLDA model
(see Modified Local-Density Approximation on page 300). To control the accuracy and CPU
time of such a numeric integration, it is possible to set a user-defined number of integration
points in the Gauss–Laguerre quadratures.

Nonparabolic Band Structure

The Fermi–Dirac integral  assumes a typical parabolic band approximation where an
energy dependency of the DOS is approximated with . Usually, such a simple
approximation is valid only in the vicinity of the band minima. Generally, the isotropic
nonparabolicity parameter  is introduced into the dispersion relation as follows:

, where  is the wavevector, and  is the effective mass.

With such a dispersion, the multivalley carrier density is computed similarly to Eq. 198 and
Eq. 199, but  is replaced by the following integral:

(202)

EC EV

F1 2⁄

FMV n, FMV p,
γn γp ∇ γln( )

γn
n

NC
------- FMV n,

1– n
NC
------- 
 – 

 exp=

γp
p

NV
------- FMV p,

1– p
NV
------- 
 – 

 exp=

FMV n,
1– n

NC
------ 
  FMV p,

1– p
NV
------ 
 

F1 2⁄

F1 2⁄
ε

α
ε 1 αε+( ) hk( )2 2m( )⁄= k m

F1 2⁄

F1 2⁄
α η T,( ) 1 2kTαε+( ) ε 1 kTαε+( )

1 e
ε η–

+
------------------------------------------------------------------ εd

0

∞

=
268 Sentaurus™ Device User Guide
N-2017.09



12: Semiconductor Band Structure
Multivalley Band Structure
where  is the carrier quasi Fermi energy defined by Eq. 49 and Eq. 50, p. 177. Compared to
, the above integral explicitly depends on the carrier temperature , which is accounted

for in hydrodynamic and thermodynamic problems.

The more general case of nonparabolic bands can be accounted for with the six-band
band-structure model for holes (see Strained Hole Effective Mass and DOS on page 833). The
model considers three hole bands (the heavy-hole, light-hole, and split-off bands) and the DOS
of band  is given generally by:

(203)

Therefore, accounting for Fermi–Dirac carrier distribution over the energy, the total hole
concentration in the valence band can be expressed as:

(204)

where variable notations correspond to ones in Eq. 199 and integrals over the energy in Eq. 204
are computed numerically using Gauss–Laguerre quadrature. Similar to the parabolic case,
without Fermi statistics, the Fermi–Dirac distribution function in Eq. 202 and Eq. 204 is
replaced by the Boltzmann one.

Bandgap Widening

The bandgap widening effect is related to the carrier geometric confinement, which is
important to account for in ultrathin layer semiconductor structures. Typically, the electrons in
the -valley of III–V materials have a very small effective mass, which leads to increased
geometric confinement in such materials. This effect in the model is accounted for by the
simple assumption that the carrier DOS in Eq. 202 and Eq. 203, and in the Fermi–Dirac
integrals of Eq. 198 and Eq. 199, is zero up to the first subband energy  computed
analytically for the infinite barrier rectangular quantum well with the layer thickness size .
Mostly, this option is designed to work together with the MLDA quantization model (see
MLDA Model on page 300).

Moreover, the multivalley band structure with this bandgap widening model could be used with
other quantization models, such as the Density Gradient Model on page 294.

η
F1 2⁄ T

k p⋅

n

Dn ε( ) 2

2π( )3
--------------

dS
εn κ( )κ∇

-----------------------

εn κ( ) ε=
°=

p EF,p T,( )
Di ε( )

1
ε Δ– Ep

i
E– V EF,p+

kT
------------------------------------------------
 
 
 

exp+

------------------------------------------------------------------------- εd

0

∞


i
=

Γ

ε1

Lz
Sentaurus™ Device User Guide 269
N-2017.09



12: Semiconductor Band Structure 
Multivalley Band Structure
The first subband energy for nonparabolic bands is computed for each valley  as follows:

(205)

where  is the band nonparabolicity,  is the layer thickness, and  is the quantization
mass computed automatically along the confinement direction or specified in the valley
definition. To account for  in the density integrals Eq. 202 and Eq. 203, the DOS energy is
replaced by . Various options to compute the layer thickness automatically or to define
it explicitly are described in Geometric Parameters on page 361 and Using MLDA on
page 304.

Monte Carlo Density-of-States

To have consistency between the continuity transport models (see Carrier Transport in
Semiconductors on page 181) and the Monte Carlo method (refer to the Sentaurus™ Device
Monte Carlo User Guide), there is an option to use Monte Carlo DOS in the multivalley model.
The Monte Carlo DOS is computed for the full semiconductor band structure used in Monte
Carlo simulations. If the DOS  is computed for various bands in the conduction band, the
electron density can be expressed as:

(206)

where  is the electron quasi-Fermi energy, and  is the difference between the energy
of band  and the conduction band edge. A similar expression works for the hole density (see
Eq. 204).

Using Multivalley Band Structure

Multivalley statistics is activated with the keyword MultiValley in the Physics section. If
the model must be activated only for electrons or holes, the keywords eMultiValley and
hMultiValley can be used, respectively. The model can be defined regionwise as well.

For testing and comparison purposes, the numeric Gauss–Laguerre integration (mentioned in
Nonparabolic Band Structure on page 268) can be activated for the Fermi–Dirac integral .

i

ε1
i

1– 1
2αi

mq
i

--------
hπ
Lz
------ 
  2

++

2αi
---------------------------------------------------=

αi Lz mq
i

ε1
i

ε ε+ 1
i

Di ε( )

n EF,n T,( )
Di ε( )

1
ε Δ+ En

i
E+ C EF,n–

kT
------------------------------------------------
 
 
 

exp+

------------------------------------------------------------------------- εd

0

∞


i
=

EF,n ΔEn
i

i

F1 2⁄
270 Sentaurus™ Device User Guide
N-2017.09



12: Semiconductor Band Structure
Multivalley Band Structure
To set such an integration, the keyword DensityIntegral must be used as in the following
statement:

Physics { (e|h)Multivalley(DensityIntegral) }

Similarly, to activate the carrier density computation that accounts for nonparabolicity as in
Eq. 202, the following statement must be used:

Physics { (e|h)Multivalley(Nonparabolicity) }

To activate the six-band  band-structure model for holes described in Strained Hole
Effective Mass and DOS on page 833 and Nonparabolic Band Structure on page 268, the
following should be specified:

Physics { hMultivalley(kpDOS) }

This statement will create three hole bands (light, heavy, and spin-orbit) in the multivalley
model. The parameters affecting the six-band  band-structure model (see Eq. 965, p. 833
for the DOS mass and Eq. 203, p. 269) include the deformation potentials of the model for hole
bands (adp, bdp, ddp, and dso) and the Luttinger parameters (gamma_1, gamma_2, and
gamma_3). All parameters can be specified in the LatticeParameters section of the
parameter file and can be mole fraction dependent. These parameters define relaxed hole bands
and the stress-induced change (see Deformation of Band Structure on page 826).

To activate the two-band  band-structure model for electrons described in Strained
Electron Effective Mass and DOS on page 831 (where three  valleys will be created),
specify:

Physics { eMultivalley(kpDOS) }

The parameters affecting the two-band  band-structure model for  valleys (see
Eq. 952–Eq. 955) include the deformation potentials of the  model for electron bands
(xis, dbs, xiu, and xid), the Sverdlov  parameter (Mkp), and the relaxed nonparabolicity

 (this is accounted for only with the Nonparabolicity keyword in the eMultivalley
statement). These parameters can be specified in the LatticeParameters section of the
parameter file. In addition, the  valley effective masses (me_l0 and me_t0) can be defined
in the StressMobility section. All parameters can be mole fraction dependent. These
parameters define three relaxed  valleys and the stress-induced change (see Deformation of
Band Structure on page 826).

To control the number of Gauss–Laguerre integration points (the default is 30, which gives a
good compromise between accuracy of the numeric integration and CPU time), the global
Math statement must be used:

Math { DensityIntegral(30) }

k p⋅

k p⋅

k p⋅
Δ2

k p⋅ Δ2

k p⋅
k p⋅

α0

Δ2

Δ2
Sentaurus™ Device User Guide 271
N-2017.09



12: Semiconductor Band Structure 
Multivalley Band Structure
For non  bands, all multivalley model parameters are defined in the MultiValley section
of the parameter file. You can define an arbitrary number of valleys; however, by default, for
example for silicon, Sentaurus Device defines three  electron valleys and two hole valleys
as follows:

MultiValley{
eValley"Delta1"(1,0,0)(ml=0.914, mt=0.196, energy=0, degeneracy=2, 

alpha=0.5, xiu=9.16, xid=0.77)
eValley"Delta2"(0,1,0)(ml=0.914, mt=0.196, energy=0, degeneracy=2, 

alpha=0.5, xiu=9.16, xid=0.77)
eValley"Delta3"(0,0,1)(ml=0.914, mt=0.196, energy=0, degeneracy=2, 

alpha=0.5, xiu=9.16, xid=0.77)
hValley"LH"(m=0.16, energy=0, degeneracy=1)
hValley"HH"(m=0.49, energy=0, degeneracy=1)

}

The above definition of "Delta" valleys represents a most general way to define valleys in the
multivalley band structure. For example, the valley "Delta1" defines an ellipsoidal valley
with the effective masses  and , its main axis oriented in the <100>
direction, the nonparabolicity , the degeneracy equal to 2, zero energy shift 
from the conduction band edge, and the deformation potentials , which are used to have
a stress effect in the valley energy using the linear deformation potential model (see Eq. 945 in
Deformation of Band Structure on page 826).

The general valley definition allows also another parameter  that could redefine the
quantization mass computed automatically by the multivalley MLDA model (see Modified
Local-Density Approximation on page 300). The hole valleys above are assumed to be simple
spherical ones with no stress dependency. This is a huge simplification compared to the six-
band  model.

NOTE With both the Multivalley(parfile) and Multivalley options,
only valleys defined in the Multivalley section of the parameter file
(or default material-specific ones) will be used. With the Multivalley
section in the parameter file, all default valleys will be ignored and only
valleys defined in the parameter file will be used.

NOTE With the Multivalley(kpDOS) option in the Physics section, all
multivalley model parameters ( , , , , , and ) are
defined and described by stress models in Multivalley Band Structure on
page 835. This case ignores all valleys defined in the parameter file. To
use the  bands together with valleys in the parameter file, specify:

Multivalley(kpDOS parfile)

k p⋅

Δ2

ml 0.914= mt 0.196=
α 0.5 eV 1–= ΔEn

Ξu Ξd,

mq

k p⋅

Nn Np gn
i gp

i ΔEn
i ΔEp

i

k p⋅
272 Sentaurus™ Device User Guide
N-2017.09



12: Semiconductor Band Structure
Multivalley Band Structure
NOTE The option eMultivalley(kpDOS parfile) can be used, for
example, for SiGe applications where the two-band  model brings
three  valleys, but four L-valleys are taken from the parameter file.
Generally, it is a useful option to combine  and analytic valleys, but
you must be careful not to double-count the  valleys because, by
default, the parameter file for SiGe has analytic  valleys as well. So,
these valleys must be removed from the Multivalley section of the
parameter file. However, if no Multivalley section is defined in the
parameter file, the default valleys are still used and there may be double-
counting (see previous notes).

To account for the bandgap widening effect as in Eq. 205, the ThinLayer keyword must be in
the MultiValley statement, and the LayerThickness statement must be set. All
LayerThickness options are described in LayerThickness Command on page 310 where
generally the layer thickness can be extracted automatically for defined regions. In addition,
some specific options can be found in Using MLDA on page 304 for non-1D confinement, but
practically, if the geometric confinement is mostly 1D, such a setting could be as simple as:

LayerThickness( Thickness = )
Multivalley( ThinLayer )

To activate the use of the Monte Carlo DOS in the multivalley model, specify one of the
following options:

Physics { (e|h)Multivalley(mcDOS("mcdos_file_name")) }

or:

Physics { (e|h)Multivalley(mcDOS) }
File { mcDOS="mcdos_file_name" }

To save the Monte Carlo DOS file, use CreateDOSFile=1 or CreateDOSFile=2 in the
MonteCarlo statement of the command file (refer to the Sentaurus™ Device Monte Carlo
User Guide). The DOS saved in the file can be solely the DOS of the full conduction and
valence bands (CreateDOSFile=1) or the DOS of separate bands (CreateDOSFile=2). For
the DOS of separate bands, the multivalley model will search for bands with the same energy
minima and will combine such bands into one in the multivalley model (to speed up related
numeric density integrations). The saved Monte Carlo DOS file will be named
<MonteCarloOut>.dostot.dat, where MonteCarloOut is an output field of the Monte
Carlo simulations in the File section of the input file.

NOTE Currently, the mcDOS option in the Multivalley statement cannot be
used with any other option. Therefore, the Monte Carlo DOS (bands)
cannot be combined with analytic and  bands, and with the
multivalley MLDA and ThinLayer quantization models.

k p⋅
Δ2

k p⋅
Δ2

Δ2

Lz

k p⋅
Sentaurus™ Device User Guide 273
N-2017.09



12: Semiconductor Band Structure 
Multivalley Band Structure
There are two options for the model parameters  and . By default, these parameters are
defined by the effective masses from the (e|h)Valley statement, and such a definition
removes the dependency on  and  (defined by Effective Masses and Effective Density-
of-States on page 261) in Eq. 198 and Eq. 199:

(207)

Another option is to use Multivalley(RelativeToDOSMass). In this case, the parameters
 and  define the carrier density relative to the effective DOS  and :

(208)

where  and  are the valley energy shifts in reference to the band edge (positive for the
conduction band and negative for the valence band).

If all valley energy shifts equal zero, Eq. 208 provides the single-valley condition where, as
usual, only the effective DOS and band edge define the semiconductor band structure and
carrier concentration.

The valley definition allows you to have mole fraction–dependent valley parameters. The
following example shows the definition for two valleys (  and L) and with two mole fraction
intervals in SiGe material:

MultiValley{
Xmax(0) = 0.0
Xmax(1) = 0.85
Xmax(2) = 1.0

eValley"Delta1"(1,0,0)(ml=0.914 mt=0.196 energy=0 alpha=0.5 degeneracy=2
xiu=9.16 xid=0.77) 

eValley"L1"(1,1,1)(ml=1.69 mt=0.13 energy=1.1 alpha=0.5 degeneracy=1
xiu=11.5 xid=-6.58) 

eValley"Delta1"(1)(ml=0.914 mt=0.196 energy=0 alpha=0.5 degeneracy=2
xiu=9.16 xid=0.77) 

eValley"L1"(1)(ml=1.768 mt=0.0967 energy=0 alpha=0.5 degeneracy=1 
xiu=11.5 xid=-6.58) 

eValley"Delta1"(2)(ml=0.915 mt=0.201 energy=0.19 alpha=0.5 degeneracy=2
xiu=9.42 xid=-0.54) 

eValley"L1"(2)(ml=1.768 mt=0.0967 energy=0 alpha=0.5 degeneracy=1
xiu=11.5 xid=-6.58) 

}

gn
i gp

i

NC NV

gn p,
i 2.5094 10

19×
NC V,

---------------------------------d
i ml

i

m0
------

mt
i

m0
------

mt
i

m0
------

Tn p,
300 K
-------------- 
 

3
2
---

=

gn
i gp

i NC NV

gn p,
i d

i
ml

i
mt

i
mt

i

d
k

ml
k
mt

k
mt

k ΔEn p,
k

kT
--------------+−

 
 
 

exp

k 1=

N



---------------------------------------------------------------------------=

ΔEn
k ΔEp

k

Δ2
274 Sentaurus™ Device User Guide
N-2017.09



12: Semiconductor Band Structure
References
References

[1] W. Bludau, A. Onton, and W. Heinke, “Temperature dependence of the band gap in
silicon,” Journal of Applied Physics, vol. 45, no. 4, pp. 1846–1848, 1974.

[2] H. S. Bennett and C. L. Wilson, “Statistical comparisons of data on band-gap narrowing
in heavily doped silicon: Electrical and optical measurements,” Journal of Applied
Physics, vol. 55, no. 10, pp. 3582–3587, 1984.

[3] J. W. Slotboom and H. C. de Graaff, “Measurements of Bandgap Narrowing in Si
Bipolar Transistors,” Solid-State Electronics, vol. 19, no. 10, pp. 857–862, 1976.

[4] J. W. Slotboom and H. C. de Graaff, “Bandgap Narrowing in Silicon Bipolar
Transistors,” IEEE Transactions on Electron Devices, vol. ED-24, no. 8,
pp. 1123–1125, 1977.

[5] J. W. Slotboom, “The pn-Product in Silicon,” Solid-State Electronics, vol. 20, no. 4,
pp. 279–283, 1977.

[6] D. B. M. Klaassen, J. W. Slotboom, and H. C. de Graaff, “Unified Apparent Bandgap
Narrowing in n- and p-Type Silicon,” Solid-State Electronics, vol. 35, no. 2,
pp. 125–129, 1992.

[7] J. del Alamo, S. Swirhun, and R. M. Swanson, “Simultaneous Measurement of Hole
Lifetime, Hole Mobility and Bandgap Narrowing in Heavily Doped n-Type Silicon,” in
IEDM Technical Digest, Washington, DC, USA, pp. 290–293, December 1985.

[8] J. del Alamo, S. Swirhun, and R. M. Swanson, “Measuring and Modeling Minority
Carrier Transport in Heavily Doped Silicon,” Solid-State Electronics, vol. 28, no. 1–2,
pp. 47–54, 1985.

[9] S. E. Swirhun, Y.-H. Kwark, and R. M. Swanson, “Measurement of Electron Lifetime,
Electron Mobility and Band-Gap Narrowing in Heavily Doped p-Type Silicon,” in
IEDM Technical Digest, Los Angeles, CA, USA, pp. 24–27, December 1986.

[10] S. E. Swirhun, J. A. del Alamo, and R. M. Swanson, “Measurement of Hole Mobility in
Heavily Doped n-Type Silicon,” IEEE Electron Device Letters, vol. EDL-7, no. 3,
pp. 168–171, 1986.

[11] J. A. del Alamo and R. M. Swanson, “Measurement of Steady-State Minority-Carrier
Transport Parameters in Heavily Doped n-Type Silicon,” IEEE Transactions on
Electron Devices, vol. ED-34, no. 7, pp. 1580–1589, 1987.

[12] S. C. Jain and D. J. Roulston, “A Simple Expression for Band Gap Narrowing (BGN) in
Heavily Doped Si, Ge, GaAs and GexSi1-x Strained Layers,” Solid-State Electronics,
vol. 34, no. 5, pp. 453–465, 1991.

[13] A. Schenk, “Finite-temperature full random-phase approximation model of band gap
narrowing for silicon device simulation,” Journal of Applied Physics, vol. 84, no. 7,
pp. 3684–3695, 1998.
Sentaurus™ Device User Guide 275
N-2017.09



12: Semiconductor Band Structure 
References
[14] M. A. Green, “Intrinsic concentration, effective densities of states, and effective mass in
silicon,” Journal of Applied Physics, vol. 67, no. 6, pp. 2944–2954, 1990.

[15] J. E. Lang, F. L. Madarasz, and P. M. Hemenger, “Temperature dependent density of
states effective mass in nonparabolic p-type silicon,” Journal of Applied Physics,
vol. 54, no. 6, p. 3612, 1983.

[16] G. Paasch and S. Scheinert, “Charge carrier density of organics with Gaussian density
of states: Analytical approximation for the Gauss–Fermi integral,” Journal of Applied
Physics, vol. 107, no. 10, p. 104501, 2010.
276 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 13 Incomplete Ionization

This chapter discusses how incomplete ionization is accounted for in
Sentaurus Device.

Overview

In silicon, with the exception of indium, dopants can be considered to be fully ionized at room
temperature because the impurity levels are sufficiently shallow. However, when impurity
levels are relatively deep compared to the thermal energy , incomplete ionization must be
considered. This is the case for indium acceptors in silicon and nitrogen donors and aluminum
acceptors in silicon carbide. In addition, for simulations at reduced temperatures, incomplete
ionization must be considered for all dopants. For these situations, Sentaurus Device has an
ionization probability model based on activation energy. The ionization (activation) is
computed separately for each species present.

All doping species for Sentaurus Device are defined in the file datexcodes.txt. To add new
doping species or to modify an existing specification, see Doping Specification on page 11.

Using Incomplete Ionization

The incomplete ionization model is activated with the keyword IncompleteIonization in
the Physics section:

Physics{ IncompleteIonization }

The incomplete ionization model for selected species is activated with the additional keyword
Dopants:

Physics{ IncompleteIonization(Dopants = "Species_name1 Species_name2 ...") }

For example, the following command line activates the model only for boron:

Physics{ IncompleteIonization(Dopants = "BoronActiveConcentration") }

The incomplete ionization model can be specified in region or material physics (see Region-
Specific and Material-Specific Models on page 18). In this case, the model is activated only in
these regions or materials.

kT
Sentaurus™ Device User Guide 277
N-2017.09



13: Incomplete Ionization 
Multiple Lattice Sites
Using DonorPlusConcentration and AccepMinusConcentration in the Plot section
of the device, you can visualize the ionized donor and acceptor concentrations, respectively.

NOTE Incomplete ionization is implemented in terms of traps and, therefore,
is affected by setting the trap occupation explicitly (see Explicit Trap
Occupation on page 468). Use named traps to avoid affecting dopant
ionization by settings intended for ‘real’ traps only.

Multiple Lattice Sites

In certain semiconductors, dopants may occupy different lattice sites, resulting in different
activation energies for incomplete ionization. An example is 6H-SiC where nitrogen can
occupy either a hexagonal site h, or a cubic site k1 or k2.

For the most accurate results, the doping concentration at each lattice site must be modeled by
a different doping species. This approach works as follows:

■ Introduce new doping species in the datexcodes.txt file to describe the doping
concentrations in each lattice site (see Doping Specification on page 11). To model the
nitrogen doping in 6H-SiC, you may introduce the following species:

• Nitrogen_h_Concentration 

• Nitrogen_k1_Concentration 

• Nitrogen_k2_Concentration 

■ Provide a TDR doping file with the concentrations for the new doping species.

■ Provide incomplete ionization model parameters for the new doping species (see Physical
Model Parameters on page 281).

In many cases, it is sufficient to specify the average occupation probability of the various lattice
sites. For example, you may assume that nitrogen doping in 6H-SiC occupies the hexagonal
site h and the cubic sites k1 or k2 with equal probability.

Sentaurus Device supports this simplification using a Split specification in the command file:

Physics {
IncompleteIonization (

Split (
Doping = "NitrogenConcentration"
Weights = (0.3333 0.3333 0.3334)

)
)

}

278 Sentaurus™ Device User Guide
N-2017.09



13: Incomplete Ionization
Incomplete Ionization Model
NOTE The sum of the weights must be one.

With a Split specification, it is no longer necessary to introduce new doping species in the
datexcodes.txt file. Instead, Sentaurus Device generates the necessary doping species as
required and initializes them based on the occupation probabilities. In the example, Sentaurus
Device introduces the following doping species automatically:

■ NitrogenConcentration_split1 

■ NitrogenActiveConcentration_split1 

■ NitrogenPlusConcentration_split1 

■ NitrogenConcentration_split2 

■ NitrogenActiveConcentration_split2 

■ NitrogenPlusConcentration_split2 

■ NitrogenConcentration_split3 

■ NitrogenActiveConcentration_split3 

■ NitrogenPlusConcentration_split3 

NOTE The generated doping species also can be used in a device plot (see
Device Plots on page 122).

The corresponding parameters can then be specified in the parameter file as described in
Physical Model Parameters on page 281:

Ionization {
Species ("NitrogenConcentration_split1") {

E_0 = 0.1
alpha = 2.5e-8
g = 2
Xsec = 1e-12

}
...

}

Incomplete Ionization Model

The concentration of ionized impurity atoms is given by Fermi–Dirac distribution:

 for (209)ND

ND,0

1 gD

EF,n ED–

kT
----------------------- 

 exp+

---------------------------------------------------------= ND,0 ND,crit<
Sentaurus™ Device User Guide 279
N-2017.09



13: Incomplete Ionization 
Incomplete Ionization Model
 for (210)

where  and  are the substitutional (active) donor and acceptor concentrations,  and
 are the degeneracy factors for the impurity levels, and and  are the donor and

acceptor ionization (activation) energies.

In the literature [1], incomplete ionization in SiC material has been considered and another
general distribution function has been proposed, which can be expressed as:

(211)

(212)

where  and  are the ionization factors discussed in [2][3]. These factors can be
defined by a PMI (see [1] and Example: Matsuura Incomplete Ionization Model on page 1225). 

By comparing Eq. 209 and Eq. 210 to Eq. 211 and Eq. 212, it can be seen that, in the case of
the Fermi distribution function, the ionization factors can be written as:

,  and , (213)

In Sentaurus Device, the basic variables are potential, electron concentration, and hole
concentration. Therefore, it is more convenient to rewrite Eq. 209 and Eq. 210 in terms of the
carrier concentration instead of the quasi-Fermi levels:

, with  for (214)

, with  for (215)

The expressions for  and  in these two equations are valid for Boltzmann statistics and
without quantization. If Fermi–Dirac statistics or a quantization model (see Chapter 14 on
page 283) is used,  and  are multiplied by the coefficients  and  defined in Eq. 47
and Eq. 48, p. 177 (see Fermi Statistics on page 176). For , the dopants are
assumed to be completely ionized, in which case, every donor and acceptor species is

NA

NA,0

1 gA

EA E–
F,p

kT
----------------------- 

 exp+

---------------------------------------------------------= NA,0 NA,crit<

ND,0 NA,0 gD

gA ED EA

ND

ND,0

1 GD T( )
EF,n EC–

kT
----------------------- 

 exp+

------------------------------------------------------------------=

NA

NA,0

1 GA T( )
EF,p EV–

kT
-----------------------– 

 exp+

----------------------------------------------------------------------=

GD T( ) GA T( )

GD T( ) gD

ΔED

kT
----------- 

 exp⋅= ΔED EC ED–= GA T( ) gA

ΔEA

kT
----------- 

 exp⋅= ΔEA EA EV–=

ND

ND,0

1 gD
n
n1
-----+

----------------------= n1 NC

ΔED

kT
-----------– 

 exp= ND,0 ND,crit<

NA

NA,0

1 gA
p
p1
-----+

----------------------= p1 NV

ΔEA

kT
-----------– 

 exp= NA NA,crit<

n1 p1

n1 p1 γn γp

ND A⁄ ND A⁄ crit,>
280 Sentaurus™ Device User Guide
N-2017.09



13: Incomplete Ionization
Physical Model Parameters
considered in the Poisson equation. The values of  and  can be adjusted in the
parameter file of Sentaurus Device.

The donor and acceptor activation energies are effectively reduced by the total doping in the
semiconductor. This effect is accounted for in the expressions:

(216)

(217)

where  is the total doping concentration. In transient simulations, the terms:

(218)

(219)

are included in the continuity equations (  denote the carrier thermal velocities).

Physical Model Parameters

The values of the dopant level , the doping-dependent shift parameter , the
impurity degeneracy factor , and the cross section  are accessible in the parameter
set Ionization.

For each ionized doping species, the Ionization parameter set must contain a separate
subsection where the parameters , , , and  are defined. For example, for
the dopant BoronConcentration, described in Doping Specification on page 11, for the
material SiC, the parameter set is:

Material = "SiC" {
...
Ionization {

...
Species ("BoronConcentration") {

type = acceptor
E_0 = 0.2
alpha = 3.1e-8
g = 4
Xsec = 1.0e-12

}

ND,crit NA,crit

ΔED ΔED 0, αD Ntot
1 3⁄⋅–=

ΔEA ΔEA 0, αA Ntot
1 3⁄⋅–=

Ntot NA,0 ND,0+=

∂ND

∂t
---------- σDvth

n n1

gD
------ND,0 n

n1

gD
------+

 
 
 

ND–=

∂NA

∂t
---------- σAvth

p p1

gA
------NA,0 p

p1

gA
------+

 
 
 

NA–=

vth
n p,

EA/D, 0 αA/D

gA D⁄ σA/D

EA/D, 0 αA/D gA D⁄ σA/D
Sentaurus™ Device User Guide 281
N-2017.09



13: Incomplete Ionization 
References
}
}

The field type can be omitted because the dopant type is specified in the datexcodes.txt
file. It is used here for informative purposes only. 

References

[1] H. Matsuura, “Influence of Excited States of Deep Acceptors on Hole Concentration in
SiC,” in International Conference on Silicon Carbide and Related Materials (ICSCRM),
Tsukuba, Japan, pp. 679–682, October 2001.

[2] P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials
Properties, Berlin: Springer, 2nd ed., 1999.

[3] K. F. Brennan, The Physics of Semiconductors: With applications to optoelectronic
devices, Cambridge: Cambridge University Press, 1999.

Table 42 Default coefficients for incomplete ionization model for dopants in silicon

Symbol Parameter 
name

Default value for species * Unit

As P Sb B Al In N NDopant PDopant

E_*_0 0.054 0.045 0.039 0.045 0.045 0.16 0.045 0.045 0.045 eV

alpha_* eVcm

g_* 2 2 2 4 4 4 2 2 4 1

 Xsec_*

NdCrit

NaCrit

EA D 0,⁄

αA D⁄ 3.1
8–×10

gA D⁄

σA D⁄ 1.0
12–×10 cm

2

ND,crit 1.0
22×10 cm

3–

NA,crit 1.0
22×10 cm

3–
282 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 14 Quantization Models

This chapter describes the features that Sentaurus Device offers to
model quantization effects.

Some features of current MOSFETs (oxide thickness, channel width) have reached quantum-
mechanical length scales. Therefore, the wave nature of electrons and holes can no longer be
neglected. The most basic quantization effects in MOSFETs are the shift of the threshold
voltage and the reduction of the gate capacity. Tunneling, another important quantum effect, is
described in Chapter 24 on page 715.

Overview

To include quantization effects in a classical device simulation, Sentaurus Device introduces a
potential-like quantity  in the classical density formula:

(220)

An analogous quantity  is introduced for holes.

The most important effects related to the density modification (due to quantization) can be
captured by proper models for  and . Other effects (for example, single electron effects)
exceed the scope of this approach.

Sentaurus Device implements five quantization models, that is, five different models for 
and . They differ in physical sophistication, numeric expense, and robustness:

■ The van Dort model is a numerically robust, fast, and proven model (see van Dort
Quantization Model on page 284). It is only suited to bulk MOSFET simulations. While
important terminal characteristics are well described by this model, it does not give the
correct density distribution in the channel.

■ The 1D Schrödinger equation is a physically sophisticated quantization model (see 1D
Schrödinger Solver on page 285). It can be used for MOSFET simulation, and quantum
well and ultrathin SOI simulation. Simulations with this model tend to be slow and often
lead to convergence problems, which restrict its use to situations with small current flow.
Therefore, the Schrödinger equation is used mainly for the validation and calibration of
other quantization models.

Λn

n NCF1 2⁄
EF n, EC– Λn–

kTn
-------------------------------- 
 =

Λp

Λn Λp

Λn

Λp
Sentaurus™ Device User Guide 283
N-2017.09



14: Quantization Models 
van Dort Quantization Model
■ For 3D structures, an external 2D Schrödinger solver can be used to provide a quantization
model (see External 2D Schrödinger Solver on page 292). This is the physically most
sophisticated approach, but requires a high computation time and a complicated setup, and
provides reduced numeric robustness.

■ The density gradient model (see Density Gradient Quantization Model on page 294) is
numerically robust, but significantly slower than the van Dort model. It can be applied to
MOSFETs, quantum wells and SOI structures, and gives a reasonable description of
terminal characteristics and charge distribution inside a device. Compared to the other
quantization models, it can describe 2D and 3D quantization effects.

■ The modified local-density approximation (MLDA) model (see Modified Local-Density
Approximation on page 300) is a numerically robust and fast model. It can be used for bulk
MOSFET simulations and thin SOI simulations. Although it sometimes fails to calculate
the accurate carrier distribution in the saturation regions because of its one-dimensional
characteristic, it is suitable for three-dimensional device simulations because of its numeric
efficiency.

■ The quantum-well quantization model (see Quantum-Well Quantization Model on
page 309) can be applied to semiconductor quantum wells with a width that does not vary
very much over the device. It approximates the solution by the solution for a trapezoidal
potential.

van Dort Quantization Model

van Dort Model

The van Dort model [1] computes  of Eq. 220 as a function of , the electric field
normal to the semiconductor–insulator interface:

(221)

and likewise for .  and  are fitting parameters.

The function  is defined by:

(222)

Λn n̂ F⋅

Λn
13
9
------ kfit G r( )

εε0

4kT
---------
 
 
 

1 3⁄

n̂ F⋅ Ecrit–
2 3⁄

⋅ ⋅ ⋅ ⋅=

Λp kfit Ecrit

G r( )

G r( )
2 a

2
r( )– 

 exp⋅

1 2a
2

r( )– 
 exp+

--------------------------------------------=
284 Sentaurus™ Device User Guide
N-2017.09



14: Quantization Models
1D Schrödinger Solver
where  and  is a distance from the point  to the interface. The parameter
 determines the distance to the interface up to which the quantum correction is relevant. The

quantum correction is applied to those carriers (electrons or holes) that are drawn towards the
interface by the electric field; for the carriers driven away from the interface, the correction is 0.

Using the van Dort Model

To activate the model for electrons or holes, specify the eQCvanDort or hQCvanDort flag in
the Physics section:

Physics { ... eQCvanDort}

Table 43 lists the parameters in the vanDortQMModel parameter set. The default value of 
is from the literature [1]. Other parameters were obtained by fitting the model to experimental
data for electrons [1] and holes [2].

By default, in Eq. 221,  is the normal to the closest semiconductor–insulator interface. The
interface can be specified explicitly by EnormalInterface in the Math section (see Normal
to Interface on page 355).

1D Schrödinger Solver

To use the 1D Schrödinger solver:

1. Construct a special purpose ‘nonlocal’ mesh (see Nonlocal Mesh for 1D Schrödinger on
page 286).

2. Activate the Schrödinger solver on the nonlocal line mesh with appropriate parameters (see
Using 1D Schrödinger on page 287).

Sometimes, especially for heteromaterials, the physical model parameters need to be adapted
(see 1D Schrödinger Parameters on page 287). 

Table 43 Default parameters for van Dort quantum correction model

Symbol Electrons Holes Unit

eFit hFit eVcm

eEcritQC eEcritQC V/cm

dRef dRef cm

a r( ) l r( ) λref⁄= l r( ) r
λref

λref

kfit 2.4
8–×10 1.8

8–×10

Ecrit 10
5

10
5

λref 2.5
6–×10 2.5

6–×10

n̂

Sentaurus™ Device User Guide 285
N-2017.09



14: Quantization Models 
1D Schrödinger Solver
NOTE The 1D Schrödinger solver is time consuming and often causes
converge problems. Furthermore, small-signal analysis (see Small-
Signal AC Analysis on page 96) and noise and fluctuation analysis (see
Chapter 23 on page 675) are not possible when using this solver.

Nonlocal Mesh for 1D Schrödinger

The specification of the nonlocal mesh determines where in the device the 1D Schrödinger
equation can be solved. This section summarizes the features that are typically needed to obtain
a correct nonlocal mesh for the 1D Schrödinger equation. For more information about
constructing nonlocal meshes, see Nonlocal Meshes on page 146.

To generate a nonlocal mesh, specify NonLocal in the global Math section. Options to
NonLocal control the construction of the nonlocal mesh. For example:

Math {
NonLocal "NLM" (

RegionInterface="gateoxide/channel"
Length=10e-7
Permeation=1e-7
Direction=(0 1 0) MaxAngle=5
-Transparent(Region="gateoxide")

)
}

generates a nonlocal mesh named "NLM" at the interface between region gateoxide and
channel. The nonlocal lines extend  (according to Length) to one side of the interface
and  (according to Permeation) to the other side. The segments of the nonlocal lines on
the two sides are handled differently; see below. In the example, Direction and MaxAngle
restrict the nonlocal mesh to lines that run along the y-axis, with a tolerance of . Direction
defines a vector that is typically perpendicular to the interface; therefore, the specification
above is appropriate for an interface in the xz plane.

For nonlocal meshes constructed for the Schrödinger equation, the -Transparent switch is
important. In the above example, it suppresses the construction of nonlocal lines for which the
section with length Length passes through gateoxide. Therefore, Sentaurus Device only
constructs nonlocal lines that extend  into channel and  into gateoxide, and
suppresses the nonlocal lines that extend  into channel and  into gateoxide.
Without the -Transparent switch, Sentaurus Device would construct both line types and,
therefore, would solve the Schrödinger equation not only in the channel, but also in the poly
gate (provided that a poly gate exists and gateoxide is thinner than ).

10 nm
1 nm

5°

10 nm 1 nm
1 nm 10 nm

10 nm
286 Sentaurus™ Device User Guide
N-2017.09



14: Quantization Models
1D Schrödinger Solver
Using 1D Schrödinger

To activate the 1D Schrödinger equation for electrons or holes, specify the Electron or Hole
switch as an option to Schroedinger in the global Physics section. For example:

Physics {
Schroedinger "NLM" (Electron)

}

activates the Schrödinger equation for electrons on the nonlocal mesh named "NLM".

Additional options to Schroedinger determine numeric accuracy, details of the density
computation, and which eigenstates will be computed. Table 320 on page 1485 lists the
optional keywords.

MaxSolutions, Error, and EnergyInterval support the option electron or hole. For
example, the specification MaxSolutions=30 sets the value for both electrons and holes. The
specifications MaxSolutions(electron)=2 and MaxSolutions(hole)=3 set different
values for electrons and holes.

By default, Sentaurus Device only computes bound states, that is, states with an energy that is
below the largest value of the potential both left and right of the point with minimal potential.
If, according to this definition, no bound states exist, the quantum corrections will be disabled.
With the EnergyInterval parameter, this behavior can be changed to compute all states with
an energy up to the specified value above the lowest potential point.

For backward compatibility, you can define Schroedinger in an interface-specific or a
contact-specific Physics section; in this case, omit the nonlocal mesh name. The specification
applies to an unnamed nonlocal mesh that has been constructed for the same location (see
Unnamed Meshes on page 152).

1D Schrödinger Parameters

Typically, the Schrödinger equation must be solved repeatedly, with different masses and
potential profiles, resulting in a number of distinct ‘ladders’ of eigenenergies. For example, the
six-fold degenerate, anisotropic conduction band valleys in silicon require the Schrödinger
equation to be solved up to three times with different parameters. Sentaurus Device allows you
to specify the number of ladders and the associated parameters explicitly, or it can extract the
number of ladders and the parameters from other parameters and the nonlocal line direction
automatically.
Sentaurus™ Device User Guide 287
N-2017.09



14: Quantization Models 
1D Schrödinger Solver
Parameters for the Schrödinger equation are region specific. The Schrödinger equation must
not be solved across regions with fundamentally different band structures. Sentaurus Device
displays an error message if band structure compatibility is violated.

Explicit Ladder Specification

Any number of eLadder( , , , ) (for electrons) or
hLadder( , , , ) (for holes) specifications is possible in the
SchroedingerParameters parameter set. The -th specification for a particular carrier
type defines the quantization mass , the mass perpendicular to the quantization direction

, the ladder degeneracy , and a nonnegative band edge shift .

The parameter pair ShiftTemperature in the SchroedingerParameters parameter set is
given in kelvin and determines the temperatures  for electrons and holes that enter scaling
factors applied to . The scaling factors ensure that the masses for the Schrödinger
equation are consistent with the density-of-states masses. For electrons, the scaling factor is:

(223)

and likewise for holes.  defaults to a large value. When , scaling is disabled.

Automatic Extraction of Ladder Parameters

When no explicit ladder specification is present, Sentaurus Device attempts to extract the
required parameters automatically. The formula parameter pair in the
SchroedingerParameters parameter set specifies which expressions for the masses to use.
If an explicit ladder specification is present, formula for the respective carrier type is ignored,
and only the explicit ladder specification is accounted for.

For each carrier, if the formula is 0, Sentaurus Device uses the isotropic density-of-states mass
as both the quantization mass and the mass perpendicular to it.

For electrons, if the formula is 1, Sentaurus Device uses the anisotropic (silicon-like) masses
specified in the eDOSMass parameter set. The quantization mass for the conduction band valley

 reads:

(224)

where  are the effective mass components for valley , and  are the coefficients of the
unit normal vector pointing in the quantization direction, expressed in the crystal coordinate

mz ν, mxy ν, dν ΔEν
mz ν, mxy ν, dν ΔEν

ν
mz ν,

mxy ν, dν ΔEν

Tref

mxy ν,

mn
3 2/

dνmxy ν, mz ν,
1 2/ ΔEν kTref⁄–( )exp

ν

-----------------------------------------------------------------------------------

Tref Tref 0=

ν

1
mz ν,
-----------

zi
2

mi ν,
----------

i 1=

3

=

mi ν, ν zi
288 Sentaurus™ Device User Guide
N-2017.09



14: Quantization Models
1D Schrödinger Solver
system. The LatticeParameters parameter set determines the relation to the mesh
coordinate system (see Crystal and Simulation Coordinate Systems on page 781).

For holes, ‘warped’ band structure (formula 1), or heavy-hole and light-hole masses
(formula 2) are available (see Table 44). For the former, the quantization mass is given by:

 (225)

For the latter, ml and mh (given as multiples of ) determine directly the masses for the light-
hole and heavy-hole bands.

The masses  are chosen to achieve the same density-of-states mass as used in classical
simulations. For electrons:

(226)

where  is the number of band valleys (or bands). The expression for holes is analogous.

SchroedingerParameters offers a parameter pair offset to model the lifting of the
degeneracy of band minima in strained materials. Unless exactly two ladders exist, offset
must be zero. Positive offsets apply to the electron ladder with lower degeneracy or the heavy-
hole band; negative values apply to the electron ladder of higher degeneracy or the light-hole
band. The modulus of the value is added to the band edge for the respective ladder, moving it
away from mid-gap, while the other ladder remains unaffected. For holes, the shift is taken into
account in the scaling of  as it is in Eq. 223. 

Table 44 Parameters for hole effective masses in Schrödinger solver

Formula Symbol Parameter name Default value Unit

1 A 4.22 1

B 0.6084 1

C 23.058 1

2 ml 0 1

mh 0 1

mz ν,
m0

A B C z1
2
z2

2
z2

2
z3

2
z3

2
z1

2
+ + 

 ⋅+±

---------------------------------------------------------------------------------=

m0

mxy ν,

mxy ν,
mn

3 2/

mz ν,
1 2/ nν

-----------------=

nv

mxy ν,

A

B

C

m1

mh
Sentaurus™ Device User Guide 289
N-2017.09



14: Quantization Models 
1D Schrödinger Solver
Visualizing Schrödinger Solutions

To visualize the results obtained by the Schrödinger equation, Sentaurus Device offers special
keywords for the NonLocalPlot section (see Visualizing Data Defined on Nonlocal Meshes
on page 148).

To plot the wavefunctions, specify WaveFunction in the NonLocalPlot section. Sentaurus
Device plots wavefunctions in units of . To plot the eigenenergies, specify
EigenEnergy; Sentaurus Device plots them in units of eV. The names of the curves in the
output have two numeric indices. The first index denotes the ladder index and the second index
denotes the number of zeros of the wavefunction (see  and  in Eq. 227).

Without further specification, Sentaurus Device will plot all eigenenergies and wavefunctions
it has computed. The Electron and Hole options to WaveFunction and EigenEnergy
restrict the output to the wavefunctions and eigenenergies for electrons and holes, respectively.

The Electron and Hole options have a sub-option Number=<int> to restrict the output to a
certain number of states of lowest energy. For example:

NonLocalPlot(
(0 0)

){
WaveFunction(Electron(Number=3) Hole)

}

will plot all hole wavefunctions and the three lowest-energy electron wavefunctions for the
nonlocal mesh line close to the coordinate (0, 0, 0).

To plot the overlap integrals between all pairs of the computed wavefunctions on a nonlocal
line, specify OverlapIntegral in the NonLocalPlot section.

1D Schrödinger Model

Omitting x- and y-coordinates for simplicity, the 1D Schrödinger equation for electrons is:

(227)

where  is the quantization direction (typically, the direction perpendicular to the silicon–oxide
interface in a MOSFET),  labels the ladder,  is the (region-dependent) energy offset for
the ladder ,  is the effective mass component in the quantization direction,  is the

-th normalized eigenfunction, and  is the -th eigenenergy.

μm 1 2⁄–

ν j

∂
z∂

-----–
h2

2mz ν, z( )
----------------------

∂
z∂

----- EC z( ) ΔEν+ + 
 Ψj ν, z( ) Ej ν, Ψj ν, z( )=

z
ν ΔEν

ν mz ν, Ψj ν,
j Ej ν, j
290 Sentaurus™ Device User Guide
N-2017.09



14: Quantization Models
1D Schrödinger Solver
From the solution of this equation, the density is computed as:

(228)

where  is the mass component perpendicular to the quantization direction and  is the
degeneracy for ladder . For the parameters , , , and , see 1D Schrödinger
Parameters on page 287.

If DensityTail=MaxEnergy,  in Eq. 228 is the energy of the highest computed
subband for ladder ; otherwise, it is an estimate of the energy of the lowest not computed
subband.  is the contribution to the classical density for ladder  by energies above

.

At the ends of the nonlocal line, Sentaurus Device optionally smoothly blends from the
classical density to the density according to Eq. 228. Equating the resulting density to Eq. 220
determines .

The Schrödinger equation is solved over a finite domain . At the endpoints of this
domain, the boundary condition:

(229)

is applied, where for the upper sign, all position-dependent functions are taken at  and, for
the lower sign, at .

1D Schrödinger Application Notes

Note that:

■ Convergence problems: Near the flatband condition, minor changes in the band structure
can change the number of bound states between zero and one. By default, Sentaurus Device
computes only bound states and, therefore, this change switches from a purely classical
solution to a solution with quantization. To avoid the large change in density that this
transition can cause, set EnergyInterval to a nonzero value (for example, 1). Then, a
few unbound states are computed and a hard transition is avoided.

■ The Schrödinger solver uses an iterative method. If this iterative method fails to converge,
the solution of the coupled system of all equations will not be accepted, even if the RHS
and the error as reported in the log file are small.

■ Always include a part of the ‘barrier’ in the nonlocal line on which the Schrödinger
equation is solved. In a MOSFET, besides the channel region, solve the Schrödinger
equation in a part of the oxide adjacent to the channel (for example,  deep). Use the

n z( ) kT z( )
πh2

------------- Ψj ν, z( ) 2

j ν,
 dνm

xy ν, z( ) F0

EF n, z( ) Ej ν,–

kT z( )
---------------------------------- 
  F0

EF n, z( ) Emax ν,–

kT z( )
----------------------------------------- 
 – ncl ν,

ν
+=

mxy ν, dν
ν mz ν, mxy ν, dν ΔEν

Emax ν,
ν

ncl ν, ν
Emax ν,

Λn

z- z+[ , ]

Ψ′j ν,
Ψj ν,
------------

2mz ν, Ej ν, EC–

h
--------------------------------------------+−=

z+

z-

1 nm
Sentaurus™ Device User Guide 291
N-2017.09



14: Quantization Models 
External 2D Schrödinger Solver
Permeation option to NonLocal to achieve this (see Nonlocal Mesh for 1D Schrödinger
on page 286). Failure to solve in a part of the oxide adjacent to the channel blinds the
Schrödinger solver to the barrier. It does not know the electrons are confined and the
quantization effects are not obtained.

External 2D Schrödinger Solver

For 3D structures, Sentaurus Device can connect to external 2D Schrödinger solvers to
compute the quantum-mechanical density correction. Sentaurus Device interpolates solution-
dependent data, such as band edges, quasi-Fermi potentials, and temperature, to 2D cross
sections of the device, and passes it to the 2D Schrödinger solvers. From this information and
their own configuration, the 2D Schrödinger solvers compute quantum-mechanical densities
and pass them back to Sentaurus Device. Using these densities and Eq. 220, p. 283, Sentaurus
Device computes the quantum potentials  and . Then, the quantum potentials are
interpolated to the 3D device mesh and are used in subsequent calculations.

The connection to the external 2D Schrödinger solver is defined in the global Physics section:

ExternalSchroedinger <string> (
NumberOfSlices=<int> * required parameter, at least two
Carriers = <carrierlist> * required parameter
Volume=<string> * optional
SBandCommandFile=<string> * optional
DampingLength=<float> * in um, default 0.005
MaxMismatch=<float> * in um, default 1e-4

)

The string after ExternalSchroedinger is a name used to establish the connection to the
2D Schrödinger solver processes. Two Sentaurus Device processes running concurrently on the
same computer, in the same working directory, must not use the same value for this name.

NumberOfSlices is the number of 2D slices (cross sections) of the 3D mesh on which to
solve the 2D Schrödinger equation. The slices themselves are provided to Sentaurus Device by
the 2D Schrödinger solver processes. They must correspond to cuts of the 3D mesh Sentaurus
Device is using, that is, at the same point, the 3D mesh and the 2D slices must have the same
region. Sentaurus Device checks this condition, with a tolerance that can be changed with the
MaxMismatch parameter.

To allow users to perform 3D simulations of a symmetric structure with a reduced mesh, the
interface to the external 2D Schrödinger solver takes the ThinLayer(Mirror) specification
into account (see Geometric Parameters of LayerThickness Command on page 312). Note,
however, that the 2D Schrödinger solver still needs the full 2D slices.

Λn Λp
292 Sentaurus™ Device User Guide
N-2017.09



14: Quantization Models
External 2D Schrödinger Solver
Slices are numbered from zero to NumberOfSlices-1. This number is used to refer to slices
individually, for example, in error messages. The number also is used by the 2D Schrödinger
solvers to identify a particular slice.

The carrier types to which you apply a quantum correction are specified by Carriers.
Possible values are (Electron), (Hole), and (Electron Hole) to apply the correction to
electrons only, holes only, or both, respectively.

The quantum correction is only applied to semiconductors. If specified, the application is
further restricted to the named volume given by Volume (for named volumes, see Random
Band Edge Fluctuations on page 688). Within that domain, the quantum correction from the
2D slices is interpolated to the volume enclosed by the slices. With increasing distance from
the enclosed volume, the quantum correction is damped. For vertices farther outside the
enclosed volume than the distance specified with DampingLength, the 2D Schrödinger
quantum corrections  and  are zero.

NOTE For typical MOSFET applications, the 2D Schrödinger solver is used
mostly to account for the quantization in the active channel area.
However, the source and drain regions can use other simpler quantum-
correction models such as density gradient (see Density Gradient
Quantization Model on page 294) or MLDA (see Modified Local-
Density Approximation on page 300). For such a combination, the
parameter DampingLength is also used in the density gradient or
MLDA quantum corrections (  and ) to have a smooth transition
between these corrections. The parameter defines a position-dependent
damping  (which is equal to 1 inside the 2D Schrödinger domain
and goes to 0 at DampingLength distance from that domain), and the
combined quantum corrections are computed as 
and .

If SBandCommandFile is used to provide the name of a command file for Sentaurus Band
Structure, Sentaurus Device automatically starts Sentaurus Band Structure processes with this
command file. Sentaurus Device passes to each process the number of the slice it handles on
the command line.

Otherwise, users are responsible for starting the 2D Schrödinger solver processes, which must
be started in the same working directory on the same computer as the Sentaurus Device process
that connects to them.

See Sentaurus™ Device Monte Carlo User Guide, Using Sentaurus Band Structure as an
External Schrödinger Solver for Sentaurus Device on page 213 for details about the 2D
Schrödinger solver.

Λn Λp

ΛnO ΛpO

αSE

αSEΛn 1 αSE–( )ΛnO+
αSEΛp 1 αSE–( )ΛpO+
Sentaurus™ Device User Guide 293
N-2017.09



14: Quantization Models 
Density Gradient Quantization Model
Application Notes

One crucial step in using the interface to external 2D Schrödinger solvers is to decide the
number and the placement of the slices. Usually, the quantum corrections are applied to the
channel of a device. The slices at least must resolve the shape of the cross section of the
channel.

Using the quantum potentials  and  as the quantities that are interpolated between slices,
interpolation becomes insensitive to potential and quasi-Fermi potential drops along the
channel. Therefore, for devices with a uniform channel cross section, one slice close to either
end of the channel should be sufficient to obtain sufficient accuracy.

NOTE The placement of the slices is not specified in Sentaurus Device. The
only information specified in the Sentaurus Device command file about
the slices it their number. The placement of the slices is the
responsibility of the external 2D Schrödinger solvers. Therefore, their
configuration must be consistent with the 3D mesh used by Sentaurus
Device.

Similarly, the exact model for quantization, as well as band structure information beyond the
band edges, is not specified by Sentaurus Device, but by the configuration of the 2D
Schrödinger solvers.

Density Gradient Quantization Model

Density Gradient Model

For the density gradient model [3][4],  in Eq. 220 is given by a partial differential equation:

(230)

where  is a fit factor. The  is solution independent. It is dependent on the mole
fraction and the distance to the nearest insulating surface (option AutoOrientation). The
additional factor  (solution dependent) can be defined by a PMI (see Gamma Factor for
Density Gradient Model on page 1283).

Λn Λp

Λn

Λn
γh2

12mn
-------------– ∇2

lnn
1
2
--- ∇lnn( )2

+
 
 
  γh2

6mn
----------–

∇2
n

n
--------------= =

γ γ0 γpmi⋅= γ0

γpmi
294 Sentaurus™ Device User Guide
N-2017.09



14: Quantization Models
Density Gradient Quantization Model
Introducing the reciprocal thermal energy , the mass-driving term
 (with an arbitrary normalization constant ) and the potential-like

quantity , Eq. 230 can be rewritten and generalized as:

(231)

with the default parameters , , and  is a symmetric matrix that defaults
to one. In insulators, Sentaurus Device does not compute the Fermi energy; therefore, in
insulators, . By default, Sentaurus Device uses Eq. 231, which for Fermi statistics
deviates from Eq. 230, even when  and . The density-based expression
Eq. 230 is available as an option (see Using the Density Gradient Model on page 296).

In Eq. 231,  is a locally dependent quantity computed from a user-specified PMI model
(see Apparent Band-Edge Shift on page 1144), from the Schenk bandgap narrowing model (see
Schenk Bandgap Narrowing Model on page 255), or from apparent band-edge shifts caused by
multistate configurations (see Apparent Band-Edge Shift on page 483). By default, .

At Ohmic contacts, interfaces to metals with Ohmic boundary conditions, resistive contacts,
and current contacts, the boundary condition  is imposed. At Schottky contacts,
gate contacts, interfaces to metals with Schottky boundary conditions, and external boundaries,
homogeneous Neumann boundary conditions are used: 

.

At internal interfaces between regions where the density gradient equation is solved,  and
 must be continuous. 

At internal interfaces between a region where the equation is solved (indicated below by )
and a non-metal region where it is not solved ( ), an inhomogeneous Neumann boundary
condition obtained from the analytic solution of the 1D step problem is applied:

(232)

where  and .

Optionally, Sentaurus Device offers a modified mobility to improve the modeling of tunneling
through semiconductor barriers:

(233)

β 1 kTn⁄=
Φm kTnln NC Nref⁄( )–= Nref

Φ EC Φm Λn+ +=

Λn
h2γ

12mn
-------------– ∇{ α ξ∇βEF n, ∇βΦ– η 1–( )+ q∇βφ( )⋅=

ϑ ξ∇βEF,n ∇βΦ– η 1–( )q∇βφ+( ) α ξ∇βEF,n ∇βΦ– η 1–( )q∇βφ+( ) }⋅ ΛPMI+ +

ξ η 1= = ϑ 1 2⁄= α

ξ η 0= =
ξ η 1= = ϑ 1 2⁄=

ΛPMI

ΛPMI 0=

Λn ΛPMI=

n̂ α ξ∇βEF,n ∇βΦ– η 1–( )q∇βφ+( )⋅ 0=

Φ
n̂ α ξ∇βEF,n ∇βΦ– η 1–( )q∇βφ+( )⋅

0-

0+

n̂ ∇Λn⋅
24mn 0

+( )αk
3
Tn

3

h2γ 0
+( )

---------------------------------------- EC 0+( ) EC 0
-( )– Λn–[ ]f

2ϑ 0
+( )

kTn
------------------ Λn E–

C
0+( ) EC 0

-( )+[ ]
 
 
 

=

f x( ) x 1–exp( ) x 1–⁄[ ] x⁄= α det α 0+( )[ ]1 3⁄=

μ
μcl rμtunnel+

1 r+
-------------------------------=
Sentaurus™ Device User Guide 295
N-2017.09



14: Quantization Models 
Density Gradient Quantization Model
where  is the usual (classical) mobility as described in Chapter 15 on page 317,  is a
fit parameter, and . Here,  is the ‘classical’ density (see Eq. 404). In
this modification, for , the additional carriers (density ) are considered as
tunneling carriers that are subject to a different mobility  than the classical carriers
(density ).

Using the Density Gradient Model

The density gradient equation for electrons and holes is activated by the
eQuantumPotential and hQuantumPotential switches in the Physics section. Use
-eQuantumPotential and -hQuantumPotential to switch off the equations. These
switches can also be used in regionwise or materialwise Physics sections. In metal regions,
the equations are never solved. For a summary of available options, see Table 294 on
page 1470.

The Ignore switch to eQuantumPotential and hQuantumPotential instructs Sentaurus
Device to compute the quantum potential, but not to use it. Ignore is intended for backward
compatibility to earlier versions of Sentaurus Device.

The Resolve switch enables a numeric approach that handles discontinuous band structures,
at moderately refined interfaces that are not heterointerfaces, more accurately than the default
approach.

The switch Density to eQuantumPotential and hQuantumPotential activates the
density-based formula Eq. 230 instead of the potential-based formula Eq. 231. If this option is
used, the parameters  and  must both be 1.

The LocalModel option of eQuantumPotential and hQuantumPotential specifies the
name of a PMI model (see Physical Model Interface on page 1043) or the Schenk bandgap
narrowing model (see Schenk Bandgap Narrowing Model on page 255) for  in Eq. 231.
An additional apparent band-edge shift contribution can be added if the corresponding model
of a multistate configuration is switched on (see Apparent Band-Edge Shift on page 483).

The BoundaryCondition option of the eQuantumPotential and hQuantumPotential
specifications in metal interface-specific or electrode-specific Physics sections allows you to
explicitly specify the boundary condition for the quantum potential, overriding the default
boundary condition. Possible values are Dirichlet and Neumann, to enforce homogeneous
Dirichlet and Neumann boundary conditions, respectively.

μcl μtunnel

r max 0 n ncl⁄ 1–,( )= ncl

n ncl> n ncl–
μtunnel

ncl

ξ η

ΛPMI
296 Sentaurus™ Device User Guide
N-2017.09



14: Quantization Models
Density Gradient Quantization Model
Apart from activating the equations in the Physics section, the equations for the quantum
corrections must be solved by using eQuantumPotential or hQuantumPotential, or both
in the Solve section. For example:

Physics {
eQuantumPotential

}
Plot {

eQuantumPotential
}
Solve {

Coupled { Poisson eQuantumPotential }
Quasistationary (

DoZero InitialStep=0.01 MaxStep=0.1 MinStep=1e-5
Goal { Name="gate" Voltage=2 }

){
Coupled { Poisson Electron eQuantumPotential }

}
}

The quantum corrections can be plotted. To this end, use eQuantumPotential, or
hQuantumPotential, or both in the Plot section.

To activate the mobility modification according to Eq. 233, specify the Tunneling switch to
Mobility in the Physics section of the command file. Specify  for electrons and holes
by the mutunnel parameter pair in the ConstantMobility parameter set.

The parameters , , , and  are available in the QuantumPotentialParameters
parameter set. The parameters can be specified regionwise and materialwise. They cannot be
functions of the mole fraction in heterodevices. In insulators,  is always assumed as zero,
regardless of user specifications.

The diagonal of  in the crystal coordinate system (see Crystal and Simulation Coordinate
Systems on page 781) is determined by the parameter pairs alpha[1], alpha[2], and
alpha[3] (for the -direction, -direction, and -direction, respectively) in the
QuantumPotentialParameters parameter set. Unless  is a multiple of the unit matrix,
Sentaurus Device solves an anisotropic problem. For example:

QuantumPotentialParameters {
alpha[1] = 1 1
alpha[2] = 0.5 0.5

}

decreases the quantization effect along the -direction to half, for both electrons and holes.

The anisotropic density-gradient equation supports the AverageAniso approximation (see
Chapter 28 on page 779) and the tensor grid approximation (see Tensor Grid Option on

μtunnel

γ ϑ ξ η

ξ

α

x y z
α

y

Sentaurus™ Device User Guide 297
N-2017.09



14: Quantization Models 
Density Gradient Quantization Model
page 881). For the latter, TensorGridAniso must be selected as the numeric method in the
Math section, and either eQuantumPotential or hQuantumPotential must be specified
as an option of Aniso in the Physics section, for example:

Physics { Aniso (eQuantumPotential) }
Math { TensorGridAniso(Aniso) }

Named Parameter Sets for Density Gradient

The QuantumPotentialParameters parameter set can be named. For example, in the
parameter file, you can write:

QuantumPotentialParameters "myset" { ... }

to declare a parameter set with the name myset. To use a named parameter set, specify its name
with ParameterSetName as an option to either eQuantumPotential or
hQuantumPotential in the command file, for example:

Physics {
eQuantumPotential (ParameterSetName = "myset")

}

By default, the unnamed parameter set is used.

Auto-Orientation for Density Gradient

The eQuantumPotential and hQuantumPotential models support the auto-orientation
framework (see Auto-Orientation Framework on page 37) that switches between different
named parameter sets based on the orientation of the nearest interface. This can be activated by
specifying AutoOrientation as an argument to either eQuantumPotential or
hQuantumPotential in the command file:

Physics {
eQuantumPotential (AutoOrientation)

}

Density Gradient Application Notes

Note that:

■ Fitting parameters: The parameter  has been calibrated only for silicon. The quantum
correction affects the densities and field distribution in a device. Therefore, parameters for
mobility and recombination models that have been calibrated to classical simulations (or
simulations with the van Dort model) may require recalibration.

γ

298 Sentaurus™ Device User Guide
N-2017.09



14: Quantization Models
Density Gradient Quantization Model
■ Evaluation box: You can improve convergence by solving the density gradient equations
only within regions that are adequately meshed for that task. For example, in FinFETs, it
is understood that, for a fin situated on a large substrate, given the oppressive cost of
meshing the surface of the substrate to density gradient standards, it is beneficial to solve
the equations only in the fin.

This works well if the fin can be specified as a unique region that coincides with the domain
over which the quantum potential is useful. However, in structures formed by Sentaurus
Process, such precise registration of regions may not be possible.

An alternate approach is to reduce the quantum potential in parts of a region that are not of
interest. In this approach, the parameter  effectively attenuates the quantum potential
outside the ‘Box’ where the solution of quantum potential may cause convergence issues.
The corresponding command file can be written as:

Math {
eQPBox({MinX=0.042 MaxX=0.045 MinY=0.008 MaxY=0.015 Attenuation_Length=1e-3}

         {MinX=0.022 MaxX=0.027 MinY=0.002 MaxY=0.004 Attenuation_Length=2e-3}
)
hQPBox({MinX=0.042 MaxX=0.045 MinY=0.008 MaxY=0.015 Attenuation_Length=2e-3}

         {MinX=0.022 MaxX=0.027 MinY=0.002 MaxY=0.004 Attenuation_Length=4e-3}
)

}

The parameter  is effectively attenuated using an error function for each of the six
specified domain boundaries. Attenuation_Length determines the decay of the
transition, where 0 is abrupt, and the default value is 1e-3 .

■ Tunneling: The density gradient model increases the current through the semiconducting
potential barriers. However, this effect is not a trustworthy description of tunneling through
the barrier. To model tunneling, use one of the dedicated models that Sentaurus Device
provides (see Chapter 24 on page 715). To suppress unwanted tunneling or to fit tunneling
currents despite these concerns, consider using the modified mobility model according to
Eq. 233.

■ Convergence: In general and particularly for the density gradient corrections, solving
additional equations worsens convergence. Typically, it is advisable to solve the equations
for the quantum potentials whenever the Poisson equation is solved (using a Coupled
statement). Usually, the best strategy to obtain an initial solution at the beginning of the
simulation is to do a coupled solve of the Poisson equation and the quantum potentials,
without the current and temperature equations.

To obtain this initial solution, it is sometimes necessary that you set the
LineSearchDamping optional parameter (see Damped Newton Iterations on page 139)
to a value less than 1; a good value is 0.01.

Often, using initial bias conditions that induce a current flow work well for a classical
simulation, but do not work when the density gradient model is active. In such cases, start

γ

γ

μm
Sentaurus™ Device User Guide 299
N-2017.09



14: Quantization Models 
Modified Local-Density Approximation
from equilibrium bias conditions and put an additional voltage ramping at the beginning of
the simulation.

If an initial solution is still not possible, consider using Fermi statistics (see Fermi Statistics
on page 176). Check grid refinement and pay special attention to interfaces between
insulators and highly doped semiconductor regions. For classical simulations, the
refinement perpendicular to such interfaces is often not critical, whereas for quantum
mechanical simulations, quantization introduces variations at small length scales, which
must be resolved.

■ Avalanche: The combination of using the density gradient model with an avalanche model
can sometimes degrade convergence. An option is available in the Math section that can
often result in better convergence in this situation:

Math {RefDens_QuantumPotential=< >}

where  is the carrier concentration below which the effects of quantum corrections are
reduced.

■ Speed: Activate the equations only for regions where the quantum corrections are
physically needed. For example, usually, the density gradient equations do not need to be
computed in insulators. Using the model selectively, typically, also benefits convergence.

■ By default, the DOS mass used in the expressions of the density gradient method ignores
the effects of strain (see Strained Effective Masses and Density-of-States on page 830).
This is accomplished by using the expression  with a default value of

, where  is the unstrained mass and  is the change in mass due to strain. The
parameter  can be specified in the QuantumPotentialParameters parameter set.

Modified Local-Density Approximation

MLDA Model

The modified local-density approximation (MLDA) model is a quantum-mechanical model
that calculates the confined carrier distributions that occur near semiconductor–insulator
interfaces [5]. It can be applied to both inversion and accumulation, and simultaneously to
electrons and holes. It is based on a rigorous extension of the local-density approximation and
provides a good compromise between accuracy and runtime.

Following Paasch and Übensee [5], the confined electron density at a distance  from a
Si–SiO2 interface is given, under Fermi statistics, by:

(234)

n0

n0

mn mn0 ν Δmn⋅+=
ν 0= mn0 Δmn

ν

z

nMLDA ηn( ) NC
2

π
------- 
  ε ε

1 ε ηn–( )[ ]exp+
------------------------------------------- 1 j0 2z ε λn⁄( )–[ ]d

0

∞

=
300 Sentaurus™ Device User Guide
N-2017.09



14: Quantization Models
Modified Local-Density Approximation
where  is given by Eq. 49, p. 177,  is the 0th-order spherical Bessel function, and
 is the electron thermal wavelength which depends on the quantization

mass . The integrand of Eq. 234 is very similar to the classical Fermi integrand, with an
additional factor describing confinement for small . A similar equation is applied to holes.

Sentaurus Device provides two MLDA model options:

■ One option is the simple original model that uses only one user-defined parameter  per
carrier type.

■ The second option (considered in detail in the next section) accounts for the multivalley/
band property of the electron and hole band structures.

For the simple model, in Boltzmann statistics, Eq. 234 simplifies to the following expression
for the electron density (the hole density is similar):

(235)

Interface Orientation and Stress Dependencies

The MLDA model allows you to consider a dependency of the quantization effect on interface
orientation and stress. Mainly, such dependencies come from mass anisotropy and stress
related valley/band energy change.

Mass anisotropy has been considered in the literature [6] where ellipsoidal type of bands,
which correspond to three electron -valleys in silicon, were used. The main result of the
article is that Eq. 234 is still valid for each of three electron -valleys with the effective DOS
equal to . Another result is that the quantization mass of each valley  should be
computed as a rotation of the inverse mass tensor from the crystal system (where the tensor is
diagonal) to another one where one axis is perpendicular to the interface and the mass
component, which corresponds to the axis, should be taken as . Considering three electron

-valleys, Eq. 234 could be rewritten as follows:

(236)

where:

■  is the electron DOS of valley  with a dependency on the normalized energy 
and on the distance to the interface .

■  is defined by Eq. 207, p. 274 or Eq. 208, p. 274; however, in the case of stress,  is
defined by Eq. 956, p. 832.

ηn j0

λn h2 2mqnkTn⁄=
mqn

z

λ

nMLDA ηn( ) NC ηn( ) 1 z λn⁄( )2
–( )exp–[ ]exp=

Δ2

Δ2

NC 3⁄ mqn
i

mqn
i

Δ2

nMLDA ηn z,( )
Dn

i ε z,( )

1 ε ηn– Δηi
–( )exp+

----------------------------------------------------- εd

0

∞


i 1=

3

=

Dn
i ε z,( ) NCgn

i 2

π
------- 
  ε 1 j0 2z

2mqn
i

kTnε
h2

-------------------------
 
 
 

–=

Dn
i ε z,( ) i ε

z

gn
i NCgn

i

Sentaurus™ Device User Guide 301
N-2017.09



14: Quantization Models 
Modified Local-Density Approximation
■  represents the stress-induced valley energy change (see Deformation of Band
Structure on page 826).

Similar to Eq. 236, the same multivalley MLDA quantization model could be applied to holes
with hole bands defined in the MultiValley section of the parameter file described in
Multivalley Band Structure on page 267, but such spherical or ellipsoidal hole bands do not
produce a correct dependency of the hole quantization on the interface orientation. Therefore,
for holes, the six-band band structure is used. The bulk six-band  model is described
in [14][15] of Chapter 31 on page 821. An extension of the MLDA model is formulated for
arbitrary bands and applied to the six-band band structure [7].

The DOS of one hole band is written generally as follows:

(237)

where:

■  is a hole band dispersion of the bulk six-band  model (the model considers three
bands: heavy holes, light holes, and the spin-orbit split-off band holes).

■ The surface integral is in k-space over isoenergy surface  defined by .

■  are components of the reciprocal mass tensor computed locally on the isoenergy
surface.

■  is a fitting parameter that accounts for the nonparabolicity of hole bands in the MLDA
model.

The hole density near the interface is computed similarly to the electron one in Eq. 236, but
with the DOS from Eq. 237. The interface orientation and stress dependencies of the hole
quantization are defined naturally by the physical property of the six-band  model.

Heterojunctions

Originally, the MLDA quantization model was developed to describe the carrier density at
semiconductor–insulator interfaces where a zero density (wavefunction) assumption on the
interface is a reasonable approximation due to a typically high-band offset between the
semiconductor and insulator. Such an assumption is mostly incorrect if the model is applied to
heterojunctions where the band offset between two semiconductors is small. To apply the
MLDA model to heterojunctions [8], you can use a wave penetration length in the model:

(238)

Δηi

k p⋅ k p⋅

k p⋅

D
i ε z,( ) 2

2π( )3
--------------

dS

∇kεi
k( )

--------------------- 1 i2zγkp kj

wj3 k( )

w33 k( )
-----------------

j


 
 
 
 

exp–°=

εi k( ) k p⋅

S εi k( ) ε=

wij

γkp

k p⋅

z0
h

2mΔε
------------------=
302 Sentaurus™ Device User Guide
N-2017.09



14: Quantization Models
Modified Local-Density Approximation
where  is the carrier (electron or hole) effective mass of the low-bandgap semiconductor, and
 is the band offset between two semiconductors (in the conduction or valence band).

According to [8], the penetration length  is simply added to the interface distance  in
Eq. 234–Eq. 237.

Nonparabolic Bands and Geometric Quantization

Other effects that can play an important role, for example, in III–V semiconductors are the band
nonparabolicity and geometric quantization in thin-layer structures. For the bulk case, the
carrier density computation with the nonparabolic bands is described in Nonparabolic Band
Structure on page 268. 

To account for this effect and 1D geometric quantization (between two parallel interfaces that
confine the carriers) in the MLDA model, the DOS in Eq. 236 must be replaced with the
following [9]:

(239)

where:

■  is the band nonparabolicity.

■  is a distance between the parallel interfaces.

■  is the first subband energy of the infinite-barrier quantum well with size .

Eq. 239 assumes that the DOS is equal to zero up to the first subband energy  and this gives
an effect of bandgap widening in thin-layer structures.

For the hole six-band bands in Eq. 237, geometric quantization is accounted for similarly
by using the first subband energy . In this case, the quantization mass in  is taken to be
energy dependent along the quantization direction, which comes from the reciprocal mass
tensor  used in Eq. 237.

This MLDA quantization option is implemented using the multivalley carrier density model
described in Multivalley Band Structure on page 267. It uses all of the valley and mass
parameter definitions of the multivalley model in the MultiValley section of the parameter
file. In addition, it applies a numeric integration of Eq. 234, Eq. 236 based on Gauss–Laguerre
quadratures as described in Nonparabolic Band Structure on page 268. The numeric integration
is applied to both Fermi–Dirac statistics and Boltzmann statistics. By default, the model
automatically finds the closest interface and accounts for its orientation by recomputing the

m
Δε

z0 z

Dn
i ε z,( ) NCgn

i 2

π
------- 
  1 2kTnαiε'+( ) ε' 1 kTnαiε'+( ) 1 j0 zK( ) j0 Lz z–( )K( )– j0 LzK( )+–[ ]=

K 2
2mqn

i
kTnε' 1 kTnαiε'+( )

h2
-----------------------------------------------------------= ε' ε

ε1

kTn
--------+= ε1

1– 1
2αi

mqn
i

---------
hπ
Lz
------ 
  2

++

2αi
----------------------------------------------------=

αi

Lz

ε1 Lz

ε1

k p⋅
ε1 ε1

wij
Sentaurus™ Device User Guide 303
N-2017.09



14: Quantization Models 
Modified Local-Density Approximation
quantization mass for each valley and channel mesh point. The interface orientation is found
using a vector normal to the interface and an orientation of the simulation coordinate system in
reference to the crystal system defined in the LatticeParameters section of the parameter
file (see Crystal and Simulation Coordinate Systems on page 781). For fitting purposes, you
have an option to define a specific quantization mass for each valley using the parameter file
(see Using MLDA).

Using MLDA

To activate the multivalley orientation–dependent model, the keyword MLDA must be used in
the MultiValley statement of the Physics section:

Physics { MultiValley(MLDA) }

To activate the model only for electrons or holes, use eMultiValley(MLDA) or
hMultiValley(MLDA), respectively.

You can modify parameters of the model in the MultiValley section of the parameter file
(see Using Multivalley Band Structure on page 270). By default, longitudinal and transverse
effective masses are specified in the (e|h)Valley sections. These masses form the inverse
mass tensor in the valley ellipsoidal coordinate system, which is rotated to the interface system,
and is used to compute the quantization mass . For users who want to define a constant
quantization mass per valley, ignoring automatic interface orientation dependency, there is an
option to define it in the Valley statement:

MultiValley { (e|h)Valley(mq = ) }

To activate the multivalley MLDA model based on the six-band band structure for holes
(see Eq. 237) or the two-band  model for  electron valleys, an additional keyword must
be used:

Physics { MultiValley(MLDA kpDOS) }

In this case, all  model parameters are defined in the LatticeParameters section of the
parameter file (see Using Strained Effective Masses and DOS on page 834). The fitting
parameter  in Eq. 237 should be specified as a value of the parameter hkpDOSfactor in
the MLDAQMModel section of the parameter file as follows:

MLDAQMModel{
hkpDOSfactor = 0.4
ekpDOSfactor = 1.0

}

The parameter ekpDOSfactor can be used as a fitting parameter for the electron multivalley
MLDA model (as a factor to  in Eq. 236) if eMultiValley(MLDA kpDOS) is specified in

mq

mq

k p⋅
k p⋅ Δ2

k p⋅

γkp

z

304 Sentaurus™ Device User Guide
N-2017.09



14: Quantization Models
Modified Local-Density Approximation
the Physics section of the command file. To use the multivalley MLDA model for both 
bands and valleys defined in the parameter file, MultiValley(MLDA kpDOS parfile) must
be used.

To apply the MLDA model to heterojunctions, the penetration length  (see Eq. 238) must be
specified (default is zero) in the parameter file for electrons and holes separately. This length
is considered to be a fitting parameter specific for heterojunctions, and Eq. 238 should be used
only as a reference. For example, with a 5 Å penetration, the penetration length can be specified
as:

MLDAQMModel{
ePenetration = 5e-8 # [cm]
hPenetration = 5e-8 # [cm]

}

To activate the multivalley MLDA model with nonparabolic bands (Eq. 239), the keywords
Multivalley(MLDA Nonparabolicity) must be specified. If the nonparabolicity should
be ignored only in the MLDA part of the model (in the Bessel functions  of Eq. 239), you
must use MLDA(-Nonparabolicity).

To have the geometric quantization accounted for as in Eq. 239 (the part dependent on the
quantization length ), the ThinLayer keyword must be in the MultiValley statement and
the LayerThickness statement must be set. All LayerThickness options are described in
LayerThickness Command on page 310 where generally the layer thickness (the quantization
length ) can be extracted automatically for defined regions. Practically, if the geometric
quantization is mostly 1D, such a setting can be as simple as:

LayerThickness( Thickness = )
Multivalley(MLDA ThinLayer)

For more complicated cases, such as for rectangular nanowires, the geometric quantization at
corners is important and the following statements with automatic extraction of the quantization
length  can be used:

LayerThickness( MaxFitWeight = 0.35 DimensionWeight = 1.0 )
Multivalley(MLDA ThinLayer)

The parameter DimensionWeight is specific to the model where the first subband energy 
is used, as in Eq. 239. This parameter works as a factor to  and is designed as a fitting factor
to effectively account for multidimensional quantization. Its default value is 1, but it should be
increased with a reduction of the nanowire size.

To plot the electron and hole effective quantum corrections of the quantization models
activated in the Multivalley statement (MLDA and ThinLayer), the eMVQMBandgapShift
and hMVQMBandgapShift keywords must be present in the Plot section.

k p⋅

z0

j0

Lz

Lz

Lz

Lz

ε1

ε1
Sentaurus™ Device User Guide 305
N-2017.09



14: Quantization Models 
Modified Local-Density Approximation
By default, the MLDA model looks for all semiconductor–insulator interfaces and calculates
the normal distance  in Eq. 234–Eq. 237 to the nearest interface. The MLDA model also uses
the EnormalInterface option and the GeometricDistances option (see Normal to
Interface on page 355). To improve numerics if there is a coarse mesh in highly doped regions,
there is an option to compute an averaged distance from a vertex to the interface based on
element volumes and interface distances of elements, which contain the vertex (surrounding
elements). The option is implemented only for the multivalley MLDA and has an adjusting
parameter that can be specified as follows:

Math{
MVMLDAcontrols(AveDistanceFactor = 0.05)

}

The default value of the parameter is 0.05 but, if it is equal to zero, the normal distance  is not
modified by such averaging. If the parameter is unit, the distance  will be computed as an
averaged distance using the normal distances of all vertices of the surrounded semiconductor
elements with element–vertex volume weights.

To control a distance from the interface where the multivalley MLDA models will be applied,
use the following statement:

Math {
MVMLDAcontrols(MaxIntDistance = 1e-6)

}

The default value of MaxIntDistance is .

To control the multivalley MLDA models by the doping concentration (for example, to exclude
partially source/drain regions), the following command can be used:

Math {
MVMLDAcontrols(MaxDoping4Majority = 1e19)

}

where MaxDoping4Majority defines the maximum doping concentration where the
multivalley MLDA models are applied for majority carriers. For example, if
MaxDoping4Majority is equal to zero, it excludes source/drain regions completely and the
models are applied only for minority carriers. The default value of MaxDoping4Majority is

, that is, there are no limitations related to the doping concentration.

If the statement hMultivalley(MLDA kpDOS) is activated, the model performs an initial
computation of energy-dependent data based on the bulk six-band  dispersion model. This
computation may be time consuming, especially for 3D simulations and with the hSubband
model active (see Mobility Modeling on page 838).

z

z
z

10 6–  cm

1022 cm 3–

k p⋅
306 Sentaurus™ Device User Guide
N-2017.09



14: Quantization Models
Modified Local-Density Approximation
To separate this initial computation from bias ramping, there is an option to save and load the
energy-dependent data file, for example:

Math { MVMLDAcontrols(Save = "file_name") }
Math { MVMLDAcontrols(Load = "file_name") }

If LoadWithInterpolation = "file_name" is used, then the saved data file could have
a mesh different to the simulation one, and this option will interpolate the data to the simulation
mesh.

In addition, to exclude source/drain or other regions, the keyword MLDAbox can be used to
define the range of the interface from which the MLDA distance function is calculated:

Math{
EnormalInterface(

regionInterface=["SemiRegion/InsulRegion"]
materialInterface=["OxideAsSemiconductor/Silicon"]

)
* single MLDAbox
MLDAbox( MinX=-0.1, MaxX=0.1, MinY=-0.01, MaxY=0.01 )
* multiple MLDAbox
MLDAbox( { MinX=-0.1, MaxX=0.1, MinY=-0.01, MaxY=0.01 }

{ MinX=-0.1, MaxX=0.1, MinY= 0.05, MaxY=0.06 } )
}

The unit of the parameters MinX, MaxX, MinY, and MaxY in the MLDAbox is micrometer.

To activate the simple MLDA model (with one parameter  per carrier type), use the keyword
MLDA in the Physics section. To activate the model for electrons or holes only, use eMLDA or
hMLDA. The model also can be specified in the regionwise or materialwise Physics section,
and can be switched off by using -MLDA, -eMLDA, or -hMLDA.

By default, the thermal wavelength is computed from the thermal wavelengths at  as
; alternatively,  can be used. 

To activate or deactivate the temperature dependence of the thermal wavelength, the
LambdaTemp switch can be specified as an option to MLDA:

Physics {
MLDA ( * eMLDA | hMLDA for one carrier

-LambdaTemp * switch off temperature dependency
)

}

λ

300 K
λ λ300 300 K Tn⁄= λ λ300=
Sentaurus™ Device User Guide 307
N-2017.09



14: Quantization Models 
Modified Local-Density Approximation
Table 45 lists the coefficients for this model. The default values of  were determined by
comparison with the Schrödinger equation solver at  and  for electrons and
holes, respectively. These parameters are accessible in the MLDA parameter set. 

To plot the electron and hole effective quantum corrections of the simple MLDA model (see
Eq. 234), the eMLDAQuantumPotential and hMLDAQuantumPotential keywords must be
present in the Plot section.

MLDA Application Notes

Note that:

■ For each carrier type, only one of the two MLDA options (either multivalley
(e|h)MultiValley(MLDA) or only (e|h)MLDA) can be used in the Physics section.

■ The multivalley MLDA model can be used to compute stress-related mobility change (see
Mobility Modeling on page 838) and, therefore, it is required to be switched on for these
mobility models. However, for some cases, other quantum models may be needed in the
carrier density computation. For such cases, the multivalley MLDA model can be activated
for all models except the density as follows:

(e|h)MultiValley(MLDA -Density)

Such activation (exclusion of the multivalley option from the density computation) is
global for the whole device even if it appears in one region of the device only.

■ Theoretically, the MLDA model should give zero carrier density at the
semiconductor–insulator interface. However, since the zero carrier density results in
various numeric problems, the actual values of carrier density at the interface calculated by
the program are very small but greater than zero. This is achieved by assuming a very thin
transition layer (one-hundredth of an ångström) between the insulator and the
semiconductor.

■ MLDA quantization is switched off at contacts and at a small distance to the contacts (to
avoid numeric and physical inconsistencies). By default, the distance to the contacts (where
the model is switched off) is 75 Å.

To change the distance, use MLDAMinDistanceToContact=<number> (in units of )
in the Math section.

Table 45 Default coefficients for MLDA model

Symbol Electrons Holes Unit

eLambda hLambda cm

λ300

23.5 Å 25.0 Å

λ300 23.5
8–×10 25

8–×10

μm
308 Sentaurus™ Device User Guide
N-2017.09



14: Quantization Models
Quantum-Well Quantization Model
Quantum-Well Quantization Model

The quantum-well quantization model is activated in the Physics section for semiconductor
regions using the eDensityCorrection and hDensityCorrection options of QWLocal:

Physics(Region = "well") {
QWLocal(

eDensityCorrection
hDensityCorrection

)
}

For additional options of QWLocal, see Localized Quantum-Well Model on page 978 and
Table 250 on page 1446.

The ‘quantum well’ is composed of all regions in which this model is active. Sentaurus Device
computes the local thickness  of the quantum well and, together with the local electric field

, computes the electron density as:

(240)

A similar expression is used for holes. In Eq. 240,  runs over all subbands of band . The
eigenenergy  is measured relative to the band edge  at the center of the well.

 and  are computed from the local field  and the local band edge , assuming
that the field in the well is constant and equal to , and that the barriers limiting the well are
symmetric and are given by the average barrier height of the entire quantum well.

During Newton iterations, large fields can occur, which can cause the QWLocal
implementation to take a lot of time and memory. With the MaxElectricField parameter of
QWLocal, you can set a cutoff value for the field. The default is . To ensure that the
cutoff does not affect the result, you can check that, for the converged solution, the electric field
in the well does not exceed the cutoff.

Contrary to the 1D Schrödinger solver (see 1D Schrödinger Parameters on page 287), which
can extract the number of ladders and its parameters automatically, an explicit ladder
specification (see Explicit Ladder Specification on page 288) is required in the parameter file.
The number of bands in the ladders must be the same over the entire quantum well and in the
regions adjacent to it. To specify the number of subbands to be computed for electrons, heavy
holes, and light holes, use the keywords NumberOfElectronSubbands,
NumberOfHeavyHoleSubbands, and NumberOfLightHoleSubbands, respectively.

t
F

n
kT

th2π
----------- dνmxy ν, F0

EF n, ẼC E– j ν, F t,( )–

kT
---------------------------------------------------
 
 
 

j


ν
=

j ν
Ej ν, F t,( ) ẼC

Ej ν, F t,( ) ẼC F EC

F

106 V/cm
Sentaurus™ Device User Guide 309
N-2017.09



14: Quantization Models 
LayerThickness Command
NOTE To use the quantum-well quantization model, you must use the
HeteroInterface or the Thermionic keyword. Furthermore, each
quantum-well region must be adjacent to at least one semiconductor
barrier region.

NOTE To use the quantum-well quantization model in the context of the
simulation of light-emitting diodes, see Localized Quantum-Well
Model on page 978 and Table 250 on page 1446.

LayerThickness Command

Sentaurus Device provides models (for example, mobility and MLDA) that account for
quantum-mechanical effects that occur in thin semiconducting films. These models use a
parameter LayerThickness, which is intrinsically one-dimensional: It is well defined only
in the case of an infinite sheet of fixed thickness. Sentaurus Device generalizes this parameter
to arbitrary structures in two and three dimensions using the concept of the radius of the largest
sphere which fits in a material and touches the surface point nearest a given point. Therefore,
a LayerThickness is defined as a scalar field throughout a structure.

Sentaurus Device has two ways of computing the LayerThickness:

■ LayerThickness command: LayerThickness(<geo_parameters>) 

■ ThinLayer subcommand: Mobility(ThinLayer(<geo/physical_parameters>)
(see Thin-Layer Mobility Model on page 356)

As a result, there are two scalar arrays: LayerThickness and LayerThicknessField.

By default, both the LayerThickness and LayerThicknessField arrays are valid only in
semiconductors. For LayerThicknessField only, the material group where the array is
valid can be selected by the AllowLayerThickness keyword in the global Math section.
Possible values are Semiconductor (default), Insulator, Metal, and Everywhere.

NOTE Use the LayerThickness command only in region- or material-
specific Physics sections. In particular, if you use the command in the
global Physics section, the layer will be composed of all regions of the
allowed material types. Using the LayerThickness command with
AllowLayerThickness=Everywhere will always result in an
infinite layer.
310 Sentaurus™ Device User Guide
N-2017.09



14: Quantization Models
LayerThickness Command
Combining LayerThickness Command and ThinLayer 
Subcommand

To activate the LayerThickness command, you must specify the LayerThickness
keyword with geometric parameters in the region, or material, or global Physics section. If
the mobility model contains the ThinLayer subcommand with geometric parameters, this
model uses the LayerThickness array; otherwise, the LayerThicknessField array will
be used. For all other ThinLayer-dependent models, an external LayerThickness
command must be set.

Example 1

Physics (Material= Silicon) {
# LayerThickness command: computation LayerThicknessField array
LayerThickness(<geo_params>)

# ThinLayer without <geo_params>: mobility uses LayerThicknessField array
Mobility(ThinLayer(<physical_params>))
MultiValley( ThinLayer ) # MultiValley uses LayerThicknessField array

}

Example 2

Physics (Material= Silicon) {
# LayerThickness command: computation LayerThicknessField array
LayerThickness(<geo_params>)

# ThinLayer with <geo-params>: mobility uses LayerThickness array
Mobility( ThinLayer(<geo_params> <physical_params>) )

MultiValley( ThinLayer ) # MultiValley uses LayerThicknessField array
}

Example 3

Physics (Material= Silicon) { # without external LayerThickness command
# mobility uses LayerThickness array
Mobility( ThinLayer(<geo_params> <physical_params>) )
MultiValley( ThinLayer ) # error: LayerThickness command must be set

}

Sentaurus™ Device User Guide 311
N-2017.09



14: Quantization Models 
LayerThickness Command
Geometric Parameters of LayerThickness Command

The LayerThickness command has the following optional parameters: Thickness,
ChordWeight, MinAngle, and MaxFitWeight.

NOTE The ThinLayer subcommand has the same <geo_params> as well as
the optional <physical_params> (see Using the Thin-Layer Mobility
Model on page 358).

The parameter Thickness explicitly specifies the thickness of a layer (in micrometers). If it
is not present, Sentaurus Device extracts the thickness automatically. For the extraction, it
assumes that all regions where ThinLayer is specified (regardless of carrier type) belong to
the thin layer.

NOTE The external boundary is not considered to be a boundary of the thin
layer. However, each interface between a region that specifies
ThinLayer and a region that does not is considered to be a boundary
of the thin layer, even if these two regions are both semiconductor
regions.

For example:

Physics(Region="A") { LayerThickness() }
Physics(Region="B") { LayerThickness(Thickness=0.005) }

activates the computation of the LayerThicknessField array in regions A and B. Its
thickness is extracted in region A and is assumed to be  in region B.

If the structure is a part of a larger symmetric structure and the full structure can be obtained
by mirroring the simulated structure at a symmetry plane, the option Mirror must be activated
in the global Math section.

Mirror is a vector that has the dimension of the device. Each component of the vector denotes
the mirroring property for the corresponding axis and can have one of the values:

■ None (no symmetry plane perpendicular to the axis).

■ Max (symmetry plane at the largest coordinate of the axis).

■ Min (symmetry plane at smallest coordinate).

■ Both (symmetry planes at largest and smallest coordinates). 

For example:

Math {
ThinLayer ( Mirror = (None Max Both) )

}

5 nm
312 Sentaurus™ Device User Guide
N-2017.09



14: Quantization Models
LayerThickness Command
means that there is a symmetry plane at the largest y-coordinate, as well as the smallest and
largest z-coordinates. The full structure is six times as big as the simulated one.

You can verify the proper thickness extraction using the plot variables LayerThickness and
LayerThicknessField. Note that the layer thickness is defined in such a way that it
becomes zero in concave corners of the layer. In addition, due to interpolation,
LayerThickness can deviate by approximately half of the local mesh spacing from the
thickness actually used for computation. For more information on thickness extraction and the
options to control it, see Thickness Extraction on page 313.

Thickness Extraction

The definition of the thickness of a layer in a general geometry is not self-evident. This section
describes how Sentaurus Device defines thickness.

To determine the thickness of a layer at a given point , Sentaurus Device first finds the closest
point  on the surface of the layer. Then, a sphere is constructed that touches the surface in

 and has its midpoint within the layer, on the line passing through  and .

Then, the diameter of this sphere is increased, until it touches the surface at a second point, ,
and the surface normal at this point encloses an angle with the vector pointing from  to 
of at least . By default, , so any second touch point  is accepted, and the
construction results in a sphere that is completely within the layer.

The thickness is a linear combination of the diameter of the final sphere, , and the distance
 between  and  (the chord length):

(241)

The parameter  can be set with the keyword ChordWeight, which is an option of
ThinLayer. The default value is zero.

The value of angle  can be changed with the keyword MinAngle, an option to ThinLayer.
MinAngle expects two values: The first value sets , and the second value sets an angle  that
must be larger than .

If the angle of the surface normal at  and the vector pointing from  to  is between 
and , the value of the diameter  is multiplied by a factor that is very large if the angle is close
to , and by a factor that approaches one when the angle approaches . The purpose of the
transition region between  and  is to smooth the transition between touch points that fulfill
the angle criterion and points that do not.

P
C1

C1 C1 P

C2

C1 P
β β 0= C2

d
c12 C1 C2

t αc12 1 α–( )d+=

α

β
β γ

β

C2 C1 P β
γ d

β γ
β γ
Sentaurus™ Device User Guide 313
N-2017.09



14: Quantization Models 
LayerThickness Command
The following example sets  to 0.5,  to , and  to :

LayerThickness(
MinAngle=(89,90)
ChordWeight=0.5

)

The default value for  is zero, which causes the extracted layer thickness to go to zero in
concave corners of the layer, even when the corners have a wide opening angle. This can be
unwanted, and choosing a larger value for  can resolve this issue. However, there can be
situations where a larger  can make the thickness extraction ambiguous, for example, when
the choice of  is not unique. 

Figure 18 Thickness extraction

To illustrate the thickness extraction, consider the example in Figure 18. The thick black line
is the boundary of the thin layer, and the red dot  indicates the position at which the thickness
is extracted. First, the closest boundary point  is found, which is to the left of . Then, with
the default , the largest circle touching at  is inscribed into the layer. This is the
smaller circle, with a second touch point . From this circle, the layer thickness is obtained
by a linear combination of the chord length (diagonal red line) and the diameter (horizontal red
line).

The angle between the normal vectors  and  is . Therefore, if the value of  is greater
than  but smaller than , the smaller circle is not considered. Instead, the larger circle
(with a second touch point ) determines the layer thickness; for this circle, the angle
between the normal vectors is .

There is another option to compute the layer thickness, which also is based on considered
spheres (or circles in Figure 18 for the 2D case), but with some of the following modifications.
The above algorithm for each point  (that is, for each mesh element center) constructs a
sphere that satisfies the described conditions. As a result, you have a set of spheres that cover
the region where the thickness should be computed. After that, for each mesh element (the
point ), you check whether this point is inside some subset of spheres, and you take the
maximum sphere diameter  from this subset as the thickness for the point . This way
might be useful for spherical, circular, or nonplanar boundaries.

α β 89° γ 90°

β

β
β

C1

C1

C2

P 90°
C2

'

P
C1 P

β 0= C1

C2

C1 C2 90° β
90° 180°

C2'
180°

P

P
dm P
314 Sentaurus™ Device User Guide
N-2017.09



14: Quantization Models
References
The user-defined keyword MaxFitWeight controls this option as follows:

(242)

where  is the thickness from Eq. 241, and  is defined by the keyword MaxFitWeight and
is equal to zero by default.

References

[1] M. J. van Dort, P. H. Woerlee, and A. J. Walker, “A Simple Model for Quantisation
Effects in Heavily-Doped Silicon MOSFETs at Inversion Conditions,” Solid-State
Electronics, vol. 37, no. 3, pp. 411–414, 1994.

[2] S. A. Hareland et al., “A Simple Model for Quantum Mechanical Effects in Hole
Inversion Layers in Silicon PMOS Devices,” IEEE Transactions on Electron Devices,
vol. 44, no. 7, pp. 1172–1173, 1997.

[3] M. G. Ancona and H. F. Tiersten, “Macroscopic physics of the silicon inversion layer,”
Physical Review B, vol. 35, no. 15, pp. 7959–7965, 1987.

[4] M. G. Ancona and G. J. Iafrate, “Quantum correction to the equation of state of an
electron gas in a semiconductor,” Physical Review B, vol. 39, no. 13, pp. 9536–9540,
1989.

[5] G. Paasch and H. Übensee, “A Modified Local Density Approximation: Electron
Density in Inversion Layers,” Physica Status Solidi (b), vol. 113, no. 1, pp. 165–178,
1982.

[6] G. Paasch and H. Übensee, “Carrier Density near the Semiconductor–Insulator
Interface: Local Density Approximation for Non-Isotropic Effective Mass,” Physica
Status Solidi (b), vol. 118, no. 1, pp. 255–266, 1983.

[7] O. Penzin, G. Paasch, L. Smith, and F.O. Heinz, “Extended Quantum Correction Model
Applied to Six-Band  Valence Bands Near Silicon/Oxide Interfaces,” IEEE
Transactions on Electron Devices, vol. 58, no. 6, pp. 1614–1619, 2011.

[8] G. Paasch, T. Fiedler, and I. Bartoš, “Subband Energies at Semiconductor
Heterojunctions: An Approximate Quantization Formula,” Physica Status Solidi (b),
vol. 134, no. 2, pp. 825–835, 1986.

[9] O. Penzin, G. Paasch, and L. Smith, “Nonparabolic Multivalley Quantum Correction
Model for InGaAs Double-Gate Structures,” IEEE Transactions on Electron Devices,
vol. 60, no. 7, pp. 2246–2250, 2013.

tm αmdm 1 αm–( )t+=

t αm

k p⋅
Sentaurus™ Device User Guide 315
N-2017.09



14: Quantization Models 
References
316 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 15 Mobility Models

This chapter presents information about the different mobility
models implemented in Sentaurus Device.

Sentaurus Device uses a modular approach for the description of the carrier mobilities. In the
simplest case, the mobility is a function of the lattice temperature. This so-called constant
mobility model described in Mobility due to Phonon Scattering on page 318 should only be
used for undoped materials. For doped materials, the carriers scatter with the impurities. This
leads to a degradation of the mobility. Doping-Dependent Mobility Degradation on page 318
introduces the models that describe this effect.

Models that describe the effects of carrier–carrier scattering are presented in Carrier–Carrier
Scattering on page 326. The Philips unified mobility model, described in Philips Unified
Mobility Model on page 328, is a well-calibrated model that accounts for both impurity and
carrier–carrier scattering.

Models that describe the mobility degradation at interfaces, for example, the silicon–oxide
interface in the channel region of a MOSFET, are introduced in Mobility Degradation at
Interfaces on page 332. These models account for the scattering with surface phonons and
surface roughness.

Finally, the models that describe mobility degradation in high electric fields are discussed in
High-Field Saturation on page 361. A flexible model for hydrodynamic simulations is
described in Energy-Dependent Mobility on page 772.

How Mobility Models Combine

The mobility models are selected in the Physics section as options to Mobility,
eMobility, or hMobility:

Physics{ Mobility( <arguments> ) ... }

Specifications with eMobility apply to electrons; specifications with hMobility apply to
holes; and specifications with Mobility apply to both carrier types.
Sentaurus™ Device User Guide 317
N-2017.09



15: Mobility Models 
Mobility due to Phonon Scattering
If more than one mobility model is activated for a carrier type, the different mobility
contributions ( ) for bulk, surface mobility, and thin layers are combined by
Matthiessen’s rule:

(243)

If the high-field saturation model is activated, the final mobility is computed in two steps. First,
the low field mobility  is determined according to Eq. 243. Second, the final mobility is
computed from a (model-dependent) formula as a function of a driving force :

(244)

Mobility due to Phonon Scattering

The constant mobility model [1] is active by default. It accounts only for phonon scattering and,
therefore, it is dependent only on the lattice temperature:

(245)

where  is the mobility due to bulk phonon scattering. The default values of  and the
exponent  are listed in Table 46. The constant mobility model parameters are accessible in
the ConstantMobility parameter set. 

In some special cases, it may be necessary to deactivate the default constant mobility. This can
be accomplished by specifying the -ConstantMobility option to Mobility:

Physics { Mobility ( -ConstantMobility ... ) ... }

Doping-Dependent Mobility Degradation

In doped semiconductors, scattering of the carriers by charged impurity ions leads to
degradation of the carrier mobility. Sentaurus Device supports several built-in models (see
Masetti Model on page 320, Arora Model on page 321, and University of Bologna Bulk
Mobility Model on page 322), one multistate configuration–dependent model (see The

Table 46 Constant mobility model: Default coefficients for silicon

Symbol Parameter name Electrons Holes Unit

mumax 1417 470.5

exponent 2.5 2.2 1

μ1 μ2 …, ,

1
μ
---

1
μ1
------

1
μ2
------ …+ +=

μlow

Fhfs

μ f μlow Fhfs,( )=

μconst μL
T

300K
------------- 
 

ζ–

=

μL μL

ζ

μL cm2 Vs⁄

ζ

318 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Doping-Dependent Mobility Degradation
pmi_msc_mobility Model on page 324), and two types of PMI for doping-dependent mobility
(see PMIs for Bulk Mobility on page 325).

The Philips unified mobility model is also available to account for doping-dependent
scattering. This model accounts for other effects as well (such as electron–hole scattering and
screening of impurities by carriers) (see Philips Unified Mobility Model on page 328).

For very-short channel devices, it has been found that an additional contribution to low-field
mobility is sometimes needed to match measured device characteristics. For this purpose, a
ballistic mobility model is provided (see Low-Field Ballistic Mobility Model on page 325) that
can be specified in addition to one of the doping-dependent mobility models described in this
section.

Using Doping-Dependent Mobility

Mobility degradation due to impurity scattering is activated by specifying the
DopingDependence option to Mobility. The different model choices are selected as options
to DopingDependence:

Physics {
Mobility(

DopingDependence (
[ Masetti | Arora | UniBo | PhuMob | PhuMob2 |
PMIModel(Name = "<msc-dependent-bulk-model>" ...) |
BalMob( [Lch=<float>] ) |
<doping-dependent-pmi-model>

]
)

)
}

If DopingDependence is specified without options, Sentaurus Device uses a material-
dependent default. For example, in silicon, the default is the Masetti model; for GaAs, the
default is the Arora model. The default model (Masetti or Arora) for each material can be
specified by using the parameter formula, which is accessible in the DopingDependence
parameter set in the parameter file:

DopingDependence: {
formula= 1 , 1 # [1]

}

If formula is set to 1, the Masetti model is the default. To use the Arora model as the
default, use formula=2.
Sentaurus™ Device User Guide 319
N-2017.09



15: Mobility Models 
Doping-Dependent Mobility Degradation
The UniBo option selects the University of Bologna bulk mobility model. The options PhuMob
and PhuMob2 select the Philips unified mobility model and an alternative version of this model,
respectively (see Philips Unified Mobility Model on page 328).

Using More Than One Doping-Dependent Mobility Model

In most cases, only one doping-dependent mobility model should be specified to avoid double-
counting mobility effects. However, Sentaurus Device allows more than one model to be used
in a simulation. It may be useful, for example, to include additional degradation components
that are created as PMI models into the bulk mobility calculation. When more than one model
is specified as an option to DopingDependence, they are combined using Matthiessen’s rule.
For example, the specification:

Physics { Mobility( DopingDependence( Masetti pmi_model1 pmi_model2) ...) ...}

calculates the total bulk mobility using:

(246)

Masetti Model

The default model used by Sentaurus Device to simulate doping-dependent mobility in silicon
was proposed by Masetti et al. [2]:

(247)

The reference mobilities , , and , the reference doping concentrations , ,
and , and the exponents  and  are accessible in the parameter set DopingDependence
in the parameter file. The corresponding values for silicon are given in Table 47. 

Table 47 Masetti model: Default coefficients

Symbol Parameter name Electrons Holes Unit

mumin1  52.2  44.9

mumin2  52.2  0

mu1  43.4  29.0

Pc 0

Cr

Cs

1
μb
------

1
μMasetti
-----------------

1
μpmi_model1
---------------------------

1
μpmi_model2
---------------------------+ +=

μdop μmin1

Pc

NA,0 ND,0+
----------------------------– 

 exp
μconst μmin2–

1 NA,0 ND,0+( ) Cr⁄( )α+
------------------------------------------------------------

μ1

1 Cs NA,0 ND,0+( )⁄( )β
+

------------------------------------------------------------–+=

μmin1 μmin2 μ1 Pc Cr

Cs α β

μmin1 cm2 Vs⁄

μmin2 cm2 Vs⁄

μ1 cm2 Vs⁄

Pc 9.23
16×10 cm

3–

Cr 9.68
16×10 2.23

17×10 cm
3–

Cs 3.43
20×10 6.10

20×10 cm
3–
320 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Doping-Dependent Mobility Degradation
The low-doping reference mobility  is determined by the constant mobility model (see
Mobility due to Phonon Scattering on page 318).

Arora Model

The Arora model [3] reads:

(248)

with:

, (249)

and:

, (250)

The parameters are accessible in the DopingDependence parameter set in the parameter file. 

alpha 0.680 0.719 1

beta 2.0 2.0 1

Table 48 Arora model: Default coefficients for silicon

Symbol Parameter name Electrons Holes Unit

Ar_mumin  88  54.3

Ar_alm –0.57  –0.57 1

Ar_mud 1252 407

Ar_ald –2.33 –2.23 1

Ar_N0

Ar_alN 2.4 2.4 1

Ar_a 0.88 0.88 1

Ar_ala –0.146 –0.146 1

Table 47 Masetti model: Default coefficients (Continued)

Symbol Parameter name Electrons Holes Unit

α

β

μconst

μdop μmin

μd

1 NA,0 ND,0+( ) N0⁄( )A∗
+

---------------------------------------------------------------+=

μmin Amin
T

300 K
-------------- 
 

αm

⋅= μd Ad
T

300 K
-------------- 
 

αd

⋅=

N0 AN
T

300 K
-------------- 
 

αN

⋅= A∗ Aa
T

300 K
-------------- 
 

αa

⋅=

Amin cm2 Vs⁄

αm

Ad cm2 Vs⁄

αd

AN 1.25
17×10 2.35

17×10 cm
3–

αN

Aa

αa
Sentaurus™ Device User Guide 321
N-2017.09



15: Mobility Models 
Doping-Dependent Mobility Degradation
University of Bologna Bulk Mobility Model

The University of Bologna bulk mobility model was developed for an extended temperature
range between  and . It should be used together with the University of Bologna
inversion layer mobility model (see University of Bologna Surface Mobility Model on
page 345). The model [4][5] is based on the Masetti approach with two major extensions. First,
attractive and repulsive scattering are separately accounted for, therefore, leading to a function
of both donor and acceptor concentrations. This automatically accounts for different mobility
values for majority and minority carriers, and ensures continuity at the junctions as long as the
impurity concentrations are continuous functions. Second, a suitable temperature dependence
for most model parameters is introduced to predict correctly the temperature dependence of
carrier mobility in a wider range of temperatures, with respect to other models. The
temperature dependence of lattice mobility is reworked, with respect to the default
temperature.

The model for lattice mobility is:

(251)

where  denotes the lattice mobility at room temperature, and  gives a correction to the
lattice mobility at higher temperatures. The maximum mobility  and the exponents  and

 are accessible in the UniBoDopingDependence parameter set in the parameter file.

The model for bulk mobility reads:

(252)

In turn, and are expressed as weighted averages of the corresponding limiting values for
pure acceptor-doping and pure donor-doping densities:

(253)

(254)

The reference mobilities , , , and , and the reference doping concentrations ,
, , and  are accessible in the UniBoDopingDependence parameter set in the

parameter file.

25°C 973°C

μL T( ) μmax
T

300 K
--------------- 
 

γ– c
T

300 K
--------------- 
 +

=

μmax c
μmax γ

c

μdop T( ) μ0 T( )
μL T( ) μ0 T( )–

1
ND,0

Cr1 T( )
----------------- 
 

α NA 0,
Cr2 T( )
----------------- 
 

β
+ +

-------------------------------------------------------------------
μ1 ND,0 NA,0 T, ,( )

1
ND,0

Cs1 T( )
-----------------

NA,0

Cs2 T( )
-----------------+ 

 
2–

+

-------------------------------------------------------------–+=

μ0 μ1

μ0 T( )
μ0dND,0 μ0aNA,0+

NA,0 ND,0+
----------------------------------------------=

μ1 T( )
μ1dND,0 μ1aNA,0+

NA,0 ND,0+
----------------------------------------------=

μ0d μ0a μ1d μ1a Cr1

Cr2 Cs1 Cs2
322 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Doping-Dependent Mobility Degradation
Table 49 lists the corresponding values of silicon for arsenic, phosphorus, and boron;
. 

The default parameters of Sentaurus Device for electrons are those for arsenic. The bulk
mobility model was calibrated with experiments [5] in the temperature range from  to

. It is suitable for isothermal simulations at large temperatures or nonisothermal
simulations.

Table 49  Parameters of University of Bologna bulk mobility model

Symbol Parameter name Electrons (As) Electrons (P) Holes (B) Unit

mumax 1441 1441 470.5

Exponent2 –0.11 –0.11 0 1

Exponent 2.45 2.45 2.16 1

mumin1

mumin1_exp 0.6 0.7 1.3 1

mumin2  

mumin2_exp 1.3 1.3 0.7 1

mu1

mu1_exp 0.5 0.7 2.0 1

mu2

mu2_exp 1.25 1.25 0.8 1

Cr

Cr_exp 3.65 3.65 2.2 1

Cr2

Cr2_exp 2.65 2.65 3.1 1

Cs

Cs_exp 0 0 6.2 1

Cs2

alpha 0.68 0.68 0.77 1

beta 0.72 0.72 0.719 1

Tn T 300 K⁄=

μmax cm2 Vs⁄

c

γ

μ0d 55.0Tn
γ0d–

62.2Tn
γ0d–

90.0Tn
γ0d–

cm2 Vs⁄

γ0d

μ0a 132.0Tn
γ0a–

132.0Tn
γ0a–

44.0Tn
γ0a–

cm2 Vs⁄

γ0a

μ1d 42.4Tn
γ1d–

48.6Tn
γ1d–

28.2Tn
γ1d–

cm2 Vs⁄

γ1d

μ1a 73.5Tn
γ1a–

73.5Tn
γ1a–

28.2Tn
γ1a–

cm2 Vs⁄

γ1a

Cr1 8.9 10
16× Tn

γr1 8.5 10
16× Tn

γr1 1.3 10
18× Tn

γr1 cm
3–

γr1

Cr2 1.22 10
17× Tn

γr2 1.22 10
17× Tn

γr2 2.45 10
17× Tn

γr2 cm
3–

γr2

Cs1 2.9 10
20

Tn
γs1× 4.0 10

20
Tn

γs1× 1.1 10
18

Tn
γs1× cm

3–

γs1

Cs2 7.0 10
20× 7.0 10

20× 6.1 10
20× cm

3–

α

β

300 K
700 K
Sentaurus™ Device User Guide 323
N-2017.09



15: Mobility Models 
Doping-Dependent Mobility Degradation
The pmi_msc_mobility Model

The mobility model pmi_msc_mobility depends on the lattice temperature and the
occupation probabilities of the states of a multistate configuration (MSC). The model averages
the mobilities of all MSC states according to:

(255)

where the sum is taken over all MSC states,  are the state mobilities, and  are the state
occupation probabilities. Each state mobility can be temperature dependent according to:

(256)

where:

■ The index  refers to the state.

■  and  are the reference and glass temperatures (terminology is borrowed from and
the model is used for phase transition dynamics).

■  and  are the (state-specific) mobilities for the corresponding temperatures.

The model is activated (here, for MSC "m0" and model string "e") by:

PMIModel ( Name="pmi_msc_mobility" MSConfig="m0" String="e" )

The given String is used to determine the names of parameters in the parameter file. 

Table 50 Global and model-string parameters of pmi_msc_mobility

Name Symbol Default Unit Range Description

plot – 0 – {0,1} Plot parameter to screen

Tref 300. K >=0. Reference temperature

Tg -1. K >=  or 
equal -1.

Glass temperature

mu_ref – 1. cm/Vs >0. Value at reference temperature

mu_g – 1. cm/Vs >0. Value at glass temperature

μ μi T( )si

i
=

μi si

μi

μi ref,       if T Tref<

1
Tg Tref–
-------------------- Tg T–( )μi ref, T Tref–( )μi g,+[ ]        if   Tref T Tg<≤

μi g,     if Tg T≤







=

i

Tref Tg

μi ref, μi g,

Tref

Tg Tref
324 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Doping-Dependent Mobility Degradation
The model uses a three-level hierarchy of sets of parameters to define the parameters for each
state, namely, the global, the model-string, and the state parameters. The global parameters of
the model are given in Table 50. They serve as defaults for the model-string parameters, which
are the global parameters with the prefix:

<model_string>_

where <model_string> is the String parameter given in the command file. The model-
string parameters, in turn, serve as defaults for the state parameters (see Table 51), which are
prefixed by:

<model_string>_<state_name>_

where <state_name> is the name of the MSC state.

PMIs for Bulk Mobility

The PMIs for bulk mobility are described in Doping-Dependent Mobility on page 1107 and
Multistate Configuration–Dependent Bulk Mobility on page 1113.

Low-Field Ballistic Mobility Model

The low-field ballistic mobility model [6] is given by the simple expression:

(257)

where both  and  are parameters. In most cases, you will specify a value for  (in nm)
that corresponds to the actual channel length for the device being simulated. The parameter 
can be adjusted to match measured device characteristics.

To use the low-field ballistic mobility model, specify BalMob as an argument to
DopingDependence, for example,

Physics {
Mobility (

DopingDependence ( PhuMob BalMob(Lch = 5.0) )

Table 51 State parameters of pmi_msc_mobility

Name Symbol Default Unit Range Description

mu_ref – >0. Value at reference temperature

mu_g – >0. Value at glass temperature

μi ref, cm
2
/Vs

μi g, cm
2
/Vs

μbal k Lch⋅=

k Lch Lch

k

Sentaurus™ Device User Guide 325
N-2017.09



15: Mobility Models 
Carrier–Carrier Scattering
)
}

In this case,  is combined with the mobility from PhuMob using Matthiessen’s rule. If Lch
is not specified, the default value of nm is used, which effectively disables the model.

The  parameter is accessible in the BalMob parameter set in the parameter file. 

Carrier–Carrier Scattering

Two models are supported for the description of carrier–carrier scattering. One model is based
on Choo [7] and Fletcher [8], and uses the Conwell–Weisskopf theory. As an alternative to the
Conwell–Weisskopf model, Sentaurus Device supports a model based on the Brooks–Herring
screening theory [9]. The carrier–carrier contribution to the overall mobility degradation is
captured in the mobility term . This is combined with the mobility contributions from other
degradation models ( ) according to Matthiessen’s rule:

(258)

Using Carrier–Carrier Scattering

The carrier–carrier scattering models are activated by specifying the
CarrierCarrierScattering option to Mobility. Either of the two different models are
selected by an additional flag:

Physics { Mobility (
CarrierCarrierScattering( [ ConwellWeisskopf | BrooksHerring ] )
...)...}

The Conwell–Weisskopf model is the default in Sentaurus Device for carrier–carrier scattering
and is activated when CarrierCarrierScattering is specified without an option.

Table 52 BalMob model: Default coefficients for silicon

Symbol Parameter name Electrons Holes Unit

k  20.0  20.0

μbal

107

k

k cm2 Vs nm⁄

μeh

μother

1
μ
---

1
μother
-------------

1
μeh
--------+=
326 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Carrier–Carrier Scattering
Conwell–Weisskopf Model

(259)

The parameters  and  are accessible in the parameter file. The default values appropriate
for silicon are given in Table 53 on page 327.

Brooks–Herring Model

(260)

where  and:

(261)

Table 54 lists the silicon default values for  and .

Physical Model Parameters

Parameters for the carrier–carrier scattering models are accessible in the parameter set
CarrierCarrierScattering.  

Table 53 Conwell–Weisskopf model: Default parameters

Symbol Parameter name Value Unit

D

F

Table 54 Brooks-Herring model: Default parameters

Symbol Parameter name Value Unit

c1

c2

μeh
D T 300 K⁄( )3 2⁄

np
--------------------------------------- 1 F

T
300 K
-------------- 
 

2

pn( ) 1 3⁄–
+ 

 ln

1–

=

D F

μeh

c1 T 300 K⁄( )3 2⁄

np
---------------------------------------

1
φ η0( )
--------------=

φ η0( ) 1 η0+( )ln η0 1 η0+( )⁄–=

η0 T( )
c2

NCF 1– 2⁄ n NC⁄( ) NVF 1 2⁄– p NV⁄( )+
-----------------------------------------------------------------------------------------

T
300 K
-------------- 
  2

=

c1 c2

D 1.04
21×10 cm

1–
V

1–
s

1–

F 7.452
13×10 cm

2–

c1 1.56
21×10 cm

1–
V

1–
s

1–

c2 7.63
19×10 cm

3–
Sentaurus™ Device User Guide 327
N-2017.09



15: Mobility Models 
Philips Unified Mobility Model
Philips Unified Mobility Model

The Philips unified mobility model, proposed by Klaassen [10], unifies the description of
majority and minority carrier bulk mobilities. In addition to describing the temperature
dependence of the mobility, the model takes into account electron–hole scattering, screening
of ionized impurities by charge carriers, and clustering of impurities.

The Philips unified mobility model is well calibrated. Though it was initially used primarily
for bipolar devices, it is widely used for MOS devices.

Using the Philips Model

There are different methods for activating the Philips unified mobility model.

As described in Using Doping-Dependent Mobility on page 319, you can activate the model
by specifying PhuMob as an option to DopingDependence. This method is required if you
want to combine PhuMob with an additional doping-dependent model (for example, a doping-
dependent PMI model to account for other degradation effects).

Alternatively, you can activate the Philips unified mobility model by specifying the PhuMob
option to Mobility directly:

Physics{ Mobility ( PhuMob ... ) ... }

Specifying PhuMob in this way causes Sentaurus Device to completely ignore any specification
made with DopingDependence, if present, to avoid accidental double-counting of mobility
effects.

The PhuMob model also can be activated with an additional option:

Physics{ Mobility ( PhuMob[(Arsenic | Phosphorus)] ...) ... }

The option Arsenic or Phosphorus specifies which parameters (see Table 56 on page 332)
are used. These parameters reflect the different electron mobility degradation that is observed
in the presence of these donor species.

NOTE The Philips unified mobility model describes mobility degradation due
to both impurity scattering and carrier–carrier scattering mechanisms.
Therefore, the keyword PhuMob must not be combined with the
keyword DopingDependence or CarrierCarrierScattering. If
a combination of these keywords is specified, Sentaurus Device uses
only the Philips unified mobility model.
328 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Philips Unified Mobility Model
Using an Alternative Philips Model

Sentaurus Device provides an extended PMI reimplementation of the Philips unified mobility
model (see Doping-Dependent Mobility on page 1107). To use it, specify PhuMob2 as the
option for DopingDependence:

Physics { Mobility (DopingDependence(PhuMob2)...)...}

The reimplementation uses the PhuMob2 parameter set. The parameter FACT_G has a default
value of 1. It modifies the function  shown in Eq. 274 by a factor 
(right-hand side in Eq. 274). Otherwise, the reimplementation fully agrees with the model
described below.

Philips Model Description

According to the Philips unified mobility model, there are two contributions to carrier
mobilities. The first, , represents phonon (lattice) scattering and the second, ,
accounts for all other bulk scattering mechanisms (due to free carriers, and ionized donors and
acceptors). These partial mobilities are combined to give the bulk mobility  for each carrier
according to Matthiessen’s rule:

(262)

In Eq. 262 and all of the following model equations, the index  takes the value ‘e’ for electrons
and ‘h’ for holes. The first contribution due to lattice scattering takes the form:

(263)

The second contribution has the form:

(264)

with:

(265)

(266)

G Pi( ) G Pi( ) FACT_G=

μi L, μi DAeh,

μi b,

1
μi b,
---------

1
μi L,
----------

1
μi DAeh,
------------------+=

i

μi L, μi max,
T

300 K
-------------- 
 

θi–

=

μi DAeh, μi N,

Ni sc,
Ni sc,eff,
------------------
 
 
  Ni ref,

Ni sc,
-------------
 
 
 

αi

μi c,
n p+

Ni sc,eff,
------------------
 
 
 

+=

μi N,
μi max,

2

μi max, μi min,–
-----------------------------------

T
300 K
-------------- 
 

3αi 1.5–

=

μi c,
μi max, μi min,

μi max, μi min,–
-----------------------------------

300K
T

------------- 
 

0.5

=

Sentaurus™ Device User Guide 329
N-2017.09



15: Mobility Models 
Philips Unified Mobility Model
for electrons:

   (267)

(268)

and for holes:

(269)

(270)

The effects of clustering of donors ( ) and acceptors ( ) at ultrahigh concentrations are
described by ‘clustering’ functions  and , which are defined as:

(271)

(272)

The analytic functions  and  in Eq. 268 and Eq. 270 describe minority impurity
and electron–hole scattering. They are given by:

(273)

and:

(274)

where  denotes a fit parameter for carrier  (which is related to the effective carrier mass)
and  denotes a fit parameter for the other carrier.

Ne,sc ND
*

NA
*

p+ +=

Ne,sc,eff ND
*

G Pe( )NA
*

fe
p

F Pe( )
--------------+ +=

Nh,sc NA
*

N+ D
*

n+=

Nh,sc,eff NA
*

G Ph( )ND
*

fh
n

F Ph( )
---------------+ +=

ND
* NA

*

ZD ZA

ND
*

ND,0ZD ND,0 1
ND,0

2

cDND,0
2 ND,ref

2+
---------------------------------------+= =

NA
*

NA,0ZA NA,0
1

NA,0
2

cANA,0
2 NA,ref

2+
---------------------------------------+= =

G Pi( ) F Pi( )

F Pi( )
0.7643Pi

0.6478
2.2999 6.5502 m∗i m∗j⁄( )+ +

Pi
0.6478

2.3670 0.8552 m∗i m∗j⁄( )–+
-----------------------------------------------------------------------------------------------------------=

G Pi( ) 1 ag bg Pi

m0
m∗i
---------

T
300 K
---------------

 
 
 αg

+

β– g

– cg Pi

m∗i
m0
--------

300K
T

-------------
 
 
 α'g

γ– g

+=

m∗i i
m∗j
330 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Philips Unified Mobility Model
Screening Parameter

The screening parameter  is given by a weighted harmonic mean of the Brooks–Herring
approach and Conwell–Weisskopf approach:

(275)

The evaluation of  depends on the value of the screening parameter . For values of
,  is used instead of , where  is the value at which 

reaches its minimum. 

Philips Model Parameters

Table 55 lists the built-in values for the parameters , , , , , , and  in Eq. 274.

Other parameters for the Philips unified mobility model are accessible in the parameter set
PhuMob.

Table 56 and Table 57 on page 332 list the silicon defaults for other parameters. Sentaurus
Device supports different parameters for electron mobility, which are optimized for situations
where the dominant donor species in the silicon is either arsenic or phosphorus. The arsenic
parameters are used by default. 

Table 55 Philips unified mobility model parameters

Symbol Value Unit

0.89233 1

0.41372 1

0.005978 1

0.28227 1

0.72169 1

0.19778 1

1.80618 1

Pi

Pi

fCW

3.97 10
13

cm
2–× Ni sc,

2 3⁄–
------------------------------------------------------- fBH

n p+( )
1.36 10

20
cm

3–×
----------------------------------------

m0

m*i
---------+

1–
T

300 K
-------------- 
 

2

=

G Pi( ) Pi

Pi Pi min,< G Pi min,( ) G Pi( ) Pi min, G Pi( )

ag bg cg αg α'g βg γg

ag

bg

cg

αg

α'g

βg

γg
Sentaurus™ Device User Guide 331
N-2017.09



15: Mobility Models 
Mobility Degradation at Interfaces
The original Philips unified mobility model uses four fit parameters: the weight factors 
and , and the ‘effective masses’  and . The optimal parameter set, determined by
accurate fitting to experimental data [10] is shown in Table 57. The Philips unified mobility
model can be slightly modified by setting parameters  and  as required for the
Lucent mobility model (see Lucent Model on page 368). 

Mobility Degradation at Interfaces

In the channel region of a MOSFET, the high transverse electric field forces carriers to interact
strongly with the semiconductor–insulator interface. Carriers are subjected to scattering by
acoustic surface phonons and surface roughness. The models in this section describe mobility
degradation caused by these effects.

Table 56 Philips unified mobility model: Electron and hole parameters (silicon)

 Symbol Parameter name Electrons 
(arsenic)

Electrons 
(phosphorus)

Holes (boron) Unit

mumax_* 1417 1414 470.5

mumin_* 52.2 68.5 44.9

theta_* 2.285 2.285 2.247 1

n_ref_*

alpha_* 0.68 0.711 0.719 1

Table 57 Philips unified mobility model: Other fitting parameters (silicon)

Symbol Parameter name Value Unit

me_over_m0  1 1

mh_over_m0  1.258 1

f_CW  2.459 1

f_BH  3.828 1

f_e  1.0 1

f_h  1.0 1

μmax cm2 Vs⁄

μmin cm2 Vs⁄

θ

N{e,h},ref 9.68
16×10 9.2

16×10 2.23
17×10 cm

3–

α

fCW

fBH m*e m*h

fe 0= fh 0=

m∗e m0⁄

m∗h m0⁄

fCW

fBH

fe

fh
332 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Mobility Degradation at Interfaces
Using Mobility Degradation at Interfaces

To activate mobility degradation at interfaces, select a method to compute the transverse field
 (see Computing Transverse Field on page 354).

To select the calculation of field perpendicular to the semiconductor–insulator interface,
specify the Enormal option to Mobility:

Physics { Mobility ( Enormal ...) ...}

Alternatively, to select calculation of  perpendicular to current flow, specify:

Physics { Mobility ( ToCurrentEnormal ...) ...}

To select a mobility degradation model, specify an option to Enormal or
ToCurrentEnormal. Valid options are Lombardi, IALMob, UniBo, or a PMI model
provided by users. In addition, one or more mobility degradation components can be specified.
These include NegInterfaceCharge, PosInterfaceCharge, Coulomb2D, RCS, and RPS.
For example:

Physics { Mobility ( Enormal(UniBo) ...) ...}

selects the University of Bologna model (see University of Bologna Surface Mobility Model
on page 345). The default model is Lombardi (see Enhanced Lombardi Model on page 334).

NOTE The mobility degradation models discussed in this section are very
sensitive to mesh spacing. It is recommended that the vertical mesh
spacing be reduced to  in the silicon at the oxide interface
underneath the gate. For the extensions of the Lombardi model (see
Eq. 280, p. 334), even smaller spacing of  is appropriate. This
fine spacing is only required in the two uppermost rows of mesh and can
be increased progressively moving away from the interface.

Sentaurus Device allows more than one interface degradation mobility model to be used in a
simulation. For example, it may be useful to include additional degradation components that
are created as PMI models into the Enormal mobility calculation. When more than one model
is specified as an option to Enormal, they are combined using Matthiessen’s rule. For example,
the specification:

Physics { Mobility ( Enormal( Lombardi pmi_model1 pmi_model2) ...) ...}

calculates the total Enormal mobility using:

(276)

F⊥

F⊥

0.1nm

0.05 nm

1
μEnormal
-------------------

1
μLombardi
----------------------

1
μpmi_model1
---------------------------

1
μpmi_model2
---------------------------+ +=
Sentaurus™ Device User Guide 333
N-2017.09



15: Mobility Models 
Mobility Degradation at Interfaces
Enhanced Lombardi Model

The surface contribution due to acoustic phonon scattering has the form:

(277)

and the contribution attributed to surface roughness scattering is given by:

(278)

These surface contributions to the mobility (  and ) are then combined with the bulk
mobility  according to Matthiessen’s rule (see Mobility due to Phonon Scattering on
page 318 and Doping-Dependent Mobility Degradation on page 318):

(279)

The reference field  ensures a unitless numerator in Eq. 278.  is the
transverse electric field normal to the semiconductor–insulator interface, see Computing
Transverse Field on page 354.  (where  is the distance from the interface
and  a fit parameter) is a damping that switches off the inversion layer terms far away from
the interface. All other parameters are accessible in the parameter file.

In the Lombardi model [1], the exponent  in Eq. 278 is equal to 2. According to another
study [11], an improved fit to measured data is achieved if  is given by:

(280)

where  and  denote the electron and hole concentrations, respectively. For electron mobility,
 and ; for hole mobility,  and .

The reference doping concentration  cancels the unit of the term raised to the
power  in the denominator of Eq. 280. The Lombardi model parameters are accessible in the
parameter set EnormalDependence.

The respective default parameters that are appropriate for silicon are given in Table 58 on
page 335. The parameters , , , and  were fitted at SGS Thomson and are not contained
in the literature [1]. 

μac
B

F⊥
------

C NA,0 ND,0 N2+ +( ) N0⁄( )λ

F⊥
1 3⁄

T 300 K⁄( )k
---------------------------------------------------------------------+=

μsr

F⊥ Fref⁄( )A∗

δ
------------------------------

F⊥
3

η
------+

 
 
 

1–

=

μac μsr

μb

1
μ
---

1
μb
------

D
μac
-------

D
μsr
-------+ +=

Fref 1 V cm⁄= F⊥

D x lcrit⁄–( )exp= x
lcrit

A*

A*

A∗ A
α⊥ n, n α⊥ p, p+( )Nref

ν

NA,0 ND,0 N1+ +( )ν---------------------------------------------------+=

n p
α⊥ n, α⊥= α⊥ p, α⊥aother= α⊥ n, α⊥aother= α⊥ p, α⊥=

Nref 1 cm 3–=
ν

B C N0 λ
334 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Mobility Degradation at Interfaces
The modifications of the Lombardi model suggested in [11] can be activated by setting  to
a nonzero value. 

Table 59 lists a consistent set of parameters for the modified model. 

Table 58 Lombardi model: Default coefficients for silicon

Symbol Parameter name Electrons  Holes Unit

B cm/s

C

N0  1  1

N2  1  1

lambda 0.1250  0.0317 1

k 1 1 1

delta

A 2 2 1

alpha 0 0

N1 1 1

nu 1 1 1

eta

aother 0 0 1

l_crit cm

a_ac 1.0 1.0 1

a_sr 1.0 1.0 1

Table 59 Lombardi model: Lucent coefficients for silicon

Symbol Parameter name Electrons  Holes Unit

B cm/s

C

N0  1  1

N2  1  1

lambda 0.0233  0.0119 1

k 1.7 0.9 1

B 4.75
7×10 9.925

6×10

C 5.80
2×10 2.947

3×10 cm5 3/ V 2 3/– s 1–

N0 cm
3–

N2 cm
3–

λ

k

δ 5.82
14×10 2.0546

14×10 cm2 Vs⁄

A

α⊥ cm
3

N1 cm
3–

ν

η 5.82
30×10 2.0546

30×10 V2cm 1– s 1–

aother

lcrit 1
6–×10 1

6–×10

aac

asr

α⊥

B 3.61
7×10 1.51

7×10

C 1.70
4×10 4.18

3×10 cm5 3/ V 2 3/– s 1–

N0 cm
3–

N2 cm
3–

λ

k

Sentaurus™ Device User Guide 335
N-2017.09



15: Mobility Models 
Mobility Degradation at Interfaces
Stress Factors for Mobility Components

If isotropic stress-dependent mobility enhancement factors are applied to mobility components
(see Factor Models Applied to Mobility Components on page 876), the Lombardi mobility
components become:

(281)

where  and  are stress scaling parameters that can be specified in the
EnormalDependence parameter set, and  is an isotropic enhancement factor calculated
from a stress-dependent Factor model (see Isotropic Factor Models on page 870).

Named Parameter Sets for Lombardi Model

The EnormalDependence parameter set can be named. For example, in the parameter file,
you can write:

EnormalDependence "myset" { ... }

to declare a parameter set with the name myset. To use a named parameter set, specify its name
with ParameterSetName as an option to Lombardi in the command file, for example:

Mobility (
Enormal( Lombardi( ParameterSetName = "myset" ...) ...)

)

delta

A 2.58 2.18 1

alpha

N1 1 1

nu 0.0767 0.123 1

eta

aother 1 1 1

l_crit 1 1 cm

a_ac 1.0 1.0 1

a_sr 1.0 1.0 1

Table 59 Lombardi model: Lucent coefficients for silicon (Continued)

Symbol Parameter name Electrons  Holes Unit

δ 3.58
18×10 4.10

15×10 cm2 Vs⁄

A

α⊥ 6.85
21–×10 7.82

21–×10 cm
3

N1 cm
3–

ν

η 1
50×10 1

50×10 V2cm 1– s 1–

aother

lcrit

aac

asr

μ'ac γacμac     ,    γac 1 aac+ γ 1–( )= =

μ'sr γsrμsr     ,    γsr 1 asr+ γ 1–( )= =

aac asr

γ

336 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Mobility Degradation at Interfaces
By default, the unnamed parameter set is used.

Auto-Orientation for Lombardi Model

The Lombardi model supports the auto-orientation framework (see Auto-Orientation
Framework on page 37) that switches between different-named parameter sets based on the
orientation of the nearest interface. This can be activated by specifying the Lombardi
command file parameter AutoOrientation:

Mobility (
Enormal( Lombardi( AutoOrientation ...) ...)

)

Inversion and Accumulation Layer Mobility Model

The inversion and accumulation layer mobility model (IALMob) is based on the unified portion
of the model described in [12]. This model includes doping and transverse-field dependencies
and is similar to the Lucent (Darwish) model [11] but it contains additional terms that account
for ‘two-dimensional’ Coulomb impurity scattering. The implementation of the IALMob model
is based on modified versions of the Philips Unified Mobility Model on page 328 and the
Enhanced Lombardi Model on page 334, but it is completely self-contained and all parameters
associated with this model are specified independently of those models. A complete
description is given here.

The expressions that follow apply to both electron mobility and hole mobility when the
following substitutions are made:

(282)

The model has contributions from Coulomb impurity scattering, phonon scattering, and surface
roughness scattering:

(283)

where  (  is the distance from the interface).

Coulomb Scattering

The Coulomb impurity scattering term has ‘2D’ and ‘3D’ contributions. The 2D contribution
is primarily due to effects occurring near the interface and the 3D contribution is primarily due

Electron Mobility: c n cother p  ,= N
inv

, NA,0 Nacc, ND,0 P, Pe m
*

me
*

mother
*

mh
*

=,=,= = = =

Hole Mobility: c p cother n  ,= N
inv

, ND,0 Nacc, NA,0 P, Ph m
*

mh
*

mother
*

me
*

=,=,= = = =

1
μ
---

1
μC
------

1
μph
--------

D
μsr
-------+ +=

D x lcrit⁄–( )exp= x
Sentaurus™ Device User Guide 337
N-2017.09



15: Mobility Models 
Mobility Degradation at Interfaces
to effects occurring in the bulk. These contributions are combined using a field-dependent
function  and a distance factor :

(284)

where:

(285)

and . In Eq. 285,  is the local layer thickness (see Thickness Extraction
on page 313), which is calculated automatically when using the ThinLayer mobility model
(see Thin-Layer Mobility Model on page 356) or if the LayerThickness command in the
Physics section is used to request a layer thickness calculation.

The 2D Coulomb scattering has both inversion and accumulation layer contributions, and also
includes a dependency on the local layer thickness:

(286)

where:

(287)

(288)

The 3D Coulomb scattering part of Eq. 284 is taken from the Philips unified mobility model
(PhuMob) and is given by:

(289)

where:

(290)

f F⊥ t T, ,( ) DC

μC μC,3D 1 DC–( ) D+
C

f F⊥ t T, ,( )μC,3D 1 f F⊥ t T, ,( )–( )μC,2D+[ ]=

f F⊥ t T, ,( ) 1

1
SF⊥

2 3⁄

T
---------------

St

t t0+( )2
T

----------------------- p–+
 
 
 

exp+

------------------------------------------------------------------------------=

DC x lcrit,C⁄–( )exp= t

1
μC,2D
------------- erf

t t1+

tCoulomb
------------------- 
  1

μC,2D,inv
--------------------

1
μC,2D,acc
---------------------+ 

 =

μC,2D,inv

D1,inv T 300K⁄( )
α1,inv c 10

18
 cm

3–⁄( )
ν0,inv

Ninv 10
18

 cm
3–⁄( )

ν1,inv
-------------------------------------------------------------------------------------------------
 
 
 
  2

D2,inv T 300K⁄( )
α2,inv

Ninv 10
18

 cm
3–⁄( )

ν2,inv
-----------------------------------------------------
 
 
 
  2

+

1 2⁄

=

μC,2D,acc

D1,acc T 300K⁄( )
α1,acc c 10

18
 cm

3–⁄( )
ν0,acc

Nacc 10
18

 cm
3–⁄( )

ν1,acc
-------------------------------------------------------------------------------------------------
 
 
 
  2

D2,acc T 300K⁄( )
α2,acc

Nacc 10
18

 cm
3–⁄( )

ν2,acc
------------------------------------------------------
 
 
 
  2

+

1 2⁄

G P( )=

μC,3D μN

Nsc

Nsc,eff
-------------- 
  Nref

Nsc
--------- 
 

α
μc

c cother+

Nsc,eff
--------------------- 
 +=

μN

μmax
2

μmax μmin–
----------------------------

T
300K
------------- 
  3α 1.5–

=

338 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Mobility Degradation at Interfaces
(291)

(292)

(293)

In the previous expressions, quantities marked with an asterisk (*) indicate that the clustering
formulas from the Philips unified mobility model are invoked:

(294)

(295)

As an option, the clustering formulas can be used for all occurrences of  and  in the
model by specifying the IALMob command file parameter ClusteringEverywhere.

The functions  and  describe electron–hole and minority impurity scattering,
respectively, and  is a screening parameter:

(296)

(297)

(298)

By default, the full PhuMob model described by the previous expressions is used
(FullPhuMob). However, the ‘other’ carrier in these expressions can be ignored ( )
by specifying -FullPhuMob in the command file. This specification also ignores the standard
PhuMob modification of the  function, which invokes  for , where

 is the value where  reaches its minimum.

μc

μmaxμmin

μmax μmin–
----------------------------

300K
T

------------- 
  1 2⁄

=

Nsc ND
*

NA
*

cother+ +=

Nsc,eff Nacc
*

G P( )Ninv
* cother

F P( )
------------+ +=

ND
*

ND,0 1
ND,0

2

cDND,0
2 ND,ref

2+
---------------------------------------+=

NA
*

NA,0
1

NA,0
2

cANA,0
2 NA,ref

2+
---------------------------------------+=

NA ND

F P( ) G P( )
P

F P( )
0.7643P

0.6478
2.2999 6.5502 m∗ m∗other⁄( )+ +

P
0.6478

2.3670 0.8552 m∗ m∗other⁄( )–+
------------------------------------------------------------------------------------------------------------------=

G P( ) 1
0.89233

0.41372 P
m0

m
*

------
T

300K
-------------

 
 
  0.28227

+
0.19778

---------------------------------------------------------------------------------------------–
0.005978

P
m

*

m0
------

300K
T

-------------
 
 
 

0.72169 1.80618
-------------------------------------------------------------------+=

P
2.459

3.97 10
13

 cm
2–
Nsc

-2/3×
------------------------------------------------------

3.828 c cother+( ) m0 m
*⁄( )

1.36 10
20

 cm
3–×

---------------------------------------------------------------+

1–
T

300K
------------- 
  2

=

cother 0=

G P( ) G G Pmin( )= P Pmin<
Pmin G P( )
Sentaurus™ Device User Guide 339
N-2017.09



15: Mobility Models 
Mobility Degradation at Interfaces
Phonon Scattering

The phonon-scattering portion of Eq. 283 also has 2D and 3D parts. The way in which these
parts are combined depends on the value of the IALMob command file parameter
PhononCombination:

(299)

where:

(300)

(301)

Surface Roughness Scattering

Surface roughness scattering is given by:

(302)

where:

(303)

μph

min
μph,2D

D
--------------- μph,3D,

 
 
 

, PhononCombination=0  

D
μph,2D
---------------

1
μph,3D
---------------+

1–
, PhononCombination=1 (default)

D
μph,2D
---------------

f F⊥ t T, ,( )
μph,3D

------------------------+
1–

, PhononCombination=2  












=

μph,2D
B

F⊥
------

C αph,2D,A NA,0 N2 2⁄+( ) 1 cm
3–⁄( )

λph,2D,A
αph,2D,D ND,0 N2 2⁄+( ) 1 cm

3–⁄( )
λph,2D,D

+ 
 

λ

F⊥
1 3⁄

T 300 K⁄( )k
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+=

μph,3D μmax
T

300 K
-------------- 
 

θ–

=

μsr

αsr,A NA,0 N2 2⁄+( ) 1 cm
3–⁄( )

λsr,A
αsr,D ND,0 N2 2⁄+( ) 1 cm

3–⁄( )
λsr,D

+ 
 

λsr

F⊥ 1 V/cm⁄( )A∗

δ
---------------------------------------

F⊥
3

η
------+

 
 
 

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

A∗ A
α⊥ n p+( )

NA,0 ND,0 N1+ +( ) 1 cm
3–⁄( )

ν---------------------------------------------------------------------------+=
340 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Mobility Degradation at Interfaces
Parameters

Parameters associated with the model are accessible in the IALMob parameter set. Their values
for silicon are shown in Table 60 and Table 61. 

Table 60 IALMob parameters (part 1): Default coefficients for silicon

Symbol Parameter name Value Unit

– EnormMinimum 0.0 V/cm

nref_D

nref_A

cref_D 0.21 1

cref_A 0.5 1

me_over_m0 1.0 1

mh_over_m0 1.258 1

Table 61 IALMob parameters (part 2): Default coefficients for silicon

Symbol Parameter name Electron value  Hole value Unit

mumax

mumin

theta 2.285 2.247 1 

n_ref

alpha 0.68 0.719 1

S 0.3042 0.3042

S_t 0.0 0.0

t0 0.0005 0.0005

p 4.0 4.0 1

l_crit_c cm

B

C

lambda 0.057  0.057 1

k 1.0 1.0 1

alpha_ph2d_A 1.0 1.0 1

ND,ref 4 10
20× cm

3–

NA,ref 7.2 10
20× cm

3–

cD

cA

me
*

m0⁄

mh
*

m0⁄

μmax 1417.0 470.5 cm2 Vs( )⁄

μmin 52.2 44.9 cm2 Vs( )⁄

θ

Nref 9.68 10
16× 2.23 10

17× cm 3–

α

S K cm/V( )2 3⁄

St K μm( )2

t0 μm

p

lcrit,C 10
3

10
3

B 9.0 10
5× 9.0 10

5× cm s⁄

C 4400.0 4400.0 cm5 3/ /V2 3/ /s

λ

k

αph,2D,A
Sentaurus™ Device User Guide 341
N-2017.09



15: Mobility Models 
Mobility Degradation at Interfaces
alpha_ph2d_D 1.0 1.0 1

lambda_ph2d_A 1.0 1.0 1

lambda_ph2d_D 1.0 1.0 1

delta

lambda_sr 0.057  0.057 1

A 2.0 2.0 1

alpha_sr 0.0 0.0

nu 0.0 0.0 1

eta

N1 1.0 1.0

N2 1.0 1.0

alpha_sr_A 1.0 1.0 1

alpha_sr_D 1.0 1.0 1

lambda_sr_A 1.0 1.0 1

lambda_sr_D 1.0 1.0 1

l_crit cm

D1_inv 135.0 135.0

D2_inv 40.0 40.0

nu0_inv 1.5 1.5 1

nu1_inv 2.0 2.0 1

nu2_inv 0.5 0.5 1

alpha1_inv 0.0 0.0 1

alpha2_inv 0.0 0.0 1

D1_acc 135.0 135.0

D2_acc 40.0 40.0

nu0_acc 1.5 1.5 1

nu1_acc 2.0 2.0 1

Table 61 IALMob parameters (part 2): Default coefficients for silicon (Continued)

Symbol Parameter name Electron value  Hole value Unit

αph,2D,D

λph,2D,A

λph,2D,D

δ 3.97 10
13× 3.97 10

13× cm2 Vs( )⁄

λsr

A

α⊥ cm
3

ν

η 1.0 10
50× 1.0 10

50× V2/cm/s

N1 cm 3–

N2 cm 3–

αsr,A

αsr,D

λsr,A

λsr,D

lcrit 10
3

10
3

D1,inv cm2 Vs( )⁄

D2,inv cm2 Vs( )⁄

ν0,inv

ν1,inv

ν2,inv

α1,inv

α2,inv

D1,acc cm2 Vs( )⁄

D2,acc cm2 Vs( )⁄

ν0,acc

ν1,acc
342 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Mobility Degradation at Interfaces
Stress Factors for Mobility Components

If isotropic stress-dependent mobility enhancement factors are applied to mobility components
(see Factor Models Applied to Mobility Components on page 876), the IALMob mobility
components become:

(304)

where , , , , and  are stress scaling parameters that can be specified in
the IALMob parameter set, and  is an isotropic enhancement factor calculated from a stress-
dependent Factor model (see Isotropic Factor Models on page 870).

Using Inversion and Accumulation Layer Mobility Model

The inversion and accumulation layer mobility model is selected by specifying the IALMob
keyword as an argument to Enormal in the command file. No mobility DopingDependence
should be specified, as this is already included in the model. It is also not necessary to specify
-ConstantMobility, as this will be invoked automatically with IALMob.

nu2_acc 0.5 0.5 1

alpha1_acc 0.0 0.0 1

alpha2_acc 0.0 0.0 1

tcoulomb 0.0 0.0

t1 0.0003 0.0003

a_ph2d 1.0 1.0 1

a_ph3d 1.0 1.0 1

a_c2d 1.0 1.0 1

a_c3d 1.0 1.0 1

a_sr 1.0 1.0 1

Table 61 IALMob parameters (part 2): Default coefficients for silicon (Continued)

Symbol Parameter name Electron value  Hole value Unit

ν2,acc

α1,acc

α2,acc

tCoulomb μm

t1 μm

aph,2D

aph,3D

aC,2D

aC,3D

asr

μph,2D
′ = γph,2Dμph,2D , γph,2D = 1 aph,2D γ 1–( )+

μph,3D
′ = γph,3Dμph,3D , γph,3D = 1 aph,3D γ 1–( )+

μC,2D
′ = γC,2DμC,2D , γC,2D = 1 aC,2D γ 1–( )+

μC,3D
′ = γC,3DμC,3D , γC,3D = 1 aC,3D γ 1–( )+

μsr
′ = γsrμsr , γsr = 1 asr γ 1–( )+

aph,2D aph,3D aC,2D aC,3D asr

γ

Sentaurus™ Device User Guide 343
N-2017.09



15: Mobility Models 
Mobility Degradation at Interfaces
For small values of , the acoustic phonon and surface roughness components of IALMob
make an insignificant contribution to the total mobility. If required, the parameter
EnormMinimum can be specified (in the parameter file) to suppress the calculation of acoustic
phonon scattering and surface roughness for .

The complete model described in [12] is obtained by combining IALMob with the Hänsch
model [13] for high-field saturation (see Extended Canali Model on page 363), for example:

Physics {
Mobility (

Enormal(IALMob)
HighFieldSaturation

)
}

To select the Hänsch model, specify the parameter  in the HighFieldDependence
section. In addition, the  exponent in the Hänsch model is equal to 2, which can be specified
by setting  and :

HighFieldDependence {
alpha   = 1.0, 1.0 # [1]
beta0   = 2.0, 2.0 # [1]
betaexp = 0.0, 0.0

}

Named Parameter Sets for IALMob

The IALMob parameter set can be named. For example, in the parameter file, you can write:

IALMob "myset" { ... }

to declare a parameter set with the name myset. To use a named parameter set, specify its name
with ParameterSetName as an option to IALMob in the command file, for example:

Mobility (
Enormal( IALMob( ParameterSetName = "myset" ...) ...)

)

By default, the unnamed parameter set is used.

F⊥

F⊥ EnormMinimum<

α 1=
β

β0 2= βexp 0=
344 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Mobility Degradation at Interfaces
Auto-Orientation for IALMob

The IALMob model supports the auto-orientation framework (see Auto-Orientation
Framework on page 37) that switches between different named parameter sets based on the
orientation of the nearest interface. This can be activated by specifying the IALMob command
file parameter AutoOrientation:

Mobility (
Enormal( IALMob( AutoOrientation ...) ...)

)

University of Bologna Surface Mobility Model

The University of Bologna surface mobility model was developed for an extended temperature
range between  and . It should be used together with the University of Bologna
bulk mobility model (see University of Bologna Bulk Mobility Model on page 322). The
inversion layer mobility in MOSFETs is degraded by Coulomb scattering at low normal fields
and by surface phonons and surface roughness scattering at large normal fields.

In the University of Bologna model [4], all these effects are combined by using Matthiessen’s
rule:

(305)

where  is the contribution of Coulomb scattering, and ,  are those of
surface phonons and surface roughness scattering, respectively.  (where 
is the distance from the interface and  a fit parameter) is a damping that switches off the
inversion layer terms far away from the interface.

The term  is associated with substrate impurity and carrier concentration. It is decomposed
in an unscreened part (due to the impurities) and a screened part (due to local excess carrier
concentration):

(306)

where  is given by the bulk mobility model, and  is a fit parameter. The screening function
is given by:

(307)

where  is the minority carrier concentration.

25°C 648°C

1
μ
---

1
μbsc
---------

D
μac
-------

D
μsr
-------+ +=

1 μbsc⁄ 1 μac⁄ 1 μsr⁄
D x lcrit⁄–( )exp= x

lcrit

μbsc

μbsc
1– μb

1–
D 1 fsc

τ
+( )

1– τ⁄
1 D–( )+[ ]=

μb τ

fsc

N1

NA,0 ND,0+
---------------------------- 
 

η Nmin

NA,0 ND,0+
----------------------------=

Nmin
Sentaurus™ Device User Guide 345
N-2017.09



15: Mobility Models 
Mobility Degradation at Interfaces
If surface mobility is plotted against the effective normal field, mobility data converges toward
a universal curve. Deviations from this curve appear at the onset of weak inversion, and the
threshold field changes with the impurity concentration at the semiconductor surface [14]. The
term  models these deviations, in that, it is the roll-off in the effective mobility
characteristics. As the effective field increases, the mobilities become independent of the
channel doping and approach the universal curve.

The main scattering mechanisms are, in this case, surface phonons and surface roughness
scattering, which are expressed by:

(308)

(309)

 is the electric field normal to semiconductor–insulator interface, see Computing Transverse
Field on page 354.

The parameters for the model are accessible in the parameter set
UniBoEnormalDependence. Table 62 lists the silicon default parameters. The reported
parameters are detailed in the literature [15]. The model was calibrated with experiments
[14][15] in the temperature range from  to . 

Table 62 Parameters of University of Bologna surface mobility model (Tn = T/300 K)

Symbol Parameter name  Electrons  Holes Unit

N1

N2

N3

N4

B   

B_exp 0 1.4 1

C

C_exp 2.1 1.3 1

tau 1 3 1

eta 0.3 0.5 1

ac_exp 0.026 –0.02 1

μbsc

μac C T( )
NA,0 ND,0+

N2
---------------------------- 
 

a 1

F⊥
δ---------=

μsr B T( )
NA,0 ND,0 N3+ +

N4
----------------------------------------- 
 

b 1

F⊥
λ---------=

F⊥

300 K 700 K

N1 2.34 10
16× 2.02 10

16× cm
3–

N2 4.0 10
15× 7.8 10

15× cm
3–

N3 1.0 10
17× 2.0 10

15× cm
3–

N4 2.4 10
18× 6.6 10

17× cm
3–

B 5.8 10
18× Tn

γB 7.82 10
15× Tn

γB cm2 Vs⁄

γB

C 1.86
4×10 Tn

γC– 5.726
3×10 Tn

γC– cm2 Vs⁄

γC

τ

η

a

346 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Mobility Degradation at Interfaces
Mobility Degradation Components due to Coulomb 
Scattering

Three mobility degradation components due to Coulomb scattering are available in Sentaurus
Device that can be combined with other interface mobility degradation models:

■ NegInterfaceCharge: Accounts for mobility degradation due to a negative interface
charge (from charged traps and fixed charge).

■ PosInterfaceCharge: Accounts for mobility degradation due to a positive interface
charge (from charged traps and fixed charge).

■ Coulomb2D: Accounts for mobility degradation due to ionized impurities near the
interface.

These degradation components can be specified separately or in combination with each other.
If specified, they will be combined using Matthiessen’s rule:

(310)

where:

■  represents the other DopingDependence and Enormal models specified for the
simulation.

■  represents the NegInterfaceCharge mobility degradation component.

■  represents the PosInterfaceCharge mobility degradation component.

■  represents the Coulomb2D mobility degradation component.

sr_exp 0.11 0.08 1

l_crit cm

delta 0.29 0.3 1

lambda 2.64 2.24 1

Table 62 Parameters of University of Bologna surface mobility model (Tn = T/300 K)
 (Continued)

Symbol Parameter name  Electrons  Holes Unit

b

lcrit 1
6–×10 1

6–×10

δ

λ

1
μ
---

1
μother
-------------

1
μnic
---------

1
μpic
---------

1
μC2D
------------+ + +=

μother

μnic

μpic

μC2D
Sentaurus™ Device User Guide 347
N-2017.09



15: Mobility Models 
Mobility Degradation at Interfaces
The general form of the mobility degradation components due to Coulomb scattering is given
by:

(311)

where:

■

■

■

■

and:

(312)

(313)

In Eq. 313,  is the distance from the interface.

Parameters associated with the components are accessible in the parameter sets
NegInterfaceChargeMobility, PosInterfaceChargeMobility, and
Coulomb2DMobility. Table 63 lists their default values. 

Table 63 Parameters for mobility degradation components due to Coulomb scattering

Symbol Parameter 
name

 
Electron

 Hole  
Electron

 Hole  
Electron

 
Hole

Unit

mu1

T_exp 1

c_trans

μC

μ1
T

300 K
-------------- 
  k

1 c ctrans

NA,D N1+

10
18

cm
3–

-------------------------
 
 
  γ1 Ncoulomb

N0
-------------------- 
 

η1

 
 
 

⁄
ν

+
 
 
 

NA,D N2+

10
18

cm
3–

-------------------------
 
 
  γ2 Ncoulomb

N0
-------------------- 
 

η2

D f F⊥( )⋅ ⋅

------------------------------------------------------------------------------------------------------------------------------------------------=

Ncoulomb

negative interface charge density, for the NegInterfaceCharge component

positive interface charge density, for the PosInterfaceCharge component

local NA,D, for the Coulomb2D component





=

N0
1011cm 2– , for the Neg/PosInterfaceCharge components

1018cm 3– , for the Coulomb2D component






=

c n (electron mobility) or p (hole mobility)=

NA,D NA,0 (electron mobility) or ND,0 (hole mobility)=

f F⊥( ) 1 F⊥ E0⁄( )γ
–[ ]exp–=

D x lcrit⁄–( )exp=

x

μnic μnic μpic μpic μC2D μC2D

μ1 40.0 40.0 40.0 40.0 40.0 40.0 cm2V 1– s 1–

k 1.0 1.0 1.0 1.0 1.0 1.0

ctrans 10
18

10
18

10
18

10
18

10
18

10
18

cm 3–
348 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Mobility Degradation at Interfaces
Stress Factors for Mobility Components

If isotropic stress-dependent mobility enhancement factors are applied to mobility components
(see Factor Models Applied to Mobility Components on page 876), the Coulomb degradation
component becomes:

(314)

where  is a stress scaling parameter that can be specified in the
NegInterfaceChargeMobility, PosInterfaceChargeMobility, or
Coulomb2DMobility parameter set, and  is an isotropic enhancement factor calculated
from a stress-dependent Factor model (see Isotropic Factor Models on page 870).

Using Mobility Degradation Components

The Coulomb2D model is a local model that uses local values of  and . To use this
model, specify Coulomb2D in addition to the standard Enormal model, for example:

Physics {
Mobility (

PhuMob HighFieldSaturation
Enormal (Lombardi Coulomb2D)

c_exp 1

Nc_exp1 1

Nc_exp2 1

N1

N2

N_exp1 1

N_exp2 1

l_crit cm

E0 V/cm

En_exp 1

a_c 1.0 1.0 1.0 1.0 1.0 1.0 1

Table 63 Parameters for mobility degradation components due to Coulomb scattering
 (Continued)

Symbol Parameter 
name

 
Electron

 Hole  
Electron

 Hole  
Electron

 
Hole

Unitμnic μnic μpic μpic μC2D μC2D

ν 1.5 1.5 1.5 1.5 1.5 1.5

η1 1.0 1.0 1.0 1.0 1.0 1.0

η2 0.5 0.5 0.5 0.5 0.5 0.5

N1 1.0 1.0 1.0 1.0 1.0 1.0 cm 3–

N2 1.0 1.0 1.0 1.0 1.0 1.0 cm 3–

γ1 0.0 0.0 0.0 0.0 0.0 0.0

γ2 0.0 0.0 0.0 0.0 0.0 0.0

lcrit 10
6–

10
6–

10
6–

10
6–

10
6–

10
6–

E0 2.0
5×10 2.0

5×10 2.0
5×10 2.0

5×10 2.0
5×10 2.0

5×10

γ 2.0 2.0 2.0 2.0 2.0 2.0

aC

μC
′ = γCμC , γC = 1 aC γ 1–( )+

aC

γ

NA ND
Sentaurus™ Device User Guide 349
N-2017.09



15: Mobility Models 
Mobility Degradation at Interfaces
)
}

The NegInterfaceCharge and PosInterfaceCharge models are nonlocal models
because  used in these models is a charge density at a location that may be different from
the point where mobility is being calculated.

If Math{-GeometricDistances} is not specified,  is the charge density at the point
on the interface that is the closest distance to the point where mobility is being calculated. If
there is not a vertex at this interface point,  is interpolated from the charge density at
the surrounding vertices.

If Math{-GeometricDistances} is specified,  is the charge density at the vertex on
the interface that is the closest distance to the point where mobility is being calculated.

To use these models, specify NegInterfaceCharge, or PosInterfaceCharge, or both in
addition to a standard Enormal model. For convenience, both models can be specified with the
single keyword InterfaceCharge, for example:

Physics {
Mobility (

PhuMob HighFieldSaturation
Enormal (Lombardi InterfaceCharge)

)
}

NOTE When using mobility degradation components, a standard Enormal
model (such as Lombardi) must be specified explicitly in addition to
the mobility degradation component. Sentaurus Device will not include
the Lombardi model by default (this only occurs when Enormal is
specified with no arguments).

By default, the NegInterfaceCharge and PosInterfaceCharge models use the charge
density  located at the nearest semiconductor–insulator interface. Alternatively, these
models can use the charge density at the nearest user-defined surface by specifying the surface
name as an argument to the interface charge model. For example:

Physics {
Mobility (

PhuMob HighFieldSaturation
Enormal (Lombardi

NegInterfaceCharge(SurfaceName="S1")
PosInterfaceCharge(SurfaceName="S2")
...

)
)

}

NC

Ncoulomb

Ncoulomb

Ncoulomb

Ncoulomb
350 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Mobility Degradation at Interfaces
Surfaces are defined in the global Math section and represent the union of an arbitrary number
of interfaces. The following example specifies a surface named S1 that consists of all the
HfO2–oxide interfaces, as well as the region_1–region_2 interface:

Math {
Surface "S1" (

MaterialInterface="HfO2/Oxide"
RegionInterface="region_1/region_2"

)
}

Remote Coulomb Scattering Model

High-k gate dielectrics are being considered as an alternative to SiO2 to reduce unacceptable
leakage currents as transistor dimensions decrease. One obstacle when using high-k gate
dielectrics is that a degraded carrier mobility is often observed for such devices. Although the
causes of high-k mobility degradation are not completely understood, a possible contributor is
remote Coulomb scattering (RCS). 

Sentaurus Device provides an empirical model for RCS degradation that can be combined with
other Enormal models using Matthiessen’s rule:

(315)

The RCS model is taken from [16] and accounts for the mobility degradation observed with
HfSiON MISFETs. This is attributed to RCS:

(316)

where:

■

In Eq. 316, the  factor accounts for screening of the remote charge by carriers. In [16],
this is expressed in terms of the inversion charge density. Here, a local expression that depends
on carrier concentration is used:

(317)

1
μEnormal
-------------------

1
μEnormal1

---------------------
1

μEnormal2

--------------------- ...
DrcsDrcs_highk

μrcs
---------------------------------+ + +=

μrcs μrcs0

NA D,

3 10
16

cm
3–×

---------------------------------
 
 
  γ1 T

300 K
-------------- 
 

γ2

gscreening( )
γ3 γ4

NA D,

3 1016 cm 3–×
-------------------------------- 
 ln⋅+

f F⊥( )⁄=

NA,D NA,0 (electron mobility) or ND,0 (hole mobility)=

gscreening

gscreening s
c

c0

NA D,

3 10
16

cm
3–×

---------------------------------
 
 
  γ5

------------------------------------------------+=
Sentaurus™ Device User Guide 351
N-2017.09



15: Mobility Models 
Mobility Degradation at Interfaces
In Eq. 317,  is the carrier concentration (  for electron mobility and  for hole mobility), and
, , and  are parameters. 

In Eq. 316,  is a function that confines the degradation to areas of the structure where
 is large enough to initiate inversion:

(318)

In the above expression,  is a doping- and temperature-dependent approximation for the
depletion charge density .

The distance factors used in Eq. 315 are given by:

(319)

(320)

In these expressions, dist is the distance from the nearest semiconductor–insulator interface,
and disthighk is the distance from the nearest high-k insulator. If no high-k insulator is found in
the structure, .

Parameters used in the RCS model are accessible in the RCSMobility parameter set in the
parameter file. Values for silicon are shown in Table 64. 

Table 64 RCSMobility parameters: Default coefficients for silicon

Symbol Parameter name Electron value  Hole value Unit

murcs0 149.0 149.0

gamma1 –0.23187 –0.23187 1

gamma2 2.1 2.1 1

gamma3 0.40 0.40 1

gamma4 0.05 0.05 1

gamma5 1.0 1.0 1

s 0.1 0.1 1

c0

d_crit 0.0 0.0 cm

l_crit cm

l_crit_highk cm

c n p
s c0 γ5

f F⊥( )
F⊥

f F⊥( ) 1 ξF⊥ Ndepl⁄–( )exp–=

Ndepl

cm 2–[ ]

Drcs dist dcrit+( ) lcrit⁄–( )exp=

Drcs_highk disthighk lcrit_highk⁄–( )exp=

Drcs_highk 1=

μrcs0 cm2 Vs⁄

γ1

γ2

γ3

γ4

γ5

s

c0 3.0 10
16× 3.0 10

16× cm
3–

dcrit

lcrit 1 10
6–× 1 10

6–×

lcrit_highk 1 10
6× 1 10

6×
352 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Mobility Degradation at Interfaces
Stress Factors for Mobility Components

If isotropic stress-dependent mobility enhancement factors are applied to mobility components
(see Factor Models Applied to Mobility Components on page 876), the RCS degradation
becomes:

(321)

where  is a stress scaling parameter that can be specified in the RCSMobility parameter
set, and  is an isotropic enhancement factor calculated from a stress-dependent Factor
model (see Isotropic Factor Models on page 870).

Remote Phonon Scattering Model

Sentaurus Device also provides a simple empirical model for remote phonon scattering (RPS)
degradation that can be combined with other Enormal models using Matthiessen’s rule:

(322)

The RPS model is extracted from figures in [17] and accounts for a portion of the mobility
degradation observed with HfO2-gated MOSFETs. This term is attributed to RPS:

(323)

The distance factors used in Eq. 322 are given by:

(324)

(325)

In these expressions, dist is the distance from the nearest semiconductor–insulator interface,
and disthighk is the distance from the nearest high-k insulator. If no high-k insulator is found in
the structure, .

xi

a_rcs 1.0 1.0 1

Table 64 RCSMobility parameters: Default coefficients for silicon (Continued)

Symbol Parameter name Electron value  Hole value Unit

ξ 1.3042 10
7× 1.3042 10

7× V
1–
cm

1–

arcs

μ'rcs γrcsμrcs       γrcs, 1 arcs+ γ 1–( )= =

arcs

γ

1
μEnormal
-------------------

1
μEnormal1

---------------------
1

μEnormal2

--------------------- ...
DrpsDrps_highk

μrps
---------------------------------+ + +=

μrps

μrps0

F⊥

10
6

V cm⁄
-------------------------
 
 
  γ1 T

300 K
-------------- 
 

γ2

-----------------------------------------------------------=

Drps dist dcrit+( ) lcrit⁄–( )exp=

Drps_highk disthighk lcrit_highk⁄–( )exp=

Drps_highk 1=
Sentaurus™ Device User Guide 353
N-2017.09



15: Mobility Models 
Mobility Degradation at Interfaces
Parameters used in the RPS model are accessible in the RPSMobility parameter set in the
parameter file. Values for silicon are shown in Table 65. 

Stress Factors for Mobility Components

If isotropic stress-dependent mobility enhancement factors are applied to mobility components
(see Factor Models Applied to Mobility Components on page 876), the RPS degradation
becomes:

(326)

where  is a stress scaling parameter that can be specified in the RPSMobility parameter
set, and  is an isotropic enhancement factor calculated from a stress-dependent Factor
model (see Isotropic Factor Models on page 870).

Computing Transverse Field

Sentaurus Device supports two different methods for computing the normal electric field :

■ Using the normal to the interface.

■ Using the normal to the current.

Furthermore, for vertices at the interface, an optional correction  for the field value is
available.

Table 65 RPSMobility parameters: Default coefficients for silicon

Symbol Parameter Name Electron value  Hole value Unit

murps0 496.7 496.7

gamma1 0.68 0.68 1

gamm2 0.34 0.34 1

d_crit 0.0 0.0 cm

l_crit cm

l_crit_highk cm

a_rcs 1.0 1.0 1

μrps0 cm2 Vs⁄

γ1

γ2

dcrit

lcrit 1 10
6–× 1 10

6–×

lcrit_highk 1 10
6× 1 10

6×

arps

μ'rps γrpsμrps         γrps, 1 arps+ γ 1–( )= =

arps

γ

F⊥

Fcorr
354 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Mobility Degradation at Interfaces
Normal to Interface

Assume that mobility degradation occurs at an interface . By default, the distance to the
interface is the true geometric distance, and  is the gradient of the distance to the interface.
When the -GeometricDistances option is specified in the Math section, for a given point

, Sentaurus Device locates the nearest vertex  on the interface , approximates the distance
of  to the interface by the distance to , and determines the direction  normal to the
interface at vertex . From , the normal electric field is:

(327)

To activate the Lombardi model with this method of computing , specify the Enormal flag
to Mobility. The keyword ToInterfaceEnormal is synonymous with Enormal.

By default, the interface  is a semiconductor–insulator interface. Sometimes, it is important
to change this default interface definition, for example, when the insulator (oxide) is considered
a wide-bandgap semiconductor. In this case, Sentaurus Device allows this interface to be
specified with EnormalInterface in the Math section.

In the following example, Sentaurus Device takes as  the union of interfaces between
materials, OxideAsSemiconductor and Silicon, and regions, regionK1 and regionL1:

Math {
EnormalInterface (

regioninterface=["regionK1/regionL1"],
materialinterface=["OxideAsSemiconductor/Silicon"]

)
}

Normal to Current Flow

Using this method,  is defined as the component of the electric field normal to the
electron ( ) or hole ( ) currents :

(328)

where  is used for the evaluation of electron mobility and  is used for the evaluation
of hole mobility. Through corrections of the current,  and  also are affected by the
keyword ParallelToInterfaceInBoundaryLayer (see Field Correction Close to
Interfaces on page 375).

Γ
n̂

r ri Γ
r ri n̂

ri n̂

F⊥ r( ) F r( ) n̂ Fcorr+⋅=

F⊥

Γ

Γ

F⊥ r( )
c n= c p= Jc r( )

Fc ⊥, r( ) F r( ) 1
F r( ) Jc r( )⋅

F r( )Jc r( )
-------------------------
 
 
 

–

2

Fcorr+=

Fn ⊥, Fp ⊥,
Fn ⊥, Fp ⊥,
Sentaurus™ Device User Guide 355
N-2017.09



15: Mobility Models 
Thin-Layer Mobility Model
NOTE For very low current levels, the computation of the electric field
component normal to the currents may be numerically problematic and
lead to convergence problems. It is recommended to use the option
Enormal. Besides possible numeric problems, both approaches give the
same or very similar results.

Field Correction on Interface

For vertices on the interface, due to discretization, the normal electric field in inversion is
underestimated systematically due to screening by the charge at the same vertex. Therefore,
Sentaurus Device supports a correction of the field:

(329)

where  is dimensionless and is specified with NormalFieldCorrection in the Math
section (reasonable values range from 0 to 1; the default is zero),  is the space charge,  is
the dielectric constant in the semiconductor, and  is an estimate for the depth of the box of the
vertex in the normal direction.

Thin-Layer Mobility Model

The thin-layer mobility model applies to devices with silicon layers that are only a few
nanometers thick. In such devices, geometric quantization leads to a mobility that cannot be
expressed with a normal field-dependent interface model such as those described in Mobility
Degradation at Interfaces on page 332, but it depends explicitly on the layer thickness. The
thin-layer mobility model described here is based on the model described in the literature [18]
and is used in conjunction with either the Lombardi model (see Enhanced Lombardi Model on
page 334) or the IALMob model (see Inversion and Accumulation Layer Mobility Model on
page 337).

NOTE When using the thin-layer mobility model in conjunction with the
Lombardi model, it is recommended to also use the Philips Unified
Mobility Model on page 328. The Philips unified mobility model must
be activated separately from the thin-layer mobility model.

Fcorr r( )
αlρ r( )

ε
-----------------=

α
ρ ε

l

356 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Thin-Layer Mobility Model
The thin-layer mobility  consists of contributions of thickness fluctuation scattering, surface
phonon scattering, bulk phonon scattering, and additional contributions from the normal field-
dependent interface model used in conjunction with it:

(330)

where:

■  (see Enhanced Lombardi Model on page 334 (Lombardi) or Inversion
and Accumulation Layer Mobility Model on page 337 (IALMob)).

■  is given by Eq. 278, p. 334 (Lombardi) or Eq. 302, p. 340 (IALMob).

■  is given by Eq. 301, p. 340 (IALMob).

■  is given by Eq. 287, p. 338 (IALMob).

The thickness fluctuation term is given by:

(331)

The surface phonon term is given by:

(332)

The bulk phonon term is given by:

(333)

(334)

(335)

(336)

(337)

μtl

1
μtl
------

D
μtf
------

D
μsp
-------

D
μbp
--------

D
μsr
------- , Lombardi

D
μsr
-------

1
μph,3D
---------------

1
μC
------+ + , IALMob









+ + +=

D x lcrit⁄–( )exp=

μsr

μph,3D

μC

1
μtf
------

1

μtf0 tb 1 nm⁄( )η1 1
F⊥
Ftf0
--------- 
 

η2

+

-------------------------------------------------------------------------
1

μtfh0 tb 1 nm⁄( )η1
Ftfh0

F⊥
----------- 
 

----------------------------------------------------------+=

μsp μsp0 tb tsp0⁄( )exp=

μbp P1μac 1, 1 P1–( )μac 2,+=

P1 p1

1 p1–

1 p2 p– 3ΔE kT⁄( )exp+
---------------------------------------------------------+=

ΔE
h2π2

2tb
2

-----------
1

mz2
---------

1
mz1
---------– 

 =

μac ν,
μac0 ν,

1 WTν WFν⁄( )β+[ ]1 β⁄--------------------------------------------------------
WTν
1 nm
----------- 
 =

WTν
2
3
---tb WT0ν

tb

1 nm
----------- 
 

4 F⊥
1 MV/cm
---------------------- 
 +=
Sentaurus™ Device User Guide 357
N-2017.09



15: Mobility Models 
Thin-Layer Mobility Model
(338)

where:

■  is given by Eq. 277, p. 334 (Lombardi) or by  Eq. 300, p. 340 (IALMob).

■ .

■ The thickness  is the larger of the local layer thickness and .

■ , , , , , , , , , , , , , , , , , and
 are model parameters.

Using the Thin-Layer Mobility Model
To activate the thin-layer mobility model, specify ThinLayer(<parameters>) as an
option to eMobility, hMobility, or Mobility. The optional parameters are
<geo_parameters> and <physical_parameters>.

The ThinLayer subcommand has the same <geo_parameters> as the LayerThickness
command (see LayerThickness Command on page 310).

Physical Parameters

Specify Lombardi or IALMob (including any optional arguments for these models) as an
option to ThinLayer to indicate which normal field-dependent interface model is used in
conjunction with the thin-layer mobility calculations (Lombardi is the default). For example:

Physics {
Mobility (

PhuMob
ThinLayer (Lombardi(...))

)
}

or:

Physics {
Mobility (

ThinLayer (IALMob(...))
)

}

WFν
1 nm
----------- ζν 1–

μac

Pbulkμac0 1, ζ 1 Pbulk–( )μac0 2,+
------------------------------------------------------------------------------=

μac μph,2D

Pbulk p1 1 p1–( ) 1 p2+( )⁄+=

tb tmin

tmin μtf0 Ftf0 μtfh0 Ftfh0 η1 η2 μsp0 tsp0 μac0 ν, p1 p2 p3 mz1 mz2 β WT0ν
ζ

358 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Thin-Layer Mobility Model
NOTE When using ThinLayer(Lombardi) or ThinLayer(IALMob), do
not specify Enormal(Lombardi) or Enormal(IALMob) in addition.
This would result in double-counting the scattering mechanisms that are
already accounted for (see Eq. 330). However, Enormal must still be
used to include other required degradation terms, for example:

Physics {
Mobility (

ThinLayer (IALMob(...))
Enormal (InterfaceCharge)

)
}

When ThinLayer(Lombardi(...)) is specified, the parameters to compute , , and
 are the same as used for the Lombardi model (see Table 58 on page 335 and Table 59 on

page 335). Synopsys considers the parameters in Table 59 to be more suitable for the thin-layer
mobility model; however, the defaults are still given in Table 58.

When ThinLayer(IALMob(...)) is specified, the parameters to compute , , ,
, and  are the same as used for the IALMob model (see Table 60 through Table 61 on

page 341).

The other parameters are specified as electron–hole pairs in the ThinLayerMobility
parameter set. Table 66 summarizes the parameters. 

Table 66 Parameters for thin-layer mobility model

Symbol Parameter name Electron Hole Unit

tmin

mutf0

ftf0

mutfh0

ftfh0

eta1 1

eta2 1 1 1

musp0

tsp0

muac01

muac02

p1 1

D μsr

μac

D μsr μph,3D

μC μph,2D

tmin 0.002 0.002 μm

μtf0 0.15 0.28 cm2V 1– s 1–

Ftf0 6250 10100 Vcm 1–

μtfh0 106 106 cm2V 1– s 1–

Ftfh0 10100 10100 Vcm 1–

η1 6 6

η2

μsp0 1.145
8–×10 1.6

10–×10 cm2V 1– s 1–

tsp0 10 4– 10 4– μm

μac0 1, 315 30.2 cm2V 1– s 1–

μac0 2, 6.4 69 cm2V 1– s 1–

p1 0.55 0
Sentaurus™ Device User Guide 359
N-2017.09



15: Mobility Models 
Thin-Layer Mobility Model
Stress Factors for Mobility Components

If isotropic stress-dependent mobility enhancement factors are applied to mobility components
(see Factor Models Applied to Mobility Components on page 876), the ThinLayer mobility
components become:

(339)

where , , and  are stress scaling parameters that can be specified in the
ThinLayerMobility parameter set, and  is an isotropic enhancement factor calculated
from a stress-dependent Factor model (see Isotropic Factor Models on page 870).

Auto-Orientation and Named Parameter Sets

The thin-layer mobility model implicitly supports the auto-orientation framework (see Auto-
Orientation Framework on page 37) and named parameter sets (see Named Parameter Sets on
page 36). That is, auto-orientation or named parameter sets for the ThinLayerMobility
parameters will be used (and required) if these options are invoked for the normal
field–dependent interface model used in conjunction with the thin-layer mobility model.

p2 1

p3 1

mz1

mz2

beta 1

wt01

wt02

zeta 1

a_tf 1.0 1.0 1

a_sp 1.0 1.0 1

a_bp 1.0 1.0 1

Table 66 Parameters for thin-layer mobility model (Continued)

Symbol Parameter name Electron Hole Unit

p2 400 0.66

p3 1.44 1

mz1 0.916 0.29 m0

mz2 0.19 0.25 m0

β 4 4

WT01 3
6–×10 0 μm

WT02 3.5
7–×10 0 μm

ζ 2.88 1.05

atf

asp

abp

μtf
′ = γtfμtf , γtf = 1 atf γ 1–( )+

μsp
′ = γspμsp , γsp = 1 asp γ 1–( )+

μbp
′ = γbpμbp , γbp = 1 abp γ 1–( )+

atf asp abp

γ

360 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
High-Field Saturation
For example, this specification:

Physics {
Mobility (

PhuMob
ThinLayer (Lombardi(AutoOrientation))

)
}

invokes auto-orientation for both the Lombardi-specific calculations and the thin
layer–specific calculations. In this case, Sentaurus Device requires orientation-dependent
parameter sets for both the EnormalDependence parameters (for Lombardi) and the
ThinLayerMobility parameters.

As another example, this specification:

Physics {
Mobility (

ThinLayer (IALMob(ParameterSetName="110"))
)

}

uses both the IALMob "110" parameter set and the ThinLayerMobility "110" parameter
set.

Geometric Parameters

The ThinLayer subcommand has the same <geo_parameters> as the LayerThickness
command (see Geometric Parameters of LayerThickness Command on page 312).

High-Field Saturation

In high electric fields, the carrier drift velocity is no longer proportional to the electric field,
instead, the velocity saturates to a finite speed . Sentaurus Device supports different models
for the description of this effect:

■ The Canali model, two transferred electron models, and two PMIs are available for all
transport models.

■ The basic model and the Meinerzhagen–Engl model both require hydrodynamic
simulations.

■ Another flexible model for hydrodynamic simulation is described in Energy-Dependent
Mobility on page 772.

vsat
Sentaurus™ Device User Guide 361
N-2017.09



15: Mobility Models 
High-Field Saturation
Using High-Field Saturation

The high-field saturation models comprise three submodels: the actual mobility model, the
velocity saturation model, and the driving force model. With a some restrictions, these models
can be freely combined.

The actual mobility model is selected by flags to eHighFieldSaturation or
hHighFieldSaturation. The default is the Canali model (see Extended Canali Model on
page 363). 

The flag TransferredElectronEffect selects the transferred electron model (see
Transferred Electron Model on page 364). Similarly, an alternative transferred electron model
is activated by the flag TransferredElectronEffect2 (see Transferred Electron Model 2
on page 365).

The flags CarrierTempDriveBasic and CarrierTempDriveME activate the ‘basic’ and
the Meinerzhagen–Engl model, respectively (see Basic Model on page 367 and
Meinerzhagen–Engl Model on page 367). These two models require hydrodynamic
simulations.

For the Canali model, the two transferred electron models, and the
PMI_HighFieldMobility PMI, the driving force model is selected by a flag to
eHighFieldSaturation or hHighFieldSaturation. Available flags are
GradQuasiFermi (the default), Eparallel, EparallelToInterface, and
CarrierTempDrive (see Driving Force Models on page 369). The latter is only available in
hydrodynamic simulations. The PMI_HighFieldMobility2 PMI supports
EparallelToInterface, Eparallel, and ElectricField for the electric-field driving
force. For the ‘basic’ model and the Meinerzhagen–Engl model, the driving force is part of the
actual mobility model and cannot be chosen independently.

For all except the ‘basic’ model and the PMIs, a velocity saturation model can be selected in
the HighFieldDependence parameter set (see Velocity Saturation Models on page 369).

Named Parameter Sets for High-Field Saturation

The HighFieldDependence and HydroHighFieldDependence parameter sets can be
named. For example, in the parameter file, you can write:

HighFieldDependence "myset" { ... }

to declare a parameter set with the name myset.
362 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
High-Field Saturation
To use a named parameter set, specify its name with ParameterSetName as an option to
HighFieldSaturation, eHighFieldSaturation, or hHighFieldSaturation. For
example:

eMobility (
HighFieldSaturation( ParameterSetName = "myset" ...) ...

)

By default, the unnamed parameter set is used.

Auto-Orientation for High-Field Saturation

The HighFieldSaturation and Diffusivity models support the auto-orientation
framework (see Auto-Orientation Framework on page 37) that switches between different
HighFieldDependence named parameter sets based on the surface orientation of the nearest
interface. This feature can be activated by specifying AutoOrientation as an option to either
HighFieldSaturation or Diffusivity in the command file, for example:

Mobility (
HighFieldSaturation( AutoOrientation ...) ...

)

Extended Canali Model

The Canali model [19] originates from the Caughey–Thomas formula [20], but has
temperature-dependent parameters, which were fitted up to  by Canali et al. [19]:

(340)

where  denotes the low-field mobility. Its definition depends on which of the previously
described mobility models have been activated (see Mobility due to Phonon Scattering on
page 318 to Philips Unified Mobility Model on page 328). The exponent  is temperature
dependent according to:

 (341)

Details about the saturation velocity  and driving field  are discussed in Velocity
Saturation Models on page 369 and Driving Force Models on page 369. All other parameters
are accessible in the parameter set HighFieldDependence.

The silicon default values are listed in Table 67 on page 364.

430 K

μ F( )
α 1+( )μlow

α 1
α 1+( )μlowFhfs

vsat
---------------------------------------
 
 
  β

++
1 β⁄--------------------------------------------------------------------------------=

μlow

β

β β0
T

300 K
-------------- 
 

βexp

=

vsat Fhfs
Sentaurus™ Device User Guide 363
N-2017.09



15: Mobility Models 
High-Field Saturation
A modified version of the Canali model is the Hänsch model [13]. It is activated by setting the
parameter . The Hänsch model is part of the Lucent mobility model (see Lucent Model
on page 368). When using the hydrodynamic driving force Eq. 356,  must be zero.

For the hydrodynamic driving force, Eq. 356 can be substituted into Eq. 340. Solving for 
yields the hydrodynamic Canali model:

 (342)

where  is given by:

(343)

In this form, the model has a discontinuous derivative at , which can lead to numeric
problems. Therefore, Sentaurus Device applies a smoothing algorithm in the carrier
temperature region  to create a smooth transition between the low-field
mobility  and the mobility given in Eq. 342.  defaults to 0.2 and can be accessed in the
parameter set HighFieldDependence.

Transferred Electron Model

For GaAs and other materials with a similar band structure, a negative differential mobility can
be observed for high driving fields. This effect is caused by a transfer of electrons into a
energetically higher side valley with a much larger effective mass. Sentaurus Device includes
a transferred electron model for the description of this effect, as given by [21]:

(344)

Table 67 Canali model parameters (default values for silicon)

Symbol Parameter name Electrons Holes Unit

beta0 1.109 1.213 1

betaexp 0.66 0.17 1

alpha 0 0 1

α 1=
α

μ

μ
μlow

1 γ2
max wc w0 0,–( )β

+ γmax wc w0 0,–( )β 2⁄
+

2 β⁄-------------------------------------------------------------------------------------------------------------------------------------=

γ

γ 1
2
---

μlow

qτe c, vsat
2

----------------------

 
 
 
 

β 2⁄

=

w0 wc=

T Tc 1 KdT+( )T< <
μlow KdT

β0

βexp

α

μ
μlow

vsat

Fhfs
---------
 
 
  Fhfs

E0
---------
 
 
 

4

+

1
Fhfs

E0
---------
 
 
 

4

+

--------------------------------------------------=
364 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
High-Field Saturation
Details of the saturation velocity  and the driving field  are discussed in Velocity
Saturation Models on page 369 and Driving Force Models on page 369. The reference field
strength  can be set in the parameter set HighFieldDependence.

The HighFieldDependence parameter set also includes a variable , which is equal
to 1 by default. If , a smoothing algorithm is applied to the formula for mobility in
the driving force interval , where  is the field strength at which
the velocity is at its maximum, . In this interval, Eq. 344 is replaced by a
polynomial that produces the same values and derivatives at the points  and .
It is sometimes numerically advantageous to set . 

Transferred Electron Model 2

Sentaurus Device provides an alternative high-field saturation mobility model for III–nitride
materials:

(345)

This model is a unification of the two models proposed in [22] and [23]. The model in [22] can
be obtained by setting  and . Similarly, the model in [23] can be obtained by
setting .

The model parameters are specified in the TransferredElectronEffect2 section of the
parameter file:

TransferredElectronEffect2 (
mu1 = 0, 0
E0 = 220893.6, 4000
E1 = 220893.6, 4000
alpha = 0.7857, 0
beta = 7.2044, 4
gamma = 6.1973, 0

)

Table 68 Transferred electron model: Default parameters

Symbol Parameter Electrons Holes Unit

E0_TrEf 4000 4000

Ksmooth_TrEf 1 1 1

vsat Fhfs

E0

Ksmooth

Ksmooth 1>
Fvmax F KsmoothFvmax< < Fvmax

vmax μFvmax=
Fvmax KsmoothFvmax

Ksmooth 20≈

E0 Vcm
1–

Ksmooth

μ

μlow μ1

Fhfs

E0
---------
 
 
 

α

vsat

Fhfs
β 1–

E1
β-------------+ +

1 γ
Fhfs

E0
---------
 
 
 

α
Fhfs

E1
---------
 
 
 

β

+ +

----------------------------------------------------------------------=

μ1 0= E0 E1=
γ 1=
Sentaurus™ Device User Guide 365
N-2017.09



15: Mobility Models 
High-Field Saturation
The default electron parameters for AlxGa1–xN and InxGa1–xN are taken from [22] and are
shown in Table 69 and Table 70. 

For other materials, as well as for hole mobility, the parameters in Table 71 are used. 

With these parameters, the model reverts to the standard transferred electron model (see
Transferred Electron Model on page 364).

Sometimes, convergence problems are observed when the derivative of the velocity 
with respect to the driving force  becomes negative. As a potential solution, Sentaurus
Device provides an option to specify a lower bound for this derivative:

Math {
TransferredElectronEffect2_MinDerivativePerField = 0

}

Table 69 Transferred electron effect 2 model parameters in AlxGa1–xN

Material μ1 [cm2V–1s–1] E0 = E1 [Vcm–1] α [1] β [1] γ [1]

GaN 0 220893.6 0.7857 7.2044 6.1973

Al0.2Ga0.8N 0 245579.4 0.7897 7.8138 6.9502

Al0.5Ga0.5N 0 304554.1 0.8080 9.4438 8.0022

Al0.8Ga0.2N 0 386244.0 0.8324 12.5795 8.6037

AlN 0 447033.9 0.8554 17.3681 8.7253

Table 70 Transferred electron effect 2 model parameters in InxGa1–xN

Material μ1 [cm2V–1s–1] E0 = E1 [Vcm–1] α [1] β [1] γ [1]

GaN 0 220893.6 0.7857 7.2044 6.1973

In0.2Ga0.8N 0 151887.0 0.7670 6.0373 5.1797

In0.5Ga0.5N 0 93815.1 0.7395 4.8807 3.7387

In0.8Ga0.2N 0 63430.5 0.6725 4.1330 2.7321

InN 0 52424.2 0.6078 3.8501 2.2623

Table 71 Default transferred electron effect 2 model parameters

μ1 [cm2V–1s–1] E0 = E1 [Vcm–1] α [1] β [1] γ [1]

0 4000 0 4 0

v μFhfs=
Fhfs
366 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
High-Field Saturation
If required, individual bounds can be specified for electrons and holes:

Math {
TransferredElectronEffect2_eMinDerivativePerField = -1e-3
TransferredElectronEffect2_hMinDerivativePerField = -1e-2

}

By default, Sentaurus Device applies the lower bound . Note that
this lower bound cannot be applied to the hydrodynamic driving force (CarrierTempDrive).

Basic Model

According to this very simple model, the mobility decays inversely with the carrier
temperature:

(346)

where  is the low-field mobility and  is the carrier temperature.

Meinerzhagen–Engl Model

According to the Meinerzhagen–Engl model [24], the high field mobility degradation is given
by:

(347)

where  is the energy relaxation time. The coefficients of the saturation velocity  (see
Eq. 348) and the exponent  (see Eq. 341) are accessible in the parameter file:

HighFieldDependence {
vsat0   = <value for electrons> <value for holes>
vsatexp = <value for electrons> <value for holes>

}

HydroHighFieldDependence {
beta0   = <value for electrons> <value for holes>
betaexp = <value for electrons> <value for holes>

}

v∂ Fhfs∂⁄ 10100cm2– V 1– s 1–≥

μ μlow
300 K

Tc
-------------- 
 =

μlow Tc

μ
μlow 

1 μlow
3k
2q
------

Tc T–( )
τe c, vsat

2
-------------------

 
 
  β

+

1 β⁄
---------------------------------------------------------------------------=

τe,c vsat

β

Sentaurus™ Device User Guide 367
N-2017.09



15: Mobility Models 
High-Field Saturation
The silicon default values are given in Table 72 and Table 73 on page 369.

Physical Model Interface

Sentaurus Device offers two physical model interfaces (PMIs) for high-field mobility
saturation.

The first PMI is activated by specifying the name of the model as an option of
HighFieldSaturation, eHighFieldSaturation, or hHighFieldSaturation. For
more details about this model, see High-Field Saturation Model on page 1125.

The second PMI allows you to implement models that depend on two driving forces. It is
specified by PMIModel as the option to HighFieldSaturation,
eHighFieldSaturation, or hHighFieldSaturation. For details, see High-Field
Saturation With Two Driving Forces on page 1134.

Lucent Model

The Lucent model has been developed by Darwish et al. [11]. Sentaurus Device implements
this model as a combination of:

■ An extended Philips unified mobility model (see Philips Unified Mobility Model on
page 328) with the parameters  and  (see Table 57 on page 332). The
Lucent model described in [11] also does not include clustering. To disable clustering in
the Philips unified mobility model, set the parameters  and  to very large
numbers.

■ The enhanced Lombardi model (see Enhanced Lombardi Model on page 334) with the
parameters from Table 59 on page 335.

■ The Hänsch model (see Extended Canali Model on page 363) with the parameter 
(see Table 67 on page 364). In addition, the  exponent in the Hänsch model is equal to 2,
which can be accomplished by setting  and .

Table 72 Meinerzhagen–Engl model: Default parameters

Silicon Electrons Holes Unit

0.6 0.6 1

0.01 0.01 1

β0

βexp

fe 0= fh 0=

Nref,A Nref,D

α 1=
β

β0 2= βexp 0=
368 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
High-Field Saturation
Velocity Saturation Models

Sentaurus Device supports two velocity saturation models. Model 1 is part of the Canali model
and is given by:

(348)

This model is recommended for silicon. 

Model 2 is recommended for GaAs. Here,  is given by:

(349)

The parameters of both models are accessible in the HighFieldDependence parameter set.

Selecting Velocity Saturation Models

The variable Vsat_formula in the HighFieldDependence parameter set selects the
velocity saturation model. If Vsat_formula is set to 1, Eq. 348 is used. If Vsat_formula is
set to 2, Eq. 349 is selected. The default value of Vsat_formula depends on the
semiconductor material, for example, for silicon the default is 1; for GaAs, it is 2. 

Driving Force Models

Sentaurus Device supports five different models for the driving force , the first two of
which also are affected by the ParallelToInterfaceInBoundaryLayer keyword (see
Field Correction Close to Interfaces on page 375). See Table 273 on page 1461 for a summary
of keywords.

Table 73 Velocity saturation parameters

Symbol Parameter  Electrons  Holes Unit

vsat0 cm/s

vsatexp 0.87 0.52 1

A_vsat cm/s

B_vsat cm/s

vsat_min cm/s

vsat vsat,0
300 K

T
-------------- 
 

vsat,exp

=

vsat

vsat
Avsat Bvsat

T
300 K
-------------- 
 – vvsat vsat,min>

vsat,min otherwise





=

vsat,0 1.07
7×10 8.37

6×10

vsat,exp

Avsat 1.07
7×10 8.37

6×10

Bvsat 3.6
6×10 3.6

6×10

vsat,min 5.0
5×10 5.0

5×10

Fhfs
Sentaurus™ Device User Guide 369
N-2017.09



15: Mobility Models 
High-Field Saturation
Electric Field Parallel to the Current

For the first model (flag Eparallel), the driving field for electrons is the electric field parallel
to the electron current density:

(350)

To avoid numeric noise in the calculation of the Eparallel driving force, Sentaurus Device
provides an option of setting  to zero for very small current densities, defined as:

(351)

Here,  is an arbitrary reference mobility, and  is specified (in
) by CDensityMin in the Math section (default is 0).

The driving field for holes is analogous.

The electric field parallel to the current is the physically correct driving force for high-field
saturation mobility models as well as for avalanche generation. Unfortunately, this driving
force suffers from numeric instabilities for small currents because the direction of the current
is not well defined and fluctuates easily. Therefore, the radius of convergence can be very
small. The following driving forces are provided as alternatives with improved numeric
stability.

Gradient of Quasi-Fermi Potential

For the second model (flag GradQuasiFermi), the driving field for electrons is:

(352)

By default, the electric field replaces the gradient of the quasi-Fermi potential within mesh
elements touching a contact:

(353)

In the Math section, you can request that Eq. 352 is used for all elements:

Math {
ComputeGradQuasiFermiAtContacts = UseQuasiFermi

}

The driving field for holes is analogous.

Fhfs n, F
Jn

Jn
-----⋅=

Fhfs n,

Jn

μn
------

cmin

μref
----------<

μref 1000 cm2V 1– s 1–= cmin

Acm 2–

Fhfs n, Φn∇=

Fhfs n, F=
370 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
High-Field Saturation
NOTE Usually, Eq. 350 and Eq. 352 give the same or very similar results.
However, numerically, one model may prove to be more stable. For
example, in regions with small current, the evaluation of the parallel
electric field can be numerically problematic.

This is the default driving force for drift-diffusion simulations.

Electric Field Parallel to the Interface

The third model (keyword EparallelToInterface) computes the driving force as the
electric field parallel to the closest semiconductor–insulator interface:

(354)

The vector  is a unit vector pointing to the closest semiconductor–insulator interface. It is
determined in the same way as for the mobility degradation at interfaces. To select explicitly a
semiconductor–insulator interface, use the EnormalInterface specification in the Math
section (see Normal to Interface on page 355).

The driving force of EparallelToInterface is the same for electrons and holes. It is
numerically stable because it does not depend on the direction of the current. However, this
model will only give valid results if the current flows predominantly parallel to the interface
(such as in the channel of MOSFET devices).

In certain situations, for example, in the channel of a FinFET, the direction of the current is
known. In this case, you can specify a constant direction vector  in the Math section:

Math {
EparallelToInterface (

Direction = (1 0 0)
)

}

Then, the driving force is computed as the electric field  parallel to the direction vector :

(355)

NOTE Eq. 355 ensures a nonnegative driving force . If the scalar product
between the direction vector  and the electric field  becomes
negative, the driving force will be set to zero. This effectively switches
off high-field saturation.
Therefore, it is crucial that the direction of vector  is aligned with the
direction of the current flow. Otherwise, you may inadvertently disable
the high-field saturation mobility model.

Fhfs I n̂n̂
T

–( )F=

n̂

d

F d

Fhfs
max dF 0( , )

d
--------------------------=

Fhfs n,
d F

d

Sentaurus™ Device User Guide 371
N-2017.09



15: Mobility Models 
High-Field Saturation
An EparallelToInterface specification can appear in the global Math section, as well as
in materialwise or regionwise Math sections. If no direction vector, or a zero direction vector,
has been specified, the driving force will revert to Eq. 354.

It also may be required to restrict the validity of the direction vector  to only a part of a device.
This can be accomplished by specifying a list of boxes together with the required direction
vector:

Math {
EparallelToInterface ( # 2D example

Direction = (1 0)
Box = ((1 1) (3 4))
Box = ((3 3) (5 4))

)

EparallelToInterface ( # 3D example
Direction = (0 0 1)
Box = ((1 1 0) (3 4 1))
Box = ((3 3 0) (5 4 1))

)
}

Boxes are specified by the coordinates of the corners of a diagonal (units of μm). The driving
force in Eq. 355 is then only applied to mesh vertices that are contained in at least one of the
boxes. On all other vertices, the driving force in Eq. 354 is used. You can specify different
direction vectors  in different parts of a device by using multiple EparallelToInterface
statements in the Math section.

You also can plot the normalized direction vector  in the Plot section:

Plot {
EP2I_Direction/Vector

}

This can be useful to visualize the areas where the driving force in Eq. 355 applies.

Hydrodynamic Driving Force

The fourth model (keyword CarrierTempDrive) requires hydrodynamic simulation. The
driving field for electrons is:

(356)

d

d

d d⁄

Fhfs n,
max wn w0 0,–( )

τe n, qμn
----------------------------------------=
372 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
High-Field Saturation
where  is the average electron thermal energy,  is the equilibrium
thermal energy, and  is the energy relaxation time. The driving fields for holes are
analogous.

This is the default driving force for hydrodynamic simulations.

Electric Field

The fifth model (keyword ElectricField) uses the electric field as an approximation for
.

Interpolation of Driving Forces to Zero Field

For numeric reasons, Sentaurus Device actually implements the following generalizations of
Eq. 350 and Eq. 352:

(357)

(358)

Here,  is a numeric damping parameter. The values for electrons and holes default to zero,
and are set (in ) with the parameters RefDens_eGradQuasiFermi_Zero and
RefDens_hGradQuasiFermi_Zero in the Math section. Using positive values for  can
improve convergence for problems where strong generation–recombination occurs in regions
with small density.

Instead of RefDens_eGradQuasiFermi_Zero and RefDens_hGradQuasiFermi_Zero,
the old aliases eDrForceRefDens and hDrForceRefDens can be used as well.

Interpolation of the GradQuasiFermi Driving Force

Occasionally, convergence problems can be attributed to the GradQuasiFermi driving force,
particularly when  changes rapidly for small changes in the electron density . In such
cases, you can use the gradient of a modified quasi-Fermi potential  instead. In the case of
Boltzmann statistics, the modified quasi-Fermi potentials are given by:

(359)

(360)

wn 3kTn 2⁄= w0 3kT 2⁄=
τe n,

Fhfs

Fhfs n,
n

n n0+
--------------F

Jn

Jn
-----⋅=

Fhfs n,
n

n n0+
-------------- Φn∇=

n0

cm 3–

n0

∇Φn n
Φ̃n

Φ̃n φ φref–
χ
q
---

kT
q

------
n n0+

NC
--------------log–+=

Φ̃p φ φref–
χ
q
---

Eg eff,
q

-------------
kT
q

------
p p0+

NV
--------------log+ + +=
Sentaurus™ Device User Guide 373
N-2017.09



15: Mobility Models 
High-Field Saturation
The equivalent expressions for Fermi statistics are:

(361)

(362)

The values of  and  can be specified with the following parameters in the Math section:

■ RefDens_eGradQuasiFermi_ElectricField_HFS 

■ RefDens_hGradQuasiFermi_ElectricField_HFS 

For , you have  and, for , you have  as a limit (in the
isothermal case). Therefore, this approach represents an interpolation between the gradient of
the quasi-Fermi potential  and the electric field .

These interpolation parameters affect only the computation of the GradQuasiFermi driving
force for high-field saturation mobility. If you want the driving force for both high-field
saturation mobility and avalanche generation to use interpolation to the electric field, you can
use the following keywords (see Interpolation of Avalanche Driving Forces on page 426):

■ RefDens_eGradQuasiFermi_ElectricField 

■ RefDens_hGradQuasiFermi_ElectricField 

As an alternative, Sentaurus Device also provides an interpolation between the gradient of the
quasi-Fermi potential and the electric field parallel to the interface:

(363)

The reference densities for electrons and holes can be specified in the Math section by the
following parameters:

■ RefDens_eGradQuasiFermi_EparallelToInterface_HFS 

■ RefDens_hGradQuasiFermi_EparallelToInterface_HFS 

Interpolation of the Eparallel Driving Force

As with the GradQuasiFermi driving force, convergence problems associated with the
Eparallel driving force can sometimes be alleviated with an interpolation to the electric field

 at low carrier concentrations:

(364)

Φ̃n φ φref–
χ
q
---

kT
q

------F1 2⁄
1– n n0+

NC
-------------- 
 –+=

Φ̃p φ φref–
χ
q
---

Eg eff,
q

-------------
kT
q

------F1 2⁄
1– p p0+

NV
-------------- 
 + + +=

n0 p0

n0 0= ∇Φ̃n ∇Φn= n0 ∞→ ∇Φ̃n F→

∇Φn F

Fhfs n,
n

n n0+
-------------- Φn∇

n0

n n0+
-------------- I n̂n̂

T
–( )F+=

F

Fhfs n,
n

n n0+
-------------- F

Jn

Jn
-----⋅

 
 
  n0

n n0+
-------------- F+=
374 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
High-Field Saturation
In this case, the reference densities for electrons and holes can be specified in the Math section
by the following parameters:

■ RefDens_eEparallel_ElectricField_HFS 

■ RefDens_hEparallel_ElectricField_HFS 

Interpolation of the Eparallel driving force to the electric field for avalanche generation can
be specified with separate parameters (see Interpolation of Avalanche Driving Forces on
page 426).

Field Correction Close to Interfaces

ParallelToInterfaceInBoundaryLayer in the Math section controls the computation of
driving forces for mobility and avalanche models along interfaces. With this switch, the
avalanche and mobility computations in boundary elements along interfaces use only the
component parallel to the interface of the following vectors:

■ Current vector

■ Gradient of the quasi-Fermi potential

In this context, an interface is either a semiconductor–insulator region interface or an external
boundary interface of the device.

This switch can be useful to avoid nonphysical breakdowns along an interface with a coarse
mesh. It may be specified regionwise, in which case it only applies to boundary elements in a
given region.

The switch ParallelToInterfaceInBoundaryLayer supports two “layer” options:

Math {
ParallelToInterfaceInBoundaryLayer (PartialLayer)
ParallelToInterfaceInBoundaryLayer (FullLayer)

}

If PartialLayer is specified, parallel fields are only used in elements that are connected to
the interface by an edge (in 2D) or a face (in 3D). This is the default. The option FullLayer
uses parallel fields in all elements that touch the interface by either a face, an edge, or a vertex.

The switch ParallelToInterfaceInBoundaryLayer is enabled by default. It can be
disabled by specifying -ParallelToInterfaceInBoundaryLayer. Additional options are
available for ParallelToInterfaceInBoundaryLayer to disable it only on portions of
the interface. Specifying -ExternalBoundary disables it on all external boundaries;
whereas, -ExternalXPlane, -ExternalYPlane, and -ExternalZPlane disables it only
on external boundaries perpendicular to the x-axis, y-axis, and z-axis, respectively.
Specifying -Interface disables it on semiconductor–insulator region interfaces.
Sentaurus™ Device User Guide 375
N-2017.09



15: Mobility Models 
High-Field Saturation
Non-Einstein Diffusivity

By default, in the drift-diffusion equation (see Drift-Diffusion Model on page 182), Sentaurus
Device assumes that the Einstein relation holds, and the diffusivity is related to the mobility by

 and . For short-channel devices with steep doping gradients, this
relation is no longer valid. Therefore, Sentaurus Device allows you to compute the diffusivities
independently from the mobilities.

To be able to reuse existing mobility models, Sentaurus Device expresses the diffusivities in
terms of diffusivity mobilities,  and , and you can specify
models and parameters for  and , which are different from  and .

To compute the diffusivity mobilities, specify the keyword Diffusivity, eDiffusivity, or
hDiffusivity as an option to eMobility, hMobility, or Mobility. The options for
eDiffusivity and hDiffusivity are the same as for HighFieldSaturation. The low-
field mobility that enters the diffusivity mobility is the same as for the high-field mobility.

The simplest way to obtain diffusivity mobilities different from the mobilities is to use named
parameters sets to achieve a different parameterization (see Named Parameter Sets for High-
Field Saturation on page 362). For example:

eMobility (
HighFieldSaturation(ParameterSetName = "mymobpara")
Diffusivity(ParameterSetName = "mydiffpara")
DopingDependence * applies to both diffusivity and mobility

)

It is also possible to use entirely different models for high-field mobilities and diffusivity
mobilities.

The diffusivity mobilities can be plotted. The names of the datasets are
eDiffusivityMobility and hDiffusivityMobility.

The current implementation of non-Einstein diffusivities has several restrictions. In particular,
the following models use a current density that assumes the Einstein relation still holds:

■ The models to compute the driving fields for mobility (Driving Force Models on page 369)
and avalanche generation (see Driving Force on page 426).

■ The J-model for trap cross sections (see J-Model Cross Sections on page 458).

■ The current densities that appear in Eq. 76 and Eq. 77, p. 196.

Transport in magnetic fields is not supported. Support for anisotropy is restricted to the tensor
grid method with current-independent anisotropy. The hydrodynamic model is supported, but
it is not recommended for use with non-Einstein diffusivity.

Dn kTμn= Dp kTμp=

Dn kTμn diff,= Dp kTμp diff,=
μn diff, μp diff, μn μp
376 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Ballistic Mobility Model
High-Field Saturation Mobility Scaling

Sentaurus Device allows the mobility calculated by the HighFieldSaturation models to be
scaled. The parameters ku and kv are used to scale low-field mobility ( ) and saturation
velocity ( ), respectively, which appear in the formulas presented in this section:

(365)

(366)

The parameters ku and kv are specified in the HighFieldDependence parameter set in the
parameter file and have default values of 1.0.

Ballistic Mobility Model

To account for the ballistic effect in drift-diffusion transport, a ballistic mobility model can be
combined with the total drift-diffusion mobility using Matthiessen’s rule:

(367)

where  represents the ballistic mobility. Sentaurus Device provides two models for 
that are described in the following sections:

■ Channel Length–Dependent Model

■ Kinetic Velocity Model

Channel Length–Dependent Model

The simplest channel length–dependent ballistic mobility model [6] is given by the following
expression:

(368)

where  is a user-defined parameter. In most cases, you will specify a value for  (in nm)
that corresponds to the actual channel length for the device being simulated.

According to [6],  is expressed as:

(369)

μlow

vsat

μlow ku μlow⋅→

vsat kv μsat⋅→

1
μ
---

1
μdd
--------

1
μbal
---------+=

μbal μbal

μbal T( ) k T( ) Lch⋅=

Lch Lch

k T( )

k T( )
qvT

2kBT
-------------= vT

2kBT

πm∗
-------------=
Sentaurus™ Device User Guide 377
N-2017.09



15: Mobility Models 
Ballistic Mobility Model
where  is the electron charge,  is the lattice temperature,  is the Boltzmann constant, and
 is the thermal velocity with the effective mass  in the transport direction. If you define

the parameter , then the effective mass  from Eq. 369 can be expressed as:

(370)

Using , Eq. 368 can be rewritten as:

(371)

where  is a user-defined parameter specified in the parameter file. This parameter can be
adjusted to match measured device characteristics.

Kinetic Velocity Model

To avoid using the explicit channel length dependency in Eq. 371, the authors of [25]
developed a kinetic velocity model (KVM) with the following terms: thermionic emission and
free carrier acceleration. The thermionic emission term in the ballistic mobility is given by:

(372)

where  is the quasi-Fermi potential with reference to the source contact and with a negative
sign for holes,  is from Eq. 370 and can be adjusted using the parameter , and  is a
factor to an initial kinetic velocity near source.

The free carrier acceleration term in the ballistic mobility is given by:

(373)

The total KVM ballistic mobility is expressed as follows:

(374)

where  is the thermionic emission constant, which according to the theory of [26] should
equal 1.52, and  is the distribution function factor of the free carrier acceleration term,
which should be effective mass (semiconductor material) dependent.

q T kB

vT m∗
k300 k 300 K( )= m∗

m∗ q
2

600πkBk
300
2

-----------------------------=

k300

μbal T( ) k300
300
T

--------- Lch⋅=

k300

μT
bal

kBT

m∗
---------yT

qψ
kBT
--------- 
 

∇ψ
-----------------------------------= yT x( ) e

x α0 2 1 e
x–

–( )+=

ψ
m∗ k300 α0

μB
bal

kBT

m∗
---------yB

qψ
kBT
--------- 
 

∇ψ
------------------------------------= yB x( ) α0 2x+=

1
μbal
---------

αT

μT
bal

------------
αB

μB
bal

------------+=

αT

αB
378 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Ballistic Mobility Model
NOTE The free carrier acceleration term (Eq. 373) is required if pure ballistic
transport should be modeled using the drift-diffusion model. However,
for typical MOSFET applications where carrier mobility is affected by
carrier scattering in the channel, the thermionic emission term alone
(Eq. 372 and Eq. 374) should be sufficient.

Fermi–Dirac Statistics

Both Eq. 371 and Eq. 374 are written for the Boltzmann statistics, but for the strong inversion
regime in MOSFET applications, accounting for Fermi–Dirac statistics might be essential
(especially for III–V materials). To account for that, the following correction is suggested in
[25]:

(375)

where  is from Eq. 371 or Eq. 374, and  is the carrier concentration.

Frensley Rule

Typically, the ballistic mobility is combined with the total drift-diffusion mobility  using
Matthiessen’s rule (Eq. 367), but [25] and [26] suggest the following Frensley rule to compute
the final mobility :

(376)

Using the Ballistic Mobility Model

To activate the channel length–dependent ballistic mobility (Eq. 371) with available options,
you can specify the following in the Physics section of the command file:

Mobility (
BalMob(Lch = 5.0 Fermi Frensley TempDep)

)

Here, Lch is the channel length (in nm), the Fermi option activates the Fermi–Dirac correction
(Eq. 375), the Frensley option activates Eq. 376 for the final mobility  (if not specified,
Matthiessen’s rule is used), and the TempDep option activates the temperature dependency in
Eq. 371. If Lch is not specified, the default value of nm is used, which effectively disables
the model.

μbal μ̃bal
kBT

q
---------

∂ nln
∂ψ

-----------=

μ̃bal n

μdd

μ

μ
μdd
--------

μ
μbal
--------- 
  2

+ 1=

μ

107
Sentaurus™ Device User Guide 379
N-2017.09



15: Mobility Models 
Monte Carlo–Computed Mobility for Strained Silicon
The model has one user-defined fitting parameter  that is accessible in the BalMob
parameter set in the parameter file. 

To activate only the thermionic emission term of the KVM (Eq. 372 and Eq. 374) with
available options, you can specify the following in the Physics section of the command file:

Mobility (
BalMob(KVM Fermi Frensley)

)

where the KVM option must be used and activates the model, the Fermi option activates the
Fermi–Dirac correction (Eq. 375), and the Frensley option activates Eq. 376 for the final
mobility  (if not specified, Matthiessen’s rule is used). To activate the total KVM with the
free carrier acceleration term (Eq. 372, Eq. 373, and Eq. 374) the KVM(Full) option must be
used.

The KVM also has the same fitting parameter  that must be specified in the parameter file
(see Table 74) and defines the effective mass  needed in Eq. 372 and Eq. 373. In addition,
Table 75 lists the KVM-specific parameters that are accessible in the BalMob parameter set in
the parameter file. 

Monte Carlo–Computed Mobility for Strained Silicon

Based on Monte Carlo simulations [27], the parameter file StrainedSilicon.par has been
created, which is shipped with Sentaurus Device (see Default Parameters on page 35). This file
contains in-plane transport parameters at  for silicon under biaxial tensile strain that is
present when a thin silicon film is grown on top of a relaxed SiliconGermanium substrate.
(In-plane refers to charge transport that is parallel to the interface to SiliconGermanium, as
is the case in MOSFETs.)

Table 74 BalMob model: Default coefficients for silicon

Symbol Parameter name Electrons Holes Unit

k  20.0  20.0

Table 75 BalMob model: KVM default coefficients for silicon

Symbol Parameter name Electrons Holes Unit

Tfactor  2  2 1

Bfactor 0.3 0.3 1

V0factor 1 1 1

k300

k300 cm2 Vs nm⁄

μ

k300

m∗

αT

αB

α0

300 K
380 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Monte Carlo–Computed Mobility for Strained SiGe in npn-SiGe HBTs
In the Physics section of the command file, the germanium content (XFraction) of the
SiliconGermanium substrate at the interface to the StrainedSilicon channel must be
specified (this value determines the strain in the top silicon film) according to:

MoleFraction (RegionName=["TopLayer"] XFraction = 0.2 Grading = 0.0)

where the material of TopLayer is StrainedSilicon.

Band offsets and bulk mobility data are obtained from the model-solid theory of Van de Walle
and descriptions of Monte Carlo simulations [27].

A parameterization of the surface mobility model as a function of strain is not yet possible. The
present values for the parameters B and C of the surface mobility were extracted in a  bulk
MOSFET at a high effective field (where the silicon control measurements of the
references [28][29] were in good agreement with the universal mobility curve of silicon, and
where the neglected effect of the SiGe substrate is minimal) of approximately  to
reproduce reported experimental data [28][29], for the typical germanium content in the
SiliconGermanium substrate of 30%. The values for other germanium contents are given as
comments.

Monte Carlo–Computed Mobility for Strained SiGe in npn-
SiGe HBTs

Based on Monte Carlo simulations [30], the parameter file SiGeHBT.par has been created,
which is shipped with Sentaurus Device (see Default Parameters on page 35). This file contains
transport parameters at  for silicon germanium under biaxial compressive strain present
when a thin SiGe film is grown on top of a relaxed silicon substrate, which occurs in the base
of npn-SiGe heterojunction bipolar transistors (HBTs).

The electron parameters refer to the out-of-plane direction (that is, perpendicular to the
SiGe–silicon interface) and the hole parameters to the in-plane direction (that is, parallel to the
SiGe–silicon interface). The profile of the germanium content can either originate from a
process simulation or be specified in the command file of Sentaurus Device (see Abrupt and
Graded Heterojunctions on page 10).

The transport parameters have been obtained from the full-band Monte Carlo simulations [30].

The band gap in relaxed SiGe alloys has been extracted from the measurements in [31] and the
values in strained SiGe calculated according to the model solid theory of C. G. Van de Walle.

Consistent limiting values for silicon (and polysilicon) are also provided.

1 μm

0.7 MV/cm

300 K
Sentaurus™ Device User Guide 381
N-2017.09



15: Mobility Models 
Incomplete Ionization–Dependent Mobility Models
Incomplete Ionization–Dependent Mobility Models

Sentaurus Device supports incomplete ionization–dependent mobility models. This
dependence is activated by specifying the keyword IncompleteIonization in Mobility
sections. The incomplete ionization model (see Chapter 13 on page 277) must be activated
also. The Physics sections for this case can be as follows:

Physics {
IncompleteIonization
Mobility ( Enormal IncompleteIonization )

}

In this case, for all equations that contain , Sentaurus Device will use
.

The following mobility models depend on incomplete ionization:

■ Masetti model, see Eq. 247

■ Arora model, see Eq. 248

■ University of Bologna bulk model, see Eq. 252–Eq. 254

■ Philips unified model, see Eq. 271 and Eq. 272

■ Lombardi model, see Eq. 277 and Eq. 280

■ IALMob model, see Eq. 282, Eq. 294, Eq. 295, Eq. 300, Eq. 302, and Eq. 303

■ University of Bologna inversion layer model, see Eq. 307–Eq. 309

■ Coulomb degradation components, see Eq. 311

■ RCS model, see Eq. 316 and Eq. 317

Poole–Frenkel Mobility (Organic Material Mobility)

Most organic semiconductors have mobilities dependent on the electric field. Sentaurus Device
supports mobilities having a square-root dependence on the electric field, which is a typical
mobility dependence for organic semiconductors. The mobility as a function of the electric
field is given by:

(377)

where  is the low-field mobility,  and  are fitting parameters,  is the effective
activation energy, and  is the driving force (electric field).

NA,0 ND,0 N, , tot

NA ND, N, i

μ μ0

E0

kT
------– 

  F
β
T
--- γ– 
 

 
 expexp=

μ0 β γ E0

F

382 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Poole–Frenkel Mobility (Organic Material Mobility)
The parameters , , and  can be adjusted in the PFMob section of the parameter file:

Material = "pentacene"
...
PFMob {

beta_e = 1.1
beta_h = 1.1
E0_e = 0.0
E0_h = 0.0
gamma_e = 0.1
gamma_h = 0.2

}
...
}

with their default parameters: beta_e=beta_h=0.1, E0_e=E0_h=0 (in ), and
gamma_e=gamma_h=0.0.

Since the derivative of mobility with respect to the driving force is infinite at zero fields, the
evaluation of this derivative is performed by replacing the square root of the driving force with
an equivalent approximation having a finite derivative for zero field. The approximation of the
square root with the regular square root can be adjusted by specifying the parameter
delta_sqrtReg in the PFMob section of the parameter file. Typical values are in the range
0.1–0.0001; its default value is 0.1.

The model can be activated for both electrons and holes by specifying the keyword PFMob as
a model for HighFieldSaturation in the Mobility section and the driving force as a
parameter:

Physics(Region="pentacene") {
...
Mobility (

HighFieldSaturation(PFMob Eparallel)
)
...

}

The model can also be selected for electrons or holes separately:

Physics { Mobility ( [eHighFieldSaturation(PFMob Eparallel)]
[hHighFieldSaturation(PFMob Eparallel)]) ...}

NOTE Because the Poole–Frenkel mobility model is implemented through the
high-field saturation framework, all the parameters specified for driving
forces (see Driving Force Models on page 369) also apply to this model.

E0 β γ

eV
Sentaurus™ Device User Guide 383
N-2017.09



15: Mobility Models 
Mobility Averaging
Mobility Averaging

Sentaurus Device computes separate values of the mobility for each vertex of each
semiconductor element of the mesh. To guarantee current conservation, these mobilities are
then averaged to obtain either one value for each semiconductor element of the mesh or one
value for each edge of each semiconductor element.

Element averaging is used by default and requires less memory than element–edge averaging.
Element–edge averaging results in a smaller discretization error than element averaging, in
particular, when the enhanced Lombardi model (see Enhanced Lombardi Model on page 334)
with  is used. The time to compute the mobility is nearly identical for both approaches.

To select the mobility averaging approach, specify eMobilityAveraging and
hMobilityAveraging in the Math section. The value is Element for element averaging,
and ElementEdge for element–edge averaging.

Mobility Doping File

The Grid parameter in the File section of a command file can be used to read a TDR file that
contains the device geometry, mesh, and doping. 

By default, the doping read from this file is used in the mobility calculations previously
described. 

As an alternative, Sentaurus Device allows the donor and acceptor concentrations for mobility
calculations only to be read from a separate TDR file. This is accomplished using the
MobilityDoping parameter:

File {
Grid           = "mosfet.tdr"
MobilityDoping = "mosfet_mobility.tdr"

}

Notes:

■ The geometry and mesh in the MobilityDoping file must match the Grid file.

■ If a MobilityDoping file is specified, it disables the mobility dependency on
IncompleteIonization if this mobility option is specified.

■ The donor and acceptor concentrations read from a MobilityDoping file can be specified
in the Plot section of the command file with MobilityDonorConcentration and
MobilityAcceptorConcentration, respectively.

α⊥ 0≠
384 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Effective Mobility
■ For PMI models, the MobilityDoping file concentrations can be read using:

double Nd = ReadDoping("MobilityDonorConcentration")
double Na = ReadDoping("MobilityAcceptorConcentration")

Effective Mobility

It is often useful to know the effective channel mobility seen by carriers as well as other
effective or averaged quantities in the channel. To simplify the task of obtaining such
quantities, Sentaurus Device provides an EffectiveMobility current plot PMI that extracts
several quantities of interest for both electrons and holes. Table 76 lists the electron quantities
extracted by the EffectiveMobility PMI. The extracted hole quantities are analogous. 

Table 76 Electron quantities extracted with the EffectiveMobility PMI; hole quantities are 
analogous (  or  if UseSHEDensity = 0 or 1, respectively)

Name Symbol Start Point or Start Box method Volume Box method Unit

eSheetDensity

eAverageDensity

eSHESheetDensity

eSHEAverageDensity

eAverageField V/cm

eEffectiveField V/cm

eChargeEffField V/cm

ñ n= nSHE

nsheet

n s( ) sd

0

smax


n r( ) Ωd

Sd
---------------------

cm
2–

navg
1

smax
---------- n s( ) sd

0

smax


n r( ) Ωd

Ωd
---------------------

cm
3–

nSHE,sheet

nSHE s( ) sd

0

smax


nSHE r( ) Ωd

Sd
------------------------------

cm
2–

nSHE,avg
1

smax
---------- nSHE s( ) sd

0

smax


nSHE r( ) Ωd

Ωd
------------------------------

cm
3–

Eavg,n
1

ñsheet

------------ E⊥ s( )ñ s( ) sd

0

smax


E r( ) ñ r( ) Ωd

ñ r( ) Ωd
------------------------------------

Eeff,n
Eavg,n ηe

1
2
---– 

  q
εs
---- ñsheet+ Eavg,n ηe

1
2
---– 

  q
εs
---- ñsheet+

Eeff,ch,n
q
εs
---- NA ND– p–( ) sd

0

smax

 ηeñsheet+
 
 
 
 

q
εs
----

NA ND– p–( ) Ωd
Sd

---------------------------------------------- ηeñsheet+
 
 
 
 
Sentaurus™ Device User Guide 385
N-2017.09



15: Mobility Models 
Effective Mobility
EffectiveMobility PMI Methods

The EffectiveMobility PMI provides different methods for extracting quantities from the
device:

■ The Start Point method extracts quantities at a single point in the channel. The method is
invoked by specifying the Start parameter (see Using the EffectiveMobility PMI) to
identify the starting location for a line that will pass through the structure. The extracted
quantities will be obtained from integrals along this line. By default, the selected Start
location will snap to the nearest semiconductor–insulator interface vertex, and the line will
be normal to the interface.

■ The Start Box method is an extension of the Start Point method and is used to extract
quantities over an extended region of the channel. The method is invoked by specifying the
StartBoxMin and StartBoxMax parameters to surround the portion of the
semiconductor–insulator interface where the extraction will occur. All interface vertices
enclosed in the start box will be used as starting locations for line integrals through the
device. The reported extracted quantities will be an interface-area weighted average of all
the calculated line integrals.

■ In contrast to the previous method, the quantities extracted with the Volume Box method
will be obtained by performing volume integrals over a selected portion of the device. The
method is invoked by specifying the BoxMin and BoxMax parameters to identify where the
integration should occur. The specified box should surround both the interface and volume

eMobility cm2/Vs

eStressFactorXX 1

eStressFactorYY 1

eStressFactorZZ 1

Table 76 Electron quantities extracted with the EffectiveMobility PMI; hole quantities are 
analogous (  or  if UseSHEDensity = 0 or 1, respectively) (Continued)

Name Symbol Start Point or Start Box method Volume Box method Unit

ñ n= nSHE

μeff,n
1

ñsheet

------------ μn s( )ñ s( ) sd

0

smax


μn r( )ñ r( ) Ωd

ñ r( ) Ωd
-----------------------------------

μn,xx

μn0
----------- 
 

eff
1

ñsheetμeff,n

-------------------------
μn,xx

μn0
----------- 
 μn s( )ñ s( ) sd

0

smax


μn,xx μn0⁄( )μ

n
r( )ñ r( ) Ωd

μn r( )ñ r( ) Ωd
-----------------------------------------------------------------

μn,yy

μn0
----------- 
 

eff
1

ñsheetμeff,n

-------------------------
μn,yy

μn0
----------- 
 μn s( )ñ s( ) sd

0

smax


μn,yy μn0⁄( )μ

n
r( )ñ r( ) Ωd

μn r( )ñ r( ) Ωd
-----------------------------------------------------------------

μn,zz

μn0
----------- 
 

eff
1

ñsheetμeff,n

-------------------------
μn,zz

μn0
----------- 
 μn s( )ñ s( ) sd

0

smax


μn,zz μn0⁄( )μ

n
r( )ñ r( ) Ωd

μn r( )ñ r( ) Ωd
----------------------------------------------------------------
386 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
Effective Mobility
of interest. The size of the semiconductor–insulator interface area enclosed in the box will
be extracted and used in the calculations whenever a sheet density (#/ ) is required.

Using the EffectiveMobility PMI

To include the quantities listed in Table 76 on page 385 in the current plot file, specify one or
more instances of the EffectiveMobility PMI in the CurrentPlot section of the
command file. The syntax and options for the EffectiveMobility PMI are:

CurrentPlot {
PMIModel (

Name = "EffectiveMobility"
[GroupName = <string>]
[ [ Start = (x0, y0, z0) [SnapToNode = 0 | 1] ] |

[ StartBoxMin = (xmin, ymin, zmin) StartBoxMax = (xmax, ymax, zmax) ]
[Direction = (dx, dy, dz)] [Depth = smax] ] |

[BoxMin = (xmin, ymin, zmin) BoxMax = (xmax, ymax, zmax) [Width = <float>] ]
[Region = (<string1>, <string2>, ...)]
[ChannelType = -1 | 1 | 0]
[eta_e = ] [eta_h = ] [epsilon = ]
[UseSHEDensity = 0 | 1]

)
}

The parameters are described here:

■ GroupName is the name of the data group for the extracted quantities. A data group with
this name will appear in Sentaurus Visual or Inspect when a current plot file (*.plt file)
is loaded. The default group name is "Channel". If there is more than one
EffectiveMobility PMI used in a CurrentPlot section, GroupName must be used to
distinguish between different sets of results.

■ Start specifies the starting location used in the Start Point method. All coordinates must
be specified in . Only the coordinates corresponding to the dimensionality of the
structure are required (for example, only x0 and y0 in two dimensions).

■ SnapToNode is used to snap the Start location to the nearest semiconductor–insulator
interface vertex. Specify SnapToNode=1 to snap (default). Specify SnapToNode=0 to not
snap.

■ Direction is used to specify a direction vector for the line along which the line integrals
will be performed. By default, the direction for lines initiated at a semiconductor–insulator
interface vertex will be taken as normal to the interface. If Direction is specified, the
units are arbitrary, as the specified direction vector will be normalized.

■ Depth is the line integration distance in . The default is . The actual integration
distance may be shorter if the line encounters a structure boundary, a non-semiconductor

cm2

ηe ηh εs ε0⁄

μm

μm 0.5 μm
Sentaurus™ Device User Guide 387
N-2017.09



15: Mobility Models 
References
material, or a region not included in the Region list (see below). Depth is usually chosen
so that contributions to the integral beyond a distance of Depth are negligible.

■ StartBoxMin and StartBoxMax specify the minimum and maximum coordinates for a
box that surrounds the semiconductor–insulator interface starting points used in the Start
Box method. All coordinates are specified in .

■ BoxMin and BoxMax specify the minimum and maximum coordinates for a box that
surrounds the semiconductor volume and interface used in the Volume Box method. All
coordinates are specified in .

■ Width represents an interface length in two dimensions or an interface area in three
dimensions, and is used when sheet densities are required for the extracted quantities.
Width must be specified in  for 2D structures and  for 3D structures. If Width is
not specified, the interface length or area is extracted automatically from the portion of the
interface enclosed within the user-specified box. A default value of Width =  in
two dimensions or  in three dimensions will be used if an interface length or
area cannot be found.

■ Region can optionally be used to specify a list of region names where the extraction
calculations will be confined. If Region is not specified, all semiconductor regions will be
considered. 

■ ChannelType specifies which quantities are extracted. Specify ChannelType=-1 to
extract electron quantities. Specify ChannelType=1 to extract hole quantities. Specify
ChannelType=0 to extract both quantities.

■ eta_e, eta_h, and epsilon are parameters used in the calculation of effective fields.
Their default values are eta_e=0.5, eta_h=0.333333, and epsilon=11.7.

■ UseSHEDensity specifies whether the standard carrier densities (UseSHEDensity=0) or
the SHE carrier densities (UseSHEDensity=1) are used as the weighting functions in the
integral calculations. The default is UseSHEDensity=0.

References

[1] C. Lombardi et al., “A Physically Based Mobility Model for Numerical Simulation of
Nonplanar Devices,” IEEE Transactions on Computer-Aided Design, vol. 7, no. 11,
pp. 1164–1171, 1988.

[2] G. Masetti, M. Severi, and S. Solmi, “Modeling of Carrier Mobility Against Carrier
Concentration in Arsenic-, Phosphorus-, and Boron-Doped Silicon,” IEEE Transactions
on Electron Devices, vol. ED-30, no. 7, pp. 764–769, 1983.

[3] N. D. Arora, J. R. Hauser, and D. J. Roulston, “Electron and Hole Mobilities in Silicon
as a Function of Concentration and Temperature,” IEEE Transactions on Electron
Devices, vol. ED-29, no. 2, pp. 292–295, 1982.

μm

μm

μm μm2

0.04 μm
0.0016 μm2
388 Sentaurus™ Device User Guide
N-2017.09



15: Mobility Models
References
[4] S. Reggiani et al., “A Unified Analytical Model for Bulk and Surface Mobility in Si n-
and p-Channel MOSFET’s,” in Proceedings of the 29th European Solid-State Device
Research Conference (ESSDERC), Leuven, Belgium, pp. 240–243, September 1999.

[5] S. Reggiani et al., “Electron and Hole Mobility in Silicon at Large Operating
Temperatures—Part I: Bulk Mobility,” IEEE Transactions on Electron Devices, vol. 49,
no. 3, pp. 490–499, 2002.

[6] M. S. Shur, “Low Ballistic Mobility in Submicron HEMTs,” IEEE Electron Device
Letters, vol. 23, no. 9, pp. 511–513, 2002.

[7] S. C. Choo, “Theory of a Forward-Biased Diffused-Junction P-L-N Rectifier—Part I:
Exact Numerical Solutions,” IEEE Transactions on Electron Devices, vol. ED-19, no. 8,
pp. 954–966, 1972.

[8] N. H. Fletcher, “The High Current Limit for Semiconductor Junction Devices,”
Proceedings of the IRE, vol. 45, no. 6, pp. 862–872, 1957.

[9] A. Schenk, Advanced Physical Models for Silicon Device Simulation, Wien: Springer,
1998.

[10] D. B. M. Klaassen, “A Unified Mobility Model for Device Simulation—I. Model
Equations and Concentration Dependence,” Solid-State Electronics, vol. 35, no. 7,
pp. 953–959, 1992.

[11] M. N. Darwish et al., “An Improved Electron and Hole Mobility Model for General
Purpose Device Simulation,” IEEE Transactions on Electron Devices, vol. 44, no. 9,
pp. 1529–1538, 1997.

[12] S. A. Mujtaba, Advanced Mobility Models for Design and Simulation of Deep
Submicrometer MOSFETs, Ph.D. thesis, Stanford University, Stanford, CA, USA,
December 1995.

[13] W. Hänsch and M. Miura-Mattausch, “The hot-electron problem in small semiconductor
devices,” Journal of Applied Physics, vol. 60, no. 2, pp. 650–656, 1986.

[14] S. Takagi et al., “On the Universality of Inversion Layer Mobility in Si MOSFET’s:
Part I—Effects of Substrate Impurity Concentration,” IEEE Transactions on Electron
Devices, vol. 41, no. 12, pp. 2357–2362, 1994.

[15] G. Baccarani, A Unified mobility model for Numerical Simulation, Parasitics Report,
DEIS-University of Bologna, Bologna, Italy, 1999.

[16] H. Tanimoto et al., “Modeling of Electron Mobility Degradation for HfSiON
MISFETs,” in International Conference on Simulation of Semiconductor Processes and
Devices (SISPAD), Monterey, CA, USA, September 2006.

[17] W. J. Zhu and T. P. Ma, “Temperature Dependence of Channel Mobility in HfO2-Gated
NMOSFETs,” IEEE Electron Device Letters, vol. 25, no. 2, pp. 89–91, 2004.
Sentaurus™ Device User Guide 389
N-2017.09



15: Mobility Models 
References
[18] S. Reggiani et al., “Low-Field Electron Mobility Model for Ultrathin-Body SOI and
Double-Gate MOSFETs With Extremely Small Silicon Thicknesses,” IEEE
Transactions on Electron Devices, vol. 54, no. 9, pp. 2204–2212, 2007.

[19] C. Canali et al., “Electron and Hole Drift Velocity Measurements in Silicon and Their
Empirical Relation to Electric Field and Temperature,” IEEE Transactions on Electron
Devices, vol. ED-22, no. 11, pp. 1045–1047, 1975.

[20] D. M. Caughey and R. E. Thomas, “Carrier Mobilities in Silicon Empirically Related to
Doping and Field,” Proceedings of the IEEE, vol. 55, no. 12, pp. 2192–2193, 1967.

[21] J. J. Barnes, R. J. Lomax, and G. I. Haddad, “Finite-Element Simulation of GaAs
MESFET’s with Lateral Doping Profiles and Submicron Gates,” IEEE Transactions on
Electron Devices, vol. ED-23, no. 9, pp. 1042–1048, 1976.

[22] M. Farahmand et al., “Monte Carlo Simulation of Electron Transport in the III-Nitride
Wurtzite Phase Materials System: Binaries and Ternaries,” IEEE Transactions on
Electron Devices, vol. 48, no. 3, pp. 535–542, 2001.

[23] V. M. Polyakov and F. Schwierz, “Influence of Electron Mobility Modeling on DC I–V
Characteristics of WZ-GaN MESFET,” IEEE Transactions on Electron Devices,
vol. 48, no. 3, pp. 512–516, 2001.

[24] B. Meinerzhagen and W. L. Engl, “The Influence of the Thermal Equilibrium
Approximation on the Accuracy of Classical Two-Dimensional Numerical Modeling of
Silicon Submicrometer MOS Transistors,” IEEE Transactions on Electron Devices,
vol. 35, no. 5, pp. 689–697, 1988.

[25] O. Penzin, L. Smith, M. Choi, A. Erlebach, and K.-H. Lee, “Kinetic velocity model to
account for ballistic effects in the drift-diffusion transport approach,” to be published.

[26] W. R. Frensley, “Barrier-Limited Transport in Semiconductor Devices,” IEEE
Transactions on Electron Devices, vol. ED-30, no. 12, pp. 1619–1623, 1983.

[27] F. M. Bufler and W. Fichtner, “Hole and electron transport in strained Si: Orthorhombic
versus biaxial tensile strain,” Applied Physics Letters, vol. 81, no. 1, pp. 82–84, 2002.

[28] M. T. Currie et al., “Carrier mobilities and process stability of strained Si n- and
p-MOSFETs on SiGe virtual substrates,” Journal of Vacuum Science & Technology B,
vol. 19, no. 6, pp. 2268–2279, 2001.

[29] C. W. Leitz et al., “Hole mobility enhancements and alloy scattering-limited mobility in
tensile strained Si/SiGe surface channel metal–oxide–semiconductor field-effect
transistors,” Journal of Applied Physics, vol. 92, no. 7, pp. 3745–3751, 2002.

[30] F. M. Bufler, Full-Band Monte Carlo Simulation of Electrons and Holes in Strained Si
and SiGe, München: Herbert Utz Verlag, 1998.

[31] R. Braunstein, A. R. Moore, and F. Herman, “Intrinsic Optical Absorption in
Germanium-Silicon Alloys,” Physical Review, vol. 109, no. 3, pp. 695–710, 1958.
390 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 16 Generation–Recombination

This chapter describes the generation–recombination processes that
can be modeled in Sentaurus Device.

Generation–recombination processes are processes that exchange carriers between the
conduction band and the valence band. They are very important in device physics, in particular,
for bipolar devices. This chapter describes the generation–recombination models available in
Sentaurus Device. Most models are local in the sense that their implementation (sometimes in
contrast to reality) does not involve spatial transport of charge. For each individual generation
or recombination process, the electrons and holes involved appear or vanish at the same
location. The only exceptions are one of the trap-assisted tunneling models and one of the
band-to-band tunneling models (see Dynamic Nonlocal Path Trap-Assisted Tunneling on
page 400 and Dynamic Nonlocal Path Band-to-Band Tunneling Model on page 436). For other
models that couple the conduction and valence bands and account for spatial transport of
charge, see Tunneling and Traps on page 463 and Nonlocal Tunneling at Interfaces, Contacts,
and Junctions on page 722.

Shockley–Read–Hall Recombination

Recombination through deep defect levels in the gap is usually labeled Shockley–Read–Hall
(SRH) recombination. In Sentaurus Device, the following form is implemented:

(378)

with:

(379)

and:

(380)

where  is the difference between the defect level and intrinsic level. The variable  is
accessible in the parameter file. The silicon default value is .

Rnet
SRH np ni,eff

2
–

τp n n1+( ) τn p p1+( )+
---------------------------------------------------------=

n1 ni,eff

Etrap

kT
----------- 
 exp=

p1 ni,eff

E– trap

kT
-------------- 
 exp=

Etrap Etrap

Etrap 0=
Sentaurus™ Device User Guide 391
N-2017.09



16: Generation–Recombination
Shockley–Read–Hall Recombination
The lifetimes  and  are modeled as a product of a doping-dependent (see SRH Doping
Dependence on page 393), field-dependent (see SRH Field Enhancement on page 396), and
temperature-dependent (see SRH Temperature Dependence on page 394) factor:

(381)

where  or . For an additional density dependency of the lifetimes, see Trap-
Assisted Auger Recombination on page 403.

For simulations that use Fermi statistics (see Fermi Statistics on page 176) or quantization (see
Chapter 14 on page 283), Eq. 378 needs to be generalized. The modified equation reads:

(382)

where  and  are given by Eq. 47 and Eq. 48, p. 177.

Using SRH Recombination

The generation–recombination models are selected in the Physics section as an argument to
the Recombination keyword:

Physics{ Recombination( <arguments> ) ...}

The SRH model is activated by specifying the SRH argument:

Physics{ Recombination( SRH ...) ...}

The keyword for plotting the SRH recombination rate is:

Plot{ ...
SRHRecombination

}

τn τp

τc τdop
f T( )

1 gc F( )+
-----------------------=

c n= c p=

Rnet
SRH np γnγpn

i,eff
2

–

τp n γnn
1

+( ) τn p γpp
1

+( )+
-------------------------------------------------------------------=

γn γp
392 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Shockley–Read–Hall Recombination
SRH Doping Dependence

The doping dependence of the SRH lifetimes is modeled in Sentaurus Device with the
Scharfetter relation:

(383)

Such a dependence arises from experimental data [1] and the theoretical conclusion that the
solubility of a fundamental, acceptor-type defect (probably a divacancy (E5) or a vacancy
complex) is strongly correlated to the doping density [2][3][4]. Default values are listed in
Table 77 on page 395. The Scharfetter relation is used when the argument
DopingDependence is specified for the SRH recombination. Otherwise,  is used.

The evaluation of the SRH lifetimes according to the Scharfetter model is activated by
specifying the additional argument DopingDependence for the SRH keyword in the
Recombination statement:

Physics{ Recombination( SRH( DopingDependence ... ) ...) ...}

Lifetime Profiles From Files

Sentaurus Device can use spatial lifetime profiles provided by a file. Such profiles can be
precomputed or generated manually by an editor such as Sentaurus Structure Editor (refer to
the Sentaurus™ Structure Editor User Guide).

The names of the datasets for the electron and hole lifetimes must be eLifetime and
hLifetime, respectively. They are loaded from a file named by the keyword LifeTime in the
File section:

File {
Grid     = "MyDev_msh.tdr"
LifeTime = "MyDev_msh.tdr"
...

}

For each grid point, the values defined by the lifetime profile are used as  in Eq. 383.

The lifetime data can be in a separate file from the doping, but must correspond to the same
grid.

τdop NA 0, ND 0,+( ) τmin

τmax τmin–

1
NA 0, ND 0,+

Nref
------------------------------
 
 
  γ

+

------------------------------------------------+=

τ τmax=

τmax
Sentaurus™ Device User Guide 393
N-2017.09



16: Generation–Recombination
Shockley–Read–Hall Recombination
Improved Nakagawa Model

The Scharfetter relation can be expanded to be:

(384)

Here,  is an additional fitting parameter. By default, , and Eq. 384 is simplified as:

(385)

This is the same as Eq. 383. By default,  and . Eq. 385 is further simplified as:

(386)

This is the original equation in [5]. Table 77 on page 395 lists the default values. To activate
the Nakagawa model, an additional option Nakagawa is specified in the
SRH(DopingDependence) statement:

Physics{ Recombination( SRH( DopingDependence ( Nakagawa )... ) ...) ...}

SRH Temperature Dependence

To date, there is no consensus on the temperature dependence of the SRH lifetimes. This
appears to originate from a different understanding of lifetime. From measurements of the
recombination lifetime [6][7]:

(387)

in power devices (  is the excess carrier density under neutral conditions, ), it was
concluded that the lifetime increases with rising temperature. Such a dependence was modeled
either by a power law [6][7]:

(388)

τdop NA 0, ND 0,+( )

τmax τmin

NA 0, ND 0,+

Nref
------------------------------
 
 
  γ

+

1
τmax

τ0
----------

NA 0, ND 0,+

Nref
------------------------------
 
 
  γ

+

------------------------------------------------------------------=

τ0 τ0 τmax=

τdop NA 0, ND 0,+( )

τmax τmin

NA 0, ND 0,+

Nref
------------------------------
 
 
  γ

+

1
NA 0, ND 0,+

Nref
------------------------------
 
 
  γ

+

------------------------------------------------------------------ τmin

τmax τmin–

1
NA 0, ND 0,+

Nref
------------------------------
 
 
  γ

+

------------------------------------------------+= =

τmin 0= γ 1=

1
τdop NA 0, ND 0,+( )
----------------------------------------------

1
τmax
----------

1
τmax
----------

NA 0, ND 0,+

Nref
------------------------------
 
 
 

⋅+=

τ δn R⁄=

δn δn δp=

τ T( ) τ0
T

300 K
--------------
 
 
 

α

=

394 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Shockley–Read–Hall Recombination
or an exponential expression of the form:

(389)

A calculation using the low-temperature approximation of multiphonon theory [8] gives:

 with (390)

with , which is the expected decrease of minority carrier lifetimes with rising
temperature. Since the temperature behavior strongly depends on the nature of the
recombination centers, there is no universal law .

In Sentaurus Device, the power law model, Eq. 388, can be activated with the keyword
TempDependence in the SRH statement:

Physics{ Recombination( SRH( TempDependence ...) ...}

Additionally, Sentaurus Device supports an exponential model for :

 (391)

This model is activated with the keyword ExpTempDependence:

Physics{ Recombination( SRH( ExpTempDependence ...) ...}

SRH Doping- and Temperature-Dependent Parameters

All the parameters of the doping- and temperature-dependent SRH recombination models are
accessible in the parameter set Scharfetter. 

Table 77 Default parameters for doping- and temperature-dependent SRH lifetime

Symbol Parameter name  Electrons  Holes Unit

taumin 0 0 s

taumax s

tau0 s

Nref

gamma 1 1 1

Talpha –1.5 –1.5 1

τ T( ) τ0e
C

T
300 K
-------------- 1– 
 

=

τSRH T( ) τSRH 300 K( ) f T( )⋅= f T( ) T
300 K
--------------
 
 
 

Tα

=

Tα 3 2⁄–=

τSRH T( )

f T( )

f T( ) e
C

T
300 K
-------------- 1– 
 

=

τmin

τmax 1
5–×10 3

6–×10

τ0 1
5–×10 3

6–×10

Nref 1
16×10 1

16×10 cm
3–

γ

Tα
Sentaurus™ Device User Guide 395
N-2017.09



16: Generation–Recombination
Shockley–Read–Hall Recombination
SRH Field Enhancement

Field enhancement reduces SRH recombination lifetimes in regions of strong electric fields. It
must not be neglected if the electric field exceeds a value of approximately  in
certain regions of the device. For example, the I–V characteristics of reverse-biased p-n
junctions are extremely sensitive to defect-assisted tunneling, which causes electron–hole pair
generation before band-to-band tunneling or avalanche generation sets in. Therefore, it is
recommended that field-enhancement is included in the simulation of drain reverse leakage and
substrate currents in MOS transistors.

Sentaurus Device provides two field-enhancement models: the Schenk trap-assisted tunneling
model (see Schenk Trap-Assisted Tunneling (TAT) Model on page 397) and the Hurkx trap-
assisted tunneling model (see Hurkx TAT Model on page 399). The Hurkx model is also
available for trap capture and emission rates (see Hurkx Model for Cross Sections on
page 458).

Using Field Enhancement

The local field–dependence of the SRH lifetimes is activated by parameters in the
ElectricField option of SRH:

SRH( ...
ElectricField (

Lifetime = Schenk | Hurkx | Constant
DensityCorrection = Local | None

)
)

Lifetime selects the lifetime model. The default is Constant, for field-independent lifetime.
Schenk selects the Schenk lifetimes (see Schenk Trap-Assisted Tunneling (TAT) Model on
page 397), and Hurkx selects the Hurkx lifetimes (see Hurkx TAT Model on page 399).

DensityCorrection defaults to None. A value of Local selects the model described in
Schenk TAT Density Correction on page 398.

Tcoeff 2.55 2.55 1

Etrap 0 0 eV

Table 77 Default parameters for doping- and temperature-dependent SRH lifetime

Symbol Parameter name  Electrons  Holes Unit

C

Etrap

3 5×10 V/cm
396 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Shockley–Read–Hall Recombination
For backward compatibility:

■ SRH (Tunneling) selects Lifetime = Schenk and DensityCorrection = Local.

■ SRH(Tunneling(Hurkx)) selects Lifetime = Hurkx and DensityCorrection =
None.

NOTE The inclusion of defect-assisted tunneling may lead to convergence
problems. In such cases, it is recommended that the flag
NoSRHperPotential is specified in the Math section. This causes
Sentaurus Device to exclude derivatives of  with respect to the
potential from the Jacobian matrix.

Schenk Trap-Assisted Tunneling (TAT) Model

The field dependence of the recombination rate is taken into account by the field enhancement
factors:

(392)

of the SRH lifetimes [8] (see Eq. 381).

In the case of electrons,  has the form:

(393)

where  denotes the energy of an optimum horizontal transition path, which depends on field
strength and temperature in the following way:

(394)

In this expression,  is the lattice relaxation energy,  is the Huang–Rhys factor,
 is the effective phonon energy,  is the energy level of the recombination center (thermal

depth), and  is the electro-optical frequency. The mass  is the
electron tunneling mass in the field direction and is given in the parameter file. The expression
for holes follows from Eq. 393 by replacing  with  and  with .

g F( )

1 g F( )+[ ] 1–

g F( )

gn F( ) 1
hΘ( )3 2⁄

Et E0–

E0hω0
---------------------------------------------+

 
 
 
 

1
2
---–

hΘ( )3 4⁄
Et E0–( )1 4⁄

2 EtE0

--------------------------------------------------------
hΘ
kT
----- 
 

3
2
---

Et E0–

hω0

-------------–
hω0 kT–

2hω0

------------------
2Et kT+

2hω0

---------------------
Et

εR
-----ln

E0

hω0

-------
E0

εR
------ln–

Et E0–

kT
------------- 4

3
--

Et E0–

hΘ------------- 
 

3
2
---

–+ + +
 
 
 

exp×

=

E0

E0 2 εF εF Et εR+ + εF–[ ] εR–= εF,
2εRkT( )2

hΘ( )
3

-----------------------=

εR Shω0= S
hω0 Et

Θ q2F2 2hmΘ n,⁄( )1 3⁄
= mΘ n,

mΘ n, mΘ p, Et Eg,eff E– t
Sentaurus™ Device User Guide 397
N-2017.09



16: Generation–Recombination
Shockley–Read–Hall Recombination
For electrons,  is related to the defect level  of Eq. 379 and Eq. 380 by:

(395)

where the effective Rydberg constant  is:

(396)

where  is the Rydberg energy ( ),  is the relative dielectric constant, and  is a
fit parameter. 

For holes,  is given by:

(397)

Note that  is measured from the intrinsic level and not from mid gap. The zero-field
lifetime  is defined by Eq. 383.

Schenk TAT Density Correction

In the original Schenk model [8], the density  in Eq. 378 is replaced by:

(398)

with  and  according to Eq. 394 and Eq. 395.  is replaced by an analogous expression.

The parameters  and  are close to one for significantly
large densities and vanish for small densities, switching off the density correction and
improving numeric robustness. The reference densities  and  are specified (in ) by
the DenCorRef parameter pair in the TrapAssistedTunneling parameter set. They default
to .

The parameters for the Schenk model are accessible in the parameter set
TrapAssistedTunneling. The default parameters implemented in Sentaurus Device are
related to the gold acceptor level: , , and .
TrapAssistedTunneling provides a parameter MinField (specified in ) used for
smoothing at small electric fields. A value of zero (the default) disables smoothing.

Et Etrap

Et
1
2
---Eg,eff

3
4
---kT

mn

mp
------
 
 
 

ln Etrap– 32RCh3Θ3( )1 4/–+=

RC

RC mC
Z2

ε2
----- 
 Ry=

Ry 13.606 eV ε Z

Et

Et
1
2
---Eg,eff

3
4
---kT

mn

mp
------
 
 
 

ln– Etrap 32RVh3Θ3( )1 4/–+=

Etrap

τSRH

n

ñ n
γn EF,n∇ Et E0–( )

kTF
---------------------------------------------– 

 exp=

E0 Et p

γn n n nref+( )⁄= γp p p pref+( )⁄=

nref pref cm 3–

103 cm 3–

Etrap 0 eV= S 3.5= hω0 0.068 eV=
Vcm 1–
398 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Shockley–Read–Hall Recombination
Hurkx TAT Model

The following equations apply to electrons and holes. The lifetimes and capture cross sections
become functions of the trap-assisted tunneling factor :

,   (399)

where  is given by:

(400)

with the approximate solutions:

(401)

where  and  are respectively defined as:

, where (402)

(403)

where  is the carrier tunneling mass and  is an energy of trap level that is taken from
SRH recombination if the model is applied to the lifetimes ( ) or from trap equations if it is
applied to cross sections ( ).

When quantization is active (see Chapter 14 on page 283), the classical density:

(404)

g F( ) Γtat=

τ τ0 1 Γtat+( )⁄= σ σ0 1 Γtat+( )=

Γtat

Γtat u
2
3
---

u
3

Ẽ
---------–exp ud

0

En
˜

=

Γtat

πẼ
1
3
---Ẽ

2
2 erfc

1
2
---

En
˜

Ẽ
------ Ẽ–
 
 
 

–
 
 
 

                                                        Ẽ En
˜≤,exp⋅

πẼ En
˜ 1 4⁄

⋅ En
˜ Ẽ En

˜ 1
3
---

En
˜ 3

Ẽ
-------------+ +– erfc En

˜ 1 4⁄
Ẽ En

˜ 3 4⁄
Ẽ⁄–[ ]      Ẽ En

˜>,exp










≈

Ẽ En
˜

Ẽ
E
E0
------= E0

8m0m
t
k3T3

qh
--------------------------------=

En
˜

En

kT
------

0                            kT
n
ni
----ln 0.5Eg>,

0.5Eg

kT
--------------

n
ni
----                     Etrap kT

n
ni
----ln 0.5Eg≤ ≤,ln–

0.5Eg

kT
--------------

Etrap

kT
-----------      Etrap kT

n
ni
----ln>,–













= =

mt Etrap

τ
σ

ncl n
Λ
kT
------ 
 exp=
Sentaurus™ Device User Guide 399
N-2017.09



16: Generation–Recombination
Shockley–Read–Hall Recombination
rather than the true density  enters Eq. 403.

The Hurkx model has only one parameter, , the carrier tunneling mass, which can be
specified in the parameter file for electrons and holes as follows:

HurkxTrapAssistedTunneling {
mt = <value>, <value>

}

Dynamic Nonlocal Path Trap-Assisted Tunneling

The local Schenk and Hurkx TAT models described in SRH Field Enhancement on page 396
may fail to give accurate results at low temperatures or near abrupt junctions with a strong,
nonuniform, electric field profile. Moreover, the local TAT models are not suitable for
computing TAT in heterojunctions where the band edge is modulated by the material
composition rather than the electric field. In addition to the local Schenk and Hurkx TAT
models, Sentaurus Device provides dynamic nonlocal path Schenk and Hurkx TAT models.
These models take into account nonlocal TAT processes with the WKB transmission
coefficient based on the exact tunneling barrier. In the present models, electrons and holes are
captured in or emitted from the defect level at different locations by the phonon-assisted
tunneling process. As a result, the position-dependent electron and hole recombination rates as
well as the recombination rate at the defect level are all different. For each location and for each
carrier type, the tunneling path is determined dynamically based on the energy band profile
rather than predefined by the nonlocal mesh. Therefore, the present models do not require user-
specification of the nonlocal mesh.

NOTE The nonlocal path TAT models are not suitable for AC or noise analysis
as nonlocal derivative terms in the Jacobian matrix are not taken into
account. The lack of the derivative terms can degrade convergence when
the high-field saturation mobility model is switched on, or when the
series resistance is defined at electrodes, or when there is a floating
region.

Recombination Rate

To compute the net electron recombination rate, the model dynamically searches for the
tunneling path with the following assumptions:

■ The tunneling path is a straight line with its direction equal to the gradient of the conduction
band at the starting position.

■ The tunneling energy is equal to the conduction band energy at the starting position and is
equal to the defect level ( ) at the ending position.

n

mt

ET x( ) Etrap x( ) Ei x( )+=
400 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Shockley–Read–Hall Recombination
■ Electrons can be captured in or emitted from the defect level at any location between the
starting position and the ending position of the tunneling path.

■ When the tunneling path encounters Neumann boundaries or semiconductor–insulator
interfaces, it undergoes specular reflection.

For a given tunneling path of length  that starts at  and ends at , electron capture
and emission between the conduction band at  and the defect level at any position  for

 is possible. As a result, the net electron recombination rate at  from the
conduction band due to the TAT process  involves integration along the path as follows:

(405)

(406)

(407)

where:

■  is the electron lifetime.

■  for Boltzmann statistics and  for Fermi–Dirac statistics.

■  is the electron occupation probability at the defect level.

■  is the hole occupation probability at the defect level.

■  is the magnitude of the imaginary wavevector obtained from the effective mass
approximation or from the Franz two-band dispersion relation (Eq. 777, p. 730).

■  for the nonlocal Hurkx TAT model. For the nonlocal Schenk TAT model,
 is modeled as:

(408)

(409)

where:

■ .

■ .

■ .

l x 0= x l=
x 0= x

0 x l≤ ≤ x 0=
Rnet n,

TAT

Rnet n,
TAT

Cn

ΓC x EC 0( ),( )
τn x( )

---------------------------------
T 0( ) T x( )+

2 T 0( )T x( )
------------------------------

EF n, 0( ) EC 0( )–

kT 0( )
---------------------------------------- f

p
x( )exp

ET x( ) EC 0( )–

kT x( )
----------------------------------- f

n
x( )exp– xd

0

l

=

Cn EC 0( )∇
NC 0( )
kT 0( )
---------------

EF n, 0( ) EC 0( )–

kT 0( )
----------------------------------------exp 1+ 

 
α–

=

ΓC x ε,( ) WC x ε,( ) 2 κC x ε,( ) rd

0

x

–
 
 
 
 

exp=

τn

α 0= α 1=

fn

fp

κC

WC x ε,( ) 1=
WC x ε,( )

WC x ε,( )
h EC x( ) EC 0( )–[ ] 0.5( )W ε ET x( )–[ ]exp

4x EC x( ) ET x( )–[ ] πmCkT x( )W EC x( ) kT x( ) 2⁄ ET x( )–+[ ]
------------------------------------------------------------------------------------------------------------------------------------------------------=

W ε( ) 1

χ
-------

ε
2kT
--------- χ+ 
  z

l χ+
----------- 
  l

exp=

χ l2 z2+=

l ε hω0⁄=

z S hω0 2kT⁄( )sinh⁄=
Sentaurus™ Device User Guide 401
N-2017.09



16: Generation–Recombination
Shockley–Read–Hall Recombination
■  is the phonon energy.

■  is the Huang–Rhys constant.

The net hole recombination rate can be obtained in a similar way. The quasistatic electron and
hole occupation probabilities at the defect level can be determined by balancing the net electron
capture rate and the net hole capture rate.

Using Dynamic Nonlocal Path TAT Model

The nonlocal path TAT model is switched on when the model is selected in the SRH option as
follows:

Recombination( ...
SRH( ...

NonlocalPath (
Lifetime = Schenk | Hurkx # Hurkx model is used by default
Fermi | -Fermi # use alpha=1 (alpha=0 by default)
TwoBand | -TwoBand # use Franz two band dispersion (off by default)

)
)

)

Lifetime=Hurkx (default) selects the nonlocal Hurkx model, while Lifetime=Schenk
selects the nonlocal Schenk model. The Fermi option sets  equal to 1 (  by default).
The TwoBand option activates the Franz two-band dispersion (Eq. 777, p. 730) instead of the
effective mass approximation for the computation of the imaginary wavevector.

The nonlocal path TAT model introduces no additional model parameters. The same minority
carrier lifetime for the SRH model is used in the nonlocal path TAT model. The doping- and
temperature-dependent lifetime as well as the lifetime loaded from file can be specified
together with the nonlocal path TAT model.

NOTE The SRH field-enhancement model should not be used together with the
nonlocal path TAT model to avoid double-counting of the TAT process.

The nonlocal Hurkx model uses the tunneling mass specified in the
HurkxTrapAssistedTunneling parameter set. The tunneling mass, the phonon energy, and
the Huang–Rhys coupling constant for the nonlocal Schenk model are specified in the
TrapAssistedTunneling parameter set.

The maximum length of the tunneling path is determined by the parameter
MaxTunnelLength in the Band2BandTunneling parameter set.

You can consider electron TAT from Schottky contacts or Schottky metal–semiconductor
interfaces using the nonlocal path TAT model. To consider the electron capture and emission

hω0

S

α α 0=
402 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Shockley–Read–Hall Recombination
from the Schottky contact, you must specify the parameter TATNonlocalPathNC, which
represents the room temperature effective density-of-states ( ) for the Schottky
contact in the electrode-specific Physics section, for example:

Physics (electrode = "source") { ...
TATNonlocalPathNC = 2.0e19

}

Similarly, to consider the TAT from the Schottky metal–semiconductor interface, you must
specify the room temperature effective density-of-states in the corresponding interface-specific
Physics section, for example:

Physics (MaterialInterface = "Gold/Silicon") { ...
TATNonlocalPathNC = 2.0e19

}

Sentaurus Device assumes that the effective density-of-states at  follows:

(410)

The electron and hole recombination rates as well as the recombination rate at the defect level
can be plotted as:

Plot { ...
eSRHRecombination # electron recombination rate
hSRHRecombination # hole recombination rate
tSRHRecombination # recombination rate at the defect level

}

Trap-Assisted Auger Recombination

Trap-assisted Auger (TAA) recombination is a modification to the SRH recombination (see
Shockley–Read–Hall Recombination on page 391) and coupled defect level (see Coupled
Defect Level (CDL) Recombination on page 405) models. When TAA is active, Sentaurus
Device uses the lifetimes [4]:

(411)

(412)

in place of the lifetimes  and  in Eq. 378 and Eq. 419.

NC 300K( )

T

NC T( ) NC 300K( ) T
300K
------------- 
 

3
2
---

=

τp

1 τp τp
TAA⁄+

-------------------------------

τn

1 τn τn
TAT⁄+

------------------------------

τp τn
Sentaurus™ Device User Guide 403
N-2017.09



16: Generation–Recombination
Surface SRH Recombination
The TAA lifetimes in Eq. 411 depend on the carrier densities:

(413)

(414)

A reasonable order of magnitude for the TAA coefficients  and  is 
to ; the default values are .

TAA recombination is activated by using the keyword TrapAssistedAuger in the
Recombination statement in the Physics section (see Table 234 on page 1436):

Physics {
Recombination(TrapAssistedAuger ...)
...

}

The trap-assisted Auger parameters  and  are accessible in the parameter set
TrapAssistedAuger.

Surface SRH Recombination

The surface SRH recombination model can be activated at semiconductor–semiconductor and
semiconductor–insulator interfaces (see Interface-Specific Models on page 20).

At interfaces, an additional formula is used that is structurally equivalent to the bulk expression
of the SRH generation–recombination:

(415)

with:

  and (416)

For Fermi statistics and quantization, the equations are modified in the same manner as for bulk
SRH recombination (see Eq. 382).

The recombination velocities of otherwise identically prepared surfaces depend, in general, on
the concentration of dopants at the surface [9][10][11]. Particularly, in cases where the doping

1

τn
TAA

------------ Cp
TAA

n p+( )≈

1

τp
TAA

------------ Cn
TAA

n p+( )≈

Cn
TAA Cp

TAA 1 12–×10  cm3s 1–

1 11–×10  cm3s 1– Cn
TAA Cp

TAA 1 12–×10= =  cm3s 1–

Cn
TAA Cp

TAA

Rsurf net,
SRH np ni,eff

2
–

n n1+( ) sp⁄ p p1+( ) sn⁄+
---------------------------------------------------------------=

n1 ni,eff

Etrap

kT
----------- 
 exp= p1 ni,eff

E– trap

kT
-------------- 
 exp=
404 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Coupled Defect Level (CDL) Recombination
concentration varies along an interface, it is desirable to include such a doping dependence.
Sentaurus Device models doping dependence of surface recombination velocities according to:

(417)

The results of Cuevas [11] indicate that for phosphorus-diffused silicon,  while the
results of King and Swanson [10] seem to imply that no significant doping dependence exists
for the recombination velocities of boron-diffused silicon surfaces. 

To activate the model, specify the option SurfaceSRH to the Recombination keyword in the
Physics section for the respective interface. To plot the surface recombination, specify
SurfaceRecombination in the Plot section. The parameters , , , and  are
accessible in the parameter set SurfaceRecombination. The corresponding values for
silicon are given in Table 78. 

The doping dependence of the recombination velocity can be suppressed by setting  to zero.

NOTE The SurfaceSRH keyword also is supported for metal–semiconductor
interfaces, but the model it activates there is different from the one
described in this section (see Electric Boundary Conditions for Metals
on page 240).

Coupled Defect Level (CDL) Recombination

The steady state recombination rate for two coupled defect levels generalizes the familiar
single-level SRH formula. An important feature of the model is a possibly increased field effect
that may lead to large excess currents. The model is discussed in the literature [12].

Table 78 Surface SRH parameters

Symbol Parameter name Electrons Holes Unit

S0 cm/s

Sref  1

Nref

gamma 1 1

Etrap 0 eV

s s0 1 sref

Ni

Nref
--------- 
 

γ
+=

γ 1;=

Etrap sref Nref γ

s0 1
3×10 1

3×10

sref 1
3–×10

Nref 1
16×10 cm

3–

γ

Etrap

sref
Sentaurus™ Device User Guide 405
N-2017.09



16: Generation–Recombination
Coupled Defect Level (CDL) Recombination
Using CDL

The CDL recombination can be switched on using the keyword CDL in the Physics section:

Physics{ Recombination( CDL ...) ...}

The contributions  and  in Eq. 420 can be plotted by using the keywords CDL1 and CDL2
in the Plot section. For the net rate and coupling term, , the keywords CDL and
CDL3 must be specified.

CDL Model

The notation of the model parameters is illustrated in Figure 19.

Figure 19 Notation for CDL recombination including all capture and emission processes

The CDL recombination rate is given by:

(418)

with:

(419)

,    (420)

(421)

(422)

(423)

R1 R2

R R1 R2––

τn1

τp1

r12 τn2

τp2

Et1

Et2

Ec

Ei

Ev

R R1 R2 R12
2 S12– R12– 

 + +
τn1τp2 n n2+( ) p p1+( ) τn2τp1 n n1+( ) p p2+( )–

r1r2
-------------------------------------------------------------------------------------------------------------------×=

rj τnj p pj+( ) τpj n nj+( )+=

Rj

np ni,eff
2–

rj
----------------------= j 1 2,=

R12

r1r2

2r12τn1τn2τp1τp2 1 ε–( )
---------------------------------------------------------

τn1 p p1+( ) τp2 n n2+( )+

2τn1τp2 1 ε–( )
------------------------------------------------------------

ε τn2 p p2+( ) τp1 n n1+( )+[ ]
2τn2τp1 1 ε–( )

--------------------------------------------------------------------+ +=

S12
1

τn1τp2 1 ε–( )
------------------------------ 1

τn1τp2

τn2τp1
---------------ε– 

  np ni,eff
2

–( )=

ε exp
Et2 Et1–

kT
----------------------– 

 =
406 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Radiative Recombination
where  and  denote the electron and hole lifetimes of the defect level . The coupling
parameter between the defect levels is called  (keyword TrapTrapRate in the parameter
file). The carrier lifetimes are calculated analogously to the carrier lifetimes in the SRH model
(see Shockley–Read–Hall Recombination on page 391). The number of parameters is doubled
compared to the SRH model, and they are changeable in the parameter set CDL.

The quantities and  are the corresponding quantities of  and  for the second defect
level. They are defined analogously to Eq. 379, p. 391 and Eq. 380, p. 391.

For Fermi statistics and quantization, the equations are modified in the same manner as for
SRH recombination (see Eq. 382, p. 392).

Radiative Recombination

Using Radiative Recombination

The radiative recombination model is activated in the Physics section by the keyword
Radiative:

Physics {
Recombination (Radiative)

}

It can also be switched on or off by using the notation +Radiative or -Radiative:

Physics (Region = "gate") {
Recombination (+Radiative)

}

Physics (Material = "AlGaAs") {
Recombination (-Radiative)

}

The value of the radiative recombination rate is plotted as follows:

Plot {
RadiativeRecombination

}

The value of the parameter  can be changed in the parameter file:

RadiativeRecombination {
C = 2.5e-10

}

τni τpi i
r12

n2 p2 n1 p1

C

Sentaurus™ Device User Guide 407
N-2017.09



16: Generation–Recombination
Auger Recombination
Radiative Model

The radiative (direct) recombination model expresses the recombination rate as:

(424)

By default, Sentaurus Device selects  for GaAs and  for
other materials. For Fermi statistics and quantization, the equations are modified in the same
manner than for SRH recombination (see Eq. 382, p. 392).

Auger Recombination

The rate of band-to-band Auger recombination  is given by:

(425)

with temperature-dependent Auger coefficients [13][14][15]:

(426)

(427)

where . There is experimental evidence for a decrease of the Auger coefficients at
high injection levels [15]. This effect is explained as resulting from exciton decay: at lower
carrier densities, excitons, which are loosely bound electron–hole pairs, increase the
probability for Auger recombination. Excitons decay at high carrier densities, resulting in a
decrease of recombination. This effect is modeled by the terms  in Eq. 426
and Eq. 427.

Auger recombination is typically important at high carrier densities. Therefore, this injection
dependence will only be seen in devices where extrinsic recombination effects are extremely
low, such as high-efficiency silicon solar cells. The injection dependence of the Auger
coefficient can be deactivated by setting H to zero in the parameter file.

Rnet C np ni,eff
2–( )⋅=

C 2 10 10–×=  cm3s 1– C 0  cm3s 1–=

Rnet
A

Rnet
A Cnn Cpp+

 
  np ni,eff

2–
 
 =

Cn T( ) AA n, BA,n
T
T0
----- 
  CA,n

T
T0
----- 
  2

+ +
 
 
 

1 Hn
n

N0 n,
-----------– 

 exp+=

Cp T( ) AA,p BA,p
T
T0
----- 
  CA,p

T
T0
----- 
  2

+ +
 
 
 

1 Hp
p

N0 p,
-----------– 

 exp+=

T0 300 K=

1 H n N0⁄–( )exp+
408 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Intrinsic Recombination Model for Silicon
For Fermi statistics and quantization, the equations are modified in the same manner as for
SRH recombination (see Eq. 382, p. 392). Default values for silicon are listed in Table 79. 

Auger recombination is activated with the argument Auger in the Recombination statement:

Physics{ Recombination( Auger ...) ...}

By default, Sentaurus Device uses Eq. 425 only if  is positive and replaces the value by
zero if  is negative. To use Eq. 425 for negative values (that is, to allow for Auger
generation of electron–hole pairs), use the WithGeneration option to the Auger keyword:

Physics { Recombination( Auger(WithGeneration) ...) ...}

The Auger parameters are accessible in the parameter set Auger.

Intrinsic Recombination Model for Silicon

With improvements in the quality of silicon bulk material, the technological progress of
passivation techniques, and advanced characterization methods, an accurate description of the
intrinsic recombination mechanisms of silicon became important to predict the performance of
silicon-based devices. Richter et al. [16] developed a model to describe intrinsic recombination
in crystalline silicon at 300 K covering a wide range of doping and carrier injection levels. The
intrinsic recombination rate is calculated according to:

(428)

The first two terms in the brackets stand for the common Auger expression with Coulomb
enhancement factors  and , which are dominant in the low-injection condition. 
describe the electron and hole carrier concentrations,  is the effective intrinsic carrier
density, and  denote the electron and hole concentration at thermal equilibrium (zero
voltage applied), that is, for p-type doping:

(429)

Table 79 Default coefficients of Auger recombination model

Symbol  [ ]   [ ]   [ ]  [ ]  [ ]

Parameter name  A  B  C H N0

Electrons    

Holes    

AA cm
6
s

1–
BA cm

6
s

1–
CA cm

6
s

1–
H 1 N0 cm

3–

6.7
32–×10 2.45

31–×10 2.2–
32–×10 3.46667 1

18×10

7.2
32–×10 4.5

33–×10 2.63
32–×10 8.25688 1

18×10

Rnet
A

Rnet
A

Rintrinsic np ni eff,
2

–( ) Cn0 geeh n0( ) n0 Cp0+ gehh p0( ) p0 CΔn Δn
expΔn Blow Brel n p,( )⋅+⋅+⋅ ⋅ ⋅ ⋅[ ]=

geeh gehh n p,
ni,eff

n0 p0,

p0 Na Nd–= n0

ni,eff
2

p0
----------=
Sentaurus™ Device User Guide 409
N-2017.09



16: Generation–Recombination
Intrinsic Recombination Model for Silicon
For n-type doping:

(430)

 is the total acceptor doping concentration, and  is the total donor doping concentration.

The Coulomb enhancement factors  and  account for the enhanced probability of
finding an electron and a hole in the immediate vicinity of each other:

(431)

(432)

The third term in the brackets of Eq. 428 is proportional to the excess carrier density  and
describes the Auger recombination for the high-injection condition.

Finally, the last term in the brackets of Eq. 428 describes the injection-dependent radiative
recombination according to Altermatt et al. [17]1:

(433)

with:

(434)

(435)

1. For Eq. 433, Reference [17] notes the terms  and , instead of  and .
In addition, a factor of 2 is missing in Eq. 435 and Eq. 436. This has been verified with the author and corrected in
the implementation.

n0 Nd Na–= p0

ni,eff
2

n0
----------=

Na Nd

geeh gehh

geeh n0( ) 1 Cgeeh 1
n0

N0 eeh,
--------------- 
 

Egeeh

tanh–
 
 
 

+=

gehh p0( ) 1 Cgehh 1
p0

N0 ehh,
--------------- 
 

Egehh

tanh–
 
 
 

+=

Δn

n p+ b1⁄ n p+ b2⁄ n p+( ) b1⁄ n p+( ) b2⁄

Brel n p,( ) bmin

bmax bmin–

1
n p+

b1
------------ 
 

b2 n p+
b3

------------ 
 

b4

+ +

------------------------------------------------------------+=

bmin rmax

rmin rmax–

1
T
r1
---- 
 

r2

+

--------------------------+=

b1 2 smax

smin smax–

1
T
s1
---- 
 

s2

+

--------------------------+=
410 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Intrinsic Recombination Model for Silicon
(436)

 is the temperature.

This model can be switched on by specifying intrinsicRichter in the Recombination
section. The model parameters can be set in the Sentaurus Device parameter file section:

Material = "Silicon" {
intrinsicRichter {

blow=4.73e-15
rmax=0.25
...

}
}

The parameter name and default value for each constant in Eq. 428–Eq. 436 are taken from
[16] and [17], and are listed in Table 80. 

Table 80 Parameter name and default value for constants

Constant Parameter name Default value Unit

Blow 4.73e-15

bmax 1 1

b2 0.54 1

b4 1.25 1

rmax 0.2 1

rmin 0 1

r1 320 K

r2 2.5 1

smax 1.5e18

smin 1e7

s1 550 K

s2 3 1

wmax 4e18

wmin 1e9

w1 365 K

b3 2 wmax

wmin wmax–

1
T

w1
------ 
 

w2

+

-----------------------------+=

T

Blow cm
3

s⁄

bmax

b2

b4

rmax

rmin

r1

r2

smax cm
3–

smin cm
3–

s1

s2

wmax cm
3–

wmin cm
3–

w1
Sentaurus™ Device User Guide 411
N-2017.09



16: Generation–Recombination
Constant Carrier Generation
Constant Carrier Generation

The simplest generation model computes a constant carrier generation . It is activated in
the Physics section as follows:

Physics {
Recombination (

ConstantCarrierGeneration (value = 1e10) # [cm^-3 s^-1]
)

}

Alternatively, the value of  can be specified in the parameter file:

ConstantCarrierGeneration {
value = 1e10 # [cm^-3 s^-1]

}

You can ramp the generation rate by specifying a corresponding Goal in a Quasistationary
command:

Goal { Model = "ConstantCarrierGeneration"
Parameter = "value"
Value = 1e20}

w2 3.54 1

cn0 2.5e-31

geehC 13 1

N0eeh 3.3e17

geehE 0.66 1

cp0 8.5e-32

gehhC 7.5 1

N0ehh 7e17

gehhE 0.63 1

cDn 3e-29

expDn 0.92 1

Table 80 Parameter name and default value for constants (Continued)

Constant Parameter name Default value Unit

w2

Cn0 cm
6

s⁄

Cgeeh

N0 eeh, cm
3–

Egeeh

Cp0 cm
6

s⁄

Cgehh

N0 ehh, cm
3–

Egehh

CΔn cm
6

s⁄

expΔn

Gconst

Gconst
412 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Avalanche Generation
To visualize , plot the value of PMIRecombination:

Plot {
PMIRecombination

}

The model also can be specified regionwise or materialwise.

NOTE The constant carrier generation model is functionally equivalent to the
constant optical generation model presented in Constant Optical
Generation on page 543.

Avalanche Generation

Electron–hole pair production due to avalanche generation (impact ionization) requires a
certain threshold field strength and the possibility of acceleration, that is, wide space charge
regions. If the width of a space charge region is greater than the mean free path between two
ionizing impacts, charge multiplication occurs, which can cause electrical breakdown. The
reciprocal of the mean free path is called the ionization coefficient . With these coefficients
for electrons and holes, the generation rate can be expressed as:

(437)

where  and  are the electron and hole current density vectors described in Introduction to
Carrier Transport Models on page 181.

Sentaurus Device implements several models for the ionization coefficients: van
Overstraeten–de Man, Okuto–Crowell, Lackner, University of Bologna, the new University of
Bologna, and Hatakeyama.

Sentaurus Device allows you to select the appropriate driving force for the simulation, that is,
the method used to compute the accelerating field. The choices include GradQuasiFermi,
Eparallel, CarrierTempDrive, and ElectricField (see Driving Force on page 426).

Using Avalanche Generation

Avalanche generation is switched on by using the keyword Avalanche in the
Recombination statement in the Physics section. The keywords eAvalanche and
hAvalanche specify separate models or driving forces for the electron and hole ionization
coefficients, respectively.

Gconst

α

Gii
1
q
--- αn Jn αp Jp+( )=

Jn Jp
Sentaurus™ Device User Guide 413
N-2017.09



16: Generation–Recombination
Avalanche Generation
The model is selected by using one of the keywords vanOverstraeten, Okuto, Lackner,
UniBo, UniBo2, or Hatakeyama. The default model is vanOverstraeten.

The driving force is selected using one of the keywords GradQuasiFermi, Eparallel,
CarrierTempDrive, or ElectricField. The default driving force is GradQuasiFermi.

The following example selects the default van Overstraeten–de Man model for the electron
impact ionization process with a driving force derived from electron temperature, and selects
the Okuto–Crowell model for holes using the default driving force based on
GradQuasiFermi:

Physics {
Recombination(eAvalanche(CarrierTempDrive) hAvalanche(Okuto)... )

}

To include a dependency on energy bandgap in the avalanche generation models, specify the
keyword BandgapDependence as an argument to Avalanche, eAvalanche, or
hAvalanche (see the model descriptions in the next sections). For example:

Physics {
Recombination(Avalanche(Lackner BandgapDependence))

}

To plot the avalanche generation rate, specify AvalancheGeneration in the Plot section.
To plot either of the two terms on the right-hand side of Eq. 437 separately, specify
eAvalanche or hAvalanche. To plot  or , specify eAlphaAvalanche or
hAlphaAvalanche, respectively.

By default, the electron and hole current density vectors  and  in Eq. 437 are computed in
a mesh element using the Scharfetter–Gummel approximation applied to each element edge
(see Discretization on page 1011), and this is consistent with the computation of  and

 in Eq. 53, p. 181. This approximation is a good one to describe structures where the
current density is low along the direction of large electrostatic potential change, such as the
channel area of a MOSFET, but such a condition of low current density in the direction of
potential change might not be satisfied for power-device applications. As a result, the
Scharfetter–Gummel approximation in the avalanche generation term might lead to a
requirement to have a very fine mesh or might result in small steps to be taken at a voltage
ramp.

To overcome these issues, you can use another approximation for  and  in Eq. 437, which
is based on the representation of these current density vectors as  and

 (see Eq. 56, p. 183 and Eq. 57, p. 183). This approximation assumes that the
carrier densities  and  are constant in elements and also makes the current density vectors
constant in an element. Typically, you could see a small change in the breakdown voltage with
this approximation, but it provides better convergence and stability properties.

αn αp

Jn Jp

∇ Jn⋅
∇ Jp⋅

Jn Jp

Jn qμnn Φn∇–=
Jp qμpp Φp∇–=

n p
414 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Avalanche Generation
To activate this alternative approximation, specify the following option:

Math {
AvalDensGradQF

}

The contribution that avalanche generation makes to the device equations is determined by
multiplying the avalanche generation rate by the element-vertex control volumes (areas in two
dimensions) computed by the AverageBoxMethod algorithm. However, as noted in
Truncated Obtuse Elements on page 1016, the total vertex control volume for an obtuse
element is not the same as the total geometric volume for the element and can sometimes be
several times larger. This can result in an exaggerated number of avalanche-generated carriers
from such elements, which can contribute to premature breakdown. This might be the case if
you observe that the breakdown voltage is much lower than expected, and the avalanche
generation in the structure is confined to one or a few elements. To prevent this, an option is
available to use truncated element-vertex volumes for the avalanche calculations, where the
total truncated vertex volume for an element is exactly equal to the geometric volume. To
activate this option, specify:

Math {
ElementVolumeAvalanche

}

Sometimes, mostly for 3D breakdown simulations, nearly flat elements can cause convergence
and also premature breakdown problems (due to singular numeric errors). Such nearly flat
elements have a very small volume and excluding these elements does not affect breakdown
voltage, but it helps to resolve problems with numeric singularity. To exclude such elements
from the avalanche generation calculations, use the following option:

Math {
AvalFlatElementExclusion = <float> #[0 to 90 degree]

}

In two dimensions, this option excludes elements from contributing to avalanche generation if
all the angles are less than the specified value or larger than the 180°-specified value. In three
dimensions, this option excludes elements if the maximum vertex volume angle for the element
is less than the specified value, where the vertex volume angle is computed as the arcsine of
the unit-edge volume (scalar triple product of the unit vectors along the three element edges
that meet at the vertex).

NOTE This option excludes only flat elements that have, by definition, poor
angles at every vertex (very close to 0° or 180° in two dimensions). In
three dimensions, for the case of a 90° angle between three edges of a
vertex in an element (this case represents a good element), the vertex
unit-edge volume is the maximum (equal to 1), and this makes the
vertex volume angle equal to 90° as well. For a nearly flat element, both
the unit-edge volume and the volume angle are nearly zero.
Sentaurus™ Device User Guide 415
N-2017.09



16: Generation–Recombination
Avalanche Generation
NOTE The value to be used for AvalFlatElementExclusion must not
exceed 1–2°. Otherwise, too many elements may be excluded from the
avalanche generation, causing a shift in breakdown voltage to higher
values.

To control and see the locations of nearly flat elements in a device structure, you can specify
an option to plot the minimum and maximum volume angles for each element as follows:

Plot {
AvalFlatElementMin/Element AvalFlatElementMax/Element

}

van Overstraeten – de Man Model

This model is based on the Chynoweth law [18]:

(438)

with:

(439)

The factor  with the optical phonon energy  expresses the temperature dependence of
the phonon gas against which carriers are accelerated. The coefficients , , and , as
measured by van Overstraeten and de Man [19], are applicable over the range of fields

 to  and are listed in Table 81.

Two sets of coefficients  and  are used for high and low ranges of electric field. The values
a(low), b(low) are used in the low field range up to  and the values a(high), b(high)
apply in the high field above . For electrons, the impact ionization coefficients are by default
the same in both field ranges.

If BandgapDependence is specified as an argument to Avalanche, the coefficient  in
Eq. 438 is replaced with:

(440)

where  is the energy bandgap,  is the optical-phonon mean free path for the carrier, and 
is a proportionality constant. Default values for  and  are listed in Table 81 on page 417.

α Fava( ) γa
γb

Fava
----------– 

 exp=

γ

hωop

2kT0
------------
 
 
 

tanh

hωop

2kT
------------
 
 
 

tanh

-----------------------------=

γ hωop

a b hωop

1.75 105×  Vcm 1– 6 105 Vcm 1–×

a b
E0

E0

b

b
βEg

qλ
---------→

Eg λ β
λ β
416 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Avalanche Generation
You can adjust the coefficient values in the Sentaurus Device parameter set
vanOverstraetendeMan. 

Okuto–Crowell Model

Okuto and Crowell [20] suggested the empirical model:

(441)

where  and the user-adjustable coefficients are listed in Table 82 with their default
values for silicon. These values apply to the range of electric field from  to

.

If BandgapDependence is specified as an argument to Avalanche, the coefficient  in
Eq. 441 is replaced with:

(442)

where  is the energy bandgap,  is the optical-phonon mean free path for the carrier, and 
is a proportionality constant. Default values for  and  are listed in Table 82 on page 418.

You can adjust the coefficient values in the parameter set Okuto. 

Table 81 Coefficients for van Overstraeten–de Man model (Eq. 438) for silicon

Symbol Parameter name Electrons Holes Valid range of electric field Unit

a(low)  to 

a(high)  to 

b(low)  to V/cm

b(high)  to 

E0 V/cm

hbarOmega 0.063 0.063 eV

lambda cm

beta(low) 0.678925 0.815009  to 1

beta (high) 0.678925 0.677706  to 

a 7.03 10
5× 1.582 10

6× 1.75
5×10 Vcm

1–
E0 cm

1–

7.03 10
5× 6.71 10

5× E0 6
5×10 Vcm

1–

b 1.231 10
6× 2.036 10

6× 1.75
5×10 Vcm

1–
E0

1.231 10
6× 1.693 10

6× E0 6
5×10 Vcm

1–

E0 4 10
5× 4 10

5×

hωop

λ 62 10
8–× 45 10

8–×

β 1.75
5×10 Vcm

1–
E0

E0 6
5×10 Vcm

1–

α Fava( ) a 1 c T T0–( )+ 
 Fava

γ b 1 d T T0–( )+[ ]
Fava

-----------------------------------------
 
 
 

δ

–exp⋅=

T0 300 K=
105 Vcm 1–

106 Vcm 1–

b

b
βEg

qλ
---------→

Eg λ β
λ β
Sentaurus™ Device User Guide 417
N-2017.09



16: Generation–Recombination
Avalanche Generation
Lackner Model

Lackner [21] derived a pseudo-local ionization rate in the form of a modification to the
Chynoweth law, assuming stationary conditions. The temperature-dependent factor  was
introduced to the original model:

 where (443)

with:

(444)

and:

(445)

The default values of the coefficients , , and  are applicable in silicon for the range of
the electric field from  to .

Table 82 Coefficients for Okuto–Crowell model (Eq. 441) for silicon

Symbol Parameter name Electrons Holes Unit

a 0.426 0.243

b V/cm

c

d

gamma 1 1 1

delta 2 2 1

lambda cm

beta 0.265283 0.261395 1

a V
1–

b 4.81 10
5× 6.53 10

5×

c 3.05 10
4–× 5.35 10

4–× K
1–

d 6.86 10
4–× 5.67 10

4–× K
1–

γ

δ

λ 62 10
8–× 45 10

8–×

β

γ

αν Fava( )
γaν
Z

--------
γbν
Fava
----------– 

 exp= ν n p,=

Z 1
γbn

Fava
----------

γbn

Fava
----------– 

 exp
γbp

Fava
----------

γbp

Fava
----------– 

 exp+ +=

γ

hωop

2kT0
------------
 
 
 

tanh

hωop

2kT
------------
 
 
 

tanh

-----------------------------=

a b hωop

105 Vcm 1– 106 Vcm 1–
418 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Avalanche Generation
If BandgapDependence is specified as an argument to Avalanche, the  coefficients in
Eq. 443 and Eq. 444 are replaced with:

(446)

where  is the energy bandgap,  is the optical-phonon mean free path for the carrier, and 
is a proportionality constant.

Table 83 lists the default model parameters. The model parameters are accessible in the
parameter set Lackner. 

University of Bologna Impact Ionization Model

The University of Bologna impact ionization model was developed for an extended
temperature range between  and  (see also New University of Bologna Impact
Ionization Model on page 421 for an updated version of this model). It is based on impact
ionization data generated by the Boltzmann solver HARM [22]. It covers a wide range of
electric fields (  to ) and temperatures (  to ). It is calibrated
against impact ionization measurements [23][24] in the whole temperature range.

The model reads:

(447)

The temperature dependence of the model parameters, determined by fitting experimental data,
reads (for electrons):

                   (448)

Table 83 Coefficients for Lackner model (Eq. 443) for silicon

Symbol Parameter name Electrons Holes Unit

a

b V/cm

hbarOmega 0.063 0.063 eV

lambda cm

beta 0.812945 0.815009 1

b

b
βEg

qλ
---------→

Eg λ β

a 1.316 10
6× 1.818 10

6× cm
1–

b 1.474 10
6× 2.036 10

6×

hωop

λ 62 10
8–× 45 10

8–×

β

25°C 400°C

50 kVcm 1– 600 kVcm 1– 300 K 700 K

α Fava T,( )
Fava

a T( ) b T( ) d T( )
Fava c T( )+
---------------------------exp+

-------------------------------------------------------------------------=

a T( ) a0 a1t
a2+= b T( ) b0= c T( ) c0 c1t c2t+

2
+= d T( ) d0 d1t d2t+

2
+=
Sentaurus™ Device User Guide 419
N-2017.09



16: Generation–Recombination
Avalanche Generation
and for holes:

                   (449)

where .

If BandgapDependence is specified as an argument to Avalanche, then  is modified as
follows:

(450)

where  is the energy bandgap,  is the optical-phonon mean free path for the carrier, and 
is a proportionality constant.

Table 84 lists the default model parameters. The model parameters are accessible in the
parameter set UniBo. 

Table 84 Coefficients for University of Bologna impact ionization model for silicon

Symbol Parameter name  Electrons  Holes Unit

ha0 4.3383 2.376 V

ha1 V

ha2 4.1233 0 1

hb0 0.235 0.17714 V

hb1 0 1

hc0

hc1 4.3796 2.4924 , 1

hc2 0.13005 0 , 1

hd0

hd1

hd2 0.56703 1.4829

lambda cm

beta 0.680414 0.562140 1

a T( ) a0 a1t+= b T( ) b0 b1t[ ]exp= c T( ) c0t
c1= d T( ) d0 d1t d2t+

2
+=

t T 1 K⁄=

d T( )

d T( )
βEg

qλ
--------- d0⁄ 
  d0 d1t d2t+

2
+( )→

Eg λ β

a0

a1 2.42 10
12–×– 1.033 10

2–×

a2

b0

b1 2.178 10
3–×–

c0 1.6831 10
4× 9.47 10

3–× Vcm 1–

c1 Vcm 1–

c2 Vcm 1–

d0 1.2337 10
6× 1.4043 10

6× Vcm 1–

d1 1.2039 10
3× 2.9744 10

3× Vcm 1–

d2 Vcm 1–

λ 62 10
8–× 45 10

8–×

β

420 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Avalanche Generation
NOTE When the University of Bologna impact ionization model is selected for
both carriers, that is, Recombination(Avalanche(UniBo)),
Sentaurus Device also enables Auger generation (see Auger
Recombination on page 408). Specify Auger(-WithGeneration) to
disable this generation term if necessary.

New University of Bologna Impact Ionization Model

The impact ionization model described in University of Bologna Impact Ionization Model on
page 419 was developed further in [25][26][27] to cover an extended temperature range
between  and  ( ). It is based on impact ionization data generated by the
Boltzmann solver HARM [22] and is calibrated against specially designed impact ionization
measurements [23][24].

It covers a wide range of electric fields. The model reads:

(451)

where the coefficients , , , and  are polynomials of :

(452)

(453)

(454)

(455)

25°C 500°C 773 K

α Fava T,( )
Fava

a T( ) b T( ) d T( )
Fava c T( )+
---------------------------exp+

-------------------------------------------------------------------------=

a b c d T

a T( ) ak
T

1K
------- 
  k

k 0=

3

=

b T( ) bk
T

1K
------- 
  k

k 0=

10

=

c T( ) ck
T

1K
------- 
  k

k 0=

3

=

d T( ) dk
T

1K
------- 
  k

k 0=

3

=
Sentaurus™ Device User Guide 421
N-2017.09



16: Generation–Recombination
Avalanche Generation
If BandgapDependence is specified as an argument to Avalanche,  is modified as
follows:

(456)

where  is the energy bandgap,  is the optical-phonon mean free path for the carrier, and 
is a proportionality constant.

Table 85 lists the default model parameters. The model parameters are accessible in the
parameter set UniBo2. 

Table 85 Coefficients for UniBo2 impact ionization model for silicon

Symbol Electrons Holes Unit

Parameter Name Value Parameter Name Value

a0_e 4.65403 a0_h 2.26018 V

a1_e a1_h 0.0134001 V

a2_e a2_h V

a3_e a3_h V

b0_e b0_h 0.058547 V

b1_e b1_h V

b2_e b2_h V

b3_e b3_h V

b4_e b4_h V

b5_e b5_h 0 V

b6_e b6_h 0 V

b7_e b7_h 0 V

b8_e b8_h 0 V

b9_e b9_h 0 V

b10_e b10_h 0 V

c0_e c0_h

c1_e 25.18888 c1_h

c2_e c2_h 0.498768

c3_e c3_h 0

d T( )

d T( )
βEg

qλ
--------- d0⁄ 
  dk

T
1K
------- 
  k

k 0=

3

→

Eg λ β

a0

a1 8.76031– 10
3–×

a2 1.34037 10
5–× 5.87724– 10

6–×

a3 2.75108– 10
9–× 1.14021– 10

9–×

b0 0.128302–

b1 4.45552 10
3–× 1.95755– 10

4–×

b2 1.0866– 10
5–× 2.44357 10

7–×

b3 9.23119 10
9–× 1.33202– 10

10–×

b4 1.82482– 10
12–× 2.68082 10

14–×

b5 4.82689– 10
15–×

b6 1.09402 10
17–×

b7 1.24961– 10
20–×

b8 7.55584 10
24–×

b9 2.28615– 10
27–×

b10 2.73344 10
31–×

c0 7.76221 10
3× 1.95399 10

4× Vcm 1–

c1 104.441– Vcm 1–

c2 1.37417– 10
3–× Vcm 1–

c3 1.59525 10
4–× Vcm 1–
422 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Avalanche Generation
NOTE The name of the UniBo2 model is case sensitive. Both in the command
file and the parameter file, the exact spelling of UniBo2 must be used.

Hatakeyama Avalanche Model

The Hatakeyama avalanche model has been proposed [32] to describe the anisotropic behavior
in 4H-SiC power devices. The impact ionization coefficient  is obtained according to the
Chynoweth law [18]:

(457)

with:

(458)

The coefficients  and  are computed dependent on the direction of the driving force . For
this purpose, the driving force  is decomposed into a component  parallel to the
anisotropic axis  and a remaining component  perpendicular to the anisotropic axis.

The norm  satisfies the equation:

(459)

d0_e d0_h

d1_e d1_h 993.153

d2_e d2_h 7.77769

d3_e d3_h 0

lambda_e lambda_h cm

beta_e 0.391847 beta_h 0.831470 1

Table 85 Coefficients for UniBo2 impact ionization model for silicon (Continued)

Symbol Electrons Holes Unit

Parameter Name Value Parameter Name Value

d0 7.10481 10
5× 2.07712 10

6× Vcm 1–

d1 3.98594 10
3× Vcm 1–

d2 7.19956– Vcm 1–

d3 6.96431 10
3–× Vcm 1–

λ 62 10
8–× 45 10

8–×

β

α

α γae

γb
F
-----–

=

γ

hωop

2kT0
------------
 
 
 

tanh

hωop

2kT
------------
 
 
 

tanh

-----------------------------=

a b F
F F0001

0001 F
1120

F F 2=

F
2

F0001
2

F
1120

2
+=
Sentaurus™ Device User Guide 423
N-2017.09



16: Generation–Recombination
Avalanche Generation
Based on the two projections  and , the coefficients  and  then are computed as
follows:

(460)

(461)

(462)

(463)

With the default , the coefficient  may become undefined for large values of the
driving force  (the argument of the square root in Eq. 463 becomes negative). This can only
happen if:

(464)

By setting , you have , and the coefficients  and  only depend on the direction
of the driving force , but not its magnitude. 

Table 86 Parameters and default values for 4H-SiC coefficients for the Hatakeyama model

Symbol Parameter name Electrons Holes Unit

a_0001

a_1120

b_0001

b_1120

hbarOmega 0.19 0.19

theta 1 1 1

F0001 F
1120

a b

B
F

F
1120

b
1120

-------------
 
 
  2 F0001

b0001
------------- 
 

2
+

------------------------------------------------------=

a a
1120

BF
1120

b
1120

F
-----------------
 
 
  2

a0001

BF0001

b0001F
---------------- 
 

2

=

A
a0001

a
1120

-------------log=

b B 1 θA
2

BF
1120

F0001

Fb
1120

b0001
-------------------------------
 
 
  2

–=

θ 1= b
F

F
2min b0001 b

1120
,( )

a0001

a
1120

-------------log

--------------------------------------------->

θ 0= b B= a b
F

a0001 1.76 10
8× 3.41 10

8× cm
1–

a
1120

2.10 10
7× 2.96 10

7× cm
1–

b0001 3.30 10
7× 2.50 10

7× V/cm

b
1120

1.70 10
7× 1.60 10

7× V/cm

hωop eV

θ

424 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Avalanche Generation
Driving Force

In contrast to other avalanche models in Sentaurus Device (see Driving Force on page 426),
which only use the magnitude  of the driving force, the Hatakeyama avalanche model
requires a vectorial driving force  to compute the coefficients  and . Depending on the
driving force model, the following expressions are used:

■ ElectricField: The driving force  is defined as the straight electric field .

■ Eparallel: The driving force  is given by (where  is the electron or hole current
density):

(465)

■ GradQuasiFermi: The driving force  is given by (where  is the electron or hole quasi-
Fermi potential):

(466)

■ CarrierTempDrive: The driving force  is given by (where  is the effective field
obtained from the electron or hole carrier temperature):

(467)

See also Avalanche Generation With Hydrodynamic Transport on page 427.

Anisotropic Coordinate System

In a 2D simulation, Sentaurus Device assumes that the y-axis in the crystal system is the
anisotropic axis , and the x-axis in the crystal system is the isotropic axis . In a 3D
simulation, the z-axis in the crystal system is the anisotropic axis, and the x-axis and y-axis
span the isotropic plane.

The simulation coordinate system relative to the crystal system is defined by the X and Y
vectors in the LatticeParameters section of the parameter file (see Crystal and Simulation
Coordinate Systems on page 781 and Coordinate Systems on page 887).

Usage

The Hatakeyama avalanche model uses a special-purpose interpolation formula to compute the
coefficients  and  based on the direction of the driving force. This formula differs from the
standard approach as described in Anisotropic Avalanche Generation on page 791.

F
F a b

F E

F j

F
j

j
------j

T
E=

F Φ

F ∇Φ=

F Eeff

F
j

j
------E

eff
=

0001 1120

a b
Sentaurus™ Device User Guide 425
N-2017.09



16: Generation–Recombination
Avalanche Generation
NOTE The Hatakeyama avalanche model must not be used together with an
Aniso(Avalanche) specification in the Physics section.

Driving Force

In Sentaurus Device, the driving force  for impact ionization can be computed as the
component of the electrostatic field in the direction of the current, , (keyword
Eparallel), or the value of the gradient of the quasi-Fermi level, , (keyword
GradQuasiFermi). For these two possibilities,  is affected by the keyword
ParallelToInterfaceInBoundaryLayer (see Field Correction Close to Interfaces on
page 375). For hydrodynamic simulations,  can be computed from the carrier temperature
(keyword CarrierTempDrive, see Avalanche Generation With Hydrodynamic Transport on
page 427). The default model is GradQuasiFermi and, only for hydrodynamic simulations,
it is CarrierTempDrive. See Table 235 on page 1437 for a summary of keywords.

The option ElectricField is used to perform breakdown simulations using the ‘ionization
integral’ method (see Approximate Breakdown Analysis on page 428).

Interpolation of Avalanche Driving Forces

As with high-field saturation mobility, Sentaurus Device provides interpolation of avalanche
driving forces to the electric field at low carrier concentrations, which can sometimes improve
convergence behavior.

For the GradQuasiFermi driving force, interpolation to the electric field is described in
Interpolation of the GradQuasiFermi Driving Force on page 373. As noted there, you can
specify the following keywords for the interpolation parameters for electrons and holes in the
Math section:

■ RefDens_eGradQuasiFermi_ElectricField 

■ RefDens_hGradQuasiFermi_ElectricField 

These keywords affect the calculation of the driving forces for both high-field saturation
mobility and avalanche generation.

For the Eparallel driving force, interpolation to the electric field is given by:

(468)

Fava

Fava F Ĵn p,⋅=
Fava ∇Φn p,=

Fava

Fava

Fava n,
n

n n0+
-------------- F

Jn

Jn
-----⋅

 
 
  n0

n n0+
-------------- F+=
426 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Avalanche Generation
You can specify the reference densities for electrons and holes in the Math section by using the
following parameters:

■ RefDens_eEparallel_ElectricField_Aval 

■ RefDens_hEparallel_ElectricField_Aval 

Avalanche Generation With Hydrodynamic Transport

If the hydrodynamic transport model is used, the default driving force  equals an effective
field  obtained from the carrier temperature. The usual conversion of local carrier
temperatures to effective fields  is described by the algebraic equations:

(469)

(470)

which are obtained from the energy conservation equation under time-independent,
homogeneous conditions. Eq. 469 and Eq. 470 have been simplified in Sentaurus Device by
using the assumption  and . This assumption is true for high
values of the electric field. However, for low field, the impact ionization rate is negligibly
small. 

The parameters  and  are fitting coefficients (default value 1) and their values can be
changed in the parameter set AvalancheFactors, where they are represented as n_l_f and
p_l_f, respectively.

The conventional conversion formulas Eq. 469 and Eq. 470 can be activated by specifying
parameters ,  in the same AvalancheFactors section.

The simplified conversion formulas discussed above predict a linear dependence of effective
electric field on temperature for high values of carrier temperature. For silicon, however, Monte
Carlo simulations do not confirm this behavior. To obtain a better agreement with Monte Carlo
data, additional heat sinks must be taken into account by the inclusion of an additional term in
the equations for .

Such heat sinks arise from nonelastic processes, such as the impact ionization itself. Sentaurus
Device supports the following model to account for these heat sinks:

(471)

Fava

Eeff

Eeff

nμn En
eff

 
 

2

n
3k
2q
------

Tn T–

λnτ
en

---------------=

pμp Ep
eff

 
 

2

p
3k
2q
------

Tp T–

λpτ
ep

---------------=

μnEn
eff vsat,n= μpEp

eff vsat,p=

λn λp

ϒn 0= ϒp 0=

Eeff

nvsat,nEn
eff

n
3k
2q
------

Tn T–

λnτ
en

---------------
ϒn

q
------ Eg δnkTn+( )αnnvsat,n+=
Sentaurus™ Device User Guide 427
N-2017.09



16: Generation–Recombination
Approximate Breakdown Analysis
A similar equation  is used to determine . To activate this model, set the parameters 
and  to 1. This is the default for silicon, where the generalized conversion formula Eq. 471
gives good agreement with Monte Carlo data for . For all other materials, the
default of the parameters  and  is 0. 

NOTE This procedure ensures that the same results are obtained as with the
conventional local field–dependent models in the bulk case. Conversely,
the temperature-dependent impact ionization model usually gives much
more accurate predictions for the substrate current in short-channel
MOS transistors.

Approximate Breakdown Analysis

Junction breakdown due to avalanche generation is simulated by inspecting the ionization
integrals:

(472)

(473)

where ,  are the ionization coefficients for electrons and holes, respectively, and  is the
width of the depletion zone. The integrations are performed along field lines through the
depletion zone. Avalanche breakdown occurs if an ionization integral equals one. Eq. 472
describes electron injection (electron primary current) and Eq. 473 describes hole injection.
Since these breakdown criteria do not depend on current densities, a breakdown analysis can

Table 87 Hydrodynamic avalanche model: Default parameters

Symbol Parameter name Default value

n_l_f 1

p_l_f 1

n_gamma 1

p_gamma 1

n_delta 1.5

p_delta 1.5

Ep
eff Ep

eff ϒn

ϒp

δn δp 3 2⁄= =
ϒn ϒp

λn

λp

ϒn

ϒp

δn

δp

In αn x( )   e

αn x'( ) αp x'( )–( )   dx'
x

W

–
   dx

0

W

=

Ip αp x( )   e

    αp x'( ) αn x'( )–( )  dx'

0

x

–
   dx

0

W

=

αn αp W
428 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Approximate Breakdown Analysis
be performed by computing only the Poisson equation and ionization integrals under the
assumption of constant quasi-Fermi levels in the depletion region.

Using Breakdown Analysis

To enable breakdown analysis, Sentaurus Device provides the driving force ElectricField,
which can be computed even for constant quasi-Fermi levels. This driving force is less physical
than the others available in Sentaurus Device. Therefore, Synopsys discourages using it for any
purpose other than approximate breakdown analysis.

ComputeIonizationIntegrals in the Math section switches on the computation of the
ionization integrals for ionization paths crossing the local field maxima in the semiconductor.
By default, Sentaurus Device reports only the path with the largest . With the addition of
the keyword WriteAll, information about the ionization integrals for all computed paths is
written to the log file.

The Math keyword BreakAtIonIntegral is used to terminate the quasistationary
simulation when the largest ionization integral is greater than one. 

The complete syntax of this keyword is BreakAtIonIntegral(<number> <value>)
where a quasistationary simulation finishes if the number ionization integral is greater than
value, and the ionization integrals are ordered with respect to decreasing value:

Math { BreakAtIonIntegral }

Three optional keywords in the Plot section specify the values of the corresponding ionization
integrals that are stored along the breakdown paths:

Plot { eIonIntegral | hIonIntegral | MeanIonIntegral }

These ionization integrals can be visualized using Sentaurus Visual.

A typical command file of Sentaurus Device is:

Electrode {
{ name="anode" Voltage=0 }
{ name="cathode" Voltage=600 }

}
File {

grid    = "@grid@"
doping = "@doping@"
current = "@plot@"
output = "@log@"
plot    = "@data@"

}

Imean
Sentaurus™ Device User Guide 429
N-2017.09



16: Generation–Recombination
Approximate Breakdown Analysis
Physics {
Mobility (DopingDependence HighFieldSaturation)
Recombination(SRH Auger Avalanche(ElectricField))

}
Solve {

Quasistationary(
InitialStep=0.02 MaxStep=0.01 MinStep=0.01
Goal {name=cathode voltage=1000}
)
{ poisson }

}
Math {

Iterations=100
BreakAtIonIntegral
ComputeIonizationIntegrals(WriteAll)

}
Plot {

eIonIntegral hIonIntegral MeanIonIntegral
eDensity hDensity
ElectricField/Vector
eAlphaAvalanche hAlphaAvalanche

}

Approximate Breakdown Analysis With Carriers

Sentaurus Device allows ionization integrals to be calculated when solving the electron and
hole current continuity equations. In this case, however, impact ionization–generated carriers
will be included self-consistently in the solution, and the benefits of performing an
approximate breakdown analysis (faster simulations with fewer convergence issues) will be
lost.

To prevent the self-consistent inclusion of impact ionization–generated carriers in the solution
of the device equations, specify the option AvalPostProcessing in the Math section:

Math { AvalPostProcessing }

This option allows ionization integrals to be calculated even when solving for carriers, but
retains the benefits of an approximate breakdown analysis.
430 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Band-to-Band Tunneling Models
Band-to-Band Tunneling Models

Sentaurus Device provides several band-to-band tunneling models:

■ Schenk model (see Schenk Model on page 433).

■ Hurkx model (see Hurkx Band-to-Band Model on page 435).

■ A family of simple models (see Simple Band-to-Band Models on page 434).

■ Nonlocal path model (see Dynamic Nonlocal Path Band-to-Band Tunneling Model on
page 436).

The Schenk, Hurkx, and simple models use a common approach to suppress artificial band-to-
band tunneling near insulator interfaces and for rapidly varying fields (see Tunneling Near
Interfaces and Equilibrium Regions on page 435).

Using Band-to-Band Tunneling

Band-to-band tunneling is controlled by the Band2Band option of Recombination:

Recombination( ...
Band2Band (

Model = Schenk | Hurkx | E1 | E1_5 | E2 | NonlocalPath
DensityCorrection = Local | None
InterfaceReflection | -InterfaceReflection
FranzDispersion | -FranzDispersion
ParameterSetName = (<string>...)

)
)

The following options for Model are available:

■ Schenk selects the Schenk model.

■ Hurkx selects the Hurkx model.

■ E1, E1_5, and E2 select one of the simple models.

■ NonlocalPath selects the nonlocal path model.

The keyword DensityCorrection is used by the Schenk, Hurkx, and simple models, and its
default value is None. A value of Local activates a local-density correction (see Schenk
Density Correction on page 434).

The option InterfaceReflection is used by the nonlocal path model, and this option is
switched on by default. This option allows a tunneling path reflected at
Sentaurus™ Device User Guide 431
N-2017.09



16: Generation–Recombination
Band-to-Band Tunneling Models
semiconductor–insulator interfaces. When it is switched off, band-to-band tunneling is
neglected when the tunneling path encounters semiconductor–insulator interfaces.

The option FranzDispersion is used by the nonlocal path model, and this option is switched
off by default. When it is switched on, the Franz dispersion relation (Eq. 777, p. 730) instead
of the Kane dispersion relation (Eq. 482, p. 438) for the imaginary wavevector is used in the
direct tunneling process. The indirect tunneling process is not affected by this option.

All models use ParameterSetName. It specifies a list of names of Band2BandTunneling
parameter sets. For each name, band-to-band tunneling is computed using the parameters in the
named parameter set, and the results are all added to give the total band-to-band tunneling rate.
Without ParameterSetName, only the band-to-band tunneling obtained with the unnamed
Band2BandTunneling parameter set is computed.

The following example will use the nonlocal path model, summing the contributions obtained
with the phonon-assisted and direct parameter sets:

Band2Band(
Model=NonlocalPath
ParameterSetName=("phonon-assisted" "direct")

)

For backward compatibility:

■ Band2Band alone (without parameters) selects the Schenk model with local-density
correction.

■ Band2Band(Hurkx) selects the Hurkx model without density correction.

■ Band2Band(E1), Band2Band(E1_5), and Band2Band(E2) select one of the simple
models.

The parameters for all band-to-band models are available in the Band2BandTunneling
parameter set. The parameters specific to individual models are described in the respective
sections. The parameter MinField (specified in ) is used by the Schenk, Hurkx, and
simple models for smoothing at small electric fields. A value of zero (the default) disables
smoothing.

Named Band2BandTunneling parameter sets are specified in the parameter file, for
example:

Band2BandTunneling "phonon-assisted" { ... }

which specifies a parameter set with the name phonon-assisted. Note that parameters in
named Band2BandTunneling parameter sets do not have default values, so you must specify
values for all the parameters used by the model you select in the command file.

Vcm 1–
432 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Band-to-Band Tunneling Models
Schenk Model

Phonon-assisted band-to-band tunneling cannot be neglected in steep p-n junctions (with a
doping level of  or more on both sides) or in high normal electric fields of MOS
structures. It must be switched on if the field, in some regions of the device, exceeds
(approximately)  In this case, defect-assisted tunneling (see SRH Field
Enhancement on page 396) must also be switched on.

Band-to-band tunneling is modeled using the expression [28]:

(474)

where  and  equal  and  for DensityCorrection=None, and are given by Eq. 476 for
DensityCorrection=Local.

The critical field strengths read:

(475)

The upper sign in Eq. 474 refers to tunneling generation ( ) and the lower sign refers
to recombination ( ). The quantity  denotes the energy of the transverse acoustic
phonon.

For Fermi statistics and quantization, Eq. 474 is modified in the same way as for SRH
recombination (see Eq. 382, p. 392).

The parameters [28] are given in Table 88 and can be accessed in the parameter set
Band2BandTunneling. The defaults were obtained assuming the field direction to be . 

Table 88 Coefficients for band-to-band tunneling (Schenk model)

Symbol Parameter name Default value Unit

A

B

hbarOmega 18.6 meV

1 19×10 cm 3–

8 5×10 V/cm.

Rnet
bb

AF
7 2⁄ ñp̃ ni eff,

2–

ñ ni,eff+( ) p̃ ni,eff+( )
--------------------------------------------------

FC
+−( ) 3 2/– FC

+−

F
--------–

 
 
 

exp

hω
kT
------- 
 exp 1–

---------------------------------------------------

FC
±( ) 3 2/– FC

±

F
--------–

 
 
 

exp

1
hω
kT
-------– 

 exp–

---------------------------------------------------+=

ñ p̃ n p

FC
±

B Eg,eff hω±( )3 2⁄
=

np ni,eff
2<

np ni,eff
2> hω

111 

A 8.977
20×10 cm 1– s 1– V 2–

B 2.14667
7×10 Vcm 1– eV 3 2/–

hω
Sentaurus™ Device User Guide 433
N-2017.09



16: Generation–Recombination
Band-to-Band Tunneling Models
Schenk Density Correction

The modified electron density reads:

(476)

and there is a similar relation for . The parameters  and 
work as discussed in Schenk TAT Density Correction on page 398. The reference densities 
and  are specified (in ) by the DenCorRef parameter pair in the
Band2BandTunneling parameter set. An additional parameter MinGradQF (specified in

) is available for smoothing at small values of the gradient for the Fermi potential.

Simple Band-to-Band Models

Sentaurus Device provides a family of simple band-to-band models. Compared to advanced
models, the most striking weakness of the simple models is that they predict a nonzero
generation rate even in equilibrium. A general expression for these models can be written for
the generation term [29] as:

(477)

Depending on the value of Model,  takes the value 1, 1.5, or 2.

Table 89 lists the coefficients of models and their defaults. The coefficients  and  can be
changed in the parameter set Band2BandTunneling. 

Table 89 Coefficients for band-to-band tunneling (simple models)

Model

E1 1

E1_5 1.5

E2 2

ñ n
ni,eff

NC
---------- 
 

γn ∇EF,n

F
----------------------

=

p̃ γn n n nref+( )⁄= γp p p pref+( )⁄=
nref

pref cm 3–

eVcm 1–

G
b2b

AF
P B

F
---– 

 exp=

P

A B

P A B

1.1 10
27×  cm

2–
s

1–
V

1–
21.3 10

6×  Vcm
1–

1.9 10
24×  cm

1.5–
s

1–
V

1.5–
21.9 10

6×  Vcm
1–

3.4 10
21×  cm

1–
s

1–
V

2–
22.6 10

6× Vcm
1–
434 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Band-to-Band Tunneling Models
Hurkx Band-to-Band Model

Similar to the other band-to-band tunneling models, in the Hurkx model [30], the tunneling
carriers are modeled by an additional generation–recombination process. Its contribution is
expressed as:

(478)

where:

(479)

Here, specifying  gives the original Hurkx model, whereas  gives only
generation ( ), and  gives only recombination ( ). Therefore, if , it
is a net carrier generation model. If , it is a recombination model. For Fermi statistics and
quantization, Eq. 479 is modified in the same way as for SRH recombination (see Eq. 382).

For DensityCorrection=Local,  and  in Eq. 479 are replaced by  and  (see Schenk
Density Correction on page 434).

The coefficients  (in ),  (in ), , and  can be specified in the
Band2BandTunneling parameter set. By default, Sentaurus Device uses  and the
parameters from the E2 model (see Table 89 on page 434). Different values for the generation
(Agen, Bgen, Pgen) and recombination (Arec, Brec, Prec) of carriers are supported. For
example, to change the parameters to those used in [30], use:

Band2BandTunneling {
Agen = 4e14 # [1/(cm3s)]
Bgen = 1.9e7 # [V/cm]
Pgen = 2.5 # [1]
Arec = 4e14 # [1/(cm3s)]
Brec = 1.9e7 # [V/cm]
Prec = 2.5 # [1]
alpha = 0 # [1]

}

Tunneling Near Interfaces and Equilibrium Regions

Physically, band-to-band tunneling occurs over a certain tunneling distance. If the material
properties or the electric field change significantly over this distance, Eq. 474, Eq. 477, and

Rnet
bb A D

F
1 V/cm
----------------- 
 

P BEg T( )3 2/

Eg 300K( )3 2⁄ F
-------------------------------------–

 
 
 

exp⋅ ⋅=

D
np ni,eff

2
–

n ni,eff+( ) p ni,eff+( )
-------------------------------------------------- 1 α–( ) α+=

α 0= α 1–=
D 1–= α 1= D 1= D 0<

D 0>

n p ñ p̃

A cm 3– s 1– B V/cm P α
α 0=
Sentaurus™ Device User Guide 435
N-2017.09



16: Generation–Recombination
Band-to-Band Tunneling Models
Eq. 478 become inaccurate. In particular, near insulator interfaces, band-to-band tunneling
vanishes, as no states to tunnel to are available in the insulator.

In some parts of the device (near equilibrium regions), it is possible that the electric field is
large but changes rapidly, so that the actual tunneling distance (the distance over which the
electrostatic potential change amounts to the band gap) is bigger and, therefore, tunneling is
much smaller than expected from the local field alone.

To account for these effects, two additional control parameters are introduced in the
Band2BandTunneling parameter set:

dDist = <value> # [cm]
dPot = <value> # [V]

By default, both these parameters equal zero. Sentaurus Device disables band-to-band
tunneling within a distance dDist from insulator interfaces. If dPot is nonzero (reasonable
values for dPot are of the order of the band gap), Sentaurus Device disables band-to-band
tunneling at each point where the change of the electrostatic potential in field direction within
a distance of dPot/  is smaller than dPot/2.

Dynamic Nonlocal Path Band-to-Band Tunneling Model

Sufficient band-bending caused by electric fields or heterostructures can make electrons in the
valence band valley ( -valley in the -space), at a certain location, reach the conduction band
valley ( -, -, or -valley in the -space) at different locations using direct or phonon-
assisted band-to-band tunneling process.

The present model implements the nonlocal generation of electrons and holes caused by direct
and phonon-assisted band-to-band tunneling processes [31]. In direct semiconductors such as
GaAs and InAs, the direct tunneling process is usually dominant. On the other hand, the
phonon-assisted tunneling process is dominant in indirect semiconductors such as Si and Ge.
If the energy differences between the conduction band valleys are small, it is possible that both
the direct and the phonon-assisted tunneling processes are important.

The generation rate is obtained from the nonlocal path integration, and electrons and holes are
generated nonlocally at the ends of the tunneling path. As a result, the position-dependent
electron and hole generation rates are different in the present model. The model can be applied
to heterostructure devices with abrupt and graded heterojunctions.

The main difference between the present model and the band-to-band tunneling model based
on the nonlocal mesh (see Band-to-Band Contributions to Nonlocal Tunneling Current on
page 734) is that the tunneling path is determined dynamically based on the energy band profile
rather than predefined by the nonlocal mesh. Therefore, the present model does not require
user-specification of the nonlocal mesh.

F

Γ k
Γ X L k
436 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Band-to-Band Tunneling Models
The model dynamically searches for the tunneling path with the following assumptions:

■ The tunneling path starts from the valence band minus the valence band offset in a region
where the nonlocal path model is active.

■ The tunneling path is a straight line with its direction opposite to the gradient of the valence
band at the starting position. The valence band offset does not change the direction of the
tunneling path.

■ The tunneling energy is equal to the valence band energy minus the valence band offset at
the starting position and is equal to the conduction band energy plus the conduction band
offset at the ending position.

■ When the tunneling path encounters Neumann boundaries or semiconductor–insulator
interfaces, it undergoes specular reflection.

■ The tunneling path ends at the conduction band plus the conduction band offset.

If the path crosses a region where the nonlocal path model is not active, by default, the
tunneling from this path is discarded. If the -eB2BGenWithinSelectedRegions flag is
specified in the global Math section, tunneling for all paths entirely within semiconductor
regions are accounted for.

NOTE By default, nonlocal derivative terms in the Jacobian matrix are not
taken into account. To use AC or noise analysis with the present model,
computation of nonlocal derivatives must be switched on (see Using
Nonlocal Path Band-to-Band Model on page 440). The lack of
derivative terms can degrade convergence when the high-field saturation
mobility model is switched on or the series resistance is defined at
electrodes.

Band-to-Band Generation Rate

For a given tunneling path of length  that starts at  and ends at , holes are
generated at  and electrons are generated at . The net hole recombination rate at

 due to the direct band-to-band tunneling process  can be written as:

(480)

(481)

l x 0= x l=
x 0= x l=

x 0= Rnet
d

Rnet
d

EV 0( )∇ C
d

2 κ xd

0

l

–
 
 
 
  ε EF n, l( )–

kT l( )
--------------------------exp 1+ 

 
1– ε EF p, 0( )–

kT 0( )
----------------------------exp 1+ 

 
1–

–exp=

Cd
gπ
36h
---------

xd
κ
-----

0

l


 
 
 
  1–

1 km
2 xd

κ
-----

0

l

–
 
 
 
 

exp–=
Sentaurus™ Device User Guide 437
N-2017.09



16: Generation–Recombination
Band-to-Band Tunneling Models
where:

■  is Planck’s constant.

■  is the degeneracy factor.

■  is the tunneling energy.

■  is the conduction band offset.  can be positive if the considered tunneling process
involves the conduction band valley whose energy minimum is greater than the conduction
band energy .  increases the effective band gap.

■  is the valence band offset, and  increases the effective band gap.

■  is the magnitude of the imaginary wavevector obtained from the Kane two-band
dispersion relation [31]:

(482)

(483)

(484)

 is the effective band gap including the band offsets, and  is the
maximum transverse momentum determined by the maximum valence-band energy  and
the minimum conduction-band energy :

(485)

(486)

(487)

In the Kane two-band dispersion relation, the effective mass in the conduction band  and
the valence band  are related [31]:

(488)

(489)

h

g

ε EV 0( ) ΔV 0( )– EC l( ) ΔC l( )+= =

ΔC ΔC

EC ΔC 0>
ΔV ΔV 0>
κ

κ 1
h--- mrEg,tun 1 α2

–( )=

α
m0

2mr
---------– 2

m0

2mr
---------

ε EV ΔV+–

Eg,tun
-----------------------------

1
2
---– 

  m0
2

16mr
2

-------------
1
4
---+ ++=

1
mr
------

1
mV
-------

1
mC
-------+=

Eg,tun Eg,eff ΔC ΔV+ += km

εmax

εmin

km
2

min kvm
2

 kcm
2

( , )=

kvm
2 2mV εmax ε–( )

h2
------------------------------------=

kcm
2 2mC ε εmin–( )

h2
--------------------------------=

mC

mV

1
mC
-------

1
2mr
---------

1
m0
------+=

1
mV
-------

1
2mr
---------

1
m0
------–=
438 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Band-to-Band Tunneling Models
The net hole recombination rate due to the phonon-assisted band-to-band tunneling process
 can be written as:

(490)

(491)

where , , and  are the deformation potential, energy, and
number of optical phonons, respectively,  is the mass density, and  and  are the
magnitude of the imaginary wavevectors from the Keldysh dispersion relation:

(492)

(493)

and  is the location where .

As Eq. 480, p. 437 and Eq. 490 are the extension of the results in [31] to arbitrary band profiles,
these expressions are reduced to the well-known Kane and Keldysh models in the uniform
electric-field limit [31]:

(494)

where ,  for the direct tunneling process, and  for the phonon-
assisted tunneling process. 

At  without the bandgap narrowing effect, the prefactor  and the exponential
factor  for the direct tunneling process can be expressed by [31]:

(495)

(496)

Rnet
p

Rnet
p EV 0( )∇ C

p
2 κV xd

0

x0

– 2 κC xd

x0

l

–
 
 
 
  ε EF n, l( )–

kT l( )
--------------------------exp 1+ 

 
1– ε EF p, 0( )–

kT 0( )
----------------------------exp 1+ 

 
1–

–exp=

Cp

g 1 2Nop+( )Dop
2

2
6π2ρεopEg,tun

---------------------------------------
mVmC

hl 2mrEg,tun

-------------------------------- xd

0

l


xd

κV
------

0

x0


 
 
 
 

1–

xd
κC
------

x0

l


 
 
 
  1–

1 kvm
2 xd

κV
------

0

x0

–
 
 
 
 

exp– 1 kcm
2 xd

κC
------

x0

l

–
 
 
 
 

exp–=

Dop εop Nop εop kT⁄( )exp 1–[ ] 1–=
ρ κV κC

κV
1
h--- 2mV ε EV ΔV+– Θ ε EV ΔV+–( )=

κC
1
h--- 2mC EC ΔC ε–+ Θ EC ΔC ε–+( )=

x0 κV κC=

Rnet A
F
F0
------ 
  P B

F
---– 

 exp=

F0 1V/cm= P 2= P 2.5=

T 300 K= A
B

A
gπmr

1 2⁄
qF0( )2

9h
2

Eg 300K( ) ΔC ΔV+ +[ ]1 2⁄--------------------------------------------------------------------------=

B
π2

mr
1 2⁄

Eg 300K( ) ΔC ΔV+ +[ ]3 2⁄

qh
------------------------------------------------------------------------------------=
Sentaurus™ Device User Guide 439
N-2017.09



16: Generation–Recombination
Band-to-Band Tunneling Models
For the phonon-assisted tunneling process,  and  can be expressed by [31]:

(497)

(498)

Using Nonlocal Path Band-to-Band Model

The nonlocal path band-to-band model is activated by setting Model=NonlocalPath in the
Band2Band option of the command file. Multiple processes with different parameters are
supported by using the ParameterSetName option and multiple named
Band2BandTunneling parameter sets (see Using Band-to-Band Tunneling on page 431).

NOTE Each tunneling path (characterized by a particular parameter set name)
must have a consistent tunneling process (either direct or phonon-
assisted tunneling process) in different regions. For example, specifying
Ppath=0 (direct tunneling) in silicon regions and specifying Ppath
greater than zero (phonon-assisted tunneling) in polysilicon regions will
induce an error message.

MaxTunnelLength in the parameter file specifies the maximum length of the tunneling path.
If the length reaches MaxTunnelLength before a valid tunneling path is found, the band-to-
band tunneling is neglected.

You can choose between two input parameter sets in the Band2BandTunneling section:

■ The first parameter set consists of ( , , , , ) in the case of direct tunneling or
( , , , , , ) in the case of phonon-assisted tunneling.

■ The second parameter set consists of ( , , , , ) in the case of direct
tunneling or ( , , , , , ) in the case of phonon-assisted tunneling.

NOTE The temperature-specific band gap  in Eq. 495 to
Eq. 498 is used solely for the definitions of the  and  parameters to
be consistent with the Kane and Keldysh models in the uniform electric-
field limit. Internally, the second parameter set is transformed into the
first parameter set. The band gap that is used for the WKB integrals
features all dependencies (for example, mole fraction, temperature, and
stress) as specified in the Physics section.

Specifying  selects the direct tunneling process. When  and the option
FranzDispersion is switched on in the Band2Band option of the command file, the

A B

A
g mVmC( )3 2⁄

1 2Nop+( )Dop
2

qF0( )
5 2⁄

2
21 4⁄

h
5 2⁄

mr
5 4⁄ ρεop Eg 300K( ) ΔC ΔV+ +[ ]

7 4⁄------------------------------------------------------------------------------------------------------------------=

B
2

7 2⁄ πmr
1 2⁄

Eg 300K( ) ΔC ΔV+ +[ ]3 2⁄

3qh
--------------------------------------------------------------------------------------------=

mC mV g ΔC ΔV

mC mV gDop
2 ρ⁄ εop ΔC ΔV

A B mV mC⁄ ΔC ΔV

A B mV mC⁄ εop ΔC ΔV

Eg 300K( ) ΔC Δ+ + V

A B

εop 0= εop 0=
440 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Band-to-Band Tunneling Models
magnitude of the imaginary wavevector is obtained from the Franz two-band dispersion
relation (Eq. 777, p. 730) instead of the Kane two-band dispersion relation (Eq. 482, p. 438).

Specifying  selects the phonon-assisted tunneling process. When , 
and  are determined from Eq. 488, p. 438 and Eq. 489, p. 438.

In the parameter file, the parameter pairs QuantumPotentialFactor and
QuantumPotentialPosFac in the Band2BandTunneling parameter set specify the
prefactors for the electron and hole quantum potentials obtained from the density gradient
model (see Density Gradient Quantization Model on page 294) that can be added to the
effective band gap for tunneling. By default, they are zero, such that the quantum potentials are
neglected in the computation of the generation rate. When they are nonzero, the quantum
potentials multiplied by the corresponding prefactors are added to the conduction and valence
band edges when the transmission coefficient is computed. For QuantumPotentialFactor,
an addition is performed irrespective of the sign of the quantum potential. For
QuantumPotentialPosFac, an addition is performed only when the quantum potential is
positive, that is, only where quantization causes an effective widening of the band gap. For
example, the following section causes the electron and hole quantum potentials to be added to
the band gap wherever they cause an effective widening of the band gap:

Band2BandTunneling {
...
QuantumPotentialPosFac = 1 1

}

Table 90 lists the coefficients of models and their defaults. These parameters can be mole
fraction dependent. The default parameters  and  are obtained from [30]. 

Table 90 Default parameters for nonlocal path band-to-band tunneling model

Symbol Parameter name Default value Unit

Apath

Bpath

Cpath 0

degeneracy 0 1

Dcpath 0 eV

Dvpath 0 eV

m_c 0

m_v 0

Ppath 0.037 eV

Rpath 0 1

εop 0> mV mC⁄ 0= mV

mC

A B

A 4
14×10 cm 3– s 1–

B 1.9
7×10 Vcm 1–

gDop
2 ρ⁄ J

2
cmkg

1–

g

ΔC

ΔV

mC m0

mV m0

εop

mV mC⁄
Sentaurus™ Device User Guide 441
N-2017.09



16: Generation–Recombination
Band-to-Band Tunneling Models
Handling of Derivatives

Due to the dynamic search for tunnel paths, the structure of the system Jacobian depends on
solution variables. Therefore, the nonzero entries of the Jacobian are not known a priori. The
possible entries are estimated before entering the Newton loop.

The computation of nonlocal derivative terms is controlled in the global Math section, in the
Quasistationary statement (see Quasistationary Ramps on page 74) and in the Transient
statement (see Transient Ramps on page 91) using the NonlocalPath section.

Using the Derivative option in the NonlocalPath section, the computation of nonlocal
derivatives can be switched on (Derivative=1) and switched off (Derivative=0). By
default, the computation of nonlocal derivatives is switched off.

If nonlocal derivatives are computed, different strategies are available, using the Strategy
option, to fill the system Jacobian:

■ If Strategy=1, all previously collected Jacobian entries are registered as possible nonzero
entries for the next Newton loop. The collection bin of possible Jacobian entries is emptied
at the beginning of the Quasistationary and Transient ramps.

■ If Strategy=2, Jacobian entries that occur only during the last N Newton iterations are
registered as possible nonzero entries for the next Newton loop.

■ If Strategy=3, it automatically activates and deactivates the computation of nonlocal
derivatives during the Quasistationary and Transient ramps, depending on the step
size. If the step size is smaller than MinStep, nonlocal derivatives are computed. If the step
size is greater than MaxStep, nonlocal derivatives are not computed. Jacobian entries that
occur during the last N Newton iterations are registered as possible nonzero entries for the
next Newton loop.

For example:

NonlocalPath (
Derivative=1
Strategy=3
N=5
MinStep=1.0e-5
MaxStep=1.0e-2

)

NOTE The inclusion of nonlocal derivatives is computationally heavy and
reduces the sparsity of the system Jacobian. Simulation times will
increase.
442 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Band-to-Band Tunneling Models
Postprocessing Mode

To estimate the nonlocal tunneling generation rate without convergence difficulties and without
computationally heavy nonlocal derivatives, Sentaurus Device provides the postprocessing
mode of the dynamic nonlocal path band-to-band tunneling model.

The postprocessing mode can be switched on (Postprocessing) and switched off
(-Postprocessing) in the NonlocalPath section. By default, the postprocessing mode is
switched off. Specifying the NonlocalPath section in the Quasistationary or
Transient statement overwrites the specifications of the NonlocalPath section in the
global Math section.

In the postprocessing mode, generation rates due to the dynamic nonlocal path band-to-band
tunneling model are excluded from the continuity equations. Based on this solution without
nonlocal tunneling, Sentaurus Device calculates the nonlocal tunneling generation rates in a
postprocessing step.

NOTE In the postprocessing mode, nonlocal tunneling is not computed self-
consistently. There is no feedback of the nonlocal tunneling generation
rates on the solution that has been used to calculate the nonlocal
tunneling generation rates.

The tunneling generation currents are computed according to  where the
integration volume expands over all semiconductor regions. If postprocessing is activated, the
electron and hole tunneling generation currents eBand2BandGenerationCurrent and
hBand2BandGenerationCurrent are written in units of C/s into the plot file.

Frozen Tunneling Direction

In some cases, the estimation of the tunneling direction pointing along the negative gradient of
the valence band energy can be a tunneling direction of minor importance. Furthermore,
freezing the tunneling direction can support numeric stability to achieve convergence. You can
specify the tunneling direction by setting direction=<vector> in the NonlocalPath
section.

Visualizing Nonlocal Band-to-Band Generation Rate

To plot the electron and hole generation rates, specify eBand2BandGeneration and
hBand2BandGeneration in the Plot section, respectively. 

NOTE Band2BandGeneration is equal to hBand2BandGeneration.

Jn/p q Rnet
n/p r( )d3r=
Sentaurus™ Device User Guide 443
N-2017.09



16: Generation–Recombination
Bimolecular Recombination
Bimolecular Recombination

The bimolecular recombination model describes the interaction of electron–hole pairs and
singlet excitons (see Singlet Exciton Equation on page 235).

Physical Model

The rate of electron–hole pair and singlet exciton recombination follows the Langevin form,
that is, it is proportional to the carrier mobility. The bimolecular recombination rate is given by:

(499)

where:

■  is a prefactor for the singlet exciton.

■  is the elementary charge.

■  and  denote the free space and relative permittivities, respectively.

■ Electron and hole mobilities are given by  and , accordingly.

■ , , and  describe the electron, hole, and effective intrinsic density, respectively. 

■  is the singlet exciton density.

■  denotes the singlet-exciton equilibrium density.

Using Bimolecular Recombination

The bimolecular recombination model is activated by using the keyword Bimolecular as an
argument of the Recombination statement in the SingletExciton section (see Table 254
on page 1449). It is switched off by default and can be activated regionwise (see Singlet
Exciton Equation on page 235). An example is:

Physics (Region="EML-ETL") {
SingletExciton (

Recombination ( Bimolecular )
)

}

Rbimolec γ q
ε0εr
--------- μn μp+( ) np ni,eff

2 nse

nse
eq

-------–
 
 
 

⋅ ⋅=

γ
q

ε0 εr

μn μp

n p ni,eff

nse

nse
eq
444 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
Exciton Dissociation Model
Table 91 lists the parameter of the bimolecular recombination model, which is accessible in the
SingletExciton section of the parameter file. 

Exciton Dissociation Model

The exciton dissociation model describes the dissociation of singlet excitons into electron–hole
pairs at semiconductor–semiconductor and semiconductor–insulator interfaces.

Physical Model

The rate of singlet exciton interface dissociation is modeled as:

(500)

where:

(501)

is the singlet exciton recombination velocity in ,  is the capture cross-section of
exciton dissociation centers with the surface density ,  is the singlet exciton thermal
velocity, and and  are the exciton and equilibrium exciton densities, respectively.

In the dissociation process, a singlet exciton generates an electron–hole pair. The rate in
Eq. 500 is a recombination rate for the singlet exciton equation and a generation rate for the
electron and hole continuity equations.

Using Exciton Dissociation

The exciton dissociation model is activated using the keyword Dissociation as an argument
of the Recombination statement in the SingletExciton section (see Table 254 on
page 1449). It is switched off by default and can be activated regionwise (see Singlet Exciton
Equation on page 235).

Table 91 Default parameter for bimolecular recombination

Symbol Parameter name Default value Unit

gamma 0.25 1γ

Rse,diss
surf

vse 0, σse Ndiss– Nse,diss
surf

nse nse
eq

–( )=

vdiss
surf

vse 0, σse Ndiss– Nse,diss
surf

=

cm/s σse Ndiss–

Nse,diss
surf vse 0,

nse nse
eq
Sentaurus™ Device User Guide 445
N-2017.09



16: Generation–Recombination
References
The following example activates exciton dissociation at the EML/ETL region interface:

Physics (RegionInterface="EML/ETL") {
SingletExciton (Recombination ( Dissociation ))

}

Table 92 lists the parameters of the exciton dissociation model, which is accessible in the
SingletExciton section of the parameter file. 

References

[1] D. J. Roulston, N. D. Arora, and S. G. Chamberlain, “Modeling and Measurement of
Minority-Carrier Lifetime versus Doping in Diffused Layers of n+-p Silicon Diodes,”
IEEE Transactions on Electron Devices, vol. ED-29, no. 2, pp. 284–291, 1982.

[2] J. G. Fossum, “Computer-Aided Numerical Analysis of Silicon Solar Cells,” Solid-State
Electronics, vol. 19, no. 4, pp. 269–277, 1976.

[3] J. G. Fossum and D. S. Lee, “A Physical Model for the Dependence of Carrier Lifetime
on Doping Density in Nondegenerate Silicon,” Solid-State Electronics, vol. 25, no. 8,
pp. 741–747, 1982.

[4] J. G. Fossum et al., “Carrier Recombination and Lifetime in Highly Doped Silicon,”
Solid-State Electronics, vol. 26, no. 6, pp. 569–576, 1983.

[5] A. Nakagawa, “One-dimensional device model of the npn bipolar transistor including
heavy doping effects under Fermi statistics”, Solid-State Electronics, vol. 22, no. 11,
pp. 943–949, 1979.

[6] M. S. Tyagi and R. Van Overstraeten, “Minority Carrier Recombination in Heavily-
Doped Silicon,” Solid-State Electronics, vol. 26, no. 6, pp. 577–597, 1983.

[7] H. Goebel and K. Hoffmann, “Full Dynamic Power Diode Model Including
Temperature Behavior for Use in Circuit Simulators,” in Proceedings of the 4th
International Symposium on Power Semiconductor Devices & ICs (ISPSD), Tokyo,
Japan, pp. 130–135, May 1992.

[8] A. Schenk, “A Model for the Field and Temperature Dependence of
Shockley–Read–Hall Lifetimes in Silicon,” Solid-State Electronics, vol. 35, no. 11,
pp. 1585–1596, 1992.

Table 92 Default parameters for exciton dissociation model

Symbol Parameter name Default value Unit

ex_dXsection

N_diss

σse Ndiss–
1

8–×10 cm
2

Nse,diss
surf 1

10×10 cm
2–
446 Sentaurus™ Device User Guide
N-2017.09



16: Generation–Recombination
References
[9] R. R. King, R. A. Sinton, and R. M. Swanson, “Studies of Diffused Phosphorus
Emitters: Saturation Current, Surface Recombination Velocity, and Quantum
Efficiency,” IEEE Transactions on Electron Devices, vol. 37, no. 2, pp. 365–371, 1990.

[10] R. R. King and R. M. Swanson, “Studies of Diffused Boron Emitters: Saturation
Current, Bandgap Narrowing, and Surface Recombination Velocity,” IEEE
Transactions on Electron Devices, vol. 38, no. 6, pp. 1399–1409, 1991.

[11] A. Cuevas et al., “Surface Recombination Velocity and Energy Bandgap Narrowing of
Highly Doped n-Type Silicon,” in 13th European Photovoltaic Solar Energy
Conference, Nice, France, pp. 337–342, October 1995.

[12] A. Schenk and U. Krumbein, “Coupled defect-level recombination: Theory and
application to anomalous diode characteristics,” Journal of Applied Physics, vol. 78,
no. 5, pp. 3185–3192, 1995.

[13] L. Huldt, N. G. Nilsson, and K. G. Svantesson, “The temperature dependence of band-
to-band Auger recombination in silicon,” Applied Physics Letters, vol. 35, no. 10,
pp. 776–777, 1979.

[14] W. Lochmann and A. Haug, “Phonon-Assisted Auger Recombination in Si with Direct
Calculation of the Overlap Integrals,” Solid State Communications, vol. 35, no. 7,
pp. 553–556, 1980.

[15] R. Häcker and A. Hangleiter, “Intrinsic upper limits of the carrier lifetime in silicon,”
Journal of Applied Physics, vol. 75, no. 11, pp. 7570–7572, 1994.

[16] A. Richter et al., “Improved parameterization of Auger recombination in silicon,”
Energy Procedia, vol. 27, pp. 88–94, April 2012.

[17] P. P. Altermatt et al., “Injection dependence of spontaneous radiative recombination in
c-Si: experiment, theoretical analysis, and simulation,” in Proceedings of the 5th
International Conference on Numerical Simulation of Optoelectronic Devices
(NUSOD), Berlin, Germany, pp. 47–48, September 2005.

[18] A. G. Chynoweth, “Ionization Rates for Electrons and Holes in Silicon,” Physical
Review, vol. 109, no. 5, pp. 1537–1540, 1958.

[19] R. van Overstraeten and H. de Man, “Measurement of the Ionization Rates in Diffused
Silicon p-n Junctions,” Solid-State Electronics, vol. 13, no. 1, pp. 583–608, 1970.

[20] Y. Okuto and C. R. Crowell, “Threshold Energy Effect on Avalanche Breakdown
Voltage in Semiconductor Junctions,” Solid-State Electronics, vol. 18, no. 2,
pp. 161–168, 1975.

[21] T. Lackner, “Avalanche Multiplication in Semiconductors: A Modification of
Chynoweth’s Law,” Solid-State Electronics, vol. 34, no. 1, pp. 33–42, 1991.

[22] M. C. Vecchi and M. Rudan, “Modeling Electron and Hole Transport with Full-Band
Structure Effects by Means of the Spherical-Harmonics Expansion of the BTE,” IEEE
Transactions on Electron Devices, vol. 45, no. 1, pp. 230–238, 1998.
Sentaurus™ Device User Guide 447
N-2017.09



16: Generation–Recombination
References
[23] S. Reggiani et al., “Electron and Hole Mobility in Silicon at Large Operating
Temperatures—Part I: Bulk Mobility,” IEEE Transactions on Electron Devices, vol. 49,
no. 3, pp. 490–499, 2002.

[24] M. Valdinoci et al., “Impact-ionization in silicon at large operating temperature,” in
International Conference on Simulation of Semiconductor Processes and Devices
(SISPAD), Kyoto, Japan, pp. 27–30, September 1999.

[25] E. Gnani et al., “Extraction method for the impact-ionization multiplication factor in
silicon at large operating temperatures,” in Proceedings of the 32nd European Solid-
State Device Research Conference (ESSDERC), Florence, Italy, pp. 227–230,
September 2002.

[26] S. Reggiani et al., “Investigation about the High-Temperature Impact-Ionization
Coefficient in Silicon,” in Proceedings of the 34th European Solid-State Device
Research Conference (ESSDERC), Leuven, Belgium, pp. 245–248, September 2004.

[27] S. Reggiani et al., “Experimental extraction of the electron impact-ionization coefficient
at large operating temperatures,” in IEDM Technical Digest, San Francisco, CA, USA,
pp. 407–410, December 2004.

[28] A. Schenk, “Rigorous Theory and Simplified Model of the Band-to-Band Tunneling in
Silicon,” Solid-State Electronics, vol. 36, no. 1, pp. 19–34, 1993.

[29] J. J. Liou, “Modeling the Tunnelling Current in Reverse-Biased p/n Junctions,” Solid-
State Electronics, vol. 33, no. 7, pp. 971–972, 1990.

[30] G. A. M. Hurkx, D. B. M. Klaassen, and M. P. G. Knuvers, “A New Recombination
Model for Device Simulation Including Tunneling,” IEEE Transactions on Electron
Devices, vol. 39, no. 2, pp. 331–338, 1992.

[31] E. O. Kane, “Theory of Tunneling,” Journal of Applied Physics, vol. 32, no. 1,
pp. 83–91, 1961.

[32] T. Hatakeyama et al., “Physical Modeling and Scaling Properties of 4H-SiC Power
Devices,” in International Conference on Simulation of Semiconductor Processes and
Devices (SISPAD), Tokyo, Japan, pp. 171–174, September 2005.
448 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 17 Traps and Fixed Charges

This chapter presents information on how traps are handled by
Sentaurus Device.

Traps are important in device physics. For example, they provide doping, enhance
recombination, and increase leakage through insulators. Several models (for example,
Shockley–Read–Hall recombination, described in Shockley–Read–Hall Recombination on
page 391) depend on traps implicitly, but do not actually model them. This chapter describes
models that take the occupation and the space charge stored on traps explicitly into account. It
also describes the specification of fixed charges.

Sentaurus Device provides several trap types (electron and hole traps, fixed charges), five types
of energetic distribution (level, uniform, exponential, Gaussian, and table), and various models
for capture and emission rates, including the V-model (optionally, with field-dependent cross
sections), the J-model, and nonlocal tunneling. Traps are available for both bulk and interfaces. 

A simple model restricted to insulator fixed charges is described in Insulator Fixed Charges on
page 471.

Basic Syntax for Traps

The specification of trap distributions and trapping models appears in the Physics section. In
contrast to other models, most model parameters are specified here as well. Parameter
specifications in the parameter file serve as defaults for those in the command file.

Traps can be specified for interfaces or bulk regions. Specifications take the form:

Physics (Region="gobbledygook"){
Traps(

( <trap specification> )
( <trap specification> )
...

)
}

and likewise for Material, RegionInterface, and MaterialInterface. Above, each
<trap specification> describes one particular trap distribution, and the models and
parameters applied to it. When only a single trap specification is present, the inner pair of
Sentaurus™ Device User Guide 449
N-2017.09



17: Traps and Fixed Charges
Trap Types
parentheses can be omitted. Table 325 on page 1488 summarizes the options that can appear in
the trap specification.

NOTE Wherever a contact exists at a specified region interface, Sentaurus
Device does not recognize the interface traps within the bounds of the
contact because the contact itself constitutes a region and effectively
overwrites the interface between the two ‘material’ regions. This is true
even if the contact is not declared in the Electrode statement.

Trap Types

The keywords FixedCharge, Acceptor, Donor, eNeutral, and hNeutral select the type
of trap distribution:

■ FixedCharge traps are always completely occupied.

■ Acceptor and eNeutral traps are uncharged when unoccupied and they carry the charge
of one electron when fully occupied.

■ Donor and hNeutral traps are uncharged when unoccupied and they carry the charge of
one hole when fully occupied.

Energetic and Spatial Distribution of Traps

The keywords Level, Uniform, Exponential, Gaussian, and Table determine the
energetic distribution of traps. They select a single-energy level, a uniform distribution, an
exponential distribution, a Gaussian distribution, and a user-defined table distribution,
respectively:

(502)

 is set with the Conc keyword. For a Level distribution, Conc is given in  (for
regionwise or materialwise specifications) or  (for interface-wise specifications). For the

N0 for E E0= for Level

N0 for E0 0.5ES– E E0 0.5ES+< < for Uniform

N0
E E0–

ES
---------------– 

 exp for Exponential

N0

E E0–( )

2ES
2

--------------------
2

–
 
 
 

exp for Gaussian

N1

…
Nm




 for E E1=

…
for E Em=

for Table

N0 cm 3–

cm 2–
450 Sentaurus™ Device User Guide
N-2017.09



17: Traps and Fixed Charges
Energetic and Spatial Distribution of Traps
other energetic distributions, Conc is given in  or . For FixedCharge, the
sign of Conc denotes the sign of the fixed charges. For the other trap types, Conc must not be
negative. 

For a Table distribution, individual levels are given as a pair of energies (in ) and the
corresponding concentrations (in  or ). Depending on the presence of the
keywords fromCondBand, fromMidBandGap, or fromValBand, the energy levels in the
table are relative to the conduction band, intrinsic energy, or valence band, respectively. To
obtain the absolute concentration (in  or ) for each level, the energy range between
the smallest and the largest energy in the table is split into intervals. The boundaries of the
intervals are the energies that are in the middle between adjacent energies in the table. The
absolute concentration of a level is the product of the size of the energy interval that contains
it and the concentration specified in the table. If the table contains only one level, an interval
size of 1 eV is assumed. For example:

Traps ((Table=(-0.1 1e15 0 1e16 0.1 1e15) fromMidBandGap))

creates a trap level at the midgap with a concentration of ,
and a level at both 0.1 eV above and below the midgap, with a concentration of

.

 and  are given in  by EnergyMid and EnergySig. The energy of the center of the
trap distribution, , is obtained from  depending on the presence of one of the keywords
fromCondBand, fromMidBandGap, or fromValBand:

(503)

Internally, Sentaurus Device approximates trap-energy distributions by discrete energy levels.
The number of levels defaults to 13 and is set by TrapDLN in the Math section.

In Eq. 503,  is zero (the default) or is computed by a PMI specified with
EnergyShift=<model name> or EnergyShift=(<model name>, <int>). The PMI
depends on the electric field and the lattice temperature. By default, these quantities are taken
at the location of the trap; alternatively, with ReferencePoint=<vector>, you can specify
a coordinate in the device from where these quantities are to be taken. For more details, see
Trap Energy Shift on page 1205.

For traps located at interfaces, Region or Material allows you to specify the region or
material on one side of the interface; the energy specification then refers to the band structure
on that side. For heterointerfaces, the charge and recombination rate due to the traps will be
fully accounted for on that side. Without this side specification, the energy parameters refer to
the bands that you see when you plot the band edges, which usually originate from the lower

eV 1– cm 3– eV 1– cm 2–

eV
eV 1– cm 3– eV 1– cm 2–

cm 3– cm 2–

0.1 eV 1016 cm 3– eV 1–× 1015 cm 3–=

0.05 eV 1015 cm 3– eV 1–× 5 13×10 cm 3–=

E0 ES eV
Etrap

0 E0

Etrap
0

EC E0– Eshift–     fromCondBand

EC EV kT+ + NV NC⁄( )ln[ ] 2 E0 Eshift+ +⁄     fromMidBandGap

EV E0 Eshift+ +     fromValBand








=

Eshift
Sentaurus™ Device User Guide 451
N-2017.09



17: Traps and Fixed Charges
Energetic and Spatial Distribution of Traps
bandgap material. The charge and recombination rates due to traps are evenly distributed on
both sides.

Note that if the trap energies are not referred to the side of the material with lower bandgap, the
correction of trap energies is performed at 300K. This implies that if you perform a
temperature-dependent simulation with traps at an interface between materials that have
different temperature dependency, you should use both heterointerfaces and Region or
Material for the side specification, to make the correct specification of trap energies easier.

By default, the trap energies refer to effective band edges, that is, band edges that include
bandgap narrowing. By specifying Reference=BandGap, trap energies refer to band edges
that do not include bandgap narrowing.

By default, the energy range of traps for Uniform, Gaussian, and Exponential trap
distributions are truncated to the effective bandgap at 300K. Truncation is controlled by the
Cutoff keyword. A value of None disables truncation, a value of Simple activates a
truncation approach used by previous versions of Sentaurus Device (ignoring mole fraction
dependency of the band gap), and a value of BandGap truncates to the band gap at 300K
without bandgap narrowing. Note that the truncation approach does not affect the band edges
to which trap energies refer during simulation: These are always the solution-dependent band
edges, including temperature dependency. The Level and Table traps are never truncated to
the band gap.

By default, trap concentrations are uniform over the domain for which they are specified. With
SFactor= "<dataset_name>", the given dataset determines the spatial distribution. If
Conc is zero or is omitted, the dataset determines the density directly. For Uniform,
Gaussian, and Exponential trap distributions, this is the total density (in  or ) of
the integrated energy distribution. If Conc is nonzero, the SFactor is scaled by the maximum
of its absolute value and multiplied by . Datasets available for SFactor are DeepLevels,
xMoleFraction, and yMoleFraction (read from the doping file), and eTrappedCharge
and hTrappedCharge (read from the file specified by DevFields in the File section), as
well as the PMI user fields (read from the file specified by PMIUserFields in the File
section).

Alternatively, with SFactor = “<pmi_model_name>”, the spatial distribution is computed
using the PMI. See Space Factor on page 1190 for more details. During a transient simulation,
this PMI gives the possibility to have a time-dependent trap concentration. In this case, spatial
distribution can be computed based on the solution from the previous time step available
through the PMI.

SpatialShape selects a multiplicative modifier function for the trap concentration. If
SpatialShape is Uniform (the default), the multiplier for point ( ) is:

(504)

cm 3– cm 2–

N0

x y z, ,

Θ σx x x0––( )Θ σy y y0––( )Θ σz z z0––( )
452 Sentaurus™ Device User Guide
N-2017.09



17: Traps and Fixed Charges
Energetic and Spatial Distribution of Traps
If SpatialShape is Gaussian, the multiplier is:

(505)

In Eq. 504 and Eq. 505,  and  are given (in ) by the SpaceMid and
SpaceSig options, respectively. By default, the components of SpaceSig are huge, so that
the multiplier becomes one.

Specifying Single Traps

The keyword SingleTrap has been provided to simplify the specification of parameters to
mimic the behavior of a single carrier trap or single fixed-charge trap. Including SingleTrap
in the trap specification results in the following behavior:

■ The coordinates specified with SpaceMid=  snap to the nearest node in the
material, region, or interface that is specified as part of the Physics command. If a global
Physics specification is used, the coordinates snap to the nearest node in the device.

■ SpatialShape=Uniform is used automatically for the trap. You do not need to specify
this parameter.

■ SpaceSig=(1e-6, 1e-6, 1e-6) is used automatically for the trap. This is intended to
confine the trap to a single node. You do not need to specify this parameter.

■ The trap concentration is computed automatically such that a filled trap corresponds to one
electronic charge. If Conc is specified by users, it is ignored.

■ SingleTrap is only allowed with a Level energetic distribution for carrier traps
(eNeutral, hNeutral, Acceptor, or Donor) or with FixedCharge traps.

■ When SingleTrap is specified with FixedCharge, the sign of Conc (if specified) is used
for the sign of the fixed charge. If Conc is not specified or if Conc=0 is specified, the fixed
charge is positive. To obtain a negative fixed charge with SingleTrap, specify any
negative value for Conc.

■ For 2D simulations, AreaFactor specified in the Physics section is used for the z-
direction width when calculating the SingleTrap concentration.

For example, the following command file fragment places two single-electron traps at the
silicon–oxide interface:

Physics (MaterialInterface="Silicon/Oxide") {
Traps (

(SingleTrap eNeutral Level EnergyMid=0 fromMidBandGap 
SpaceMid=(0.0,0.0,0.1))

x x0–( )2

2σx
2

---------------------–
y y0–( )2

2σy
2

---------------------–
z z0–( )2

2σz
2

--------------------–
 
 
 

exp

x0 y0 z0, ,( ) σx σy σz, ,( ) μm

x0 y0 z0, ,( )
Sentaurus™ Device User Guide 453
N-2017.09



17: Traps and Fixed Charges
Energetic and Spatial Distribution of Traps
(SingleTrap eNeutral Level EnergyMid=0 fromMidBandGap 
SpaceMid=(0.2,0.0,0.3))

)
}

Trap Randomization

The spatial distribution of traps can be randomized by including the keyword Randomize in
the trap specification. Specifying Randomize results in the following behavior:

■ If SingleTrap is specified, the location of the single trap is randomized in the material,
region, or interface that is specified as part of the Physics command. If a global Physics
specification is used, the location of the single trap is randomized in the whole device. If
SpaceMid is specified, it is ignored.

■ If SingleTrap is not specified, the concentration of traps at each node is randomized.
This is accomplished by first determining the average number of traps at a node based on
the spatial distribution created from the trap specification. This is used as the expectation
value for a Poisson-distribution random number generator to obtain a new random number
of traps at the node. Finally, this is converted back to a trap concentration.

■ Randomize is only allowed with a Level energetic distribution for carrier traps
(eNeutral, hNeutral, Acceptor, or Donor) or with FixedCharge traps.

■ If Randomize is specified, the randomization is different every time the command file is
executed. However, this behavior can be altered by specifying Randomize with an integer
argument:

• Randomize < 0: No randomization occurs.

• Randomize = 0: Same as Randomize without an argument. The randomization is
different for every execution of the command file.

• Randomize > 0: The specified number is used as the seed for the random number
generator. This allows a particular randomization to be repeated for repeated
executions of the same command file on the same platform.

Examples

Randomize location of a single electron trap at the silicon–oxide interface:

Physics (MaterialInterface="Silicon/Oxide") {
Traps (

(SingleTrap Randomize eNeutral Level EnergyMid=0 fromMidBandGap)
)

}

454 Sentaurus™ Device User Guide
N-2017.09



17: Traps and Fixed Charges
Trap Models and Parameters
Randomize a Gaussian spatial distribution of traps in silicon:

Physics (Material="Silicon") {
Traps (

(eNeutral Conc=1e16 Level EnergyMid=0 fromMidBandGap
Randomize SpatialShape=Gaussian
SpaceMid=(0.0,0.0,0.05) SpaceSig=(0.05,0.05,0.05))

)
}

Trap Models and Parameters

Trap Occupation Dynamics

The electron occupation  of a trap is a number between 0 and 1, and changes due to the
capture and emission of electrons:

(506)

(507)

 denotes an electron capture rate for an empty trap and  denotes an electron emission rate
for a full trap, respectively. The sum in Eq. 506 is over all capture and emission processes. For
example, the capture of an electron from the conduction band is a process distinct from the
capture of an electron from the valence band.

For the stationary state, the time derivative in Eq. 506 vanishes. The occupation becomes:

(508)

and the net electron capture rate due to process  becomes:

(509)

The previous equations are given in the electron picture, which is the most natural one for
eNeutral or Acceptor traps. For hNeutral and Donor traps, you might prefer to use the

f n

f
n∂
t∂

------- ri
n

i
=

ri
n

1 f
n

–( )ci
n

f
n
ei

n
–=

ci
n ei

n

f
n

ci
n


ci

n
ei

n
+( )

----------------------------=

k

rk
n

ck
n

ei
n

 ek
n

ci
n

–

ci
n

ei
n

+( )
------------------------------------------=
Sentaurus™ Device User Guide 455
N-2017.09



17: Traps and Fixed Charges
Trap Models and Parameters
equivalent hole picture. Use the relations , , , and  to
translate the electron picture into the hole picture.

Figure 20 illustrates the two equivalent pictures. 

Figure 20 Trap occupation dynamics: (left) electron picture and (right) hole picture

In particular, in the stationary state, for traps with concentration , the V-model (see Local
Trap Capture and Emission on page 457) and Eq. 509 lead to the Shockley–Read–Hall
recombination rate:

(510)

Each capture and emission process couples the trap to a reservoir of carriers. If only a single
process would be effective, in the stationary state, the trap would be in equilibrium with the
reservoir for this process. This consideration (the ‘principle of detailed balance’) relates
capture and emission rates:

(511)

Here,  is the energy of the trap,  is the Fermi energy of the reservoir,  is the
temperature of the reservoir, and  is the degeneracy factor. Sentaurus Device supports distinct
degeneracy factors  and  for coupling to the conduction and valence bands. They default
to 1 and are set with eGfactor and hGfactor in the command file, and with the G parameter
pair in the Traps parameter set.

Capture and emission rates are either local (see Local Trap Capture and Emission on page 457)
or nonlocal (see Tunneling and Traps on page 463). Sentaurus Device does not solve the
current continuity equations in insulators and, therefore, supports local rates only for traps in
semiconductors or at semiconductor interfaces. Therefore, traps in insulators that are not
connected to a semiconductor region by a nonlocal model do not have any capture and emission
processes, and their occupation is undefined (except for FixedCharge ‘traps’). Sentaurus
Device ignores them.

ci
p ei

n= ei
p ci

n= fp 1 fn–= ri
p ri

n–=

Conduction
Band

Valence
Band

electron
emission

electron
capture

hole
capture

hole
emission

en
C

c n
C

en
V

c n
V

c p
C

ep
C

c p
V

ep
V

N0

Rnet

N0v
th
n vth

p σnσp np ni,eff
2–( )

vth
n σn n n1 gn⁄+( ) vth

p σp p p1 gp⁄+( )+
--------------------------------------------------------------------------------------------=

ei

ci

g
----

Etrap EF
i–

kTi
-----------------------
 
 
 

exp=

Etrap EF
i Ti

g
gn gp
456 Sentaurus™ Device User Guide
N-2017.09



17: Traps and Fixed Charges
Trap Models and Parameters
Local Trap Capture and Emission

The electron capture rate from the conduction band at the same location as the trap is:

(512)

and similarly, the hole capture rate from the valence band is .

 and  are set with eJfactor and hJfactor in the command file, and with the Jcoef
parameter pair in the Traps parameter set.  and  can take any value between 0 and 1.
When zero (the default), the V-model is obtained, and when 1, the J-model (popular for
modeling radiation problems) is obtained.

The electron emission rate to the conduction band is  and the hole
emission to the valence band is . For  and

, these rates obey the principle of detailed balance.

Above,  and . For Fermi
statistics or with quantization (see Chapter 14 on page 283),  and are given by Eq. 47 and
Eq. 48, p. 177 (see Fermi Statistics on page 176), whereas otherwise, .

 and  are the thermal velocities. Sentaurus Device offers two options, selected by the
VthFormula parameter pair in the Traps parameter set (default is 1):

(513)

 are given by the Vth parameter pair in the Traps section of the parameter file.

Sentaurus Device offers several options for the cross sections  and . In any case, trap
cross sections are derived from the constant cross sections  and , which are set by the
eXsection and hXsection keywords in the command file, and by the Xsec parameter pair
in the Traps parameter set.

By default, the cross sections are constant:  and .

cC
n σn 1 gn

J
–( )vth

n n gn
J Jn

q
-----+=

cV
p σp 1 gp

J–( )vth
p p gp

JJp q⁄+[ ]=

gn
J gp

J

gn
J gp

J

eC
n vth

n σnγnn1 gn⁄ econst
n+=

eV
p vth

p σpγpp1 gp⁄ econst
p+= gn

J econst
n 0= =

gp
J econst

p 0= =

n1 NC Etrap EC–( ) kT⁄[ ]exp= p1 NV EV Etrap–( ) kT⁄[ ]exp=
γn γp

γn γp 1= =

vth
n vth

p

vth
n p,

vo
n p, T

300K
-------------    VthFormula=1

3kT
mn p, 300 K( )
------------------------------    VthFormula=2









=

v0
n p,

σn σp

σn
0 σp

0

σn σn
0= σp σp

0=
Sentaurus™ Device User Guide 457
N-2017.09



17: Traps and Fixed Charges
Trap Models and Parameters
 and  represent the constant emission rate terms for carrier emission from the trap
level to the conduction and valence band. They can be set by the eConstEmissionRate and
hConstEmissionRate keywords in the command file, and by the ConstEmissionRate
parameter pair in the Traps parameter set (default , ).

The option SimpleCapt restricts the field enhancement to the cross sections used by the
emission rates. That is, for the computation of  and ,  and  are used and, for the
computation of  and ,  and  are used. Using different cross sections for capture and
emission violates the principle of detailed balance. By default, the same cross sections are used
for capture and emission rates.

J-Model Cross Sections

This model is activated by the ElectricField keyword in the command file. It is intended
for use with the J-model and reads:

(514)

where , , , , and  are adjustable parameters available as parameter pairs a1, a2,
p0, p1, and p2 in the Traps parameter set. Using the SimpleCapt option restricts the field
enhancement of cross sections to the emission rates only.

Hurkx Model for Cross Sections

The Hurkx model is selected by the Tunneling(Hurkx) keyword in the command file. The
cross sections are obtained from  and  using Eq. 399, p. 399. Using the SimpleCapt
option restricts the field enhancement of cross sections to the emission rates only.

Poole–Frenkel Model for Cross Sections

The Poole–Frenkel model [1] is frequently used for the interpretation of transport effects in
dielectrics and amorphous films. The model predicts an enhanced emission probability  for
charged trap centers where the potential barrier is reduced because of the high external electric
field.

econst
n econst

p

econst
n 0 s 1–= econst

p 0 s 1–=

eC
n eV

n σn σp

cC
n cV

n σn
0 σn

0

σn p, σn p,
0

1 a1
F

1Vm
1–

-----------------
p1

a2
F

1Vm
1–

-----------------
p2

+ +
 
 
  p0

=

a1 a2 p0 p1 p2

σn
0 σp

0

Γpf
458 Sentaurus™ Device User Guide
N-2017.09



17: Traps and Fixed Charges
Trap Models and Parameters
The model is selected by the PooleFrenkel keyword in the Traps specification (in the
Physics section) of the command file. In the Poole–Frenkel model:

(515)

If PooleFrenkel is used without options, for Donor and hNeutral traps, and
and, for Acceptor and eNeutral traps,  and . If

PooleFrenkel with the option Electron is used,  irrespective of trap type. If
PooleFrenkel is used with the option Hole,  irrespective of trap type. The
specifications PooleFrenkel(Electron) and PooleFrenkel(Hole) can be used
together to activate the model for exchange with conduction and valence bands simultaneously.

 is an adjustable parameter and is set by the epsPF parameter pair in the PooleFrenkel
parameter set.

Using the SimpleCapt option restricts the field enhancement of cross sections to the emission
rates only.

Local Capture and Emission Rates Based on Makram-Ebeid–Lannoo 
Phonon-Assisted Tunnel Ionization Model

The Makram-Ebeid–Lannoo model [2] is a phonon-assisted tunnel emission model for carriers
trapped on deep semiconductor levels, with its main application in two-band charge transport
in silicon nitride [3].

In this model, the deep trap acts as an oscillator or core embedded in the nitride lattice,
attracting electrons (electron trap) or holes (hole trap). The deep trap is defined by the phonon
energy , the thermal energy  and the optical energy . The trap ionization rate is
given by:

(516)

(517)

where  is the modified Bessel function of the order , , and 
is the tunnel escape rate through the triangle barrier of height .

σn p,
enh σn p,

0
1 Γpf+( )=

Γpf
1

α2
------ 1 α 1–( ) α( )exp+[ ] 1

2
---–=

α 1
kT
------

q
3
F

πεpf
----------=

σn σn
enh=

σp σp
0= σp σp

enh= σn σn
0=

σn σn
enh=

σp σp
enh=

εpf

Wph WT Wopt

P
nWph

2kT
------------- S

Wph

2kT
---------coth– In

S
Wph 2kT( )⁄( )sinh

-------------------------------------------- 
 Pi WT nWph+( )exp

n ∞–=

∞

=

Pi W( ) eF

2 2mW
--------------------

4 2m
3heF
---------------W

3 2⁄
– 
 exp=

In n S Wopt WT–( ) Wph⁄= Pi W( )
W

Sentaurus™ Device User Guide 459
N-2017.09



17: Traps and Fixed Charges
Trap Models and Parameters
Sentaurus Device implements the Makram-Ebeid–Lannoo model for Level traps, eNeutral
and hNeutral. The electron emission rate to the conduction band  and the hole emission to
the valence band  are the trap ionization rates described by Eq. 516 with the corresponding

,  and  defining the associated deep trap. 

The electron capture rate from the conduction band  and the hole capture rate from the
valence band  are computed based on user selection. They can be obtained from the
emission rates by the principle of detailed balance or using the constant capture cross-sections:

, .

The model is selected by the keyword Makram-Ebeid in the command file of the trap
parameter set. When the Makram-Ebeid keyword with no options is used, the trap couples to
both the conduction and valence bands through Makram-Ebeid–Lannoo trap emission rates.
When Makram-Ebeid is used with the option electron in parentheses, an eNeutral trap
couples to the conduction band through the Makram-Ebeid –Lannoo emission rate and to the
valence band using the default emission rate. Similarly, Makram-Ebeid with hole in
parentheses couples an hNeutral trap to the valence band through the Makram-
Ebeid–Lannoo emission rate and to the conduction band using the default emission rate.

For example, to couple eNeutral Level traps described by the Makram–Ebeid–Lannoo
model to both the conduction and valence bands, you must specify the following in the
command file:

Traps(
...
(eNeutral Level ... Makram-Ebeid)

)

To couple the eNeutral Level trap through the Makram–Ebeid–Lannoo emission rate only
to the conduction band, while keeping the default emission rate to the valence band, you must
specify:

Traps(
...
(eNeutral Level ... Makram-Ebeid(electron))

)

The electron capture rate from the conduction band to an eNeutral trap ( ) and the hole
capture rate from the valence band to an hNeutral trap ( ) are, by default, computed from
the corresponding emission rates using the detailed balance principle. By using the keyword
simpleCapt in parentheses as an option for Makram-Ebeid, capture rates are computed as

 for exchange with the conduction band and
 for exchange with the valence band, where  and  are set

with eJfactor and hJfactor in the command file and with the Jcoef parameter pair in the
Traps parameter set.  and  can take any value between 0 and 1. When zero or not

eC
n

eV
p

Wph WT Wopt

cC
n

cV
p

cC
n σn

0
1 gn

J
–( )vth

n n gn
J Jn

q
-----+= cV

p σp
0 1 gp

J–( )vth
p p gp

JJp q⁄+[ ]=

eC
n

cV
p

cC
n σn 1 gn

J
–( )vth

n n gn
J Jn

q
-----+=

cV
p σp 1 gp

J–( )vth
p p gp

JJp q⁄+[ ]= gn
J gp

J

gn
J gp

J

460 Sentaurus™ Device User Guide
N-2017.09



17: Traps and Fixed Charges
Trap Models and Parameters
specified (the default), the V-model is obtained with the simplified rates  and
, respectively. When 1, the J-model is obtained.

The deep trap parameters , , and  can be adjusted in the Makram-Ebeid section
of the parameter file. Their default values are , , and

. In addition, the Makram-Ebeid–Lannoo tunneling masses  can be adjusted
in the parameter file. The default value is 0.5 for both electrons and holes.

For example, to change the , , and  parameters in AlN, you must specify:

Material = "AlN") {
Makram-Ebeid(

mt = 0.3 ,0.5 #[1]
Wph = 0.065 #[eV]
Wt = 1.43 #[eV]
Wopt = 2.7 #[eV]

)
}

Local Capture and Emission Rates From PMI

As an alternative to models described above, the local capture and emission rates , , ,
and  can be computed directly using a physical model interface (PMI). Using this PMI only
makes sense for Level traps. For more details, see Trap Capture and Emission Rates on
page 1200.

Trap-to-Trap Tunneling

Trap-to-trap tunneling between single-level discrete traps is supported. Discrete traps of the
same type, located in the same region, can be coupled through tunneling. Only eNeutral and
hNeutral types are supported with only one type at a time.

Trap-to-trap tunneling is activated by specifying a SingleTrap entry in the Traps section of
the Physics section. The SingleTrap entry must contain the keyword Location where the
positions of the discrete traps involved in the trap-to-trap tunneling process are defined (at least
two discrete traps must be specified). In addition, the SingleTrap entry must contain the
keywords Coupled=Tunneling, indicating that the traps are coupled through tunneling. In
the Solve section, the explicit trap equation must be activated to solve for the trap occupation
probability.

cC
n σn

0vth
n n=

cV
p σp

0vth
p p=

Wph WT Wopt

Wph 0.06 eV= WT 1.4 eV=
Wopt 2.8 eV= m

Wph WT Wopt

cC
n cV

p eC
n

eV
p

Sentaurus™ Device User Guide 461
N-2017.09



17: Traps and Fixed Charges
Trap Models and Parameters
For example, to activate trap-to-trap tunneling between a system of three discrete traps of type
eNeutral located in a Si3N4 region, the following syntax is used:

Physics(Region="reg1") {
Traps(

...
(SingleTrap eNeutral Level EnergyMid=0 fromMidBandGap
Coupled=Tunneling
Location=( (0, 0, 0.1) (0, 0.1, 0.1) (0 0.2 0.2) )
)
...

)
}

Quasistationary(
InitialStep=1e-4 MaxStep=1e-2 MinStep=1e-8
Goal { name="gate" Voltage=55 }

){ Coupled{ poisson electron hole traps } }

The traps involved in the tunneling process are snapped to the closest vertex with, at most, one
trap allowed per vertex. Because the traps are discrete, having a good mesh in the regions where
trap-to-trap tunneling occurs is important to obtain meaningful results.

The local trapped carrier density is such that, in the control volume adjusted for dimension
around the vertex where the trap is located, there is one trapped charge if the trapped is
occupied, or zero otherwise.

The traps involved in the trap-to-trap tunneling processes are regarded as single-mode
oscillators embedded in the dielectric matrix [6] with a capture rate described by:

(518)

where:

■ Transitions occur between localized state  with energy  and neighbouring localized
states  with energies .

■  is the trap optical ionization energy.

■  is the trap thermal ionization energy.

■ .

■  is the spatial distance between traps  and  involved in the transition.

■  is the localized trap  occupation probability.

■  is a multiplication factor, which is 1 by default.

■  is the trap-to-trap tunneling mass.

ci Cf

hWT π

mtm0rj i,
2

Q0 kT
---------------------------------------

Wopt WT–

2kT
-------------------------– 

  2rj i, 2mtm0WT

h
----------------------------------------– 

  Etrap
i

Etrap
j

– Etrap
i

Etrap
j

–+

2kT
-----------------------------------------------------------------–

 
 
 

fjexpexpexp

j i≠
=

i Etrap
i

j Etrap
j

Wopt

WT

Q0 2 Wopt WT–( )=

ri j, i j

fj j

Cf

mt
462 Sentaurus™ Device User Guide
N-2017.09



17: Traps and Fixed Charges
Trap Models and Parameters
Tunneling between two traps is activated only if the spatial distance between them is smaller
than the user-defined parameter , which limits the interaction distance for tunneling. By
default, the parameter is infinite, so potentially all traps in the region are considered. You
should adjust  to reduce the size of the Jacobian and numeric issues. Ideally, 
should be of the order of the spatial distance between traps to allow only first-order neighbor
interactions.

The transition rate parameters , , , , and  are available through the
parameter file in the region trap section. 

Tunneling and Traps

Traps can be coupled to nearby interfaces and contacts by tunneling. Sentaurus Device models
nonlocal tunneling to traps as the sum of an inelastic, phonon-assisted process and an elastic
process [4][5]. To use the nonlocal tunneling model for tunneling to traps:

■ For each interface or contact that you want to couple to traps by tunneling, generate a
nonlocal mesh (see Nonlocal Meshes on page 146). A nonlocal mesh describes the
tunneling paths between the vertices where the traps are located, and the interface or
contact for which the nonlocal mesh is constructed.

■ Specify eBarrierTunneling (for coupling to the conduction band) and
hBarrierTunneling (for coupling to the valence band) in the trap specification in the
command file. Provide the names of the nonlocal meshes the trap must be coupled to using
the NonLocal option of eBarrierTunneling and hBarrierTunneling.

■ Adjust TrapVolume, HuangRhys, and PhononEnergy (see below), as well as the
tunneling masses and the interface-specific prefactors (see Nonlocal Tunneling Parameters
on page 726).

Table 93 Parameters and their default values for trap-to-trap tunneling

Symbol Parameter name  Default value Unit

T2T_Wopt eV

T2T_WT eV

T2T_Rcutoff cm

T2T_factor 1 1

T2T_m 1

Rcutoff

Rcutoff Rcutoff

Wopt WT Rcutoff mt Cf

Wopt 3

WT 1.5

Rcutoff 1
30×10

Cf

mt
0.5
Sentaurus™ Device User Guide 463
N-2017.09



17: Traps and Fixed Charges
Trap Models and Parameters
For example:

Traps((
hNeutral Conc=1e15 fromMidBandGap EnergyMid=0 Level TrapVolume=1e-7
eBarrierTunneling(Nonlocal="NLM1" Nonlocal="NLM2")

))

NOTE To model trap-assisted tunneling through a barrier that contains traps, at
least two separate nonlocal meshes are needed, one for each side of the
barrier.

The electron capture rate for the phonon-assisted transition from the conduction band is:

(519)

where:

■  is the interaction volume of the trap.

■  is the Huang–Rhys factor.

■  is the energy of the phonons involved in the transition.

■  is a dimensionless parameter. 

These parameters are set by TrapVolume (in ), HuangRhys (dimensionless),
PhononEnergy (in ), and alpha (dimensionless) in the command file, and by parameters
of the same name in the Traps parameter set. , , and  default to 0, and  defaults to 1.
TrapVolume must be positive when tunneling is activated.

In Eq. 519,  is the number of the phonons emitted in the transition,
 is the Bose–Einstein occupation of the phonon state,

 and . The dissipated energy is .
The Fermi energy and the electron temperature are obtained at the interface or contact, while
the lattice temperature is obtained at the site  of the trap.  is the relative (dimensionless)
tunneling mass, and  is the prefactor for the Richardson constant at the interface or contact.
See Nonlocal Tunneling Parameters on page 726 for more details regarding these parameters.

The electron capture rate for the elastic transition from the conduction band is:

(520)

where . The emission rates are obtained from the capture rates by the
principle of detailed balance (see Eq. 511). The hole terms are analogous to the electrons terms.

cC,phonon
n mtm0

3k3Tn
3gC

h3 χ
------------------------------------VTSω α S l–( )2

S
---------------------- 1 α–+ S 2fB 1+( )–

ΔE
2kT
--------- χ+ +

z
l χ+
----------- 
  l

× F1 2⁄
EF,n EC 0( )–

kTn
------------------------------- 
  Ψ zo( ) 2

Ψ 0( ) 2
--------------------

exp=

VT

S

hω
α

μm3

eV
VT S hω α

l
fB hω kT⁄( ) 1–exp[ ] 1–=
z 2S fB fB 1+( )= χ l2 z2+= ΔE EC 3kTn 2⁄ Etrap–+=

z0 mt

gC

cC,elastic
n 8mtm0

3 2/ gC

h4π
--------------------------------VT EC zo( ) Etrap–[ ]2Θ Etrap EC– 0( )[ ] Etrap EC 0( )– f

EF,n Etrap–

kTn
--------------------------- 
  Ψ zo( ) 2

Ψ 0( ) 2
--------------------=

f x( ) 1 1 exp x–( )+( )⁄=
464 Sentaurus™ Device User Guide
N-2017.09



17: Traps and Fixed Charges
Trap Numeric Parameters
However, hBarrierTunneling for contacts and metals is nonphysical and, therefore,
ignored.

The ratio of wavefunction is obtained from  described in WKB Tunneling Probability on
page 729 as:

(521)

where  denotes the (possibly imaginary) velocities. To avoid singularities, for the inelastic
transition with the WKB tunneling model, the velocity  at the trap site is replaced by the
thermal velocity. For the inelastic process,  is computed at the tunneling energy

 and, for elastic process, at energy . For the tunneling probability, the default
one-band model and the TwoBand option are available, as described in WKB Tunneling
Probability on page 729.

Trap Numeric Parameters

When used with Fermi statistics, the trap model sometimes leads to convergence problems,
especially at the beginning of a simulation when Sentaurus Device tries to find an initial
solution. This problem can often be solved by changing the numeric damping of the trap charge
in the nonlinear Poisson equation.

To this end, set the Damping option to the Traps keyword in the global Math section to a
nonnegative number, for example:

Math {
Traps(Damping=100)

}

Larger values of Damping increase damping of the trap charge; a value of 0 disables damping.
The default value is 10. Depending on the particular example, increasing damping can improve
or degrade the convergence behavior. There are no guidelines regarding the optimal value of
this parameter.

At nonheterointerface vertices, bulk traps are considered only from the region with the lowest
band gap. In cases where the bulk traps from other regions are important, use
RegionWiseAssembly in Traps of the global Math section, which properly considers bulk
traps from all adjacent regions.

ΓCC

Ψ zo( ) 2

Ψ 0( ) 2
--------------------

v 0( )
v z0( )
------------ΓCC=

v
v zo( )

ΓCC

EC kTn 2⁄+ Etrap
Sentaurus™ Device User Guide 465
N-2017.09



17: Traps and Fixed Charges
Visualizing Traps
Visualizing Traps

To plot the concentration of electrons trapped in eNeutral and Acceptor traps and of
negative fixed charges, specify eTrappedCharge in the Plot section. Similarly, for the
concentration of holes trapped in hNeutral or Donor traps and positive fixed charges, specify
hTrappedCharge. These datasets include the contribution of interface charges as well. To that
end, Sentaurus Device converts the interface densities to volume densities and, therefore, their
contribution depends on the mesh spacing. To plot the interface charges separately as interface
densities, use eInterfaceTrappedCharge and hInterfaceTrappedCharge.

Specify TotalTrapConcentration to plot the absolute value of the net bulk trap
concentration. Similarly, specify TotalInterfaceTrapConcentration to plot the
absolute value of the net interface trap concentration. These quantities do not account for
occupancy.

For backward compatibility, for traps specified in insulators, at vertices on interfaces to
semiconductors, the charge density in the insulator parts associated with the vertices will be
reassigned to the semiconductor parts. This involves the rescaling of the densities with the ratio
of the volumes of the two parts and, typically, this leads to a distortion of the data for
visualization. However, the distortion has no effect on the actual solution.

To plot the recombination rates for the conduction band and valence band due to trapping and
de-trapping, specify eGapStatesRecombination and hGapStatesRecombination,
respectively.

In addition, Sentaurus Device allows you to plot trapped carrier density and occupancy
probability versus energy at positions specified in the command file.

The plot file is a .plt file and its name must be defined in the File section by the
TrappedCarPlotFile keyword:

File {
...
TrappedCarPlotFile = "itraps_trappedcar"

}

The plotting is activated by including the TrappedCarDistrPlot section (similar to the
CurrentPlot section) in the command file:

TrappedCarDistrPlot {
MaterialInterface="Silicon/Oxide" {(0.5 0)}
...

}

466 Sentaurus™ Device User Guide
N-2017.09



17: Traps and Fixed Charges
Visualizing Traps
The positions defining where the trapped carrier density, occupancy probability, and trap
density versus energies are to be plotted are specified materialwise or regionwise in the
TrappedCarDistrPlot section, grouped on regions, materials, region interfaces, and
material interfaces. 

A set of coordinates of positions in parentheses follows the region or region interface:

TrappedCarDistrPlot {
MaterialInterface="Silicon/Oxide" {(0.5 0)}
RegionInterface="Region_2/Region_3" {(0.1 0.001)}
Region="Region_1" {(0.3 0) (0 0) (-0.1 0.2)}
Material="Silicon" {(0.27 0) (0 0.01)}
...

}

For each position defined by its coordinates, Sentaurus Device searches for the closest vertex
inside the corresponding region or on the corresponding region interface. This is the actual
position where the plotting is performed.

The difference between user coordinates and actual coordinates is displayed in the log file for
each valid position in the TrappedCarDistrPlot section in the following format:

[Position(User) ClosestVertex PositionClosestVertex]
[(2.4000,-0.1000) 718 (2.3130,-0.0500)]
[(2.5000,-0.1000) 743 (2.3500,-0.0500)]

In addition, a simplified syntax for a global position inside the device is available:

TrappedCarDistrPlot {
(0.5 0)
...

}

In this case, the closest vertex is used in distribution plotting.

Based on trap types and positions, a unique entry is created in the generated graph. The naming
is TrapTypeCounter(position), where Counter is used when multiple traps of the same
type are used. For each of these entries, the Energy, TrappedChargeDistribution,
DistributionFunction, and TrapDensity fields are available for plotting. In addition,
for each entry, eQuasiFermi and hQuasiFermi are available for plotting. This allows you to
monitor the evolution of DistributionFunction relative to quasi-Fermi levels.
Sentaurus™ Device User Guide 467
N-2017.09



17: Traps and Fixed Charges
Explicit Trap Occupation
Explicit Trap Occupation

For the investigation of, for example, time-delay effects, it may be advantageous to start a
transient simulation from an initial state with either totally empty or totally filled trap states.
However, depending on the position of the equilibrium Fermi level, it may be impossible to
reach such an initial state from steady-state or quasistationary simulations (for example, it may
be a metastable state with a very long lifetime). 

For this purpose, two different mechanisms are available to initialize trap occupancies in the
Solve section.

The first mechanism is invoked by TrapFilling in the Set and Unset statements of the
Solve section. Table 203 on page 1398 summarizes the syntax of these statements, and Trap
Examples on page 470 presents an example. This mechanism is deprecated with the exception
of the -degradation option.

The second mechanism, invoked by Traps in a Set statement within a Solve section, allows
you to set trap occupancies for individual named traps to spatial- and solution-independent
values, and to freeze and unfreeze the trap occupancies of all traps. To set a trap you need to
define an identifying Name in its definition in Traps, which enables you to reference this trap
in the Set command. The Frozen option allows you to freeze the trap occupancies for
subsequent Solve statements and to unfreeze them again. Freezing traps implies that the traps
are decoupled from both the conduction band and valence band, that is, their recombination
terms are set to zero. Observe that Frozen applies to all defined traps. Traps not explicitly
initialized in the Set are frozen at their actual values. The options of Traps in Set are
summarized in Table 203.

Device "MOS" {
Physics { ...

Traps ( ( Name="t1" eNeutral ... ) ( Name="t2" hNeutral ... ) ... )
}

}

System { ...
MOS "mos1" ( ... ) { ... }

}

Solve { ...
Set ( Traps ( "mos1"."t1" = 1. Frozen ) )
...
Set ( Traps ( -Frozen ) )
...

}

468 Sentaurus™ Device User Guide
N-2017.09



17: Traps and Fixed Charges
Options to Include Traps in Doping
Here in the example, some traps are named. In the first Set, the trap "t1" of device "mos1"
is explicitly set to one. Due to the Frozen option, trap "t1" is frozen at the specified value
and trap "t2" is frozen at its actual value. The second Set releases all traps again.

To set all the trap occupancies to a certain value between 0 and 1, you must specify the Value
keyword as an option for Traps. In this case, the occupancy of all the traps (with or without
names) is set to the value specified by the Value keyword.

In the following examples, the trap occupancies are set to 1, the equivalent of
TrapFilling=Full, and then they are released later in the simulation using the -Frozen
option:

Solve { ...
Set ( Traps ( "mos1".value = 1. Frozen ) )
...
Set ( Traps ( -Frozen ) )
...

}

or:

Solve { ...
Set ( Traps ( value = 1. Frozen ) )
...
Set ( Traps ( -Frozen ) )
...

}

NOTE Freezing and unfreezing of traps using the Solve-Set-Traps
command implies freezing and unfreezing of multistate configurations,
respectively (see Manipulating MSCs During Solve on page 486). If the
incomplete ionization model is used, dopant ionization is affected as
well (see Chapter 13 on page 277).

Options to Include Traps in Doping

The effect of traps on some physical models can be treated in an approximate manner by
treating trap concentration as additional doping. Two options are available for this purpose:

Traps (
<trap-specifications>
[Add2TotalDoping | Add2TotalDoping(ChargeTraps)]

)

Sentaurus™ Device User Guide 469
N-2017.09



17: Traps and Fixed Charges
Trap Examples
If Add2TotalDoping is specified, the trap concentration is added to both the acceptor or
donor doping concentration (depending on the sign of the trap) and the total doping
concentration. This affects models that depend on acceptor, donor, and total doping
concentrations such as mobility and lifetime. However, this option has no effect on mobility
calculations if a MobilityDoping file is used (see Mobility Doping File on page 384) or if
incomplete ionization–dependent mobility is used (see Incomplete Ionization–Dependent
Mobility Models on page 382).

If Add2TotalDoping(ChargedTraps) is specified, the charged trap concentration is added
to the acceptor or donor doping concentration for mobility calculations only. However, this
option has no effect if a MobilityDoping file is used (see Mobility Doping File on page 384)
or if incomplete ionization–dependent mobility is used (see Incomplete Ionization–Dependent
Mobility Models on page 382).

Trap Examples

The following example of a trap statement illustrates one donor trap level at the intrinsic energy
with a concentration of  and capture cross sections of :

Traps(Donor Level EnergyMid=0 fromMidBandGap
Conc=1e15 eXsection=1e-14 hXsection=1e-14)

This example shows trap specifications appropriate for a polysilicon TFT, with four
exponential distributions:

Traps( (eNeutral Exponential fromCondBand Conc=1e21 EnergyMid=0
EnergySig=0.035 eXsection=1e-10 hXsection=1e-12)
(eNeutral Exponential fromCondBand Conc=5e18 EnergyMid=0
EnergySig=0.1 eXsection=1e-10 hXsection=1e-12)
(hNeutral Exponential fromValBand Conc=1e21 EnergyMid=0
EnergySig=0.035 eXsection=1e-12 hXsection=1e-10)
(hNeutral Exponential fromValBand Conc=5e18 EnergyMid=0
EnergySig=0.2 eXsection=1e-12 hXsection=1e-10) )

The following Solve statement fills traps consistent with a high electron and a low hole
concentration; performs a Quasistationary, keeping that trap filling; and, finally, simulates
the transient evolution of the trap occupation:

Solve{
Set(TrapFilling=n)
Quasistationary{...}
Unset(TrapFilling)
Transient{...}

}

1 15×10 cm 3– 1 14–×10 cm2
470 Sentaurus™ Device User Guide
N-2017.09



17: Traps and Fixed Charges
Insulator Fixed Charges
Insulator Fixed Charges

Sentaurus Device supports special syntax for fixed charges in insulators and at insulator
interfaces. Insulator fixed charges are defined as options to Charge in the Physics section:

Physics (Material="Oxide"){
Charge (

(<charge specification>)
(<charge specification>)

)
}

and likewise for Region, RegionInterface, and MaterialInterface. When only a
single specification is present, the inner pair of parentheses can be omitted. For bulk insulator
charges, the only relevant parameter is Conc, the concentration, specified in .

Fixed charges at interfaces can be specified with either Gaussian or uniform distributions:

Charge([Uniform | Gaussian]
Conc = <float> # [cm-2]
SpaceMid = <vector> # [um]
SpaceSig = <vector> # [um]

The parameter Conc specifies the maximum surface charge concentration  in .
SpaceMid and SpaceSig have the same meaning as for traps (see Energetic and Spatial
Distribution of Traps on page 450). They are optional for Uniform distributions but mandatory
for Gaussian distributions. Table 282 on page 1466 summarizes the options that can appear
in the Charge specification.

References

[1] L. Colalongo et al., “Numerical Analysis of Poly-TFTs Under Off Conditions,” Solid-
State Electronics, vol. 41, no. 4, pp. 627–633, 1997.

[2] S. Makram-Ebeid and M. Lannoo, “Quantum model for phonon-assisted tunnel
ionization of deep levels in a semiconductor,” Physical Review B, vol. 25, no. 10,
pp. 6406–6424, 1982.

[3] K. A. Nasyrov et al., “Two-bands charge transport in silicon nitride due to phonon-
assisted trap ionization,” Journal of Applied Physics, vol. 96, no. 8, pp. 4293–4296,
2004.

[4] A. Palma et al., “Quantum two-dimensional calculation of time constants of random
telegraph signals in metal-oxide–semiconductor structures,” Physical Review B, vol. 56,
no. 15, pp. 9565–9574, 1997.

qcm 3–

σ0 qcm 2–
Sentaurus™ Device User Guide 471
N-2017.09



17: Traps and Fixed Charges
References
[5] F. Jiménez-Molinos et al., “Direct and trap-assisted elastic tunneling through ultrathin
gate oxides,” Journal of Applied Physics, vol. 91, no. 8, pp. 5116–5124, 2002.

[6] K. A. Nasyrov and V. A. Gritsenko, “Charge transport in dielectrics via tunneling
between traps,” Journal of Applied Physics, vol. 109, no. 9, p. 093705, 2011.
472 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 18 Phase and State Transitions

This chapter presents a framework for the simulation of local phase
or state transitions.

State transitions appear in device physics in various forms. Typical examples are the charge
traps as described in Chapter 17 on page 449. In phase-change memory (PCM) devices,
different phases (for example, crystalline and amorphous) of chalcogenides are used to store
information and can be modeled with the framework described here. Furthermore, in the
hydrogen transport degradation model (see MSC–Hydrogen Transport Degradation Model on
page 500), diffusing mobile hydrogen species may be trapped in localized states.

In this chapter, a general modeling framework called multistate configuration (MSC) is
presented to describe transitions between phases or states. The framework allows the
specification of an arbitrary number of states that interact locally by an arbitrary number of
transitions. The states can be charged and carry hydrogen atoms. Transitions between two
states may interact with the conduction and valence band, or with hydrogen diffusion equations
to preserve charge and the number of hydrogen atoms. The structure of transitions is limited to
a linear local dependency between the state occupation rates. However, arbitrary nonlinear
local dependency on the solution variables of the transport equations are allowed using PMI
models. The state occupation rates are solved self-consistently with the transport model both
for stationary and dynamic characteristics.

Multistate Configurations and Their Dynamic

A multistate configuration (MSC) is defined by the number of states  and the state occupation
probabilities , …,  satisfying the condition:

(522)

For two states  and , an arbitrary number of transitions (described by capture and emission
rates) is allowed. The dynamic equation is then given by:

(523)

N
s1 sN

si

i
 1=

i j

si
·

cijsj eijsi–

t Tij∈


j i≠
=
Sentaurus™ Device User Guide 473
N-2017.09



18: Phase and State Transitions
Multistate Configurations and Their Dynamic
where  is the set of transitions between  and . For such a transition  with capture
and emission rates  and , respectively, you have  and  if  and

 denote the reference state and interacting state, respectively. The problem can be written in
the compact form:

(524)

where  is the total transition matrix, composed of the individual transition matrices.

Each state can carry a number  of (positive) charges and a number of hydrogen atoms
(both numbers can be positive or negative, and are zero by default). Transitions between two
states must satisfy conservation laws for both quantities. Required particles can be taken from
several reservoirs. Reservoir particles are characterized by the corresponding numbers  and

, and transitions specify the number  of involved reservoir particles. The conservation
laws then read:

(525)

where  and  are the characteristic numbers for the reference and interacting states of the
transition, respectively. The sum is taken over all reservoirs involved in the transition.

Table 94 lists the available particle reservoirs and their characteristics. The reservoirs of
hydrogen atoms, molecules, and ions represent the corresponding mobile species in the
hydrogen transport degradation model. Their use is illustrated in Reactions With Multistate
Configurations on page 504. 

The resulting space charge and recombination terms with the corresponding equations are
taken into account automatically.

Table 94 MSC particle reservoirs and their characteristics

Description Identifying string Particle Charge Hydrogen Equation

Conduction band CB electron –1 0 Electron

Valence band VB hole 1 0 Hole

Hydrogen atoms HydrogenAtom 0 1 HydrogenAtom

Hydrogen molecules HydrogenMolecule 0 2 HydrogenMolecule

Hydrogen ions HydrogenIon 1 1 HydrogenIon

Tij i j t Tij∈
c e c cij eji= = e eij cji= = i

j

s
·

Ts=

T

KQ KH

Kr
Q

Kr
H Pr

Ki Kj– PrKr

r
=

Ki Kj

K
Q

K
H

H

H2

H
+

474 Sentaurus™ Device User Guide
N-2017.09



18: Phase and State Transitions
Specifying Multistate Configurations
Specifying Multistate Configurations

A multistate configuration is specified by an MSConfig section placed into an MSConfigs
section of a (region or material or global or interface) Physics section. It is described by its
states (at least two) and transitions (each state must be involved in at least one transition) using
the keywords State and Transition. An arbitrary number of MSConfig sections is allowed.

Physics ( Region = "si" ) {
MSConfigs (

MSConfig ( Name = "ca"
State ( Name = "c" ) State ( Name = "a" )
Transition ( Name = "t1"

To="c" From="a" CEModel("pmi_ce_msc" 0))
)
...

)
}

This example specifies a multistate configuration with two states and one transition between
them. See Table 311 on page 1480 for the parameters supported by MSConfig.

State requires a Name as an identifier. The state can carry both a number of positive charges
by specifying Charge, and a number of hydrogen atoms by using Hydrogen.

Transition requires several parameters. The keyword CEModel specifies a transition model
including its optional model index (see Transition Models on page 477). The reference and
interacting states of the transition are selected by the keywords To and From, respectively. A
Name specification is mandatory as well.

A transition between differently charge states (correspondingly for hydrogen atoms) requires
additional charged particles to preserve the total charge. With Reservoirs, you can specify a
list of reservoirs (CB and VB for the conduction band and valence band, respectively), which
provides the necessary number of particles specified by Particles as an argument to the
reservoir. The conduction band serves as an electron reservoir, and the valence band is a hole
reservoir.

Multistate Configurations on Interfaces

You can also define MSCs on interfaces. Therefore, an MSC might look like the following
example:

Physics (MaterialInterface="Oxide/Silicon") {
MSConfigs (

MSConfig (
Sentaurus™ Device User Guide 475
N-2017.09



18: Phase and State Transitions
Specifying Multistate Configurations
Name="msc0"
State(Name="s0" Charge=0 Hydrogen=1)
State(Name="s1" Charge=1 Hydrogen=0)
Transition (

Name="Depassivation" CEModel("CEModel_PMI",1)
To="s1" From="s0"
Reservoirs("VB"(Particles=+1) "HydrogenAtom"(Particles=-1))
FieldFromInsulator

)
)

)
}

Observe that, for interface MSCs, the reservoirs refer to bulk reservoirs. At interfaces between
the insulator and semiconductor, you can explicitly require that the field from the insulator is
selected by using FieldFromInsulator in the MSC specification.

Additional Remarks

An eNeutral level trap of the form:

(Name="eN" eNeutral Conc=1.e+13 CBRate=("pmi_ce0" 0) VBRate=("pmi_ce0" 1))

can be specified equivalently as an MSC in the following way:

MSConfig ( Name="eN" Conc=1.e+13
State ( Name="s0" Charge=0 ) State ( Name="s1" Charge=-1 )
Transition ( Name="tCB" CEModel("pmi_ce0" 0)

To="s1" From="s0" Reservoirs("CB"(Particles=+1)))
Transition ( Name="tVB" CEModel("pmi_ce0" 1)

To="s0" From="s1" Reservoirs("VB"(Particles=+1)))
)

For all multistate configurations, the dynamic is always solved implicitly, that is, no extra
equation needs to be specified as an argument to the Coupled or Transient solve statements.

NOTE Only quasistationary and transient simulations support multistate
configurations. Small-signal analysis (see Small-Signal AC Analysis on
page 96), harmonic balance analysis (see Harmonic Balance on
page 101), and noise analysis (see Chapter 23 on page 675) do not
support multistate configurations.
476 Sentaurus™ Device User Guide
N-2017.09



18: Phase and State Transitions
Transition Models
NOTE The computation of state occupation is influenced by the
TrapFilling option of the Set and Unset commands in the Solve
section (see Table 186 on page 1384). It is frozen if the trap-filling
option Frozen is set; otherwise, the occupation rates are treated as free.
The frozen status is released again by the Unset(TrapFilling)
command.

The transition dynamic may become numerically unstable, that is, it cannot be solved with
sufficient accuracy if, for example, the forward and backward rates of all transitions at one
operation point differ by several orders of magnitude. Using -Elimination in MSConfig
applies a different solving algorithm, often improving the numeric robustness in such cases.

The state occupation probabilities can be plotted in groups or individually by specifying
MSConfig (see Table 332 on page 1496) in the Plot section.

Transition Models

The MSC framework allows an arbitrary number of transitions between two states of an MSC.
Each transition model can be either the model pmi_ce_msc, or a trap capture and emission
PMI (see Trap Capture and Emission Rates on page 1200).

The pmi_ce_msc Model

The pmi_ce_msc transition model supports the following features:

■ Arbitrary number of states and transitions

■ Charge states

■ Several transition rate models (nucleation, growth, electron and hole exchange)

■ Equilibrium computation (necessary for detailed balance processes)

■ Energy and particle exchange

States

The states are described by a base energy , a degeneracy factor , the number of negative
elementary charges  (an arbitrary integer), and the energy of one electron in the state. The
inner energy of the state is then:

(526)

The electron energy is the sum of the valence band energy and the user-specified value .

Ei gi

Ki
- Ei

-

Hi Ei Ki
-
Ei

-
+=

Ei user,
-

Sentaurus™ Device User Guide 477
N-2017.09



18: Phase and State Transitions
Transition Models
Equilibrium

The equilibrium occupation probabilities  are needed to guarantee the detailed balance
principle for all transitions. The equilibrium is determined by the state parameters, the
temperature, and the Fermi levels of the involved particle reservoirs. You have:

 (527)

(528)

(529)

Here,  is the quasi-Fermi energy and  is the thermodynamic beta. The quasi-Fermi energy
is approximated inside the PMI. Let the (approximated) intrinsic density  and the intrinsic
Fermi energy  be:

(530)

(531)

Then, the carrier quasi-Fermi energies are approximated from the carrier densities by:

(532)

(533)

and equilibrium Fermi energy then as:

(534)

s∗

Zi gi β Hi Ki
-
EF–( )–( )exp=

Z Zi

i
=

si
∗ Zi Z⁄=

EF β
nI

EI

nI NCNV βEg–( )exp=

EI
1
2
--- EC EV+( ) kT

NV

NC
------- 
 ln+=

EF n, EI kT
n
nI
---- 
 ln+=

EF p, EI kT
p
nI
---- 
 ln–=

EF
1
2
--- EF n, EF p,+( )=
478 Sentaurus™ Device User Guide
N-2017.09



18: Phase and State Transitions
Transition Models
Transitions

Several transition models, listed in Table 95, are available and selected by the Formula
parameter in the parameter file. 

In this section,  denotes the ‘to’ state, while  specifies the ‘from’ state of the transition. For
most of the models, only the forward reaction rate (capture) is given, while the backward
reaction rate (emission) is computed by:

(535)

if not stated otherwise.

Arrhenius Law (Formula=0)

The forward reaction rate (capture) is given by:

(536)

where  is the maximal transition frequency and  is the activation energy.

Nucleation According to Peng (Formula=1)

A nucleation model, in analogy to the model in [1], [2], and [3], is given by:

(537)

where:

(538)

Table 95 The pmi_ce_msc transition models

Description Formula

Arrhenius law 0

Nucleation according to Peng 1

Growth according to Peng 2

Single trap 7

MSC trap 8

i j

e
c
--

sj
∗

si
∗

------=

c r0 βEact–( )exp=

r0 Eact

cN r0 β Eact ΔG∗ T( )+( )–( )exp=

ΔG∗ T( ) 16π
3

---------
γSL

3

ΔG T( )2
-------------------=
Sentaurus™ Device User Guide 479
N-2017.09



18: Phase and State Transitions
Transition Models
(539)

Growth According to Peng (Formula=2)

Growing crystalline phases is often described by a growth velocity, for example, in [1]. Some
of the growing model has been adopted in the following local model, which reads as:

(540)

if ; otherwise, it is zero.

Single-Trap Transition (Formula=7)

This model depends on the carrier density . It resembles some standard trap models and is
intended to be used in two-state MSCs only. If the number of electrons in the reference state is
greater than in the interacting state, that is, , then the capture process depends on the
electron density and uses . If , then ; otherwise, you use . The
capture rate is then given by:

(541)

where  is the cross section and  is the thermal velocity. The emission rate for electron
capturing is computed as:

(542)

where  is the trap energy. For hole-capturing, the emission rate reads as:

(543)

MSC Trap With Emulated Detailed Balance (Formula=8)

The actual model generalizes the single-trapping model (Formula=7) to general MSC states
and transitions. The capture rate is computed as in the single trapping case above. The emission
rate, however, is computed as follows. Let  and  be the number of electrons and holes,
respectively, which are destroyed during the process. Then, you have:

(544)

ΔG T( )

ΔH2 1
T
Tg
----- 1

ΔH1

ΔH2
----------

Tm Tg–

Tm
-------------------– 

 –      if T Tg<

ΔH1

Tm T–

Tm
----------------                                     if Tg T Tm< <

0                                                     if Tm T<









=

cG r0 1 βΔG T( )vMM–( )exp–[ ] βEact–( )exp=

T Tm<

dc

Ki
- Kj

->
dc n= Ki

- Kj
-< dc p= dc 0=

c σvthdc=

σ vth

e c β ET EF n,–( )( )exp=

ET

e c β EF p, ET–( )( )exp=

Nn Np

Nn Np– Ki
-

Kj
-

–=
480 Sentaurus™ Device User Guide
N-2017.09



18: Phase and State Transitions
Transition Models
and you require:

(545)

where you used  and . The average conduction band and valence
band energies are:

(546)

In thermal equilibrium, the detailed balance principle is satisfied.

Model Parameters

The model requires parameters for all states and transitions to allow a consistent computation
of the thermal equilibrium of the MSC as a whole. Therefore, the parameters are grouped into
global, state, and transition parameters.

The parameters nb_states and nb_transitions determine the number of states and
transitions, respectively, and must be both consistent with the command file specification. The
parameter sindex<int> specifies for the <int>-th state a parameter index, which determines
a prefix for the state parameters. For example, given sindex0=5, the parameters prefixed with
s5_ are read for the 0-th state. A similar parameter index selection is available for transitions
using the parameters tindex<int> (for example, tindex2=7 reads the parameters prefixed
by t7_).

For transitions, the specified parameter index must coincide with the model index of the
transition in the command file. 

Table 96 Global parameters

Name Symbol Default Unit Range Description

plot – 0 – {0,1} Plots some properties to 
screen

nb_states – 0 – >=0, integer Number of states

nb_transitions – 0 – >=0, integer Number of transitions

sindex<int> – – – >=0, integer Parameter index of 
<int>-th state

tindex<int> – – – Parameter index of 
<int>-th transition

e
c
-- gji Nnβn EF n, EC–( )– Npβp EF p, EV–( ) βl NnEC– NpEV Hji–+( )+ +( )exp=

gji gj gi⁄= Hji Hj Hi–=

EC EC
3
2
---kTn+=    and   EV EV

3
2
---kTp–=
Sentaurus™ Device User Guide 481
N-2017.09



18: Phase and State Transitions
Transition Models
  

Table 97 Global material and default transition parameters of pmi_ce_msc

Name Symbol Default Unit Range Description

E_g 0.5 eV >0. Band gap

N_C >0. Electron density-of-states

N_V >0. Hole density-of-states

Tm K >0. Melting temperature

Tg K >0. Glass temperature

DeltaH1 0. >0. Heat of solid-to-liquid

DeltaH2 0. >0. Heat of amorphous-to-crystalline

GammaSL 0. >0. Interfacial free-energy density

MM_volume 0. >0. Monomer volume

Reference_E_T – 0 – {0,1,2} Reference energy for 

Table 98 Reference_E_T interpretation

Value Symbol Description

0 Midgap

1 Conduction band

2 Valence band

Table 99 State parameters

Name Symbol Default Unit Range Description

E 0. eV real Constant base energy

g 1. 1 >0. Degeneracy

charge 0 1 integer Number of positive elementary charges

E_charge 0. eV real Particle energy with respect to valence band

E_nb_Tpairs – 0 – >=0 Number of interpolation points for base 
energy

E_Tp<int>_X – – K Temperature of <int>-th interpolation 
point

E_Tp<int>_Y – – eV Energy of <int>-th interpolation point

Eg

NC 1 10
19× cm

3–

NV 1 10
19× cm

3–

Tm 1 10
100×

Tg 1 10
100×

ΔH1 J/cm
3

ΔH2 J/cm
3

γSL J/cm
2

vMM cm
3

ET

ET EC EV+( ) 2⁄ ET user,+=

ET EC ET user,–=

ET EV ET user,+=

Ei

gi

Ki
-

–

Ei user,
-

482 Sentaurus™ Device User Guide
N-2017.09



18: Phase and State Transitions
Interaction of Multistate Configurations With Transport
Alternatively, the base energy can be described as a piecewise linear (pwl) function of the
temperature: With E_nb_Tpairs, you specify the number of interpolation points. For the
<int>-th interpolation point ( ), you must specify with
E_Tp<int>_X the temperature and with E_Tp<int>_Y, the corresponding energy. The pwl
specification is used if E_nb_Tpairs is greater than zero.

Some transition parameters are inherited from the global specification (see Table 97 on
page 482). They can be overwritten for specific transitions by using the appropriate parameter
prefix. Table 100 lists additional transition parameters. 

Interaction of Multistate Configurations With Transport

Multistate configurations (MSCs) have a direct impact on the transport through their charge
density and their recombination rates with selected reservoirs. Furthermore, several physical
models can be made explicitly dependent on the occupation probabilities of a specific MSC by
using the PMI.

Apparent Band-Edge Shift

The keywords eBandEdgeShift, hBandEdgeShift, or BandEdgeShift in an MSConfig
section switch on band-edge shift models for the conduction band, the valence band, or both,
respectively. The model itself is either the MSC-dependent pmi_msc_abes model (see The

Table 100 Transition parameters of pmi_ce_msc

Name Symbol Default Unit Range Description

CB_nb_particles 0 1 integer Particle number of reservoir CB

E_T 0. eV real Trap energy

Eact 0. eV real Activation energy

formula – – – Table 95 on 
page 479

Model selection

r0 1. Hz >0. Maximal frequency

s0 – – – Parameter index of ‘to’ state

s1 – – – Parameter index of ‘from’ state

sigma >0 Cross section

VB_nb_particles 0 1 integer Particle number of reservoir VB

vth cm/s >0 Thermal velocity

0 <int> E_nb_Tpairs<≤

Nn

ET user,

Eact

r0

σ 1 10
15–× cm

2

Np

vth 1 10
7×
Sentaurus™ Device User Guide 483
N-2017.09



18: Phase and State Transitions
Interaction of Multistate Configurations With Transport
pmi_msc_abes Model on page 484) or a user-defined PMI_MSC_ApparentBandEdgeShift
model as described in Multistate Configuration–Dependent Apparent Band-Edge Shift on
page 1147.

The apparent band-edge shifts become visible only if the density gradient transport model is
used. To avoid the implicit use of the density gradient quantum correction model, the (electron
and hole) gamma parameters in the QuantumPotentialParameters parameter set must be
set to zero in the parameter file. 

A typical simulation is:

Physics {
MSConfigs (

MSConfig ( ...
eBandEdgeShift ( "pmi_abes" 0 )
hBandEdgeShift ( "pmi_abes" 1 )

)
)
eQuantumPotential
hQuantumPotential

}
Solve {

Coupled { Poisson Electron Hole Temperature eQuantumPotential
hQuantumPotential }

Transient ( ... ) {
Coupled { Poisson Electron Hole Temperature eQuantumPotential 

hQuantumPotential }
}

Here, the user PMI model pmi_abes has been used for both the conduction and valence bands.

The pmi_msc_abes Model

The pmi_msc_abes model depends on the lattice temperature  and, if an MSC is specified,
on the state occupation probabilities , and it reads as:

(547)

where the sum is taken over all MSC states, and  is the apparent band-edge shift (ABES)
of state .

The model is activated by using (here, for electrons, a MSC named "m0", and a model index 5)
as described above:

eBandEdgeShift ( "pmi_msc_abes" 5 )

T
si

Λ Λi T( )si

i
=

Λi T( )
i

484 Sentaurus™ Device User Guide
N-2017.09



18: Phase and State Transitions
Interaction of Multistate Configurations With Transport
The model uses a two-level or three-level hierarchy (depending on use_mi_pars) to
determine the state parameters, namely, the global, the model index, and the state parameters.
Table 101 lists the global parameters. 

The names of model index parameters are prefixed with:

mi<model_index>_

The state parameters have one of the prefixes depending on the value of use_mi_pars:

mi<model_index>_<state_name>_
<state_name>_

The lambda_ parameters enable either a constant or pwl apparent band-edge shift for each
state, which is fully analogous to the specification described in The pmi_msc_heatcapacity
Model on page 900.

Thermal Conductivity, Heat Capacity, and Mobility

The following models allow the dependency on MSC occupation probabilities:

■ The pmi_msc_thermalconductivity Model on page 912

■ The pmi_msc_heatcapacity Model on page 900

■ The pmi_msc_mobility Model on page 324

Descriptions of PMIs for MSC-dependent thermal conductivity, heat capacity, and mobility
can be found in Multistate Configuration–Dependent Thermal Conductivity on page 1173,
Multistate Configuration–Dependent Heat Capacity on page 1180, and Multistate
Configuration–Dependent Bulk Mobility on page 1113, respectively.

Table 101  Global, model-string, and state parameters of pmi_msc_abes

Name Symbol Default Unit Range Description

plot – 0 – {0,1} Plot parameter to screen

use_mi_pars – 0 – {0,1} Use model index for parameter set

lambda 0. eV real Constant value

lambda_nb_Tpairs – 0 – >=0 Number of interpolation points

lambda_Tp<int>_X – – K >0. Temperature at <int>-th interpolation 
point

lambda_Tp<int>_Y – – eV real Value at <int>-th interpolation point

Λ

Sentaurus™ Device User Guide 485
N-2017.09



18: Phase and State Transitions
Manipulating MSCs During Solve
Manipulating MSCs During Solve

The MSC dynamic is, in general, solved implicitly. However, sometimes it may be useful to
manipulate the computations. For example, you may want to initialize MSCs with nonsteady-
state solutions or to freeze the dynamic of MSCs because time constants are very large
compared to electronic and thermal effects. Furthermore, it may be of interest to disable
specific MSC transitions for certain applications (for example, in phase-change memory
applications to freeze phases but to allow electronic transitions). The available mechanisms are
described here.

Explicit State Occupations

You can set explicitly the state occupations of MSCs to a spatial-independent and solution-
independent value, and freeze and unfreeze the dynamic of the MSCs during Solve by using
MSConfigs in a Set command (see Table 195 on page 1393 for a summary of options). 

To set the state occupations of an MSC, you use the MSConfig command within MSConfigs,
identify the MSC by using its name (and, for mixed-mode simulations, the device name using
Device), and specify the occupancies for the involved states using State. 

The state occupations are then set collectively and normalized implicitly, while unspecified
states default to zero occupation. The Frozen option of MSConfigs applies to all existing
MSCs and freezes the state occupations at the set or actual values. To unfreeze the dynamics
of the MSCs again, the -Frozen option is used.

The following example illustrates the syntax for single-device simulations:

Physics {
MSConfigs ( ...

MSConfig ( Name="msc1" State ( Name="s0" ) State ( Name="s1" ) ... )
)

}
Solve { ...

Set (
MSConfigs (

MSConfig ( Name="msc1"
State (Name="s0" Value=0.1) State (Name="s1" Value=0.4) )

Frozen # freeze the MSC dynamic
)

)
...
Set ( MSConfigs ( -Frozen ) ) # unfreeze the MSC dynamic

}

486 Sentaurus™ Device User Guide
N-2017.09



18: Phase and State Transitions
Example: Two-State Phase-Change Memory Model
Here, the occupancies of states s0 and s1 of the MSC msc1 are set to 0.2 and 0.8, respectively,
due to the implicit normalization; all other states are unoccupied.

NOTE Freezing and unfreezing MSCs implies freezing and unfreezing traps,
respectively (see the Solve-Set-Traps command in Explicit Trap
Occupation on page 468).

Manipulating Transition Dynamics

You can manipulate the transition dynamic by accessing prefactors for individual transition
forward (capture) and backward (emission) reaction rates. This means that the modified rate

 (  is the prefactor, and  is the true reaction rate) is used in the dynamic equation.
By setting selected transition prefactors to zero, you can decouple states into independent
groups. Especially, if you decouple a certain state from all others, the state is frozen, that is, it
retains its occupation in the subsequent analysis. With:

Set( (Device="d1" MSConfig="m7" Transition="t3" CPreFactor=0. EPreFactor=0.) )

both reaction rates of the specified transition are set to zero (PreFactor can be used for
common settings of both reaction rates). Omitting one of the specifying string keywords
Device, MSConfig, and Transition applies the setting to all corresponding objects in the
Device-MSConfig-Transition hierarchy.

NOTE The prefactors affect only subsequent computations, but they do not
change the physical parameters of the MSC.

Example: Two-State Phase-Change Memory Model

Phase-change memory (PCM) devices store a bit as the phase (crystalline or amorphous) of a
(chalcogenide) material. Reading information takes advantage of the different conductances of
the phases. Storing information requires switching the phases. To switch to the amorphous
phase, a high current is passed through the material, heating up the device above the melting
point. When switching off the current, the molten material cools so rapidly that it cannot
crystallize, but remains in a metastable amorphous phase. To switch to the crystalline phase,
the material is reheated more gently. The material remains solid, but the temperature is
sufficient that the phase can relax to the equilibrium crystalline phase.

c̃ κc= κ c
Sentaurus™ Device User Guide 487
N-2017.09



18: Phase and State Transitions
References
The PCM device is modeled by a two-state model representing the crystalline and amorphous
phase using an MSC with two uncharged states. The transition is modeled by the Arrhenius law
formula (Formula=0) of the pmi_ce_msc transition model. The model has four parameters:

■ The base energies and the degeneracy factors of the states determine the equilibrium.

■ The activation energy  and  of the transition determine the velocity of the transition.

A short interpretation is given:

Let  denote the degree of crystallization of the material and , the
amorphization rate. Assuming an energy difference  between the amorphous and
crystalline phases, and that the amorphous phase has  times more microscopic
realizations than the crystalline state, in equilibrium , that is, the
amorphous state is preferred at higher temperatures. The critical temperature where the
equilibrium occupation rates  and  are equal is .

The dynamic is given by crystallization and amorphization rates  and
, respectively, assuming a simple Arrhenius law for the

crystallization rate. Here,  is the maximal crystallization rate, and  is the activation
energy.

References

[1] C. Peng, L. Cheng, and M. Mansuripur, “Experimental and theoretical investigations of
laser-induced crystallization and amorphization in phase-change optical recording
media,” Journal of Applied Physics, vol. 82, no. 9, pp. 4183–4191, 1997.

[2] S. Senkader and C. D. Wright, “Models for phase-change of Ge2Sb2Te5 in optical and
electrical memory devices,” Journal of Applied Physics, vol. 95, no. 2, pp. 504–511,
2004.

[3] D.-H. Kim et al., “Three-dimensional simulation model of switching dynamics in phase
change random access memory cells,” Journal of Applied Physics, vol. 101, p. 064512,
March 2007.

Eact r0

s sc= sa 1 s–=
δE 0>

g 1>
s 1 g δE kT⁄–( )exp 1+[ ]⁄=

sc sa Tcrit δE k g( )ln⁄=

rc r0 Eact– kT⁄( )exp=
ra r0g Eact δE+( )– kT⁄( )exp=

r0 Eact
488 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 19 Degradation Models

This chapter discusses the degradation models used in Sentaurus
Device.

Overview

A necessary part of predicting CMOS reliability is the simulation of the time dependence of
interface trap generation. To cover as wide a range as possible, this simulation should
accurately reflect the physics of the interface trap formation process. Although the mechanisms
of interface trap generation are not completely understood, it is generally accepted that they
involve silicon-hydrogen (Si-H) bond breakage and subsequent hydrogen transport, and
various physical models have been proposed in the literature.

Sentaurus Device provides several degradation models that account for time-dependent trap
generation:

■ Trap degradation model (see Trap Degradation Model on page 490)

This simple model captures the reaction-diffusion theory with hydrogen atom transport in
the gate oxide.

■ Multistate configuration (MSC)–hydrogen transport degradation model (see
MSC–Hydrogen Transport Degradation Model on page 500)

This model accounts for 3D transport of hydrogen atoms, ions, and molecules in all
regions. Complex reaction dynamics related to Si-H bond breakage at the silicon–oxide
interface are described with the MSC framework.

■ Two-stage negative bias temperature instability (NBTI) degradation model (see Two-Stage
NBTI Degradation Model on page 509)

This model proposed by Grasser et al. [1] and Goes et al. [2] is related to the creation of
 centers and  centers (oxide and interface dangling bonds).

■ Extended nonradiative multiphonon (eNMP) model [3] (see Extended Nonradiative
Multiphonon Model on page 513)

This four-state model includes metastable states and accounts for the behavior of oxide
defects related to NBTI.

■ Hot-carrier stress (HCS) degradation model (see Hot-Carrier Stress Degradation Model on
page 519)

E′ Pb
Sentaurus™ Device User Guide 489
N-2017.09



19: Degradation Models
Trap Degradation Model
This is a general degradation model suitable for MOS-based devices. It includes
mechanisms for hot-carrier stress degradation and field-enhanced thermal degradation.

Trap Degradation Model

Disorder-induced variations among the Si-H activation energies at the passivated Si–SiO2

interface have been shown [4] to be a plausible source of the sublinear time dependence of this
trap generation process. Diffusion of hydrogen from the passivated interface was used to
explain some time dependencies [5]. In addition, this could be due to a Si-H density–dependent
activation energy [6], which may be due to the effects of Si-H breaking on the electrical and
chemical potential of hydrogens at the interface. Furthermore, the field dependence of the
activation energy due to the Poole–Frenkel effect can be considered, so that all these factors
lead to enhanced trap formation kinetics.

Trap Formation Kinetics

The main assumption about trap formation is that initially dangling silicon bonds at the
Si–SiO2 interface were passivated by hydrogen (H) or deuterium (D) [7], and degradation is a
depassivation process where hot carrier interactions with Si-H/D bonds or other mechanisms
are responsible for this. The equations of the model are solved self-consistently with all
transport equations.

Power Law and Kinetic Equation

The experimental data for the kinetics of interface trap formation [8] shows that the time
dependence of trap generation can be described by a simple power law:

, where  is the concentration of interface traps, and and
 are the initial concentrations of Si-H bonds (or the concentration of hydrogen on Si bonds)

and interface traps, respectively. 

Assuming  total Si bonds at the interface, the remaining number of Si-H bonds
at the interface after stress is  and follows the power law:

(548)

Based on experimental observations, the power  is stress dependent and varies between 0 and
1.

Nit Nit
0– Nhb

0 1 νt( ) α–+( )⁄= Nit Nhb
0

Nit
0

N Nhb
0 Nit

0+=
Nhb N Nit–=

Nhb

Nhb
0

1 νt( )α
+

----------------------=

α

490 Sentaurus™ Device User Guide
N-2017.09



19: Degradation Models
Trap Degradation Model
From first-order kinetics [4], it is expected that the Si-H concentration during stress obeys:

(549)

where  is a reaction constant that can be described by  in the Arrhenius
approximation,  is the Si-H activation energy, and  is the Si-H temperature. The
exponential kinetics given by this equation ( ) do not fully describe the
experimental data because a constant activation energy will behave like the power law in
Eq. 548, but with power .

Si-H Density–Dependent Activation Energy

This section describes an activation energy parameterization to capture the sublinear power law
for the time dependence of interface trap generation. There is evidence that the hydrogen
atoms, when removed from the silicon, remain negatively charged [9]. If this correct, the
hydrogen can be expected to remain in the vicinity of the interface and will affect the breaking
of additional silicon-hydrogen bonds by changing the electrical potential.

The concentration of released hydrogen is equal to , so the activation energy
dependence (assuming the activation energy changes logarithmically with the breaking of
Si-H) can be expressed as:

(550)

where the last term represents the Si-H density–dependent change with a prefactor . Note
that  is the fraction of traps generated to the total initial traps, and this
gives the form of the chemical potential of Si-H bonds with the prefactor .

The numeric solution of the kinetic equation with the varying activation energy above clearly
shows that such a Si-H density–dependent activation energy gives a power law, and the power

 is a function of the prefactor . From the available experimental data of interface trap
generation, it was noted that for negative gate biases , but for positive ones . It
is interesting that the solution of the above kinetic equation gives  in the equilibrium
case where a unity prefactor is used. In nonequilibrium, a polarity-dependent modification of
the prefactor (field stretched and pressed Si-H bonds) is possible.

Diffusion of Hydrogen in Oxide

Another model that can interpret negative bias temperature instability (NBTI) phenomena and
different experimental slopes in degradation kinetics is the R-D model [10]. This model

dNhb

dt
------------ νNhb–=

ν ν νA εA kT⁄–( )exp∝
εA T

Nhb Nhb
0 νt–( )exp=

α 1≈

N Nhb–

εA εA
0

1 β+( )kT
N Nhb–

N Nhb
0

–
------------------
 
 
 

ln+=

1 β+
N Nhb–( ) N Nhb

0–( )⁄
1 β+

α 1 β+
α 0.5> α 0.5<

α 0.5≈
Sentaurus™ Device User Guide 491
N-2017.09



19: Degradation Models
Trap Degradation Model
considers hydrogen in oxide, which diffuses from the silicon–oxide interface, but the part of
the hydrogen that remains at the interface controls the degradation kinetics. 

The diffusion of hydrogen in oxide can be expressed as follows:

(551)

where  is a concentration of hydrogen in oxide,  is its diffusion
coefficient,  is a coordinate of the silicon–oxide interface,  is the coordinate of
the oxide–polysilicon gate interface (which is equal to the oxide thickness),  is the surface
recombination velocity at the oxide–polysilicon gate interface, and  is an equilibrium
(initial) concentration of hydrogen in the oxide.

Model Equations and Syntax

To use the trap degradation model, specify the Degradation keyword as part of a Traps
specification in the command file. This invokes the general kinetic equation (left column of
Eq. 552) with an added passivation term. To use the power law form of the model (right column
of Eq. 552), specify Degradation(PowerLaw):

(552)

In Eq. 552,  is the passivation constant, which is computed automatically by default to
provide the equilibrium, but it can also be specified directly in the command file.  is the
passivation volume (by default, it is equal to zero) and represents a simple model for the
retrapping of depassivated hydrogen by dangling silicon bonds. Depassivated hydrogen
increases the average hydrogen concentration  near traps, which is computed from the R-D
model (see Diffusion of Hydrogen in Oxide on page 491). If the R-D model is not activated,
then .

D
dNH

dx
----------

dNhb

dt
------------= x 0=

dNH

dt
---------- D

d
2
NH

dx
2

-------------= 0 x xP< <

D
dNH

dx
---------- k– P NH NH

0
–( )= x xP=

NH D D0 εH kT⁄–( )exp=
x 0= x xP=

kP

NH
0

Kinetic

dNhb

dt
------------ νNhb γ N Nhb–( )+–=

γ γ0 NH NH
0⁄ Ω Nhb

0
Nhb–( )+[ ]=

γ0

Nhb
0

N Nhb
0

–
------------------ν0=

Power Law

Nhb

Nhb
0

1 νt( )α
+

----------------------=

α 0.5 β+=

γ0

Ω

NH

NH NH
0⁄ 1=
492 Sentaurus™ Device User Guide
N-2017.09



19: Degradation Models
Trap Degradation Model
The parameterized system of equations for the reaction constant , based on the trap formation
model (see Trap Formation Kinetics on page 490 and [6]), can be expressed as:

(553)

where:

■  (given in the command file) is the reaction (depassivation) constant at the passivation
equilibrium (for the passivation temperature  and for no changes in the activation energy

).

■  are the perpendicular and parallel components of the electric field  to the interface
where traps are located. The perpendicular electric field  has a positive sign if the space
charge at the interface is positive.

■  is the energy of hydrogen on Si-H bonds and is equal to  plus some possible gain
from hot carriers represented as the additional term that is dependent on the parallel
component of the electric field .

■  is a change of the activation energy because of stretched Si-H bonds [11] by the
electric field (first term) and due to a change of the chemical potential (second term) [6].
Effectively, the influence of the chemical potential also can be different in the presence of
the electric field, and the coefficient  represents this.

■ The coefficients  and  are field enhancement parameters for the
model.

Reaction Enhancement Factors

In Eq. 553,  and  are reaction enhancement factors due to hot-carrier and tunneling
current, respectively. They are given by:

(554)

(555)

where  is the local hot-carrier current density (see Hot-Carrier Injection Models on
page 737), and , , , , and  are the tunneling current densities from

ν

ν ν0

εA
0

kT0
--------

εA
0 εAΔ+

εT
----------------------–

 
 
 

kHCkTunkSHEexp=

εT kT δ// F//
ρ//+=

εAΔ δ– ⊥ F⊥
ρ⊥ 1 β+ εT

N Nhb–

N Nhb
0

–
------------------ln+=

β β0 β⊥F⊥ β//F//+ +=

ν0

T0

εAΔ 0=

F⊥ F//, F
F⊥

εT kT

δ// F//
ρ//

εAΔ

β
δ⊥ ρ⊥ δ// ρ//, , , β0 β⊥ β//, ,

kHC kTun

kHC 1 δHC
IHC

I0
--------

ρHC

+=

kTun 1 δTun δFN
IFN

I0
--------

ρFN

δDTe
IDTe

I0
----------

ρDTe

δDTh
IDTh

I0
----------

ρDTh

δBTe
IBTe

I0
----------

ρBTe

δBTh
IBTh

I0
----------

ρBTh

+ + + +
 
 
  ρTun

+=

IHC

IFN IDTe IDTh IBTe IBTh
Sentaurus™ Device User Guide 493
N-2017.09



19: Degradation Models
Trap Degradation Model
Fowler–Nordheim tunneling, electron and hole direct tunneling, and electron and hole nonlocal
barrier tunneling, respectively (see Tunneling on page 715). In these equations,  A/cm2.

When the electron energy distribution is available by specifying the keyword
eSHEDistribution in the Physics section (see Using Spherical Harmonics Expansion
Method on page 750), you can include the following additional spherical harmonics expansion
(SHE) distribution enhancement factor:

(556)

where:

■  is a prefactor.

■  is a threshold energy.

■  is an activation energy.

■  is a normal field–induced activation energy–lowering factor.

■  is a normal field–induced activation energy–lowering exponent.

■ .

■  is the valley degeneracy.

■  is the density-of-states.

■  is the electron energy distribution.

■  is the magnitude of the electron velocity.

■  is an exponent for the SHE current.

The SHE distribution enhancement factor can be specified by the eSHEDistribution
keyword in the Traps statement. Similarly, the hSHEDistribution keyword specifies the
enhancement factor of the hole energy distribution.

The following example specifies the SHE distribution enhancement factor with
, , , , , and :

Physics(MaterialInterface="Silicon/Oxide") {
Traps(...

Degradation
# (delta_SHE E_th E_a delta_p rho_p  rho_SHE)
eSHEDistribution=(1.0e2 2 2.1 1.0e-7 1  1)
...

)
}

I0 1=

kSHE 1 δSHE

qgv

2
-------- min

ε εa– δ⊥ F⊥ F0⁄
ρ⊥+

kT
---------------------------------------------------
 
 
 

exp 1, g ε( )f ε( )v ε( )
 
 
 

εd
εth

∞

 
 
 

ρSHE

+=

δSHE

εth

εa

δ⊥

ρ⊥

F0 1V/cm=

gv

g

f

v

ρSHE

δSHE 100 cm2/A= εth 2 eV= εa 2.1 eV= δ⊥ 10 7–  eV= ρ⊥ 1= ρSHE 1=
494 Sentaurus™ Device User Guide
N-2017.09



19: Degradation Models
Trap Degradation Model
Using the Trap Degradation Model

The Degradation model can be activated for any trap level or distribution (see Traps and
Fixed Charges on page 449). The keywords related to the Degradation model are described
in Table 325 on page 1488, along with all other trap-related options, and their syntax is shown
here:

Physics ( [ RegionInterface | MaterialInterface = "<name1>/<name2>" ] |
[ Material | Region = "<name>" ] ) {

Traps (
<trap_specifications>
Degradation [(PowerLaw)]
Conc=< >
BondConc=< > [BondConcSFactor=["<dataset_name>" | "<pmi_model_name>"]]
ActEnergy=< >
DePasCoef=< >
[CritConc=< >]
[FieldEnhan=(< > < > < > < >)]
[PowerEnhan=(< > < > < >)]
[CurrentEnhan=(< > < > < > < >)]
[FowlerNordheimEnhan=(< > < >)]
[DirectTunnelingEnhan=(< > < > < > < >)]
[BarrierTunnelingEnhan=(< > < > < > < >)]
[eSHEDistribution=(< > < > < > < > < > < >)]
[hSHEDistribution=(< > < > < > < > < > < >)]
[DiffusionEnhan=(< > < > < > < > < > < >)]
[PasCoef=< >]
[PasTemp=< >]
[PasVolume=< >]

)
...

}

The total silicon-bond concentration, which represents the maximum concentration of traps
that can be generated as the result of degradation, is specified with BondConc. It is possible to
have a spatially dependent bond concentration by using the parameter BondConcSFactor to
specify a dataset or a PMI space factor model (see Space Factor on page 1190) that describes
the spatial dependency. If BondConcSFactor is specified without BondConc, the values
obtained from the dataset or PMI are used directly. If both BondConcSFactor and BondConc
are specified, the BondConcSFactor values are normalized by the largest
BondConcSFactor value and are then multiplied by BondConc.

Nit
0

N
εA

0

ν0
Ncrit

δ// ρ// δ⊥ ρ⊥
β0 β// β⊥

δTun ρTun δHC ρHC
δFN ρFN

δDTe ρDTe δDTh ρDTh
δBTe ρBTe δBTh ρBTh

δSHE εth εa δ⊥ ρ⊥ ρSHE
δSHE εth εa δ⊥ ρ⊥ ρSHE

xp D0 εH kp NH
0

Nox
γ0
T0

Ω

Sentaurus™ Device User Guide 495
N-2017.09



19: Degradation Models
Trap Degradation Model
Device Lifetime and Simulation

The following example illustrates the use of the Degradation model:

Physics(MaterialInterface="Silicon/Oxide"){
Traps(Conc=1e8 EnergyMid=0 Acceptor #FixedCharge

Degradation #(PowerLaw)
ActEnergy=2 BondConc=1e12

DePasCoeff=8e-10
FieldEnhan=(0 1 1.95e-3 0.33)
CurrentEnhan=(0 1 6e+5 1)
PowerEnhan=(0 0 -1e-7)

)
GateCurrent(GateName="gate" Lucky(CarrierTemperatureDrive) Fowler)

}

For this input, the initially specified trap concentration is  and, in the process of
degradation, it can be increased up to . The activation energy of hydrogen on Si-H
bonds is  and the depassivation constant at the equilibrium is equal to . The
degradation simulation can be separated into two parts:

■ Simulation of extremely stressed devices with existing experimental data and fitting to the
data by modification of the field and current-dependent parameters.

■ Simulation of normal-operating devices to predict device reliability (lifetime).

For the first part of the degradation simulation, the typical Solve section can be:

Solve {
NewCurrentPrefix="tmp"
coupled (iterations=100) { Poisson }
coupled { poisson electron hole }
Quasistationary( InitialStep=0.1 MaxStep=0.2 MinStep=0.0001

increment=1.5 Goal{name="gate" voltage=-10} )
{ coupled { poisson electron hole } }

NewCurrentPrefix=""
coupled { poisson electron hole }
transient( InitialTime=0 Finaltime = 100000

increment=2 InitialStep=0.1 MaxStep=100000 ){
coupled{ poisson electron hole }

}
}

The first Quasistationary ramps the device to stress conditions (in this particular case, to
high negative gate voltage), the second transient simulates the degradation kinetics (up to

, which is a typical time for stress experimental data). 

108 cm
2–

1012 cm
2–

2 eV 8 10 10–×  s
1–

105 s
496 Sentaurus™ Device User Guide
N-2017.09



19: Degradation Models
Trap Degradation Model
NOTE The hot carrier currents are postprocessed values and, therefore,
InitialStep should not be large.

To monitor the trap formation kinetics in transient, you can use Plot and CurrentPlot
statements to output TotalInterfaceTrapConcentration,
TotalTrapConcentration, and OneOverDegradationTime, for example:

CurrentPlot{
eDensity(359) Potential(359)
eInterfaceTrappedCharge(359) hInterfaceTrappedCharge(359)
OneOverDegradationTime(359) TotalInterfaceTrapConcentration(359)

}

where a vertex number is specified to have a plot of the fields at some location on the interface.
As a result, the behavior of these values versus time can be seen in the plot file of Sentaurus
Device. 

The prediction of the device lifetime can be performed in two different ways:

■ Direct simulation of a normal-operating device in transient for a long time (for example,
30 years).

■ Extrapolation of the degradation of a stressed device by computation of the ratio between
depassivation constants for stressed and unstressed conditions.

The important value here is the critical trap concentration , which defines an edge between
a properly working and improperly working device. Using , the device lifetime  is
defined as follows (according to different prediction ways):

1. In transient, direct computation of time  gives the trap concentration equal to
.

2. In Quasistationary, if the previously finished transient statement computes the
device lifetime  and the depassivation constant  at stress conditions, then

.

So, the plotted value of OneOverDegradationTime is equal to  for one trap level and
the sum  if several trap levels are defined for the degradation. It is computed for each
vertex where the degradation model is applied and can be considered as the lifetime of local
device area.

For the second approach to device lifetime computation, the following Solve statement can be
used:

Solve {
NewCurrentPrefix="tmp"
coupled (iterations=100) { Poisson }
coupled { poisson electron hole }

Ncrit

Ncrit τD

t τD=
Ncrit

τD
stress νstress

τD νstress ν⁄( )τD
stress

=

1 τD⁄
1 τD

i⁄
Sentaurus™ Device User Guide 497
N-2017.09



19: Degradation Models
Trap Degradation Model
Quasistationary( InitialStep=0.1 MaxStep=0.2 Minstep=0.0001
increment=1.5 Goal{name="gate" voltage=-10} )
{ coupled { poisson electron hole } }

NewCurrentPrefix=""
coupled { poisson electron hole }
transient( InitialTime=0 Finaltime = 100000

increment=2 InitialStep=0.1 MaxStep=100000 ){
coupled{ poisson electron hole }

}

set(Trapfilling=-Degradation)

coupled { poisson electron hole }
Quasistationary( InitialStep=0.1 MaxStep=0.2 Minstep=0.0001 increment=1.5

Goal{name="gate" voltage=1.5} )
{ coupled { poisson electron hole } }

Quasistationary( InitialStep=0.1 MaxStep=0.2 Minstep=0.0001 increment=1.5
Goal{name="drain" voltage=3} )
{ coupled { poisson electron hole } }

}

The statement set(Trapfilling=-Degradation) returns the trap concentrations to their
unstressed values (it is not necessary to include, but it may be interesting to check the
influence). The first Quasistationary statement after the set command returns the normal-
operating voltage on the gate and, in the second, you can plot the dependence of  on
applied drain voltage. The last dependence could be useful to predict an upper limit of
operating voltages where the device will work for a specified time.

Degradation in Insulators

Although the Degradation model was designed for trap generation that occurs at
semiconductor–insulator interfaces, the model can be used to generate traps at
insulator–insulator interfaces or in bulk-insulator regions.

For insulator degradation, Sentaurus Device will set  and , and the
enhancement factors , , and  are taken from values computed at the
semiconductor–insulator interface.

NOTE To allow traps that are created in insulator regions to be filled with
carriers, it is necessary to construct a nonlocal mesh to connect the
semiconductor–insulator interface to the regions where traps are
generated and to invoke nonlocal tunneling models (see Tunneling and
Traps on page 463).

1 τD⁄

F⊥ F= F|| 0=
kHC kTun kSHE
498 Sentaurus™ Device User Guide
N-2017.09



19: Degradation Models
Trap Degradation Model
To use this feature:

1. Create a nonlocal mesh that connects the semiconductor interface with the regions where
traps are generated. For example:

Math {
NonLocal "NLM_silicon_oxide" (
MaterialInterface = "Silicon/Oxide"
Length = 4.1e-7 # Use a length that will reach the traps

}

2. Specify nonlocal tunneling and Traps(Degradation ...) in the Physics section
associated with the insulator–insulator interface or the bulk-insulator region where
degradation will be used. Degradation parameters must be specified and adjusted as
necessary. For example:

Physics (RegionInterface="oxide1/oxide2") {
Traps ((

eBarrierTunneling(Nonlocal="NLM_silicon_oxide")
hBarrierTunneling(Nonlocal="NLM_silicon_oxide")
TrapVolume=1e-6
HuangRhys=70
PhononEnergy=0.02

#
Degradation
Conc=1e4 EnergyMid=0 Donor
ActEnergy=2
BondConc=1e14
DePasCoeff=1e-11
PasTemp=300
FieldEnhan=(0 1 3.9e-3 0.33)
CurrentEnhan=(0 1 1 1)
PowerEnhan=(0 0 -1e-7)
DiffusionEnhan=(2e-7 1e-13 0.05 1.0 5e10 15)
PasVolume=5e-10

))
}

3. In the parameter file, specify a nonzero tunneling mass for all regions or materials where
tunneling can occur. For example:

Material = "Silicon" {
BarrierTunneling "NLM_silicon_oxide" { mt = 1, 1 }

}

Material = "Oxide" {
BarrierTunneling "NLM_silicon_oxide" { mt = 1, 1 }

}

Sentaurus™ Device User Guide 499
N-2017.09



19: Degradation Models
MSC–Hydrogen Transport Degradation Model
MSC–Hydrogen Transport Degradation Model

Bias and temperature stresses generate interface fixed charges and trapped charges near the
oxide interface. These immobile charges affect the threshold voltage (see Chapter 7 on
page 173) and the carrier mobility (see Mobility Degradation Components due to Coulomb
Scattering on page 347). To explain these degradation phenomena, various physical models
have been proposed [12][13][14][1]. Although the details of these models are different, they
commonly involve charge-trapping, silicon-hydrogen bond depassivation, and hydrogen
transport.

To model charge-trapping, interactions between localized trapping centers and mobile carriers
must be considered. Contrary to the standard traps in Chapter 17 on page 449, the trapping
centers used in the degradation model usually involve hydrogens. Therefore, interactions
between the localized trapping centers and mobile hydrogens should be considered. In
addition, the trapping centers may have more than two internal states depending on the
structural relaxation and the presence of charges and hydrogens [1].

The multistate configurations (MSCs) introduced in Chapter 18 on page 473 can be used to
represent these complex trapping centers because the MSCs can handle an arbitrary number of
states and their transitions involving the capture and emission of charges and hydrogens.

Finally, hydrogen transport must be considered if the degradation model involves mobile
hydrogens. Hydrogen atoms, hydrogen molecules, and hydrogen ions can contribute to the
hydrogen transport, and there can be chemical reactions between them [12][13][14].

Sentaurus Device provides the following capabilities to model oxide degradation:

■ Transport equations for hydrogen atoms, hydrogen molecules, and hydrogen ions.

■ An arbitrary number of interface and bulk reactions among mobile elements (hydrogen
atoms, hydrogen molecules, hydrogen ions, electrons, and holes).

■ An arbitrary number of interface and bulk reactions among mobile elements and localized
states by using the multistate configurations (see Chapter 18 on page 473).

Hydrogen Transport

Transport equations for hydrogen atoms ( ), hydrogen molecules ( ), and hydrogen ions
( ) can be written as:

(557)

X1 X2

X3

t∂
∂

Xi[ ] ∇ Di

Edi

kT
-------– 

  qKi
Q

kT
----------F Xi[ ] Xi[ ]∇– αtd Xi[ ] Tln∇–
 
 
 

exp Rnet ri Xi[ ] Xi[ ]
0

–( )+ +⋅+ 0=
500 Sentaurus™ Device User Guide
N-2017.09



19: Degradation Models
MSC–Hydrogen Transport Degradation Model
where:

■  is the diffusion coefficient.

■  is the diffusion activation energy.

■  is the prefactor of the thermal diffusion term.

■  is the number of charges for element .

■  is the net recombination rate due to chemical reactions.

■  is the explicit recombination rate.

■  is the initial density.

By default, the initial densities of hydrogen atoms, molecules, and ions are all zero. You can
load the initial density of each hydrogen element from the PMIUserField by using the Set
command in the Solve section, for example:

Solve {
...
Set ( HydrogenAtom = "PMIUserField0" )
Set ( HydrogenMolecule = "PMIUserField1" )
Set ( HydrogenIon = "PMIUserField3" )
...

}

Sentaurus Device uses default values for  and . You can customize the
computation of  and  by using PMI models (for details, see Diffusivity
on page 1279). The corresponding command file can be written as:

Physics ( Material = "Oxide" ) {
HydrogenDiffusion(

HydrogenAtom (
Diffusivity = pmi_HydrogenDiffusivity
Alpha = pmi_HydrogenAlpha

)
HydrogenMolecule (

Diffusivity = pmi_HydrogenDiffusivity
Alpha = pmi_HydrogenAlpha

)
HydrogenIon (

Diffusivity = pmi_HydrogenDiffusivity
Alpha = pmi_HydrogenAlpha

)
...

)
}

Di

Edi

αtd

Ki
Q Xi

Rnet

ri

Xi[ ]0

Di Ed i kT( )⁄–( )exp αtd

Di Edi kT( )⁄–( )exp αtd
Sentaurus™ Device User Guide 501
N-2017.09



19: Degradation Models
MSC–Hydrogen Transport Degradation Model
Boundary Conditions

At electrodes,  is assumed as the default boundary condition. You can specify
more flexible conditions at each contact. The corresponding command file can be written as:

HydrogenBoundary {
{ Name = "cSiTop"
HydrogenAtom = 1e7 # [cm-3]
HydrogenMolecule = reflective

}
{ Name = "cSiBot"
HydrogenAtom = reflective

}
...

}

Reactions Between Mobile Elements

In the model, you can specify an arbitrary number of bulk and interface chemical reactions
between hydrogen atoms ( ), hydrogen molecules ( ), hydrogen ions ( ), electrons ( ),
and holes ( ). Each reaction is defined by the following reaction equation:

(558)

where the nonnegative integers  and  are the particle numbers of element  to be removed
and created by the forward reaction. 

These coefficients must satisfy the charge and hydrogen conservation laws:

(559)

(560)

where  and  are the number of charges and the number of hydrogen atoms for element
 (for  and  of each mobile element, see Table 94 on page 474).

Xi[ ] Xi[ ]0=

X1 X2 X3 X4

X5

αiXi

i 1=

5

 βiXi

i 1=

5

↔

αi βi Xi

αi βi–( )Ki
Q

i 1=

5

 0=

αi βi–( )Ki
H

i 1=

5

 0=

Ki
Q Ki

H

Xi Ki
Q Ki

H

502 Sentaurus™ Device User Guide
N-2017.09



19: Degradation Models
MSC–Hydrogen Transport Degradation Model
The forward and reverse reaction rates  and  are modeled as:

(561)

(562)

where:

■  is the magnitude of the electric field .

■  and  are the forward and reverse reaction coefficients, respectively (  for
bulk reactions and for interface reactions).

■  and  are the forward and reverse reaction field coefficients, respectively .

■  and  are the forward and reverse reaction activation energies, respectively .

NOTE For a reaction specified at a semiconductor–insulator interface, the
insulator electric field is used instead of the semiconductor electric
field.

A reaction can be specified in the Physics section as an argument HydrogenReaction to
the HydrogenDiffusion keyword. For example, consider the dimerization of two hydrogen
atoms into a hydrogen molecule  in the oxide region with  and

. 

The corresponding command file can be written as:

Physics ( Material = "Oxide" ) {
HydrogenDiffusion(

HydrogenReaction( # 2H <-> H_2
LHSCoef ( # alpha_i

HydrogenAtom = 2
HydrogenMolecule = 0
HydrogenIon = 0
Electron = 0
Hole = 0

)
RHSCoef ( # beta_i

HydrogenAtom = 0
HydrogenMolecule = 1
HydrogenIon = 0
Electron = 0
Hole = 0

)
ForwardReactionCoef = 1.0e-3 # k_f

Rf Rr

Rf kf δfF
Ef

kT
------– 

  Xi[ ]

1 /cm
3

----------------
 
 
 αi

i 1=

5

∏exp=

Rr kr δrF
Er

kT
------– 

  Xi[ ]

1 /cm
3

----------------
 
 
  βi

i 1=

5

∏exp=

F V/cm[ ]
kf kr cm 3– s 1–[ ]

cm 2– s 1–[ ]
δf δr cm V 1–[ ]
Ef Er eV[ ]

2H H2↔ kf 10 3–  cm 3– s 1–=
kr 102 cm 3– s 1–=
Sentaurus™ Device User Guide 503
N-2017.09



19: Degradation Models
MSC–Hydrogen Transport Degradation Model
ReverseReactionCoef = 1.0e2 # k_r
ForwardReactionEnergy = 0 # E_f
ReverseReactionEnergy = 0 # E_r
ForwardReactionFieldCoef = 0 # delta_f
ReverseReactionFieldCoef = 0 # delta_r

)
...

)
}

The default values of all the coefficients are zero. Table 305 on page 1475 lists the options
available for the reaction specification.

For heterointerfaces, the keyword Region or Material allows you to specify the region or
material where the reaction process enters as a generation–recombination rate. In addition, the
keyword FieldFromRegion or FieldFromMaterial allows you to specify the region or
material where the electric field is obtained. For example:

Physics ( Material = "Silicon/OxideAsSemiconductor" ) {
HydrogenDiffusion(

HydrogenReaction(...
Material = "Silicon"
FieldFromMaterial = "OxideAsSemiconductor"

)
)

}

Reactions With Multistate Configurations

A multistate configuration (MSC) can be used to model reactions between the mobile hydrogen
elements and localized hydrogen states such as silicon-hydrogen bonds at the silicon–oxide
interface.

For example, consider a hydrogen depassivation model based on the hole capture process:

(563)

where , , , and  represent the silicon-hydrogen bond, hole, silicon dangling bond,
and hydrogen atom, respectively. This reaction can be specified by a two-state MSC defined at
the silicon–oxide interface:

Physics ( MaterialInterface = "Silicon/Oxide" ) {
MSConfigs (

MSConfig ( Name = "SiHBond" Conc=5.0e12
State ( Name = "s1" Hydrogen=1 Charge=0 ) # Si-H bond
State ( Name = "s2" Hydrogen=0 Charge=1 ) # Si^+ dangling bond

Si-H p+ Si
+

H+↔

Si-H p Si+ H
504 Sentaurus™ Device User Guide
N-2017.09



19: Degradation Models
MSC–Hydrogen Transport Degradation Model
Transition ( Name = "t21" # Si-H + p <-> H + Si^+
To="s2" From="s1" CEModel("CEModel_Depassivation" 1)
Reservoirs("VB"(Particles=+1) "HydrogenAtom"(Particles=-1) )
FieldFromInsulator

)
)
...

)
}

The capture and emission rates are obtained from:

(564)

(565)

where  and  are the capture and emission rates specified by the trap capture and
emission PMI model, respectively. For more information about multistate configurations, see
Chapter 18 on page 473.

NOTE Contrary to the conventional trap capture and emission PMI model, the
insulator electric field can be used in the PMI model at the
semiconductor–insulator interface instead of the semiconductor electric
field when the keyword FieldFromInsulator is set in the transition.

The CEModel_Depassivation Model

The built-in capture and emission model CEModel_Depassivation models the hydrogen
depassivation process. In the model, the hydrogen depassivation (electron capture) rate induced
by hot-electron distribution is written as:

(566)

where:

■  and  are the minimum and maximum kinetic energies of the integration.

■  is the capture cross-section.

■  is the valley degeneracy.

c21 cPMI n p T Tn Tp F, , , , ,( )
Xi[ ]

1 /cm
3

----------------
 
 
 αi

i 1=

3

∏=

e21 ePMI n p T Tn Tp F, , , , ,( )
Xi[ ]

1 /cm
3

----------------
 
 
  βi

i 1=

3

∏=

cPMI ePMI

cPMI 2gvσ v ε( )g ε( )f ε( ) γ F
1 V/cm
------------------ 
  ρ Θ Wf qαF– χε–( ) Wf qαF– χε–( )

kT
---------------------------------------------------------------------------------------–exp

εmin

εmax

=

εmin εmax

σ
gv
Sentaurus™ Device User Guide 505
N-2017.09



19: Degradation Models
MSC–Hydrogen Transport Degradation Model
■  is the magnitude of the group velocity.

■  is the density-of-states.

■  is the distribution function.

■  is the field enhancement prefactor.

■  is the field enhancement exponent.

■  is the activation energy for the depassivation process.

■  is the field-induced barrier-lowering factor.

■  is the kinetic energy–induced barrier-lowering factor.

Similarly, the hydrogen depassivation rate induced by cold electrons can be written as:

(567)

where  is the thermal velocity.

As the hydrogen passivation (electron emission) rate is not related to hot carriers, it is modeled
simply as:

(568)

(569)

where  is the passivation rate prefactor, and  is the activation energy for the passivation
process.

The capture-emission model CEModel_Depassivation implements Eq. 566 and Eq. 567 for
electrons and holes. The additional index in the CEModel_Depassivation model selects the
equation and the carrier type as follows:

MSConfig( ...
Transition( ... CEModel("CEModel_Depassivation" 0)) # Eq. 567 for electrons
Transition( ... CEModel("CEModel_Depassivation" 1)) # Eq. 567 for holes
Transition( ... CEModel("CEModel_Depassivation" 2)) # Eq. 566 for electrons
Transition( ... CEModel("CEModel_Depassivation" 3)) # Eq. 566 for holes

)

To use the CEModel_Depassivation model with the index 2 or 3 (hot electron–induced or
hot hole–induced degradation), you must specify eSHEDistribution or
hSHEDistribution in the Physics section to compute the electron or hole distribution
function (see Using Spherical Harmonics Expansion Method on page 750).

v ε( )
g ε( )
f ε( )
γ
ρ
Wf

α
χ

cPMI σvthn γ F
1 V/cm
------------------ 
  ρ Θ Wf qαF–( ) Wf qαF–( )

kT
--------------------------------------------------------------–exp=

vth

e ePMI
H[ ]

1/cm
3

-------------- 
 ×=

ePMI e0

Wr

kT
------– 

 exp=

e0 Wr
506 Sentaurus™ Device User Guide
N-2017.09



19: Degradation Models
MSC–Hydrogen Transport Degradation Model
The model coefficients and their defaults are given in Table 102. The model coefficients can be
changed in the CEModel_Depassivation section of the parameter file. 

Using MSC–Hydrogen Transport Degradation Model

You can select the regions and interfaces where the hydrogen transport equations are to be
solved by specifying the keyword HydrogenDiffusion in the corresponding Physics
section of the command file. For example:

Physics ( Material = "Oxide" ) {
HydrogenDiffusion

}

The keyword HydrogenDiffusion can be specified with the HydrogenReaction
arguments (see Reactions Between Mobile Elements on page 502).

Specifying HydrogenDiffusion in the interface-specific Physics section gives a surface
recombination term determined by  and  at the corresponding interface.

Table 102 Default coefficients for CEModel_Depassivation

Symbol Parameter name 
(Electrons)

Default value 
(Electrons)

Parameter name 
(Holes)

Default value 
(Holes)

Unit

Xsec_e Xsec_h

Vth_e Vth_h cm/s

gamma_e gamma_h 1

rho_e 1.0 rho_h 1.0 1

alpha_e alpha_h cm

chi_e chi_h 1

Wf_e 0.5 Wf_h 0.5 eV

e0_e e0_h 1/s

Wr_e 0 Wr_h 0 eV

dE_e 0.01 dE_h 0.01 eV

Emin_e 0 Emin_h 0 eV

Emax_e 5 Emax_h 5 eV

σ 1.0 10
24–× 1.0 10

24–× cm
2

vth
2.0 10

7× 2.0 10
7×

γ 2.7 10
7–× 2.7 10

7–×

ρ

α 9.0 10
9–× 9.0 10

9–×

χ 1.0 1.0

Wf

e0
3.0 10

9–× 3.0 10
9–×

Wr

dε

εmin

εmax

ri Xi[ ]0
Sentaurus™ Device User Guide 507
N-2017.09



19: Degradation Models
MSC–Hydrogen Transport Degradation Model
To activate the transport of hydrogen atoms, hydrogen molecules, and hydrogen ions, the
keywords HydrogenAtom, HydrogenMolecule, and HydrogenIon must be specified
inside the Coupled command of the Solve section.

For example, transient drift-diffusion simulation with transport of hydrogen atoms and
hydrogen molecules can be specified by:

Solve {
Transient(...) {

Coupled { Poisson Electron Hole HydrogenAtom HydrogenMolecule }
}

}

The parameters , , , and  can be specified in the region-specific and interface-
specific HydrogenDiffusion parameter set in the parameter file. For example:

Material = "Oxide" {
HydrogenDiffusion {

HydrogenAtom {
d0 = 1.0e-13 # [cm^2*s^-1]
Ed = 0 # [eV]
atd = 1 # [1]
n0 = 0 # [cm^-3]
krec = 0 # [cm^-3*s^-1]

}
HydrogenMolecule {

d0 = 1.0e-14 # [cm^2*s^-1]
Ed = 0 # [eV]
atd = 1 # [1]
n0 = 0 # [cm^-3]
krec = 0 # [cm^-3*s^-1]

}
HydrogenIon {

...
}

}
}

MaterialInterface = "Oxide/PolySi" {
HydrogenDiffusion {

HydrogenAtom {
n0 = 1 # [cm^-3]
krec = 1 # [cm^-2*s^-1]

}
}

}

Di Ed i Xi[ ]0 ri
508 Sentaurus™ Device User Guide
N-2017.09



19: Degradation Models
Two-Stage NBTI Degradation Model
Here d0, Ed, atd, n0, and krec correspond to , , , , and . The default values
of , , , and  are zero; while  by default.

The keywords for plotting the densities of hydrogen atoms, hydrogen molecules, and hydrogen
ions are:

Plot { ...
HydrogenAtom HydrogenMolecule HydrogenIon

}

Two-Stage NBTI Degradation Model

Negative bias temperature instability (NBTI) refers to the generation of positive oxide charges
and interface traps in MOS structures under negative gate bias at elevated temperature, which
affects the threshold voltage and on-currents of PMOSFETs [12]. 

Sentaurus Device provides a two-stage NBTI degradation model [1][2], which assumes that the
NBTI degradation proceeds using a two-stage process:

■ The first stage includes the creation of  centers (dangling bonds in amorphous oxides)
from their neutral oxygen vacancy precursors, the charging and discharging of  centers,
and the total annealing of  centers to neutral oxygen vacancy precursors.

■ The second stage considers the creation of poorly recoverable  centers (dangling bonds
at silicon–oxide interfaces).

In the two-stage NBTI degradation model, the involved energy levels and activation energies
are distributed widely and are treated as random variables. A random sampling technique is
used to obtain the average change of the interface charge.

NOTE As the two-stage NBTI model is based on the semiclassical carrier
density at the semiconductor–insulator interface, it is not recommended
to use the model with quantum-correction models.

Formulation

The two-stage NBTI degradation model considers a special trap having four internal states:

■ : Oxygen vacancy as a precursor state.

■ : Positive  center.

■ : Neutral  center.

■ : Fixed positive charge with a  center.

Di Edi αtd Xi[ ]0 ri

Di Edi Xi[ ]0 ri αtd 1=

E′
E′

E′
Pb

s1

s2 E′
s3 E′
s4 Pb
Sentaurus™ Device User Guide 509
N-2017.09



19: Degradation Models
Two-Stage NBTI Degradation Model
Each NBTI trap is characterized by seven independent random variables:

■ : Trap level of the precursor  (by default, ).

■ : Trap level of the  center  (by default, ).

■ : Trap level of the  center  (by default, ).

■ : Barrier energy of a transition from  to   (by default, ).

■ : Barrier energy of a transition from  to   (by default, ).

■ : Barrier energy of a transition between  to   (by default,
).

■ : Uniform number between 0 and 1. When , a transition between  to  is allowed
(by default, ).

, , , , and  follow the uniform distribution between their minimum and
maximum values.  follows the Fermi-derivative distribution characterized by its average
and standard deviation. The trap levels , , and  are defined relative to the valence band
energy.

The state occupation probability  satisfies the normalization condition:

(570)

and the following rate equations:

(571)

(572)

(573)

(574)

with the transition rates:

(575)

(576)

(577)

E1 eV[ ] 1.14– E1 0.31–<≤
E2 E′ eV[ ] 0.01 E2 0.3<≤
E4 Pb eV[ ] 0.01 E4 0.5<≤
EA s3 s1 eV[ ] 0.01 EA 1.15<≤
EB s1 s2 eV[ ] 0.01 EB 1.15<≤
ED s2 s4 eV[ ]

ED  1.46 ED
2  ED  2–( )1 2⁄, 0.44= =

r r C< s2 s4

C 0.12=

E1 E2 E4 EA EB

ED

E1 E2 E4

si

si

i 1=

4

 1=

s·1 s1k12– s3k31+=

s·2 s1k12 s2 k23 k24+( )– s3k32 s4k42+ +=

s·3 s2k23 s3 k32 k31+( )–=

s·4 s2k24 s4k42–=

k12 eC
n 1,

cV
p 1,

+=

k23 cC
n 2,

eV
p 2,

+=

k32 eC
n 2,

cV
p 2,

+=
510 Sentaurus™ Device User Guide
N-2017.09



19: Degradation Models
Two-Stage NBTI Degradation Model
(578)

(579)

(580)

where:

■  and  are the attempt frequencies (by default,  and
).

■  is the prefactor for the field-dependent barrier energy (by default,
).

■  is the additional barrier energy for  (by default, ).

In addition, it is assumed that the hole occupation probability  of the  center in the state 4
is determined by:

(581)

The electron emission rate and the hole capture rate for the state 1 are given by:

(582)

(583)

where:

■  and  are the electron and hole capture cross-sections (by default,
 and ).

■  and  are the electron and hole thermal velocity (by default, 
and ).

■  is the insulator electric field.

■  and  are the critical electric field (by default,  and
).

■  and  are the exponents of the field-dependent term (by default,  and
).

■ .

k31 ν1 EA kT⁄–( )exp=

k24 ν2 ED γF–( ) kT⁄–[ ]Θ C r–( )exp=

k42 ν2 ED ΔED γF+ +( ) kT⁄–[ ]Θ C r–( )exp=

ν1 ν2 ν1 1.0 1013 s 1–×=
ν2 5.11 1015s 1–×=

γ
γ 7.4 10 8–  cm eV/V⋅×=

ΔED k42 ΔED 0  eV=

fit
p Pb

f·it
p

eC
n 4,

cV
p 4,

+( ) 1 fit
p

–( ) cC
n 4,

eV
p 4,

+( )fit
p

–=

eC
n 1, σnvth

n
NC H EC E1–( ) kT⁄– Θ Fc n,( ) F Fc n,⁄( )

ρn EB kT⁄–+[ ]exp=

cV
p 1, σpvth

p
p H EV E1–( ) kT⁄– Θ Fc p,( ) F Fc p,⁄( )

ρp EB kT⁄–+[ ]exp=

σn σp

σn 1.08 10 15– cm2×= σp 1.24 10 14– cm2×=

vth
n vth

p vth
n 1.5 107×  cm/s=

vth
p 1.2 107cm/s×=

F

Fc n, Fc p, Fc n, 1 V/cm–=
Fc p, 2.83 106V/cm×=

ρn ρp ρn 2=
ρp 2=

H x( ) xΘ x( )=
Sentaurus™ Device User Guide 511
N-2017.09



19: Degradation Models
Two-Stage NBTI Degradation Model
When the energy-dependent hole distribution is available (hSHEDistribution is activated in
the semiconductor region), you can use the following expression for  instead of Eq. 583:

(584)

The electron capture rate, the electron emission rate, the hole capture rate, and the hole
emission rate for state 2 and state 4 are given by:

(585)

(586)

(587)

(588)

where  or 4.

Using Two-Stage NBTI Model

You can activate the two-stage NBTI model by specifying the NBTI command in the interface-
specific Physics section of the command file. For example:

Physics ( MaterialInterface = "Silicon/Oxide" ) {
NBTI (

Conc = 5.0e12 # N_0 [/cm^2]
NumberOfSamples = 1000 # N_sample [1]
hSHEDistribution | -hSHEDistribution # (off by default)

)
}

where Conc represents the density of the precursor , and NumberOfSamples represents the
number of random samples . Sentaurus Device generates  random configurations
for each interface vertex. Then, the interface charge density is obtained from the ensemble
average as follows:

(589)

cV
p 1,

cV
p 1,

2gvσp v ε( )g ε( )f ε( ) H EV E1– ε–( ) kT⁄– Θ Fc p,( ) F Fc p,⁄( )
ρp EB kT⁄–+[ ]exp εd

0

∞

=

cC
n i, σnvth

n
n H Ei EC–( ) kT⁄–[ ]exp=

eC
n i, σnvth

n
NC H EC Ei–( ) kT⁄–[ ]exp=

cV
p i, σpvth

p
p H EV Ei–( ) kT⁄–[ ]exp=

eV
p i, σpvth

p
NV H Ei EV–( ) kT⁄–[ ]exp=

i 2=

N0

Nsample Nsample

Q Qox Qit+ qN0 s2 s4+  qN0 s4fit
p += =
512 Sentaurus™ Device User Guide
N-2017.09



19: Degradation Models
Extended Nonradiative Multiphonon Model
where:

(590)

During transient simulation, state occupation probabilities will change following the kinetic
equations, which will change the interface charge density. It is assumed that  at the
beginning. In addition, you can restart NBTI degradation simulations by loading the saved
data.

When the hSHEDistribution keyword is specified in the NBTI command (off by default),
 is computed from Eq. 584 instead of Eq. 583.

NOTE You need to specify hSHEDistribution in the Physics section to
compute the hole distribution function (see Using Spherical Harmonics
Expansion Method on page 750).

You can plot the density of charge and the density of each state as follows:

Plot {
InterfaceNBTICharge # [1/cm^2]
InterfaceNBTIState1 # [1/cm^2]
InterfaceNBTIState2 # [1/cm^2]
InterfaceNBTIState3 # [1/cm^2]
InterfaceNBTIState4 # [1/cm^2]

}

The model parameters are defined in the interface-specific NBTI parameter set.

Extended Nonradiative Multiphonon Model

The extended nonradiative multiphonon (eNMP) model [3] can be used to investigate
degradation related to NBTI. The model accounts for the behavior of oxide defects (traps) that
can have four internal states, two of which are metastable. 

As with the two-stage NBTI degradation model, the eNMP model uses a random sampling
technique to obtain the average behavior of multiple sample defects ( ) at each interface
vertex. The sample defects are considered to have random insulator positions, and distributed
energy levels and activation energies.

x  1
Nsample
----------------- x

j

j 1=

Nsample

=

s1 1=

cV
p 1,

Nsample
Sentaurus™ Device User Guide 513
N-2017.09



19: Degradation Models
Extended Nonradiative Multiphonon Model
Each sample defect is assumed to be located at a distance  from the interface, where  is
distributed randomly between a minimum and maximum location:

(591)

NOTE The implementation treats the average charge associated with the
sample defects as an interface charge.

eNMP Model Description

The eNMP model considers a special trap having four internal states:

■ : Neutral stable state

■ : Positive stable state

■ : Neutral metastable state

■ : Positive metastable state

The model describes the transitions between these states according to the diagram in Figure 21,
in which the  terms represent the transition rates between the states. 

Figure 21 State diagram for the eNMP model

The state occupation probabilities  satisfy the normalization condition:

(592)

The rate equations for the transitions are given by:

(593)

(594)

xt xt

xt,min xt xt,max< <

s1

s2

s1 ′

s2 ′

kij

k12'

k2'1

k1'2

k21'

k1'1 k2'2k22'k11'

1

1' 2

2'

si

s1 s1' s2 s2'+ + + 1=

s·1 s1 k11' k12'+( )– s1'k1'1 s2'k2'1+ +=

s·2 s2 k21' k22'+( )– s1'k1'2 s2'k2'2+ +=
514 Sentaurus™ Device User Guide
N-2017.09



19: Degradation Models
Extended Nonradiative Multiphonon Model
(595)

(596)

The eight transition rates are given by the following expressions:

(597)

(598)

(599)

(600)

(601)

(602)

(603)

(604)

with:

(605)

(606)

For an insulator defect located a distance  from the interface:

(607)

(608)

(609)

s·1' s1' k1'1 k1'2+( )– s1k11' s2k21'+ +=

s·2' s2' k2'1 k2'2+( )– s1k12' s2k22'+ +=

k12' 1 R1+( )3 2⁄ σpvth
p

p ε12' kT⁄–( )exp=

k2'1 1 R1+( )3 2⁄ σpvth
p

NV ε12' kT⁄–( ) Et EV– εT2'–( ) kT⁄–( )expexp=

k1'2 1 R1'+( )3 2⁄ σpvth
p

p ε1'2 kT⁄–( )exp=

k21' 1 R1'+( )3 2⁄ σpvth
p

NV ε1'2 kT⁄–( ) Et' EV–( ) kT⁄–( )expexp=

k11' ν0 ε1'1 Et' Et–+( ) kT⁄–( )exp=

k1'1 ν0 ε1'1 kT⁄–( )exp=

k22' ν0 ε2'2 εT2'+( ) kT⁄–( )exp=

k2'2 ν0 ε2'2 kT⁄–( )exp=

ε12'

S1hω1( )

1 R1+( )2
-----------------------

R1

1 R1+
--------------- EV Et– εT2'+( )+=

ε1'2

S1'hω1'( )

1 R1'+( )2
-----------------------

R1'

1 R1'+
---------------- EV Et'–( )+=

xt

σp σp0 xt x0⁄–( )exp=

Et EV– Et0 EV0– qxt F+ ΔEt qxt F+= =

Et' EV– Et0' EV0– qxt F+ ΔEt' qxt F+= =
Sentaurus™ Device User Guide 515
N-2017.09



19: Degradation Models
Extended Nonradiative Multiphonon Model
In these expressions:

■  is the hole-capture cross section, and  accounts for the trap depth of
tunneling.

■  and  are the energy levels of the defect in the neutral stable state and the neutral
metastable state, respectively, relative to the valence band energy in the absence of an
electric field.

■  is the insulator electric field.

■  is the hole thermal velocity.

■  represent the transition energies between states.

■  is the energy of the positive metastable state relative to the positive stable state.

■  are vibrational frequencies.

■  and .

■  are relaxation energies, where  are known as Huang–Rhys factors.

■  is the attempt frequency.

Using the eNMP Model

You can activate the eNMP model in an interface-specific Physics section of the command
file with the keyword eNMP. The command syntax and options are:

Physics (MaterialInterface="<mat1>/<mat2>" | RegionInterface="<reg1>/reg2>") {
eNMP (

NumberOfSamples = <Nsample> # Typically, 1000
Conc = <N0> # 1/cm2, for example, 5e12
[ SFactor="<dataset_name-or-pmi_model_name>" ]
[ <eNMPTransitionRates_pmi_model_name> [StateCharge=<1 | -1>] ]

)
}

where Conc represents the density of the precursor . By default, the precursor concentration
is constant over the interface. However, if SFactor is specified, the precursor concentration is
obtained from a dataset (or a PMI user field that is read from the file specified with
PMIUserFields in the File section of the command file), or from a space factor PMI written
by users (see Space Factor on page 1190). If SFactor is specified without specifying Conc,
the SFactor interface values are used directly. If SFactor is specified in addition to Conc,
the SFactor values are normalized by the largest SFactor value and multiplied by Conc. 

σp0 xt x0⁄–( )exp

ΔEt ΔEt'

F

vth
p

εij

εT2'

ωi

R1 ω1 ω2'⁄= R1' ω1' ω2⁄=

Sihωi Si

ν0

N0
516 Sentaurus™ Device User Guide
N-2017.09



19: Degradation Models
Extended Nonradiative Multiphonon Model
The NumberOfSamples keyword represents the number of random samples, .
Sentaurus Device generates  random defects for each interface vertex. Then, the
interface charge density is obtained from the ensemble average of the charge states:

(610)

where:

(611)

During transient simulations, the state occupation changes according to the rate equations
(Eq. 593 to Eq. 596), which will change the interface charge density. It is assumed that 
at the beginning, with all other states unoccupied.

eNMP Quantities Available for Plotting

Plots of the interface charge density and the density of each state can be specified in the Plot
section of the command file:

Plot {
InterfaceeNMPCharge
InterfaceeNMPState1
InterfaceeNMPState2
InterfaceeNMPState1p
InterfaceeNMPState2p

}

You can also obtain the plots of the capture and emission times:

Plot {
eNMPCaptureTime
eNMPEmissionTime

}

For this purpose, Sentaurus Device uses the first passage times given in [3]:

(612)

(613)

Nsample

Nsample

Q qN0 s2 s2'+ =

x  1
Nsample
----------------- x

j

j 1=

Nsample

=

s1 1=

1
τcap
---------

1

τcap
1'

---------
1

τcap
2'

---------+=

1
τem
--------

1

τem
1'

--------
1

τem
2'

--------+=
Sentaurus™ Device User Guide 517
N-2017.09



19: Degradation Models
Extended Nonradiative Multiphonon Model
where:

(614)

(615)

(616)

(617)

eNMP Model Parameters

The parameters used in the eNMP model are defined in the interface-specific eNMP parameter
set. Table 103 to Table 106 on page 519 list the default parameter values for silicon–oxide
interfaces.    

Table 103 eNMP parameters that follow a Gaussian distribution: Default coefficients for 
silicon–oxide interfaces

Symbol Parameter name Mean Standard deviation Unit

Et -0.5 0.1 eV

Etp 0.5 0.1 eV

R 0.6 0.1 1

Rp 0.6 0.1 1

ES 1.0 0.1 eV

ESp 1.0 0.1 eV

ET2p 0.5 0.1 eV

E1p1 1.0 0.1 eV

E2p2 0.5 0.1 eV

1

τcap
1'

---------
k11'k1'2

k11' k1'2 k+
1'1

+
--------------------------------------=

1

τcap
2'

---------
k12'k2'2

k12' k2'2 k+
2'1

+
--------------------------------------=

1

τem
1'

--------
k21'k1'1

k21' k1'1 k+
1'2

+
---------------------------------------=

1

τem
2'

--------
k22'k2'1

k22' k2'1 k+
2'2

+
---------------------------------------=

ΔEt

ΔEt'

R1

R1'

S1hω1

S1'hω1'

εT2'

ε1'1

ε2'2
518 Sentaurus™ Device User Guide
N-2017.09



19: Degradation Models
Hot-Carrier Stress Degradation Model
eNMP Transition Rates PMI Model

An eNMP transition rates PMI model (see eNMP Transition Rates on page 1207) created by
users can be utilized to calculate the transition rates for the eNMP model. This PMI allows for
the possibility of either a positive or negative state charge, and provides additional
dependencies that are not included in the built-in eNMP model.

Hot-Carrier Stress Degradation Model

The hot-carrier stress (HCS) degradation model is based on work in [15], and can be used as a
general degradation model for MOS-based devices.

The HCS degradation model includes different mechanisms that contribute to bond breakage
and the formation of interface traps [11][16][17]:

■ Single-particle (SP) processes, where a single particle is responsible for bond breakage

■ Multiple-particle (MP) processes, where the combined actions of several particles
contribute to bond breakage

■ Field-enhanced thermal (TH) processes, where thermal interactions with the lattice
contribute to bond breakage

Table 104 eNMP parameters that follow a uniform distribution: Default coefficients for 
silicon–oxide interfaces

Symbol Parameter name Minimum Value  Maximum Value Unit

xt 0.0 8.0 Å

Table 105 eNMP parameters that have separate values for electrons and holes: Default 
coefficients for silicon–oxide interfaces

Symbol Parameter name Electrons  Holes Unit

Xsec cm2

Vth cm/s

x0 0.5 0.5 Å

Table 106 eNMP parameters that have a single value: Default coefficients for silicon–oxide 
interfaces

Symbol Parameter name Value Unit

nu0 s-1

xt

σ0 1.0
15–×10 1.0

15–×10

vth 1.5
7×10 1.2

7×10

x0

ν0 1.0
13×10
Sentaurus™ Device User Guide 519
N-2017.09



19: Degradation Models
Hot-Carrier Stress Degradation Model
Sentaurus Device includes both an electron version of the model (eHCSDegradation) and a
hole version of the model (hHCSDegradation).

The model and its usage are described in the following sections.

Model Description

The model equations are presented here. Details can be found in [15]. The equations presented
apply to both the eHCSDegradation and hHCSDegradation models.

Single-Particle and Multiple-Particle Interface-Trap Densities

For the SP case, the interface trap density as a function of time and activation energy is given by

(618)

where:

■  is the probability for defect generation by SP processes.

■  is the maximum number of interface bonds.

■  is the activation energy for SP processes.

■  is the reaction rate for SP processes.

For the MP case, the interface trap density is given by:

(619)

where:

■  is the probability for defect generation by MP processes.

■  is the number of energy levels in the oscillator that models the bond.

The emission and passivation probabilities  and  are modeled as Arrhenius laws:

(620)

(621)

Nit,SP r t ESP, ,( ) PSPN0 1 e
kSP r ESP,( )t–

–[ ]=

PSP

N0

ESP

kSP r ESP,( )

Nit,MP r t EMP, ,( ) PMPN0

Pemi

Ppass
-----------

Pu

Pd
------ 
 

Nl

1 e
Pemi t–

–( )
1 2⁄

=

PMP

Nl

Pemi Ppass

Pemi νemie
Eemi kBT( )⁄–

=

Ppass νpasse
Epass kBT( )⁄–

=

520 Sentaurus™ Device User Guide
N-2017.09



19: Degradation Models
Hot-Carrier Stress Degradation Model
where:

■  and  are the emission and passivation frequencies, respectively.

■  and  are the emission and passivation energies, respectively.

The oscillator excitation and de-excitation probability rates are given by:

(622)

(623)

where:

■  and  are the phonon energy and the reaction rate, respectively.

■  is the activation energy for MP processes.

■  is the reaction rate for MP processes.

The reaction rates for SP and MP processes are given by scattering-rate integrals:

(624)

(625)

where:

■  is the carrier distribution function.

■  is the total density-of-states.

■  is the magnitude of the carrier velocity.

■  and  are the SP and MP reaction cross-sections.

The reaction cross-sections are given by:

(626)

(627)

νemi νpass

Eemi Epass

Pu kphe
Eph kBT( )⁄–

kMP r EMP,( )+=

Pd kph kMP r EMP,( )+=

Eph kph

EMP

kMP r EMP,( )

kSP r ESP,( ) f r E,( )g E( )v E( )σSP E( ) Ed

ESP

∞

=

kMP r EMP,( ) f r E,( )g E( )v E( )σMP E( ) Ed

EMP

∞

=

f r E,( )
g E( )
v E( )
σSP E( ) σMP E( )

σSP E( ) σSP0

E ESP–

kBT
------------------ 
 

pSP

=

σMP E( ) σMP0

E EMP–

kBT
-------------------- 
 

pMP

=

Sentaurus™ Device User Guide 521
N-2017.09



19: Degradation Models
Hot-Carrier Stress Degradation Model
where:

■  and  are exponents characterizing the SP and MP processes.

■  and  are fitting parameters.

Field-Enhanced Thermal Degradation

The interface-trap density due to field-enhanced thermal degradation is given by:

(628)

where:

■  is the probability for defect generation by thermal processes.

■ The reaction rate for bond breakage  is given by:

(629)

(630)

where:

•  is the lattice collision frequency.

•  is the activation energy for thermal processes in the absence of oxide field .

•  is the effective dipole moment.

Carrier Distribution Function

There are two options for obtaining the carrier distribution function  used in the
calculation of the scattering-rate integrals (Eq. 624 and Eq. 625):

■ From the spherical harmonics expansion (SHE) method

■ From an approximate analytic formulation

Spherical Harmonics Expansion Option

The SHE method computes the microscopic carrier-energy distribution function by solving the
lowest-order SHE of the Boltzmann transport equation. When the carrier distribution function
is available through the SHE method, it can optionally be used directly in the evaluation of
Eq. 624 and Eq. 625. In this case, the band structure quantities  and  used in these
equations are the same as those used in the SHE calculations.

pSP pMP

σSP0 σMP0

Nit,TH r t ETH, ,( ) PTHN0 1 e
kTH ETH( ) t–

–[ ]=

PTH

kTH

kTH r ETH,( ) νTHe
ETH kBT( )⁄–

=

ETH ETH0 pEox–=

νTH

ETH0 Eox

p

f r E,( )

g E( ) v E( )
522 Sentaurus™ Device User Guide
N-2017.09



19: Degradation Models
Hot-Carrier Stress Degradation Model
NOTE If the carrier distribution function is available through the SHE method,
the SHE temperature will be used instead of the carrier temperature in
the model equations, if the hydrodynamic model is not used.

Approximate Analytic Option

A method for obtaining an approximate carrier distribution function [15] is available. In this
case,  is modeled using an analytic non-Maxwellian formulation:

(631)

(632)

where:

■  is the carrier temperature (  for eHCSDegradation and  for
hHCSDegradation).

■  and  are fitting parameters.

■  and  are position-dependent parametric factors that are determined by requiring
that:

(633)

(634)

where  is the electron concentration for eHCSDegradation and the hole
concentration for hHCSDegradation.  is used as the upper integration
limit.

Bond Dispersion

The reaction rates given by Eq. 624, Eq. 625, and Eq. 629 are for a discrete activation energy.
As an option, these rates can be modified to account for bond dispersion by assuming a
distribution function for the activation energies:

(635)

f r E,( )

f0 r E,( ) 1
A r( )
----------- α r( ) γ E( )

kBTc r( )
-------------------–exp=

γ E( ) E 1 δE+( )
1 βE+

-------------------------=

Tc r( ) Tn Tp

δ β
A r( ) α r( )

c r( ) f0 r E,( )g E( ) Ed

0

Emax

=

Tc r( ) 2
3kB
---------

E f0 r E,( )g E( ) Ed( )
0

Emax


c r( )

----------------------------------------------------------=

c r( )
Emax 10 eV=

gA,j E( ) 1
σg
------

Ej E–

σg
-------------- 
 exp

1
Ej E–

σg
-------------- 
 exp+

2
-----------------------------------------------=
Sentaurus™ Device User Guide 523
N-2017.09



19: Degradation Models
Hot-Carrier Stress Degradation Model
where  is a dispersion width and , MP, or TH. As an alternative to calculating the
scattering-rate integrals for every activation energy, the reaction rates are approximated at
energies close to their peak values with the following expressions:

(636)

(637)

(638)

Then, the interface-trap generation rates for each process will be calculated from:

(639)

Finally, the total interface-trap generation rate is taken as the sum of the separate processes:

(640)

Using the HCS Degradation Model

You can include the HCS degradation model in a transient simulation by specifying the
eHCSDegradation option, or the hHCSDegradation option, or both options as part of a
Traps specification for the interface of interest. The syntax and options for these models are:

Physics (MaterialInterface = "Silicon/Oxide") {
Traps (

(eHCSDegradation( [SHE] [BondDispersion])

# Specify appropriate parameters for the generated traps.
Acceptor Level EnergyMid=0 fromMidBandGap
)

(hHCSDegradation( [SHE] [BondDispersion])

# Specify appropriate parameters for the generated traps.
Donor Level EnergyMid=0 fromMidBandGap
)

)
}

σg j SP=

kSP r E,( ) kSP r E, SP( )e
E ESP–( ) λkBTc( )⁄–

=

kMP r E,( ) kMP r E, MP( )e
E EMP–( ) λkBTc( )⁄–

=

kTH r E,( ) kTH r E, TH( )e
E ETH–( ) kBT( )⁄–

=

Nit,j r t,( ) gA,j E( )Nit,j r t E, ,( ) Ed

Ej mσg–

Ej mσg+

=

Nit r t,( ) Nit,SP r t,( ) Nit,MP r t,( ) Nit,TH r t,( )+ +=
524 Sentaurus™ Device User Guide
N-2017.09



19: Degradation Models
Hot-Carrier Stress Degradation Model
Notes regarding this specification:

■ If the SHE option is selected, the distribution function and the band-structure quantities are
obtained from the SHE method specified in the Physics section, for example:

Physics (Material = "Silicon") {
eSHEDistribution(FullBand)

}

■ If SHE is not selected, an approximate distribution function is used as described in
Approximate Analytic Option on page 523. In this case, the band-structure quantities used
in the calculations will be taken from the SHE full-band structure files.

■ BondDispersion is used by default. Use -BondDispersion to switch off this option.

■ If using FixedCharge traps, negative charge will be created with the eHCSDegradation
model, and positive charge will be created with the hHCSDegradation model.

Parameters used in the model can be accessed through the HCSDegradation parameter set in
the parameter file. Since this model describes interface trap generation, these parameters will
only be recognized if they are part of a MaterialInterface or RegionInterface
specification. Table 107 lists the default parameter values for silicon–oxide interfaces. 

Table 107 HCS degradation model: Default coefficients for silicon–oxide interfaces

Symbol Parameter name Electrons  Holes Unit

Prsp 1.0 1.0 1

Prmp 1.0 1.0 1

Prth 1.0 1.0 1

N0

kph

Eph 0.25 0.25 eV

Eemi 0.26 0.26 eV

Epass 0.2 0.2 eV

Eth0 1.9 1.9 eV

Nlev 10 10 1

nu_emi

nu_pass

nu_th

p 15.5 15.5 eÅ

Esp 3.1 3.1 eV

PSP

PMP

PTH

N0 1.0
12×10 1.0

12×10 cm
2–

kph 1.0
8×10 1.0

8×10 s
1–

Eph

Eemi

Epass

ETH0

Nl

νemi 1.0
12×10 1.0

12×10 s
1–

νpass 1.0
12×10 1.0

12×10 s
1–

νth 1.0
13×10 1.0

13×10 s
1–

p

ESP
Sentaurus™ Device User Guide 525
N-2017.09



19: Degradation Models
References
References

[1] T. Grasser et al., “A Two-Stage Model for Negative Bias Temperature Instability,” in
IEEE International Reliability Physics Symposium (IRPS), Montréal, Québec, Canada,
pp. 33–44, April 2009.

[2] W. Goes et al., “A Model for Switching Traps in Amorphous Oxides,” in International
Conference on Simulation of Semiconductor Processes and Devices (SISPAD), San
Diego, CA, USA, pp. 159–162, September 2009.

[3] W. Gös, Hole Trapping and the Negative Bias Temperature Instability, Ph.D. thesis,
Technischen Universität Wien, Vienna, Austria, December 2011.

[4] A. Plonka, Time-Dependent Reactivity of Species in Condensed Media, Lecture Notes
in Chemistry, vol. 40, Berlin: Springer, 1986.

[5] C. Hu et al., “Hot-Electron-Induced MOSFET Degradation—Model, Monitor, and
Improvement,” IEEE Journal of Solid-State Circuits, vol. SC-20, no. 1, pp. 295–305,
1985.

[6] O. Penzin et al., “MOSFET Degradation Kinetics and Its Simulation,” IEEE
Transactions on Electron Devices, vol. 50, no. 6, pp. 1445–1450, 2003.

[7] K. Hess et al., “Theory of channel hot-carrier degradation in MOSFETs,” Physica B,
vol. 272, no. 1–4, pp. 527–531, 1999.

Emp 0.25 0.25 eV

psp 11 11 1

pmp 0.1 0.1 1

Xsecsp

Xsecmp

sigmag 0.100 0.100 eV

lambda 0.17 0.17 1

m 3 3 1

delta 1.0 1.0

beta 0.15 0.15

Table 107 HCS degradation model: Default coefficients for silicon–oxide interfaces 

Symbol Parameter name Electrons  Holes Unit

EMP

pSP

pMP

σSP0 3.0
29–×10 3.0

29–×10 cm
2

σMP0 1.0
24–×10 1.0

24–×10 cm
2

σg

λ

m

δ eV
1–

β eV
1–
526 Sentaurus™ Device User Guide
N-2017.09



19: Degradation Models
References
[8] Z. Chen et al., “On the Mechanism for Interface Trap Generation in MOS Transistors
Due to Channel Hot Carrier Stressing,” IEEE Electron Device Letters, vol. 21, no. 1,
pp. 24–26, 2000.

[9] B. Tuttle and C. G. Van de Walle, “Structure, energetics, and vibrational properties of
Si-H bond dissociation in silicon,” Physical Review B, vol. 59, no. 20,
pp. 12884–12889, 1999.

[10] M. A. Alam and S. Mahapatra, “A comprehensive model of PMOS NBTI degradation,”
Microelectronics Reliability, vol. 45, no. 1, pp. 71–81, 2005.

[11] J. W. McPherson, R. B. Khamankar, and A. Shanware, “Complementary model for
intrinsic time-dependent dielectric breakdown in SiO2 dielectrics,” Journal of Applied
Physics, vol. 88, no. 9, pp. 5351–5359, 2000.

[12] J. H. Stathis and S. Zafar, “The negative bias temperature instability in MOS devices: A
review,” Microelectronics Reliability, vol. 46, no. 2-4, pp. 270–286, 2006.

[13] A. E. Islam et al., “Recent Issues in Negative-Bias Temperature Instability: Initial
Degradation, Field Dependence of Interface Trap Generation, Hole Trapping Effects,
and Relaxation,” IEEE Transactions on Electron Devices, vol. 54, no. 9,
pp. 2143–2154, 2007.

[14] T. Grasser, W. Gös, and B. Kaczer, “Dispersive Transport and Negative Bias
Temperature Instability: Boundary Conditions, Initial Conditions, and Transport
Models,” IEEE Transactions on Device and Materials Reliability, vol. 8, no. 1,
pp. 79–97, 2008.

[15] S. Reggiani et al., “TCAD Simulation of Hot-Carrier and Thermal Degradation in STI-
LDMOS Transistors,” IEEE Transactions on Electron Devices, vol. 60, no. 2,
pp. 691–698, 2013.

[16] A. Bravaix et al., “Hot-Carrier Acceleration Factors for Low Power Management in DC-
AC stressed 40nm NMOS node at High Temperature,” in Proceedings of the 47th
Annual International Reliability Physics Symposium (IRPS), Montréal, Québec,
Canada, pp. 531–548, April 2009.

[17] I. Starkov et al., “Hot-carrier degradation caused interface state profile—Simulation
versus experiment,” Journal of Vacuum Science & Technology B, vol. 29, no. 1,
p. 01AB09, 2011.
Sentaurus™ Device User Guide 527
N-2017.09



19: Degradation Models
References
528 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 20 Organic Devices

This chapter describes the organic models available in Sentaurus
Device.

The electrical conduction process in organic materials is different from crystal lattice
semiconductors. However, similar concepts in semiconductor transport theory can be used in
treating the conduction process in organic materials.

Introduction to Organic Device Simulation

An organic material or semiconductor is formed from molecule chains, and the primary
transport of carriers (electrons and holes) is through a hopping process. The lowest unoccupied
molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels in
organic materials are analogous to the conduction and valence bands, respectively. In addition,
excitons need to be considered since these bound electron–hole pairs contribute to the
distribution of electron and hole populations. Traps are also central to organic transport, and
these need to be taken into account appropriately.

Therefore, a combination of semiconductor models and organic physics models is required to
model reasonably the physical transport processes of organic devices within the framework of
Sentaurus Device. The models needed in a typical organic device simulation are:

■ The Poole–Frenkel mobility model is used to model the hopping transport of the carriers
(electrons and holes). This model is dependent on electric field and temperature. Note that
it is common for electrons to have two orders of magnitude higher mobility than holes (see
Poole–Frenkel Mobility (Organic Material Mobility) on page 382).

■ Organic–organic heterointerface physics requires special treatment for the ballistic
transport of carriers and bulk excitons across heterointerfaces with energy barriers (see
Gaussian Transport Across Organic Heterointerfaces on page 766).

■ Gaussian density-of-states (DOS) approximates the effective DOS for electrons and holes
in disordered organic materials and semiconductors (see Gaussian Density-of-States for
Organic Semiconductors on page 264).

■ The traps model must be initialized with the appropriate capture cross sections and
densities (see Chapter 17 on page 449).

■ The Langevin bimolecular recombination model is used to model the recombination
process of carriers and the generation process of singlet excitons (see Bimolecular
Recombination on page 444).
Sentaurus™ Device User Guide 529
N-2017.09



20: Organic Devices
References
■ A singlet exciton equation is introduced to model the diffusion process, the generation from
bimolecular recombination, the loss from decay, and the optical emissions of singlet
excitons. Note that only Frenkel excitons (electron–hole pairs existing on the same
molecule) participate in the optical process in organic materials (see Singlet Exciton
Equation on page 235).

The organic device simulator is based on the work of Kozłowski [1], and other useful papers
are available [2]–[10].

Many acronyms are used to describe organic device layers and transport mechanisms (see
Table 108). 

References

[1] F. Kozłowski, Numerical simulation and optimisation of organic light emitting diodes
and photovoltaic cells, Ph.D. thesis, Technische Universität Dresden, Germany, 2005.

[2] S.-H. Chang et al., “Numerical simulation of optical and electronic properties for
multilayer organic light-emitting diodes and its application in engineering education,”
in Proceedings of SPIE, Light-Emitting Diodes: Research, Manufacturing, and
Applications X, vol. 6134, pp. 26-1–26-10, 2006.

[3] P. E. Burrows et al., “Relationship between electroluminescence and current transport
in organic heterojunction light-emitting devices,” Journal of Applied Physics, vol. 79,
no. 10, pp. 7991–8006, 1996.

Table 108 Commonly used acronyms for organic transport

Acronym Definition

EBL Electron blocking layer

EML Emission layer

ETL Electron transport layer

HOMO Highest occupied molecular orbital

HTL Hole transport layer

LUMO Lowest unoccupied molecular orbital

SCL Space charge limited

TCL Trapped charge limited

TSL Thermally stimulated luminescence
530 Sentaurus™ Device User Guide
N-2017.09



20: Organic Devices
References
[4] M. Hoffmann and Z. G. Soos, “Optical absorption spectra of the Holstein molecular
crystal for weak and intermediate electronic coupling,” Physical Review B, vol. 66,
no. 2, p. 024305, 2002.

[5] J. Staudigel et al., “A quantitative numerical model of multilayer vapor-deposited
organic light emitting diodes,” Journal of Applied Physics, vol. 86, no. 7,
pp. 3895–3910, 1999.

[6] E. Tutiš et al., “Numerical model for organic light-emitting diodes,” Journal of Applied
Physics, vol. 89, no. 1, pp. 430–439, 2001.

[7] B. Ruhstaller et al., “Simulating Electronic and Optical Processes in Multilayer Organic
Light-Emitting Devices,” IEEE Journal of Selected Topics in Quantum Electronics,
vol. 9, no. 3, pp. 723–731, 2003.

[8] B. Ruhstaller et al., “Transient and steady-state behavior of space charges in multilayer
organic light-emitting diodes,” Journal of Applied Physics, vol. 89, no. 8,
pp. 4575–4586, 2001.

[9] A. B. Walker, A. Kambili, and S. J. Martin, “Electrical transport modelling in organic
electroluminescent devices,” Journal of Physics: Condensed Matter, vol. 14, no. 42,
pp. 9825–9876, 2002.

[10] S. Odermatt, N. Ketter, and B. Witzigmann, “Luminescence and absorption analysis of
undoped organic materials,” Applied Physics Letters, vol. 90, p. 221107, May 2007.
Sentaurus™ Device User Guide 531
N-2017.09



20: Organic Devices
References
532 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 21 Optical Generation

This chapter describes various methods that are used to compute the
optical generation rate when an optical wave penetrates into the
device, is absorbed, and produces electron–hole pairs.

The methods include simple optical beam absorption, the raytracing method, the transfer
matrix method, the finite-difference time-domain, the beam propagation method, and loading
external profiles from file. Different types of refractive index and absorption models, parameter
ramping, and optical AC analysis are also described.

Overview

A unified interface for optical generation computation is available to provide a consistent
simulation setup irrespective of the underlying optical solver methods. This allows for a
gradual refinement of results and a balance of accuracy versus computation time in the course
of a simulation, while only the solver-specific parameters have to change. Several approaches
for computing the optical generation exist that are independent of the chosen optical solver:

■ Compute the optical generation resulting from a monochromatic optical source.

■ Compute the optical generation resulting from an illumination spectrum.

■ Set a constant value for the optical generation rate either per region or globally.

■ Read an optical generation profile from file.

■ Compute the optical generation as a sum of the above contributions, possibly with different
optical solvers or different solver-specific settings or excitation parameters.

For each of the contributions listed, a separate scaling factor can be specified. For transient
simulations, it is possible to apply a time-dependent scaling factor that can be used, for
example, to model the response to a light pulse or any other time-dependent light signal. This
feature can also be used to improve convergence if the optical generation rate is very high. The
unified interface also allows you to save the computed optical generation rate to a file for reuse
in other simulations.

The optical generation resulting from a monochromatic optical source or an illumination
spectrum is determined as the product of the absorbed photon density, which is computed by
the optical solver, and the quantum yield. Several models for the quantum yield are available
ranging from a constant scaling factor to a spatially varying quantum yield based on the band
gap of the underlying material and the excitation wavelength of the optical source.
Sentaurus™ Device User Guide 533
N-2017.09



21: Optical Generation
Specifying the Type of Optical Generation Computation
In the following sections, the different approaches for computing the optical generation and
their corresponding parameters are described.

Specifying the Type of Optical Generation Computation

In the OpticalGeneration section of the command file, at least one of the following
methods to compute the optical generation must be specified; otherwise, the optical generation
is not computed and is set to zero everywhere:

■ ComputeFromMonochromaticSource activates optical generation computation with a
single wavelength that is either specified in the Excitation section or as a ramping
variable.

■ ComputeFromSpectrum allows the sum of optical generation to be computed from an
input spectrum of wavelengths.

■ ReadFromFile imports the optical generation profile.

■ SetConstant enables you to set a background constant optical generation in the specified
region or material.

NOTE If the keyword Scaling is used in the above optical generation
methods, the scaling applies only to quasistationary simulations. To
scale transient simulations, see Specifying Time Dependency for
Transient Simulations on page 547.

If several methods are specified, the total optical generation rate is given by the sum of the
contributions computed with each method. The general syntax is:

Physics {
...
Optics (

OpticalGeneration (
...
ComputeFromMonochromaticSource (...)
ComputeFromSpectrum (...)
ReadFromFile (...)
SetConstant ( ... Value = <float> )

)
Excitation (...)
OpticalSolver (...)
ComplexRefractiveIndex (...)

)
}

Each method can have its own options such as a scaling factor or a particular time-dependency
specification used in transient simulations. An example setup where the optical generation read
534 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Specifying the Type of Optical Generation Computation
from a file is scaled by a factor of 1.1 and a Gaussian time dependency is assumed for the
monochromatic source is:

OpticalGeneration (
...
ComputeFromMonochromaticSource (

...
TimeDependence (

WaveTime = (<t1>, <t2>)
WaveTSigma = <float>

)
)
ReadFromFile (

...
Scaling = 1.1

)
)

Note that both Scaling and TimeDependence can also be specified directly in the
OpticalGeneration section if the same parameters will apply to all methods. If
TimeDependence is specified directly in the OpticalGeneration section as well as in a
source-specific section such as ComputeFromMonochromaticSource, the latter takes
precedence. For an overview of all available options, see Table 247 on page 1443.

By default, the optical generation rate is calculated for every semiconductor region. However,
you can suppress the computation of the optical generation rate for a specific region or material
by specifying the keyword -OpticalGeneration in the corresponding region or material
Physics section:

Physics ( region="coating" ) { Optics ( -OpticalGeneration ) }

Physics ( material="InP" ) { Optics ( -OpticalGeneration ) }

To visualize the optical intensity and generation, the keywords OpticalIntensity and
OpticalGeneration must be added to the Plot section:

Plot {
...
OpticalIntensity 
OpticalGeneration

}

Specifying OpticalGeneration in the Plot section plots not only the total optical
generation that enters the electrical equations, but also the contributions from the different
methods of optical generation computation. See Appendix F on page 1339 for the
corresponding data names.
Sentaurus™ Device User Guide 535
N-2017.09



21: Optical Generation
Specifying the Type of Optical Generation Computation
Optical Generation From Monochromatic Source

Specifying ComputeFromMonochromaticSource (...) in the OpticalGeneration
section activates the computation of the optical generation assuming a monochromatic light
source. Details of the light source such as angle of incidence, wavelength, and intensity, and
the optical solver used to model it must be set in the Excitation section and
OpticalSolver section, respectively (see Specifying the Optical Solver on page 554 and
Setting the Excitation Parameters on page 560).

Together with the possibility of ramping parameters (see Controlling Computation of Optical
Problem in Solve Section on page 572), for example, the wavelength of the incident light, this
model can be used to simulate the optical generation rate as a function of wavelength.

Illumination Spectrum

The optical generation resulting from a spectral illumination source, which is sometimes also
known as white light generation, can be modeled in Sentaurus Device by superimposing the
spectrally resolved generation rates. To this end, ComputeFromSpectrum (...) must be
listed in the OpticalGeneration section. The illumination spectrum is then read from a text
file whose name must be specified in the File section:

File {
...
IlluminationSpectrum = "illumination_spectrum.txt"

}
Physics {

...
Optics (

...
OpticalGeneration (

...
ComputeFromSpectrum ( ... )

)
)

}

In its simplest form, the illumination spectrum file has a two-column format. The first column
contains the wavelength in  and the second column contains the intensity in . The
characters # and * mark the beginning of a comment. 

As a default, the integrated generation rate resulting from the illumination spectrum is only
computed once, that is, the first time the optical problem is solved and remains constant

μm W/cm2
536 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Specifying the Type of Optical Generation Computation
thereafter. However, it is possible to force its recomputation on every occasion by specifying
the keyword RefreshEveryTime in the ComputeFromSpectrum section.

When the optical problem remains constant, that is, the absorbed photon density does not
change, but the quantum yield is expected to vary (see Quantum Yield Models on page 544),
specify the keyword KeepSpectralData in the ComputeFromSpectrum section. With this
keyword, the spectral information of the last optical solution is kept in memory and only the
quantum yield, which is needed to compute the optical generation rate and the optical
absorption heat (see Optical Absorption Heat on page 545), is updated during the simulation.

Plotting spectral results requires the specification of a file name in the File section using the
keyword SpectralPlot as well as the specification of the keyword KeepSpectralData in
the ComputeFromSpectrum section. A file with extension .tdr is used to save spatial fields
such as optical generation for each entry of the spectrum. Other results from the optical solver,
for example, reflection, transmission, and absorption in the case of the TMM solver, as a
function of the spectrum parameters are saved in a file with the extension .plt. The quantities
saved in the .plt file are subject to the optical solver used in the simulation. To control the file
name and when to plot, the same syntax in the Solve section applies to SpectralPlot as
well as to Plot. See When to Plot on page 123 and Appendix G on page 1377.

In simulations that contain only a monochromatic source, the results from the optical solver are
written to the current file. However, if a spectral source is present, the values should reflect the
result of both the monochromatic source and the spectral source. Therefore, relative quantities
(that is, unitless quantities) such as reflection are represented by a weighted average over all
entries of the illumination spectrum and the monochromatic source if present. The weight is
given by the corresponding number of incident photons. On the other hand, absolute quantities
are represented by a simple sum over all spectral entries and the monochromatic source if
present.

NOTE The default for saving spectral plots is to write consecutive plots into
one file. However, to write consecutive plots into several enumerated
files, specify SpectralPlot(-collected)=<string>.

Multidimensional Illumination Spectra

Often, illumination spectra depend on additional parameters, which may be related to an
experimental setup that users want to model. For example, the intensity of the incident light
may depend on not only the wavelength but also the angle of incidence. To account for such
simulation setups, Sentaurus Device supports multidimensional illumination spectra. The
format of a corresponding illumination spectrum file is:

# some comment
* another comment # and so on
Optics/Excitation/Wavelength [um] theta [deg] phi [deg] intensity [W*cm^-2]
0.62 0 30 0.1
Sentaurus™ Device User Guide 537
N-2017.09



21: Optical Generation
Specifying the Type of Optical Generation Computation
0.86 0 30 0.2
1.1 0 30 0.3

The header contains optional comment lines and a line defining the parameters assigned to each
column. A parameter name or path is followed by its corresponding unit; if no unit is specified,
the default unit of 1 is assumed. Listed parameters can refer either directly to existing
parameters of the Optics section in Sentaurus Device or to user-defined parameters. The latter
comes into play when using illumination spectra in combination with loading absorbed photon
density or optical generation profiles from file. See Loading Solution of Optical Problem From
File on page 640 for details.

NOTE The parameter Intensity is mandatory in every illumination
spectrum file. However, the order of columns is arbitrary. Parameter
names are case insensitive.

For multidimensional illumination spectrum files, the active columns must be selected in the
command file. All other columns are ignored in the simulation. The required syntax in the
OpticalGeneration section is:

ComputeFromSpectrum (
...
Select (

Parameter = ("Optics/Excitation/Wavelength" "Theta")
)

)

The parameter Intensity is selected by default and does not need to be specified.

Enhanced Spectrum Control

Being able to filter a given spectrum, based on a user-supplied condition, adds functionality to
the computation of the optical generation resulting from a spectral illumination source.
Specifying a static condition can be used to select a limited spectral range of interest or a subset
of a multidimensional spectrum. The latter improves the handling of several spectra (for
example, different standard spectra at various resolutions, and measured spectra) since they can
be compiled in a single file and still be addressed separately.

A condition is called dynamic if it changes during the simulation. For example, a dynamic
condition may include the excitation wavelength, which is ramped in a Quasistationary
statement. Dynamic conditions can be used to ramp through different spectra or to superimpose
a fixed spectrum with a varying spectrum.
538 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Specifying the Type of Optical Generation Computation
To specify a condition, a Tcl-compatible expression enclosed in double quotation marks must
be provided in the Select section:

ComputeFromSpectrum (
...
Select (

Parameter = ("Wavelength" "Theta")
Condition = "$wavelength > 0.3 && $wavelength < 1.2"

)
)

Identifiers preceded by a dollar sign ($) such as wavelength in the above example are
considered to be variables referring to the respective column in the illumination spectrum file.
Sentaurus Device extracts a subset of the spectrum by applying the condition expression to
each row of the spectrum defined in the file. Before the expression is passed to the global Tcl
interpreter of Sentaurus Device for evaluation, variables are substituted with their
corresponding row-specific values. If the expression evaluates to true, the row is considered to
be an active entry of the spectrum used in the ComputeFromSpectrum computation;
otherwise, it is ignored.

NOTE By default, duplicate entries of the spectrum are ignored. However,
specifying the keyword AllowDuplicates in the Select section will
retain such entries.

NOTE Identifiers such as Sentaurus Device parameter names and variable
names referring to the respective column in the illumination spectrum
file are treated as case insensitive in the Parameter list and the
Condition statement of the Select section.

Assuming a spectrum file containing different spectra distinguished by their names of the form:

wavelength [um] intensity [W*cm^-2] spectrum [1]
0.2 0.0012 "AM1.5g"
0.3 0.0034 "AM1.5g"
...
0.2 0.0056 "AM0"
...

a single spectrum can be selected by specifying the following in the ComputeFromSpectrum
section:

Select (
Parameter = ("Wavelength" "Spectrum")
Condition = "$Spectrum == \"AM1.5g\" "

)

Sentaurus™ Device User Guide 539
N-2017.09



21: Optical Generation
Specifying the Type of Optical Generation Computation
NOTE Double quotation marks in the Tcl expression must be escaped to avoid
conflicts with the parser of the Sentaurus Device command file.

For a condition to change during the simulation, it must reference an internal variable of
Sentaurus Device that is ramped in a Quasistationary statement. Sentaurus Device
interprets identifiers without a preceding $ in the condition expression as internal parameters.
If necessary due to ambiguity, internal parameters also may be specified using their full path
such as Optics/Excitation/Wavelength. Specifying an identifier that cannot be matched
with an internal parameter results in an error.

To select a subspectrum based on a dynamic condition, assume the following spectrum file:

wavelength [um] intensity [W*cm^-2] centralWavelength [nm]
0.2 0.0012 300
0.3 0.0034 300
...
0.3 0.0056 400
0.4 0.0068 400
...

The following command file syntax shows how to ramp through the various spectra identified
by their central wavelength:

Physics {
Optics (

OpticalGeneration (
ComputeFromSpectrum (

Select (
Parameter = ("Wavelength" "centralWavelength")
Condition = "abs( Wavelength - $centralWavelength*1e-3 ) < 1e-6"

)
)

)
)

}

Solve {
Quasistationary (

Goal { modelParameter = "Wavelength" value = 1.2 }
) { Coupled {Poisson Electron Hole} }

}

NOTE In the condition expression, it is the responsibility of the user to rescale
the spectrum variables if necessary when comparing them to internal
parameters having a fixed unit. Despite the fact that the units of the
spectrum variables are known to Sentaurus Device, it is unclear whether
they are related to internal parameters as the names of spectrum
variables are arbitrary.
540 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Specifying the Type of Optical Generation Computation
NOTE When comparing floating-point numbers for equality in a condition
expression, it is recommended that you check that the absolute value of
their difference is smaller than a user-specified epsilon as shown in the
examples. This avoids any unexpected precision issues resulting from
numeric operations or reading floating-point numbers from file.

For more flexibility, the Select section contains an auxiliary keyword Var, which holds a
floating-point value. It has no impact on the optical generation computation as such, but it can
be ramped in a Quasistationary statement like any other internal parameter that supports
ramping. Therefore, the keyword Var allows you to create dynamic conditions without
affecting the results of any other optical generation contributions defined in the
OpticalGeneration section such as ComputeFromMonochromaticSource. This is
demonstrated by the following syntax, which is based on the above example where Sentaurus
Device ramps through various spectra, but it contains a fixed monochromatic source:

Physics {
Optics (

Excitation (
Wavelength = 0.6

)
OpticalSolver ( ... )
OpticalGeneration (

ComputeFromMonochromaticSource ( ... )
ComputeFromSpectrum (

Select (
Parameter = ("Wavelength" "centralWavelength")
Condition = "abs( Var - $centralWavelength*1e-3 ) < 1e-6"

)
)

)
)

}

Solve {
Quasistationary (

Goal { modelParameter = "Var" value = 1.2 }
) { Coupled {Poisson Electron Hole} }

}

The keyword Var can be plotted by specifying ModelParameter="Physics/Optics/
OpticalGeneration/ComputeFromSpectrum/Select/Var" in the CurrentPlot
section of the command file.
Sentaurus™ Device User Guide 541
N-2017.09



21: Optical Generation
Specifying the Type of Optical Generation Computation
Loading and Saving Optical Generation From and to File

Sometimes, solving the optical problem may require long computation times, in which case, it
can be useful to save the solution to a file and to load the optical generation or absorbed photon
density profile in later simulations whose optical properties remain constant. In the following
example, optical generation is used as a synonym for absorbed photon density. The command
file syntax for saving the optical generation rate to a file is:

File {
OpticalGenerationOutput = <filename>

}

For loading the optical generation rate from a file, the syntax is:

File {
OpticalGenerationInput = <filename>

}

Physics {
Optics (

OpticalGeneration (
ReadFromFile (

DatasetName = AbsorbedPhotonDensity | OpticalGeneration
)

)
)

}

If the input file to be loaded contains both an optical generation and an absorbed photon density
profile, the keyword DatasetName controls which one to use. By default, the absorbed photon
density is used. The optical generation profile to be loaded also may be defined on a mixed-
element grid that is different from the one used in the device simulation, or on a tensor grid
resulting from an EMW simulation. In that case, the profile is interpolated automatically onto
the simulation grid upon loading. For more details on how to control the interpolation,
including the truncation and shifting of the interpolation domain, see Controlling Interpolation
When Loading Optical Generation Profiles on page 659.

Further options of the ReadFromFile section can be found in Table 247 on page 1443.
Similar but more powerful functionality is provided by the feature FromFile (see Loading
Solution of Optical Problem From File on page 640).
542 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Specifying the Type of Optical Generation Computation
Constant Optical Generation

Assigning a constant optical generation rate to a certain region or material is achieved by
specifying a value for a particular region or material as shown here:

Physics (Region = <name of region>) {
...
Optics (

OpticalGeneration (
SetConstant (

Value = <float>
)

)
)

}

Physics (Material = <name of material>) {
...
Optics (

OpticalGeneration (
SetConstant (

Value = <float>
)

)
)

}

If all semiconductor regions are supposed to have the same optical generation rate, its value is
best specified in the global Physics section as follows:

Physics {
...
Optics (

OpticalGeneration (
SetConstant (

Value = <float>
)

)
)

}

NOTE The constant optical generation model is functionally equivalent to the
constant carrier generation model presented in Constant Carrier
Generation on page 412.
Sentaurus™ Device User Guide 543
N-2017.09



21: Optical Generation
Specifying the Type of Optical Generation Computation
Quantum Yield Models

The quantum yield model describes how many of the absorbed photons are converted to
generated electron–hole pairs. The simplest model, QuantumYield(Unity), assumes that all
absorbed photons result in generated charge carriers irrespective of the band gap or other
properties of the underlying material. This corresponds to a global quantum yield factor of one,
which is the default value, except for nonsemiconductor regions where it is always set to zero
even if photons are actually absorbed. 

A more realistic model, QuantumYield(Stepfunction(...)), takes the band gap into
account. If the excitation energy is greater than or equal to the bandgap energy , the quantum
yield is set to one; otherwise, it is set to zero. The bandgap energy used can be set directly by
specifying a value for Energy in eV or, alternatively, a corresponding Wavelength in
micrometers. Another option is Bandgap, which uses the temperature-dependent bandgap
energy as given in Bandgap and Electron-Affinity Models on page 250 (Eq. 159, p. 250). To
include bandgap narrowing effects in the form of Eq. 164, p. 251, the keyword
EffectiveBandgap must be specified.

In the presence of free carrier absorption (FCA), which is activated in Sentaurus Device by
specifying CarrierDep(Imag) in the ComplexRefractiveIndex section of the command
file, the spatially varying quantum yield factor is reduced according to the ratio of free carrier
absorption, , to total absorption, :

(641)

where  and  are determined by the ComplexRefractiveIndex specification in the
parameter file, given the following relation between the absorption coefficient and the
extinction coefficient:

(642)

The change of the extinction coefficient due to free carrier absorption is represented by 
(see Carrier Dependency on page 580). The prefactor  can be set to 1 by specifying the
keyword EffectiveAbsorption in the QuantumYield section, or it can represent a step
function: If the photon energy is sufficiently large to allow for interband optical absorption, it
is 1, or otherwise 0. The latter requires the specification of a Stepfunction section, which
takes precedence over EffectiveAbsorption if both are specified.

Eg

αFCA αtot

ηG ηGΘ
1

αFCA

αtot
-------------– 

 =

αFCA αtot

α 4πk
λ

---------=

Δkcarr

ηGΘ
544 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Specifying the Type of Optical Generation Computation
The command file syntax for specifying quantum yield models is:

Physics {
Optics (

OpticalGeneration (
...
QuantumYield = <float>
QuantumYield ( Unity )
QuantumYield (

EffectiveAbsorption
StepFunction ( Wavelength = <float> #[um]

# OR
Energy = <float> #[eV]

)
StepFunction ( Bandgap | EffectiveBandgap )

)
)

)
}

For more sophisticated quantum yield models, Sentaurus Device offers a PMI interface (see
Optical Quantum Yield on page 1183). All quantum yield models also can be specified in a
region or material Physics section. The resulting quantum yield can be plotted by specifying
QuantumYield in the Plot section.

NOTE By default, the optical absorption due to ComputeFromSpectrum is
computed only once; any further changes in the quantum yield are
neglected. To account for varying quantum yield, it is necessary to
recompute the corresponding optical absorption using
RefreshEveryTime in the ComputeFromSpectrum section.
However, this will impact simulator performance depending on the size
of the spectrum and the chosen optical solver.

Optical Absorption Heat

The absorbed photon energy  is distributed among different processes by quantum yield
factors. The following two channels are accounted for:

■ Thermalization to the band gap (interband absorption): When a photon is absorbed across
the band gap in a semiconductor, it is absorbed to create an electron–hole pair. The excess
energy (photon energy minus the band gap) of the new electron–hole pair is assumed to
thermalize, resulting eventually in lattice heating.

■ Complete thermalization (intraband absorption): In the case of the photon energy being
smaller than the band gap, the photon can be absorbed to increase the energy of a carrier.
The excess energy relaxes eventually, contributing to lattice heating.

Eph
Sentaurus™ Device User Guide 545
N-2017.09



21: Optical Generation
Specifying the Type of Optical Generation Computation
In both processes, it is assumed that the eventual lattice heating occurs in the locality of photon
absorption. The corresponding energy equation reads as:

(643)

where the energy contributions of the first term and the third term are dissipated into the lattice
through thermalization. The energy of the second term is consumed for the generation of an
electron–hole pair.

In general,  since it is assumed that every photon generates a charge carrier, while
the residual energy  is dissipated into the lattice. Therefore, ignoring free carrier
absorption, if the chosen quantum yield model evaluates to 1,  and .
If the quantum yield model evaluates to 0,  and .

Distinguishing between  and  allows for the control of multiple-generation processes
as well. For example, in the UV spectrum, it is possible that , and so more than one
charge carrier can be generated per absorbed photon. To model multiple-generation processes,
the OpticalQuantumYield PMI (see Optical Quantum Yield on page 1183) must be used
where all quantum yield factors can be specified independently for each vertex.

Supporting several optical absorption processes affects the value of  as can be seen from
Eq. 643. It no longer depends on the local effective bandgap energy only. Factoring in free
carrier absorption means that photons absorbed through this process do not contribute to the
optical generation rate, which is used in the drift-diffusion equations. In general, the quantum
yield factors are independent as long as the energy equation is fulfilled locally.

The quantum yield factor  is given by Eq. 641, and the quantum yield factor attributed to
complete thermalization is computed as:

(644)

The quantum yield factor  is set to  unless it is specified explicitly using the
OpticalQuantumYield PMI.

NOTE If  is set to a constant value in the command file,  is still given by
Eq. 644 to ensure energy balance.

Specifying OpticalAbsorptionHeat and ThermalizationYield in the Plot section of
the command file results in the following quantities being written to the plot file for each
vertex:

■ OpticalAbsorptionHeat: 

■ OpticalAbsorptionHeat(Bandgap): 

■ OpticalAbsorptionHeat(Vacuum): 

Eph ηTEg
Eph Eg–( ) ηGEg ηT0

Eph+ +=

ηTEg
ηG=

Eph Eg–
ηTEg

ηG 1= = ηT0
0=

ηTEg
ηG 0= = ηT0

1=

ηTEg
ηG

Eph 2Eg>

ηG

ηG

ηT0
1 ηG–=

ηTEg
ηG

ηG ηT0

ηTEg
Eph Eg–( ) ηT0

Eph+( )Nph

ηTEg
Eph Eg–( )Nph

ηT0
EphNph
546 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Specifying the Type of Optical Generation Computation
■ ThermalizationYield(Bandgap): 

■ ThermalizationYield(Vacuum): 

where  represents the number of absorbed photons.

NOTE OpticalAbsorptionHeat is not calculated for optical absorption that
is loaded using ReadFromFile or for constant optical generation
specified by SetConstant because the corresponding wavelength of
the light source is unknown.

Specifying Time Dependency for Transient Simulations

To model the electrical response of a light pulse, incident on a device, a description of the light
signal over time can be specified either globally or separately for each type of optical
generation computation. For the former, TimeDependence (...) is listed directly in the
OpticalGeneration section, while for the latter, it is given as an argument of the chosen
type of optical generation computation. If TimeDependence is specified both globally and for
a specific type of optical generation computation such as
ComputeFromMonochromaticSource, the latter takes precedence. TimeDependence can
only be specified in the global Physics section and not for a particular region or material.

The given time dependency essentially scales the optical generation rate, resulting from a
stationary solution of the optical problem as a function of time. The time dependency is only
taken into account inside a Transient statement and the corresponding scaling factor for the
different types of optical generation computation is automatically written to the Current file
under the name TimeDependence(Ft). If the optical generation needs to be scaled inside a
Quasistationary, the keyword Scaling in the OpticalGeneration section can be used.
However, this scaling factor does not apply inside a Transient statement. Instead, Scaling
can be set directly in the respective TimeDependence section.

Different types of time dependency are available:

■ Linear time dependency

■ Gaussian time dependency

■ Exponential time dependency

■ Cosine time dependency

■ Arbitrary time dependency read from a file

NOTE If no time dependency has been specified, a scaling factor of 1 is used
inside a Transient statement irrespective of any other scaling factors
set in the OpticalGeneration section.

ηTEg

ηT0

Nph
Sentaurus™ Device User Guide 547
N-2017.09



21: Optical Generation
Specifying the Type of Optical Generation Computation
In addition, each of the above time dependencies can be extended to a periodic signal of the
respective type. For the analytic time dependencies, you can specify a time interval
WaveTime= (<t1>, <t2>). Before <t1>, the optical generation rate undergoes an increase
from zero characterized by the type of analytic time dependency. After <t2>, the optical
generation rate experiences a corresponding decrease.

By default, Sentaurus Device adds turning points (see Time-Stepping on page 89) to the
Transient statement at several characteristic time points of the light pulse to help
convergence and to ensure it is resolved even if the time step of the Transient statement is
larger than the entire pulse width. For details about optical turning points, see Optical Turning
Points on page 552.

The linear time function as shown in Figure 22 is expressed as:

(645)

where  is given by WaveTSlope. Alternatively, WaveTLin can be specified, which is the
inverse of , that is, it corresponds to the rise time  in seconds. 

Figure 22 Rise and decay times based on a linear function

The Gaussian time function as shown in Figure 23 on page 549 is expressed as:

(646)

F t( )
max 0 m t t1–( ), 1+( ) t t1<,

1 t1 t t2≤ ≤,

max 0 m t2 t–( ), 1+( ) t t2>,








=

m
m tlin t1 t0–=

0 2 4 6 8 10
0

0.5

1

Time [s]

S
ca

lin
g 

[1
]

t1 t2

dx

dy

m = dy/dx

t3t0

t lin t lin

F t( )

t1 t–

σ
----------- 
 

2
– 
 exp t t1<,

1 t1 t t2≤ ≤,

t t2–

σ
----------- 
 

2
– 
 exp t t2>,











=

548 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Specifying the Type of Optical Generation Computation
where  is defined by WaveTSigma. 

Figure 23 Rise and decay times based on a Gaussian function

The exponential time function as shown in Figure 24 is expressed as:

(647)

where  is defined by WaveTExp. 

Figure 24 Rise and decay times based on an exponential function

σ

σ σ

0 2 4 6 8 10
0

0.5

1

Time [s]

S
ca

lin
g 

[1
]

t1 t2

1/e

Minimum
Amplitude

t0 t3

F t( )

t t– 1

texp
----------- 
 exp t t1<,

1 t1 t t2≤ ≤,

t2 t–

texp
------------- 
 exp t t2>,











=

texp

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

1.0

Time [s]

S
ca

lin
g 

[1
]

t t t t

Minimum
Amplitude

0 1 2 3

1/e
texp texp
Sentaurus™ Device User Guide 549
N-2017.09



21: Optical Generation
Specifying the Type of Optical Generation Computation
The cosine time function as shown in Figure 25 is expressed as:

(648)

where  is defined by WaveTCos. 

Figure 25 Rise and decay times based on a cosine function

If no time interval is specified,  is assumed. The analytic time dependencies are
selected by specifying a value for the corresponding parameters as shown in Table 109. 

An arbitrary time dependency can be applied by defining a time function whose interpolation
points are given in a file with a whitespace-separated, two-column format. The first column
contains the time points in seconds and the second column contains the corresponding function
values. Linear interpolation is used to obtain function values between the interpolation points.

Table 109 Selection of analytic time dependency

Time dependency Required keyword

Linear WaveTSlope or WaveTLin

Gaussian WaveTSigma

Exponential WaveTExp

Cosine WaveTCos

F t( )

0 t t1 tcos–≤ t t2 tcos+≥∨

1
2
--- 1 π

t t1–

tcos
----------- 

 cos+ 
 ⋅ t1 tcos– t t1< <

1 t1 t t2≤ ≤

1
2
--- 1 π

t t2–

tcos
----------- 

 cos+ 
 ⋅ t2 t t2 tcos+< <













=

tcos

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Time [s]

S
ca

lin
g 

[1
]

t t t t0 1 2 3

tcos tcos

t1 t2 0= =
550 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Specifying the Type of Optical Generation Computation
This type of time dependency can be activated using the following syntax:

File {
OptGenTransientScaling= <filename> # file containing interpolation points

}

Physics {
Optics (

OpticalGeneration (
TimeDependence ( FromFile )

)
)

}

To transform any of the above time dependencies into a periodic signal, its period in seconds
must be specified using the keyword WaveTPeriod. The specified signal is repeated infinitely,
unless the number of periods is set explicitly with the keyword WavePeriods.

For linear and Gaussian time dependency, an additional temporal offset can be defined to
essentially control the relative location of the signal within the period as illustrated in
Figure 26. 

Figure 26 Extension of a predefined time dependency to a periodic signal where Tperiod, 
Nperiod, and toffset correspond to WaveTPeriod, WavePeriods, and 
WaveTPeriodOffset

The syntax for the linear periodic signal shown in Figure 26 is:

Physics {
Optics (

OpticalGeneration (
TimeDependence (

WaveTime = (t1, t2)
WaveTSlope = m

Tperiod Tperiod

Time [s]t'1 t'2t1 t2

toffset

Nperiod = 2

T
ra

ns
ie

nt
 S

ca
lin

g 
F

ac
to

r

t0 t'0 t'3t3
Sentaurus™ Device User Guide 551
N-2017.09



21: Optical Generation
Specifying the Type of Optical Generation Computation
WaveTPeriod = Tperiod 
WavePeriods = Nperiod 
WaveTPeriodOffset = toffset 

)
)

)
}

Optical Turning Points

Typically, you specify turning points as described in Time-Stepping on page 89 in the
Transient statement to limit the advancing time step. Controlling time-stepping based on
knowledge about the device physics and its characteristics can improve the convergence
behavior. Light pulses in transient simulations have a strong impact on device characteristics
and, therefore, corresponding optical turning points are added by default. The default optical
turning points also guarantee that a light pulse is resolved to a certain degree, independent of
the advancing time step before the start time of the pulse. You can switch off the default optical
turning points or change their parameters in the command file.

In contrast to general turning points described in Time-Stepping on page 89, optical turning
points are specified in the OpticalTurningPoints section within the TimeDependence
section with the definition of the light pulse.

The predefined optical turning points correspond to the time points , , , and  shown in
Figure 22 on page 548 to Figure 26 on page 551, for which the advancing time step can be
limited using the keywords DtRiseStart, DtRiseEnd, DtFallStart, and DtFallEnd,
respectively. In addition, the time step can be limited for the ranges , , and 
that are associated with the keywords DtRise, DtPlateau, and DtFall. You can limit the
maximum time step in these ranges separately using the aforementioned keywords or set the
same maximum time step for all three time ranges using the keyword Dt. If both Dt and a
range-specific keyword such as DtPlateau are specified, the value of the range-specific
keyword is used.

NOTE Limiting the maximum time step within a range, using DtRise,
DtPlateau, or DtFall, has an effect only if the time-stepping is such
that the calculated time step used to advance from the last time point 
before a range is not larger than – . In other words, limiting the time
step becomes active only if the regular time-stepping enters the
predefined range. See Time-Stepping on page 89 for details about the
behavior of turning points.

Specifying a time step equal to 0 switches off the corresponding optical turning point or range.

t0 t1 t2 t3

t0t1[ ] t1t2[ ] t2t3[ ]

ti

t3 ti
552 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Solving the Optical Problem
NOTE The points –  are enabled by default; whereas, the ranges must be
enabled explicitly by specifying a limiting time step greater than 0. To
switch off all optical turning points and ranges, specify
-OpticalTurningPoints in the respective TimeDependence
section.

For analytic light signals with asymptotically decaying tails such as a Gaussian, the time points
 and  are not naturally defined. By default, they are chosen to be the time points where the

signal amplitude is equal to 0.01. However, by setting MinAmplitude in the
OpticalTurningPoints section to a different value, you can shift the time points  and 
in either direction.

For time-dependence FromFile, only the time points  and  and a single range  are
supported, which are active by default. The limiting time step for the range can be set with the
keyword Dt. The time points  and  are associated with the first and last time points given
in the OptGenTransientScaling file specified in the File section.

The following example demonstrates the syntax for optical turning points (an overview of the
various parameters and corresponding default values is given in Table 248 on page 1445):

Physics {
Optics (

OpticalGeneration (
TimeDependence (

WaveTime = (t1, t2)
WaveTSigma = 
OpticalTurningPoints (

DtRiseStart = 1e-4 # [s]
DtFallEnd = 0 # switch off turning point t3 
MinAmplitude = 0.005
DtPlateau = 1e-3 # [s]
DtFall = 2e-4 # [s]

)
)

)
)

}

Solving the Optical Problem

ComputeFromMonochromaticSource and ComputeFromSpectrum require the solution of
the optical problem for a given excitation to obtain the optical generation rate. Several optical
solvers are available and the choice for a specific method is determined usually by the optimum
combination of accuracy of results and computation time. 

t0 t3

t0 t3

t0 t3

t0 t3 t0t3[ ]

t0 t3

σ

Sentaurus™ Device User Guide 553
N-2017.09



21: Optical Generation
Solving the Optical Problem
Besides selecting a certain optical solver and specifying its particular parameters, it is
necessary to define the excitation parameters, to choose an appropriate refractive index model,
and to control when a solution is computed in the Solve section. These steps are explained in
the following sections.

Specifying the Optical Solver

The following optical solvers are supported:

■ Transfer matrix method (TMM)

■ Finite-difference time-domain (FDTD)

■ Raytracing (RT)

■ Beam propagation method (BPM)

■ Loading solution of optical problem from file

■ Optical beam absorption method

■ Composite method

NOTE By default, the log of the optical solver is written to standard output and
the simulation log file as part of the general simulation log. However,
depending on the specific setup, the optical solver log can be verbose
and affect the overall readability of the simulation log. To avoid this
behavior, you can either:

• Set Verbosity=0 in the Optics section to completely suppress
any logging activity of the optical solver except for warning and
error messages.

• Redirect the log of the optical solver to a separate log file by
specifying the keyword OpticsOutput in the global File section.

Transfer Matrix Method

The TMM solver is selected using the following syntax:

Physics {
...
Optics (

...
OpticalSolver (

TMM (
<TMM options>

)
)

554 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Solving the Optical Problem
)
}

The TMM-specific options, such as the parameters for the extraction of the layer stack, are
described in Using Transfer Matrix Method on page 630.

Finite-Difference Time-Domain Method

In contrast to the TMM solver, the FDTD-specific parameters, such as boundary conditions and
extractors, are defined in a separate command file that is set in the File section with the
keyword OpticalSolverInput. To provide some basic control of the FDTD solver from
within Sentaurus Device, excitation parameters such as Wavelength, Theta, and Phi, as well
as the polarization Psi, are overwritten by their counterparts in the Excitation section of the
Sentaurus Device command file if specified.

NOTE The Psi keyword in EMW corresponds to the PolarizationAngle
keyword in Sentaurus Device.

NOTE The FDTD solver in Sentaurus Device supports both the 2D and 3D
excitation specification of EMW as outlined in Sentaurus™ Device
Electromagnetic Wave Solver User Guide, Specifying Direction and
Polarization on page 47.

The syntax for activating the FDTD solver requires as input the name of the command file of
the FDTD solver. The general syntax is:

File {
OpticalSolverInput= <EMW_command_file>

}

Physics {
Optics (

OpticalSolver (
FDTD ( ... )

)
)

}

The FDTD algorithm is based on a tensor mesh, which can be generated independently before
the device simulation. Another option is to build the tensor mesh during the simulation before
the call to EMW. The main advantage of the latter option is that the tensor grid can be adjusted
to a possibly changing excitation wavelength in a Quasistationary statement. Since the
accuracy and stability of the FDTD method crucially depend on the discretization with respect
to the wavelength, this feature becomes important when a large range of the light spectrum is
scanned (see Illumination Spectrum on page 536 and Parameter Ramping on page 573).
Sentaurus™ Device User Guide 555
N-2017.09



21: Optical Generation
Solving the Optical Problem
To activate this feature, GenerateMesh (...) must be specified in the FDTD section and a
common base name (that is, file name excluding suffix) for the boundary file and the Sentaurus
Mesh command file must be defined in the File section using the keyword MesherInput.
Sentaurus Mesh is then called with the specified base name prepended by the basename of the
Plot file given in the File section of the Sentaurus Device command file. The resulting tensor
grid file is detected automatically and replaces the grid file in the user-provided EMW
command file.

By default, a tensor mesh is generated before the first call to EMW and remains in use during
further calls to the solver. However, if the excitation wavelength varies and the initially built
tensor mesh no longer fulfills the requirements, two options exist that control the update of the
mesh. 

Using the keyword ForEachWavelength in the GenerateMesh section triggers the
computation of a new tensor mesh whenever the wavelength changes compared to the previous
solution of the FDTD solver. Internally, the wavelength specified in the user-provided
Sentaurus Mesh command file is replaced with the current value. 

Since the slope of the complex refractive index as a function of wavelength can vary from
almost zero to high values, depending on the wavelength interval, it is possible to limit the
mesh generation according to a list of strictly monotonically increasing wavelengths. If the
current wavelength enters a new interval, the mesh is updated and remains in use until the
wavelength moves beyond the interval boundaries. The syntax for such a use case is:

FDTD (
...
GenerateMesh (

Wavelength = ( 0.35 0.55 0.7 0.8 ) # wavelength in 
)

)

For the command file syntax and options of the FDTD solver, refer to the Sentaurus™ Device
Electromagnetic Wave Solver User Guide.

Raytracing

More details about the raytracer can be found in Raytracing on page 593. The raytracer
requires the use of the complex refractive index model, and various excitation variables can be
ramped. These rampable excitation variables are Intensity, Wavelength, Theta, Phi, and
PolarizationAngle or Polarization. 

The required syntax is:

Physics {...
Optics (

ComplexRefractiveIndex(...)

μm[ ]
556 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Solving the Optical Problem
OpticalGeneration(...)
OpticalSolver(

RayTracing(...)
)
Excitation(...)

)
}

where the RayTracing section contains:

RayTracing(
# Setting keywords of raytracer
# -----------------------------
CompactMemoryOption
MonteCarlo
OmitReflectedRays
OmitWeakerRays
RedistributeStoppedRays

PolarizationVector = vector
PolarizationVector = Random
DepthLimit = integer
MinIntensity = float # fraction, relative value
RetraceCRIchange = float # fractional change to retrace rays
VirtualRegions { "string" "string" ... }
VirtualRegions {}
ExternalMaterialCRIFile = "string"
WeightedOpticalGeneration

# Defining starting rays:
# -----------------------
RayDistribution( ... )
RectangularWindow (

RectangleV1 = vector # vertex 1 of rectangular window [um]
RectangleV2 = vector # vertex 2 of rectangular window [um]
RectangleV3 = vector # vertex 3 needed only for 3D [um]
# number of rays = LengthDiscretization * WidthDiscretization
LengthDiscretization = integer # longer side
WidthDiscretization = integer # shorter side needed only for 3D
RayDirection = vector

)

UserWindow (
NumberOfRays = integer # number of rays in file
RaysFromFile = "filename.txt" # position(um) direction area(cm^2)
PolarizationVector = ReadFromExcitation

)
)

Sentaurus™ Device User Guide 557
N-2017.09



21: Optical Generation
Solving the Optical Problem
Some comments about the RT syntax:

■ The keyword RetraceCRIchange specifies the fractional change of the complex
refractive index (either the real or imaginary part) from its previous state that will force a
total recomputation of raytracing.

■ Starting rays for raytracing can be set using RectangularWindow or UserWindow.
Details can be found in Window of Starting Rays on page 600. Only one of the windows
can be chosen but not both.

■ Starting rays also can be set using the illumination window (see Illumination Window on
page 562) and the RayDistribution section (see Distribution Window of Rays on
page 602).

■ Raytracing in cylindrical coordinates is also possible (see Cylindrical Coordinates for
Raytracing on page 603).

Beam Propagation Method

The BPM solver is selected using the following syntax:

Physics {
Optics (

OpticalSolver (
BPM (

<BPM options>
)

)
)

}

The BPM-specific options, such as the specific excitation type or the discretization parameters,
are described in Using Beam Propagation Method on page 649.

Loading Solution of Optical Problem From File

The solution of the optical problem, which can be either an absorbed photon density profile or
an optical generation profile, also can be loaded from a file. In contrast to using
OpticalGeneration ( ReadFromFile ( ... ) ), the optical solver FromFile offers
more flexibility for simulation setups that involve an illumination spectrum or parameter
ramping.
558 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Solving the Optical Problem
The required syntax is:

File {
OpticalSolverInput = "<file name or file name pattern>"

}

Physics {
Optics (

OpticalGeneration (
ComputeFromMonochromaticSource ()

)
OpticalSolver (

FromFile (
<FromFile options>

)
)

)
}

The use of the optical solver FromFile is described in Loading Solution of Optical Problem
From File on page 640.

Optical Beam Absorption Method

The following syntax is used to select the optical beam absorption method as the optical solver:

Physics {
Optics (

OpticalSolver (
OptBeam (

<OptBeam options>
)

)
)

}

The OptBeam-specific options, such as the parameters for the extraction of the layer stack, are
described in Using Optical Beam Absorption Method on page 646.

Composite Method

The following syntax is used to select the composite method as the optical solver:

Physics {
Optics (

OpticalSolver (
Composite (
Sentaurus™ Device User Guide 559
N-2017.09



21: Optical Generation
Solving the Optical Problem
<Composite options>
)

)
)

}

The Composite solver itself is not a numeric method to solve an optical problem. Instead, it
coordinates the execution of other solvers that might depend on each other and sums their
results to yield a general solution. As such, it requires the specification of at least another
optical device instance. For details about this solution approach, see Composite Method on
page 656.

Setting the Excitation Parameters

The Excitation section is common to all optical solvers and mainly specifies a plane wave
excitation. It contains the following keywords:

■ Intensity 

■ Wavelength 

■ Theta 

■ Phi 

■ PolarizationAngle  or Polarization 

In combination with the optical solvers TMM, OptBeam, and FromFile, an additional Window
section is required to specify the parameters of the illumination window, which is described in
Illumination Window on page 562.

NOTE For the optical solver FromFile, the requirement of a Window section
only applies when one-dimensional profiles are loaded.

The propagation direction is defined by the angles with the positive z-axis and x-axis,
respectively. In two dimensions, the propagation direction is well-defined by specifying Theta
only, where Theta corresponds to the angle between the propagation direction and the positive
y-axis. However, in three dimensions, the propagation direction is defined by Theta and Phi:

■ Theta is the angle between the positive z-axis and the propagation direction.

■ Phi is the angle between the positive x-axis and the projection of the propagation direction
on the xy plane as shown in Figure 27 on page 561.

For vectorial methods, such as the FDTD solver, the polarization is set using the keyword
PolarizationAngle, which represents the angle between the H-field and the  axis,
where  is the unit wavevector (see Sentaurus™ Device Electromagnetic Wave Solver User
Guide, Plane Waves on page 46).

W cm2⁄[ ]
μm[ ]

deg[ ]
deg[ ]

deg[ ]

z k̂×
k̂

560 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Solving the Optical Problem
For the TMM and RT solvers, the conventions for polarization are as follows:

■ In two dimensions, the keyword Polarization is a real number in the interval [0,1],
where Polarization=0 refers to TM, and Polarization=1 refers to TE excitations,
respectively. If the keyword PolarizationAngle is specified, it takes precedence over
the keyword Polarization. A simple relationship between PolarizationAngle and
Polarization can be established: Polarization = sin2(PolarizationAngle).

■ In three dimensions, the polarization vector is defined by rotating the  vector
counterclockwise, about the wave direction, by an angle defined by PolarizationAngle
when looking in the propagation direction.

NOTE For the RT solver, specifying the PolarizationVector explicitly
overrides the keywords Polarization and PolarizationAngle.

Figure 27 Definition of coordinate system for 3D plane wave excitation and examples 
of parameters of 3D plane wave

z k̂×

X

Z

Y

H

E

k

X

Z

Y

H

E

k

X

Z

Y

H

E

k

Theta = 0

Phi = 0

Psi = 0

Theta = 90

Phi = 0

Psi = 0

Theta = 90

Phi = 90

Psi = 0

X

Z

Y

Theta

Phi

Psi

E H

k

z k̂×
Sentaurus™ Device User Guide 561
N-2017.09



21: Optical Generation
Solving the Optical Problem
Illumination Window

The concept of an illumination window to confine the light that is incident on the surface of a
device structure plays an important role in various simulation setups for photo-diode devices,
such as photodetectors, solar cells, and image sensors. Sentaurus Device supports a flexible
user interface for the specification of one or more illumination windows, which also allows you
to move these windows during a simulation by ramping the corresponding parameters. This
common interface is currently available for the TMM, FromFile (only for loading 1D profiles),
OptBeam, and RayTracing (see Using the Raytracer on page 596) solvers, while different
solver-specific implementations exist for BPM (see Using Beam Propagation Method on
page 649) solvers.

The illumination window is described using a local coordinate system specified by the global
location of its origin and the x- and y-directions given as vectors or in terms of rotation angles
as illustrated in Figure 28.

Within this local coordinate system, several window shapes can be defined using relative
quantities such as width and height, together with an origin anchor for a line in 2D or a
rectangular window in 3D. Alternatively, or for shapes that do not support relative quantities,
absolute coordinates are used to characterize the shape of the window. For example, a polygon
would be defined by specifying a series of vertices in the local 2D coordinate system. 

Figure 28 Coordinate system used in the illumination window for (left) two dimensions and 
(right) three dimensions

The following window shapes are supported:

■ Line (in 2D only)

■ Rectangle (in 3D only)

■ Polygon (in 3D only)

■ Circle (in 3D only)

x

y

x’

z’
y’

z

GCS

LCS

ϕ

x

y

GCS

x’

LCS
562 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Solving the Optical Problem
You can define more than one illumination window. The specification of an optional name tag
allows you to refer to the respective window when ramping one of its parameters. It is also
helpful for identifying results for a specific window in the current file. If two windows overlap,
the solutions of the corresponding windows will be added in the intersection.

The global location of the origin of the local coordinate system is specified with the keyword
Origin, whose default is (0, 0, 0). To specify its orientation, the directions of the coordinate
axes can be defined using the vectors XDirection and YDirection. In 2D, only
XDirection needs to be specified. 

Alternatively, you can set three rotation angles theta (angle with z-axis), phi (angle between
x-axis and projection of window normal n on xy plane), and psi (angle between local x-axis
and the vector ), which define the vector RotationAngles in three dimensions as
shown in Figure 28 on page 562. For two dimensions, only the first angle of the vector
RotationAngles is used, which means a rotation of the angle from the local +y'-axis to the
local +x'-axis. The local origin can be defined within each Window using the keyword
Origin=<vector>. The RotationAngles are compatible with the optical solvers TMM,
Raytracing, Optbeam, and FromFile. In general, the direction of excitation defined in
(Theta, Phi) of the Excitation section is independent of the angles defined by
RotationAngles.

If the location of a window in the local coordinate system is not specified by its corresponding
vertex coordinates, its placement is determined by the bounding box of the window shape and
a cardinal direction such as North, South, NorthWest, and so on, or Center defining which
point of the bounding box coincides with the local origin. The cardinal direction is specified
using the keyword OriginAnchor.

The illumination window is specified in the Excitation section as follows:

Physics {
Optics (

Excitation (
Window (

<Window options>
)

)
)

}

The following examples introduce the supported window shapes and show different ways of
specifying them. Depending on the simulation setup, one specification may be more
convenient than others, for example, if the window needs to be moved by using the parameter
ramping feature.

ẑ n̂∧
Sentaurus™ Device User Guide 563
N-2017.09



21: Optical Generation
Solving the Optical Problem
Line

Line normal to y-axis at y=-10, xmin=-5, xmax=5:

Window (
Origin = (0,-10)
OriginAnchor = Center # Default
Line ( Dx = 10 )

)

Line normal to y-axis at y=-10, xmin=5, xmax=500:

Window (
Origin = (5,-10)
OriginAnchor = West
Line ( Dx = 545 )

)

or alternatively:

Window (
Origin = (0,-10)
XDirection = (1, 0, 0) # Default
Line (

X1 = 5
X2 = 500

)
)

Two lines normal to y-axis at y=-10, with xmin1=5, xmax1=10, and xmin2=15, xmax2=20:

Window ("W1") (
Origin = (5, -10)
OriginAnchor = West
Line ( Dx = 5 )

)

Window ("W2") (
Origin = (15, -10)
OriginAnchor = West
Line ( Dx = 5 )

)

564 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Solving the Optical Problem
Rectangle

Rectangle normal to z-axis at z=10, with width=10 and height=5, centered at x=0 and y=0:

Window (
Origin = (0, 0, 10)
OriginAnchor = Center # Default
Rectangle (

Dx = 10
Dy = 5

)
)

or alternatively:

Window (
Origin = (0, 0, 10)
Rectangle (

Corner1 = (-5, -2.5)
Corner2 = (5, 2.5)

)
)

Polygon

Triangle in xz plane at y=4, and corners at (0, 0, 0), (1, 0, 0), and (0, 0, 1):

Window (
Origin = (0, 4, 0)
XDirection = (1, 0, 0) # Default
YDirection = (0, 0, 1)
Polygon( (0, 0), (1, 0), (0, 1) )

)

NOTE More complex polygon specifications also are supported by specifying
several polygon loops, which may or may not intersect. In this case, the
vertices of each loop must be enclosed in extra parentheses within the
Polygon section.

Circle

Circle in xy plane with center at (5, 4, -10) and radius 3:

Window (
Origin = (5, 4, -10)
XDirection = (1, 0, 0) # Default
YDirection = (0, 1, 0) # Default
Circle ( Radius = 3 )

)

Sentaurus™ Device User Guide 565
N-2017.09



21: Optical Generation
Solving the Optical Problem
Common Illumination Configurations

The following examples show the specification of the Excitation section for the most
common case of normal incident light from the top of the device structure in the UCS and the
DF–ISE coordinate system in two and three dimensions.

DF–ISE coordinate system in two dimensions:

Excitation (
...
Window (

Origin = (0, <ymin of device>)
Line ( x1 = <xmin> x2 = <xmax> ) # Extent of illumination window

)
)

UCS in two dimensions:

Excitation (
...
Theta = 90 # Illumination from top in +x direction
Window (

Origin= (<xmin of device>, 0)
xDirection= (0, 1) # Local x' points in global +y direction
Line (x1=<ymin> x2=<ymax> ) # Extent of illumination window

)
)

DF–ISE coordinate system in three dimensions:

Excitation (
...
Theta = 180 # Illumination from top in -z direction
Window (

Origin = (0, 0, <zmax of device>)
Rectangle (

# Extent of illumination window
corner1 = (<xmin>, <ymin>) corner2 = (<xmax>, <ymax> )

)
)

)

UCS in three dimensions:

Excitation (
...
Theta = 90 # Illumination from top in +x direction
Window (

Origin = (<xmin of device>, 0, 0)
566 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Solving the Optical Problem
xDirection = (0, 0, 1) # Local x' points in global +z direction
yDirection = (0, 1, 0) # Local y' points in global +y direction
Rectangle (

# Extent of illumination window
corner1 = (<zmin>, <ymin>) corner2 = (<zmax>, <ymax> ) 

)
)

)

NOTE In these examples, keywords whose default values are correct for the
given use case have been omitted to demonstrate the minimum required
specification.

Moving Windows Using Parameter Ramping

The following syntax demonstrates how illumination windows can be moved and resized
during a simulation using the parameter ramping framework:

Physics {
Optics (

Excitation (
Window("L1") (

Origin = (-0.5, -0.1, 0) 
XDirection = (1,0,0) # Default 
Line(

x1 = -0.5
x2 = 0.5

)
)
Window("L2") (

Origin = (0.5, -0.1, 0) 
OriginAnchor = Center # Default
XDirection = (1,0,0) # Default
Line( Dx = 1 )

)
)

)
}

Solve{
Optics
Quasistationary (

InitialStep=0.2 MaxStep=0.2 MinStep=0.2
Goal { ModelParameter="Optics/Excitation/Window(L2)/Line/Dx" value=0.2 }

) { Optics }

Quasistationary (
InitialStep=0.2 MaxStep=0.2 MinStep=0.2
Sentaurus™ Device User Guide 567
N-2017.09



21: Optical Generation
Solving the Optical Problem
Goal { ModelParameter="Optics/Excitation/Window(L2)/Origin[0]" 
value=0.9 }
Goal { ModelParameter="Optics/Excitation/Window(L2)/Origin[1]" 
value=0.5 }
Goal { ModelParameter="Optics/OpticalSolver/TMM/
LayerStackExtraction(L2)/Position[0]" value=0.9 }

) { Optics }
}

For more details on ramping parameters, including the ramping of vector parameters, see
Parameter Ramping on page 573.

Spatial Intensity Function Excitation

With the illumination window feature (see Illumination Window on page 562), you can define
a spatial profile within each illumination window. The intensity profile corresponds to a
modified Gaussian profile with the shape shown in Figure 29. 

Figure 29 Gaussian spatial intensity distribution, showing the definition of key parameters

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

x

g(x)

xpos

xwidth

1/e

xlength

σ

g0

1/√e
568 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Solving the Optical Problem
There is a top plateau, with both ends decaying with symmetric Gaussian functions. Its peak
value is normalized to 1.0. Mathematically, the spatial shape is defined by:

(649)

where  (Sigma) is the Gaussian width,  (PeakPosition) is the center peak position of
the function, and  (PeakWidth) is the width of the center plateau. To add flexibility, you
can add  (Scaling) as a scaling factor to the final expression:

(650)

This modified spatial Gaussian function can be applied to the different supported types of
illumination window: line, rectangle, polygon, and circle (see Illumination Window on
page 562). In two dimensions, the product of two modified Gaussian functions is:

(651)

The syntax of the spatial intensity function is embedded within the syntax of the illumination
window:

Optics (
Excitation (...

Wavelength = 0.5
Intensity = 100 *[W/cm2]
Window(

IntensityDistribution(
Gaussian(

Sigma = (<float>,<float>) | Length = (<float>,<float>)
PeakPosition = (<float>,<float>)
PeakWidth = (<float>,<float>)
Scaling = <float>

)
)
Rectangle(dx = 1, dy = 2)

)
)

)

gx x( )
x xpos–

xwidth

2
-------------– 

 
2

2σ2
------------------------------------------------–

 
 
 
 
 

exp

1

x xpos–
xwidth

2
------------->,

otherwise,











=

σ xpos

xwidth

g0

g x( ) g0 gx x( )⋅=

g x y,( ) g0 g⋅
x

x( ) gy y( )⋅=
Sentaurus™ Device User Guide 569
N-2017.09



21: Optical Generation
Solving the Optical Problem
Comments about the syntax:

■ The IntensityDistribution section is specified within the illumination window
(Window). It follows the local coordinate system of the window, that is, PeakPosition is
taken with reference to the origin of the local coordinate of the window.

■ Either Sigma or Length must be specified. If Length is specified, Sigma is calculated
using the formula: / .

■ The parameters are input as a single floating-point number (for one dimension) or a vector
(for two dimensions). For example, Sigma=0.05 for a 1D Gaussian and
Sigma=(0.03,0.04) for a 2D Gaussian.

■ The IntensityDistribution section works with the raytracing, TMM, OptBeam, and
FromFile optical solvers.

NOTE For 1D solvers such as TMM and OptBeam, the spatial intensity profile is
simply overlaid onto the 1D field distribution; it is not an indication of
a more accurate solution.

Choosing Refractive Index Model

The complex refractive index model as described in Complex Refractive Index Model on
page 578 is available for all optical solvers. It must be specified in the Optics section when
using the unified interface for optical generation computation.

Extracting the Layer Stack

The optical solvers TMM (see Transfer Matrix Method on page 625) and OptBeam (see Optical
Beam Absorption Method on page 644) require the extraction of a layer stack from the actual
device structure as they are based on 1D algorithms whose solution is extended to the
dimension of the simulation grid. Both the extension of the solution and the extraction of the
layer stack are bound to the illumination window (see Illumination Window on page 562),
which determines the domain of the device structure being represented by the 1D optical
problem.

The layer stack extraction algorithm works by extracting all grid elements along a line normal
to the corresponding illumination window starting from a user-specified position within the
window. The direction of extraction, that is, positive or negative, is derived from the
propagation direction of the incident light as specified in the Excitation section.

By default, all elements belonging to the same region will form a single layer, which is part of
the entire stack. This assumes that the material properties do not vary within the region. If this
is not the case or not a good approximation, you can create a separate layer for each extracted

σ xlength= 2
570 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Solving the Optical Problem
element by selecting the option ElementWise instead of RegionWise for the keyword Mode
in the LayerStackExtraction section. As this can lead to a large number of layers whose
difference in material properties may be insignificant for the solution of the optical solver, yet
impact its performance, a threshold value can be specified to control the creation of the layer
stack from the extracted grid elements. 

All elements whose relative difference in the refractive index or extinction coefficient,
compared with the previous layer, is lower than the threshold are merged into one layer. In
doing so, the refractive index and the extinction coefficient are treated separately, both
deviations must be lower than the specified threshold. The material properties of this merged
layer are obtained by averaging the corresponding element properties. The thickness of each
element computed by the distance between the intersection points of the extraction line with
the corresponding element is summed to yield the total thickness of the representative layer of
the stack.

The threshold can be specified using the keyword ComplexRefractiveIndexThreshold
in the LayerStackExtraction section.

Options are available for defining the starting point of the extraction line:

■ Exact position in the global coordinate system using the keyword Position.

■ Position within the bounding box of the window designated by a cardinal direction.

■ Position within the bounding box of the window specified as a point in the local coordinate
system of the illumination window.

The last two options require the specification of the keyword WindowPosition. Its argument
can be either one of North, South, NorthWest, and so on, and Center or a 2D point, for
example, WindowPosition = (1.5, 2).

The following is an example for a LayerStackExtraction section used by the TMM solver:

Physics {
Optics (

OpticalSolver (
TMM (

LayerStackExtraction (
WindowName = "L1"
Position = (-0.5, -0.1, 0)
Mode = ElementWise # Default RegionWise

)
)

)
)

}

Sentaurus™ Device User Guide 571
N-2017.09



21: Optical Generation
Solving the Optical Problem
The keyword WindowName is required if more than one illumination window exists. Its
argument specifies to which illumination window the LayerStackExtraction refers.

NOTE If the starting point of the extraction line is outside of the device
structure, the extracted layer stack will contain a layer representing the
space between the starting point of the extraction line and the surface of
the device structure. In general, the material properties of vacuum are
assigned to this layer. For optical solvers that support user-defined bulk
media on the top and the bottom of the layer stack using the Medium
statement, the material properties of the top medium if specified are
used except that the extinction coefficient k is set to 0. For more details
about user-defined bulk media, see Using Transfer Matrix Method on
page 630.

Controlling Computation of Optical Problem in Solve 
Section

Specifying the keyword Optics in the Solve section triggers the solution of the optical
problem. For example, the following is sufficient to compute the optical generation and the
optical intensity:

Physics {
Optics (

OpticalGeneration ( ... )
)

}

Solve { Optics }

If only the keyword Optics is specified in the Solve section, either directly or within a
Quasistationary or Transient statement, and no other equations are solved, the
simulation is classified as an optics standalone simulation. In general, such simulations do not
require the specification of contacts in the grid file. In optics standalone simulations, it is
possible to switch on the creation of double points at region interfaces independent of the type
of interface. In other words, a heterojunction interface is treated in the same way as a
semiconductor–insulator interface. This feature is enabled by specifying the keyword
Discontinuity in the Physics section (see Discontinuous Interfaces on page 231).

The Solve section of a typical transient device simulation reads as follows:

Solve {
Optics
Poisson
Coupled { Poisson Electron Hole }
572 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Parameter Ramping
Transient (
InitialTime = 0
FinalTime = 3e-6

) { Coupled { Poisson Electron Hole } }
}

In this example, the optical generation rate is computed at the beginning when the optical
problem is solved and is used afterwards in the electronic equations. To recompute the optical
generation at a later point, the Optics statement can be listed wherever a Coupled statement
is allowed.

The optical generation depends on the solution of the optical problem and, therefore, has an
implicit dependency on all quantities that serve as input to the optical equation. Internally, an
automatic update scheme ensures that, whenever the optical generation rate is read, all its
underlying variables are up-to-date. Otherwise, it will be recomputed. This mechanism can be
switched off by specifying -AutomaticUpdate in the OpticalGeneration section. By
default, AutomaticUpdate is switched on.

Parameter Ramping

Sentaurus Device can be used to ramp the values of physical parameters (see Ramping Physical
Parameter Values on page 78). For example, it is possible to sweep the wavelength of the
incident light to extract the spectral dependency of a certain output characteristic conveniently.
Ramping model parameters of the unified interface for optical generation computation works
the same way except that instead of using the expression Parameter = "<parameter
name>", it uses the keyword ModelParameter = "<parameter name or path>". 

The value of ModelParameter can be either the parameter name itself such as
"Wavelength" if it is unambiguous or the parameter name including its full path:

Solve {
Quasistationary (

Goal {
[ Device = <device> ] 
[ Material = <material> | MaterialInterface = <interface> | 
Region = <region> | RegionInterface = <interface> ]

ModelParameter = "Optics/Excitation/Wavelength" Value = <float>
}

){ Optics }
}

Sentaurus™ Device User Guide 573
N-2017.09



21: Optical Generation
Parameter Ramping
Specifying the device and location (material, material interface, region, or region interface
where applicable) is optional. However, ModelParameter and its Value must always be
specified.

Similarly, the corresponding CurrentPlot section reads as follows:

CurrentPlot {
[ Device = <device> ] 
[ Material = <material> | MaterialInterface = <interface> | 
Region = <region> | RegionInterface = <interface> ]
ModelParameter = "Optics/Excitation/Wavelength"

}

Parameters whose value type is a vector of floating-point numbers support ramping of the
individual vector components. 

For example, to ramp the x- and y-components of the illumination window origin, the
following syntax is required:

Quasistationary (
InitialStep=0.2 MaxStep=0.2 MinStep=0.2
Plot { Range = ( 0., 1 ) Intervals = 5 }
Goal { ModelParameter="Optics/Excitation/Window(L2)/Origin[0]" value=0.9 }
Goal { ModelParameter="Optics/Excitation/Window(L2)/Origin[1]" value=0.5 }

) {
Optics

}

NOTE When ramping parameters that reside in sections that can occur multiple
times, such as the Window section, an identifying section name or tag in
parentheses must follow the section name in the parameter path as
shown in the example above.

Table 110 lists the parameters that can be ramped using the unified interface for optical
generation computation. 

Table 110 Parameters that can be ramped

Parameter path Parameter name

Optics/OpticalGeneration Scaling

Optics/OpticalGeneration/ComputeFromMonochromaticSource Scaling

Optics/OpticalGeneration/ReadFromFile Scaling

Optics/OpticalGeneration/ComputeFromSpectrum Scaling

Optics/OpticalGeneration/SetConstant Value
574 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Accurate Absorbed Photon Density for 1D Optical Solvers
A list of parameter names that can be ramped in the command file is printed when the following
command is executed:

sdevice --parameter-names <command file>

Accurate Absorbed Photon Density for 1D Optical Solvers

In 1D optical solvers such as TMM, OptBeam, and FromFile, the 1D absorbed photon density
(APD) is superimposed onto the projected volume from an illumination window that extends
into the 2D or 3D device geometry.

While the sampled APD at each vertex is exact for the 1D solver, the integration with
CurrentPlot simply multiplies the box method volume, and this can result in inaccuracy due
to the following:

■ If the mesh is coarse, the projected volume from an illumination window intersects the box
method volumes partially at the fringes.

■ Depending on where the vertices are located, the box method–integrated APD can be
smaller or larger than the true integrated value.

Such inaccuracies can lead to nonconservation of particles or energy because an incorrectly
integrated APD produces an incorrect optically generated current.

To reduce the mesh dependency of the integrated APD values for 1D optical solvers, a virtual
wireframe is constructed over the projected volume from an illumination window to compute
a discrete Riemann integral of the APD. In the transverse plane of the illumination window, the
wireframe is chosen automatically with either a discretization of 10 nm or a limit of 200
transverse wireframe cells. In the propagation direction, the wireframe is first divided into
layers and, then within each layer, a further discretization of NumberOfCellsPerLayer is
used for refinement.

The number of layers for the TMM and OptBeam solvers is fixed at the number of extraction
layers, while the FromFile optical solver allows you to specify the number of layers.

Optics/Excitation Wavelength, Intensity, Theta, 
Phi, PolarizationAngle, 
Polarization

Optics/Excitation/Window All parameters that are not of type 
string or identifier.

Optics/OpticalSolver/<SolverName> Except for raytracing, all parameters 
that are not of type string or identifier.

Table 110 Parameters that can be ramped (Continued)

Parameter path Parameter name
Sentaurus™ Device User Guide 575
N-2017.09



21: Optical Generation
Accurate Absorbed Photon Density for 1D Optical Solvers
NumberOfCellsPerLayer can be controlled by all three optical solvers. Although a denser
wireframe provides a more accurate integrated APD, it also slows down the simulation since
the APD must be sampled at every wireframe point in the propagation direction.

After the accurate integrated APD has been computed, it is used to compute a weighting factor
for the APD on the mesh vertices such that, when CurrentPlot multiplies the box method
volume to obtain the integrated values, you can retrieve the correct integrated APD. The
vertices within the projected volume from an illumination window are divided into the center
zone and the fringe zone:

■ The center zone vertices have edges that connect only to vertices within the projected
window volume.

■ The fringe zone vertices have edges that cross the boundary of the projected window
volume. 

NOTE The weighting factor is applied only to the fringe zone vertices, so you
might see a distorted APD value at those vertices.

Numerically, the weighting factor is computed in each layer and is defined as:

(652)

After this computation, the weighting factor is applied to the APD of the fringe zone vertices:

(653)

However, there can be instances whereby the center zone box-integrated APD is greater than
the wireframe-integrated APD. In such cases, the weighting factor is computed as

(654)

and it is applied to modify the APD of all center and fringe zone vertices.

This new methodology can be activated selectively in different illumination windows as
follows:

Physics {...
Optics (...

Excitation (...
Window("win_1") (...

Wlayer k( )

fAPD wireframe( ) vd

layer k( )
 FAPD vi( ) box vi( )⋅

centerzone
–

FAPD vi( ) box vi( )⋅
fringezone


---------------------------------------------------------------------------------------------------------------------------------------=

F 'APD vi( ) Wlayer k( ) FAPD vi( )⋅=

Wlayer k( )

fAPD wireframe( ) vd

layer k( )


FAPD vi( ) box vi( )⋅
centerzone
 FAPD vi( ) box vi( )⋅

fringezone
+

------------------------------------------------------------------------------------------------------------------------------------------=
576 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Accurate Absorbed Photon Density for 1D Optical Solvers
# To switch off, add '-' in front or leave blank. 
-WeightedAPDintegration

)
Window("win_2") (...

# To switch on, use this keyword 
WeightedAPDintegration

)
)

)
}

The syntax for controlling the wireframe density is:

Physics {...
Optics (...

Excitation (...
Window(...) (...

# Various options available
WeightedAPDintegration(

PrintInfo
NumberOfCellsPerLayer = <int> # default is 10000
NumberOfTransverseCellsPerDirection = <int> # default is 200
Mode = Auto     # or Full, default is Auto

)
)

)
OpticalSolver(...

FromFile(...
# Default value is the number of regions but is limited to 20
WeightedAPDintegrationlayers = <int>
WeightedAPDIntegrationSetBoundaries = (<float>, <float>, ...)

)
)

)
}

Some comments about this syntax:

■ To speed up the wireframe integration of APD, you probe strategic points (three points in
two dimensions and five points in three dimensions) in each delta projection window (the
illumination window area multiplied by the wireframe cell thickness) to determine whether
to perform the full transverse numeric integration or to use a precomputed volume. The
keyword Mode=Auto allows for a quick assessment and should be used when the projected
illumination window is expected to stay within the device domain.

■ For the TMM and OptBeam optical solvers, the number of layers is set to be the same as that
from the LayerStackExtraction section. For the FromFile optical solver, you can set
the number of layers using WeightedAPDIntegrationLayers, which divides the total
propagation length into equal layer thicknesses. Alternatively, if the structure contains
Sentaurus™ Device User Guide 577
N-2017.09



21: Optical Generation
Complex Refractive Index Model
important thin layers, you can specify the boundaries of each layer using
WeightedAPDIntegrationSetBoundaries. These boundaries are measured from the
illumination window in the direction of propagation, so they must be positive numbers.
Otherwise, the default for the number of layers is the number of significant regions, that is,
regions whose volumes are at least 10% of the total volume of the device.

■ You can control the discretization of the wireframe with the following keywords:

• NumberOfCellsPerLayer controls the discretization in the direction of propagation.

• NumberOfTransverseCellsPerDirection controls the discretization of the
illumination window in the 2D plane containing the window.

NOTE The plane of the window might not necessarily align with the standard
xy, yz, or xz planes.

Complex Refractive Index Model

The complex refractive index model in Sentaurus Device allows you to define the refractive
index and the extinction coefficient depending on mole fraction, wavelength, temperature,
carrier density, and local material gain. In addition, it provides a flexible interface that can be
used to add new complex refractive index models as a function of almost any internally
available variable.

This complex refractive index model is designed primarily for use in LED simulations, the
unified interface for optical generation computation, the raytracer, the TMM, and the FDTD
optical solvers. It is also supported by other tools besides Sentaurus Device, such as Sentaurus
Device Electromagnetic Wave Solver (EMW) and Sentaurus Mesh, allowing for a consistent
source of optical material parameters across the entire tool flow. A common Sentaurus Device
parameter file can be shared and only the syntax for activating the different models may slightly
change from tool to tool to comply with the respective command file syntax.

Physical Model

The complex refractive index  can be written as:

(655)

with:

(656)

(657)

ñ

ñ n i k⋅+=

n n0 Δnλ ΔnT Δncarr Δngain+ + + +=

k k0 Δkλ Δkcarr+ +=
578 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Complex Refractive Index Model
The real part  is composed of the base refractive index , and the correction terms ,
, , and . The correction terms include the dependency on wavelength,

temperature, carrier density, and gain.

The imaginary part  is composed of the base extinction coefficient , and the correction
terms  and . The correction terms include the dependency on wavelength and carrier
density. The absorption coefficient  is computed from  and wavelength  according to:

(658)

Wavelength Dependency

The complex refractive index model offers three ways to take wavelength dependency into
account:

■ An analytic formula considers a linear and square dependency on the wavelength :

(659)

The parameters , , , and  are adjusted in the
ComplexRefractiveIndex section of the parameter file (see Table 113 on page 583).

■ Tabulated values can be read from the parameter file. The table contains three columns
specifying wavelength , refractive index , and the extinction coefficient . Thereby,

 and  represent  and , respectively. The character * is used to insert
a comment. The row is terminated by a semicolon. For wavelengths not listed in the table,
the refractive index and the extinction coefficient are obtained using linear interpolation or
spline interpolation. At least two rows are required for linear interpolation. To form a cubic
spline from the table entries, at least four rows are needed.

■ Tabulated values can be read from an external file. The file holds a table that is structured
as described in the previous point. The name of the file is specified in the
ComplexRefractiveIndex section of the parameter file.

Temperature Dependency

The temperature dependency of the real part of the complex refractive index follows the
relation according to:

(660)

The parameters  and  can be adjusted in the ComplexRefractiveIndex section of
the parameter file (see Table 116 on page 583).

n n0 Δnλ
ΔnT Δncarr Δngain

k k0

Δkλ Δkcarr

α k λ

α 4π
λ

------ k⋅=

λ

Δnλ Cn λ, λ Dn λ, λ2⋅+⋅=

Δkλ Ck λ, λ Dk λ, λ2⋅+⋅=

Cn λ, Dn λ, Ck λ, Dk λ,

λ n' k′
n' k' n0 Δnλ+ k0 Δkλ+

ΔnT n0 Cn T, T Tpar–( )⋅ ⋅=

Cn T, Tpar
Sentaurus™ Device User Guide 579
N-2017.09



21: Optical Generation
Complex Refractive Index Model
Carrier Dependency

The change in the real part of the complex refractive index due to free carrier absorption is
modeled according to [1]:

(661)

where:

■  is a fitting parameter.

■  is the elementary charge.

■  is the wavelength.

■  is the speed of light in free space.

■  is the permittivity. 

Furthermore,  and  are the electron and hole densities, and and  are the effective
masses of electron and hole, which are computed according to the specification of the
eDOSMass and hDOSMass sections in the parameter file. If only optics is solved, for example
Solve {Optics} is specified in the command file, then  and  correspond to the respective
doping concentrations.

To account for the change of the extinction coefficient due to free carrier absorption, a model
is available that assumes linear dependency on carrier concentration and power-law
dependency on wavelength:

(662)

where:

■ , , ,  are fitting parameters.

■  is the wavelength in .

■  and  are the electron and hole densities in units of .

For linear dependency on wavelength,  and  are given in units of . 

An alternative formulation found in the literature [2][3] reads as follows:

(663)

where the free carrier absorption coefficient  is given in units of , the wavelength
is given in nanometers, and the carrier concentrations are given in . 

Δncarr Cn carr,–
q2λ2

8π2c2ε0n0

--------------------------
n

mn
------

p
mp
------+ 

 ⋅ ⋅=

Cn carr,

q

λ
c

ε0

n p mn mp

n p

Δkcarr
10

4–

4π
-----------

λ
μm
-------- 
 

Γk carr, n, Ck carr n, ,

cm
2

--------------------
n

cm
3–

------------⋅ λ
μm
-------- 
 

Γk carr, p, Ck carr p, ,

cm
2

--------------------
p

cm
3–

------------⋅+
 
 
 

⋅=

Ck carr,n, Ck carr,p, Γk carr,n, Γk carr,p,

λ μm

n p cm 3–

Ck carr,n, Ck carr,p, cm 2–

ΔαFCA AnλB
CpλD

+=

ΔαFCA cm 1–

cm 3–
580 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Complex Refractive Index Model
The fitting parameters , , , and  in Eq. 663 are related to the corresponding fitting
parameters in Eq. 662 by the following expressions:

(664)

(665)

(666)

(667)

The parameters , , , , and  are adjusted in the
ComplexRefractiveIndex section of the parameter file (see Table 117 on page 584).

Gain Dependency

The complex refractive index model offers two formulas to take into account the gain
dependency:

■ The linear model is given by:

(668)

■ The logarithmic model reads:

(669)

The parameters  and  are adjusted in the ComplexRefractiveIndex section of
the parameter file (see Table 118 on page 584).

Using Complex Refractive Index

The complex refractive index model is activated by using the ComplexRefractiveIndex
statement in the Optics section of the Physics section. When using the unified interface for
optical generation computation, ComplexRefractiveIndex can be specified globally, per
region or per material. Otherwise, support is only available for global specification.

A B C D

Γk carr, n, B 1+=

Ck carr n, , 10
3B

A=

Γk carr, p, D 1+=

Ck carr p, , 10
3D

C=

Cn carr, Ck carr n, , Ck carr p, , Γk carr,n, Γk carr,p,

Δngain Cn gain,
n p+
2Npar
------------- 1– 
 ⋅=

Δngain Cn gain,
n p+
2Npar
------------- 
 ln⋅=

Cn gain, Npar
Sentaurus™ Device User Guide 581
N-2017.09



21: Optical Generation
Complex Refractive Index Model
Table 283 on page 1466 lists the available keywords, which allow you to select the
dependencies that change the complex refractive index, for example:

Physics {
Optics (

ComplexRefractiveIndex (
WavelengthDep (real imag)
TemperatureDep (real)
CarrierDep (real imag)
GainDep (real(log))

)
)

}

All parameters valid for the ComplexRefractiveIndex section of the parameter file are
summarized in Table 111 to Table 118 on page 584. They can be specified for mole-dependent
materials using the standard Sentaurus Device technique with linear interpolation on specified
mole intervals. 

Interpolation for mole-dependent tables is more complex due to the 2D nature of the problem
(interpolation with respect to mole fraction and wavelength) and the sharp discontinuities near
the absorption edges. Therefore, if Formula = 1–3, the complex refractive index at a given
wavelength and mole fraction is computed by interpolating its value with respect to the
wavelength for the lower and upper limits of the mole-fraction interval and subsequently with
respect to the mole fraction. Optionally, the latter interpolation can be linear or piecewise
constant. By default, mole-fraction interpolation for NumericalTable is switched off, and
Sentaurus Device will exit with an error if the complex refractive index is requested at a mole
fraction for which no NumericalTable is defined. 

The keyword Formula is used in the parameter file to select one of the three models that are
available to describe the wavelength dependency.  

Table 111 Base parameters

Symbol Parameter name Unit

n0 1

k0 1

Table 112 Model selection for wavelength dependency

Keyword Value Description

Formula =0 Use analytic formula (default).

=1 Read tabulated values from parameter file.

=2 Read tabulated values from external file.

n0

k0
582 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Complex Refractive Index Model
Table 114 lists the different interpolation methods available for NumericalTable, where
logarithmic interpolation refers to taking the natural logarithm of the coordinates, performing
linear interpolation, and exponentiating the results. If a value must be interpolated in an interval
where one or both of the coordinates at the interval boundaries is smaller than or equal to zero,
linear interpolation is used instead. 

Table 115 lists the different interpolation methods available for interpolation of mole
fraction–dependent NumericalTable.  

Table 113 Parameters used to described wavelength dependency

Symbol Parameter name Unit

Cn_lambda

Dn_lambda

Ck_lambda

Dk_lambda

Table 114 Specifying interpolation method for NumericalTable

Keyword Value Description

TableInterpolation =Linear Use linear interpolation.

=Logarithmic Use logarithmic interpolation.

=PositiveSpline Use cubic spline interpolation. If interpolated values are 
negative, set them to zero (default).

=Spline Use cubic spline interpolation.

Table 115 Specifying interpolation method for mole fraction–dependent NumericalTable

Keyword Value Description

MolefractionTableInterpolation =Linear

=Off Default

=PiecewiseConstant

Table 116 Parameters used to describe temperature dependency

Symbol Parameter name Unit

Cn_temp

Tpar

Cn λ, μm 1–

Dn λ, μm 2–

Ck λ, μm 1–

D
k· λ, μm 2–

Cn T, K 1–

Tpar K
Sentaurus™ Device User Guide 583
N-2017.09



21: Optical Generation
Complex Refractive Index Model
 

An example of the ComplexRefractiveIndex section in the parameter file is:

ComplexRefractiveIndex {
* Complex refractive index model: n_complex = n + i*k (unitless)
* Base refractive index and extinction coefficient
n_0 = 3.45 # [1]
k_0 = 0.00 # [1]

* Wavelength dependence
* Example for analytical formula:
Formula = 0
Cn_lambda = 0.0000e+00 # [um^-1]
Dn_lambda = 0.0000e+00 # [um^-2]
Ck_lambda = 0.0000e+00 # [um^-1]
Dk_lambda = 0.0000e+00 # [um^-2]
* Example for reading values from parameter file:
Formula = 1
TableInterpolation = Spline
NumericalTable
( * wavelength [um] n [1] k [1]

0.30 5.003 4.130;
0.31 5.010 3.552;
0.32 5.023 3.259;
0.33 5.053 3.009;

)
* Example for reading values from external file:
Formula = 2
NumericalTable = "GaAs.txt"

* Temperature dependence (real):

Table 117 Parameters used to describe carrier dependency

Symbol Parameter name Unit Description

Cn_carr 1

, Ck_carr Values for electrons and holes are 
separated by a comma.

, Gamma_k_carr 1 Values for electrons and holes are 
separated by a comma.

Table 118 Parameters used to described gain dependency

Symbol Parameter name Unit

Cn_gain 1

Npar

Cn carr,

Ck carr n, , Ck carr p, , cm
2

Γk carr n, , Γk carr p, ,

Cn gain,

Npar cm
3–
584 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Complex Refractive Index Model
Cn_temp = 2.0000e-04 # [K^-1]
Tpar = 3.0000e+02 # [K]

* Carrier dependence (real)
Cn_carr = 1 # [1]
* Carrier dependence (imag)
Ck_carr = 0.0000e+00 , 0.0000e+00 # [cm^2]

* Gain dependence (real)
Cn_gain = 0.0000e+00 # [cm^3]
Npar = 1.0000e+18 # [cm^-3]

}

The following ComplexRefractiveIndex section demonstrates the use of mole
fraction–dependent NumericalTables:

ComplexRefractiveIndex {
Formula = 1
TableInterpolation = Linear
MolefractionTableInterpolation = Linear
Xmax(0)=0.0
NumericalTable(0)
( * wavelength [um] n [1] k [1]

0.30 5.003 4.130;
0.31 5.010 3.552;
0.32 5.023 3.259;
0.33 5.053 3.009;

)
Xmax(1)=0.25
NumericalTable(1)
( * wavelength [um] n [1] k [1]

0.20 5.003 4.130;
0.29 4.010 2.552;
0.34 4.023 1.259;
0.49 4.053 2.009;

)
Xmax(2)=0.6
NumericalTable(2)
( * wavelength [um] n [1] k [1]

0.25 3.123 0.130;
0.27 3.410 0.552;
0.29 3.523 0.259;
0.43 3.753 0.009;

)
}

The complex refractive index is plotted when the keyword ComplexRefractiveIndex is
defined in the Plot section.
Sentaurus™ Device User Guide 585
N-2017.09



21: Optical Generation
Complex Refractive Index Model
NOTE TableODB is no longer supported. A wavelength table of complex
refractive indices can be input using the ComplexRefractiveIndex
- NumericalTable section instead.

The complex refractive index model is available for the following optical solvers:

■ Transfer matrix method for optical generation computation (see Transfer Matrix Method
on page 625).

■ Raytracing (see Raytracing on page 593).

Complex Refractive Index Model Interface

The complex refractive index model interface (CRIMI) allows the addition of new complex
refractive index models as a function of almost any internally available variable. These models
must be implemented as C++ functions, and Sentaurus Device loads the functions at runtime
using the dynamic loader. No access to the Sentaurus Device source code is necessary. The
concept is similar to that of the physical model interface (see Chapter 38 on page 1043);
however, it is not limited to Sentaurus Device.

The generated shared object containing the model implementation can be used together with
Sentaurus Device Electromagnetic Wave Solver (see Sentaurus™ Device Electromagnetic
Wave Solver User Guide, Complex Refractive Index Model Interface on page 34) and
Sentaurus Mesh (see Sentaurus™ Mesh User Guide, Computing Cell Size Automatically
(EMW Applications) on page 95).

Three main steps are required for integrating user-defined models:

■ First, a C++ class implementing the complex refractive index model must be written.

■ Second, a shared object must be created that can be loaded at runtime.

■ Third, the model must be activated in the command file. 

These steps are described in the following sections in more detail.

C++ Application Programming Interface (API)

For each complex refractive index model, two C++ subroutines must be implemented: one to
compute the refractive index and another to compute the extinction coefficient. More
specifically, a C++ class must be implemented that is derived from a base class declared in the
header file CRIModels.h. In addition, a so-called virtual constructor function, which allocates
an instance of the derived class, and a virtual destructor function, which de-allocates it, must
be provided.
586 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Complex Refractive Index Model
The public interface of the base class from which a model-specific class must be derived is
declared in the header file CRIModels.h as: 

class CRI_Model : public CRI_Model_Interface {
public:

CRI_Model(const CRI_Environment& env);
virtual ~CRI_Model();
//definition of complex refractive index
struct ComplexRefractiveIndexConstituentsReal {

double n0;
double dn_lambda;
double dn_temp;
double dn_carr;
double dn_gain;

};

struct ComplexRefractiveIndexConstituentsImag {
double k0;
double dk_lambda;
double dk_carr;

};

//methods to be implemented by user

//definition of complex refractive index in terms of its constituents
virtual void Compute_n(ComplexRefractiveIndexConstituentsReal& data);
virtual void Compute_k(ComplexRefractiveIndexConstituentsImag& data);

//direct definition of complex refractive index
virtual void Compute_n(double& n) = 0;
virtual void Compute_k(double& k) = 0;

};

The CRIMI provides a basic interface where only the actual value of the refractive index and
the extinction coefficient can be overridden as well as an advanced interface. In the advanced
interface, the total values are computed automatically from its constituents, and it has the
advantage that the user-specified constituents can be visualized instead of its default values. If
carrier dependency is modeled with a CRIMI and quantum yield or temperature or both should
be consistent, the advanced interface must be used. If a CRIMI is used in a thermal simulation
where free carrier absorption plays a role, using the advanced interface is mandatory. For more
details, see Quantum Yield Models on page 544.

The arguments of the Compute functions indicate that they are passed as references to the
respective functions. They carry the values corresponding to the model specification in the
ComplexRefractiveIndex section in the command file. When implementing a user-defined
complex refractive index model, the values for n and k (in the case of the basic interface) or the
members of struct ComplexRefractiveIndexConstituentsReal and struct
Sentaurus™ Device User Guide 587
N-2017.09



21: Optical Generation
Complex Refractive Index Model
ComplexRefractiveIndexConstituentsImag must be overwritten in the function body.
Otherwise, the original values remain unchanged, which can be useful if, for example, only a
new model for either the real or the imaginary part of the complex refractive index must be
implemented or if only a specific constituent needs to be modified.

Often, a complex refractive index model is based on several material-specific parameters. For
each region or material, these parameters can be defined in special sections of the parameter
file that carry the model name as given in the command file. The parameters are best initialized
in the constructor as it is called once for every region. For this purpose, the member function
called InitParameter is used, which has two arguments. The first argument is the name of
the parameter as listed in the parameter file, and the second argument is its default value. The
latter is used if no value is assigned to the parameter for a particular region or material. The
supported value types for user-defined parameters are integer, floating-point number, and
string.

The following example shows how to initialize a parameter called Gamma in the constructor: 

Constant_CRI_Model::Constant_CRI_Model(const CRI_Environment& env) : 
CRI_Model(env) {

Gamma = InitParameter("Gamma", 1.5);

}

where Gamma was declared as a data member of type double in the class
Constant_CRI_Model.

In addition to the implementation of the two class member functions Compute_n and
Compute_k, the virtual constructor function and destructor function must be defined as: 

extern "C" {

opto_n_cri::CRI_Model* 
new_CRI_Model(const opto_n_cri::CRI_Environment& env)
{

return new opto_n_cri::Constant_CRI_Model(env);
}

void
delete_CRI_Model(opto_n_cri::CRI_Model* cri_model)
{

delete cri_model;
}

}

588 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Complex Refractive Index Model
In the above sample functions, it is assumed that the name of the user-provided derived class
is Constant_CRI_Model.

Runtime Support

The base class of CRI_Model is derived from another class called CRI_Model_Interface,
which adds several functions that extend the possibilities for defining new complex refractive
index models. Among them are functions that query basic properties of the model such as its
name, for which region and material it is called and which models have been specified in the
command file. Another group of functions allows you to read the values of the most common
variables on which the complex refractive index depends, namely, wavelength, carrier
densities, and temperature as well as the default values for the various contributions to the
complex refractive index. For most models, this set of functions should be sufficient. 

For advanced models, it may be necessary to have access to additional internal variables to
model the dependencies correctly. To this end, three interface functions are available that allow
you to query, to register, and to read the internal variables available. A specific variable can
only be read in the Compute functions if it has been registered in the constructor. The internal
name of the corresponding variable can be obtained from the function
GetAvailableVariables, which returns a vector of strings containing the names of all
supported variables.

The remaining functions offer support for mole fraction–dependent models and for direct
access of the NumericalTables defined in the parameter file.

The signatures of the runtime support functions discussed here can be found in the header file
CRIModels.h and are briefly described below. Corresponding type declarations are contained
in the header file ExportedTypes.h in the same installation directory. These header files are
located in $STROOT/tcad/$STRELEASE/lib/opto/include/.

General utility functions:

■ std::string Name() const: Returns the name of the CRIModel as specified in the
command file.

■ std::string ReadRegionName() const: Returns the name of the region to which the
vertex belongs.

■ std::string ReadMaterialName() const: Returns the name of the material to
which the vertex belongs.

■ bool WithModel(ComplexRefractiveIndexModelType model) const: Returns
true if model is activated for the region to which the vertex belongs; otherwise, false.
For each model, a corresponding specification in the ComplexRefractiveIndex
section of the command file exists (see Using Complex Refractive Index on page 581).
Sentaurus™ Device User Guide 589
N-2017.09



21: Optical Generation
Complex Refractive Index Model
Functions for reading the values of the most common variables on which the complex
refractive index depends:

■ double ReadWavelength() const: Returns wavelength in [ ].

■ double ReadTemperature() const: Returns temperature in [K].

■ double Read_eDensity() const: Returns electron density in [ ].

■ double Read_hDensity() const: Returns hole density in [ ].

■ double ReadQW_eDensity() const: Returns quantum-well electron density
corresponding to the bound states of the well in [ ].

■ double ReadQW_hDensity() const: Returns quantum-well hole density
corresponding to the bound states of the well in [ ].

Functions for accessing additional internal variables to model the dependencies correctly:

■ const std::vector<std::string>& GetAvailableVariables() const:
Returns a vector of strings containing all internal variable names.

■ void RegisterVariableToRead(std::string variable_name): Use variable
name string from previous call to GetAvailableVariables() to register a variable for
reading in the function body of the Compute functions. This is performed typically in the
constructor.

■ double ReadVariableValue(std::string variable_name) const: Returns
current value of variable selected by specifying variable name string from previous call to
GetAvailableVariables() as argument.

The following C++ code sample shows the use of the three functions for accessing additional
internal variables listed above:

Constant_CRI_Model::Constant_CRI_Model(const CRI_Environment& env) : 
CRI_Model(env) {

// print out available variables
const std::vector<std::string>& variables = GetAvailableVariables();
std::cout << "Available variables: ";
for(size_t i=0;i<variables.size();++i){

std::cout << variables[i] << " ";
}std::cout << std::endl;

RegisterVariableToRead("my_dn");
}

void Constant_CRI_Model::Compute_n(double& n) {
double my_dataset_val = ReadVariableValue("my_dn");
n = Read_n();
n += my_dataset_val;

}

μm

cm 3–

cm 3–

cm 3–

cm 3–
590 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Complex Refractive Index Model
In the above code sample, the dataset my_dn is registered in the constructor as a readable
variable and, in the Compute function, its value is added to the default refractive index given
by the specified models such as WavelengthDep in the ComplexRefractiveIndex section.
The for loop in the constructor is optional and allows you to query the exact names of the
datasets, which are needed as arguments to the ReadVariableValue function.

Functions for reading the real and imaginary parts of the complex refractive index as well as
its corresponding constituents computed according to the command file and parameter file
specification:

■ double Read_n() const: Returns the real part of the complex refractive index.

■ double Read_k() const: Returns the imaginary part of the complex refractive index.

■ double Read_n0() const: Returns the base refractive index given in Eq. 656, p. 578.

■ double Read_k0() const: Returns the base extinction coefficient given in Eq. 657,
p. 578.

■ double Read_d_n_lambda() const: Returns the change in refractive index due to its
wavelength dependency.

■ double Read_d_k_lambda() const: Returns the change in extinction coefficient due
to its wavelength dependency.

■ double Read_d_n_temp() const: Returns the change in refractive index due to its
temperature dependency.

■ double Read_d_n_carr() const: Returns the change in refractive index due to its
carrier dependency.

■ double Read_d_k_carr() const: Returns the change in extinction coefficient due to
its carrier dependency.

■ double Read_d_n_gain() const: Returns the change in extinction coefficient due to
its gain dependency.

Functions for retrieving information about mole fraction–dependent models and for direct
access of the NumericalTables defined in the parameter file:

■ int ReadNumberOfMoleFractionIntervals() const: Returns the number of
mole-fraction intervals defined in the ComplexRefractiveIndex section of the
parameter file.

■ double ReadxMoleFractionUpperLimit(int interval) const: Returns upper
limit of x-mole fraction interval specified as an argument.

■ double ReadNumericalTableValue_n(int interval = 0) const: Returns the
refractive index for the current wavelength and the mole-fraction interval specified as an
argument.
Sentaurus™ Device User Guide 591
N-2017.09



21: Optical Generation
Complex Refractive Index Model
■ double ReadNumericalTableValue_k(int interval = 0) const: Returns the
extinction coefficient for the current wavelength and the mole-fraction interval specified as
an argument.

■ NumericalTable<double>* ReadNumericalTable(int interval = 0) const:
Returns the numeric table for the mole-fraction interval specified as an argument. This
function may be useful if a custom table interpolation algorithm must be implemented.

Shared Object Code

Sentaurus Device assumes that the shared object code corresponding to a CRI model can be
found in the file modelname.so.arch. The base name of this file must be identical to the
name of the CRI model. The extension .arch depends on the hardware architecture. 

The script cmi, which is also a part of the CMI (see Compact Models User Guide, Chapter 4
on page 125), can be used to produce the shared object files (see Compact Models User Guide,
Runtime Support on page 150).

Command File of Sentaurus Device

To load CRI models into Sentaurus Device, the PMIPath search path must be defined in the
File section of the command file. The value of PMIPath consists of a sequence of directories,
for example:

File {
PMIPath = ". /home/joe/lib /home/mary/sdevice/lib"

}

For each CRI model, which appears in the ComplexRefractiveIndex section, the given
directories are searched for a corresponding shared object file modelname.so.arch.

A CRI model can be activated in the ComplexRefractiveIndex section of the command file
by specifying the name of the model as shown in the following example:

Physics {
Optics (

ComplexRefractiveIndex (
CRIModel (Name = "modelname")

)
)

}

592 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Raytracing
A CRI model name can only consist of alphanumeric characters and underscores (_). The first
character must be either a letter or an underscore. All the CRI models can be specified
regionwise or materialwise:

Physics (region = "Region.1") { ... }

Physics (material = "SiO2") { ... }

when using the unified interface for optical generation computation in Sentaurus Device;
otherwise, only global specification is supported.

Raytracing

Sentaurus Device supports the simulation of photogeneration by raytracing in two and three
dimensions for arbitrarily shaped structures, as well as body-of-revolution structures using 2D
and cylindrical coordinates. The calculation of refraction, transmission, and reflection follows
geometric optics, and special boundary conditions can be defined. A dual-grid setup can be
used to speed up simulations that include raytracing.

Raytracer

In Sentaurus Device, the raytracer has been implemented based on linear polarization. It is
optimized for speed and needs to be used in conjunction with the complex refractive index
model (see Complex Refractive Index Model on page 578). Each region/material must have a
complex refractive index section defined in the parameter file. If the refractive index is zero, it
is set to a default value of 1.0.

The raytracer uses a recursive algorithm: It starts with a source ray and builds a binary tree that
tracks the transmission and reflection of the ray. A reflection/transmission process occurs at
interfaces with refractive index differences. This is best illustrated in Figure 30.

An incident ray impinges on the interface of two different refractive index (  and ) regions,
resulting in a reflected ray and a transmitted ray. The incident, reflected, and transmitted rays
are denoted by the subscripts , , and , respectively. Likewise, the incident, reflected, and
transmitted angles are denoted by , , and , respectively. These angles can be derived
from the concept of interface tangential phase-matching (commonly called Snell’s law) using:

(670)

To define these angles, a plane of incidence must be clearly defined. It is apparent that the plane
of incidence is the plane that contains both the normal to the interface and the vector of the ray.

n1 n2

i r t
θi θr θt

n1 θisin n2 θtsin=
Sentaurus™ Device User Guide 593
N-2017.09



21: Optical Generation
Raytracing
When the plane of incidence is defined, the concept of TE and TM polarization can then be
established.

A ray can be considered a plane wave traveling in a particular direction with its polarization
vector perpendicular to the direction of propagation. The length of the polarization vector
represents the amplitude, and the square of its length denotes the intensity. The TE polarization
(s-wave) applies to the ray polarization vector component that is perpendicular to the plane of
incidence. On the other hand, the TM polarization (p-wave) applies to the ray polarization
vector component that is parallel to the plane of incidence.

In Figure 30, the TE and TM components of the ray polarization vector are denoted by 
and , respectively. 

Figure 30 Incident ray splits into reflected and transmitted rays at an interface: the TE 
component of the polarization vector maintains the same direction, whereas the 
TM component changes direction

The TE and TM components of the ray polarization vector experience different reflection and
transmission coefficients. These coefficients are:

Amplitude reflection coefficients:

(671)

(672)

ETE

ETM

E
i
TE

E
t
TE

E
i
TM

E
r
TM

E
r
TE

E
t
TM

n1
n2

r

t

i

θ

θ θ

rTE

k1z k2z–

k1z k2z+
---------------------=

rTM

ε2k
1z

ε1k
2z

–

ε2k
1z

ε1k
2z

+
--------------------------------=
594 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Raytracing
Amplitude transmission coefficients:

(673)

(674)

Power reflection coefficients:

(675)

(676)

Power transmission coefficients:

(677)

(678)

where:

(679)

(680)

(681)

(682)

(683)

where  is the free space wavelength, and  is the free space wave number. Note that for
amplitude coefficients, . For power coefficients, . These relations can be
verified easily by substituting the above definitions of the reflection and transmission
coefficients of the respective TE and TM polarizations. For normal incidence when

, , and .

If the refractive index is complex, the reflection and transmission coefficients are also complex.
In such cases, only the absolute value is taken into account.

tTE

2k1z

k1z k2z+
---------------------=

tTM

2ε2k1z

ε2k
1z

ε1k
2z

+
--------------------------------=

RTE rTE
2

=

RTM rTM
2

=

TTE

k2z

k1z
------- tTE

2
=

TTM

ε1k
2z

ε2k
1z

------------ tTM
2

=

k0 2π λ0⁄=

k1z n1k0 θicos=

k2z n2k0 θtcos=

ε1 n1
2

=

ε2 n2
2

=

λ0 k0

1 r+ t= R T+ 1=

θi θt 0= = rTE rTM–= RTE RTM=
Sentaurus™ Device User Guide 595
N-2017.09



21: Optical Generation
Raytracing
The raytracer automatically computes the plane of incidence at each interface, decomposes the
polarization vector into TE and TM components, and applies the respective reflection and
transmission coefficients to these TE and TM components.

Ray Photon Absorption and Optical Generation

When there is an imaginary component (extinction coefficient), , to the complex refractive
index, absorption of photons occurs. To convert the absorption coefficient to the necessary
units, the following formula is used for power/intensity absorption:

(684)

In the complex refractive index model, the refractive index is defined element-wise. In each
element, the intensity of the ray is reduced by an exponential factor defined by 
where  is the length of the ray in the element. Therefore, the photon absorption rate in each
element is:

(685)

 is the rate intensity (units of ) of the ray in the element. After all of the photon
absorptions in the elements have been computed, the values are interpolated onto the
neighboring vertices and are divided by its sustaining volume to obtain the final units of

. The absorption of photons occurs in all materials (including nonsemiconductor)
with a positive extinction coefficient for raytracing. Depending on the quantum yield (see
Quantum Yield Models on page 544), a fraction of this value is added to the carrier continuity
equation as a generation rate so that correct accounting of particles is maintained.

Using the Raytracer

The raytracer must be invoked within the unified interface for optical generation computation
(see Raytracing on page 556), and can have the following options:

■ Raytracing used in simple optical generation.

■ Monte Carlo raytracing.

■ Multithreading for raytracing.

■ Compact memory model for raytracing.

■ User-defined and distribution windows of starting rays.

■ Cylindrical coordinates for raytracing.

■ Different boundary conditions for raytracing.

■ Visualizing raytracing results.

κ

α λ( ) cm
1–[ ] 4πκ

λ
----------=

αL–( )exp
L

G
opt

x y z t, , ,( ) I x y z, ,( ) 1 e
αL–

–[ ]=

I x y z, ,( ) s 1–

s 1– cm 3–⋅
596 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Raytracing
Optical generation by raytracing is activated by the RayTracing statement in the Physics
section. An example of optical generation by raytracing is:

Plot {...
RayTrees

}

Physics {...
Optics (

ComplexRefractiveIndex(
WavelengthDep(real imag)
CarrierDep(real imag)
GainDep(real) * or real(log)
TemperatureDep(real)
CRImodel (Name = "crimodelname")

)
OpticalGeneration(...)
Excitation (...

PolarizationAngle = 45 * deg
Wavelength        = 0.5 * um
Intensity         = 0.1 * W/cm2
Window(

Rectangle(dx = 1, dy = 2)
IntensityDistribution(...)

)
)
OpticalSolver (

RayTracing(
RayDistribution(...)
MonteCarlo
CompactMemoryOption * reduced memory consumption
MinIntensity = 1e-3 * fraction of start intensity to stop ray
UseAverageMinIntensity * use average intensity of all starting rays

* as reference for MinIntensity
DepthLimit = 1000 * maximum number of interfaces to pass
RetraceCRIchange = 0.1 * fractional change of CRI to retrace

)
)

)
}

The complex refractive index model must be used in conjunction with the raytracer. Various
dependencies of the complex refractive index can be included, and they are controlled by
parameters in the ComplexRefractiveIndex section of the parameter file (see Complex
Refractive Index Model on page 578). The CRI model can be defined regionwise or
materialwise. The keyword RetraceCRIchange specifies the fractional change of the
complex refractive index (either the real or imaginary part) from its previous state that will
Sentaurus™ Device User Guide 597
N-2017.09



21: Optical Generation
Raytracing
force a total recomputation of raytracing. To force retracing at every ramping point, you can
set RetraceCRIchange to a negative number.

The starting rays are defined by a rectangular window or a user-defined window (see Window
of Starting Rays on page 600).

Terminating Raytracing

Raytracing offers different termination conditions:

■ Raytracing is terminated if the ray intensity becomes less than  times (MinIntensity
specifies ) the original intensity of each starting ray.

■ DepthLimit specifies the maximum number of material boundaries that the ray can pass
through.

■ UseAverageMinIntensity activates the computation of an average value of all the
starting rays, , and raytracing terminates when the ray intensity becomes less than

. This is only useful with the spatial intensity excitation profile (see
Spatial Intensity Function Excitation on page 568).

Monte Carlo Raytracing

In instances where rays are randomly scattered, for example on rough surfaces, a Monte
Carlo–type raytracing is required, since you need to look at the aggregate solution of the
raytracing process.

The concept of Monte Carlo raytracing follows that of the Monte Carlo method for carrier
transport simulation. Suppose a ray impinges an interface. In the deterministic framework, the
ray will split into a reflected part and a transmitted part at this interface. In the Monte Carlo
framework, you track only one ray path and take the reflectivity as a probability constraint to
decide if the ray is to be reflected or transmitted. As more rays impinge this material interface,
the aggregate number of reflected rays will recover information about the reflectivity, and this
is the crux of the Monte Carlo method. In a likewise manner, rough surface scattering gives an
angular probability and, using the same strategy, the ensemble average of rays can model the
physics of rough surface scattering.

As an example, the algorithm for the Monte Carlo raytracing at a regular material interface is:

■ Compute the reflection and transmission coefficients,  and , of the ray at the material
interface.

■ Generate a random number, .

n
n

Iavg

Iavg MinIntensity×

R T

r

598 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Raytracing
■ If , then choose to propagate the reflected ray only.

■ If , then choose to propagate the transmitted ray only.

In the case of special rays, such as those from the raytrace PMI, care must be taken to choose
only a single propagating ray based on a new set of probabilistic rules.

The Monte Carlo raytracing has been implemented in both general raytracing and LED
raytracing. The syntax is:

Physics {
Optics (

OpticalSolver (
RayTracing (

MonteCarlo
)

)
)

}

NOTE Since only one ray path is chosen at each scattering event in the Monte
Carlo method, the rays in the raytree will appear to have the same
intensity values after scattering.

Multithreading for Raytracer

Each raytree traced from the list of starting rays is mutually exclusive, so that the raytracer is
an excellent candidate for parallelization.

To activate the multithreading capability of the raytracer, include the following syntax in the
Math section of the command file:

Math {
Number_Of_Threads = 2 # or maximum
StackSize = 20000000 # increase to, for example, 20 MB

}

NOTE Raytracing is a recursive process, so it can easily obliterate the default
(1 MB) stack space if the level of the raytree becomes increasingly deep.
This may lead to unexplained segmentation faults or abortion of the
program. To resolve this issue, increase the stack space using the
keyword StackSize in the Math section as shown in the above syntax.
The other solution is to use the compact memory model as described
next.

r R≤
r R>
Sentaurus™ Device User Guide 599
N-2017.09



21: Optical Generation
Raytracing
Compact Memory Model for Raytracer

The compact memory model for the raytracer does not store the raytree as it is being created,
so it reduces the use of significant memory. Only essential information is tracked and stored,
and this alleviates the amount of memory required. A reduced structure is used, and clever
ways of extracting information in this reduced structure have been implemented without
upsetting the multithreading feature of raytracing. 

The compact memory model is activated as the default only for the unified interface for optical
generation computation. The default is still switched off for the LED raytracing interface. A
minus sign can be added in front of the keyword to deactivate it. If raytrees are requested to be
plotted in the Plot statement, the compact memory model is switched off automatically, and
a warning message appears in the log file to alert you of the changes. The command file syntax
to switch off the compact memory option is:

Physics {...
Optics( OpticalSolver(...

RayTracing (
-CompactMemoryOption

)
))

}

Window of Starting Rays

Two mutually exclusive options for defining a set of starting rays are available: a user-defined
set of rays or a distribution window. These can be defined within the Physics-Optics-
OpticalSolver-Raytracing statement syntax:

UserWindow (
NumberOfRays = integer # number of rays in file
RaysFromFile = "filename.txt" # position(um) direction area(cm^2)
PolarizationVector = Random | ReadFromExcitation | ReadFromFile

)

RayDistribution (WindowName= "windowname1" ...)

User-Defined Window of Rays

In the UserWindow section, you can enter your own set of starting rays using a text file. This
means that you can choose the positions, directions, area, and polarization vector of each
starting ray, thereby achieving greater flexibility.
600 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Raytracing
The power (W) of each ray then is computed by multiplying the input area (  in 3D or
cylindrical simulations, and cm in 2D simulations) by the input wave power ( ).
Remarks are allowed but they must begin with a hash character (#). A sample of this file for
3D rays is:

filename.txt:
# Position(x,y,z)[um] Direction(x,y,z)[um] Area[cm^2] Polarization(x,y,z)
0.0    0.0    0.0      0.0    0.0    1.0      1.0e-5 1 0 0
0.0    0.05   0.0      0.0    0.0    1.0      1.0e-5  0 1 0
0.0    0.05   0.05     0.0    0.0    1.0      1.0e-5 0 1 0
...

NOTE In 2D simulations, you must input the Area as a segment length (in cm).
Consistent with 2D Sentaurus Device simulations, the third dimension
is taken to be a default of , which means that the actual area for
each user ray is the user Area [cm] multiplied by .

Different types of PolarizationVector can be chosen:

■ Random: A random vector perpendicular to the ray direction is generated. In two
dimensions, the generated random vector can be a 3D vector.

■ ReadFromFile: The polarization vector is entered as the last three columns in the file.

■ ReadFromExcitation: The polarization vector is constructed based on the information
contained within the Excitation section. This is the default if the keyword
PolarizationVector is omitted. The priority order for reading the polarization under
this option is:
(1) OpticalSolver - RayTracing - PolarizationVector = (<float> <float>
<float>) 
(2) OpticalSolver - RayTracing - PolarizationRandom 
(3) Excitation - PolarizationAngle = <float> 
(4) Excitation - Polarization = TE | TM | <float> 

If none of these options is found, Excitation - PolarizationAngle=0 is used by
default.

NOTE If PolarizationVector is set to ReadFromExcitation or
Random, the last three columns of the file that describe the polarization
are ignored.

In 2D simulations, the TE polarization vector is (0,0,1) and the TM polarization vector is
formed by the cross product of the ray’s direction vector and (0,0,1), with reference to
Figure 30 on page 594. 

cm2

W/cm2

1μm
1μm
Sentaurus™ Device User Guide 601
N-2017.09



21: Optical Generation
Raytracing
Distribution Window of Rays

When the illumination window (see Illumination Window on page 562) is defined for
raytracing, a corresponding RayDistribution section must be created to define how the
excitation parameters can be translated in a raytracing context:

Physics {
Optics (

Excitation(
Window ("windowname1")(

Origin = (xx,yy)
OriginAnchor = Center | North | South | East | West | NorthEast |

SouthEast | NorthWest | SouthWest
RotationAngles = (phi, theta, psi)
xDirection = (x,y,z)
yDirection = (x,y,z)
# You can define one of the following excitation shapes.
# Rectangle, Circle, and Polygon are for three dimensions.

Rectangle( ... )
Line( ... )
Circle( ... )
Polygon( ... )

)
Window ("windowname2") (...)
Window ("windowname3") (...)

)
OpticalSolver(

Raytracing(
RayDistribution(

WindowName = "windowname1"
Mode = Equidistant | MonteCarlo | AutoPopulate
NumberOfRays = integer # for Mode=MonteCarlo | AutoPopulate
Dx = float # for Mode=Equidistant
Dy = float # for Mode=Equidistant
Scaling = float # scaling factor

)

Table 119 Requirements for the parameters in the input file for the user ray

Parameter 2D simulation Cylindrical simulation 3D simulation

Position [ ] (x,y,0) (x,y,0) (x,y,z)

Direction (x,y,0) (x,y,0) (x,y,z)

Units of user input Area cm (internally will be 
multiplied by )

Polarization vector 
(ReadFromFile only)

(x,y,z) (x,y,z) (x,y,z)

μm

1 μm
cm

2
cm

2

602 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Raytracing
RayDistribution (WindowName="windowname2" ...)
RayDistribution (WindowName="windowname3" ...)

)
)

)
}

Multiple excitation windows and RayDistribution windows can be created. The only
restriction is that every RayDistribution section must have a matching Excitation
section. Matching is through the user-specified window name. If no window name for the
RayDistribution section is specified, the parameters in that window are applied to all
excitation windows, except those with matching window names.

The shape of the excitation is defined in the Excitation(...Window(...)) section, and
the shape can be a Line for two dimensions, and a Rectangle, Circle, or Polygon for three
dimensions. 

There are different ways in which you can create a set of starting rays on the excitation shape:

■ Mode=Equidistant: The starting positions of the rays are arranged in a regular grid with
intervals defined by Dx and Dy. Then, the grid is superimposed onto the excitation shape to
extract an appropriate set of starting rays.

■ Mode=MonteCarlo: Random positions are generated with the excitation shape to form the
set of starting rays.

■ Mode=AutoPopulate: A uniform grid of variable grid size is superimposed onto the
excitation shape. The grid size is varied until the maximum possible number of grid points
that is less than NumberOfRays can be fitted into the shape, and the set of starting ray
positions is extracted from the fitted grid vertices.

Cylindrical Coordinates for Raytracing

Body-of-revolution structures can be modeled optically in raytracing by tracing the rays in the
2D cut of the cylindrical structure and taking into account the reflection at the cylindrical axis
and the ring volume of revolution.

To model body-of-revolution structures with raytracing:

1. Switch on the cylindrical coordinates in the Math section, and specify the location of the
cylindrical axis. You can use either the keyword xAxis to specify the revolution around the
y-axis (xAxis=<float>) or the keyword yAxis to specify the revolution around the x-
axis (yAxis=<float>). The syntax is:

Math {...
Cylindrical(xAxis=<float>) # default is xAxis=0

}

Sentaurus™ Device User Guide 603
N-2017.09



21: Optical Generation
Raytracing
2. Define the illumination window appropriately, so that it lies on the same side as the device
from the cylindrical axis, and both the window and device do not intersect the cylindrical
axis.

3. There is no need to define any special reflecting boundary at the cylindrical axis. Sentaurus
Device automatically creates an internal virtual reflecting boundary at the cylindrical axis
so that any rays impinging it will be reflected.

4. The RayDistribution illumination window supports cylindrical coordinates. All
methods of generating cylindrical starting rays are possible: AutoPopulate,
Equidistant, and MonteCarlo. If the Gaussian spatial intensity is specified, the
Gaussian shape is superimposed on the cylindrical ring-area weighted power of each
starting ray, only for the AutoPopulate and Equidistant options. There is no support
for the Gaussian spatial intensity and cylindrical MonteCarlo starting rays.

5. The illumination window can be at a skewed angle from the cylindrical axis, as shown in
Figure 31.

Assuming that the angle subtended between the illumination window and the cylindrical axis
is , the conical ring area of revolution is:

(686)

This area is multiplied to each starting ray to retrieve the power carried by it. As a check, when
, Eq. 686 reduces to that of a ring area. 

Figure 31 An illumination window subtended at an angle  from the cylindrical axis, forming 
a conical surface of revolution

θ

Area π r1 r2+( ) r2 r1–( ) 1
θsin

-----------=

θ 90°=

h

r2

r1

Area of strip revolved
around cylindrical axis

θ

θ

604 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Raytracing
Boundary Condition for Raytracing

Special and spatially arbitrary boundary conditions can be specified in raytracing. There are
two ways to define a boundary condition (BC) for raytracing by:

■ Using special contacts.

In the contact-based definition, the boundaries are drawn as contacts (see Specifying
Electrical Boundary Conditions on page 67) and are labeled accordingly using Sentaurus
Structure Editor. These contacts can be constructed specifically for setting a raytrace
boundary condition, or they can coincide with an electrode or a thermode. To define clearly
special raytrace boundary conditions, each line or surface contact defined must have a
distinct name. This means that two parallel contacts must have different contact names, and
intersecting contacts must also have different contact names. The contact is discretized into
edges (2D) or faces (3D) after meshing.

■ Using Physics MaterialInterface or Physics RegionInterface.

In the Physics MaterialInterface– or Physics RegionInterface–based
definition, the boundaries are defined at the interface between the material or region. As
with typical Sentaurus Device operation, RegionInterface takes precedence over
MaterialInterface. After meshing, the interface is discretized into edges (two
dimensions) or faces (three dimensions).

A mixture of contact-based and physics interface definitions of BCs is allowed. However, the
contact-based definition takes precedence over the physics interface–based definition if there
is an overlap.

Each edge or face defined as a special contact can only associate itself to one type of boundary
condition. The following boundary conditions are listed in the order of preference, that is, if
two boundary conditions are specified for the same edge or face, the higher ranked one is
chosen: 

1. Fresnel BC.

2. Constant reflectivity/transmittivity BC.

3. Raytrace PMI BC.

4. Multilayer antireflective coating BC.

5. Diffuse surface BC, implemented as an installed PMI.

6. Periodic BC.
Sentaurus™ Device User Guide 605
N-2017.09



21: Optical Generation
Raytracing
Fresnel Boundary Condition

The physics interface–based BC can quickly set many interfaces to a particular type of BC,
especially if the material interface contains many region interfaces. What is missing is the
disabling of a particular region interface from the general BC definition. Therefore, the Fresnel
BC is introduced as a complement set to unset a particular region interface-based or contact-
based BC. This can greatly simplify the command syntax input and enhance ease of use.

Furthermore, the Fresnel BC also can be used to sense the photon flux flowing through a
particular interface when users activate the PlotInterfaceFlux feature (see Plotting
Interface Flux on page 618).

The syntax for activating the Fresnel BC is: 

Constant Reflectivity and Transmittivity Boundary Condition

In the command file, constant reflectivity and transmittivity boundaries must be specified by
the following syntax:

These are power reflection, , and transmission, , coefficients. It is not necessary for
. If  is specified only, . If  is specified only, . 

For total absorbing or radiative boundary conditions, set Reflectivity = 0 and
Transmittivity = 0 (or Transmittivity = 1). Defining Reflectivity = 1 ensures
that rays are totally reflected at that boundary. In the 2D case, reflection occurs at the edge of
the element. In the 3D case, reflection occurs at the face of the element. This versatile boundary
condition feature enables you to use symmetry to reduce the simulation domain.

RayTraceBC {
{ Name = "contact1"
Fresnel

}
}

Physics(RegionInterface="reg1/reg2") {
RaytraceBC (
Fresnel

)
}

RayTraceBC {
{ Name = "ref_contact1"
Reflectivity = float

}
{ Name = "ref_contact2"
Reflectivity = float
Transmittivity = float

}
...

}

Physics (RegionInterface="regionname1/regionname2") {
RayTraceBC (
Reflectivity = float
Transmittivity = float

)
}

R T
R T+ 1= R T 1 R–= T R 1 T–=
606 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Raytracing
Examples of the boundary condition whereby Reflectivity has been set to 1.0 are shown
in Figure 32 and Figure 33. In the 2D case, a star boundary is drawn within a device; in the 3D
case, a rectangular boundary is drawn within the device. 

Figure 32 Applying the reflecting boundary condition in a 2D LED simulation; the boundary 
is drawn as a star inside the device

Figure 33 Applying the reflecting boundary condition in a 3D LED simulation; the boundary 
is drawn as a hollow rectangular waveguide inside the device

Raytrace PMI Boundary Condition

A special raytrace PMI BC can be defined. You can obtain useful information about the ray
with this raytrace PMI and can modify some parameters of the ray. For details about this PMI
and how it can be incorporated into the simulation, see Preprocessing for Newton Iterations and
Newton Step Control on page 1246.
Sentaurus™ Device User Guide 607
N-2017.09



21: Optical Generation
Raytracing
As with the standard PMI, you can create a PMI section in the parameter file where you can
initialize the parameters of the PMI. Note that the parameter must be specified either
regionwise or material-wise in accordance to the standard PMI framework.

To activate the PMI, specify the location of the PMI BC and include the following syntax in
the RayTraceBC section of the command file:

NOTE Care must be taken to ensure that your PMI code is thread safe since the
raytracing algorithm is multithreaded. Use only local variables and
avoid global variables in your PMI code (see Parallelization on
page 1091).

Thin-Layer-Stack Boundary Condition

A thin-layer-stack boundary condition can be used to model interference effects in raytracing.
The modeling of antireflective coatings used in solar cells is a typical example of the use of
such boundary condition. The coatings are specified as special contacts and are treated as a
boundary condition for the raytracer. The angle at which the ray is incident on the coating is
passed as input to the TMM solver (the theory is described in Transfer Matrix Method on
page 625), which returns the reflectance, transmittance, and absorbance for both parallel and
perpendicular polarizations to the raytracer. The angle of refraction is calculated by the
raytracer according to Snell’s law, a direct implication of phase matching. This boundary
condition is available for both 2D and 3D simulations. 

The following command file excerpt, along with its demonstration in Figure 34 on page 609,
shows the use of this boundary condition: 

RayTraceBC {...
{ Name = "pmi_contact"

PMIModel = "pmi_modelname"
}

}

Physics (MaterialInterface="materialname1/materialname2") {
RayTraceBC (
pmiModel = "modelname"

)
}

RayTraceBC {
{ Name="rayContact1" reflectivity=1.0 }
{ Name="rayContact2"

ReferenceMaterial = "Gas"
LayerStructure {
70e-3 "Nitride"; # um
6e-3 "Oxide" # um

}
}

}

Physics (MaterialInterface="Gas/Silicon") {
RayTraceBC (
TMM (
ReferenceMaterial = "Gas"
LayerStructure {
70e-3 "Nitride"; # um
6e-3 "Oxide"; # um

}
)

)
}

608 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Raytracing
The first line in the RayTraceBC section above shows the definition of a constant reflectivity
as a boundary condition (see Fresnel Boundary Condition on page 606). This option is usually
chosen for the boundary of the simulation domain. 

The other section defines a multilayer structure, for which the corresponding contact
(rayContact2) in the grid file can be seen as a placeholder. Alternatively, you can use the
Physics interface method of specifying such a special BC (as shown in the above syntax to
the right). For each layer, the corresponding thickness ([ ]) and material name must be
specified. For the calculation of transmittance and reflectance, the transfer matrix method reads
the complex refractive index from the respective parameter file. An additional parameter file
or a new set of parameters must be added by you in either of the following cases: (a) a layer
contains a material that does not exist in the grid file or (b) the material properties of a layer
differ from the properties of a region in the grid file with the same material.

To fix the orientation of the multilayer structure with respect to the specified contact in the grid
file, a ReferenceMaterial or a ReferenceRegion that is adjacent to the contact must be
specified. The topmost entry of the LayerStructure table corresponds to the layer that is
adjacent to the ReferenceMaterial or ReferenceRegion. 

NOTE It is only possible to specify a ReferenceMaterial or
ReferenceRegion if the material names or region names,
respectively, on either side of the contact do not coincide.

The multilayer structure is allowed to have an arbitrary number of layers. 

Figure 34 Illustration of thin-layer-stack boundary condition for simulation 
of an antireflection-coated solar cell

TMM Optical Generation in Raytracer

In modern thin-film solar-cell design, the multilayer thin film can be made of materials that can
generate carriers by absorbing photons. To cater to such a phenomenon, the TMM contact in
the raytracer has been modified to collect optical generations as rays traverse the TMM contact.

μm

Gas

Nitride

Oxide

Silicon

Gas

Silicon rayContact2

ra
yC

on
ta

ct
1

Sentaurus™ Device User Guide 609
N-2017.09



21: Optical Generation
Raytracing
The collected optical generations can then be distributed into specific regions of the electrical
grid.

In addition, to model the correct optical geometry, the thin-film layers must be drawn into the
device structure. However, the raytracer treats the physics of thin film using a TMM contact,
and these thin layers should effectively be ignored during the raytracing process. As such, you
need to use VirtualRegions (see Virtual Regions in Raytracer on page 614) to ignore these
thin layers in the raytracing process. The required syntax is: 

Physics {...
Optics(...

OpticalSolver(
RayTracing (...

VirtualRegions{"toppml" "nitride" "oxide" ...}
)

)
)

}

A few comments about the syntax:

■ QuantumEfficiency denotes the fraction of absorbed photons in the TMM BC that will
be converted to optical generation. The keyword QuantumYield also can be specified in
the unified raytracing interface. Therefore, the overall quantum yield of the TMM BC is a
product of QuantumEfficiency and QuantumYield.

■ The region names in the MapOptGenToRegion section refer to regions in the electrical
device grid. The MapOptGenToRegions{...} list and VirtualRegions{...} list are
independent, and there is no need for a one-to-one correspondence. For example, you can
have VirtualRegions{r1,r2,r3} and MapOptGenToRegions{r2,r4} whereby the
entire optical generation from a TMM BC will be mapped onto regions r2 and r4
according to their volume ratio. The order of the region list is not relevant.

RayTraceBC {...
{ Name="TMMcontact"
ReferenceMaterial = "Gas"
LayerStructure {...}
MapOptGenToRegions {"thinlayer1" 

"thinlayer2" ...}
QuantumEfficiency = float

}
}

Physics (RegionInterface="regionname1/
regionname2") {
RayTraceBC (
TMM (
ReferenceMaterial = "Gas"
LayerStructure {...}
MapOptGenToRegions {"thinlayer1"

"thinlayer2" ...}
QuantumEfficiency = float

)
)

}

610 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Raytracing
■ For the optical generation mapping, a constant optical generation profile is assumed. The
optical generation from a TMM BC is lumped into a constant value and distributed to
different MapOptGenToRegions regions according to their volume ratios.

■ The region names in the VirtualRegions section refer to regions in the optical device
grid.

Diffuse Surface Boundary Condition

Rough surfaces can be modeled by diffuse surface boundary conditions. The available diffuse
BC models are:

■ Phong scattering model with distribution:

(687)

where  is the order of the Phong model,  is the scattered angle with respect to the
scattering surface, and  is an offset angle for the lobe of the distribution.

■ Lambert scattering model with distribution:

(688)

NOTE The Lambert scattering model is a special case of the Phong model.

■ Gaussian scattering model with distribution:

(689)

where  is the variance of the distribution.

■ Random scattering model with uniform distribution.

Within Sentaurus Device, a random number  is generated, and a mapping function
is used to compute the scattering angle . The mapping function is computed as follows:

The random number  has a uniform distribution such that:

(690)

The scattering angle  has a distribution function, , which can be the Phong,
Lambert, or Gaussian model.

I I0⁄ cos
ω α γ+( )=

ω α
γ

I I0⁄ α γ+( )cos=

I I0⁄ α γ+( )2

2σ2
--------------------–

 
 
 

exp=

σ2

x 0 1,[ ]∈
α

x 0 1,[ ]∈

f x( ) xd
0

1

 1=

α 0 π 2⁄,[ ]∈ p α( )
Sentaurus™ Device User Guide 611
N-2017.09



21: Optical Generation
Raytracing
3D Case

The mapping requirement is:

(691)

and the normalization requirement is:

(692)

2D Case

The mapping requirement is:

(693)

and the normalization requirement is:

(694)

For the different scattering models,  must be derived based on the normalization conditions
for 2D and 3D, respectively.

To find the inverse mapping of the random variable x to , the integration of the probability
density functions to  and x is performed, respectively:

 for 3D (695)

and:

 for 2D (696)

Then, the objective would be to express  as a function of x. As an example, the inverse
mapping function for the 3D Phong model is:

(697)

The inverse mapping functions of the other scattering models can be derived in a similar
manner.

p α( )2πR αdαsin f x( )dx=

2πRp α( ) αsin αd
0

π 2⁄

 1=

p α( )Rdα f x( )dx=

p α( )R αd
0

π 2⁄

 1=

R

α
α

2πRp α( ) αsin αd
0

α

 x=

p α( )R αd
0

α

 x=

α

α cos
1–

1 x–ω 1+[ ]=
612 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Raytracing
The diffuse surface BC has been implemented as an installed PMI and can be invoked by
including the following syntax in the Sentaurus Device command file: 

where ... stands for the following scattering model parameters:

model = "Phong" # "Lambert", "Random", "Gaussian"
phong_w = 200 # w parameter of Phong model
gaussian_sigma = 0.1 # sigma parameter of Gaussian model
set_randomseed = 123 # 0 to 10000, or -1=do not set
debug = 0 # 1=print debug message, 0=do not print,

# 99999 = interactive debug
ReflectionTransmissionTable = "wavelengthRTtable.txt" # file input
pdfDimension = 2 # dimension of probability density function
reflectivity = 0.0 # reflectivity of rough surface
transmittivity = 1.0 # transmittivity of rough surface

Some comments about the parameter settings:

■ You can set the specific reflectivity and transmittivity of the diffusive surface. However, if
you still want to use the original reflectivity and transmittivity computed from the adjoining
regions, set reflectivity=-1 and transmittivity=-1.

■ Setting a random seed allows for reproducibility of the simulation results.

■ A useful debug option is included to ensure that the correct distribution is obtained.

■ You can include the content of the "wavelengthRTtable.txt" file that contains a table
of three columns: wavelength ( ), reflectivity, and transmittivity. These are power
reflectivity and transmittivity values, and enable the reflectivities and transmittivities of the
specific diffuse boundary to change according to the wavelength.

■ The pdfDimension refers to the dimension of the probability density function (PDF), and
this can be chosen to be different from the dimension of the device. If this keyword is not
included, the pdfDimension is set to the dimension of the device.

NOTE Instead of specifying the PMI parameters in the command file, you also
can define them in the parameter file. To do so, in the command file, in
the RayTraceBC section, set PMIModel= "pmi_rtDiffuseBC". In
the material parameter file, add a section pmi_rtDiffuseBC {...},
where ... corresponds to the scattering model parameters as previously
described.

RayTraceBC {
{ Name = "rough_contact"
PMImodel = pmi_rtDiffuseBC ( ... )

}
}

Physics(RegionInterface="region1/region2") {
RayTraceBC (
PMImodel = pmi_rtDiffuseBC ( ... )

)
}

μm
Sentaurus™ Device User Guide 613
N-2017.09



21: Optical Generation
Raytracing
Periodic Boundary Condition

The periodic boundaries are limited to parallel X-, Y-, or Z-surfaces, so the device must have
parallel surfaces in the direction of the periodicity. No special raytrace contacts need to be
drawn onto the device, and you only need to specify the following syntax:

RayTraceBC {
{ Side="X" Periodic }
{ Side="Y" Periodic }
{ Side="Z" Periodic }

}

These periodic specifications are mutually exclusive, so you can specify a combination of any
of them.

When the PlotInterfaceFlux feature (see Plotting Interface Flux on page 618) is activated,
the corresponding entries describing the periodic fluxes are output to the plot file:

PeriodicFlux
Xmin.FluxIn(region_name1)
Xmin.FluxOut(region_name1)
Xmax.FluxIn(region_name2)
Xmax.FluxOut(region_name2)
Ymin.FluxIn(region_name3)
Ymin.FluxOut(region_name3)
Ymax.FluxIn(region_name4)
Ymax.FluxOut(region_name4)
Zmin.FluxIn(region_name5)
Zmin.FluxOut(region_name5)
Zmax.FluxIn(region_name6)
Zmax.FluxOut(region_name6)

NOTE Only those regions that contain any of the periodic BCs will be included
in the list.

Virtual Regions in Raytracer

This feature is a prelude to the TMM optical generation in the raytracer feature. Virtual regions
can be defined in the raytracer such that rays ignore the presence of these regions during the
raytracing process. In other words, when rays enter or leave a virtual region, no reflection or
refraction occurs, and the ray is transmitted without change. This allows for additional
flexibility in dual-grid simulations where some regions are important for electrical transport
but insignificant for optics.
614 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Raytracing
The syntax is:

Physics {...
Optics(...

OpticalSolver(
RayTracing (...

VirtualRegions{"nitride" "oxide" "layer555" ...}
)

)
)

}

External Material in Raytracer

The default material surrounding a device is assumed to be air. In many cases, especially in
LEDs, the device can be immersed in another material such as epoxy or some kind of phosphor.
To correctly account for the directional, reflectivity, and transmittivity changes caused by such
external material, a user-defined file of wavelength-dependent complex refractive indices can
be entered. The syntax is:

Physics {
Optics (

OpticalSolver (
Raytracing (

ExternalMaterialCRIFile = "string"
)

)
)

}

The external material CRI file should contain three columns: wavelength ( ), n, and k. A
hash sign (#) is used to precede remarks. If the keyword ExternalMaterialCRIFile is not
specified, the external medium is taken to be air with refractive index of 1.0.

Additional Options for Raytracing

Additional options enable better control of raytracing in Sentaurus Device:

■ Omitting reflected rays when performing raytracing.

■ Omitting weaker rays when performing raytracing.

The syntax for these options is:

Physics { ...
Optics(...

μm
Sentaurus™ Device User Guide 615
N-2017.09



21: Optical Generation
Raytracing
OpticalSolver(
RayTracing (

OmitReflectedRays
OmitWeakerRays

)
)

)
}

Redistributing Power of Stopped Rays

When the raytracing terminates at a designated DepthLimit or MinIntensity value, there
is still leftover power in those terminated rays. The sum of the powers contained in all these
stopped rays can be redistributed into the raytree. The total power of the rays is:

(698)

where  is the absorbed power,  is the power of the escaped rays (out of the device),
and  is the power of the rays terminated by the DepthLimit or MinIntensity
condition. 

Rearranging the equation, the following expression is obtained:

(699)

Therefore, by multiplying a redistribution factor to  and , the leftover power in the
stopped rays can be accounted for. The syntax is:

Physics {...
Optics(...

OpticalSolver(
RayTracing (...

RedistributeStoppedRays
)

)
)

}

In addition, this feature applies to LED raytracing.

NOTE This feature does not work with Monte Carlo raytracing due to the
fundamental assumption of the Monte Carlo method.

PTotal Pabs Pescape Pstopped+ +=

Pabs Pescape

Pstopped

PTotal
1

1
Pstopped

PTotal
------------------– 

 
--------------------------------- Pabs Pescape+( )=

Pabs Pescape
616 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Raytracing
Weighted Interpolation for Raytrace Optical Generation

In raytracing, first optical absorption is computed elementwise, and then it is distributed evenly
onto the associated vertices of the element. However, as a ray traverses an element, it can be
closer to one particular corner or vertex of the element, in which case, distributing the optical
absorption evenly onto all vertices of the element does not give a true picture. A better
approximation is to use a weighted interpolation approach to distribute the optical absorption
to vertices that are nearer to the center of each ray that traverses the element. The ray center is
defined as the midpoint of the ray with respect to the optical absorption. This will improve the
representation and accuracy of optical absorption profiles, and reduce the dependency on mesh
size. The syntax is:

Physics{
Optics(

OpticalSolver(
Raytracing(

WeightedOpticalGeneration
)

)
)

}

Visualizing Raytracing

The keyword RayTrees can be set in the Plot section to visualize raytracing using the TDR
format. Thereby, an additional geometry is added to the plot file representing the ray paths. The
following datasets are available for each ray element:

■ Depth: Number of material boundaries that the ray has passed through.

■ Intensity: Ray intensity.

■ Transmitted (Boolean): True, as long as the ray is transmitted.

NOTE RayTrees cannot be plotted with the compact memory option.

Reporting Various Powers in Raytracing

Various powers are reported in the log file after a raytracing event, and the format is as follows:

Summary of RayTrace Total Photons and Powers:

               Input        Escaped      StoppedMinInt  StoppedDepth   AbsorbedBulk   AbsorbedBC

Photons [#/s]: 4.531E+11    1.333E+11    4.142E+07      0.000E+00      6.236E+10      2.574E+11

Powers [W]:    3.000E-07    8.826E-08    2.743E-11      0.000E+00      4.129E-08      1.704E-07
Sentaurus™ Device User Guide 617
N-2017.09



21: Optical Generation
Raytracing
A brief summary of these powers is:

■ Input power is computed by multiplying the input wave power (units of ) by the
rectangular or circular window area where the starting rays have been defined.

■ In two dimensions, the length in the third dimension is taken as , conforming to the
rest of the Sentaurus Device 2D treatment. The total input power listed should correspond
to the Intensity in the Excitation section multiplied by the actual area of the starting
ray window. If an area factor has been defined in the simulation, this area factor also is
multiplied into the result.

■ Escaped power refers to the sum of powers of the rays that are ejected from the device and
are unable to re-enter the device.

■ StoppedMinInt power sums the powers of the rays terminated by the MinIntensity
condition.

■ StoppedDepth power sums the powers of the rays terminated by the DepthLimit criteria.

■ AbsorbedBulk power refers to power absorbed in bulk regions.

■ AbsorbedBC power refers to power absorbed in the TMM contacts. This column is shown
only if TMM contacts have been defined.

In the plot file, the raytrace photon rates and powers are listed under RaytracePhoton and
RaytracePower, respectively. In addition, the ratio of the various powers and the input power
are plotted under RaytraceFraction.

Plotting Interface Flux

The photon flux flowing through any interface can be tracked with the PlotInterfaceFlux
feature. The tracking is made possible by recording the reflected, transmitted, and absorbed
flux flowing through each interface or contact BC. Since photon flux is directional, there is a
need to distinguish between the flux flowing from Region 1 to Region 2, or from Region 2 to
Region 1, as shown in Figure 35. 

Figure 35 Distinguishing directional photon flux

W/cm2

1 μm

Region 1

Region 2

I12 R12 T21

R21T12 I21

A12 A21
618 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Raytracing
Consider the photon fluxes (carried by rays) flowing from Region 1 to Region 2. For photon
flux conservation:

(700)

where:

■  is the incident flux.

■  is the reflected flux.

■  is the transmitted flux.

■  is the flux absorbed at the interface.

The reverse is true for flux flowing from Region 2 to Region 1. At each interface, the
summation of , , , ,  and  is stored in the raytracing process.

With this information, you can compute various reflection and transmission coefficients at the
interface that has been declared as a raytrace BC. For example, assume that light is illuminated
from Region 1 to Region 2. Within Region 2, there can be multiple reflections, and some rays
may escape back into Region 1 through .

Therefore, the power reflection coefficient for the case in Figure 35 on page 618 is:

(701)

The following syntax activates the feature for tracking and plotting interface fluxes:

Physics {...
Optics (...

OpticalSolver (...
RayTracing (

PlotInterfaceFlux
)

)
)

}

This feature is limited to the unified raytracing interface. In the plot file, only the fluxes of the
interfaces or contacts that have been declared as a raytrace BC are output. In addition,
activating the PlotInterfaceFlux feature also enables the output of the absorbed photon
density in every layer of the TMM BC. The output variables in the plot file are listed as follows:

RaytraceInterfaceFlux # directional
R(region1/region3)
T(region1/region3)
A(region1/region3)

I12 R12 T12 A12+ +=

I12

R12

T12

A12

R12 T12 A12 R21 T21 A21

T21

R̃12

R12 T21+

R12 T12 A12+ +
-----------------------------------------------------------=
Sentaurus™ Device User Guide 619
N-2017.09



21: Optical Generation
Raytracing
R(region3/region1)
T(region3/region1)
A(region3/region1)

RaytraceContactFlux # directional
R(contactname1(region1/region3)) # the region is only a sample
T(contactname1(region1/region3))
A(contactname1(region1/region3))
R(contactname1(region3/region1))
T(contactname1(region3/region1))
A(contactname1(region3/region1))

RaytraceInterfaceTMMLayerFlux # not directional
A(region1/region3).layer1
A(region1/region3).layer2
A(region1/region3).layer3

RaytraceContactTMMLayerFlux # not directional
A(contactname1(region1/region3)).layer1
A(contactname1(region1/region3)).layer2
A(contactname1(region1/region3)).layer3

A contact-based BC can possibly intersect many region interfaces. In the plot file output, only
a representative region interface is used to indicate the directional flow of photon flux for the
entire contact BC.

When the PlotInterfaceFlux feature is activated, the OpticalIntensity computation
will change such that the intensity within each region is scaled to the net photon flux gained in
that region. Therefore, the OpticalIntensity values can be negative in some regions.
Integration of the OpticalIntensity within the region recovers the net photon flux flowing
into that region.

Far Field and Sensors for Raytracing

To collect information on the rays that exit a device, the concept of far field and sensors is
introduced in the unified raytracer interface.

The far field is collected on a virtual circle for two dimensions and a virtual sphere for three
dimensions. Ray collection does not destroy the rays. On the virtual far-field surface, the far-
field intensity is computed based on a unit measure of radius, whereby the collected ray powers
at each interval are divided by the radian angular arc (2D) or area (3D):

In 2D, far-field intensity = .

In 3D, far-field intensity = .

raypowers
dφ

--------------------------------

raypowers
θ1( ) θ2( )cos–( )cos{ }dφ

---------------------------------------------------------------
620 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Raytracing
On the other hand, a sensor sums the total power of all rays impinging the sensor. Two types
of sensor can be defined:

■ A line segment sensor in two dimensions or a flat rectangular sensor in three dimensions.

■ An angular sensor that collects the power of the rays that radiate within the angular span of
the sensor. In two dimensions, a range of  defines the sensor; whereas in three
dimensions, ranges of  and  are needed. These are defined according to the regular
Cartesian coordinate system. In two dimensions,  rotates from 0 at the positive x-axis in
a counterclockwise direction towards the positive y-axis. In three dimensions,  rotates
from 0 at the positive z-axis towards the xy plane; whereas.  is similarly defined as in two
dimensions.

The SensorSweep option is also available for 3D simulations. It allows you to visualize the
variation of ray power collected on a latitude or longitude ring band.

The syntax for activating the far field and sensors in the unified interface for optical generation
computation is:

Physics {
Optics (

OpticalSolver (
Raytracing(

Farfield(
Origin = auto | <vector> # default is auto
Discretization = <integer> # default is 360 for 2D, 36 for 3D
ObservationRadius = <float> # default is 1e6 um (1 meter)
Sensor(

Name = "sensorname1"
Rectangle ( # 3D only

Corner1 = <vector>
Corner2 = <vector>
Corner3 = <vector>
UseNormalFlux
AxisAligned # 3D only

)
Line ( # 2D only

Corner1 = <vector>
Corner2 = <vector>
UseNormalFlux

)
Angular (

Theta = (<float> <float>)
Phi = (<float> <float>)

)
)
Sensor(

Name = "sensorname2"
Rectangle ( ... ) # 3D only

φ
θ φ

φ
θ

φ

Sentaurus™ Device User Guide 621
N-2017.09



21: Optical Generation
Raytracing
Line ( ... ) # 2D only
Angular ( ... )

)
SensorSweep( # 3D only

Name = "sensorname3"
Ndivisions = <integer>
VaryPhi
Theta = (<float> <float>) # Use with VaryPhi

)
SensorSweep( # 3D only

Name = "sensorname4"
Ndivisions = <integer>
VaryTheta
Phi = (<float> <float>) # Use with VaryTheta

)
)

)
)

)
}

Some comments about the syntax:

■ Multiple far-field Sensor and SensorSweep sections can be defined. However, each
Sensor and SensorSweep section must have a unique name for identification.

■ When Line or Rectangle sensors are used, the option UseNormalFlux allows you to
sum the normal-projected power from the ray that is impinging the sensor at an angle.

■ In the case of a Rectangle sensor in three dimensions, if you specify AxisAligned, only
opposing corners of the rectangle are required. Sentaurus Device automatically computes
the other two corners of the rectangle.

■ If an empty Farfield() section is specified, the far field is plotted with the default values
of Discretization, Origin, and ObservationRadius.

■ The far field takes values of intensity type. Therefore, to recover the total number of
photons, you must integrate over the angle (in radian).

■ The 3D far field is projected onto a staggered grid (see Staggered 3D Grid LED Radiation
Pattern on page 947).

■ The far field is plotted at every instance where the Plot statement in the Solve section is
activated. The file names of the far field and sensor sweep are derived from the plot file
name. For example, this syntax:

File {...
Plot = "n99_des"

}
Solve {...

Plot ( Range=(0,1) Intervals=5 )
}

622 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Raytracing
produces the following far-field files:

n99_000000_des_farfield.tdr
n99_000001_des_farfield.tdr
...
n99_000000_des_sensorsweep.plt
n99_000001_des_sensorsweep.plt
...

■ In the SensorSweep plot file, all the user-defined SensorSweep sections are defined in
the following fields of the plot file:

sensorname3
Phi
Photons_DelTheta

sensorname4
Theta
Photons_DelPhi

■ The values of the sensor are added to the general plot file of the simulation, and the field
entries are:

RaytraceSensor
sensorname1
sensorname2

Dual-Grid Setup for Raytracing

Raytracing in Sentaurus Device is based on tracing the rays in each cell of the simulation mesh.
For simulations in which the optical material properties do not vary on a short length scale, this
may lead to the unnecessary deterioration of simulation performance. In such cases, a dual-grid
setup can be used, which allows the use of a coarse mesh for raytracing, while the electronic
equations are solved on a finer mesh (see Figure 36 on page 625).

The basic syntax for setting up a raytracing dual-grid simulation is:

File {
Output = "output"
Current = "current"

}

Plot {
OpticalIntensity
OpticalGeneration

}

# Specify grid and material parameter file names for raytracing:
OpticalDevice OptGrid {

File {
Sentaurus™ Device User Guide 623
N-2017.09



21: Optical Generation
Raytracing
Grid      = "raytrace.tdr"
Doping    = "raytrace.tdr"
Current   = "opto"
Plot      = "opto"
Parameter = "CIS.par"

}
Physics { HeteroInterface }

}

# Specify grid, material parameters, and physical models for electrical 
# simulation:
Device CIS {

Electrode {
{ Name="sub" Voltage = 0.0 }
{ Name="pd" Voltage = 0.0 }

}
File {

Grid       = "in_elec_pof.tdr"
Doping     = "in_elec_pof.tdr"
Parameter = "CIS.par"
Current    = "current"
Plot       = "plot"

}
Physics {

AreaFactor = 1
Optics(...

ComplexRefractiveIndex(...
WavelengthDep(real imag)

)
OpticalGeneration(...)
Excitation(...)
OpticalSolver(

RayTracing (
RayDistribution(...)
DepthLimit = 1000
MinIntensity = 1e-3

)
)

)
}

# Specify system connectivity:
System {

OptGrid opt ()
CIS d1 (pd=vdd sub=0) { Physics{ OptSolver = "opt" } }
Vsource_pset drive(vdd 0){ dc = 0.0 }

}

Solve { Poisson }
624 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Transfer Matrix Method
The dual-grid simulation setup also allows the unified raytracing interface to be used (see
Raytracing on page 556). 

Figure 36 Comparison of two grids used in a 3D dual-grid CMOS image sensor simulation; 
the figures show cuts through the device center; (left) the electronic equations are 
solved on a fine grid and (right) a coarse grid is used for raytracing

Transfer Matrix Method

Sentaurus Device can calculate the propagation of plane waves through layered media by using
a transfer matrix approach. 

Physical Model

In the underlying model of the optical carrier generation rate, monochromatic plane waves with
arbitrary angles of incidence and polarization states penetrating a number of planar, parallel
layers are assumed. Each layer must be homogeneous, isotropic, and optically linear. In this
case, the amplitudes of forward and backward running waves  and  in each layer in
Figure 37 on page 626 are calculated with help of transfer matrices.

These matrices are functions of the complex wave impedances  given by  in
the case of E polarization (TE) and by  in the case of H polarization (TM).
Here,  denotes the complex index of refraction and  is the complex counterpart of the
angle of refraction ( ).

Aj
 ± Bj

 ±

Zj Zj nj Θjcos⋅=
Zj nj Θjcos( )⁄=

nj Θj

n0 Θ0sin⋅ nj Θjsin⋅=
Sentaurus™ Device User Guide 625
N-2017.09



21: Optical Generation
Transfer Matrix Method
The transfer matrix of the interface between layers  and  is defined by:

(702)

The propagation of the plane waves through layer  can be described by the transfer matrix:

(703)

with the thickness  of layer  and the wavelength  of the incident light.

The transfer matrices connect the amplitudes of Figure 37 as follows:

(704)

Figure 37 Wave amplitudes in a layered medium and transfer matrices connecting them

It is assumed that there is no backward-running wave behind the layered medium, and the
intensity of the incident radiation is known. Therefore, the amplitudes  and  at each
interface can be calculated with appropriate products of transfer matrices. 

j j 1+

Tj j 1+,
1

2Zj
--------

Zj Zj 1     ++ Zj Zj 1+–

Zj Zj 1      +– Zj Zj 1++
⋅=

j

Tj dj( )
2πi nj Θj

dj
λ
----cos 

 exp 0

0 2πi nj

Θjdj
λ

-----------cos– 
 exp

=

dj j λ

Bj
+

Aj
+

 
 
 
 
 
 

Tj j 1+,
Aj 1+

-

Bj 1+
-

 
 
 
 
 
 

⋅=

Aj
-

Bj
-

 
 
 
 
 
 

Tj dj( )
Bj

+

Aj
+

 
 
 
 
 
 

⋅=

nj – 1

nj

nj + 1

A
+
j – 1

Aj
–

A
j + 1
–

Aj
+

B
+
j – 1

Bj
–

Bj
+

B
j + 1
–

Tj – 1, j

Tj

Tj, j + 1

Aj
± Bj

±

626 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Transfer Matrix Method
For both cases of polarization, the intensity in layer  at a distance  from the upper interface
 is given by:

(705)

with the proper wave impedances. If  is the angle between the vector of the electric field and
the plane of incidence, the intensities have to be added according to:

(706)

where  and  with .

One of the layers must be the electrical active silicon layer where the optical charge carrier
generation rate  is calculated. The rate is proportional to the photon flux

.

In the visible and ultraviolet region, the photon energy  is greater than the band gap of
silicon. In this region, the absorption of photons by excitation of electrons from the valence to
the conduction band is the dominant absorption process for nondegenerate semiconductors. Far
from the absorption threshold, the absorption is considered to be independent of the free carrier
densities and doping. Therefore, the silicon layer is considered to be a homogeneous region.

The absorption coefficient  is the relative rate of decrease in light intensity along its path of
propagation due to absorption. This decrease must be distinguished from variations caused by
the superposition of waves. Therefore, the rate of generated electron–hole pairs is:

(707)

where the absorption coefficient  is given by the imaginary part of . The quantum
yield  is defined as the number of carrier pairs generated by one photon. More details about
the available quantum yield models and their specification in the OpticalGeneration
section of the command file are given in Quantum Yield Models on page 544.

Rough Surface Scattering

To model the effect of light trapping due to scattering of incident light at rough interfaces of a
planar multilayer structure, the standard TMM approach describing the propagation of
coherent light is extended. Part of the coherent light incident at a rough interface is scattered
and spreads incoherently throughout the structure. Scalar scattering theory [4][5] allows to
approximate the amount of scattered light at a rough interface. The so-called haze parameter
defines the ratio of diffused (scattered) light to total (diffused + specular) light. The directional

j d
j j 1+,( )

IT TE TM,( ) d( )
ℜ Zj( )

ℜ Z0( )
---------------- Tj d( )

Aj
-

Bj
-

 
 
 
 
 
 

⋅

2

⋅=

δ

I d( ) ITM d( ) ITE d( )+=

ITM 1 a–( )I d( )= ITE aI d( )= a cos2δ=

Gopt

Φ d( ) I d( ) hω⁄=

hω

α

G0
opt αηI d( )

hω
----------=

α 4π ZSi λ⁄
η

Sentaurus™ Device User Guide 627
N-2017.09



21: Optical Generation
Transfer Matrix Method
dependency of the scattering process is modeled by angular distribution functions (ADFs). In
this scenario, a rough interface is characterized by its haze function (haze parameter as a
function of the wavelength of incident light) for reflection and transmission as well as the ADF
for direct coherent light incident at the interface and the ADF for scattered light incident at the
interface.

The implementation of rough surface scattering within the existing TMM framework follows
the semi-coherent optical model outlined in [6]. It is based on the following assumptions:

■ The haze factor determines the fraction of direct light, transferred to scattered light.

■ Coherent and diffused light incident on a rough interface are scattered differently using
different ADFs.

■ Interfaces are nonabsorptive, meaning photon flux is conserved at interfaces.

■ For scattered light incident at a rough interface, the mean value of TE and TM polarized
light for reflectance and transmittance is used.

■ For the scattered light, the total reflectance and transmittance for a rough interface are
assumed to be equal to the ones for the corresponding flat interface.

■ The phase change of the electric field traveling across a rough interface is the same as in
the case of the corresponding flat interface.

■ Scattered light incident at a rough interface is further split, according to its haze factor, into
a specular part, which corresponds to light incident at a flat interface, and a diffused part
leading to further spreading of the incident scattered light.

Given these assumptions, the specular and diffused components of light at each interface can
be expressed in terms of the corresponding haze functions and ADFs. The description of
coherent light incident at a rough interface differs from the approach taken in [6] in that a
generalized interface matrix has been derived. It accounts for the reduced reflection and
transmission according to the respective haze functions and allows to keep the common TMM
computation approach for the electric field and intensity. The reduced interface matrix reads as
follows:

(708)

where  and  denote the Fresnel reflection and transmission coefficients for normal
incidence given by:

(709)

(710)

T̃j j 1+,
1

hj 1+ j,
t

t
-----------------

1 hj 1+ j,
r

rj j 1+,( )

hj j 1+,
r

rj j 1+,( )   hj j 1+,
t

hj 1+ j,
t

hj 1+ j,
r

hj j 1+,
r

hj j 1+,
t

hj 1+ j,
t

–( )rj j 1+,
2

+( )
=

rj j 1+, tj j 1+,

rj j 1+,
nj nj 1+–

nj nj 1++
----------------------=

tj j 1+,
2nj

nj nj 1++
----------------------=
628 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Transfer Matrix Method
and and  are reduction factors determined by the haze functions for reflection and
transmission:

(711)

(712)

The haze functions for reflection and transmission derived from the scalar scattering theory
are:

(713)

(714)

where  stands for the root-mean-square roughness of the interface and  is the wavelength
of the incident light. The exponent  and the correction function  are fitting parameters
to better match experimental data.

NOTE The haze functions defined in Eq. 713 and Eq. 714 are given in their
general form, which also covers light incident at the angle  from the
surface normal. This expression is needed in the description of scattered
light incident at a rough interface.

For the propagation of the angular intensity components of scattered light through each layer,
the effective path length is used to stay within the one-dimensional formalism:

(715)

The scattering solver first propagates all forward-going components through the layer structure
and completes a round trip by propagating all backward-going components. In each round trip,
part of the light may be absorbed within the structure as well as transmitted through the front
or back side, depending on the material properties at the given wavelength. This leads to a
reduction of the light intensity components at the various interfaces with increasing number of
iterations. When the ratio of the largest remaining intensity component in the system to the sum
of all initial intensity components falls below the value of Tolerance, the solver terminates.
As a consequence, the residual intensity of each component at all interfaces is not included in
the extracted results.

hj j 1+,
r hj j 1+,

t

hj j 1+,
r

1 Hj j 1+,
r

–=

hj j 1+,
t

1 Hj j 1+,
t

–=

Hj j 1+,
r λ ϕj,( ) 1

4πσrmscr λ σrms,( )nj ϕjcos

λ
---------------------------------------------------------------- 
 

a
r

–exp–=

Hj j 1+,
t λ ϕj,( ) 1

4πσrmsct λ σrms,( ) nj ϕjcos nj 1+ ϕj 1+cos–

λ
---------------------------------------------------------------------------------------------------------- 
  a

t

–exp–=

σrms λ
ar t⁄ cr t⁄

ϕj

I λ ϕj d, ,( ) I λ ϕj,( ) α λ( )d
ϕjcos

---------------– 
 exp=
Sentaurus™ Device User Guide 629
N-2017.09



21: Optical Generation
Transfer Matrix Method
The overall simulation flow consists of the following steps:

■ Solving the coherent propagation problem following the default TMM solver algorithm,
but using the generalized interface matrices for rough interfaces. In this step, the starting
light intensity for scattered light is calculated at each interface as well.

■ The scattered light is propagated through the structure following an iterative approach
similar to raytracing as outlined in [6]. However, other than raytracing, instead of single
rays, ray bundles with discrete angular distribution are propagated from layer to layer. The
number of iterations needed to solve the scattering problem to the required accuracy mainly
depends on how much light is absorbed within the structure and how much light is coupled
out at the front and back ends during a single round trip.

■ The scattered and coherent absorbed photon density profiles are summed and passed to the
quantum yield model.

NOTE Support for rough surface scattering is limited to normal incident light.

For more information on how to apply the rough surface scattering model and its configuration
options, see Using Scattering Solver on page 632.

Using Transfer Matrix Method

The transfer matrix method is only supported by the unified interface for optical generation
computation (see Overview on page 533). The OpticalGeneration section activates the
computation of the optical generation along with optional parameters such as the quantum
yield. The OpticalSolver section determines the underlying optical solver together with
solver-specific parameters as shown in the following example:

Physics {...
Optics (...

OpticalGeneration (...)
ComplexRefractiveIndex (...)
Excitation (...

Window ("L1") (...)
)
OpticalSolver (

TMM (
PropagationDirection = Perpendicular # Default Refractive
NodesPerWavelength = 20
LayerStackExtraction (...

WindowName = "L1"
Medium (...)

)
)

)

630 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Transfer Matrix Method
Excitation (...
Window ("L1") (...)

)
)

}

The properties of the incident light such as Wavelength, Intensity, Polarization, and
angle of incidence Theta are specified in the Excitation section (see Setting the Excitation
Parameters on page 560) along with one or several illumination windows (see Illumination
Window on page 562), which confine the incident light to a certain part of the device structure.

An illumination window determines how the 1D solution of the transfer matrix method is
interpolated to the higher dimensional device grid. The minimum coordinate of the 1D profile
is pinned to the illumination window, and the interpolation of the profile in propagation
direction can be performed either perpendicular to it or according to Snell’s law, which is the
default. The corresponding keyword in the TMM section is PropagationDirection, which
can take either Perpendicular or Refractive as its argument. The accuracy of the
integrated absorbed photon density for 1D TMM solutions in a 2D or 3D device can be
controlled by various parameters (see Accurate Absorbed Photon Density for 1D Optical
Solvers on page 575).

The LayerStackExtraction section determines how a 1D complex refractive index profile
is extracted automatically from the grid file (see Extracting the Layer Stack on page 570).
Based on this profile, the polarization-dependent optical intensity is calculated and interpolated
onto the grid according to the referenced illumination window and the value of
PropagationDirection. The optical generation profile then is calculated from the window-
specific intensities. For overlapping windows, the intensity are summed in the region of
intersection.

By default, the surrounding media at the top and bottom of the extracted layer stack are
assumed to have the material properties of vacuum. However, the default can be overwritten by
specifying a separate Medium section in the LayerStackExtraction section for the top and
bottom of the layer stack if necessary. In the Medium section, a Location must be specified
and a Material, or, alternatively, the values of RefractiveIndex and
ExtinctionCoefficient:

LayerStackExtraction(
Medium (

Location = top
Material = "Silicon"

)
Medium (

Location = bottom
RefractiveIndex = 1.4
ExtinctionCoefficient = 1e-3
Sentaurus™ Device User Guide 631
N-2017.09



21: Optical Generation
Transfer Matrix Method
)
)

If the optical generation profile is the sole quantity of interest, it is sufficient to specify the
keyword Optics exclusively in the Solve section.

The TMM solver offers two options for computing the optical intensity from the complex field
amplitudes of the forward-propagating and backward-propagating waves. Specifying
IntensityPattern=StandingWave computes the optical intensity  as follows:

(716)

whereas using the syntax:

TMM (...
IntensityPattern = Envelope

)

computes the optical intensity  using the following formula to prevent oscillations on the
wavelength scale that may not be possible to resolve on the mixed-element simulation grid:

(717)

where  and  are the complex field amplitudes of the forward-propagating and backward-
propagating waves, respectively. IntensityPattern can be specified globally, per region, or
per material.

The keywords of TMM are summarized in Table 262 on page 1452.

Using Scattering Solver

To model the effect of scattering at rough interfaces, the scattering solver (see Rough Surface
Scattering on page 627) must be configured in the command file, and the parameters
characterizing each rough interface must be specified in the corresponding parameter file
section.

Command File Specification

The scattering solver is activated by specifying a Scattering section within the TMM section.
By default, all interfaces are treated as rough. However, whether part of the light incident on a
specific interface is actually scattered depends on the corresponding haze functions for
reflection and transmission defined in the parameter file. A haze function evaluating to zero is
equivalent to the interface being treated as flat.

I

I=Re A B+( )
2

Im A B+( )
2

+

I

I=Re A( )
2

Im A( )
2

Re B( )2
Im B( )2

+ + +

A B
632 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Transfer Matrix Method
You can flag explicitly a specific region or material interface as not being rough as in the
following example:

Physics {
Optics (

OpticalSolver (
TMM (

Scattering ( ... )
RoughInterface #Default

)
)

}

Physics (RegionInterface="<region1>/<region2>") {
Optics (

OpticalSolver (
TMM (

-RoughInterface
)

)
)

}

Sometimes, it may be more practical to set all interfaces as flat by specifying
-RoughInterface in the global Physics section and only to label specific interfaces as
rough in a corresponding region or material interface Physics section.

The angular discretization of the interval [ ] used for the ray bundles in the
scattering solver can be set with the keyword AngularDiscretization in the Scattering
section. The keywords Tolerance and MaxNumberOfIterations determine the
termination condition of the iterative scattering solver (see Rough Surface Scattering on
page 627):

Physics {
Optics (

OpticalSolver (
TMM (

Scattering (
AngularDiscretization = 90
MaxNumberOfIterations = 150
Tolerance = 1e-3

)
)

)
)

}

π 2 π 2⁄,⁄–
Sentaurus™ Device User Guide 633
N-2017.09



21: Optical Generation
Transfer Matrix Method
For weakly absorbing structures, such as semiconductor layer stacks illuminated with light in
the infrared part of the spectrum, many iterations may be necessary until the given Tolerance
is reached. To detect such cases and to limit the total simulation time, it is advisable to adjust
the value of MaxNumberOfIterations. 

Parameter File Specification

All parameters characterizing a rough interface are defined in the
OpticalSurfaceRoughness section of the respective region or material interface section in
the parameter file. The parameters can be classified into two groups: One relates to the
specification of the haze functions and one contains the selection of the various angular
distribution functions (ADFs). 

For specifying the haze function for reflection (HazeFunction_R) and transmission
(HazeFunction_T), two options are available:

■ Constant: For each of the two haze functions  and , a constant value can be set
using the keywords H_R and H_T. This option may be useful if a simulation is performed
at a single wavelength and the surface roughness is not varied as the haze functions usually
depend on both.

■ Analytic: The analytic expressions given by Eq. 713, p. 629 and Eq. 714, p. 629 are
evaluated. where the surface roughness , the exponents  and , and the correction
functions  and  are supplied by the user. In the simplest approximation,  and 
are assumed to be constants over the whole wavelength range. However, in general, the
correction functions are used to fit the analytic haze functions against experimental data.
For that purpose, tabulated values are supported by setting CorrectionFunction_R or
CorrectionFunction_T equal to Table.

Besides the haze functions, the ADFs are used to characterize the behavior of light incident at
rough interfaces. The model supports the specification of different ADFs for direct incident
light at a rough interface as well as for scattered light incident at a rough interface. Some ADFs
depend on an additional parameter apart from the angle of incidence, whose value must be
supplied by the user.

The detailed syntax including all options for the definition of the haze functions and ADFs are
given in the following tables (where applicable, the default value is given at the beginning of
the description).  

Table 120 Specification of haze functions

Symbol Keyword Value Description

HazeFunction_R =Constant | Analytic Constant Type of haze function for 
reflection.

HazeFunction_T =Constant | Analytic Constant Type of haze function for 
transmission.

HR HT

σrms aR aT

cR cT cR cT

H
r λ ϕ,( )

H
t λ ϕ,( )
634 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Transfer Matrix Method
H_R =<float> 0 Constant value for haze function for 
reflection.

H_T =<float> 0 Constant value for haze function for 
transmission.

Sigma =<float> 0 Optical surface roughness in [nm] used in 
analytic haze functions for reflection and 
transmission.

a_R =<float> 2 Exponent of analytic haze function for 
reflection.

a_T =<float> 3 Exponent of analytic haze function for 
transmission.

CorrectionFunction_R =Constant | Table Constant Type of correction function 
of analytic haze function for reflection.

CorrectionFunction_T =Constant | Table Constant Type of correction function 
of analytic haze function for transmission.

c_R =<float> 1 Constant value in interval [0 1] for 
correction function of analytic haze 
function for reflection.

c_T =<float> 1 Constant value in interval [0 1] for 
correction function of analytic haze 
function for transmission.

c_R (<table>) Tabulated values for correction function of 
analytic haze function for reflection. First 
column contains wavelength in [ ] and 
second column contains value of correction 
function in interval [0 1].

c_T (<table>) Tabulated values for correction function of 
analytic haze function for transmission. 
First column contains wavelength in [ ] 
and second column contains value of 
correction function in interval [0 1].

TableInterpolation_c_R =Linear | Spline Linear Type of interpolation used for 
tabulated values of correction function for 
analytic haze function for reflection.

TableInterpolation_c_T =Linear | Spline Linear Type of interpolation used for 
tabulated values of correction function for 
analytic haze function for transmission.

Table 120 Specification of haze functions (Continued)

Symbol Keyword Value Description

HR

HT

σrms

aR

aT

cR

cT

cR λ( )

μm

cT λ( )

μm
Sentaurus™ Device User Guide 635
N-2017.09



21: Optical Generation
Transfer Matrix Method
Table 121 Specification of angular distribution functions (not normalized)

Symbol Keyword Value Description

ADFDirect_R =Constant | Triangle | 
Gauss | Lorentz | 
Cosine | Ellipse

Cosine Type of angular distribution 
function for direct incident light reflected 
at a rough interface.

CDirect_R =<float> 2 Fitting parameter used in angular 
distribution function (where applicable) for 
direct incident light reflected at a rough 
interface.

ADFDirect_T =Constant | Triangle | 
Gauss | Lorentz | 
Cosine | Ellipse

Cosine Type of angular distribution 
function for direct incident light 
transmitted through a rough interface.

CDirect_T =<float> 2 Fitting parameter used in angular 
distribution function (where applicable) for 
direct incident light transmitted through a 
rough interface.

ADFScatter_R =Constant | Triangle | 
Gauss | Lorentz | 
Cosine | Ellipse

Constant Type of angular distribution 
function for scattered light reflected at a 
rough interface.

CScatter_R =<float> 1 Fitting parameter used in angular 
distribution function (where applicable) for 
scattered light reflected at a rough 
interface.

ADFScatter_T =Constant | Triangle | 
Gauss | Lorentz | 
Cosine | Ellipse

Constant Type of angular distribution 
function for scattered light transmitted 
through a rough interface.

CScatter_T =<float> 1 Fitting parameter used in angular 
distribution function (where applicable) for 
scattered light transmitted through a rough 
interface.

Table 122 Definition of different ADF types used in Table 121

Type Formula

Constant

Triangle

Gauss

Lorentz

f1 ϕ( )

C

f1 ϕ( )

C

f2 ϕ( )

C

f2 ϕ( )

C

f ϕ( ) 1=

f ϕ( ) 1 2 ϕ π⁄–=

f ϕ( ) e
ϕ2– 2C( )⁄

=

f ϕ( ) e
1 ϕ2

C
2+( )⁄

=

636 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Transfer Matrix Method
The following figures illustrate the various ADFs specified in Table 121 on page 636. 

Figure 38 ADF of type Constant and Triangle 

Figure 39 ADF of type Gauss

Cosine

Ellipse

Table 122 Definition of different ADF types used in Table 121 (Continued)

Type Formula

f ϕ( ) ϕ( )C
cos=

f ϕ( ) ϕ( )cos

ϕ( ) 2C( ) 2– ϕ( )2
sin+

2
cos
--------------------------------------------------------------=

ϕ

0.1

0.2

0.3

0.4

0.5

0.6

f

Triangle
Constant

− π
2

π
2

0.1

0.2

0.3

0.4

0.5

f

C=2
C=1
C=0.5

ϕ
− π

2
π
2

Sentaurus™ Device User Guide 637
N-2017.09



21: Optical Generation
Transfer Matrix Method
Figure 40 ADF of type Lorentz

Figure 41 ADF of type Cosine 

Figure 42 ADF of type Ellipse

0.5

1.0

1.5

f

C=2
C=1
C=0.5

ϕ
− π

2
π
2

0.1

0.2

0.3

0.4

0.5

0.6

f

C=2
C=1
C=0.5

ϕ
− π

2
π
2

0.1

0.2

0.3

0.4

0.5
f

C=2
C=1
C=0.5

ϕ
− π

2
π
2

638 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Transfer Matrix Method
The following OpticalSurfaceRoughness section is an example for the specification of
analytic haze functions and the default angular distribution functions:

OpticalSurfaceRoughness {
HazeFunction_R=Analytic
HazeFunction_T=Analytic
Sigma=20 #[nm]
a_R=2
a_T=3
CorrectionFunction_R=Table
TableInterpolation_c_R=Spline
c_R(

0.3 04
0.4 0.65
0.8 0.9
1.3 0.95

)
CorrectionFunction_T=Constant
c_T=0.7

ADFDirect_R=Cosine
CDirect_R=2
ADFDirect_T=Cosine
CDirect_T=2
ADFScatter_R=Constant
ADFScatter_T=Constant

}

Plot Quantities

When specifying OpticalIntensity and AbsorbedPhotonDensity in the Plot section
of the command file, the following additional datasets are written to the plot file:

■ OpticalIntensityCoherent: Specular part of optical intensity resulting from
propagation of coherent light.

■ OpticalIntensityIncoherent: Diffuse part of optical intensity resulting from
propagation of incoherent light.

■ AbsorbedPhotonDensityCoherent: Specular part of absorbed photon density
resulting from propagation of coherent light.

■ AbsorbedPhotonDensityIncoherent: Diffuse part of absorbed photon density
resulting from propagation of incoherent light.
Sentaurus™ Device User Guide 639
N-2017.09



21: Optical Generation
Loading Solution of Optical Problem From File
Loading Solution of Optical Problem From File

In solar-cell and CIS simulations, it is often necessary to load several optical generation
profiles as a function of one or more parameters, for example, excitation wavelength or angle
of incidence, in Sentaurus Device. These profiles then are used to compute the response to each
of them separately or to compute the response to the spectrum as a whole. A typical example
is the computation of white-light generation using several generation profiles previously
computed by Sentaurus Device Electromagnetic Wave Solver (EMW) or different wavelengths
of the visible spectrum.

The parameters corresponding to a specific absorbed photon density or optical generation
profile are written to the respective output file as special TDR tags as well. For 1D profiles
generated with external tools, such tags can be specified in the file header (see Importing 1D
Profiles Into Higher-Dimensional Grids on page 642). This ensures that a profile can be
identified later when loaded into a Sentaurus Device simulation. For example, if the optical
problem is solved externally, it is not possible to determine the quantum yield, which is
necessary to compute the optical generation based on the electronic properties of the
underlying device structure. However, since the corresponding excitation wavelength is stored
along with the optical solution, the quantum yield computation can be performed later in
Sentaurus Device after loading the profile to compute the optical generation.

Absorbed photon density or optical generation profiles loaded into Sentaurus Device using the
optical solver FromFile must meet one of the following requirements:

■ Profiles must be saved in a TDR file.

■ One-dimensional profiles that are to be imported into higher-dimensional grids must
comply with the PLX file format described in Importing 1D Profiles Into Higher-
Dimensional Grids on page 642.

If the grid on which the profile is saved is not the same as that used for the device simulation
(different mixed-element grid or arbitrary tensor grid arising from EMW simulation), the
profile is interpolated automatically onto the simulation grid upon loading. For more details on
how to control the interpolation, including the truncation and shifting of the interpolation
domain, see Controlling Interpolation When Loading Optical Generation Profiles on page 659.

The basic command file syntax for loading profiles from file is:

File {
OpticalSolverInput = "<filename or filename pattern of profiles>"

}

Physics {
Optics (

OpticalGeneration (
ComputeFromMonochromaticSource () # or
640 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Loading Solution of Optical Problem From File
ComputeFromSpectrum ()
)
OpticalSolver (

FromFile (
DatasetName = AbsorbedPhotonDensity # Default
SpectralInterpolation = Linear # Default Off
IdentifyingParameter = ("Wavelength" "Theta")

)
)

)
}

NOTE The optical solver FromFile requires the specification of
ComputeFromMonochromaticSource or ComputeFromSpectrum
in the OpticalGeneration section. Otherwise, the computation of
the optical generation based on the loaded profile is not activated.

The keyword OpticalSolverInput takes as its argument either the name of a single TDR
or PLX file, or a UNIX-style file name pattern to select several such files whose names match
the specified pattern. In both cases, a single file may contain more than one absorbed photon
density or optical generation profile. In TDR files, the different profiles are saved in separate
TDR states; whereas, in PLX files, they are simply listed sequentially, including their
respective headers (see Importing 1D Profiles Into Higher-Dimensional Grids on page 642).

Each profile is characterized by its set of parameters, whose values must be unique among the
profiles selected in the File section. As profiles may be characterized by different numbers of
parameters, you must specify the ones to be considered for checking uniqueness by using the
keyword IdentifyingParameter. Supported arguments are a simple parameter name such
as Wavelength or, if ambiguous, a full parameter path such as Optics/Excitation/
Wavelength. It is also possible to introduce new parameters, that is, parameters that do not
exist in Sentaurus Device, by assigning them to a profile and referring to them in the list of
IdentifyingParameter. Added parameters will appear under the path Optics/
OpticalSolver/FromFile/UserDefinedParameters/<Name of added
parameter>. User-defined parameters also are supported in the IlluminationSpectrum
file in the File section (see Illumination Spectrum on page 536).

NOTE Only profiles that carry intensity as a parameter tag are supported for
loading from files. Other profiles are ignored with a warning message.
However, intensity must not be listed as IdentifyingParameter
unless you want to enforce explicitly that all profiles are also unique
with respect to their intensity.

The intensity associated with each profile and saved as a parameter tag in the respective file
plays a special role as it is needed to scale the loaded profile according to the requested
Sentaurus™ Device User Guide 641
N-2017.09



21: Optical Generation
Loading Solution of Optical Problem From File
intensity. For ComputeFromMonochromaticSource, the loaded profile must be scaled to
conform with the intensity specified in the Excitation section according to:

(718)

For ComputeFromSpectrum, the loaded profile for each spectral component is scaled to
match the intensity given in the corresponding entry of the illumination spectrum file. The total
optical generation is then computed as the sum over the scaled profiles given by:

(719)

When using the feature ComputeFromSpectrum (see Illumination Spectrum on page 536) or
when ramping parameters, it is possible that, for a requested set of parameter values, no profile
can be found that matches it. By default, the program will exit with an appropriate error
message; however, you have two further options to deal with such situations. Using the
keyword SpectralInterpolation, either PiecewiseConstant or Linear interpolation
can be selected. Interpolation is based on the leading identifying parameter as opposed to
complex multidimensional interpolation. 

As mentioned earlier, two profile quantities are supported, absorbed photon density and optical
generation, which can be selected using the keyword DatasetName. The choice determines
whether a quantum yield model (see Quantum Yield Models on page 544) will be applied. If
optical generation is specified, quantum yield is assumed to be 1. Otherwise, the corresponding
quantum yield model specified in the OpticalGeneration section is used to compute the
optical generation profile from the loaded absorbed photon density.

Importing 1D Profiles Into Higher-Dimensional Grids

Importing 1D profiles into higher-dimensional grids is supported for files in PLX format. The
following example documents the syntax of PLX files for two 1D profiles characterized by
three parameters in a single file:

# some comments
"<optional string for tagging a profile>"
Wavelength = 0.5 [um] Theta = 0 [deg] Intensity = 0.1 [W*cm^-2]
0.0 1e19
0.8 1e20
1.4 1e17
2.0 5e18

# some comments
"<optional string for tagging a profile>"

G
Iexc

Iloaded
--------------Gloaded=

Gtot

In spectrum,
In loaded,

------------------------Gn loaded,
n
=
642 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Loading Solution of Optical Problem From File
Wavelength = 0.6 [um] Theta = 30[deg] Intensity = 0.1 [W*cm^-2]
0.0 1e19
0.8 1e20
1.4 1e17
2.0 5e18
...

Each profile can be preceded by an optional comment starting with the hash sign (#), an
optional tag given in double quotation marks, and a list of parameters with their corresponding
value and unit as shown in the example above. If a tag is supplied, it will be used as a curve
name when visualizing the file in Inspect, which also supports PLX files containing several
profiles.

After the 1D profiles have been loaded into Sentaurus Device, they must be interpolated onto
the 2D or 3D grid. Similar to the TMM solver (see Using Transfer Matrix Method on
page 630), the concept of an illumination window is applied for this purpose and it requires the
specification of at least one Window section in the Excitation section. See Illumination
Window on page 562 for further details. The accuracy of the integrated APD for 1D profiles in
a 2D or 3D device can be controlled by various parameters (see Accurate Absorbed Photon
Density for 1D Optical Solvers on page 575).

NOTE For the interpolation of the 1D profile onto the 2D or 3D grid, the first
data point of a profile is always pinned to the illumination window
plane, independent of its actual coordinate value. 

Ramping Profile Index

The optical solver FromFile supports a keyword ProfileIndex, which can be used to
address a certain profile directly by its index instead of its identifying parameters. The index is
derived from all valid profiles sorted according to the value of the leading identifying
parameter specified in the command file. This feature can be used to ramp through all available
profiles in a Quasistationary statement without having to know the exact parameter values
for each profile. The spectral interpolation options described in Loading Solution of Optical
Problem From File on page 640 above also are supported for ramping the ProfileIndex. If
an index value is requested in a Quasistationary statement that exceeds the number of valid
profiles, the Quasistationary is finished and control is given to the following statement in
the Solve section.
Sentaurus™ Device User Guide 643
N-2017.09



21: Optical Generation
Optical Beam Absorption Method
The following example shows the ramping of the ProfileIndex:

File {
OpticalSolverInput = "absorbed_photon_density_input_*file.tdr"

}

Physics {
OpticalGeneration (

ComputeFromMonochromaticSource ()
)
OpticalSolver (

FromFile (
ProfileIndex = 0
DatasetName = AbsorbedPhotonDensity
SpectralInterpolation = Off
IdentifyingParameter = ("Optics/Excitation/Wavelength" "Theta" "Phi")

)
)

}

Solve {
Quasistationary (

InitialStep=0.01 MaxStep=0.01 MinStep=0.01
Plot { Range = ( 0., 1 ) Intervals = 5 }
Goal { ModelParameter="ProfileIndex" value=100 }

) { Optics }
}

Note that the counting of profiles starts with index zero. For more information about ramping
parameters, see Parameter Ramping on page 573.

Optical Beam Absorption Method

The optical beam absorption method in Sentaurus Device computes optical generation by
simple photon absorption using Beer’s law. Thereby, multiple optical beams can be defined to
represent the incident light.
644 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Optical Beam Absorption Method
Physical Model

Figure 43 illustrates one optical beam and its optical intensity distribution in a 3D device.

Figure 43 Intensity distribution of an optical beam modeled by a rectangular illumination 
window

 denotes the optical beam intensity (number of photons that cross an area of  per )
incident on the semiconductor device. (xmin, ymin) and (xmax, ymax) define the rectangular
illumination window. The space shape  of the incident beam intensity is defined by the
illumination window, where  is equal to 1 inside of it and zero otherwise.

The following equations describe useful relations for the photogeneration problem:

(720)

where:

■  is the incident wave power per area .

■  is the wavelength .

■  is Planck’s constant .

■  is the speed of light in a vacuum .

■  is the photon energy that is approximately equal to  in eV. 

Photo Device

Semiconductor Window

z y

x

(xmax, ymax)

(xmin, ymin)

J0

J0 1 cm2 1 s

Fxy

Fxyv

Eph
hc
λ
------=

J0

P0

Eph
--------=

P0 W/cm2[ ]
λ cm[ ]
h J s[ ]
c cm/s[ ]
Eph

1.24
λ μm[ ]
----------------
Sentaurus™ Device User Guide 645
N-2017.09



21: Optical Generation
Optical Beam Absorption Method
The optical beam absorption model computes the optical generation rate along the z-axis taking
into account that the absorption coefficient varies along the propagation direction of the beam
according to:

(721)

where:

■  is the time.

■  is the beam time behavior function. For a Gaussian pulse, it is equal to 1 for  in
 and shows a Gaussian distribution decay outside the interval with the standard

deviation .

■  is the coordinate of the semiconductor surface.

■  is the nonuniform absorption coefficient along the z-axis.

As described in the following section, the optical beam absorption method supports a wide
range of window shapes (see Illumination Window on page 562) as well as arbitrary beam time
behavior functions (see Specifying Time Dependency for Transient Simulations on page 547).
It is also not limited to beams propagating along the z-axis. The example above has only been
used for demonstration purposes.

Using Optical Beam Absorption Method

The optical beam absorption method is activated by the optical solver OptBeam. The profile of
the absorption coefficient used in Eq. 721 is determined by the LayerStackExtraction
section inside the OptBeam section; whereas, the shape of the beam is specified by the
illumination window. The wavelength and intensity of the incident light are defined in the
Excitation section.

The required syntax of the optical beam absorption method is summarized here:

Physics {
...
Optics (

...
Excitation (

Wavelength = 0.5
Intensity = 0.1
Window("L1") (

<window options>
)

)

G
opt

z t,( ) J0F
t

t( )Fxy α λ z,( ) α λ z',( ) z'd
z0

z

– 
 exp⋅ ⋅=

t

Ft t( ) t
tmin tmax,[ ]

σt

z0

α λ z,( )
646 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Beam Propagation Method
OpticalSolver (
OptBeam (

LayerStackExtraction (
WindowName = "L1"
<layer stack extraction options>

)
)

)
)

}

Further details about the Window and LayerStackExtraction sections can be found in
Illumination Window on page 562 and Extracting the Layer Stack on page 570, respectively.
The accuracy of the integrated absorbed photon density for 1D profiles in a 2D or 3D device
can be controlled by various parameters (see Accurate Absorbed Photon Density for 1D
Optical Solvers on page 575).

NOTE You can simulate several beams at the same time by specifying the
corresponding number of Window and LayerStackExtraction
sections. However, all beams are assigned the same wavelength and
intensity, which is specified in the common Excitation section.

Beam Propagation Method

In Sentaurus Device, the beam propagation method (BPM) can be applied to find the light
propagation and penetration into devices such as photodetectors. Despite being an approximate
method, its efficiency and relative accuracy make it attractive for bridging the gap between the
raytracer and the FDTD solver (EMW) featured in Sentaurus Device. The BPM solver is
available for both 2D and 3D device geometries, where its computational efficiency compared
with a full-wave approach becomes particularly apparent in three dimensions. 

NOTE The use of BPM for 3D CMOS image sensors is discouraged because
the BPM cannot resolve the polarization transformation caused by the
3D lens.

Physical Model

The BPM implemented in Sentaurus Device is based on the fast Fourier transform (FFT) and
is a variant of the FFT BPM, which was developed by Feit and Fleck [7].
Sentaurus™ Device User Guide 647
N-2017.09



21: Optical Generation
Beam Propagation Method
The solution of the scalar Helmholtz equation:

(722)

at  with  and  being the complex refractive index can
be written as:

(723)

In the paraxial approximation, the operator  reduces to:

(724)

where  is taken as a constant reference refractive index in every transverse plane. By
expressing the field  at  as a spatial Fourier decomposition of plane waves, the solution to
Eq. 722 for forward-propagating waves reads:

(725)

where  denotes the transverse spatial Fourier transform. As can be seen from Eq. 725, each
Fourier component experiences a phase shift, which represents the propagation in a medium
characterized by the reference refractive index .The phase-shifted Fourier wave is then
inverse-transformed and given an additional phase shift to account for the refractive index
inhomogeneity at each  position. In the numeric implementation of Eq. 725, an
FFT algorithm is used to compute the forward and inverse Fourier transform.

Bidirectional BPM

The bidirectional algorithm is based on two operators as described by Kaczmarski and
Lagasse [8]. The first operator defines a unidirectional propagation, which is outlined in the
previous section. The second operator accounts for the reflections at interfaces of the refractive
index along the propagation direction. In a first pass, the reflections at all interfaces are
computed. The following pass in the opposite direction adds these contributions to the
propagating field and calculates the reflections of the forward-propagating field. By iterating
this procedure until convergence is reached, a self-consistent algorithm is established.

Boundary Conditions

Due to the finite size of the computational domain, appropriate boundary conditions must be
chosen, which minimize any numeric errors in the propagation of the optical field related to

∇t
2

z
2

2

∂
∂

k0
2
n

2
x y z, ,( )+ + φ x y z, ,( ) 0=

z Δz+ ∇t
2 ∂2 x2∂⁄ ∂2 y2∂⁄+= n x y z, ,( )

z∂
∂ φ x y z Δz+, ,( ) i k0

2
n

2 ∇t
2

+ φ x y z, ,( )+− i℘± φ x y z, ,( )= =

℘

℘ k0
2
n0

2 ∇t
2

+ k0δn+≅

n0

φ z

φ x y z Δz+, ,( )
1

2π( )2
-------------- ik0δnΔz( )exp kt ikt r⋅( )expexp i k0

2
n0

2
kt

2
– Δz( )φ̃ kt z,( )d

∞–

∞

=

φ̃

n0

x y, z Δz+,( )
648 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Beam Propagation Method
boundary effects. In the standard FFT BPM, any waves propagating through a boundary will
reappear as a new perturbation at the opposite side of the computation window, effectively
representing periodic boundary conditions. In situations where the optical field vanishes at the
domain boundaries, this effect can be neglected. In other cases, an absorbing boundary
condition is needed. 

Perfectly matched layers (PMLs) boundary conditions have the advantage of absorbing the
optical field when it reaches the domain boundaries. The BPM implemented in Sentaurus
Device supports the PML boundary condition, which has been developed for continuum
spectra.

The formulation is based on the introduction of a stretching operator:

(726)

from which an equivalent set of the Maxwell equations can be derived. In Eq. 726, , , and
 are called stretching parameters, which are complex numbers defined in different PML

regions. In non-PML regions, these stretching parameters are equal to one. The modified
propagation equation then reads:

(727)

where  is the square of the stretched transverse wave number. The
stretching parameters can be fine-tuned to minimize spurious reflections.

Using Beam Propagation Method

General

The following code excerpt describes the general setup for using the scalar BPM solver to
compute the optical generation. The computation of the optical generation is activated by an
OpticalGeneration section, in which the QuantumYield model, as defined in Eq. 707,
p. 627 and Eq. 708, p. 628, can be specified. Solver-specific parameters are listed in the BPM
section. The excitation parameters are split into the general Excitation section for
parameters common to all optical solvers and the BPM Excitation section. In the latter
section, you can select either a PlaneWave or Gaussian excitation.

The GridNodes parameter determines the number of discretization points for each spatial
dimension. In the next line, the reference refractive index is specified that is used in the
operator expansion in Eq. 724, p. 648.

∇s
1
Sx
----- x̂

x∂
∂ 1

Sy
----- ŷ

y∂
∂ 1

Sz
----- ẑ

z∂
∂

+ +≡

Sx Sy

Sz

φ x y z Δz+, ,( )
1

2π( )2
-------------- iSzk0

δnΔz( )exp kt ikt r⋅( ) iSz( )expexpexp i k0
2
n0

2
k̂t

2
– Δz( )φ̃ kt z,( )d

∞–

∞

=

k̂t
2

kx Sx⁄( )2 ky Sy⁄( )2+=
Sentaurus™ Device User Guide 649
N-2017.09



21: Optical Generation
Beam Propagation Method
The parameters related to the excitation field and the boundary conditions for each spatial
dimension are grouped in subsections as explained here:

Physics {
...
Optics (

OpticalGeneration (
QuantumYield (

...
)

OpticalSolver (
BPM (

GridNodes = (256,256,1600)
ReferenceRefractiveIndex = 2.2
Excitation (

...
)
Boundary (

...
)

)
)
Excitation (

Wavelength = 0.5
Intensity = 0.1
Theta = 0.0

)
)

}

As the reference refractive index can greatly influence the accuracy of the solution due its use
in the expansion of the propagation operator, several options are available for its specification.
The simplest option is to specify a globally constant value as shown above. For multilayer
structures with large refractive index contrasts, better results can be achieved by using either
the average or the maximum value of the refractive index in each propagation plane. In some
cases, a reference refractive index that is computed as the field-weighted average of the
refractive index in each propagation plane may be the best option. In addition to these options,
a global offset can be specified to further optimize the results. For details about selecting the
various options, see Table 237 on page 1438.
650 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Beam Propagation Method
Bidirectional BPM

The bidirectional BPM solver is activated by specifying a Bidirectional section in the BPM
section:

Optics (
OpticalSolver (

BPM (
...
Bidirectional (

Iterations = 3
Error = 1e-3

)
)

)
)

In the Bidirectional section, two break criteria can be set to control the total number of
forward and backward passes that are performed in the beam propagation method. If the
number of iterations exceeds the value of Iterations or if the relative error with respect to
the previous iteration is smaller than the value of Error, it is assumed that the solution has
been found. Note that a single iteration can be either a forward or backward pass. From a
performance point of view, it is important to mention that consecutive iterations only require a
fraction of CPU time compared with the initial pass.

For plotting the optical field after every iteration, the keyword OpticalField must be listed
in the Plot section of the command file. If only the final optical intensity is of interest, it is
sufficient to specify the keyword OpticalIntensity in the Plot section.

Excitation

In the beam propagation method, a given input field, which is referred to as excitation in the
remainder of this section, is propagated through the device structure. Two types of excitation
are supported: a Gaussian and a (truncated) PlaneWave. Both are characterized by a
propagation direction, wavelength, and power as shown below. In two dimensions, the
propagation direction is determined by the angle between the positive y-axis and the
propagation vector. To specify the propagation direction in three dimensions, two angles,
Theta and Phi, must be given. Their definition is illustrated in Figure 44 on page 652.

The incident light power in the plane wave is specified as the Intensity in . For a
Gaussian excitation, the given value refers to its maximum. All of these parameters are listed
in the global Excitation section.

W/cm2[ ]
Sentaurus™ Device User Guide 651
N-2017.09



21: Optical Generation
Beam Propagation Method
Figure 44 Definition of angles for specification of propagation direction in three dimensions

The excitation parameters common to all types of excitation are:

Physics {
...
Optics (

Excitation (
Theta = 10.0 # [degree]
Phi = 60.0 # [degree], only in 3D
Wavelength = 0.3 # [um]
Intensity = 0.1 # [W/cm^2]
...

)
...

)
}

A Gaussian excitation along the propagation direction defined by  is determined by its half-
width SigmaGauss  and its center position CenterGauss  as shown below for a
2D and 3D device geometry.

Gaussian excitation (2D):

Physics {
...
Optics(

OpticalSolver (
BPM (

Excitation (
Type = "Gaussian"
SigmaGauss = (2.0) # [um]
CenterGauss = (0.0) # [um]

)
)

)

X

Y

Z

k

φ

θ

k
μm[ ] μm[ ]
652 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Beam Propagation Method
...
)

}

Gaussian excitation (3D):

Physics {
...
Optics(

OpticalSolver (
BPM (

Excitation (
Type = "Gaussian"
SigmaGauss = (2.0,4.0) # [um]
CenterGauss = (0.0,1.0) # [um]

)
)

)
...

)
}

For a plane wave excitation, it is possible to specify the truncation positions for each coordinate
axis as well as a parameter that determines the fall-off. For numeric reasons, a discrete
truncation must be avoided. Instead, a Fermi function–like fall-off is available:

(728)

which can be tuned by adjusting the TruncationSlope and TruncationPosition
parameters in the Excitation section. In Eq. 728,  is the amplitude of the incident light,

 denotes the TruncationSlope,  is the position with respect to the symmetry point,
and  is the half width. Both  and  are deduced from the TruncationPosition
parameters. In two dimensions, the second factor on the right-hand side in Eq. 728 is omitted.

Truncated plane wave excitation (2D):

Physics {
Optics (

OpticalSolver (
BPM (

Excitation (
Type = "PlaneWave"
TruncationPositionX = (-1.0,1.0)
TruncationSlope = (0.3)

)

Fxy 1
x̃ x0–

sx
----------------
 
 
 

exp+

1–

1
ỹ y0–

sy
----------------
 
 
 

exp+

1–

⋅=

φ x y z 0=, ,( ) Fxy φ0⋅=

φ0

sx y, x̃ ỹ,
x0 y0, x̃ ỹ, x0 y0,
Sentaurus™ Device User Guide 653
N-2017.09



21: Optical Generation
Beam Propagation Method
)
)
...

)
}

Truncated plane wave excitation (3D):

Physics {
Optics (

OpticalSolver (
BPM (

Excitation (
Type = "PlaneWave"
TruncationPositionX = (-1.0,1.0)
TruncationPositionY = (-2.0,3.0)
TruncationSlope = (0.3,0.3)

)
)

)
)

}

Boundary

For every spatial dimension, a separate boundary condition and corresponding parameters can
be defined. Periodic boundary conditions inherent to the FFT BPM solver are the default in the
transverse dimensions. The specification of PML boundary conditions in the x-direction and
y-direction is shown below. With the keyword Order, the spatial variation of the complex
stretching parameter can be specified. In this example, a quadratic increase from the minimum
value to the maximum value within the given number of GridNodes on either side has been
chosen.

Optionally, several VacuumGridNodes can be inserted between the physical simulation
domain and the PML boundary:

Physics {
Optics(

OpticalSolver (
BPM (

Boundary (
Type = "PML"
Side = "X"
Order = 2
StretchingParameterReal = (1.0,1,0)
StretchingParameterImag = (1.0,5.0)
GridNodes = (5,5)
654 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Beam Propagation Method
VacuumGridNodes = (4,4)
)
Boundary (

Type = "PML"
Side = "y"
Order = 2
StretchingParameterReal = (1.0,1,0)
StretchingParameterImag = (1.0,4.0)
GridNodes = (8,8)

)
)

)
...

)
}

Ramping Input Parameters

Several input parameters of the BPM solver such as the wavelength of the incident light can be
ramped to obtain device characteristics as a function of the specified parameter. The general
concept of ramping the values of physical parameters is described in Ramping Physical
Parameter Values on page 78. More detailed information about ramping Optics parameters
can be found in Parameter Ramping on page 573.

Visualizing Results on Native Tensor Grid

For an accurate analysis of the BPM results, the complex refractive index, the complex optical
field, and the optical intensity can be plotted on the native tensor grid. In general, the results
from the BPM solver are interpolated from a tensor grid to a mixed-element grid on which the
device simulation is performed.

For physical and numeric reasons, the mesh resolution of the optical grid needs to be much
finer than that of the electrical grid in most regions of the device. This can lead to the
introduction of interpolation errors, for example, by undersampling the respective dataset on
the electrical grid. To obtain an estimate of the interpolation error, it can be beneficial to
visualize the BPM results on its native tensor grid. As typical tensor grids in three dimensions
tend to be very large, it is also possible to extract a limited domain for more efficient
visualization. In two dimensions, a rectangular subregion or an axis-aligned straight line can
be plotted; whereas in three dimensions, a subvolume, a plane perpendicular to the coordinate
axes, and a straight line can be visualized directly on the tensor grid.

Tensor plots can be activated by specifying one or more TensorPlot sections and an optional
base name for the tensor-plot file name in the File section. 
Sentaurus™ Device User Guide 655
N-2017.09



21: Optical Generation
Composite Method
The following syntax extracts a plane perpendicular to the z-axis at position Z = ,
which extends from  to , and from  to  in the x- and y-direction,
respectively:

File (
...
TensorPlot = "tensor_plot"

)
...
TensorPlot (

Name = "plane_z_const"
Zconst = 1.3
Xmin = -2
Xmax = 3
Ymin = -1
Ymax = 5

){
ComplexRefractiveIndex
OpticalField
OpticalIntensity

}

To extract a box in three dimensions that extends over the whole device horizontally but is
bound in the vertical direction, the TensorPlot section looks like:

TensorPlot (
Name = "bounded_box"
Zmin = 3
Zmax = 8

){
...

}

Composite Method

The composite method is an optical solver that composes an optical solution by summing the
results of other optical solvers. Its flexibility targets applications with more complex optical
setups that can be modeled as a linear superposition of individual solution components.

The unified interface for optical generation computation is limited in that the contribution from
ComputeFromMonochromaticSource and ComputeFromSpectrum to the total optical
generation rate is computed by the same optical solver. While some optical solvers allow the
definition of different illumination windows, they still must share the same excitation
parameters. It is also not possible to specify several ComputeFromMonochromaticSource
and ComputeFromSpectrum sections at the same time to model, for example, different light
sources illuminating a device. Sometimes you can work around these limitations by

1.3 μm
2–  μm 3 μm 1–  μm 5 μm
656 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Composite Method
precomputing the illumination by one light source and loading it in a subsequent simulation
using ReadFromFile. However, it typically results in more complex simulation setups and
tool flows.

With the composite method, these limitations can be overcome. Its implementation is based on
the mixed-mode simulation framework that requires the creation of a separate optical device
instance for each optical solver. An optical device instance is essentially a device instance
limited to the computation of an optical problem. For details about mixed-mode in Sentaurus
Device, see Chapter 3 on page 41.

Using the Composite Method

A typical simulation setup requires the definition of a named master Device or
OpticalDevice (in the case of optics standalone simulations), and one or more additional
definitions of OpticalDevice. In the master, the composite method is specified as the optical
solver in the Optics section:

Device diode {
File { ... }
Electrode { ... }
Plot { ... }
Math { ... }
Physics {

...
Optics (

...
OpticalDevice (Composite)

)
}

}

OpticalDevice optdevice {
File { ... }
Plot { ... }
Math { ... }
Physics {

Optics (
Excitation (

Wavelength = 0.3
Theta = 30
Intensity = 0.1

)
OpticalDevice ( TMM (...) )
ComplexRefractiveIndex ( ... )
OpticalGeneration (

...
Sentaurus™ Device User Guide 657
N-2017.09



21: Optical Generation
Composite Method
ComputeFromMonochromaticSource ( ... )
ComputeFromSpectrum ( ... )

)
)

}
}

NOTE Syntactically, there is no difference between a named Device and a
named OpticalDevice section at the top level in the command file.
However, instances created from these definitions fulfill different tasks.

Any of the other optical solvers listed in Specifying the Optical Solver on page 554 can be
specified in the OpticalDevice definitions whose instances are accessed by the composite
method. You can create more than one instance from a given OpticalDevice definition and
overwrite specific parameters in the instantiation statement. This is particularly useful for
modeling different illumination sources that share many common properties, for example:

System {
diode d1 (

"p-contact" = vdd "n-contact" = gnd
OpticalDevice = [ "tmm1" "tmm2" "tmm3" ]

) { ... }
optdevice tmm1 () { Physics { Optics ( Excitation (Wavelength = 0.4) ) } }
optdevice tmm2 () { Physics { Optics ( Excitation (Theta = 50) ) } }
optdevice tmm3 () { Physics { Optics ( Excitation (Intensity = 0.2) ) } }

}

In this example, the device instance d1 is associated with the optical device instances tmm1,
tmm2, and tmm3 by the OpticalDevice statement. These are the optical device instances that
the Composite solver defined in Device diode will consider when composing its solution.

In the Solve section, the different instances can be addressed separately by preceding the
equation name with the instance name followed by a dot, or as a whole by specifying the
equation only as shown in the optics standalone example:

Solve {
tmm1.Optics
Coupled (d1.Optics tmm2.Optics tmm3.Optics)
Optics

}

In optoelectronic simulations, the Optics equation can be omitted and is solved implicitly
(considering all device and optical device instances) if the corresponding optical generation
models are activated:

Solve {
Quasistationary (

InitialStep = 1 MaxStep = 1 MinStep = 1
658 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Controlling Interpolation When Loading Optical Generation Profiles
Goal { OpticalDevice = "tmm1" ModelParameter = "Wavelength" = 0.8 }
Goal { OpticalDevice = "tmm3" ModelParameter = "Wavelength" = 0.4 }

) {
Coupled { Poisson Electron Hole }

}
}

NOTE The Coupled command can contain either electrical transport
equations such as Poisson, Electron, and Hole, or several instance-
specific Optics equations, but not a combination of both. If you want
to explicitly call Optics and electrical transport equations, you must
use a Plugin statement.

Generally, simulation results such as spatial-dependent plots and current plots are produced for
each Device or OpticalDevice instance according to the respective Plot and
CurrentPlot sections. However, for ease of use, the most relevant spatial-dependent datasets
from OpticalDevice instances used by the Composite solver are written automatically to
corresponding TDR files.

Such datasets have their original dataset name appended with FromInstance_<instance
name>, for example, OpticalGenerationFromInstance_tmm1.

To access CurrentPlot quantities from one Device or OpticalDevice in another Device
or OpticalDevice, use either the Device="<name>" or OpticalDevice="<name>"
specification in the CurrentPlot section.

Controlling Interpolation When Loading Optical 
Generation Profiles

You can load optical generation and absorbed photon density profiles into Sentaurus Device
using either of two features:

■ Loading and Saving Optical Generation From and to File on page 542

■ Loading Solution of Optical Problem From File on page 640

If the optical generation or absorbed photon density profile to be loaded is defined on a grid
that is different from the one used in the device simulation, it is interpolated automatically onto
the simulation grid upon loading. The source grid can be either a mixed-element grid or a
tensor grid resulting from an EMW simulation. By default, vertex-based linear interpolation is
used.

For mixed-element to mixed-element interpolation, a conservative interpolation algorithm is
supported [9], which guarantees that the integral of the interpolation quantity on the source grid
Sentaurus™ Device User Guide 659
N-2017.09



21: Optical Generation
Controlling Interpolation When Loading Optical Generation Profiles
is the same as on the destination grid. To select this option, set GridInterpolation to
Conservative instead of Simple.

The result of the interpolation can be further controlled by specifying a relative shift between
the source and the destination grid, as well as by restricting the source and destination domain
used for the interpolation. This feature is useful when the optical solution has been computed
on a smaller or larger domain than the electrical simulation grid and, therefore, must be aligned
accordingly.

The ShiftVector is specified directly in the ReadFromFile or FromFile section; whereas,
the source and destination domain is specified in a section called ImportDomain. A domain
can be defined as either a list of regions or a box given by its lower-left and upper-right corners
as shown in this example:

Physics {
Optics (

OpticalGeneration (
ReadFromFile (

GridInterpolation = Conservative
ShiftVector = (0.5 1 2)
ImportDomain (

SourceRegions = ("substrate", "region_1")
DestinationBoxCorner1 = (0.5 0.5 1)
DestinationBoxCorner2 = (2 2 4)

)
)

)
)

}

Figure 45 on page 661 illustrates the concept of domain truncation using source and
destination domains, as well as applying a relative shift between the optical and electrical grids.
The interpolation algorithm always interpolates the values even if the material of the source and
destination grid is different at a certain vertex. However, optical generation is always set to zero
in nonsemiconductor regions irrespective of the source profile. For more details about
specifying the source and destination domain in the ImportDomain section, see Table 243 on
page 1442. 

NOTE GridInterpolation, ShiftVector, and ImportDomain are not
supported for the importing of 1D profiles because the Illumination
Window on page 562 already provides similar functionality.

NOTE Region domains specified in the ImportDomain section are supported
only for source grids that are mixed-element type or tensor type,
containing region information (the Extractor section in EMW must
contain Region in the Quantity list).
660 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
Optical AC Analysis
Figure 45 Illustration of domain truncation and shifting of source and destination grids used 
in interpolation

Optical AC Analysis

An optical AC analysis calculates the quantum efficiency as a function of the frequency of the
optical signal intensity. The method is based on the AC analysis technique and provides real
and imaginary parts of the quantum efficiency versus the frequency.

During an optical AC analysis, a small perturbation of the incident wave power  is applied.
Therefore, the photogeneration rate is perturbated as , where  (  is
the frequency) and  is an amplitude of a local perturbation. The resulting small-signal

(0,0) (0,0)

Electrical Grid

RestrictedRestricted

Shift Vector

Interpolation (Import) Region

(0,0)

Optical Grid

Destination
Domain

Source
Domain

Import Optical Generation

Electrical Grid Optical Grid

δP0

Gopt δGopteiωt+ ω 2πf= f
δGopt
Sentaurus™ Device User Guide 661
N-2017.09



21: Optical Generation
References
device current perturbation  is the sum of real and imaginary parts, and the expressions
for the quantum efficiency are:

(729)

where the quantity  gives a perturbation of the total number of photons and
 is a perturbation of the total number of electrons at an electrode. As a result, for

each electrode, Sentaurus Device places two values into the AC output file, photo_a and
photo_c, that correspond to  and , respectively. To start the optical AC analysis, add the
keyword Optical in the ACCoupled statement, for example:

ACCoupled ( StartFrequency=1.e4 EndFrequency=1.e9
NumberOfPoints=31 Decade Node(a c) Optical )
{ poisson electron hole }

NOTE If an element is excluded (Exclude statement) in optical AC (this is
usually the case for voltage sources in regular AC simulation), it means
that this element is not present in the simulated circuit and,
correspondingly, it provides zero AC current for all branches that are
connected to the element. Therefore, do not exclude voltage sources.

References

[1] B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-Induced Change in Refractive
Index of InP, GaAs, and InGaAsP,” IEEE Journal of Quantum Electronics, vol. 26,
no. 1, pp. 113–122, 1990.

[2] D. A. Clugston and P. A. Basore, “Modelling Free-carrier Absorption in Solar Cells,”
Progress in Photovoltaics: Research and Applications, vol. 5, no. 4, pp. 229–236, 1997.

[3] D. K. Schroder, R. N. Thomas, and J. C. Swartz, “Free Carrier Absorption in Silicon,”
IEEE Journal of Solid-State Circuits, vol. SC-13, no. 1, pp. 180–187, 1978.

[4] H. E. Bennett and J. O. Porteus, “Relation Between Surface Roughness and Specular
Reflectance at Normal Incidence,” Journal of the Optical Society of America, vol. 51,
no. 2, pp. 123–129, 1961.

[5] P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough
Surfaces, Norwood, Massachusetts: Artech House, 1987.

δIdev

η
Re δIdev[ ] q⁄

δP
totλ hc⁄

-------------------------------=

Copt
1
ω
----

Im δIdev[ ] q⁄

δP
totλ hc⁄

-------------------------------⋅=

δP
tot δP0 sd

S
=

δPtotλ hc⁄
Re δIdev[ ] q⁄

η Copt
662 Sentaurus™ Device User Guide
N-2017.09



21: Optical Generation
References
[6] J. Krc, F. Smole, and M. Topic, “Analysis of Light Scattering in Amorphous Si:H Solar
Cells by a One-Dimensional Semi-coherent Optical Model,” Progress in Photovoltaics:
Research and Applications, vol. 11, no. 1, pp. 15–26, 2003.

[7] M. D. Feit and J. A. Fleck, Jr., “Light propagation in graded-index optical fibers,”
Applied Optics, vol. 17, no. 24, pp. 3990–3998, 1978.

[8] P. Kaczmarski and P. E. Lagasse, “Bidirectional Beam Propagation Method,”
Electronics Letters, vol. 24, no. 11, pp. 675–676, 1988.

[9] F. Alauzet and M. Mehrenberger, “P1-conservative solution interpolation on
unstructured triangular meshes,” International Journal for Numerical Methods in
Engineering, vol. 84, no. 13, pp. 1552–1588, 2010.
Sentaurus™ Device User Guide 663
N-2017.09



21: Optical Generation
References
664 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 22 Radiation Models

This chapter presents the radiation models used in Sentaurus
Device.

When high-energy particles penetrate a semiconductor device, they deposit their energy by the
generation of electron–hole pairs. These charges can perturb the normal operation of the
device. This chapter describes the models for carrier generation by gamma radiation, alpha
particles, and heavy ions.

Generation by Gamma Radiation

Using Gamma Radiation Model

The radiation model is activated by specifying the keyword Radiation(...) (with optional
parameters) in the Physics section:

Radiation{
Dose = <float> | DoseRate = <float>
DoseTime = (<float>,<float>)
DoseTSigma = <float>

}

where DoseRate (in ) represents  in Eq. 730. The optional DoseTime (in ) allows
you to specify the time period during which exposure to the constant DoseRate occurs.
DoseTSigma (in ) can be combined with DoseTime to specify the standard deviation of a
Gaussian rise and fall of the radiation exposure. As an alternative to DoseRate, Dose (in )
can be specified to represent the total radiation exposure over the DoseTime interval. In this
case, DoseTime must be specified.

To plot the generation rate due to gamma radiation, specify RadiationGeneration in the
Plot section.

rad s⁄ D s

s
rad
Sentaurus™ Device User Guide 665
N-2017.09



22: Radiation Models
Alpha Particles
Yield Function

Generation of electron–hole pairs due to radiation is an electric field–dependent process [1]
and is modeled as follows:

(730)

where  is the dose rate,  is the generation rate of electron–hole pairs, and , , and 
are constants.

All these constants can be specified in parameter file of Sentaurus Device as follows:

Radiation {
g = 7.6000e+12 # [1/(rad*cm^3)]
E0 = 0.1 # [V/cm]
E1 = 1.3500e+06 # [V/cm]
m = 0.9 # [1]

}

Alpha Particles

Using Alpha Particle Model

Specify the AlphaParticle in the Physics section:

Physics { ...
AlphaParticle (<optional keywords>)

}

Table 276 on page 1463 lists the keyword options for alpha particles. 

Table 123 Coefficients for carrier generation by alpha particles

Symbol Parameter name Default value Unit

s s

wt cm

c2 1.4 1

alpha 90

Gr g0D Y F( )⋅=

Y F( )
F E0+

F E1+
----------------
 
 
 

m

=

D g0 E0 E1 m

s 2 10
12–×

wt 1 10
5–×

c2

a cm
1–
666 Sentaurus™ Device User Guide
N-2017.09



22: Radiation Models
Alpha Particles
To plot the instant generation rate  due to alpha particles, specify AlphaGeneration in
the Plot section; to plot , specify AlphaCharge.

The generation by alpha particles cannot be used except in transient simulations. The amount
of electron–hole pairs generated before the initial time of the transient is added to the carrier
densities at the beginning of the simulation.

An option to improve the spatial integration of the charge generation is presented in References
on page 673.

Alpha Particle Model

The generation rate caused by an alpha particle with energy  is computed by [2]:

(731)

if , and by:

(732)

if . In this case,  is the coordinate along the particle path and and  are
coordinates orthogonal to . The direction and place of incidence are defined in the Physics
section of the command file with the keywords Direction and Location (or StartPoint,
see Note on page 671), respectively. Parameter  is the time of the generation peak defined
by the keyword Time. A Gaussian time dependence can also be used to simulate the typical
generation due to pulsed laser or electron beams.

The maximum of the Bragg peak, , is fitted to data [3] by a polynomial function:

(733)

alpha2
alpha3

cm
cm

Ep 3.6 eV

a0
a1
a2

cm
cm/eV

Table 123 Coefficients for carrier generation by alpha particles (Continued)

Symbol Parameter name Default value Unit

α2
α3

5.5 10
4–×

2 10
4–×

Ep

ao
a1
a2

1.033– 10
4–×

2.7 10
10–×

4.33 10
17–× cm/eV

2

G t( )
tGd

∞–

∞


E

G u v w t, , ,( ) a

2π s⋅
-----------------

1
2
---

t tm–

s
-------------- 
 

2 1
2
---

v
2

w
2

+

wt
2

------------------
 
 
 

––exp c1e
αu

c2
1
2
---

u α1–

α2
---------------- 
 

2
– 
 exp+=

u α1 α3+<

G u v w t, , ,( ) 0=

u α1 α3+≥ u v w
u

tm

α1

α1 a0 a1E a2E
2

+ +=
Sentaurus™ Device User Guide 667
N-2017.09



22: Radiation Models
Heavy Ions
The parameter  is given by:

(734)

The scaling factor a is determined from:

(735)

where  is the average energy needed to create an electron–hole pair. The remaining
parameters are listed in Table 123 on page 666. They are available in the parameter set
AlphaParticle and are valid for alpha particles with energies between  and .

Heavy Ions

When a heavy ion penetrates a device structure, it loses energy and creates a trail of
electron–hole pairs. These additional electrons and holes may cause a large enough current to
switch the logic state of a device, for example, a memory cell. Important factors are:

■ The energy and type of the ion.

■ The angle of penetration of the ion.

■ The relation between the lost energy or linear energy transfer (LET) and the number of
pairs created.

Using Heavy Ion Model

The simulation of an SEU caused by a heavy ion impact is activated by using the keyword
HeavyIon in an appropriate Physics section:

# Default heavy ion 
Physics {

HeavyIon (<keyword_options>) }

# User-defined heavy ion.
Physics {

HeavyIon (<IonName>) (<keyword_options>) }
# User-defined heavy ions do not have default parameters. Therefore,
# in the parameter file, a specification of the following form must appear:
# HeavyIon(<IonName>){ ... } (see Table 125 on page 671)

Table 277 on page 1463 describes the options for HeavyIon. The generation rate by the heavy
ion is generally used in transient simulations. The number of electron–hole pairs generated
before the initial time of the transient is added to the carrier densities at the beginning of the

c1

c1 α α1 10MeV[ ] α1 E[ ]–( )[ ]exp=

G u v w t, , ,( ) t w v udddd
∞–

∞


∞–

∞


∞–

∞


0

∞


E
Ep
------=

Ep

1 MeV 10 MeV
668 Sentaurus™ Device User Guide
N-2017.09



22: Radiation Models
Heavy Ions
simulation. The total charge density and the instant generation rate are plotted using
HeavyIonCharge and HeavyIonGeneration in the Plot section, respectively.

If the value of Wt_hi is 0, then uniform generation is selected. If the value of LET_f is 0, the
keyword LET_f can be ignored.

An option to improve the spatial integration of the charge generation is presented in References
on page 673.

Heavy Ion Model

Figure 46 A heavy ion penetrating a semiconductor; its track is defined by a length and the 
transverse spatial influence is assumed to be symmetric about the track axis

A simple model for the heavy ion impinging process is shown in Figure 46. The generation rate
caused by the heavy ion is computed by:

(736)

if  (  is the length of the track), and by:

(737)

if .  and  are functions describing the spatial and temporal variations of the
generation rate.  is the linear energy transfer generation density and its unit is

.

 is defined as a Gaussian function:

(738)

lmax

Heavy Ion

Track

w(l)

G l w t, ,( ) GLET l( )R w l,( )T t( )=

l lmax< lmax

G l w t, ,( ) 0=

l lmax≥ R w( ) T t( )
GLET l( )

pairs cm3⁄

T t( )

T t( )

2
t t0–

2 s⋅ hi

-----------------
 
 
  2

–
 
 
 
 

exp⋅

2 s⋅ hi π 1 erf
t0

2 s⋅ hi

-----------------
 
 
 

+
 
 
 

-------------------------------------------------------------------------=
Sentaurus™ Device User Guide 669
N-2017.09



22: Radiation Models
Heavy Ions
where  is the moment of the heavy ion penetration (see the keyword Time in Table 277 on
page 1463), and  is the characteristic value of the Gaussian (see s_hi in Table 125 on
page 671).

The spatial distribution, , can be defined as an exponential function (default):

(739)

or a Gaussian function:

(740)

where  is a radius defined as the perpendicular distance from the track. The characteristic
distance  is defined as Wt_hi in the HeavyIon statement and can be a function of the length

 (see Table 277 on page 1463).

In addition, the spatial distribution  can be defined as a PMI function (see Spatial
Distribution Function on page 1257).

The linear energy transfer (LET) generation density, , is given by:

(741)

where  (defined likewise by the keyword LET_f) is a function of the length .
Example 2 in Examples: Heavy Ions on page 671 shows how you can use an array of values to
specify the length dependence of . A linear interpolation is used for values between
the array entries of LET_f.

There are two options for the units of LET_f:  (default) or  (activated by
the keyword PicoCoulomb). Depending on the units of LET_f chosen,  takes on different
values in order to make the above equation dimensionally consistent. The appropriate values
of  for different device dimensions are summarized in Table 124. 

Table 124 Setting correct  to make LET generation density equation dimensionally 
consistent

Condition Two-dimensional device Three-dimensional device

LET_f has units of  for 
is exponential or Gaussian

LET_f has units of 
and

 is exponential 

t0

shi

R w l,( )

R w l,( )
w

wt l( )
------------– 

 exp=

R w l,( )
w

wt l( )
------------
 
  2

– 
 exp=

w
wt

l

R w l,( )

GLET l( )

GLET l( ) a1 a2l a3e
a4l

k′ c1 c2 c3l+( )
c4 LET_f l( )++ + +=

LET_f l( ) l

LET_f l( )

pairs cm3⁄ pC μm⁄
k′

k′

k′

pairs cm
3⁄

R w l,( )
k′ k= k′ k=

pC μm⁄

R w l,( )

k′ k
2wtd
------------=

d 1μm=

k′ k

2πwt
2

-------------=
670 Sentaurus™ Device User Guide
N-2017.09



22: Radiation Models
Heavy Ions
Great care must also be exercised to choose the correct units for Wt_hi and Length. The
default unit of Wt_hi and Length is centimeter. If the keyword PicoCoulomb is specified,
the unit becomes . Examples illustrating the correct unit use are shown in Examples: Heavy
Ions. The other coefficients used in Eq. 741 are listed in Table 125 with their default values,
and they can be adjusted in the parameter file of Sentaurus Device. 

NOTE The keyword Location defines a bidirectional track for which
Sentaurus Device computes the generation rate in both directions from
the place of incidence along the Direction vector. The keyword
StartPoint defines a one-directional track. In this case, Sentaurus
Device computes the generation rate only in the positive direction from
the place of incidence.

Examples: Heavy Ions

Example 1

The track has a constant LET_f value of  across the track. The track length is 
( ) and the heavy ion crosses the device at the time . The unit of LET_f is

 and the spatial distribution is Gaussian. Since PicoCoulomb was chosen, the values
of Length and Wt_hi are expressed in terms of .

LET_f has units of 
and

 is Gaussian

Table 125 Coefficients for carrier generation by heavy ion (HeavyIon parameter set)

Keyword s_hi a_1 a_2 a_3 a_4 k_hi c_1 c_2 c_3 c_4

Default value 2e-12 0 0 0 0 1 0 1 0 1

Default unit s 1 1 1

Unit if 
PicoCoulomb 
is chosen

s 1 1 1

Table 124 Setting correct  to make LET generation density equation dimensionally 
consistent (Continued)

Condition Two-dimensional device Three-dimensional device

k′

pC μm⁄

R w l,( )

k′ k

πwtd
----------------=

d 1μm=

k′ k

πwt
2

----------=

μm

shi a1 a2 a3 a4 k c1 c2 c3 c4

pairs/cm
3

pairs/cm
3
/cm pairs/cm

3
cm

1–
pairs/cm

3
cm

1–

pairs/cm
3

pairs/cm
3
/μm pairs/cm

3 μm
1–

pC/μm μm
1–

0.2 pC μm⁄ 1 μm
lmax 1 μm= 0.1 ps
pC μm⁄

μm
Sentaurus™ Device User Guide 671
N-2017.09



22: Radiation Models
Heavy Ions
The keyword HeavyIonChargeDensity in the Plot statement plots the charge density
generated by the ion:

Physics { Recombination ( SRH(DopingDependence) )
Mobility (DopingDependence Enormal HighFieldSaturation)
HeavyIon (

Direction=(0,1)
Location=(1.5,0)
Time=1.0e-13
Length=1
Wt_hi=3
LET_f=0.2
Gaussian
PicoCoulomb )

}
Plot { eDensity hDensity ElectricField HeavyIonChargeDensity
}

Example 2

The LET_f and radius (Wt_hi) values are functions of the position along the track (in this case,
). Values in between the array entries are linearly interpolated. The unit of

LET_f is  (because the keyword PicoCoulomb is not used), and the unit for
Length and Wt_hi is centimeter. For each value of length, there is a corresponding value of
LET_f and a value for the radius. The spatial distribution in the perpendicular direction from
the track is exponential:

Physics { Recombination ( SRH(DopingDependence) )
HeavyIon (

Direction=(0,1)
Location=(1.5,0)
Time=1.0e-13
Length = [1e-4 1.5e-4 1.6e-4 1.7e-4]
LET_f = [1e6 2e6 3e6 4e6]
Wt_hi = [0.3e-4 0.2e-4 0.25e-4 0.1e-4]
Exponential )

}

Example 3

This example illustrates multiple ion strikes in the SEU model.

Physics { Recombination ( SRH(DopingDependence) )
HeavyIon (

Direction=(0,1)
Location=(0,0)
Time=1.0e-13

lmax 1.7 4–×10 cm=
pairs cm3⁄
672 Sentaurus™ Device User Guide
N-2017.09



22: Radiation Models
References
Length = [1e-4 1.5e-4 1.6e-4 1.7e-4]
LET_f = [1e6 2e6 3e6 4e6]
Wt_hi = [0.3e-4 0.2e-4 0.25e-4 0.1e-4] )

HeavyIon ("Ion1")(
# User-defined heavy ions do not have default parameters. Therefore,
# in the parameter file, a specification of the following form must appear:
# HeavyIon("Ion1"){ ... } (see Table 125 on page 671)

Direction=(0,1)
Location=(1,0)
Time=1.0e-13
Length = [1e-4 1.5e-4 1.6e-4 1.7e-4]
LET_f = [1e6 2e6 3e6 4e6]
Wt_hi = [0.3e-4 0.2e-4 0.25e-4 0.1e-4] )

}

References

[1] J.-L. Leray, “Total Dose Effects: Modeling for Present and Future,” IEEE Nuclear and
Space Radiation Effects Conference (NSREC) Short Course, 1999.

[2] A. Erlebach, Modellierung und Simulation strahlensensitiver Halbleiterbauelemente,
Aachen: Shaker, 1999.

[3] L. C. Northcliffe and R. F. Schilling, “Range and Stopping - Power Tables for Heavy
Ions,” Nuclear Data Tables, vol. A7, no. 1–2, New York: Academic Press, pp. 233–463,
1969.
Sentaurus™ Device User Guide 673
N-2017.09



22: Radiation Models
References
674 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 23 Noise, Fluctuations, and Sensitivity

This chapter discusses noise analysis, fluctuation analysis, and
sensitivity analysis in Sentaurus Device.

This chapter explains the Sentaurus Device features to model noise, statistical fluctuations of
doping, trap concentration, workfunction, band edge, geometry, dielectric constant, metal
conductivity, and sensitivity to variations of model parameters, doping, and geometry. All these
topics deal with the response of the device characteristics to small, device-internal variations.
For noise, these variations occur randomly over time within a single device; for statistical
fluctuations, the variations are random device-to-device variations; and for sensitivity, the
variations are user supplied. Despite the different nature of the variations, they all can be
handled by the same linearization approach called the impedance field method and, therefore,
Sentaurus Device treats them all in a common framework.

Using the Impedance Field Method explains how to perform noise, fluctuation, and sensitivity
analysis. Noise Sources on page 680 discusses the noise and random fluctuation models that
Sentaurus Device offers. Statistical Impedance Field Method on page 691 describes a
modeling approach for random dopant fluctuations, trap concentration fluctuations, geometric
variations, and workfunction variations based on statistical sampling. Deterministic Variations
on page 703 discusses user-supplied variations of doping, geometry, and model parameters.

Impedance Field Method on page 709 discusses the background of the method [1], and Noise
Output Data on page 710 summarizes the data available for visualization.

Using the Impedance Field Method

Sentaurus Device treats noise analysis, fluctuation analysis, and sensitivity analysis by the
impedance field method, and as extensions of small-signal analysis (see Small-Signal AC
Analysis on page 96).

NOTE Currently, the impedance field method is not supported with the
HeteroInterface option (see Abrupt and Graded Heterojunctions on
page 10), the Thermionic option (see Thermionic Emission Current
on page 763), or dipole layers (Dipole Layer on page 174).

For noise and random fluctuations, Sentaurus Device computes the variances and correlation
coefficients for the voltages at selected circuit nodes, assuming the net current to these nodes
is fixed. As the computation is performed in frequency space, the computed quantities are
Sentaurus™ Device User Guide 675
N-2017.09



23: Noise, Fluctuations, and Sensitivity 
Using the Impedance Field Method
called the noise voltage spectral densities. Sentaurus Device also computes the variances and
correlation coefficients of the currents through the nodes, assuming fixed voltages; these
quantities are the noise current spectral densities.

For the statistical impedance field method (sIFM) and for deterministic variations, Sentaurus
Device computes responses of node voltages assuming fixed currents and responses of node
currents assuming fixed voltages.

Specifying Variations

To use noise and random fluctuation analysis, specify the physical models for the microscopic
origin of the deviations (called the local noise sources, LNS) as options to the keyword Noise
in the Physics section of the command file of Sentaurus Device:

Physics {
...
Noise <string> ( <Noisemodels> )

}

where <Noisemodels> is a list that specifies any number of noise models listed in Table 313
on page 1481. The name given by the string after Noise is optional. Using Noise
specifications with different names allows you to investigate different specifications of noise
in a single simulation run.

For the sIFM, specify RandomizedVariation in the global Math section and in a device-
specific global Physics section:

Math {
RandomizedVariation <string> ( <specification> )
...

}
Device <string> {

Physics {
RandomizedVariation <string> ( <specification> )

}
}

where <specification> specifies the details for the randomization (see Statistical
Impedance Field Method on page 691).
676 Sentaurus™ Device User Guide
N-2017.09



23: Noise, Fluctuations, and Sensitivity
Using the Impedance Field Method
For deterministic variations, specify the variations as options to DeterministicVariation
in the global Physics section:

Physics {
DeterministicVariation( <variations> )
...

}

where <variations> is a list that specifies any number of deterministic variations (see
Deterministic Variations on page 703 and Table 285 on page 1467).

Specifying the Solver

In any case, use the ObservationNode option to the ACCoupled statement to specify the
device nodes for which the noise spectral densities or deviations are required, for example:

ACCoupled (
StartFrequency = 1.e8 EndFrequency = 1.e11
NumberOfPoints = 7 Decade
Node (n_source n_drain n_gate)
Exclude (v_drain v_gate)
ObservationNode (n_drain n_gate)
ACExtract = "mos"
NoisePlot = "mos"
){
poisson electron hole contact circuit
}

}

The keyword ObservationNode enables noise and fluctuation analysis (in this case, for the
nodes n_drain and n_gate). NoisePlot specifies a file name prefix for device-specific
plots (see Noise Output Data on page 710). For more information on the ACCoupled
statement, see Small-Signal AC Analysis on page 96.

NOTE The observation nodes must be a subset of the nodes specified in
Node(...).

Analysis at Frequency Zero

You can perform variation analysis at frequency zero. If you specify in the ACCoupled
statement the single frequency zero by:

StartFrequency = 0. EndFrequency = 0. NumberOfPoints = 1
Sentaurus™ Device User Guide 677
N-2017.09



23: Noise, Fluctuations, and Sensitivity 
Using the Impedance Field Method
this mode is enabled, which enhances both speed and memory consumption of the analysis,
compared to the analysis at positive frequency. However, you must be aware of the following:
First, capacitances of AC nodes cannot be extracted and are set to zero in the output files.
Second, for general structures, only the current Green’s functions (and their responses) are well
defined and computed. The voltage Green’s functions and their related responses cannot be
computed. Therefore, their computation is disabled by default and corresponding output data
is set to zero. However, if all parts of the structure are conductively (and not only capacitively)
coupled, voltage responses are well defined and their computation can be enabled explicitly by
specifying VoltageGreenFunctions as a parameter in the ACCoupled statement.

Output of Results

The results of the analysis are the noise voltage spectral densities, the noise current spectral
densities, and voltage and current deviations. They appear in the ACExtract file (see
Table 126) and, in the case of the sIFM, in a separate .csv file. The units are  for the
voltage spectral densities and  for the current noise spectral densities. If the string specified
after Noise is not empty, it is prefixed to the name of the spectral density in the ACExtract
file.

Table 126 Noise and fluctuation data written into ACExtract file

Name Description

S_V Autocorrelation noise voltage spectral density (NVSD)

S_I Autocorrelation noise current spectral density (NISD)

S_V_ee
S_V_hh

Electron NVSD
Hole NVSD

S_V_eeDiff
S_V_hhDiff

Electron NVSD due to diffusion LNS
Hole NVSD due to diffusion LNS

S_V_eeMonoGR
S_V_hhMonoGR

Electron NVSD due to monopolar GR LNS
Hole NVSD due to monopolar GR LNS

S_V_eeFlickerGR
S_V_hhFlickerGR

Electron NVSD due to flicker GR LNS
Hole NVSD due to flicker GR LNS

S_V_BandEdge
S_I_BandEdge

NVSD and NISD due to band edge fluctuations

S_V_Conductivity
S_I_Conductivity

NVSD and NISD due to metal conductivity fluctuations

S_V_Doping
S_I_Doping

NVSD and NISD due to random dopant fluctuations

S_V_Epsilon
S_I_Epsilon

NVSD and NISD due to dielectric constant variations

V2s
A2s
678 Sentaurus™ Device User Guide
N-2017.09



23: Noise, Fluctuations, and Sensitivity
Using the Impedance Field Method
S_V_Geometric
S_I_Geometric

NVSD and NISD due to geometric fluctuations

S_V_TrapConcentration
S_I_TrapConcentration

NVSD and NISD due to trap concentration fluctuations

S_V_Trap
S_I_Trap

NVSD and NISD due to trapping noise

S_V_Workfunction
S_I_Workfunction

NVSD and NISD due to workfunction fluctuations

ReS_VXV
ImS_VXV

Real/imaginary parts of the cross correlation noise voltage spectral density 
(NVXVSD)

ReS_IXI
ImS_IXI

Real/imaginary parts of the cross correlation noise current spectral density

ReS_VXV_ee
ImS_VXV_ee
ReS_VXV_hh
ImS_VXV_hh

Real/imaginary parts of the electron/hole NVXVSD

ReS_VXV_eeDiff
ImS_VXV_eeDiff
ReS_VXV_hhDiff
ImS_VXV_hhDiff

Real/imaginary parts of the electron/hole NVXVSD due to diffusion LNS

ReS_VXV_eeMonoGR
ImS_VXV_eeMonoGR
ReS_VXV_hhMonoGR
ImS_VXV_hhMonoGR

Real/imaginary parts of the electron/hole NVXVSD due to monopolar GR 
LNS

ReS_VXV_eeFlickerGR
ImS_VXV_eeFlickerGR
ReS_VXV_hhFlickerGR
ImS_VXV_hhFlickerGR

Real/imaginary parts of the electron/hole NVXVSD due to flicker GR LNS

ReS_VXV_BandEdge
ReS_IXI_BandEdge

Real part of the NVXVSD and NIXISD due to band edge fluctuations

ReS_VXV_Conductivity
ReS_IXI_Conductivity

Real part of the NVXVSD and NIXISD due to metal conductivity 
fluctuations

ReS_VXV_Doping
ReS_IXI_Doping

Real part of the NVXVSD and NIXISD due to random dopant fluctuations

ReS_VXV_Epsilon
ReS_IXI_Epsilon

Real part of the NVXVSD and NIXISD due to dielectric constant 
fluctuations

ReS_VXV_Geometric
ReS_IXI_Geometric

Real part of the NVXVSD and NIXISD due to geometric fluctuations

Table 126 Noise and fluctuation data written into ACExtract file (Continued)

Name Description
Sentaurus™ Device User Guide 679
N-2017.09



23: Noise, Fluctuations, and Sensitivity 
Noise Sources
Noise Sources

NOTE Noise scales differently with the device width compared to currents or
voltages. For all noise sources noted in this section, for 2D devices, the
device width is assumed to be given by AreaFactor. Therefore, it is
not necessary to perform a full 3D simulation to obtain the correct
scaling behavior for an essentially 2D structure. For 3D structures, when
simulating only half (or a quarter) of the structure, you can use
AreaFactor=2 (or AreaFactor=4) to obtain the correct scale for the
full structure, provided that spatial correlations of the noise sources can
be neglected.

Common Options

All noise sources discussed in this section can be specified with the parameters SpaceMid,
SpaceSig, and SpatialShape. These parameters can restrict the noise source to a window.
The possible values, the default values, and the modifier function specified by these keywords
are described in Energetic and Spatial Distribution of Traps on page 450. The modifier function
is applied to each of the two coordinates on which a noise source depends. For noise sources
without spatial correlation, this means that the square of the modifier function is multiplied by
the noise source.

For example, the following unnamed Noise section activates random dopant fluctuations
globally:

Noise (Doping)

ReS_VXV_TrapConcentration
ReS_IXI_TrapConcentration

Real part of the NVXVSD and NIXISD due to trap concentration fluctuations

ReS_VXV_Trap
ImS_VXV_Trap
ReS_IXI_Trap
ImS_IXI_Trap

Real/imaginary parts of the NVXVSD and NIXISD due to trapping noise

ReS_VXV_Workfunction
ReS_IXI_Workfunction

Real parts of the NVXVSD and NIXISD due to workfunction fluctuations

dV<name> Voltage deviation due to deterministic variation <name> 

dI<name> Current deviation due to deterministic variation <name> 

Table 126 Noise and fluctuation data written into ACExtract file (Continued)

Name Description
680 Sentaurus™ Device User Guide
N-2017.09



23: Noise, Fluctuations, and Sensitivity
Noise Sources
The following Noise section named window activates random dopant fluctuations in a cube
of 20 nm side length, centered at the origin:

Noise "window" (
Doping (

SpaceMid = (0 0 0)
SpaceSig = (0.01 0.01 0.01)
SpatialShape = Uniform

)
)

Diffusion Noise

The diffusion noise source (keyword DiffusionNoise) available in Sentaurus Device reads:

(742)

A corresponding expression is used for holes.  is a diagonal tensor.

 is either the lattice or carrier temperature, depending on the specification in the command
file:

DiffusionNoise ( <temp_option> )

where <temp_option> is LatticeTemperature, eTemperature, hTemperature, or
e_h_Temperature. The default is LatticeTemperature.

For example, if the following command is specified:

Physics {
Noise ( DiffusionNoise ( eTemperature ) )

}

Sentaurus Device uses the electron temperature for the electron noise source and the lattice
temperature for the hole noise source. The keyword e_h_Temperature forces the
corresponding carrier temperature to be used for the diffusion noise source for each carrier
type.

Kn n,
Diff

r1 r2 ω, ,( ) 4qn r1( )kTn r1( )μn r1( )δ r1 r2–( )=

Kn n,
Diff

Tn
Sentaurus™ Device User Guide 681
N-2017.09



23: Noise, Fluctuations, and Sensitivity 
Noise Sources
Equivalent Monopolar Generation–Recombination Noise

An equivalent monopolar generation–recombination (GR) noise source model (keyword
MonopolarGRNoise) for a two-level, GR process can be expressed as a tensor [2]:

(743)

where  is a fitting parameter and  an equivalent GR lifetime. The parameters  and 
can be modified in the parameter file of Sentaurus Device. A similar expression is used for
holes.

NOTE This model does not use the actual generation–recombination models
activated in the simulation. Therefore, it cannot be considered a physical
model for recombination noise.

Bulk Flicker Noise

The flicker generation–recombination (GR) noise model (keyword FlickerGRNoise) for
electrons (similar for holes) is:

(744)

where  is a fit parameter; , the angular frequency; and the time constants fulfill
. The parameters , , and  for electrons and holes are accessible in the parameter

file. With increasing frequency, the noise source changes from constant to  behavior close
to the frequency  and, ultimately, to  behavior at .

NOTE This model does not use the actual generation–recombination and trap
models activated in the simulation. Therefore, it cannot be considered a
physical model for flicker noise.

Trapping Noise

The Traps option to Noise activates a trapping noise model that follows the microscopic
model in [3]. The trapping noise sources are determined fully by the trap model and, therefore,
do not require additional adjustable parameters. For example:

Physics { Noise(Traps) }

Kn n,
GR

r1 r2 ω, ,( )
Jn r1( )Jn r1( )

n
-------------------------------

4ατeq

1 ω2τeq
2

+
-----------------------δ r1 r2–( )⋅=

α τeq τeq α

Kn n,
fGR

r1 r2 ω, ,( )
Jn r1( )Jn r1( )

n r1( )
-------------------------------

2αH

πνln τ1 τ0⁄( )
------------------------------- ωτ1( ) ωτ0( )atan–atan[ ]δ r1 r2–( )=

αH ω 2πν=
τ0 τ1< αH τ0 τ1

1 ν⁄
ν1 1 τ1⁄= 1 ν⁄ 2 ν0 1 τ0⁄=
682 Sentaurus™ Device User Guide
N-2017.09



23: Noise, Fluctuations, and Sensitivity
Noise Sources
activates trapping noise for all traps is the device. It is not possible to activate trapping noise
for selected traps only. All trap models apart from tunneling to electrodes are supported. For
more details on traps, see Chapter 17 on page 449.

Consider a trap level  with concentration  and trap electron occupation . Trapping
noise is expressed by adding a Langevin source  to the net electron capture rate for each
process :

(745)

where  is the electron capture rate for a trap occupied by zero electrons, and  is the
electron emission rate for a trap occupied by one electron (see also Eq. 507, p. 455). Denoting
the expectation value with , the trapping noise source takes the form:

(746)

That is, different capture or emission processes are independent, and the noise source for a
given process is twice the total trapping rate (the sum of the capture and emission rates). The
model also assumes that different trap distributions are independent, so that their noise
contributions add.

Random Dopant Fluctuations

The noise sources for random dopant fluctuations are activated by the Doping keyword. The
noise source for acceptor fluctuations reads:

(747)

Here,  is the frequency. An analogous expression holds for the noise source for
donors, . Physically, the noise sources are static. However, to avoid a -function in
frequency space, Sentaurus Device spreads the spectral density of the noise source over a 
frequency interval. Eq. 747 is based on the assumption that individual dopant atoms are
completely uncorrelated.

Acceptors and donors are considered to be independent. Their contributions to the noise
spectral densities add. By default, both acceptor and donor concentrations are assumed to
fluctuate. Using either the option Type=Acceptor or Type=Donor of Doping, the
fluctuation can be restricted to acceptors or donors, respectively. For example:

Physics {
Noise "acceptor" ( Doping(Type=Acceptor) )
Noise "donor" ( Doping(Type=Donor) )

}

k Nt k, fk

si k,
i

Ri k, Nt k, 1 fk–( )ci k, Nt k, fkei k,– si k,+=

ci k, ei k,

 

Kij k,
trap ω( ) 2q2 t si k, 0( )sj k, t( )  iωt–( )expd 2q2δi jNt k, 1 fk–( )ci k, fkei k,+[ ]= =

KA
RDF r1 r2 ω, ,( ) NA r1( )Θ 0.5Hz ν–( )

1Hz
------------------------------------δ r1 r2–( )=

ν ω 2π⁄=
KD

RDF δ
1 Hz
Sentaurus™ Device User Guide 683
N-2017.09



23: Noise, Fluctuations, and Sensitivity 
Noise Sources
declares two named Noise sections that allow you to examine the impact of the fluctuation of
acceptors and donors separately.

By default, Sentaurus Device neglects the impact of the random dopant fluctuations on
mobility and bandgap narrowing. To take their impact into account, specify the Mobility and
BandgapNarrowing options to the Doping keyword. For example:

Physics { Noise( Doping(Mobility) ) }

activates the random dopant fluctuation noise source, taking into account the impact of the
fluctuations on mobility.

NOTE It is strongly advisable to use either both the BandgapNarrowing and
Mobility options or neither option. Otherwise, inconsistencies can
arise when the mobility depends indirectly on bandgap narrowing. Even
when this dependency is weak, the inconsistency can lead to large errors
in IFM results.

Random Geometric Fluctuations

The geometric fluctuation model accounts for random displacements of electrodes on insulator,
as well as metal–insulator, insulator–insulator, and semiconductor–insulator interfaces. The
noise source reads:

(748)

where  is the frequency, and the correlation of the displacements  is given by:

(749)

where:

■  and  are positions on the interface.

■  is the local interface normal in point .

■  (the isotropic correlation amplitude),  (the vectorial correlation amplitude), and 
(the correlation length) are adjustable parameters.

The correlation has the following noteworthy properties:

■ Displacements of interface positions occur only in the interface normal direction.

■ The displacement amplitude depends on the interface direction when  is nonzero.

Kgeo r1 r2 ω, ,( ) Θ 0.5Hz ν–( )
1Hz

------------------------------------ δs r1( )δs r2( ) =

ν ω 2π⁄= δs

δs r1( )δs r2( )  n̂ r1( ) n̂ r2( ) aiso r1( ) a r1( ) n̂ r1( )⋅+[ ] aiso r2( ) a r2( ) n̂ r2( )⋅+[ ]
r1 r2–( )2

λ2
-----------------------–exp⋅=

r1 r2

n̂ r( ) r

aiso a λ

a

684 Sentaurus™ Device User Guide
N-2017.09



23: Noise, Fluctuations, and Sensitivity
Noise Sources
■ Displacements are spatially correlated; the correlations decay with increasing distance.

■ Correlations depend on the relative normal direction. Perpendicular interfaces are
uncorrelated; opposing interfaces are negatively correlated (so the actual shifts are
positively correlated).

The impact of displacements is accounted for in the variation of the dielectric constant in the
Poisson equation, in the variation of the space charge in the Poisson equation, and in the
variation of the band-edge profile in the continuity and density gradient equations. The impact
through other quantities, such as tunneling rates, is currently neglected.

To use geometric fluctuations, in the global Math section for a device, specify one or more
surfaces. Each surface has a name and is the union of an arbitrary number of interfaces and
electrodes. For example:

Device "MOS" {
Math {

Surface "S2" (
RegionInterface="channel/gateoxide"
MaterialInterface="PolySi/Oxide"

)
...
}

specifies a surface S2 that consist of all poly–oxide interfaces in the device, as well as the
channel/gateoxide region interface. The order in which regions or materials in the
specification of interfaces are named determines the sense of interface displacements: The
positive direction points from the region or material named first into the region or material
named second.

The surfaces are then used to activate the noise sources. For example:

Physics {
Noise(

GeometricFluctuations "S1"
GeometricFluctuations "S2"

) ...
} ...

} ...

activates geometric fluctuations for surfaces S1 and S2. Points on the same surface are
correlated according to Eq. 749. Points on different surfaces are uncorrelated. The
contributions of different surfaces to the noise spectral densities add.
Sentaurus™ Device User Guide 685
N-2017.09



23: Noise, Fluctuations, and Sensitivity 
Noise Sources
The parameters , , and  are specified as the parameters Amplitude_Iso, Amplitude
and lambda in a surface-specific GeometricFluctuations parameter set. All three
parameters are given in micrometers, and default to zero.  must be set to positive value. For
example:

GeometricFluctuations "S1" {
lambda = 5e-3
Amplitude = (9e-4, 3e-4, 0)
Amplitude_Iso = 1e-4

}

NOTE For 3D structures, the mesh spacing on the fluctuating interfaces must
be small compared to the correlation length  to be able to resolve the
Gaussian in Eq. 749. For 2D structures, the mesh does not need to
resolve the Gaussian.

The GeometricFluctuations keyword supports options, which are specified as follows:

GeometricFluctuations "S1" (
Options = <0..1> * default 0
WeightQuantumPotential = <float> * default 0.5
WeightDielectric = <float> * default 0

)

When you specify geometric variations for a semiconductor–insulator interface, you can
specify whether the variation should be applied to both sides of the interface (Options=0) or
only to the semiconductor side (Options=1).

For example, in a MOSFET, if you want to change the thickness of the semiconductor body,
but not the thickness of the gate insulator, you can use Options=0 and include in the Surface
specification both the (bottom) semiconductor–gate insulator interface and the (top) gate
insulator–contact or poly interface, such that the movements of the top and bottom gate
insulator interfaces leave the gate insulator thickness unaltered. Alternatively, you can use
Option=1 and include in the surface specification only the (bottom) semiconductor–gate
insulator interface. Physically, both options are nearly equivalent; however, the latter can
sometimes be numerically more accurate.

The values given with WeightQuantumPotential and WeightDielectric interpolate
between two different approximations for the variation terms that arise from the density-
gradient quantum correction and the dielectric constant. Calibrating these two parameters can
improve the accuracy of geometric variation results. Doing so is usually only worthwhile when
computing insulator position variations, while keeping the insulator thickness fixed.

aiso a λ

λ

λ

686 Sentaurus™ Device User Guide
N-2017.09



23: Noise, Fluctuations, and Sensitivity
Noise Sources
Random Trap Concentration Fluctuations

Trap concentration variations are activated by the TrapConcentration option to Noise. For
each trap level, Sentaurus Device uses a noise source of the form:

(750)

Here,  is the concentration for the trap level .

All trap levels are assumed to be mutually independent. Their contributions to the noise
spectral densities add.

The trap concentration fluctuation model accounts for the impact of the trap concentration on
the space charge in the Poisson equation and on the trap-related generation–recombination
rates in the continuity equations.

Random Workfunction Fluctuations

The random workfunction fluctuations describe the impact of the fluctuation of the
workfunction at contacts on insulators and at metal–insulator interfaces. The noise source
reads:

(751)

where:

■  is the frequency.

■  is the workfunction standard deviation.

■  is the correlation length.

NOTE The spatial correlation in Eq. 751 differs from the one created by the
randomization procedure used for the sIFM-based approach (see
Workfunction Variations on page 697).

Workfunction fluctuations are activated by the WorkfunctionFluctuations option to
Noise. This option must be followed by a string that denotes the name of a surface that consists
exclusively of contacts on insulators and metal–insulator interfaces. For example:

Device "MOS" {
Math {

Surface "S3" (
Electrode = "gate"

Kii
trapconc r1 r2 ω, ,( ) Ni r1( )Θ 0.5Hz ν–( )

1Hz
------------------------------------δ r1 r2–( )=

Ni i

Kworkfunction r1 r1 ν, ,( ) Θ 0.5Hz ν–( )
1Hz

------------------------------------a r1( )a r2( )
r1 r2–( )2

λ2
-----------------------–exp=

ν ω 2π⁄=

a

λ

Sentaurus™ Device User Guide 687
N-2017.09



23: Noise, Fluctuations, and Sensitivity 
Noise Sources
MaterialInterface = "Nitride/Aluminum"
)

}
Physics {

Noise(WorkfunctionFluctuations "S3") ...
} ...

} ...

The definition of surfaces is described in Random Geometric Fluctuations on page 684. Any
number of WorkfunctionFluctuations (with different names) can be specified. They are
considered to be uncorrelated, and their contributions to the noise spectral densities add.

The parameters  and  are specified by Amplitude (in ) and lambda (in ) in a
surface-specific WorkfunctionFluctuations parameter set, for example:

WorkfunctionFluctuations "S3" {
lambda = 0.01
Amplitude = 0.4

}

Random Band Edge Fluctuations

Random band edge fluctuations describe the effect of the variation of the electron affinity 
and the band gap , where  is a user-specified parameter, and and

 are statistically independent ( ) fields with Gaussian correlations.
Therefore, noise sources for conduction band and valence band variations are:

(752)

(753)

For , some interesting limiting cases exist:

■ For , the conduction band and valence band vary in the same direction with the same
amplitude.

■ For , the valence band does not vary at all.

■ For , the conduction band and the valence band vary in opposite directions.

a λ eV μm

δχ
δEg,tot αδχ δEg+= α δχ

δEg δχ r1( )δEg r2( )  0=

K
EC r1 r1 ν, ,( ) Θ 0.5Hz ν–( )

1Hz
------------------------------------aχ

2 r1 r2–( )2

λ2
-----------------------–exp=

K
EV r1 r1 ν, ,( ) Θ 0.5Hz ν–( )

1Hz
------------------------------------ 1 α+( )2

aχ
2

aEg

2
+[ ]

r1 r2–( )2

λ2
-----------------------–exp=

aEg
0=

α 0=

α 1–=

α 2–=
688 Sentaurus™ Device User Guide
N-2017.09



23: Noise, Fluctuations, and Sensitivity
Noise Sources
Band edge fluctuations are activated by the option BandEdgeFluctuations to Noise:

Physics {
Noise(BandEdgeFluctuations <string>)

}

Here, the string identifies a volume specification that determines where, in the device, band
edge fluctuations are active. Named volumes are specified in the device global Math section
by providing lists of regions and materials that belong to the volume:

Math {
Volume <string> (

Regions = (<string>...)
Materials = (<string>...)

)
}

The dimensionless parameter , the correlation length  ( ), and the amplitudes  and
 are specified as Chi2Eg, Lambda, Amplitude_Chi, and Amplitude_Eg in a named

global parameter set BandEdgeFluctuations:

BandEdgeFluctuations <string> {
Amplitude_Chi = <float> * in eV, default 0
Amplitude_Eg = <float> * in eV, default 0
Chi2Eg = <float> * dimensionless, default 0
Lambda = <float> * in μm, no default (required)

}

The string is the name with which the band edge fluctuations are activated as a Noise option
in the device global Physics section.

Random Metal Conductivity Fluctuations

Metal conductivity fluctuations are activated by the option ConductivityFluctuations to
Noise:

Physics {
Noise(ConductivityFluctuations <string>)

}

Here, <string> identifies a named volume specification that determines where, in the device,
metal conductivity fluctuations are active. For the specification of named volumes, see
Random Band Edge Fluctuations on page 688.

α λ μm aχ
aEg
Sentaurus™ Device User Guide 689
N-2017.09



23: Noise, Fluctuations, and Sensitivity 
Noise Sources
Metal conductivity fluctuations are assumed to have Gaussian spatial correlations. Parameters
for metal conductivity fluctuations are specified in the named global
ConductivityFluctuations parameter set in the parameter file:

ConductivityFluctuations <string> {
Amplitude = <float> * amplitude in A/cmV
Lambda= <float> * correlation length in um

}

The string is the name with which the metal conductivity fluctuations are activated as a Noise
option in the device global Physics section.

Random Dielectric Constant Fluctuations

Random dielectric constant fluctuations are activated by the option EpsilonFluctuations
to Noise:

Physics {
Noise(EpsilonFluctuations <string>)

}

Here, <string> identifies a named volume specification that determines where, in the device,
dielectric constant fluctuations are active. For the specification of named volumes, see Random
Band Edge Fluctuations on page 688. Random dielectric constant fluctuations are assumed to
have Gaussian spatial correlations.

Parameters for random dielectric constant fluctuations are specified in the named global
EpsilonFluctuations parameter set in the parameter file:

EpsilonFluctuations <string> {
Amplitude = <float> * amplitude, dimensionless
Lambda= <float> * correlation length in um

}

The string is the name with which the dielectric constant fluctuations are activated as a Noise
option in the device global Physics section.

Noise From SPICE Circuit Elements

To take into account the noise generated by SPICE circuit elements (see Compact Models User
Guide, Chapter 1 on page 1), specify the CircuitNoise option to ACCoupled. The form of
the noise source for a particular circuit element is defined by the respective compact model.
690 Sentaurus™ Device User Guide
N-2017.09



23: Noise, Fluctuations, and Sensitivity
Statistical Impedance Field Method
Due to a restriction of the SPICE noise models, SPICE circuit elements contribute only to the
autocorrelation noise. For cross-correlation noise, Sentaurus Device considers SPICE circuit
elements as noiseless. Non–SPICE compact circuit elements do not implement noise at all and,
therefore, Sentaurus Device always treats them as noiseless.

Statistical Impedance Field Method

The statistical impedance field method (sIFM) can be applied to doping concentration, trap
concentration, semiconductor–insulator and insulator–insulator interface positions, and the
workfunction at contacts on insulators and metal–insulator interfaces. It creates a large number
of randomized variations of the quantities under investigation (dopant concentrations, trap
concentrations, or workfunction) and computes the modification of the device characteristics
in linear response.

The sIFM is specified in the global Math section:

Math {
RandomizedVariation <string> (

NumberOfSamples = <int>
Randomize = <int>
ExtrudeTo3D
RandomField(...)

)
...

}

Any number of RandomizedVariation specifications can be present, each of which
specifies the sample size and the random seed for one set of variations. The sets are
distinguished by the optional string after the RandomizedVariation keyword.

NumberOfSamples determines the number of variations in a set. Randomize determines the
seed for the random number generator. For a value of zero (the default), the seed value is
selected automatically and differently in each simulation run. A negative value disables the
sIFM, and a positive value is directly taken as the seed for the random number generator. The
last possibility allows to reproduce results for different simulation runs of the same device, on
the same platform, and the same release of Sentaurus Device.

For 2D structures, the keyword ExtrudeTo3D instructs Sentaurus Device to perform
randomization for a 3D structure that is obtained by extruding the 2D structure to a width given
by the AreaFactor. This is necessary to correctly model variations with spatial correlations,
but it will increase runtime for these variations. By default, randomization is performed in two
dimensions, which corresponds to variations that are perfectly correlated in the third spatial
direction. ExtrudeTo3D has no effect on 3D structures.
Sentaurus™ Device User Guide 691
N-2017.09



23: Noise, Fluctuations, and Sensitivity 
Statistical Impedance Field Method
RandomField allows you to specify the statistical properties of the spatial correlations for this
RandomizedVariation specification (see Spatial Correlations and Random Fields on
page 693).

The quantities to be randomized are specified in a device-global Physics section:

Device <string> {
Physics {

RandomizedVariation <string> (<specifications>)
}

}

The string after RandomizedVariation in the Physics section is matched with the one
after RandomizedVariation in the global Math section, and <specifications> is
described along with the individual variations in the following sections.

For one ACCoupled statement, for each RandomizedVariation specification, the sIFM
creates two files per ObservationNode: one for voltage and one for current variation at the
node. The file names are derived from the base name given by ACExtract, the string after the
RandomizedVariation keyword, the name of the type of variation (current or voltage), the
node name, and the extension .csv. The file contains comma separated values (CSV), a very
simple format that can be imported by many applications (for example, spreadsheet programs).

The first line contains the column headings, using double-quoted strings. Each subsequent line
corresponds to one bias point and one frequency.

The first couple of columns contain the data specified in the ACPlot statement. They serve to
connect each line to a bias point. The rest of the columns within each line correspond to the
current or voltage shift for one particular randomized profile. For all lines, the same column
always corresponds to the same profile. For frequencies larger than , the shifts are zero.

Options Common to sIFM Variations

All variations supported by sIFM provide the keywords SpatialShape, SpaceMid, and
SpaceSig. They allow you to multiply the variation by a space-dependent factor, and they
work in the same way as for traps (see Energetic and Spatial Distribution of Traps on
page 450). The shape functions must adequately be resolved by the mesh. For example:

Physics {
RandomizedVariation "rnd" (

Doping(
SpatialShape = Gaussian
SpaceMid = (0 0 0)
SpaceSig = (0.01 0.01 0.01)

)

0.5 Hz
692 Sentaurus™ Device User Guide
N-2017.09



23: Noise, Fluctuations, and Sensitivity
Statistical Impedance Field Method
)
}

activates random doping variations, which are damped with a Gaussian function on a length
scale of  around the origin. Using SpatialShape=Uniform instead of
SpatialShape=Gaussian would switch off the doping variation completely for points
outside a cube of  side length centered at the origin.

By default, SpatialShape is Uniform, and SpaceSig is a vector with very large
components. Therefore, by default, the space-dependent factor is one everywhere. If the mesh
has dimension , only the  first components of SpaceMid and SpaceSig are significant;
additional components are ignored.

Spatial Correlations and Random Fields

Several variations supported by sIFM are spatially correlated. You can specify the statistical
properties of the correlation either directly in the specification of the variation or by declaring
RandomField in the RandomizedVariation section in the global Math section. If the
statistical properties are specified directly in the specification of the variation, the variation is
statistically independent from all other variations. In contrast, if RandomField is declared, all
variations in the same RandomizedVariation section are correlated, and direct
specifications are ignored.

Random fields are declared like this:

Math {
RandomizedVariation <string> (

RandomField(
CorrelationFunction = Grain | Exponential | Gaussian
AverageGrainSize = <vector> * in μm
Lambda = <vector> * in μm
Resolution = <vector>
MaxInternalPoints = <int>

)
...

)
}

The spatial domain covered by a random field is obtained automatically from the spatial
domains in which the variations that use it are active. A random field can have more than one
component. The number of components in the random field is the largest number required by
any of the variations that refer to the random field. Currently, only band edge variations require
two components; the other variations require only one component. The components are
numbered starting from zero. Variations with only one component always use the zero-th
component of the random field.

10 nm

20 nm

d d
Sentaurus™ Device User Guide 693
N-2017.09



23: Noise, Fluctuations, and Sensitivity 
Statistical Impedance Field Method
CorrelationFunction determines the way in which spatial correlations are modeled.

If CorrelationFunction = Grain (default), first, grains are generated randomly. The
creation of grains works as described in Metal Workfunction Randomization on page 243. If
AverageGrainSize is the vector , the vertex at coordinate  belongs to the
grain with the center  for which 
becomes smallest.

For each grain and for each component of the random field, a random number  in the range
from 0 to 1 is selected, with uniform probability and statistically independent from the random
number for other grains or other components. For variations that use a list of discrete values for
the variation,  is mapped into this list according to the variation-specific probability for the
values in the list. If  is close to zero, the first value in the list will be taken. If  is close to 1,
the last value in the list will be taken. For variations with continuous values,  will be mapped
by a monotonically increasing function to the probability distribution for the variation.

If CorrelationFunction is Exponential or Gaussian, a Fourier approach is used to
create fields  of exponentially correlated or Gaussian correlated, dimensionless random
numbers. The fields for different components of the random field are uncorrelated.

The correlation length is given (in ) by the components  of Lambda:

(754)

(755)

The physical variation is obtained by multiplying  by a variation-specific amplitude.

For Gaussian and exponential correlations, Resolution (one to three dimensionless positive
components; default (0.25 0.25 0.25)) can be used to specify how accurately spatial
correlations should be resolved, for each spatial axis. The components specify this accuracy in
units of Lambda. One possible application for Resolution is to use a large value for one axis
to pretend that the domain is nearly flat along this direction, which reduces the dimension of
the Fourier transform and can give a substantial speedup.

For Gaussian and exponential correlations, MaxInternalPoints specifies the maximum
number of internal points used to compute the randomization. The default value is a very large
integer. If the number of internal points used to compute the randomization exceeds the value
set with MaxInternalPoints, Sentaurus Device aborts. The purpose of this is to avoid
excessive computation time, which scales superlinearly with the number of internal points. To
reduce the number of internal points, restrict the randomized domain, or increase Lambda or
Resolution.

λx λy λz, ,( ) x y z, ,( )
x0 y0 z0, ,( ) x x0–( )2 λx

2⁄ y y0–( )2 λy
2⁄ z z0–( )2 λz

2⁄+ +

g

g
g g

g

g r( )

μm λx λy λz, ,( )

g x y z, ,( )g x0 y0 z0, ,( )  exp x x0–( )2 λx
2⁄ y y0–( )2 λy

2⁄ z z0–( )2 λz
2⁄+ +–( )=

g x y z, ,( )g x0 y0 z0, ,( )  exp x x0–( )–
2 λx

2⁄ y y0–( )2 λy
2⁄– z z0–( )2 λz

2⁄–( )=

g r( )
694 Sentaurus™ Device User Guide
N-2017.09



23: Noise, Fluctuations, and Sensitivity
Statistical Impedance Field Method
You can specify Lambda and AverageGrainSize as vectors with less than three components.
In this case, the missing components are assumed equal to the last given component.

All options that are available in the RandomField section are also available as options to the
specification of all variations with spatial correlation, with the same meaning of keywords.

The specification of variations with spatial correlation supports a string, which allows you to
put several such variations into the same RandomizedVariation section. Their contribution
is added. For example:

Physics {
RandomizedVariation "rv" (

Geometric "g1" ( ... )
Geometric "g2" ( ... )

)
}

Doping Variations

Doping variations are enabled using the Doping keyword:

Physics {
RandomizedVariation <string> (

Doping (
Type = Doping | Acceptor | Donor
SpatialShape = Uniform | Gaussian
SpaceMid = <vector>
SpaceSig = <vector>
-Mobility
-BandgapNarrowing

)
)

}

For RandomizedVariation specifications in the Math section for which no
RandomizedVariation specification of the same name is present in the Physics section,
dopant variations are enabled automatically.

Type determines which dopants to randomize. For Acceptor, only acceptors are randomized.
For Donor, only donors are randomized. For Doping (default), both are randomized.

For the options of Doping, see Options Common to sIFM Variations on page 692.

Acceptor and donor concentrations are randomized independently, assuming dopants are
spatially uncorrelated and using a Poisson distribution function. This means that for a vertex i
Sentaurus™ Device User Guide 695
N-2017.09



23: Noise, Fluctuations, and Sensitivity 
Statistical Impedance Field Method
of the mesh with a box volume  and an average doping concentration , the probability to
find exactly  dopants in the box for vertex  is:

(756)

The volume  is a 3D volume. If the simulated structure is 2D, the AreaFactor is taken into
account to compute . Eq. 756 is consistent with the assumptions that are used to obtain
Eq. 747, p. 683.

The sIFM accounts for the impact of dopant concentration on space charge, mobility, and
bandgap narrowing. The options -Mobility and -BandgapNarrowing disable the impact
due to mobility and bandgap narrowing, respectively.

NOTE It is strongly advisable to use either both the -BandgapNarrowing and
-Mobility options or neither option. Otherwise, inconsistencies can
arise when the mobility depends indirectly on bandgap narrowing. Even
when this dependency is weak, the inconsistency can lead to large errors
in IFM results.

When the keyword RandomizedDoping appears in a device-specific Plot section, all
randomized acceptor and donor profiles are written to the Plot file. The individual profiles are
identified by a number in their name. This number is the same one that appears in the first line
of the .csv files.

NOTE If the number of random samples is large, plotting randomized doping
profiles can occupy a large amount of memory.

Trap Concentration Variations

For the sIFM, variations of the random trap concentration are activated with the keyword
TrapConcentration:

Physics {
RandomizedVariation <string> (

TrapConcentration (
SpatialShape = Uniform | Gaussian
SpaceMid = <vector>
SpaceSig = <vector>

)
)

}

Vi Ni

k i

Pi k( )
NiVi( )k

k!
------------------ NiVi–( )exp=

Vi

Vi
696 Sentaurus™ Device User Guide
N-2017.09



23: Noise, Fluctuations, and Sensitivity
Statistical Impedance Field Method
All trap levels are randomized independently, assuming traps are spatially uncorrelated. The
same expression as for doping concentration, Eq. 756, p. 696, is used. For the options of
TrapConcentration, see Options Common to sIFM Variations on page 692.

The sIFM accounts for the impact of the trap concentration on the space charge in the Poisson
equation and on the trap-related generation–recombination rates in the continuity equations.

Workfunction Variations

For the sIFM, workfunction variations are activated and controlled using the Workfunction
keyword:

Physics {
RandomizedVariation <string> (

Workfunction <string> (
Surface = <string>
CorrelationFunction = Grain | Exponential | Gaussian
AverageGrainSize = <vector>
Lambda = <vector>
Resolution = <vector>
MaxInternalPoints = <int>
GrainProbability = (<float>...)
GrainWorkfunction = (<float>...) * in eV
Amplitude = <float>               * in eV
SpatialShape = Uniform | Gaussian
SpaceMid = <vector>
SpaceSig = <vector>

)
)

}

Surface specifies the name of a surface that consists of contacts on insulators and
metal–insulator interfaces only. The specification of surfaces is described in Random
Geometric Fluctuations on page 684. The workfunction is randomized for interfaces and
contacts that are part of the given Surface.

GrainWorkfunction is a list of workfunction values (in ) that can occur for a metal grain.
GrainProbability is a list that gives the probabilities with which these workfunctions
occur. These two parameters are used for Grain correlations. Amplitude (in ) is a
multiplier to the dimensionless field  that is used for Gaussian and exponential
correlations. For more details, see Spatial Correlations and Random Fields on page 693.

eV

eV
g r( )
Sentaurus™ Device User Guide 697
N-2017.09



23: Noise, Fluctuations, and Sensitivity 
Statistical Impedance Field Method
As the sIFM models the effect of deviations, the values of GrainWorkfunction are adjusted
to have an average that agrees with the nominal workfunction specified for the electrode or
metal. Therefore, adding the same value to all GrainWorkfunction values will not affect the
results.

For the other options of Workfunction, see Options Common to sIFM Variations on
page 692 and Spatial Correlations and Random Fields on page 693.

The sIFM accounts for the impact of the workfunction on the boundary condition for the
electrostatic potential at metal–insulator interfaces and at contacts on insulators.

Geometric Variations

For the sIFM, geometric variations are activated and controlled using the Geometric
keyword:

Physics {
RandomizedVariation <string> (

Geometric <string> (
Surface = <string>
CorrelationFunction = Grain | Exponential | Gaussian
AverageGrainSize = <vector>
Lambda = <vector>
Resolution = <vector>
MaxInternalPoints = <int>
Amplitude = <vector> * in micrometer
Amplitude_Iso = <float> * in micrometer
SpatialShape = Uniform | Gaussian
SpaceMid = <vector>
SpaceSig = <vector>
Options = <0..1>
WeightQuantumPotential = <float>
WeightDielectric = <float>

)
)

}

Surface specifies the name of a surface that consists of electrodes on insulator,
metal–insulator, semiconductor–insulator, and insulator–insulator interfaces only. The
specification of surfaces is described in Random Geometric Fluctuations on page 684. The
interface position is randomized for interfaces that are part of the given Surface.

For Grain correlations, for each grain, a random number  is selected from a Gaussian
distribution of average zero and variance one. For each surface point that is contained in the
grain, the interface shift along the normal direction  is given by . Here, 

g

n̂ gn̂ aiso a n̂⋅+( )⋅ aiso
698 Sentaurus™ Device User Guide
N-2017.09



23: Noise, Fluctuations, and Sensitivity
Statistical Impedance Field Method
and  are the values specified (in ) by Amplitude_Iso and Amplitude. For Gaussian
and exponential variation, the field  of dimensionless correlated random numbers
determines the interface shift along the normal direction  in a point  on the surface as

. As above,  and  are the values specified by Amplitude_Iso and
Amplitude. For more details, see Spatial Correlations and Random Fields on page 693.

The keywords Options, WeightQuantumPotential, and WeightDielectric work as
explained in Random Geometric Fluctuations on page 684.

For the other options of Geometric, see Options Common to sIFM Variations on page 692
and Spatial Correlations and Random Fields on page 693.

Band Edge Variations

For the sIFM, band edge variations are activated and controlled using the BandEdge keyword:

Physics {
RandomizedVariation <string> (

BandEdge <string> (
Volume = <string>            * required
CorrelationFunction = Grain | Exponential | Gaussian
AverageGrainSize = <vector>
Lambda = <vector>
Resolution = <vector>
MaxInternalPoints = <int>
ChiComponent = <0..1>        * default 0, RandomField component to use
EgComponent = <0..1>         * default 1, RandomField component to use
GrainProbability = (<float>...) * dimensionless, nonnegative
GrainChi = (<float>...)      * eV, same size as GrainProbability
GrainEg = (<float>...)       * eV, default 0, same size as or smaller

* than GrainProbability
Chi2Eg = <float>             * dimensionless, default 0
Amplitude_Chi = <float>      * eV
Amplitude_Eg = <float>       * eV
SpatialShape = Uniform | Gaussian
SpaceMid = <vector>
SpaceSig = <vector>

)
)

}

Volume specifies a named volume that determines where band edge variations are active. For
the specification of named volumes, see Random Band Edge Fluctuations on page 688.

a μm
g r( )

n̂ r
g r( )n̂ aiso a n̂⋅+( )⋅ aiso a
Sentaurus™ Device User Guide 699
N-2017.09



23: Noise, Fluctuations, and Sensitivity 
Statistical Impedance Field Method
For Grain correlations, GrainProbability is a list that gives the probabilities with which
these shifts occur. GrainChi is a list of affinity shifts  (in ) with the same number of
values as GrainProbability. Bandgap variations are computed as ,
where  is given by the Chi2Eg keyword, and  are values selected (statistically
independently from the , but using the same GrainProbability list) from the list
GrainEg (in ). GrainEg has, at most, as many values as GrainProbability. Missing
values is GrainEg are assumed to be zero.

The values in GrainChi and GrainEg automatically adjust to have zero average. Therefore,
adding a constant to all components of these lists has no effect.

For exponential and Gaussian correlations,  and  are obtained by multiplying
Amplitude_Chi and Amplitude_Eg (in ) by the zero-th and first component of the
dimensionless field  that is used for Gaussian and exponential correlations. 

For all correlations, if RandomField is used, ChiComponent and EgComponent allow you
to specify the component of the random field used to determine  and .

For details about correlations, see Spatial Correlations and Random Fields on page 693. For
the other remaining options, see Options Common to sIFM Variations on page 692.

Metal Conductivity Variations

For the sIFM, metal conductivity variations are activated and controlled using the
Conductivity keyword:

Physics {
RandomizedVariation <string> (

Conductivity<string> (
Volume = <string>  * required
CorrelationFunction = Grain | Exponential | Gaussian
AverageGrainSize = <vector>
Lambda = <vector>
Resolution = <vector>
MaxInternalPoints = <int>
GrainProbability = (<float>...) * dimensionless, nonnegative
GrainConductivity = (<float>...) * A/cmV, size as GrainProbability
Amplitude = <float> * A/cmV
SpatialShape = Uniform | Gaussian
SpaceMid = <vector>
SpaceSig = <vector>

)
)

}

δχ eV
δEg,tot αδχ δEg+=

α δEg

δχ
eV

δχ δEg

eV
g r( )

δχ δEg
700 Sentaurus™ Device User Guide
N-2017.09



23: Noise, Fluctuations, and Sensitivity
Statistical Impedance Field Method
Volume specifies a named volume that determines where metal conductivity variations are
active. For the specification of named volumes, see Random Band Edge Fluctuations on
page 688.

For Grain correlations, GrainProbability is a list that gives the probabilities with which
these shifts occur. GrainConductivity is a list of a conductivity shifts (in ) with the
same number of values as GrainProbability. The values in GrainConductivity are
adjusted to have zero average. Therefore, adding a constant to all components of this list has
no effect.

Amplitude (in ) is a multiplier to the dimensionless field  that is used for
Gaussian and exponential correlations.

For details about correlations, see Spatial Correlations and Random Fields on page 693. For
the other remaining options, see Options Common to sIFM Variations on page 692.

Dielectric Constant Variations

For the sIFM, relative dielectric constant variations are activated and controlled using the
Epsilon keyword:

Physics {
RandomizedVariation <string> (

Epsilon <string> (
Volume = <string> * required
CorrelationFunction = Grain | Exponential | Gaussian
AverageGrainSize = <vector>
Lambda = <vector>
Resolution = <vector>
MaxInternalPoints = <int>
GrainProbability = (<float>...) * dimensionless, nonnegative
GrainEpsilon = (<float>...) * dimensionless, size as GrainProbability
Amplitude = <float> * dimensionless
SpatialShape = Uniform | Gaussian
SpaceMid = <vector>
SpaceSig = <vector>

)
)

}

Volume specifies a named volume that determines where relative dielectric constant variations
are active. For the specification of named volumes, see Random Band Edge Fluctuations on
page 688.

A/cmV

A/cmV g r( )
Sentaurus™ Device User Guide 701
N-2017.09



23: Noise, Fluctuations, and Sensitivity 
Statistical Impedance Field Method
For Grain correlations, GrainProbability is a list that gives the probabilities with which
these shifts occur. GrainEpsilon is a list of a relative dielectric constant shifts with the same
number of values as GrainProbability. The values in GrainEpsilon are adjusted to have
zero average. Therefore, adding a constant to all components of this list has no effect.

Amplitude (dimensionless) is a multiplier to the dimensionless field  that is used for
Gaussian and exponential correlations.

For details about correlations, see Spatial Correlations and Random Fields on page 693. For
the other remaining options, see Options Common to sIFM Variations on page 692.

Doping Profile Variations

Doping profile variations are activated and controlled using the DopingVariation keyword:

Physics {
RandomizedVariation <string> (

DopingVariation <string> (
CorrelationFunction = Grain | Exponential | Gaussian
AverageGrainSize = <vector>
Lambda = <vector>
Resolution = <vector>
MaxInternalPoints = <int>
SFactor = <string>
Amplitude = <vector>      * μm
Amplitude_Iso = <float>   * μm
Conc = <float>            * 1/ccm
Type = Doping | Acceptor | Donor
SpatialShape = Uniform | Gaussian
SpaceMid = <vector>
SpaceSig = <vector>
-Mobility
-BandgapNarrowing

) 
)

}

The options SFactor, Conc, Type, Amplitude, and Amplitude_Iso are used to describe a
doping profile shift based on the gradient of a dataset, as described in Deterministic Doping
Variations on page 703. In addition to what is described there, for sIFM, the shift is multiplied
by a spatially correlated, dimensionless, random field.

For grain correlations, the random number in each grain is Gaussian distributed, with zero
average and variance of one. For exponential and Gaussian correlations, the dimensionless
random field is the one obtained from the Fourier approach.

g r( )
702 Sentaurus™ Device User Guide
N-2017.09



23: Noise, Fluctuations, and Sensitivity
Deterministic Variations
By default, the impact of doping concentration on space charge, mobility, and bandgap
narrowing is accounted for. The options -Mobility and -BandgapNarrowing disable the
impact due to mobility and bandgap narrowing, respectively.

NOTE It is strongly advisable to use either both the -BandgapNarrowing and
-Mobility options or neither option. Otherwise, inconsistencies can
arise when the mobility depends indirectly on bandgap narrowing. Even
when this dependency is weak, the inconsistency can lead to large errors
in IFM results.

For the other options of DopingVariation, see Options Common to sIFM Variations on
page 692 and Spatial Correlations and Random Fields on page 693.

Deterministic Variations

For deterministic variations, you specify the variations directly, by specifying the actual
deviation in doping, geometry, or model parameters. Sentaurus Device computes the effect of
the variations on the observation node voltages and currents in a linear response. As for random
fluctuations, deterministic variations are assumed to be different from zero only for analysis
frequencies up to 

Compared to random fluctuations, deterministic variations give you more control over the
variation and are easier to understand, because no statistical interpretation is required and no
second-order moments appear. In the case of geometric variations, the computational effort is
smaller as well.

Deterministic Doping Variations

Deterministic doping variations are specified as an option to DeterministicVariation in
the Physics section:

Physics {
DeterministicVariation(

DopingVariation <name> (
SFactor = <string>
Amplitude = <vector>
Amplitude_Iso = <float>
Amplitude_Abs = <float>
Conc = <float>
Factor = <float>
Type = Doping | Acceptor | Donor
SpatialShape = Gaussian | Uniform
SpaceMid = <vector>

0.5 Hz.
Sentaurus™ Device User Guide 703
N-2017.09



23: Noise, Fluctuations, and Sensitivity 
Deterministic Variations
SpaceSig = <vector>
-Mobility
-BandgapNarrowing

) ...
) ...

}

Here, <name> is a string that names the variation and will be used to identify output to the
ACExtract file. If it coincides with the name of a geometric or a parameter variation, the
contributions of the variations are added.

SFactor specifies a scalar dataset. Allowed datasets are doping concentrations and
PMIUserFields. If you do not specify any dataset, a constant density of  is assumed.

By specifying Conc, the concentration is normalized and then multiplied by the concentration
specified with Conc. Conc is given in . If Conc is not specified or is zero, the values from
the dataset will be used unaltered.

If the SFactor dataset is a PMIUserField dataset or another dataset that is not a density,
Sentaurus Device cannot properly determine the units of the dataset and, therefore, it interprets
its value with a different scaling constant to the one you intended. Specifying Conc can be
useful in this case, as the normalization of the SFactor eliminates the ambiguous units.

By default, the resulting concentration  determines the fluctuation  directly, . If
you use Amplitude_Iso, Amplitude, or Amplitude_Abs to specify nonzero isotropic or
vectorial amplitudes , , and , the fluctuation is computed from  as

, where  is the vector obtained by taking the
absolute value of  component-wise. The vectorial amplitude models the small
displacement of a profile, and the isotropic amplitude models a shift of a doping front
(perpendicular to the equi-doping lines). For this to work properly, the mesh must accurately
resolve the variations of . Both amplitudes are specified in .

Optionally, a dimensionless value Factor can be specified, which is multiplied by the
resulting . The factor defaults to one. Its purpose is to easily specify variations that are a
certain percentage of a given doping data field.

Using the keywords SpatialShape, SpaceMid, and SpaceSig, you can multiply  by
either a Gaussian function or a window function. These keywords work in the same way as for
traps (see Energetic and Spatial Distribution of Traps on page 450). The shape functions must
adequately be resolved by the mesh.

Type selects whether the variation applies to the acceptor concentration ( ), the
donor concentration ( ), or doping as a whole. In the latter case, a negative variation
increases the acceptor concentration; a positive variation increases donor concentration.

1 cm 3–

cm 3–

X δN δN X=

aiso a aabs X
δN a– ∇X aiso– ∇X a– abs abs X∇( )⋅⋅= abs ∇X( )

∇X

X μm

δN

δN

δNA δN=
δND δN=
704 Sentaurus™ Device User Guide
N-2017.09



23: Noise, Fluctuations, and Sensitivity
Deterministic Variations
By default, the impact of doping concentration on space charge, mobility, and bandgap
narrowing is accounted for. The options -Mobility and -BandgapNarrowing disable the
impact due to mobility and bandgap narrowing, respectively.

NOTE It is strongly advisable to use either both the -BandgapNarrowing and
-Mobility options or neither option. Otherwise, inconsistencies can
arise when the mobility depends indirectly on bandgap narrowing. Even
when this dependency is weak, the inconsistency can lead to large errors
in IFM results.

For a summary of options to DopingVariation, see Table 288 on page 1468.

Deterministic Geometric Variations

Deterministic geometric variations are specified as an option to DeterministicVariation
in the Physics section:

Physics {
DeterministicVariation(

GeometricVariation <name> (
Surface = <string>
Amplitude = <vector>
Amplitude_Iso = <float>
SpatialShape = Gaussian
SpaceMid = <vector>
SpaceSig = <vector>
Options = <0..1>
WeightQuantumPotential = <float>
WeightDielectric = <float>

) ...
) ...

}

Here, <name> is a string that names the variation and will be used to identify output to the
ACExtract file. If it coincides with the name of a doping or a parameter variation, the
contributions of the variations are added. 

Surface identifies the displaced interfaces. Its specification is described in Random
Geometric Fluctuations on page 684. The amount of displacement along the positive normal in
a point  on the surface is determined by Amplitude_Iso ( ) and Amplitude ( ), both
specified in , as .

Using the keywords SpatialShape, SpaceMid, and SpaceSig, you can multiply  by a
Gaussian function.

r aiso a
μm δs r( ) aiso r( ) a r( ) n̂ r( )⋅+=

δs
Sentaurus™ Device User Guide 705
N-2017.09



23: Noise, Fluctuations, and Sensitivity 
Deterministic Variations
These keywords work in the same way as for traps (see Energetic and Spatial Distribution of
Traps on page 450). The Gaussian must be resolved adequately by the mesh.

The keywords Options, WeightQuantumPotential, and WeightDielectric work as
explained in Random Geometric Fluctuations on page 684.

For a summary of options of GeometricVariation, see Table 301 on page 1474.

Parameter Variations

Sentaurus Device allows to compute the linear response to the variation of any parameter that
can be ramped. The parameter variations are specified as an option to
DeterministicVariation in the Physics section:

Physics {
DeterministicVariation (

ParameterVariation <name> (
(

Material = <string>
Region = <string>
MaterialInterface = <string>
RegionInterface = <string>
Model = <string>
Parameter = <string>
Value     = <float>
Factor    = <float>
Summand   = <float>

)...
)...

)...
}

Here, <name> is a string that names the variation and is used to identify output to the
ACExtract file. If it coincides with the name of a doping or a geometry variation, the
contributions of the variations are added.

The option of ParameterVariation is a list of an arbitrary number of individual parameter
specifications, each of which is enclosed by a pair of parentheses. All these variations are
performed together to compute their cumulative impact.

Material, Region, MaterialInterface, or RegionInterface specify the location of
the parameter that is varied. At most, one of these keywords must be specified. Model specifies
the name of the model to which the varied parameter belongs, and Parameter is the name of
the parameter within this model. All these keywords specify a parameter in the same way as
for parameter ramping (see Ramping Physical Parameter Values on page 78).
706 Sentaurus™ Device User Guide
N-2017.09



23: Noise, Fluctuations, and Sensitivity
IFM Section
To specify the correct location for a parameter can be complicated. Combining Parameter
Specifications on page 30 explains how the specifications in the parameter file determine the
location from which the parameters used in the computation are taken.

Each varied parameter has an original value  (the default value, or the value that was set in
the parameter file). The modified value  can be given by one of two ways:

■ Directly by specification of the modified value using Value=

■ By using the keywords Factor and Summand: 

Sentaurus Device assembles the right-hand side twice: once with the original parameters, and
once with the modified parameters. Then, the difference in the right-hand sides is used to
compute the variation of output characteristics in the linear response. However, as the right-
hand sides are not linear in the parameters, the method is not perfectly linear, which becomes
visible if the parameter variation  is not small. On the other hand, if the parameter
variation becomes too small, numeric noise can obscure the results.

IFM Section

Instead of defining the noise and variation models in the Math and Physics sections, starting
from Version N-2017.09, you can also define all these models in the IFM section as follows:

IFM {
Noise (

...
)
RandomizedVariation (

...
)
DeterministicVariation (

...
)
...

}

Parameters of the Noise model can be defined in the IFM section as well:

IFM {
Noise (

MonopolarGRNoise (
e_alpha = 1...

)...
)...

}

γ
γ′

γ′
γ′ Factor γ⋅ Summand+=

γ′ γ–
Sentaurus™ Device User Guide 707
N-2017.09



23: Noise, Fluctuations, and Sensitivity 
IFM Section
Table 127 lists all the Noise model parameters. 

Table 127 Noise model parameters

Model Symbol Default value Unit

MonopolarGRNoise e_alpha 1 1

h_alpha 1 1

e_tau 1e-7 s

h_tau 1e-7 s

FlickerGRNoise e_alpha_H 2e-3 1

h_alpha_H 2e-3 1

e_tau0 1e-6 s

h_tau0 1e-6 s

e_tau1 3e-4 s

h_tau1 3e-4 s

GeometricFluctuations lambda 0

Amplitude_Iso -3e303

Amplitude (-3e303,-3e303,-3e303)

WorkfunctionFluctuations lambda 0

Amplitude -1 eV

BandEdgeFluctuations lambda 0

Amplitude_chi 0 eV

Amplitude_Eg 0 eV

Chi2Eg 0 1

ConductivityFluctuations lambda 0

Amplitude -1

EpsilonFluctuations lambda 0

Amplitude -1 1

μm

μm

μm

μm

μm

μm

A cm
1–
V

1–

μm
708 Sentaurus™ Device User Guide
N-2017.09



23: Noise, Fluctuations, and Sensitivity
Impedance Field Method
Impedance Field Method

The impedance field method splits noise and fluctuation analysis into two tasks. The first task
is to provide models for local microscopic fluctuations inside the devices. The selection of the
appropriate models depends on the problem. You have to select the models according to the
kind of fluctuation that interests you. The second task is to determine the impact of the local
fluctuations on the terminal characteristics. To solve this task, the response of the contact
voltage or contact current to local fluctuation is assumed to be linear. For each contact, Green’s
functions are computed that describe this linear relationship. In contrast to the first task, the
second task is purely numeric, as the Green’s functions are completely specified by the
transport model. 

A Green’s function describes the response  of the current or voltage at node  due to
a perturbation of quantity  at location  with angular frequency . Particularly important is
the case where  is the right-hand side of the partial differential equation for a solution
variable  (see Eq. 37, p. 173),  or  (see Eq. 53, p. 181),  (see Eq. 73, p. 195),  (see
Eq. 74, p. 196), or .

Given the Green’s function and a variation  of the quantity , Sentaurus Device can
compute the current response at node  as:

(757)

Here, the integral runs over the entire device. For the sIFM (see Statistical Impedance Field
Method on page 691),  is obtained by the randomization procedure specific to the type of
variation and, for deterministic variations (see Deterministic Variations on page 703),  is
given by users.

For noise (and noise-like descriptions of static variations; see Noise Sources on page 680), it is
assumed that the expectation value  of  vanishes, and the second-order statistic
moment, the so-called noise source, is considered:

(758)

From the noise source, the noise current spectral densities (or in the static case, the variances
and covariances) are obtained as:

(759)

Similar relations are used for the noise voltage spectral densities .

Some of the noise sources are local, , which allows you to
reduce the number of integrations in Eq. 759 to one.  is called the local noise source

Gξ
c x ω,( ) c

ξ x ω
ξ

φ n p Tn Tp

T

δξ ξ
c

δIc Gξ
c

x ω,( )δξ x ω,( ) xd=

δξ
δξ

δξ  δξ

K x x' ω, ,( ) δξ x ω,( ) δξ* x' ω,( )⋅ =

SI
c1 c2,

Gξ
c1 x ω,( )K x x' ω, ,( )Gξ

c2*
x' ω,( ) xd x'd=

SV

K x x' ω, ,( ) δ x x'–( )K x ω,( )=
K x ω,( )
Sentaurus™ Device User Guide 709
N-2017.09



23: Noise, Fluctuations, and Sensitivity 
Noise Output Data
(LNS), and the integrand of Eq. 759 in this case is called the local noise current spectral
density (LNISD), and the corresponding integrand for  is called the local noise voltage
spectral density (LNVSD).

Noise Output Data

Several variables can be plotted during noise analysis. For each device, a NoisePlot section
can be specified similar to the Plot section, where the data to be plotted is listed. Besides the
standard data, additional noise-specific data or groups of data can be specified, as listed in
Table 128. In the tables, the abbreviations LNS (local noise source) and LNVSD (local noise
voltage spectral density) are used.

Autocorrelation data refers to Eq. 759 when . Data selected in the NoisePlot section
is plotted for each device and observation node at a given frequency into a separate file. File
names with the following format are used:

<noise-plot>_<device-name>_<ob-node>_<number>_acgf_des.tdr

where <noise-plot> is the prefix specified by the NoisePlot option to ACCoupled.

NOTE Only the noise data specified in a Noise section without a name, or with
an empty string as a name, will be plotted.

In the case of  in Eq. 759, node cross-correlation spectra are computed and integrands
become complex. Data specified in the NoisePlot section is plotted for each device and each
pair of observation nodes at a given frequency into a separate file.

The file names have the format:

<noise-plot>_<device-name>_<ob-node-1>_<ob-node-2>_<number>_acgf_des.tdr 

Table 128 Device noise data

Keyword Description

eeDiffusionLNS Electron diffusion LNS

hhDiffusionLNS Hole diffusion LNS

eeMonopolarGRLNS Trace of electron monopolar GR LNS

hhMonopolarGRLNS Trace of hole monopolar GR LNS

eeFlickerGRLNS Trace of electron flicker GR LNS

hhFlickerGRLNS Trace of hole flicker GR LNS

SV

c1 c2=

c1 c2≠
710 Sentaurus™ Device User Guide
N-2017.09



23: Noise, Fluctuations, and Sensitivity
Noise Output Data
ReLNVXVSD
ImLNVXVSD

Real/imaginary parts of LNVSD

ReLNISD
ImLNISD

Real/imaginary parts of local noise current spectral density

ReeeLNVXVSD
ImeeLNVXVSD

Real/imaginary parts of LNVSD for electrons

RehhLNVXVSD
ImhhLNVXVSD

Real/imaginary parts of LNVSD for holes

ReeeDiffusionLNVXVSD
ImeeDiffusionLNVXVSD

Real/imaginary parts of diffusion LNVSD for electrons

RehhDiffusionLNVXVSD
ImhhDiffusionLNVXVSD

Real/imaginary parts of diffusion LNVSD for holes

ReeeMonopolarGRLNVXVSD
ImeeMonopolarGRLNVXVSD

Real/imaginary parts of electron monopolar LNVSD

RehhMonopolarGRLNVXVSD
ImhhMonopolarGRLNVXVSD

Real/imaginary parts of hole monopolar LNVSD

ReeeFlickerGRLNVXVSD 
ImeeFlickerGRLNVXVSD

Real/imaginary parts of electron flicker GR LNVSD

RehhFlickerGRLNVXVSD 
ImhhFlickerGRLNVXVSD

Real/imaginary parts of hole flicker GR LNVSD

ReTrapLNISD
ImTrapLNISD

Real/imaginary parts of local trapping noise current spectral density

ReTrapLNVSD
ImTrapLNVSD

Real/imaginary parts of local trapping noise voltage spectral density

PoECReACGreenFunction
PoECImACGreenFunction
CurECReACGreenFunction
CurECImACGreenFunction

Real/imaginary parts of 

PoHCReACGreenFunction
PoHCImACGreenFunction
CurHCReACGreenFunction
CurHCImACGreenFunction

Real/imaginary parts of 

PoETReACGreenFunction
PoETImACGreenFunction
CurETReACGreenFunction
CurETImACGreenFunction

Real/imaginary parts of 

Table 128 Device noise data (Continued)

Keyword Description

Gn

Gp

GTn
Sentaurus™ Device User Guide 711
N-2017.09



23: Noise, Fluctuations, and Sensitivity 
Noise Output Data
PoHTReACGreenFunction
PoHTImACGreenFunction
CurHTReACGreenFunction
CurHTImACGreenFunction

Real/imaginary parts of 

PoLTReACGreenFunction
PoLTImACGreenFunction
CurLTReACGreenFunction
CurLTImACGreenFunction

Real/imaginary parts of 

PoPotReACGreenFunction
PoPotImACGreenFunction
CurPotReACGreenFunction
CurPotImACGreenFunction

Real/imaginary parts of 

PoGeoGreenFunction
CurGeoGreenFunction

Real part of the Green’s functions for geometric variations

GradPoECReACGreenFunction
GradPoECImACGreenFunction
GradPoHCReACGreenFunction
GradPoHCImACGreenFunction
GradPoETReACGreenFunction
GradPoETImACGreenFunction
GradPoHTReACGreenFunction
GradPoHTImACGreenFunction

Real/imaginary parts of , , ,  for 
voltage noise

Grad2PoECACGreenFunction
Grad2PoHCACGreenFunction

 and  for voltage noise

AllLNS All used LNS

AllLNVXVSD All used LNVSD

GreenFunctions Green’s functions and their gradients

Table 128 Device noise data (Continued)

Keyword Description

GTp

GT

Gφ

∇ Gn⋅ ∇ Gp⋅ ∇ GTn
⋅ ∇ GTp

⋅

Gn
2 Gp

2

712 Sentaurus™ Device User Guide
N-2017.09



23: Noise, Fluctuations, and Sensitivity
References
References

[1] F. Bonani et al., “An Efficient Approach to Noise Analysis Through Multidimensional
Physics-Based Models,” IEEE Transactions on Electron Devices, vol. 45, no. 1,
pp. 261–269, 1998.

[2] J.-P. Nougier, “Fluctuations and Noise of Hot Carriers in Semiconductor Materials and
Devices,” IEEE Transactions on Electron Devices, vol. 41, no. 11, pp. 2034–2049,
1994.

[3] F. Bonani and G. Ghione, “Generation–recombination noise modelling in
semiconductor devices through population or approximate equivalent current density
fluctuations,” Solid-State Electronics, vol. 43, no 2, pp. 285–295, 1999.
Sentaurus™ Device User Guide 713
N-2017.09



23: Noise, Fluctuations, and Sensitivity 
References
714 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 24 Tunneling

This chapter presents the tunneling models available in Sentaurus
Device.

In current microelectronic devices, tunneling has become a very important physical effect. In
some devices, tunneling leads to undesired leakage currents (for gates in small MOSFETs). For
other devices such as EEPROMs, tunneling is essential for the operation of the device.

The tunneling models discussed in this chapter refer to elastic charge-transport processes at
interfaces or contacts. Tunneling also plays a role in some generation–recombination models
(see Chapter 16 on page 391). These models do not deal with spatial transport of charge and,
therefore, are not discussed here. In addition to tunneling, hot-carrier injection can also
contribute to carrier transport across barriers. To model hot-carrier injection, see Chapter 25 on
page 737. Tunneling to traps is discussed in Tunneling and Traps on page 463.

Tunneling Model Overview

Sentaurus Device offers three tunneling models. The most versatile tunneling model is the
nonlocal tunneling model (see Nonlocal Tunneling at Interfaces, Contacts, and Junctions on
page 722). This model:

■ Handles arbitrary barrier shapes.

■ Includes carrier heating terms.

■ Allows you to describe tunneling between the valence band and conduction band.

■ Offers several different approximations for the tunneling probability.

Use this model to describe tunneling at Schottky contacts, tunneling in heterostructures, and
gate leakage through thin, stacked insulators.

The second most powerful model is the direct tunneling model (see Direct Tunneling on
page 718). This model:

■ Assumes a trapezoidal barrier (this restricts the range of application to tunneling through
insulators).

■ Neglects heating of the tunneling carriers.

■ Optionally, accounts for image charge effects (at the cost of reduced numeric robustness).
Sentaurus™ Device User Guide 715
N-2017.09



24: Tunneling 
Fowler–Nordheim Tunneling
Use this model to describe leakage through thin gate insulators, provided those are of uniform
or of uniformly graded composition.

The simplest tunneling model is the Fowler–Nordheim model (see Fowler–Nordheim
Tunneling). Fowler–Nordheim tunneling is a special case of tunneling also covered by the
nonlocal and direct tunneling models, where tunneling is to the conduction band of the oxide.
The model is simple and efficient, and has proven useful to describe erase operations in
EEPROMs, which is the application for which this model is recommended.

If the simulated device contains a floating gate, gate currents are used to update the charge on
the floating gate after each time step in transient simulations. If EEPROM cells are simulated
in 2D, it is generally necessary to include an additional coupling capacitance between the
control and floating gates to account for the additional influence of the third dimension on the
capacitance between these electrodes (see Floating Metal Contacts on page 223). The
additional floating gate capacitance can be specified as FGcap in the Electrode statement
(see Physical Models and the Hierarchy of Their Specification on page 18).

Fowler–Nordheim Tunneling

Using Fowler–Nordheim

To switch on the Fowler–Nordheim tunneling model, specify Fowler as an option to
GateCurrent in an appropriate interface Physics section, as follows:

Physics(MaterialInterface="Silicon/Oxide"){ GateCurrent(Fowler) }

or:

Physics(MaterialInterface="Silicon/Oxide"){ GateCurrent(Fowler(EVB)) }

The second specification activates the tunneling of electrons from and to the valence band as
discussed in Fowler–Nordheim Model on page 717.

If GateCurrent is specified as above, Sentaurus Device computes gate currents between all
silicon–oxide interfaces and the electrodes. The computation can be restricted to selected
interfaces using region-interface Physics sections.

For simple one-gate devices, the tunneling current can be monitored on a contact specified by
the keyword GateName in the GateCurrent statement.
716 Sentaurus™ Device User Guide
N-2017.09



24: Tunneling
Fowler–Nordheim Tunneling
The Fowler–Nordheim tunneling model can be used with any of the hot-carrier injection
models (see Chapter 25 on page 737), for example:

GateCurrent( Fowler Lucky )

switches on the Fowler–Nordheim tunneling model and the classical lucky electron injection
model simultaneously.

Fowler–Nordheim Model

The Fowler–Nordheim model reads:

(760)

where  is the tunnel current density,  is the insulator electric field at the interface,
and and  are physical constants. The electric field at the interface shown by Sentaurus
Visual is an interpolation of the fields in both regions, but Sentaurus Device uses the insulator
field internally.

Due to the large energy difference between oxide and silicon conduction bands, tunneling
electrons create electron–hole pairs in the erase operation when they enter the semiconductor.
This additional carrier generation is included by an energy-independent multiplication factor

:

(761)

(762)

If the electrons flow in an opposite direction, by default, . The formulas above reflect
the default behavior of Sentaurus Device, but sometimes the Fowler–Nordheim equation is
used to emulate other tunneling effects, for example, the tunneling of electrons from the
valence band into the gate. Such capability is activated by the additional keyword EVB in the
command file. Sentaurus Device will continue to function even if . For any electron
tunneling direction, particularly a floating body SOI, this tunneling current is important
because it strongly defines floating body potential. Different coefficients are needed for the
write and erase operations because, in the first case, the electrons are emitted from
monocrystalline silicon and, in the latter case, they are emitted from the polysilicon contact
into the oxide.

The tunneling current is implemented as a current boundary condition at the interface where
the current is produced. For transient simulations, if the Interface keyword is also present
in the GateCurrent section, carrier tunneling with explicitly evaluated boundary conditions
for continuity equations is activated (similar to carrier injection with explicitly evaluated

jFN AFins
2 B

Fins
---------– 

 exp=

jFN Fins

A B

γ 1>

jn γ jFN⋅=

jp γ 1–( ) jFN⋅=

γ 1=

γ 1<
Sentaurus™ Device User Guide 717
N-2017.09



24: Tunneling 
Direct Tunneling
boundary conditions for continuity equations in Carrier Injection With Explicitly Evaluated
Boundary Conditions for Continuity Equations on page 759). 

Fowler–Nordheim Parameters

The parameters of the Fowler–Nordheim model can be modified in the FowlerModel
parameter set. Sentaurus Device uses different parameters (denoted as erase and write)
depending on the direction of the electric field between the contact and semiconductor in the
oxide layer. For example, if the field points from the contact to the semiconductor (that is,
electrons flow into the contact), the ‘write’ parameter set is used. Table 129 lists the parameters
and their default values. 

Direct Tunneling

Direct tunneling is the main gate leakage mechanism for oxides thinner than . It turns into
Fowler–Nordheim tunneling at oxide fields higher than approximately ,
independent of the oxide thickness. This section describes a fully quantum-mechanical
tunneling model that is restricted to trapezoidal tunneling barriers and covers both direct
tunneling and the Fowler–Nordheim regime. Optionally, the model considers the reduction of
the tunneling barrier due to image forces.

A variant of this direct tunneling model is used to describe spin-selective tunneling through
magnetic tunnel junctions (see Transport Through Magnetic Tunnel Junctions on page 806).

Table 129 Coefficients for Fowler–Nordheim tunneling (defaults for silicon–oxide interface)

Symbol Parameter name Default value Unit Remarks

 (erase) Ae  for the erase cycle

 (erase) Be V/cm  for the erase cycle

 (write) Aw  for the write cycle

 (write) Bw V/cm  for the write cycle

Gm 1 1

A 1.87 10
7–× A/V

2
A

B 1.88 10
8× B

A 1.23 10
6–× A/V

2
A

B 2.37 10
8× B

γ

3 nm
6 MV cm⁄
718 Sentaurus™ Device User Guide
N-2017.09



24: Tunneling
Direct Tunneling
Using Direct Tunneling

The direct tunneling model is specified as an option of the GateCurrent statement (see Using
Fowler–Nordheim on page 716) in an appropriate interface Physics section:

Physics(MaterialInterface="Silicon/Oxide") {
GateCurrent( DirectTunneling )

}

The keyword GateName and the compatibility with the hot-carrier injection models (see
Chapter 25 on page 737) are as for the Fowler–Nordheim model, see Fowler–Nordheim
Tunneling on page 716.

To switch on the image force effect, the parameters E0, E1, and E2 must be specified (in )
in the parameter file. If these values are all equal (the default), the image force is neglected.
Recommended values for both electrons and holes are E0=0, E1=0.3, and E2=0.7. Including
the image force effect degrades convergence. For most purposes, the effect can be
approximated by reducing the overall barrier height. For more information on model
parameters, see Direct Tunneling Parameters on page 721.

To plot the direct tunneling current, the keywords eSchenkTunnel or hSchenkTunnel must
be included in the Plot section:

Plot { eSchenkTunnel hSchenkTunnel }

Direct Tunneling Model

This section summarizes the model described in the literature [1]. It presents the formulas for
electrons only; the hole expressions are analogous. The electron tunneling current density is:

(763)

where  is the effective thickness of the barrier,  is a mass prefactor, the argument 
denotes one (the ‘substrate’) side of the barrier and  denotes the other (‘gate’) side, and  is
the energy of the elastic tunnel process (relative to ).

eV

jn

qmCk

2π2
h3

--------------- Eϒ E( ) T 0( ) exp
EF,n 0( ) EC 0( )– E–

kT 0( )
------------------------------------------------- 1+ 

 ln

T d( ) exp
EF,n d( ) EC 0( )– E–

kT d( )
------------------------------------------------- 1+ 

 ln–













d
0

∞

=

d mC 0
d E
EC 0( )
Sentaurus™ Device User Guide 719
N-2017.09



24: Tunneling 
Direct Tunneling
 is the transmission coefficient for a trapezoidal potential barrier, with:

(764)

and:

(765)

and so on, where  and  denotes the (substrate-side) barrier
height for electrons of energy .  is the tunneling energy with respect to the conduction
band edge on the gate side, .

For compatibility with an earlier implementation of the model,  is truncated to the value
specified by the parameter E_F_M if it exceeds this value.  is the electric field in
the oxide (assumed to be uniform within the oxide, and including a band edge–related term
when different barrier heights are specified at the two insulator interfaces). The quantities ,

, and  represent the electron masses in the three materials, respectively.  and  are
Airy functions, and and  are their derivatives.

Image Force Effect

Ultrathin oxide barriers are affected by the image force effect. If the latter is neglected, 
is the bare barrier height , which is an input parameter. The image force effect is included
in the model by taking  as an energy-dependent pseudobarrier:

(766)

where , , and  are chosen in the lower energy range of the barrier potential (between
 and  in practical cases). If these values are chosen to be equal, the image force

effect is automatically switched off. Otherwise, for each bias point:

(767)

is solved for , which results in three pseudobarrier heights  used in
Eq. 766. In Eq. 767,  is the action of the trapezoidal pseudobarrier:

(768)

ϒ E( ) 2 1 g E( )+( )⁄=

g E( ) π2

2
-----

ET

E
------

mSi

mG
-------- Bi'dAi0 Ai'dBi0–( )2 E

ET
------

mG

mSi
-------- BidAi'0 AidBi'0–( )2

mGmSi

mox
--------------------

hΘox

EET

-------------- Bi'dAi'0 Ai'dBi'0–( )2
mox

mGmSi

--------------------
EET

hΘox
-------------- BidAi0 AidBi0–( )+

+ +












=

Ai0 Ai=
EB E( ) E–

hΘox
------------------------- 
      Aid, Ai

EB E( ) qFoxd E––

hΘox
---------------------------------------------- 
 =

hΘox q2h2Fox
2 2mox⁄( )1 3⁄= EB E( )

E ET

ET E EC d( )– EC 0( )–=

ET

Fox Vox d⁄=

mG

mox mSi Ai Bi
Ai' Bi'

EB E( )
EB

EB E( )

EB E( ) EB E0( )
EB E2( ) EB E0( )–

E2 E0–( ) E1 E2–( )
----------------------------------------------- E E0–( ) E1 E–( )

EB E1( ) EB E0( )–

E1 E0–( ) E1 E2–( )
----------------------------------------------- E E0–( ) E2 E–( )–+=

E0 E1 E2

0 eV 1.5 eV

Stra E( ) Sim E( )=

Ej j 0 1 2, ,=( ) EB Ej( )
Stra E( )

Stra E( ) 2
3
---

EB E( ) qFoxd– E–

hΘox
---------------------------------------------

3
2
---
Θ EB E( ) qFoxd– E–[ ]

EB E( ) E–

hΘox
-----------------------

3
2
---

–=
720 Sentaurus™ Device User Guide
N-2017.09



24: Tunneling
Direct Tunneling
and  is the action of the respective image potential barrier:

(769)

 denotes the classical turning points for a given carrier energy that follow from:

(770)

For the thickness of the pseudobarrier,  is used, that is, the distance between
the two turning points at the energy of the semiconductor conduction band edge of the
interface. Therefore,  is smaller than the user-given oxide thickness, when the image force
effect is considered. The image potential itself is given by:

(771)

with:

(772)

In Eq. 772, , , and  denote the dielectric constants for the oxide, substrate, and gate
material, respectively.

Direct Tunneling Parameters

The parameters of the direct tunneling model are modified in the DirectTunneling
parameter set. The appropriate default parameters for an oxide barrier on silicon are in
Table 130. The parameters are specified according to the interface.

Table 130 Coefficients for direct tunneling (defaults for oxide barrier on silicon)

Symbol Parameter name Electrons Holes Unit Description

eps_ins 2.13 2.13 1 Optical dielectric constant

E_F_M 11.7 11.7 eV Fermi energy for gate contact

m_M 1 1 Effective mass in gate contact

m_ins 0.50 0.77 Effective mass in insulator

m_s 0.19 0.16 Effective mass in substrate

m_dos 0.32 0 Semiconductor DOS effective mass

Sim E( )

Sim E( )
2mox

h2
------------ ξ EB qFoxξ– Eim ξ( ) E–+d

xl E( )

xr E( )

=

xl,r E( )

ET qFoxxl,r– Eim xl,r( )+ E=

d xr 0( ) xl 0( )–=

d

Eim x( ) q2

16πεox
----------------- k1k2( )n

k1

nd x+
---------------

k2

d n 1+( ) x–
-----------------------------

2k1k2

d n 1+( )
--------------------+ +

n 0=

10

=

k1

εox εSi–

εox εSi+
-------------------- k2

εox εG–

εox εG+
--------------------=, 1–= =

εox εSi εG

εox

EF d( )

mG m0

mox m0

mSi m0

mC m0
Sentaurus™ Device User Guide 721
N-2017.09



24: Tunneling 
Nonlocal Tunneling at Interfaces, Contacts, and Junctions
If tunneling occurs between two semiconductors, the coefficients for metal (m_M and E_F_M)
are not used. The semiconductor parameters for the respective interface are used. It is not valid
to have contradicting parameter sets for two interfaces of an insulator between which tunneling
occurs. In particular, eps_ins, m_ins, E0, E1, and E2 must agree in the parameter
specifications for both interfaces.

Nonlocal Tunneling at Interfaces, Contacts, and Junctions

The tunneling current depends on the band edge profile along the entire path between the points
connected by tunneling. This makes tunneling a nonlocal process. In general, the band edge
profile has a complicated shape, and Sentaurus Device must compute it by solving the transport
equations and the Poisson equation. The model described here takes this dependence fully into
account.

To use the nonlocal tunneling model:

1. Construct a special purpose ‘nonlocal’ mesh (see Defining Nonlocal Meshes).

2. Specify the physical details of the tunneling model (see Specifying Nonlocal Tunneling
Model on page 724).

3. Adjust the physical and numeric parameters (see Nonlocal Tunneling Parameters on
page 726).

Defining Nonlocal Meshes

It is necessary to specify a special purpose ‘nonlocal’ mesh for each part of the device for which
you want to use the nonlocal tunneling model. Nonlocal meshes consist of ‘nonlocal’ lines that
represent the tunneling paths for the carriers.

To control the construction of the nonlocal mesh, use the options of the keyword NonLocal in
the global Math section. Nonlocal meshes can be constructed using two different forms:

■ In the simpler form, NonLocal specifies barrier regions. For example:

Math { Nonlocal "NLM" ( Barrier(Region="oxtop" Region="oxbottom") ) }

E_barrier 3.15 4.73 eV Semiconductor/insulator barrier (no image 
force)

, , E0, E1, E2 0 0 eV Energy nodes 0, 1, and 2 for pseudobarrier 
calculation

Table 130 Coefficients for direct tunneling (defaults for oxide barrier on silicon) (Continued)

Symbol Parameter name Electrons Holes Unit Description

EB

E0 E1 E2
722 Sentaurus™ Device User Guide
N-2017.09



24: Tunneling
Nonlocal Tunneling at Interfaces, Contacts, and Junctions
constructs a nonlocal mesh for a tunneling barrier that consists of the regions oxtop and
oxbottom. See Specification Using Barrier on page 149 for details.

■ In the more general form, NonLocal specifies an interface or a contact where the mesh is
constructed, and a distance Length (given in centimeters). Sentaurus Device then connects
semiconductor vertices with a distance from the interface or contact no larger than Length
to the interface or contact. These connections form the centerpiece of the nonlocal lines.
For example, with:

Math { Nonlocal "NLM" (Electrode="Gate" Length=5e-7) }

Sentaurus Device constructs a nonlocal mesh called "NLM" that connects vertices up to a
distance of  to the Gate electrode. See Specification Using a Reference Surface on
page 150 for details.

Sentaurus Device introduces a coordinate along each nonlocal line. The interface or contact is
at coordinate zero; the vertex for which the nonlocal line is constructed is at a positive
coordinate. Below, the terms upper and lower refer to the orientation according to these
nonlocal line–specific coordinates. This orientation is not related to the orientation of the mesh
axes.

To form the nonlocal lines, Sentaurus Device extends the connection at the upper end, to fully
cover the box for the vertex that is connected. Optionally, for nonlocal meshes at interfaces, the
connection can be extended at the lower end (beyond the interface) by an amount specified by
Permeation (in centimeters).

Sentaurus Device handles each nonlocal line separately. Therefore, two nonlocal lines
connecting two vertices to the same interface do not allow the computing of tunneling between
these vertices. To compute tunneling between vertices on the two sides of an interface, they
must be covered by a single nonlocal line. This is where Permeation is needed.

For nonlocal meshes not used for trap tunneling, Permeation also affects the integration
range for tunneling. With zero Permeation, the lower endpoint for tunneling is always at the
interface; for positive Permeation, it can be anywhere on the nonlocal line. Therefore, for
tunneling at smooth barriers (for example, band-to-band tunneling at a steep p-n junction), the
nonlocal mesh used should not be reused for trap tunneling (see Tunneling and Traps on
page 463), and Permeation should be positive.

When using the more general form of nonlocal mesh construction, specify a nonlocal mesh for
only one side of a tunneling barrier. If on one side of the tunneling barrier there is a contact or
a metal–nonmetal interface, specify the mesh there. In other cases, specify the nonlocal mesh
for the interface from which the carriers will tunnel away. If this side can change during the
simulation, specify a nonzero Permeation (approximately as much as Length exceeds the
barrier thickness). For tunneling barriers with multiple layers, do not specify a nonlocal mesh
for the interfaces internal to the barrier.

5 nm
Sentaurus™ Device User Guide 723
N-2017.09



24: Tunneling 
Nonlocal Tunneling at Interfaces, Contacts, and Junctions
For more options to the keyword NonLocal, see Table 228 on page 1424. For details about the
nonlocal mesh and its construction, see Constructing Nonlocal Meshes on page 149.

NOTE The nonlocality of tunneling can increase dramatically the time that is
needed to solve the linear systems in the Newton iteration. To limit the
speed degradation, keep Length and Permeation as small as possible.
Consider optimizing the nonlocal mesh using the advanced options of
NonLocal (see Constructing Nonlocal Meshes on page 149).

Specifying Nonlocal Tunneling Model

The nonlocal tunneling model is activated and controlled in the global Physics section. Each
tunneling event connects two points on a nonlocal line. Sentaurus Device distinguishes
between tunneling to the conduction band and to the valence band at the lower of the two
points. 

To switch on these terms, use the options eBarrierTunneling and hBarrierTunneling.
For example:

Physics {
eBarrierTunneling "NLM" hBarrierTunneling "NLM"

}

switches on electron and hole tunneling for the nonlocal mesh called "NLM", and:

Physics {
eBarrierTunneling "NLM" (PeltierHeat)

}

switches on tunneling to the conduction band only and activates the Peltier heating of the
tunneling particles.

By default, all tunneling to the conduction band at the lower point on the line originates from
the conduction band at the upper point,  (‘electron tunneling’), see Eq. 783, p. 734.
Likewise, by default, the tunneling to the valence band at the lower point originates from the
valence band at the upper point,  (that is, ‘hole tunneling’).

In addition, Sentaurus Device supports nonlocal band-to-band tunneling. To include the
contributions by tunneling to and from the valence band at the upper point in , specify
eBarrierTunneling with the Band2Band=Simple option. Then, , see
Eq. 783 and Eq. 785, p. 734. To include contributions by tunneling to and from the conduction
band at the upper point to , specify hBarrierTunneling with the Band2Band=Simple
option. Then, . With Band2Band=Full, the nonlocal band-to-band tunneling
model uses Eq. 480, p. 437 instead of Eq. 784, p. 734 to calculate the band-to-band tunneling

jC jCC=

jV jVV=

jC

jC jCC jCV+=

jV

jV jVC jVV+=
724 Sentaurus™ Device User Guide
N-2017.09



24: Tunneling
Nonlocal Tunneling at Interfaces, Contacts, and Junctions
contribution, which makes the model consistent with the Dynamic Nonlocal Path Band-to-
Band Tunneling Model on page 436 provided that the dynamic nonlocal path band-to-band
model uses the direct tunneling model with the Franz dispersion relation. With
Band2Band=UpsideDown (or only Band2Band), an obsolete, physically flawed, band-to-
band tunneling model is activated.

For backward compatibility, you can activate the nonlocal tunneling model in an interface-
specific or contact-specific Physics section; in that case, specify eBarrierTunneling and
hBarrierTunneling as options to Recombination, and omit the nonlocal mesh name. The
specification applies to an unnamed nonlocal mesh that has been constructed for the same
location (see Unnamed Meshes on page 152).

Figure 47 illustrates the four contributions to the total tunneling current. 

Figure 47 Various nonlocal tunneling current contributions

By default, Sentaurus Device assumes a single-band parabolic band structure for the tunneling
particles, uses a WKB-based model for the tunneling probability, and ignores band-to-band
tunneling and Peltier heating. Options to eBarrierTunneling and hBarrierTunneling
override the default behavior. For available options, see Table 238 on page 1439. For a detailed
discussion of the physics of the nonlocal tunneling model, see Physics of Nonlocal Tunneling
Model on page 729.

When specifying the Multivalley option, the tunneling model uses the multivalley band
structure (see Multivalley Band Structure on page 267). This allows you to account for
conduction and valence bands with multiple valleys, anisotropic masses, and possibly
geometric confinement. See Multivalley Band Structure and Geometric Quantization on
page 732 for more details.

E

EV

CjCC
compute
always

j
CV

compute
always

j
VV

VC
j

In
te

rf
ac

e
hBarrierTunneling

Band2Band

In
te

rf
ac

e

E

EV

C

eBarrierTunneling

In
te

rf
ac

e

Band2Band

In
te

rf
ac

e

Sentaurus™ Device User Guide 725
N-2017.09



24: Tunneling 
Nonlocal Tunneling at Interfaces, Contacts, and Junctions
When specifying the BarrierLowering option, the tunneling model accounts for position-
dependent barrier lowering corrections in the conduction-band and valence-band edges.
shifting them inwards, toward the midgap. See WKB Tunneling Probability on page 729 and
Eq. 779, p. 731 for details.

Nonlocal Tunneling Parameters

The nonlocal tunneling model has several fit parameters. They are specified in the
BarrierTunneling parameter set.

The parameter pair g determines the dimensionless prefactors  and  (see Eq. 782 and
Eq. 784). For unnamed meshes, specify them in the parameter set that is specific to the contact
or interface for which the nonlocal tunneling model is activated. For named meshes, specify
them in the global parameter set.

The parameter pair mt determines the tunneling masses  and  (see Eq. 773 and Eq. 774).
They are properties of the materials that form the tunneling barrier. Therefore, specify them (in
units of ) in region-specific or material-specific parameter sets. For tunneling at contacts,
also specify the masses for the contact parameter set when using Transmission or
Schroedinger (see Eq. 778, p. 730 and Schrödinger Equation–Based Tunneling Probability
on page 731).

Sentaurus Device treats effective tunneling masses of value zero as undefined. If an effective
tunneling mass for a region is undefined, Sentaurus Device uses the effective tunneling mass
for the interface or contact for which tunneling is activated (for unnamed meshes) or the
tunneling mass from the global parameter set (for named meshes). By default, all effective
tunneling masses are undefined. Finally, if the model is used with the Multivalley option
(see Multivalley Band Structure and Geometric Quantization on page 732), masses extracted
from the multivalley model override the tunneling masses wherever they are available.

The following example changes the prefactors  and  to 1 and 2, respectively:

BarrierTunneling {
mt = 0.5, 0.5
g = 1 , 2

}
Material = "Oxide" {

BarrierTunneling {
mt = 0.42 , 1.0

}
}

The tunneling masses are set to . In oxide, it sets the tunneling masses  and  to
0.42 and 1, respectively; these values take precedence over the masses specified globally.

gC gV

mC mV

m0

gC gV

0.5m0 mC mV
726 Sentaurus™ Device User Guide
N-2017.09



24: Tunneling
Nonlocal Tunneling at Interfaces, Contacts, and Junctions
The parameters eoffset and hoffset are lists of nonnegative energy shifts (in ) that are
added to the conduction-band and valence-band edges, shifting them outwards, away from the
midgap. Specify them in a region-specific or material-specific parameter set. By default, a
single shift value of zero is assumed. Sentaurus Device computes the tunneling current as the
sum of the currents for each shift. Shifts in different regions are combined according to the
position where they appear in the list; if the lists in different regions have different lengths, the
last value in the shorter lists are repeated to extend them to the length of the longest list.

The parameter pair alpha determines the fit factors  and  for the quantization
corrections for tunneling from inversion layers through insulator barriers (see Density Gradient
Quantization Correction on page 732). The default values are zero, disabling the corrections.
To enable them, set the parameters to one (or another positive value) in the interface- or
contact-specific parameter set (for unnamed meshes) or in the global parameter set (for named
meshes).

The parameter pairs QuantumPotentialFactor and QuantumPotentialPosFac specify
the prefactors for the electron and hole quantum potentials obtained from the density gradient
model (see Density Gradient Quantization Model on page 294) that can be added to the band
edges used for evaluating the tunneling rate. By default, the parameters are zero, such that the
quantum potentials are neglected in the computation of tunneling. When they are nonzero, the
quantum potentials multiplied by the corresponding prefactors are added to the conduction and
valence band edges for the computation of tunneling current.

For QuantumPotentialFactor, an addition is performed irrespective of the sign of the
quantum potential. For QuantumPotentialPosFac, an addition is performed only where the
quantum potential is positive, that is, only where quantization causes an effective widening of
the band gap.

The quantum corrections activated by giving QuantumPotentialFactor or
QuantumPotentialPosFac a nonzero value are intended for situations where quantization
is caused by confinement perpendicular to the tunneling direction. In contrast, alpha is
intended for tunneling from an inversion layer, where quantization is due to confinement in the
tunneling direction.

The regionwise barrier-lowering fitting factor  can be specified by the A parameter (default
is 1):

Material = "Silicon" {
BarrierTunneling {

A = 1.02 , 1.0
}

}

eV

αn αp

A

Sentaurus™ Device User Guide 727
N-2017.09



24: Tunneling 
Nonlocal Tunneling at Interfaces, Contacts, and Junctions
The barrier lowering parameter BL_max allows you to adjust the maximum of the barrier
lowering (corresponding to the minimum-allowed distance to the contact or interface). Its
default value is 0.3 eV.

BarrierTunneling can also be applied specifically to named nonlocal meshes. For example:

Material = "Oxide" {
BarrierTunneling "NLM" {

mt = 0.42 , 1.0
}

}

changes the oxide tunneling mass for the nonlocal mesh NLM only. Specifications for named
nonlocal meshes take precedence over the general specifications.

Specify numeric parameters for the model in the Math section, as an option of NonLocal for
a given nonlocal mesh. The parameter Digits determines the relative accuracy (the number
of valid decimal digits) to which Sentaurus Device computes the integrals in Eq. 783 and
Eq. 785. The default value is 2. The parameter EnergyResolution (given in ) is a lower
limit for the energy step that Sentaurus Device uses to perform the integrations and it defaults
to 0.005. The purpose of EnergyResolution is to limit the runtime for computing the
tunneling currents in case the value of Digits is too large.

For example:

Math {
NonLocal "NLM" (

...
Digits=3
EnergyResolution=0.001

)
}

increases the energy resolution for tunneling on the nonlocal mesh "NLM" to  and the
relative accuracy of the tunneling current computation to three digits.

Visualizing Nonlocal Tunneling

To visualize nonlocal tunneling, specify the keyword eBarrierTunneling or
hBarrierTunneling in the Plot section (see Device Plots on page 122). The quantities
plotted are in units of  and represent the rate at which electrons and holes are generated
or disappear due to tunneling. To plot the Peltier heat generated in the conduction band and
valence band due to nonlocal tunneling, specify eNLLTunnelingPeltierHeat and
hNLLTunnelingPeltierHeat. The Peltier heat is plotted in units of  and is available
regardless of whether it is accounted for in the temperature equation.

eV

1 meV

cm 3– s 1–

Wcm 3–
728 Sentaurus™ Device User Guide
N-2017.09



24: Tunneling
Nonlocal Tunneling at Interfaces, Contacts, and Junctions
The rates are plotted vertexwise and are averaged over the semiconductor volume controlled
by a vertex. Therefore, they depend on the mesh spacing. This dependence can become
particularly strong at interfaces where the band edges change abruptly.

Physics of Nonlocal Tunneling Model

The nonlocal tunneling model in Sentaurus Device is based on the approach presented in the
literature [2], but provides significant enhancements over the model presented there.

WKB Tunneling Probability

The computation of the tunneling probabilities  (for carriers tunneling to the -th shifted
conduction band at the interface or contact) and  (for tunneling to the -th shifted valence
band) is, by default, based on the WKB approximation. 

The WKB approximation uses the local (imaginary) wave numbers of particles at position 
and with energy :

(773)

(774)

Here,  is the conduction-band tunneling mass and  is the valence-band tunneling mass.
Both tunneling masses are adjustable parameters (see Nonlocal Tunneling Parameters on
page 726).  and  are the conduction and valence bands energies shifted by the -th
value in eoffset and hoffset (see Nonlocal Tunneling Parameters on page 726).

Using the local wave numbers and the interface transmission coefficients  and , the
tunneling probability between positions  and  for a particle with energy  can be written
as:

(775)

and:

(776)

ΓC ν, ν
ΓV ν, ν

r
ε

κC ν, r ε,( ) 2mC r( ) EC ν, r( ) ε– Θ EC ν, r( ) ε–[ ] h⁄=

κV ν, r ε,( ) 2mV r( ) ε E– V ν, r( ) Θ ε E– V ν, r( )[ ] h⁄=

mC mV

EC ν, EV ν, ν

TCC ν, TVV ν,
l u l> ε

ΓCC ν, u l ε, ,( ) TCC ν, l ε,( ) 2 κC ν, r ε,( ) rd

l

u

–
 
 
 
 

TCC ν, u ε,( )exp=

ΓVV ν, u l ε, ,( ) TVV ν, l ε,( ) 2 κV ν, r ε,( ) rd

l

u

–
 
 
 
 

TVV ν, u ε,( )exp=
Sentaurus™ Device User Guide 729
N-2017.09



24: Tunneling 
Nonlocal Tunneling at Interfaces, Contacts, and Junctions
If the option TwoBand is specified to eBarrierTunneling (see Table 238 on page 1439),
Sentaurus Device replaces  in Eq. 775 with the two-band dispersion relation:

(777)

If the option TwoBand is specified to hBarrierTunneling, Sentaurus Device replaces 
in Eq. 776 with the two-band relation Eq. 777. Near the conduction and the valence band edge,
the two-band dispersion relation approaches the single band dispersion relations Eq. 773 and
Eq. 774, and provides a smooth interpolation in between. Figure 48 illustrates this.

The two-band dispersion relation does not distinguish between electrons and holes. In
particular, for the two-band dispersion relation, . 

Figure 48 Comparison of two-band and single-band dispersion relations

The two-band dispersion relation is most useful when band-to-band tunneling is active
(keyword Band2Band, see Table 238 on page 1439). However, the two-band dispersion
relation can be used independently from band-to-band tunneling.

By default, the interface transmission coefficients and  in Eq. 775 and Eq. 776
equal one. If the Transmission option is specified to eBarrierTunneling [3]:

(778)

Here,  denotes the velocity of a particle with energy  on the side of the interface or
contact at position  where the particle moves freely in the conduction band, and 
denotes the imaginary velocity on the side of the tunneling barrier (where the particle is in the
gap). If the particle is free or in the barrier on both sides, . Velocities are the
derivatives of the particle energy with respect to the wave number, . With the

κC ν,

κν
κC ν, κV ν,

κC ν,
2 κV ν,

2
+

---------------------------------=

κV ν,

ΓCC ν, ΓVV ν,=

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

Energy [eV]

0

1

2

3

4

5

6

7

8

9

W
av

e 
N

um
be

r 
[n

m
−

1 ]

κCκV

ECEV

mC = 0.5

mV = 5

TCC ν, TVV ν,

TCC ν, x ε,( )
v- ν, x ε,( ) v- ν, x ε,( )2 16v+ ν, x ε,( )2+

v+ ν, x ε,( )2 v- ν, x ε,( )2+
-------------------------------------------------------------------------------------------=

v- ν, x ε,( ) ε
x v+ ν, x ε,( )

TCC ν, x ε,( ) 1=
vν ε∂ hκC ν,∂⁄=
730 Sentaurus™ Device User Guide
N-2017.09



24: Tunneling
Nonlocal Tunneling at Interfaces, Contacts, and Junctions
TwoBand option,  [4] (see Eq. 777). If the Transmission option is
specified to hBarrierTunneling, analogous expressions hold for .

By default, the band-to-band tunneling probabilities  and  are also given by the
expressions Eq. 775 and Eq. 776, respectively. When the TwoBand and Transmission
options are specified for eBarrierTunneling to compute ,  in the expression for

 (see Eq. 778) is the velocity of the particle in the valence band and is computed
from valence-band parameters. The converse holds for  when those options are specified
for hBarrierTunneling.

For metals and contacts, the band-edge energy to compute the interface transmission
coefficients is obtained from the FermiEnergy parameter of the BandGap section for the
metal or contact. The masses used to compute the velocities are the tunneling effective masses
for the metal or contact.

For metals and contacts when the BarrierLowering option is specified for
BarrierTunneling, the band edges are corrected by a position-dependent lowering potential
given by:

(779)

where  is the material dielectric constant,  is the distance from the interface or contact, and
 is a dimensionless fitting parameter. Because Eq. 779 has a singularity for , Sentaurus

Device limits  by imposing a minimum value. You can set the minimum value for  by
specifying a maximum value for  using the parameter BL_max (see Nonlocal
Tunneling Parameters on page 726).

Schrödinger Equation–Based Tunneling Probability

In addition to the WKB-based models discussed in WKB Tunneling Probability on page 729,
Sentaurus Device can compute tunneling probabilities based on the Schrödinger equation. For
the Schrödinger equation–based model, Sentaurus Device computes the tunneling probability

 (or ) by solving the 1D Schrödinger equation:

(780)

between the outermost classical turning points that belong to the tunneling energy . For
, Sentaurus Device uses the tunneling mass mt (see Nonlocal Tunneling Parameters on

page 726).  is the conduction-band energy shifted by the -th value in eoffset (see
Nonlocal Tunneling Parameters on page 726).

For boundary conditions, Sentaurus Device assumes incident and reflected plane waves outside
the barrier on one side, and an evanescent plane wave on the other side. The energy for the

v+ ν, ε∂ hκν∂⁄=
TVV ν,

ΓCV ν, ΓVC ν,

ΓCV ν, v- ν,
TCC ν, r ε,( )

ΓVC ν,

ΔΦB r( ) Aq
16πεr
---------------=

ε r
A r 0→

r r
ΔΦB r( )

ΓCC ν, E( ) ΓVV ν, E( )

rd
d 1

m r( )
-----------

rd
d

– EC ν, r( )+ 
 Ψ r( ) E r( )Ψ r( )=

E
m r( )

EC ν, ν
Sentaurus™ Device User Guide 731
N-2017.09



24: Tunneling 
Nonlocal Tunneling at Interfaces, Contacts, and Junctions
plane waves is the greater of  and , where  and c are taken at the point
immediately outside the barrier on the respective side. The masses outside the barrier are the
tunneling masses mt that are valid there.

Density Gradient Quantization Correction

Two different quantization corrections to tunneling are available with the density gradient
model (see Density Gradient Quantization Model on page 294).

The first correction is intended for tunneling from an inversion layer through an insulator. The
corrections are multipliers to  and read:

(781)

where  is an adjustable parameter (see Nonlocal Tunneling Parameters on page 726), and
 is the solution of the 1D density gradient equations for flatband (that is, )

conditions. A multiplier analogous to that in Eq. 781 exists for .

The second correction is intended for situations where quantization is due to confinement
perpendicular to the tunneling direction, for example, for tunneling in the channel direction of
a nanowire. For this correction, for the computation of tunneling,  and  are added to the
conduction band edge and the valence band edge, with prefactors as described in Nonlocal
Tunneling Parameters on page 726.

The motivation for doing this is: If confinement and tunneling are perpendicular, the problem
can be separated into a 1D tunneling problem and 2D quantization problems. From the 2D
quantization problems, a subband profile along the tunneling direction can be extracted. The
lowest energy subbands for electrons and holes form the effective barrier for the 1D tunneling
problem. The lowest subband energy profile is approximated by the sum of the band edge and
the quantum potential. Note that the latter approximation interprets the quantum potential as
an energy-like quantity, ignoring the fact that the quantum potential also describes the shape of
the wavefunction.

Multivalley Band Structure and Geometric Quantization

When used with the Multivalley option, the tunneling model uses the multivalley band
structure as described in Multivalley Band Structure on page 267. In particular, this means:

■ Multiple tunneling processes are accounted for. For band-to-band tunneling, tunneling
between all valleys of the conduction band to all valleys of the valence band is accounted
for. For tunneling within the conduction band or within the valence band, tunneling within
each valley is accounted for; while no tunneling between different valleys is taken into
account.

kTn E EC ν,– Tn EC ν,

TCC ν, r ε,( )

αn

Λfb,n r( ) Λn r( )–

kTn r( )
------------------------------------- 

 exp

αn

Λfb,n φ const=
TVV ν,

Λn Λ– p
732 Sentaurus™ Device User Guide
N-2017.09



24: Tunneling
Nonlocal Tunneling at Interfaces, Contacts, and Junctions
■ The tunneling mass is the inverse of the reciprocal mass tensor specified by the multivalley
parameters, projected in the tunneling direction. Where no multivalley parameters are
available, the tunneling mass is determined from the tunneling parameters as described in
Nonlocal Tunneling Parameters on page 726.

■ The conduction and valence band edges used to compute tunneling include the band offsets
as described by the multivalley model parameters.

■ When the multivalley band structure is used with the ThinLayer model, the resulting
quantum corrections due to geometric confinement are used in the tunneling model as well.
The details of how this is performed are described next.

For the interplay of tunneling and quantization, two limiting cases can be distinguished:

■ When tunneling is perpendicular to the confinement, the quantization increases the
tunneling barrier, as discussed in Density Gradient Quantization Correction on page 732.

■ When tunneling is in the confinement direction, quantization does not affect the tunneling
barrier. However, quantization affects the density-of-states available to carriers in the bands
to which they tunnel.

To connect the two limiting cases, Sentaurus Device uses the following heuristic approach: For
each point along the tunneling path and for each valley, the angle  between the tunneling
direction and the confinement direction is computed in a coordinate system where the mass
tensor of the valley becomes diagonal. From  and the total quantization energy  given by
Eq. 205, p. 270, a “perpendicular” quantization energy is obtained, . The
latter is added to the band edges in computing the tunneling probability (see WKB Tunneling
Probability on page 729 and Schrödinger Equation–Based Tunneling Probability on page 731). 

The total energy is added to the bands in the expressions for the energy and position
integrations (see Nonlocal Tunneling Current on page 733). None of these terms is added for
the expressions for carrier heating (see Carrier Heating on page 735).

NOTE It is recommended that the number of valleys and their names are the
same on an entire tunneling path, even when the path runs in more than
one region.

Nonlocal Tunneling Current

For a point at , the expression for the net conduction band electron recombination rate due to
tunneling to and from the -th shifted conduction band at point  with energy  is:

(782)

β

β ε1
i

ε⊥
i 1 cos2– β+( )ε1

i=

u
ν l u< ε

RCC ν, u l ε, ,( ) GCC ν, u l ε, ,( )–
ACC

qk
----------ϑ ε EC ν, u( )–

EC ν,d

ud
--------------– u( ), ϑ ε EC ν, l( )–

EC ν,d

ld
-------------- l( ), Γ

CC ν,
u l ε, ,( )

Tn u( ) 1
EF,n u( ) ε–

kTn u( )
---------------------------exp+ 

  Tn l( ) 1
EF,n l( ) ε–

kTn l( )
-------------------------exp+ 

 ln–ln

×=
Sentaurus™ Device User Guide 733
N-2017.09



24: Tunneling 
Nonlocal Tunneling at Interfaces, Contacts, and Junctions
where ,  is the effective Richardson constant (with
 the Richardson constant for free electrons), and  is a fit parameter (see

Nonlocal Tunneling Parameters on page 726).  relates to the first term and  to the
second term in the second line of Eq. 782.  is the tunneling probability (see Eq. 775). For
nonlocal lines with zero Permeation, the second -function is replaced
with  (with  infinitesimally smaller than ). For contacts, metals, or
in the presence of the option BandGap, the second -function is replaced with .

The contribution to the electron tunneling current density by electrons that tunnel from the
conduction band at points above  to the conduction band at point  is the integral over the
recombination rate (Eq. 782):

(783)

The options for hBarrierTunneling and the expressions for the valence band to valence
band tunneling current density  are analogous.

Band-to-Band Contributions to Nonlocal Tunneling Current

When you specify the Band2Band option to eBarrierTunneling (see Table 238 on
page 1439), the total current that flows to the conduction band at point  also contains electrons
that originate from the valence band at position .

For Band2Band=Simple, the recombination rate of the valence-band electrons with energy 
at point  (in other words, the generation rate of holes at ) due to tunneling to or from the -
th shifted conduction band at  is:

(784)

where . The prefactor  is a fit parameter, see Nonlocal Tunneling
Parameters on page 726.  is the band-to-band tunneling probability discussed above. The
modifications for zero Permeation, contacts, metals, and the BandGap option are as for
Eq. 782.

The current density of electrons that tunnel from the valence band at points above  to the
conduction band at point  is the integral over the recombination rate (Eq. 784):

(785)

ϑ x y,( ) δ x( ) y Θ y( )= ACC gCA0=
A0 4πm0kq h3⁄= gC

RCC ν, GCC ν,
ΓCC ν,

ϑ
Θ ε EC ν, l( )–[ ]δ l 0-–( ) 0- 0

ϑ δ l 0-–( )

l l

djCC

dl
----------- l( ) q RCC ν, u l ε, ,( ) GCC ν, u l ε, ,( )–[ ]

∞–

∞

 ε udd

l

∞


ν
–=

jVV

l
u l>

ε
u u ν

l

RCV ν, u l ε, ,( ) GCV ν, u l ε, ,( )–
ACV

2qk
----------ϑ ε EV ν, u( )–

EV ν,d

ud
--------------- u( ), ϑ ε EC ν, l( )–

EC ν,d

ld
-------------- l( ), Γ

CV ν,
u l ε, ,( )

Tp u( ) Tn l( )+[ ] 1
ε EF p, u( )–

kTp u( )
----------------------------exp+ 

 
1–

1
ε EF n, l( )–

kTn l( )
--------------------------exp+ 

 
1–

–

×=

ACV gCgVA0= gV

ΓCV ν,

l
l

djCV

dl
----------- l( ) q RCV ν, r l ε, ,( ) GCV ν, r l ε, ,( )–[ ]

∞–

∞

 ε rdd

l

∞


ν
–=
734 Sentaurus™ Device User Guide
N-2017.09



24: Tunneling
Nonlocal Tunneling at Interfaces, Contacts, and Junctions
For band-to-band tunneling processes, the energy of the tunneling particles often lies deep in
the gap of the barrier. The single-band dispersion relations that Sentaurus Device uses by
default (see Eq. 773 and Eq. 774) are based on the band structure near the band edges, and may
not be useful in this regime. The two-band dispersion relation according Eq. 777 is a better
choice. To use the two-band dispersion relation, specify the option TwoBand to
eBarrierTunneling (see Table 238 on page 1439).

The options for hBarrierTunneling and the expressions for the conduction band to valence
band tunneling current density  are analogous.

Carrier Heating

In hydrodynamic simulations, carrier transport leads to energy transport and, therefore, to
heating or cooling of electrons and holes. The energy transport has a convective and a Peltier
part. By default, Sentaurus Device ignores the Peltier part. To include the Peltier terms for the
tunneling particles, specify the option PeltierHeat to eBarrierTunneling or
hBarrierTunneling (see Table 238 on page 1439).

The convective part of the heat generation in the conduction and valence bands at position 
due to tunneling of carriers with energy  to and from the -th shifted conduction band at 
is approximated as:

(786)

and:

(787)

By default, Sentaurus Device neglects Peltier heating and uses , which corresponds to
the three degrees of freedom of the carriers. If Peltier heating is included in a simulation, the
convective contribution due to one degree of freedom is already contained in the Peltier heating
term. Therefore, in this case, Sentaurus Device uses . The convective parts of the heat
generation in the conduction band at , due to tunneling of carriers of energy  from the
conduction band and the valence band at , are  and .
The expressions for the convective part of the heat generation in the valence band are
analogous.

If the computation of Peltier heating is activated (see Table 238 on page 1439), Sentaurus
Device computes additional heating terms. The Peltier part of the heat generation in the
electron system at point  due to tunneling to and from the -th shifted conduction band at
point  is:

(788)

jVC

u
ε ν l u<

Hconv,CC ν, u l ε, ,( ) δ
2
--- GCC ν, u( )kTn l( ) RCC ν, u( )kTn u( )–[ ]=

Hconv,CV ν, u l ε, ,( ) δ
2
--- RCV ν, u( )kTp u( ) GCV ν, u( )kTn l( )–[ ]=

δ 3=

δ 2=
l ε

u l> Hconv,CC ν, u l ε, ,( )– H– conv,CV ν, u l ε, ,( )

u ν
l u<

HPelt,CC ν, u l ε, ,( ) EC u
+( ) ε–[ ] RCC ν, u l ε, ,( ) GCC ν, u l ε, ,( )–[ ]=
Sentaurus™ Device User Guide 735
N-2017.09



24: Tunneling 
References
where  is infinitesimally larger than . Eq. 788 vanishes everywhere except at abrupt jumps
of the band edge. The Peltier part of the heat generation in the electron system at point  due
to tunneling from the conduction band at  obeys an equation similar to Eq. 788, with

 replaced by .

When the Band2Band option is used (see Table 238 on page 1439), Sentaurus Device also
takes into account the band-to-band terms of the Peltier part of the heat generation at point :

(789)

and, similarly, for the Peltier heat generation at point .

The expressions for  and  are analogous to those for conduction band
tunneling.

References

[1] A. Schenk and G. Heiser, “Modeling and simulation of tunneling through ultra-thin gate
dielectrics,” Journal of Applied Physics, vol. 81, no. 12, pp. 7900–7908, 1997.

[2] M. Ieong et al., “Comparison of Raised and Schottky Source/Drain MOSFETs Using a
Novel Tunneling Contact Model,” in IEDM Technical Digest, San Francisco, CA, USA,
pp. 733–736, December 1998.

[3] F. Li et al., “Compact Model of MOSFET Electron Tunneling Current Through Ultra-
thin SiO2 and High-k Gate Stacks,” in Device Research Conference, Salt Lake City, UT,
USA, pp. 47–48, June 2003.

[4] L. F. Register, E. Rosenbaum, and K. Yang, “Analytic model for direct tunneling current
in polycrystalline silicon-gate metal–oxide–semiconductor devices,” Applied Physics
Letters, vol. 74, no. 3, pp. 457–459, 1999.

u+ u
l

u l>
EC u+( ) ε– ε E– C l-( )

u

HPelt,CV ν, u l ε, ,( ) EV u
+( ) ε–[ ] RCV ν, u l ε, ,( ) GCV ν, u l ε, ,( )–[ ]=

l

HPelt,VV ν, HPelt,VC ν,
736 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 25 Hot-Carrier Injection Models

This chapter discusses the hot-carrier injection models used in
Sentaurus Device.

Hot-carrier injection is a mechanism for gate leakage. The effect is especially important for
write operations in EEPROMs. Sentaurus Device provides different built-in hot-carrier
injection models and a PMI for user-defined models:

■ Classical lucky electron injection (Maxwellian energy distribution)

■ Fiegna’s hot-carrier injection (non-Maxwellian energy distribution)

■ SHE distribution hot-carrier injection (non-Maxwellian energy distribution calculated
from the spherical harmonics expansion (SHE) of the Boltzmann transport equation)

■ Hot-carrier injection PMI (see Hot-Carrier Injection on page 1230)

Overview

To activate the hot-carrier injection models for electrons (or holes), use the eLucky (hLucky),
eFiegna (hFiegna), eSHEDistribution (hSHEDistribution), or
PMIModel_name(electron) (PMIModel_name(hole)) options to the GateCurrent
statement in an interface-specific Physics section.

To activate the models for both carrier types, use the Lucky, Fiegna, SHEDistribution, or
PMIModel_name() options. The hot-carrier injection models can be combined with all
tunneling models (see Chapter 24 on page 715).

NOTE The SHE distribution hot-carrier injection model calculates the
tunneling component together with the thermionic emission term.
Therefore, combining it with other tunneling models can result in
double-counting of the tunneling component.

The meaning of a specification in the global Physics section is the same as for the
Fowler–Nordheim model (see Fowler–Nordheim Tunneling on page 716). 
Sentaurus™ Device User Guide 737
N-2017.09



25: Hot-Carrier Injection Models
Overview
Destination of Injected Current

The destination of the injection current depends on the user selection and the material
properties of the hot interface (interface source for hot carriers).

When the hot interface is a semiconductor–insulator interface, the injection current is sent
nonlocally across the insulator region to an associated closest vertex. For each vertex of a hot
interface, Sentaurus Device searches for an associated closest vertex located on a contact or
semiconductor–insulator interface. The contacts or semiconductor–insulator interfaces used in
the searching algorithm must be connected through adjacent insulator regions to the hot
interface. Then, each vertex of the hot interface is associated with the closest vertex on a valid
contact or semiconductor–insulator interface. Each vertex of the hot interface has either an
associated contact vertex or an associated semiconductor–insulator interface vertex (see
Figure 49). 

Figure 49 Mapping of hot interface vertices to associated contact or 
semiconductor–insulator interface vertices

When the hot interface is an interface between a semiconductor and a wide-bandgap
semiconductor, you can select the destination. By default, the wide-bandgap semiconductor is
treated as an insulator region, and the injection current is sent nonlocally across the region to
the associated closest vertex as described for semiconductor–insulator interfaces. By using
Thermionic(HCI) in the Physics section of the hot interface and specifying the injection
region destination (the wide-bandgap semiconductor region) using the InjectionRegion
option in the GateCurrent section, the points on the hot interface are made double-points and
the injection current is injected locally in the same location where it was produced. The injected
current on the wide-bandgap semiconductor side of the hot interface becomes the current
boundary condition for the continuity equations solved in the region.

In the case where hot carriers are injected into semiconductor floating regions during transient
simulations, the way the charge is added to the floating region is determined by the existence
of a charge boundary condition (a region with a charge contact) associated with the region. If
the charge boundary condition has been specified for a semiconductor floating region, the
charge is added as a total charge update, using the integral boundary condition as defined by

Contact

Hot Interface
Insulator 1

n+ n+p

Semiconductor
Floating Region

Associated Contact
Vertices

 

Associated sem/ins 
Interface Vertices

Insulator 2
738 Sentaurus™ Device User Guide
N-2017.09



25: Hot-Carrier Injection Models
Overview
Eq. 135, p. 224. If the charge boundary condition is not specified for the semiconductor
floating region, the charge is added as an interface boundary condition for continuity equations
(see Carrier Injection With Explicitly Evaluated Boundary Conditions for Continuity
Equations on page 759). The total hot-carrier injection current added to semiconductor floating
regions where the charge boundary condition is specified will be displayed on the electrode
associated with the region (floating contact).

Floating semiconductor regions with a charge boundary condition inside a wide-bandgap
semiconductor region are made possible by generalizing the concept of a semiconductor
floating well. 

Sentaurus Device defines a semiconductor floating well as a continuous zone of the same
doping semiconductor regions in contact with each other and marked in the command file by
a charge contact connected to one of regions in the zone. The concept is generalized by treating
the inner semiconductor region (embedded floating region) as a separate well. Geometrically,
the charge contact is defined on the interface between the inner and outer semiconductor
regions. You must indicate in the Electrode section of the charge contact using either the
Region or Material keyword which region is to be used as the floating region with a charge
boundary condition. 

Equilibrium boundary conditions are imposed on the surface of the special floating region
previously described. The interface between the inner and outer semiconductor regions is
treated as a heterointerface. You must specify the keyword Heterointerface in the
Physics section of the interface between the inner and outer regions. If the inner region is the
floating region, the boundary condition for continuity equations at the interface between the
two regions, on the outer-region side, will be equilibrium for carrier concentrations. The charge
update for the inner floating region is computed as the total current flowing through the floating
region boundary (integral of current density over the floating region surface) multiplied by the
time step. 

Equilibrium carrier concentrations in a point on the double-point interface, on the outer-region
side, are computed based on the carrier concentration on the inner-region side of the interface
adjusted by  where  is the jump in the conduction band for
electrons or in the valence band for holes, and  is the ratio between density-of-states
in the two regions for electrons and holes, respectively. For example, to have a PolySi
nanocrystal floating region with a charge boundary condition embedded in an outer
OxideAsSemiconductor region, with the charge contact "fg1" geometrically somewhere
on the interface between the two regions, you must specify:

Electrode {
...
{Name "fg1" Charge= -1e-18 Material="PolySi"}
...

}

NC,V
WB NC,V

FG⁄( ) δEC,V kT⁄–( )exp δEC,V

NC,V
WB NC,V

FG⁄
Sentaurus™ Device User Guide 739
N-2017.09



25: Hot-Carrier Injection Models
Overview
Physics(MaterialInterface="OxideAsSemiconductor/PolySi") {
Heterointerface # required by GeneralizedFG

}

Metal floating gates inside a wide-bandgap semiconductor region are allowed as well. In this
case, equilibrium boundary conditions are imposed for the carrier densities at the interface
between the semiconductor and the metal floating gate (on metal floating contact).
Electrostatic potential at the metal floating contact is determined by the charge on the metal
floating gate according to Eq. 133, p. 223. The equilibrium quasi-Fermi potential on the metal
floating contact is given by , where  is the workfunction
difference between the metal and the semiconductor. Carrier densities at the metal floating
contact are determined then by . The charge update for the metal floating gate is computed
as the total current flowing through the metal floating region contact multiplied by the time
step.

To activate this special case of the metal floating gate, you specify the Metal keyword in the
Electrode section of the metal floating contact and give the value of the workfunction (which
determines ):

Electrode {
...
{Name "fg1" Charge=0 Metal Workfunction=4.1}
...

}

The workfunction can be used as a calibration parameter.

For simple one-gate devices where the sole purpose is to evaluate the hot-carrier current
injected across the oxide layer into a semiconductor region, the keyword GateName must be
specified in the GateCurrent statement. In this case, the hot-carrier current is displayed on
the electrode specified by GateName for both quasistationary and transient simulations.

Injection Barrier and Image Potential

All hot-carrier injection models are implemented as a postprocessing computation after each
Sentaurus Device simulation point. The lucky electron model and Fiegna model specify some
properties of semiconductor–insulator interfaces. The most important parameter is the height
of the Si–SiO2 barrier ( ).

Φ Φn Φp φ φMS+= = = φMS

φMS

φMS

EB
740 Sentaurus™ Device User Guide
N-2017.09



25: Hot-Carrier Injection Models
Overview
The height is a function of the insulator field  and, at any point along the interface, it can
be written as:

(790)

where  is the zero field barrier height at the semiconductor–insulator interface. The second
term in the equation represents barrier lowering due to the image potential. The third term of
the barrier lowering is due to the tunneling processes. For the Si–SiO2 interface,

. There is a large deviation in the literature for the value of , so it
can be considered a fitting parameter. The fourth term  appears only in the lucky
electron model where  is a model parameter (  by default), and  represents the
kinetic energy gain when carriers travel a distance  to the interface without losing any energy.
In the Fiegna model,  is zero. 

The insulator field  is defined as:

(791)

where  is a normal vector along the direction of hot-carrier injection, and  is a model
parameter (  by default).

In addition, all hot-carrier models contain a probability  of scattering in the image-force
potential well:

(792)

where  is the scattering mean free path in the insulator,  is the distance between the
vertex at the hot interface and the closest associated vertex,  is a model parameter
(  by default), and the distance  is given as:

(793)

In the above expression,  is the effective dielectric constant
of the insulator where  and  are the high-frequency dielectric constant of the
semiconductor and insulator, respectively. In the lucky electron model and Fiegna model, 

Fins

EB

EB0 αq Fins

1
2
---

βq Fins

2
3
---

P⊥V
sem

– Fins 0<––

EB0 αq Fins

1
2
---

βq Fins

2
3
---

P⊥V
sem

––– Vins Fins 0>+







=

EB0

α 2.59 4–×10 V1 2⁄ cm1 2⁄= β
P⊥Vsem

P⊥ P⊥ 1= Vsem

y
Vsem

Fins

Fins Fins n̂ 1 Ptotal– Ptotal
Fins

Fins n̂⋅
-------------------+⋅=

n̂ Ptotal

Ptotal 0=

Pins

Pins

x0

λins
--------– 

 exp         Fins 0<

tins x0–

λins
------------------– 

 Prepelexp        Fins 0>








=

λins tins

Prepel

Prepel 1= x0

x0 min
q

16πε̃ins Fins

------------------------------
tins

2
-------,

 
 
 

=

ε̃ins εins εsem εins+( ) εsem εins–( )⁄=
εsem εins

ε̃ins
Sentaurus™ Device User Guide 741
N-2017.09



25: Hot-Carrier Injection Models
Classical Lucky Electron Injection
is directly accessible from the parameter file. In the SHE distribution model,  and  are
separately set from the parameter file.

Effective Field

The lucky electron model and Fiegna model have an effective electric field  as a parameter.
In Sentaurus Device, there are three possibilities to calculate the effective field:

■ With the electric field parallel to the carrier flow (switched on by the keyword Eparallel,
which is default for hot carrier currents). See Driving Force on page 426.

■ With recomputation of the carrier temperature of the hydrodynamic simulation (switched
on by the keyword CarrierTempDrive). See Avalanche Generation With Hydrodynamic
Transport on page 427.

■ With a simplified approach (compared to the second method): The drift-diffusion model is
used for the device simulation, and carrier temperature is estimated as the solution of the
simplified and linearized energy balance equation. As this is a postprocessing calculation,
the keyword CarrierTempPost activates this option.

These keywords are parameters of the model keywords. For example, the lucky electron model
looks like eLucky(CarrierTempDrive). However, you must remember that if the model
includes the keyword CarrierTempDrive, Hydro and a carrier temperature calculation must
be specified in the Physics section.

Classical Lucky Electron Injection

The classical total lucky electron current from an interface to a gate contact can be written
as [1]:

(794)

where  is the probability that the electron will travel a distance  to the interface without
losing any energy,  is the probability that the electron has energy between  and ,

 is the probability of scattering in the image force potential well (Eq. 792), and  is the
probability that the electron will be redirected. These probabilities are given by the
expressions:

(795)

εsem εins

Feff

Ig Jn x y,( )PsP
ins

PεPr εd

EB

∞


 
 
 
 

xd yd=

Ps y
Pε εd ε ε dε+

Pins Pr

Pr ε( ) 1
2λr
-------- 1

EB

ε
-------– 

 =
742 Sentaurus™ Device User Guide
N-2017.09



25: Hot-Carrier Injection Models
Fiegna Hot-Carrier Injection
(796)

(797)

where  is the scattering mean free path in the semiconductor,  is redirection mean free path,
 is the effective electric field, see Effective Field on page 742.  is the height of the

semiconductor–insulator barrier.

The model coefficients can be changed in the parameter file in the section:

LuckyModel { ... } 

Fiegna Hot-Carrier Injection

The total hot-carrier injection current according to the Fiegna model [2] can be written as:

(798)

where  is the electron energy,  is the height of the semiconductor–insulator barrier,  is
the velocity normal to the interface,  is the electron energy distribution,  is the

Table 131 Coefficients and their default values for the lucky electron model

Symbol Parameter name 
(Electrons)

Default value 
(Electrons)

Parameter name 
(Holes)

Default value 
(Holes)

Unit

eLsem hLsem cm

eLins hLins cm

eLsemR hLsemR cm

eBar0 3.1 hBar0 4.7 eV

eBL12 hBL12

eBL23 hBL23

eps_ins 3.1 eps_ins 3.1 1

Pvertical 1 Pvertical 1 1

Prepel 1 Prepel 1 1

Ptotal 0 Ptotal 0 1

Ps y( ) y
λ
---– 

 exp=

Pε ε( ) 1
λFeff
------------

ε
λFeff
------------– 

 exp=

λ λr

Feff EB

λ 8.9 10
7–× 1.0 10

7–×

λins 3.2 10
7–× 3.2 10

7–×

λr 6.2 10
6–× 6.2 10

6–×

EB0

α 2.6 10
4–× 2.6 10

4–× V cm⋅( )1 2⁄

β 3.0 10
5–× 3.0 10

5–× V cm
2⋅( )

1 3⁄

ε̃ins

P⊥

Prepel

Ptotal

Ig q Pins v⊥ ε( )f ε( )g ε( ) εd

EB0

∞


 
 
 
 

sd=

ε EB0 v⊥
f ε( ) g ε( )
Sentaurus™ Device User Guide 743
N-2017.09



25: Hot-Carrier Injection Models
SHE Distribution Hot-Carrier Injection
density-of-states of the electrons,  is the probability of scattering in the image force
potential well as described by Eq. 792, and  is an integral along the
semiconductor–insulator interface.

The following expression for the electron energy distribution was proposed for a parabolic and
an isotropic band structure, and equilibrium between lattice and electrons:

(799)

Therefore, the gate current can be rewritten as:

(800)

where  is an effective field (see Effective Field on page 742). 

The above coefficients can be changed in the parameter file in the FiegnaModel section.

SHE Distribution Hot-Carrier Injection

To obtain the hot-carrier injection current, accurate knowledge of the nonequilibrium electron-
energy distribution is required. The spherical harmonics expansion (SHE) distribution hot-
carrier injection model calculates the hot-carrier injection current using the nonequilibrium

Table 132 Coefficients and their default values for the Fiegna model

Symbol Parameter name 
(Electrons)

Default value 
(Electrons)

Parameter name 
(Holes)

Default value 
(Holes)

Unit

eA hA

eChi hChi

eLins hLins cm

eBar0 3.1 hBar0 4.7 eV

eBL12 hBL12

eBL23 hBL23

eps_ins 3.1 eps_ins 3.1 1

Prepel 1 Prepel 1 1

Ptotal 0 Ptotal 0 1

Pins

sd

f ε( ) A χ ε3

Feff
1.5

---------–
 
 
 

exp=

Ig q
A
3χ
------ Pins n

Feff
3 2⁄

EB

-----------e

χEB
3

Feff
3 2⁄-----------–

ds=

Feff

A 4.87 10
4× 4.87 10

4× cm/s/eV
2.5

χ 1.3 10
8× 1.3 10

8× V/cm/eV( )1.5

λins 3.2 10
7–× 3.2 10

7–×

EB0

α 2.6 10
4–× 2.6 10

4–× V cm⋅( )1 2⁄

β 1.5 10
5–× 1.5 10

5–× V cm
2⋅( )

1 3⁄

ε̃ins

Prepel

Ptotal
744 Sentaurus™ Device User Guide
N-2017.09



25: Hot-Carrier Injection Models
SHE Distribution Hot-Carrier Injection
energy distribution  obtained from the lowest-order SHE of the semiclassical Boltzmann
transport equation (BTE) (see Spherical Harmonics Expansion Method on page 746).

The total hot-carrier injection current is obtained from [3]:

(801)

where:

■  is a dimensionless prefactor (  by default).

■  is the valley degeneracy factor.

■  is the probability of electrons moving from the interface to the barrier peak without
scattering (see Eq. 792, p. 741).

■  is the density-of-states per valley and per spin.

■  is the magnitude of the electron velocity.

■  is the transmission coefficient obtained from the WKB approximation including the
image-potential barrier-lowering.

■  is the insulator effective mass.

■  is an integral along the semiconductor–insulator interface.

The transmission coefficient can be written as:

(802)

(803)

(804)

where  is the barrier height. 

To use the SHE distribution hot-carrier injection model, you must obtain the distribution
function by solving the SHE method (see Spherical Harmonics Expansion Method on
page 746).

f

Ig

2qAgv

4
---------------- Pins g ε( )v ε( )f ε( ) Γ ε h

3
g ε( )v ε( )x
8πmins

------------------------------– xd

0

1


 
 
 
 

εd

0

∞

 sd=

A A 1=

gv

Pins

g

v

Γ

mins

sd

Γ ε⊥( ) 2
h
--- 2mins EB r( ) ε⊥–[ ]Θ EB r( ) ε⊥–[ ] rd

0

tins

–
 
 
 
 

exp=

EB r( ) EB0 qFinsr Eim r( )+ +=

Eim r( ) q
2

16πεins
------------------–

εsem εins–

εsem εins+
------------------------- 
 

2n 1+ 1
ntins r+
-------------------

1
n 1+( )tins r–

---------------------------------
2

n 1+( )tins
------------------------

εsem εins–

εsem εins+
------------------------- 
 –+

n 0=

∞

=

EB0
Sentaurus™ Device User Guide 745
N-2017.09



25: Hot-Carrier Injection Models
SHE Distribution Hot-Carrier Injection
Eq. 804 represents the image-potential barrier-lowering. You can switch off the image-
potential barrier-lowering using:

Physics(MaterialInterface="Silicon/Oxide") { ...
GateCurrent( eSHEDistribution( -ImagePotential ) )

}

Spherical Harmonics Expansion Method

The spherical harmonics expansion (SHE) method computes the microscopic carrier energy
distribution function  by solving the lowest-order SHE of the Boltzmann transport
equation (BTE) [4]:

(805)

where:

■  is the occupation probability of electrons (  can be larger than one as nondegenerate
statistics is assumed).

■  is the total energy including the conduction band energy  and the kinetic energy .

■  is the magnitude of the electron velocity.

■  is the total scattering rate.

■  is the density-of-states per valley and per spin.

■  is the net in-scattering rate due to inelastic scattering and generation–recombination
processes.

In Eq. 805,  and  can be obtained from the energy–wavevector dispersion relation,
, of semiconductors:

(806)

(807)

where:

■  is the kinetic energy.

■  is the valley degeneracy.

f r ε,( )

∇–
v

2
r εt,( )
3

-------------------τ r εt,( )g r εt,( )∇f r εt,( )⋅ g r εt,( )s r εt,( )=

f f

εt EC ε
v

1 τ⁄
g

s

g ε( ) v ε( )
εb k( )

gvg ε( ) gv gb ε( )
b 1=

Nb


1

4π2
hvb k( )

-------------------------- s
k

d

ε


b 1=

Nb

= =

gvg ε( )v
2 ε( ) gv gb ε( )vb

2 ε( )
b 1=

Nb


vb k( )

4π2
h

------------- s
k

d

ε


b 1=

Nb

= =

ε εt EC r( )–=

gv
746 Sentaurus™ Device User Guide
N-2017.09



25: Hot-Carrier Injection Models
SHE Distribution Hot-Carrier Injection
■  is the band index.

■  is the number of bands.

■  is the magnitude of wavevector-dependent group velocity.

■  is Planck’s constant.

■ The integration is over the equienergy surface of the first Brillouin zone.

In addition, the energy-dependent square wavevector is defined as:

(808)

These energy-dependent, band structure–related quantities can be obtained either from the
precalculated band-structure file or from the single band, analytic, nonparabolic, band-
structure model. For more information on the band-structure file, see Using Spherical
Harmonics Expansion Method on page 750.

The analytic nonparabolic band-structure model gives [5]:

(809)

(810)

(811)

where  is the nonparabolicity factor,  is the conductivity effective mass, and  is the
density-of-states effective mass.

The total scattering rate and the net in-scattering rate can be written as:

(812)

(813)

where:

■  is the Coulomb scattering rate.

■  is the impact ionization scattering rate.

b

Nb

vb k( )
h

gvk
2 ε( ) gv kb

2 ε( )

b 1=

Nb


1

4π
------ s

k
d

ε


b 1=

Nb

= =

v
2 ε( )
3

-------------
2ε 1 αε+( )

3mc 1 2αε+( )2
-------------------------------------=

g ε( )
2π 2mn( )3 2⁄

h
3

------------------------------ ε 1 αε+( )[ ]1 2⁄
1 2αε+( )=

k
2 ε( ) πhg ε( )v ε( )=

α mc mn

1
τ ε( )
----------

1
τc ε( )
-------------

1
τii ε( )
-------------

1
τac ε( )
---------------

1
τope ε( )
------------------

1
τopa ε( )
------------------+ + + +=

s ε( )
floc ε( ) f ε( )–

τii ε( )
------------------------------

f ε εop–( )
εop

kT
-------– 

  f ε( )–exp

τope ε( )
--------------------------------------------------------------

f ε εop+( )
εop

kT
------- 
  f ε( )–exp

τopa ε( )
-----------------------------------------------------------

Rnetfloc ε( )
n

-------------------------–+ +=

1 τc⁄
1 τii⁄
Sentaurus™ Device User Guide 747
N-2017.09



25: Hot-Carrier Injection Models
SHE Distribution Hot-Carrier Injection
■  is the acoustic phonon scattering rate.

■  is the scattering rate due to optical phonon emissions.

■  is the scattering rate due to optical phonon absorptions.

■  is the optical phonon energy.

■  is the net recombination rate.

■  is the electron density.

■  is the local equilibrium distribution function.

The Coulomb scattering rate can be written as [6]:

(814)

(815)

(816)

where:

■  is the dielectric constant of a semiconductor material.

■  is an adjustable parameter that controls the energy dependency of the impurity
scattering.

■  is  for electrons and  for holes.

■  is  for electrons and  for holes.

■  and  are tabulated fitting functions introduced to match the experimental low-
field mobility curve as a function of majority and minority doping concentrations,
respectively.

Two different expressions for the impact ionization scattering rate are available. The first
expression can be written as [6]:

(817)

1 τac⁄
1 τope⁄
1 τopa⁄
εop

Rnet

n

floc EF n, EC– ε–( ) kT⁄[ ]exp=

1
τc ε( )
-------------

q
4π2

g ε( )Ni,eff

2hεsem
2

k
2 ε( ) k0

2
+[ ]

2
------------------------------------------------- 1 b+( )ln

b
1 b+
------------–=

b ε( )
4 k

2 ε( ) k0
2

+[ ]kTεsem

q
2

n p+( )
--------------------------------------------------=

Ni,eff

ND NA+( )ζ
major

Nmajor( )          Nmajor Nminor>

ND NA+( )ζ
minor

Nminor( ) Nmajor Nminor<






=

εsem

k0
2

Nmajor ND NA

Nminor NA ND

ζmajor ζminor

1
τii ε( )
-------------

ε εii,1–

1 eV
----------------- 
 

νii,1

sii,1           εii,1 ε εii,3< <

ε εii,2–

1 eV
----------------- 
 

νii,2

sii,2 ε εii,3>








=

748 Sentaurus™ Device User Guide
N-2017.09



25: Hot-Carrier Injection Models
SHE Distribution Hot-Carrier Injection
where:

■  and  are the impact ionization coefficients.

■  and  are the exponents.

■ , , and  are the reference energies.

The second expression can be written as [7]:

(818)

Specifying ii_formula=1 in the SHEDistribution parameter set activates the first
expression; while ii_formula=2 activates the second expression. The impact ionization
model parameters for electrons and holes are obtained from [6] and [8], respectively.

The acoustic-phonon and optical-phonon scattering rates can be written as [5][6]:

(819)

(820)

(821)

where:

■  and  are the band indices.

■  and  are the deformation potentials for acoustic and g-type optical phonons,
respectively (  and ).

■  is the mass density.

■  is the sound velocity.

■  is the phonon number. 

If  and  regardless of the band indices, Eq. 819, Eq. 820, and Eq. 821
can be simplified to:

(822)

sii,1 sii,2

νii,1 νii,2

εii,1 εii,2 εii,3

1
τii ε( )
-------------

ε εii, j–

1 eV
---------------- 
 

νii,j

Θ ε εii, j–( )sii,j

j 1=

3

=

g ε( )
τac ε( )
--------------

4π2
kTDac, ij

2

hρcL
2

-----------------------------gi ε( )gj ε( )
j 1=

Nb


i 1=

Nb

=

g ε( )
τope ε( )
-----------------

hDop,ij
2

2ρεop
----------------- Nop 1+( )gi ε( )gj ε εop–( )

j 1=

Nb


i 1=

Nb

=

g ε( )
τopa ε( )
-----------------

hDop,ij
2

2ρεop
-----------------Nopgi ε( )gj ε εop+( )

j 1=

Nb


i 1=

Nb

=

i j

Dac,ij Dop,i j

Dac,ij Dac,ji= Dop, i j Dop,ji=

ρ
cL

Nop εop kT⁄( )exp 1–[ ] 1–=

Dac,ij Dac= Dop,i j Dop=

1
τac ε( )
--------------

4π2
kTDac

2

hρcL
2

------------------------g ε( )=
Sentaurus™ Device User Guide 749
N-2017.09



25: Hot-Carrier Injection Models
SHE Distribution Hot-Carrier Injection
(823)

(824)

Dirichlet boundary condition as  is assumed for electrodes. 

Boundary conditions for abrupt heterointerfaces are similar to the corresponding boundary
conditions for the thermionic emission model. Assume that at the heterointerface between
materials 1 and 2, the conduction band edge jump is positive ( ). If

 and  are the energy-dependent electron current density per spin and per valley
entering material 2 and leaving material 1, the interface condition can be written as:

(825)

(826)

where , , and  are the density-of-states, the group velocity, and the occupation
probability of material , respectively.

All other boundaries are treated with reflective boundary conditions.

Using Spherical Harmonics Expansion Method

The electron-energy distribution function is calculated from Eq. 805, p. 746 in the
semiconductor regions specified by the global, region-specific, or material-specific Physics
section:

Physics { eSHEDistribution( <arguments> ) ...}

By default, , , and  are obtained from the analytic band model. These band
structure–related quantities also can be obtained from the default electron-band file
eSHEBandSilicon.dat in the directory $STROOT/tcad/$STRELEASE/lib/sdevice/
MaterialDB/she by specifying the argument FullBand:

Physics { eSHEDistribution( FullBand ... ) ... }

The default electron-band file eSHEBandSilicon.dat contains the band-structure quantities
obtained from the nonlocal empirical pseudopotential method for relaxed silicon. 

Similarly, there is a default hole-band file hSHEBandSilicon.dat in the same directory.

1
τope ε( )
-----------------

hDop
2

2ρεop
-------------- Nop 1+( )g ε εop–( )=

1
τopa ε( )
-----------------

hDop
2

2ρεop
--------------Nopg ε εop+( )=

f ε( ) EF n, EC– ε–( ) kT⁄[ ]exp=

ΔEC EC,2 EC,1 0>–=
Jn 2, ε( ) Jn 1, ε( )

Jn 2, ε( ) Jn 1, ε( )=

Jn 2, ε( ) q
4
---g2 ε( )v2 ε( ) f2 ε( ) f1 ε( )–[ ]=

gi ε( ) vi ε( ) fi ε( )
i

g ε( ) v ε( ) k2 ε( )
750 Sentaurus™ Device User Guide
N-2017.09



25: Hot-Carrier Injection Models
SHE Distribution Hot-Carrier Injection
NOTE For silicon regions, it is recommended to use the FullBand option as
the default model parameters are calibrated based on the full band
structure. In addition, there is no performance penalty when using the
FullBand option.

You also can specify your own band file as:

Physics { eSHEDistribution( FullBand = "filename" ... ) ... }

The band file is a plain text file composed of  columns of data where  is the number
of bands ( ). The first column represents the kinetic energy  [ ]. The subsequent
columns represent  [ ],  [ ], and  [ ]
for band  ( ). The kinetic energy should start from zero, and the energy spacing
between the neighbour rows should be uniform. Refer to eSHEBandSilicon.dat for more
information.

When FullBand is specified for devices containing SiGe, the band-structure quantities for
SiGe regions are taken from mole fraction–dependent files in the same directory where the
silicon files are located. The band-structure data was obtained from the nonlocal empirical
pseudopotential method for relaxed SiGe with mole-fraction values of 0.0, 0.1, 0.2, ..., 1.0:

■ Electron files: eSHEBandSiGeX0.0.dat, eSHEBandSiGeX0.1.dat, ...

■ Hole files: hSHEBandSiGeX0.0.dat, hSHEBandSiGeX0.1.dat, ...

Sentaurus Device automatically chooses the appropriate files based on the average x-mole
fraction value in each SiGe region. Linear interpolation of band-structure quantities is used for
intermediate x-mole fraction values.

NOTE In the current release, the simulation of electrons in SiGe is deactivated.

NOTE Model parameters in the SHEDistribution parameter set (see
Table 133 on page 755) can be specified with mole-fraction
dependency. As with data from the band-structure files, the average x-
mole fraction value in each region is used to determine the parameter
values.

Sentaurus Device provides a simplified SHE model based on the relaxation time approximation
(RTA) for the hot-carrier injection current computation. Although the RTA is a poor
approximation, the RTA can remove the energy coupling and reduce simulation time. You can
activate the RTA mode as follows:

Physics { eSHEDistribution( RTA ... ) ... }

1 3Nb+ Nb

1 Nb 4≤ ≤ ε eV
gvgb ε( ) cm 3– eV 1– gvgb ε( )vb

2 ε( ) cm 1– s 2– eV 1– gvkb
2 ε( ) cm 2–

b 1 b N≤ b≤
Sentaurus™ Device User Guide 751
N-2017.09



25: Hot-Carrier Injection Models
SHE Distribution Hot-Carrier Injection
When the RTA mode is selected, the relaxation time is defined as:

(827)

where  and  are adjustable parameters representing a mean free path and relaxation time.
In the RTA mode, Eq. 813 is replaced by:

(828)

NOTE In the RTA mode, you must specify SHEIterations=1 together with
SHESOR in the global Math section. The RTA mode should not be used
for self-consistent computations as the carrier flux is not conserved.

In the SHE method, the low-field mobility is determined by the microscopic scattering rate:

(829)

The mobility obtained from Eq. 829 and that from the macroscopic mobility model specified
in the Physics section generally differ. For example, Eq. 829 overestimates the low-field
mobility in the inversion layer of MOSFETs as the scattering rate in Eq. 812, p. 747 does not
account for the mobility degradation at interfaces. To resolve this inconsistency, the Coulomb
scattering rate is adjusted locally to match the low-filed mobility obtained from the mobility
model. This option is activated by default. To switch off this option, specify:

Physics { eSHEDistribution( -AdjustImpurityScattering ... ) ... }

Similarly, for the hole-energy distribution function, specify hSHEDistribution in the
Physics section.

Eq. 805, p. 746 is a coupled energy-dependent conservation equation with diffusion and source
terms. The number of unknown variables in the SHE method is much larger than that in the
drift-diffusion model or hydrodynamic model because of the additional total energy
coordinate.

By default, the blockwise successive over-relaxation (SOR) method is used to solve the
equation iteratively where the SOR iteration is performed over different total energies. The
linear solver for the block system, the number of SOR iterations, and the SOR parameter can
be accessed by the keywords SHEMethod, SHEIterations, and SHESORParameter in the
global Math section.

1
τRTA ε( )
--------------------

v ε( )
λsem
-----------

1
τ0
-----+=

λsem τ0

s ε( )
floc ε( ) f ε( )–

τRTA ε( )
------------------------------=

μlow

q τ ε( )g ε( )v
2 ε( ) ε

kT
------– 

 exp εd
0

∞



3kT g ε( ) ε
kT
------– 

 exp εd
0

∞


----------------------------------------------------------------------------=
752 Sentaurus™ Device User Guide
N-2017.09



25: Hot-Carrier Injection Models
SHE Distribution Hot-Carrier Injection
The default values are:

Math {
SHEMethod=super
SHEIterations=20
SHESORParameter=1.1

}

Instead of using the blockwise SOR method, you also can solve Eq. 805, p. 746 for different
energies simultaneously by switching off the keyword SHESOR in the global Math section.
Although any matrix solver can be used, the iterative linear solver ILS is the only practical
option to solve Eq. 805 because of the large matrix size. 

The ILS default parameters in set=3 can be used for the SHE method. For example:

Math {
-SHESOR
SHEMethod=ILS(set = 3)
...

}

The ILS default parameters in set=3 are defined as:

set (3) {
iterative (gmres(100), tolrel=1e-8, tolunprec=1e-4, tolabs=0, maxit=200);
preconditioning (ilut(0.00011,-1));
ordering ( symmetric=rcm, nonsymmetric=mpsilst );
options ( compact=yes, verbose=0, refinebasis=0, refinescaling=none,

refineresidual=0 );
};

The global Math section provides some parameters related to the energy grid specification. The
minimum and the maximum of the total energy coordinate are defined as:

(830)

(831)

where  is an energy margin (  by default). The energy grid spacing is
defined by the fraction of the phonon energy  where  is a positive
integer (  by default).

The parameters  and  can be set in the global Math section:

Math {
SHETopMargin = 1.0 # e_margin [eV]
SHERefinement = 1 # N_refine

εt,min min EC r( )[ ]=

εt,max max EC r( )[ ] εmargin+=

εmargin εmargin 1eV=
Δεt εop Nrefine⁄= Nrefine

Nrefine 1=

εmargin Nrefine
Sentaurus™ Device User Guide 753
N-2017.09



25: Hot-Carrier Injection Models
SHE Distribution Hot-Carrier Injection
...
}

While the total energy grid is used for the computation, a uniform kinetic energy grid is used
for plotting. The maximum kinetic energy to be plotted can be specified by the keyword
SHECutoff (  by default) in the global Math section:

Math { SHECutoff = 5.0 ... }

By default, the carrier energy distribution is updated in the postprocessing computation after
each Sentaurus Device simulation point. You can suppress or activate the postprocessing
computation using the Set statement of the Solve section. For example:

Solve { ...
Set ( eSHEDistribution (Frozen) ) # freeze the distribution function
...
Set ( eSHEDistribution (-Frozen) ) # unfreeze the distribution function
...

}

As long as the distribution function is frozen, the distribution is unchanged during simulation.

Instead of the postprocessing computation, you also can obtain the self-consistent DC solution
by using the Plugin statement. For example:

Solve { ...
Plugin (iterations=100) { Poisson eSHEDistribution hole }
...

}

In the self-consistent mode, the carrier density and the terminal current are obtained directly
from the SHE method. You also can include the quantum correction in the SHE method. For
example:

Solve { ...
Plugin { Coupled {Poisson eQuantumPotential} eSHEDistribution hole }
...

}

NOTE In the self-consistent mode, you must specify the keyword
DirectCurrent in the global Math section. In addition, you may need
to increase SHERefinement to improve the resolution of the energy
grid. The self-consistent mode does not support transient, AC, and noise
analysis. In general, the lowest-order SHE method may not be
sufficiently accurate to simulate nanoscale transistors as the
contribution of higher-order terms increases with decreasing device
length [9]. The convergence rate of the Plugin method can be very
slow when large biases are applied.

5 eV
754 Sentaurus™ Device User Guide
N-2017.09



25: Hot-Carrier Injection Models
SHE Distribution Hot-Carrier Injection
For backward compatibility, the following pairs of keywords are recognized as synonyms in
the command file:

■ SHEDistribution and TailDistribution

■ eSHEDistribution and TaileDistribution

■ hSHEDistribution and TailhDistribution

■ SHEIterations and TailDistributionIterations

■ SHEMethod and TailDistributionMethod

■ SHESOR and TailDistributionSOR

■ SHESORParameter and TailDistributionSORParameter

In the PMI, you can read the distribution function, density-of-states, and group velocity
obtained from the SHE method using the following read functions:

■ ReadeSHEDistribution: Returns  for electrons.

■ ReadeSHETotalDOS: Returns  for electrons.

■ ReadeSHETotalGSV: Returns  for electrons.

■ ReadhSHEDistribution: Returns  for holes.

■ ReadhSHETotalDOS: Returns  for holes.

■ ReadhSHETotalGSV: Returns  for holes.

For more information, see Chapter 38 on page 1043.

The parameters for the SHE method are available in the SHEDistribution parameter set.
Table 133 lists the coefficients of models and their default values.

NOTE The optical phonon energy  is closely related to the energy grid
spacing. Therefore, the same optical phonon energy must be used in the
simulation domain. 

Table 133 Default parameters for SHE distribution model

Symbol Parameter name  Electrons  Holes Unit

rho

epsilon

eps_ins

m_s

m_dos

m_ins

alpha

f ε( )
2gvg ε( )
2gvg ε( )v2 ε( )

f ε( )
2gvg ε( )
2gvg ε( )v2 ε( )

εop

ρ 2.329 g/cm
3

εsem 11.7 ε0

εins 2.15 ε0

mc 0.26 0.26 m0

mn 0.328 0.689 m0

mins 0.5 0.77 m0

α 0.5 0.669 eV
1–
Sentaurus™ Device User Guide 755
N-2017.09



25: Hot-Carrier Injection Models
SHE Distribution Hot-Carrier Injection
Table 134 on page 757 lists the coefficients and the default values of the tabulated doping-
dependent fitting parameters  and  for electrons and holes.

NOTE By default, the fitting parameters  and  are neglected as the
impurity scattering rate is adjusted automatically according to the low-
field mobility. You must switch off AdjustImpurityScattering to
use these parameters. 

g 1 1

A 1 1 1

E_barrier eV

Lins cm

Lsem cm

tau0 s

Dac_cl eVs/cm

Dop eV/cm

HbarOmega eV

swv0

ii_formula1

ii_rate1

ii_rate2

ii_rate3

ii_energy1 eV

ii_energy2 eV

ii_energy3 eV

ii_exponent1 1

ii_exponent2 1

ii_exponent3 1

Table 133 Default parameters for SHE distribution model (Continued)

Symbol Parameter name  Electrons  Holes Unit

gv 6

A

EB0 3.1 4.73

λins 2.0 10
7–× 2.0 10

7–×

λsem 5.0 10
6–× 1.0 10

6–×

τ0 1.0 10
12–× 1.0 10

12–×

Dac c⁄
L

1.027 10
5–× 6.29 10

6–×

Dop 1.25 10
9× 8.7 10

8×

εop 0.06 0.0633

k0
2

0.0 0.0 cm
2–

1 1

sii,1 1.49 10
11× 0.0 s

1–

sii,2 1.13 10
12× 1.14 10

12× s
1–

sii,3 0.0 0.0 s
1–

εii,1 1.128 1.128

εii,2 1.572 1.49

εii,3 1.75 1.49

νii,1 3.0 0.0

νii,2 2.0 3.4

νii,3 0.0 0.0

ζmajor ζminor

ζmajor ζminor
756 Sentaurus™ Device User Guide
N-2017.09



25: Hot-Carrier Injection Models
SHE Distribution Hot-Carrier Injection
Visualizing Spherical Harmonics Expansion Method

For plotting purposes, the SHE method provides several macroscopic variables that can be
obtained from the energy distribution function:

(832)

Table 134 Default parameters for unitless doping-dependent functions  and 

Doping Parameter name 
(electrons)

 
(electrons)

 
(electrons)

Parameter name 
(holes)

 
(holes)

 
(holes)

efit(0) hfit(0)

efit(1) hfit(1)

efit(2) hfit(2)

efit(3) hfit(3)

efit(4) hfit(4)

efit(5) hfit(5)

efit(6) hfit(6)

efit(7) hfit(7)

efit(8) hfit(8)

efit(9) hfit(9)

efit(10) hfit(10)

efit(11) hfit(11)

efit(12) hfit(12)

efit(13) hfit(13)

efit(14) hfit(14)

efit(15) hfit(15)

efit(16) hfit(16)

efit(17) hfit(17)

efit(18) hfit(18)

efit(19) hfit(19)

efit(20) hfit(20)

ζmajor ζminor

ζmajor ζminor ζmajor ζminor

10
15.00

/cm
3

1.20698 2.63089 2.36872 3.84998

10
15.25

/cm
3

1.26585 2.61522 2.47647 3.82989

10
15.50

/cm
3

1.35031 2.62123 2.65631 3.87730

10
15.75

/cm
3

1.45972 2.64751 2.91784 3.98847

10
16.00

/cm
3

1.59727 2.68504 3.28127 4.16424

10
16.25

/cm
3

1.76810 2.73218 3.77842 4.40187

10
16.50

/cm
3

1.97625 2.77580 4.44356 4.68485

10
16.75

/cm
3

2.22278 2.80091 5.29810 4.97515

10
17.00

/cm
3

2.50474 2.79066 6.33175 5.21189

10
17.25

/cm
3

2.81348 2.72938 7.48564 5.32107

10
17.50

/cm
3

3.13088 2.60729 8.64257 5.23752

10
17.75

/cm
3

3.42620 2.42644 9.62681 4.93200

10
18.00

/cm
3

3.66329 2.20490 10.2280 4.42987

10
18.25

/cm
3

3.82090 1.97450 10.2758 3.80695

10
18.50

/cm
3

3.91451 1.77291 9.74236 3.16136

10
18.75

/cm
3

4.00744 1.63637 8.78324 2.57856

10
19.00

/cm
3

4.21180 1.59940 7.66672 2.11166

10
19.25

/cm
3

4.69302 1.70363 6.65698 1.78292

10
19.50

/cm
3

5.69842 2.01596 5.94642 1.59808

10
19.75

/cm
3

7.63117 2.65859 5.66599 1.56334

10
20.00

/cm
3

11.1923 3.85825 5.94556 1.70207

nSHE 2gv g ε( )f ε( ) εd

0

∞

=
Sentaurus™ Device User Guide 757
N-2017.09



25: Hot-Carrier Injection Models
SHE Distribution Hot-Carrier Injection
(833)

(834)

(835)

(836)

where , , , , and  are the electron density, the average energy,
the avalanche generation rate, the current density, and the average velocity, respectively.

The corresponding keywords for plotting these macroscopic variables are:

Plot{
eSHEDensity # electron density [/cm^3]
eSHEEnergy # average electron energy [K]
eSHEAvalancheGeneration # electron avalanche generation rate [/cm^3s]
eSHECurrentDensity/Vector # electron current density [A/cm^2]
eSHEVelocity/Vector # electron average velocity [cm/s]

}

The corresponding keywords for holes are hSHEDensity, hSHEEnergy,
hSHEAvalancheGeneration, hSHECurrentDensity, and hSHEVelocity.

To plot the position-dependent electron-energy distribution function  for each kinetic energy
grid, specify eSHEDistribution/SpecialVector in the Plot section: 

Plot{
...
eSHEDistribution/SpecialVector

}

Similarly, for the hole-energy distribution function, specify hSHEDistribution/
SpecialVector. The column  of the special vector represents the distribution function at

. For example, eSHEDistribution_C2 represents  at .

In addition, Sentaurus Device allows you to plot the electron-energy distribution function
versus kinetic energy at positions specified in the command file.

Tn SHE,
2gv

nSHE
------------

2ε
3k
------g ε( )f ε( ) εd

0

∞

=

Gn SHE,
ii

2gv
1

τii ε( )
-------------g ε( )f ε( ) εd

0

∞

=

Jn SHE,
2qgv

3
------------ g ε( )v

2 ε( )∇f ε( ) εd

0

∞

=

vn SHE,
Jn SHE,
qnSHE
----------------–=

nSHE Tn SHE, Gn SHE,
ii Jn SHE, vn SHE,

f

i
ε i 1+( )Δε= f ε 3Δε=
758 Sentaurus™ Device User Guide
N-2017.09



25: Hot-Carrier Injection Models
Carrier Injection With Explicitly Evaluated Boundary Conditions for Continuity Equations
The plot file is a .plt file, and its name must be defined in the File section by the keyword
eSHEDistribution:

File {
...
eSHEDistribution = "edist"

}

Plotting is activated by including the eSHEDistributionPlot section (similar to the
CurrentPlot section) in the command file with a set of coordinates of positions:

eSHEDistributionPlot {
(-0.02 0) (0 0) (0.02 0)
...

}

For each position defined by its coordinates, Sentaurus Device determines the enclosing
element and interpolates the distribution function using the data at the element vertices.
Similarly, for the hole-energy distribution function, define hSHEDistribution in the File
section and include the hSHEDistributionPlot section in the command file.

Carrier Injection With Explicitly Evaluated Boundary 
Conditions for Continuity Equations

Hot-carrier current can be added as an interface boundary condition for continuity equations in
adjacent semiconductor regions. A typical structure (see Figure 50 on page 760) consists of
sequences of semiconductor–insulator–semiconductor regions. Hot-carrier current produced at
one semiconductor–insulator interface from the sequence is added to the second
semiconductor–insulator interface, using the closest vertex algorithm described in Destination
of Injected Current on page 738.

This feature is available only for transient simulations and is especially useful for writing and
erasing memory cells.

At each time step after the solution is computed, the hot-carrier injection (HCI) currents are
post-evaluated using the solution. For the next time step, the HCI currents are added using the
current boundary condition for continuity equations in semiconductor regions, where carriers
are injected, and then the whole carrier transport task is solved self-consistently.

The carriers leave the semiconductor region where they are produced and enter nonlocally into
the semiconductor region where they are injected. To conserve current, injection current is
subtracted from the former semiconductor region and added to the latter.
Sentaurus™ Device User Guide 759
N-2017.09



25: Hot-Carrier Injection Models
References
Figure 50 Injection of hot-carrier current in a MOSFET structure

By using this method, the solution is obtained self-consistently (with one time-step delay) even
if there is no carrier transport through the insulator region.

The feature is activated automatically during a transient simulation when any of the hot-carrier
injection models is activated in the GateCurrent section and the floating semiconductor
region where the hot carriers are to be injected does not have a charge boundary condition
specified. Specifying GateName in the GateCurrent section disables the feature.

In addition, hot-carrier injection and the currents of the Fowler–Nordheim tunneling model can
be computed at semiconductor–oxide-as-semiconductor interfaces. This is an extension of the
searching algorithm described in Destination of Injected Current on page 738. In this case,
there is a semiconductor–semiconductor interface instead of semiconductor–insulator
interface. To avoid ambiguity, one of the interface regions must be selected as an insulator
using the keyword InjectionRegion:

Physics(RegionInterface="Region_sem12/Region_sem2") {
GateCurrent(Fowler eLucky InjectionRegion="Region_sem2")

}

References

[1] K. Hasnat et al., “A Pseudo-Lucky Electron Model for Simulation of Electron Gate
Current in Submicron NMOSFET’s,” IEEE Transactions on Electron Devices, vol. 43,
no. 8, pp. 1264–1273, 1996.

[2] C. Fiegna et al., “Simple and Efficient Modeling of EPROM Writing,” IEEE
Transactions on Electron Devices, vol. 38, no. 3, pp. 603–610, 1991.

Insulator or Insulator Stack

Semiconductor

Hot-Carrier

S

G

D

Insulator

Injection

Injection Current
as Boundary Condition

n+

n+p
760 Sentaurus™ Device User Guide
N-2017.09



25: Hot-Carrier Injection Models
References
[3] S. Jin et al., “Gate Current Calculations Using Spherical Harmonic Expansion of
Boltzmann Equation,” in International Conference on Simulation of Semiconductor
Processes and Devices (SISPAD), San Diego, CA, USA, pp. 202–205, September 2009.

[4] A. Gnudi et al., “Two-dimensional MOSFET Simulation by Means of a
Multidimensional Spherical Harmonics Expansion of the Boltzmann Transport
Equation,” Solid-State Electronics, vol. 36, no. 4, pp. 575–581, 1993.

[5] C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution of charge
transport in semiconductors with applications to covalent materials,” Reviews of Modern
Physics, vol. 55, no. 3, pp. 645–705, 1983.

[6] C. Jungemann and B. Meinerzhagen, Hierarchical Device Simulation: The Monte-Carlo
Perspective, Vienna: Springer, 2003.

[7] E. Cartier et al., “Impact ionization in silicon,” Applied Physics Letters, vol. 62, no. 25,
pp. 3339–3341, 1993.

[8] T. Kunikiyo et al., “A model of impact ionization due to the primary hole in silicon for
a full band Monte Carlo simulation,” Journal of Applied Physics, vol. 79, no. 10,
pp. 7718–7725, 1996.

[9] S.-M. Hong and C. Jungemann, “A fully coupled scheme for a Boltzmann-Poisson
equation solver based on a spherical harmonics expansion,” Journal of Computational
Electronics, vol. 8, no. 3-4, pp. 225–241, 2009.
Sentaurus™ Device User Guide 761
N-2017.09



25: Hot-Carrier Injection Models
References
762 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 26 Heterostructure Device Simulation

This chapter describes carrier transport boundary conditions for
heterointerfaces.

Thermionic Emission Current

Conventional transport equations cease to be valid at a heterojunction interface, and currents
and energy fluxes at the abrupt interface between two materials are better defined by the
interface condition at the heterojunction. In defining thermionic current and thermionic energy
flux, Sentaurus Device follows the literature [1].

Using Thermionic Emission Current

To activate the thermionic current model for electrons at a region-interface (material-interface)
heterojunction, the keyword eThermionic must be specified in the appropriate region-
interface (material-interface) Physics section, for example:

Physics(MaterialInterface="GaAs/AlGaAs") {
eThermionic

}

Similarly, to activate thermionic current for holes, the keyword hThermionic must be
specified. The keyword Thermionic activates the thermionic emission model for both
electrons and holes. If any of these keywords is specified in the Physics section for a region
Region.0, where Region.0 is a semiconductor, the appropriate model will be applied to each
Region.0–semiconductor interface.

For small particle and energy fluxes across the interface, the condition of continuous quasi-
Fermi level and carrier temperature is sometimes used. This option is activated by the keyword
Heterointerface in the appropriate Physics section. In realistic transistors, such an
approach may lead to unsatisfactory results [2].

You can change the coefficients of the thermionic emission model in the
ThermionicEmission parameter set in an interface-specific section in the parameter file:

RegionInterface = "regionA/regionB" {
ThermionicEmission {

A = 2, 2 # [1]
B = 4, 4 # [1]
Sentaurus™ Device User Guide 763
N-2017.09



26: Heterostructure Device Simulation
Thermionic Emission Current
C = 1, 1 # [1]
}

}

Thermionic Emission Model

Assume that at the heterointerface between materials 1 and 2, the conduction edge jump is
positive, that is , where  (that is, ). If  and  are the
electron current density and electron energy flux density entering material 2, and and 
are the electron current density and electron energy flux density leaving material 1, the
interface condition can be written as:

(837)

(838)

(839)

(840)

where the ‘emission velocities’ are defined as:

(841)

and by default, the coefficients in the above equations are , , and ,
which corresponds to the literature [1]. Similar equations for the hole thermionic current and
hole thermionic energy flux are presented below:

(842)

(843)

(844)

(845)

ΔEC 0> ΔEC EC 2, EC 1,–= χ1 χ2> Jn 2, Sn 2,
Jn 1, Sn 1,

Jn 2, Jn 1,=

Jn 2, anq vn 2, n2

mn 2,
mn 1,
-----------vn 1, n1

ΔEC

kTn 1,
-------------– 

 exp–=

Sn 2, Sn 1,
cn

q
-----Jn 2, ΔEC+=

Sn 2, b– n vn 2, n2kTn 2,
mn 2,
mn 1,
-----------vn 1, n1kTn 1,

ΔEC

kTn 1,
-------------– 

 exp–=

vn i,
kTn i,

2πmn i,
-----------------=

an 2= bn 4= cn 1=

Jp 2, Jp 1,=

Jp 2, ap– q vp 2, p2

mp 2,
mp 1,
-----------vp 1, p1

ΔEV

kTp 1,
------------- 
 exp–=

Sp 2, Sp 1,
cp

q
-----Jp 2, ΔEV+=

Sp 2, bp– vp 2, p2kTp 2,
mp 2,
mp 1,
-----------vp 1, n1kTp 1,

ΔEV

kTp 1,
------------- 
 exp–=
764 Sentaurus™ Device User Guide
N-2017.09



26: Heterostructure Device Simulation
Thermionic Emission Current
(846)

An equivalent set of equations are used if Fermi carrier statistics is selected.

Thermionic Emission Model With Fermi Statistics

With Fermi statistics, the electron current density and the electron energy flux density are:

(847)

(848)

(849)

(850)

(851)

Here,  is given in Eq. 49, p. 177 and  is given in Eq. 182, p. 262. Similar equations apply
to holes:

(852)

(853)

(854)

(855)

(856)

Here,  is given in Eq. 50, p. 177 and  is given in Eq. 186, p. 263.

vp i,
kTp i,

2πmp i,
-----------------=

Jn 2, anq vn 2, NC 2, ζn 2,
mn 2,
mn 1,
-----------vn 1, NC 1, ζn 1,– 

 =

Sn 2, b– n vn 2, kTn 2, NC 2, ζn 2,
mn 2,
mn 1,
-----------vn 1, kTn 1, NC 1, ζn 1,– 

 =

ζn 2, 1 ηn 2,–( )exp+[ ] ηn 2,+ln=

ζn 1, 1 ηn 1,
′

–( )exp+[ ] ηn 1,
′

+ln=

ηn 1,
′ ηn 1,

ΔEC

kTn 1,
-------------–=

ηn NC

Jp 2, a– pq vp 2, NV 2, ζp 2,
mp 2,
mp 1,
-----------vp 1, NV 1, ζp 1,– 

 =

Sp 2, b– p vp 2, kTp 2, NV 2, ζp 2,
mp 2,
mp 1,
-----------vp 1, kTp 1, NV 1, ζp 1,– 

 =

ζp 2, 1 ηp 2,–( )exp+[ ] ηp 2,+ln=

ζp 1, 1 ηp 1,
′

–( )exp+[ ] ηp 1,
′

+ln=

ηp 1,
′ ηp 1,

ΔEV

kTp 1,
-------------+=

ηp NV
Sentaurus™ Device User Guide 765
N-2017.09



26: Heterostructure Device Simulation
Gaussian Transport Across Organic Heterointerfaces
If Fermi statistics is used, this model can be activated by specifying Formula=1 in the
ThermionicEmission section of the parameter file:

ThermionicEmission {
Formula=1

}

By default Formula=0, it activates the old model, where the Boltzmann-like thermionic
emission equations similar to Eq. 837–Eq. 846 are used. This can lead to incorrect results in
high carrier density. In this case, a warning message will be given.

NOTE Always specify Formula=1 when Fermi statistics is used. This option
will become the default in later versions of Sentaurus Device. If Fermi
statistics is not used, Eq. 837–Eq. 846 will be activated regardless of the
Formula statement in the parameter file.

Gaussian Transport Across Organic Heterointerfaces

A thermionic-like current boundary condition has been introduced to correctly account for
carrier transport across organic heterointerfaces. An organic heterointerface is defined in this
context as an heterointerface with the Gaussian density-of-states (DOS) model (see Gaussian
Density-of-States for Organic Semiconductors on page 264) activated in both regions that are
adjacent to the heterointerface.

Using Gaussian Transport at Organic Heterointerfaces

The model is activated by switching to the Gaussian DOS model in both regions of the
heterointerface that are meant to be organic:

Physics(Region="OrganicRegion_1") {
EffectiveMass(GaussianDOS)

}

Physics(Region="OrganicRegion_2") {
EffectiveMass(GaussianDOS)

}

and then specifying the keyword Organic_Gaussian as an option for the Thermionic
model in the Physics section of the organic heterointerface:

Physics(RegionInterface="OrganicRegion_1/OrganicRegion_2") {
Thermionic(Organic_Gaussian)

}

766 Sentaurus™ Device User Guide
N-2017.09



26: Heterostructure Device Simulation
Gaussian Transport Across Organic Heterointerfaces
This syntax also automatically switches on the double points at the organic heterointerface.

The parameters  and  in Eq. 858 and Eq. 860, p. 767 can be adjusted in the
ThermionicEmission section of the parameter file (their default values are ):

RegionInterface="OrganicRegion_1/OrganicRegion_2" {
ThermionicEmission {

vel_org = 1e7, 1e7 # [cm/s]
}

}

Gaussian Transport at Organic Heterointerface Model

Assuming a positive conduction edge jump and a negative valence edge jump from material 1
to material 2, the boundary conditions at the organic heterointerface are given by:

(857)

(858)

(859)

(860)

where:

■  and  are the electron current densities entering material 2 and leaving material 1,
respectively. 

■  and  are the hole current densities leaving material 2 and entering material 1,
respectively.

■  where  and  are the distances of the Gaussian distribution
peaks to the conduction band edges.

■  where  and  are the distances of the Gaussian distribution
peaks to the valence band edges.

vn org, vp org,
1 106×  cm/s

Jn 2, Jn 1,=

Jn 2, vn org, q n2 n1

ΔEC

kTn 1,
-------------– 

 exp– 
 =

Jp 2, Jp 1,=

Jp 2, vp org, q p2 p1

ΔEV

kTp 1,
-------------– 

 exp– 
 =

Jn 2, Jn 1,

Jp 2, Jp 1,

ΔEC dC 2, dC 1,–= dC 2, dC 1,

ΔEV dV 2, dV 1,–= dV 2, dV 1,
Sentaurus™ Device User Guide 767
N-2017.09



26: Heterostructure Device Simulation
References
References

[1] D. Schroeder, Modelling of Interface Carrier Transport for Device Simulation, Wien:
Springer, 1994.

[2] K. Horio and H. Yanai, “Numerical Modeling of Heterojunctions Including the
Thermionic Emission Mechanism at the Heterojunction Interface,” IEEE Transactions
on Electron Devices, vol. 37, no. 4, pp. 1093–1098, 1990.
768 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 27 Energy-Dependent Parameters

This chapter describes extensions for the temperature-dependent
models.

Overview

Sentaurus Device provides the possibility to specify some parameters as a ratio of two
irrational polynomials. The general form of such ratio is written as:

(861)

where subscripts  and  corresponds to numerator and denominator, respectively;  is a
factor,  is a primary variable, and  is an additional variable. It is possible to use Eq. 861 with
different coefficients for different intervals  defined by the segment . By default,
it is assumed that only one interval  with the boundaries  exists, and function 
is constant, that is, , , , . Factor  is defined accordingly for
each model.

A simplified syntax is introduced to define the piecewise linear function . The boundaries of
the intervals and the value of factor must be specified, which means the value of  is at the
right side of the interval. All other coefficients should not be specified to use this possibility.
As there are some peculiarities in parameter specification and model activation, the specific
models for which the approximation by Eq. 861 is supported are described here separately.

Energy-Dependent Energy Relaxation Time

For the specification of the energy relaxation time, the following modification of Eq. 861 is
used:

(862)

G w s,( ) f
aiw

pi( ) dns+( )
gn

ajw
pj( ) dds+( )

gd
------------------------------------------------=

n d f
w s

k wk 1–
max wk

max,[ ]
k 0= 0 ∞,[ ] G

a0 0= ai 0= p d 0= = g 1= f

G
G

τ w( ) τw
0

aiw
pi( )( )

gn

ajw
pj( )( )

gd
----------------------------------=
Sentaurus™ Device User Guide 769
N-2017.09



27: Energy-Dependent Parameters
Energy-Dependent Energy Relaxation Time
where  for electrons and  for holes. The factor  in Eq. 861 is
defined by , which can be specified in the parameter file by the values tau_w_ele and
tau_w_hol.

To activate the specification of the energy-dependent energy relaxation time, the parameter
Formula(tau_w_ele) (or Formula(tau_w_hol) for holes) must be set to 2. 

The following example shows the energy relaxation time section of the parameter file and
provides a short description of the syntax:

EnergyRelaxationTime
{ * Energy relaxation times in picoseconds

tau_w_ele = 0.3 # [ps]
tau_w_hol = 0.25 # [ps]

* Below is the example of energy relaxation time approximation
* by the ratio of two irrational polynomials.
* If Wmax(interval-1) < Wc < Wmax(interval), then:
* tau_w = (tau_w)*(Numerator^Gn)/(Denominator^Gd),
* where (Numerator or Denominator)=SIGMA[A(i)(Wc^P(i))],
* Wc=1.5(k*Tcar)/q (in eV).
 * By default: Wmin(0)=Wmax(-1)=0; Wmax(0)=infinity.
 * The option can be activated by specifying appropriate Formula equals 2
 *      Formula(tau_w_ele) = 2
 *      Formula(tau_w_hol) = 2
 *      Wmax(interval)_ele = 
 *      tau_w_ele(interval) =
 *      Numerator(interval)_ele{
 *        A(0) =
 *        P(0) =
 *        A(1) =
 *        P(1) =
 *        D =
 *        G =
 *     }
 *      Denominator(interval)_ele{
 *        A(0) =
 *        P(0) =
 *        D =
 *        G =
 *     }
 *      Wmax(interval)_hol =
 *      tau_w_hol(interval) =

tau_w_ele = 0.3 # [ps]
tau_w_hol = 0.25 # [ps]

Formula(tau_w_ele) = 2
Numerator(0)_ele{

A(0) = 0.048200

w 1.5kTn q⁄= w kTp q⁄= f
τw

0

770 Sentaurus™ Device User Guide
N-2017.09



27: Energy-Dependent Parameters
Energy-Dependent Energy Relaxation Time
P(0) = 0.00
A(1) = 1.00
P(1) = 3.500
A(2) = 0.0500
P(2) = 2.500
A(3) = 0.0018100
P(3) = 1.00

}
Denominator(0)_ele{

A(0) = 0.048200
P(0) = 0.00
A(1) = 1.00
P(1) = 3.500
A(2) = 0.100
P(2) = 2.500

}

The following example shows a simplified syntax for piecewise linear specification of energy
relaxation time:

EnergyRelaxationTime:
{ * Energy relaxation times in picoseconds

Formula(tau_w_ele) = 2
tau_w_ele = 0.3 # [ps]

Wmax(0)_ele = 0.5 # [eV]
tau_w_ele(1) = 0.46 # [ps]

Wmax(1)_ele = 1.0 # [eV]
tau_w_ele(2) = 0.4 # [ps]

Wmax(2)_ele = 2.0 # [eV]
tau_w_ele(3) = 0.2  # [ps]

tau_w_hol = 0.25 # [ps]
}

Spline Interpolation

Sentaurus Device also allows spline approximation of energy relaxation time over energy. In
this case, the parameter Formula(tau_w_ele) for electron energy relaxation time (and
similarly, parameter Formula(tau_w_hol) for hole energy relaxation time) must be equal
to 3.
Sentaurus™ Device User Guide 771
N-2017.09



27: Energy-Dependent Parameters
Energy-Dependent Mobility
Inside the braces following the keyword Spline(tau_w_ele) (or Spline(tau_w_hol)),
an energy [ ] and tau  value pair must be specified in each line. For the values outside
of the specified intervals, energy relaxation time is treated as a constant and equal to the closest
boundary value.

The following example shows a spline approximation specification for energy-dependent
energy relaxation time for electrons:

EnergyRelaxationTime {
Formula(tau_w_ele) = 3
Spline(tau_w_ele) {

0. 0.3 # [eV] [ps]
0.5 0.46 # [eV] [ps]
1. 0.4 # [eV] [ps]
2. 0.2 # [eV] [ps]

}
}

NOTE Energy relaxation times can be either energy-dependent or mole
fraction–dependent (see Abrupt and Graded Heterojunctions on
page 10), but not both.

Energy-Dependent Mobility

In addition to the existing energy-dependent mobility models (such as Caughey–Thomas,
where the effective field is computed inside Sentaurus Device as a function of the carrier
temperature), a more complex, user-supplied mobility model can be defined. For such
specification of energy-dependent mobility, a modification to Eq. 861 is used:

(863)

where  for electrons or  for holes, and  is the low field mobility.

To activate the model, CarrierTemperatureDrivePolynomial, the driving force
keyword, must be specified as a parameter of the high-field saturation mobility model.
Parameters of the polynomials must be defined in the HydroHighFieldMobility parameter
set.

eV ps[ ]

μ w Ntot,( ) μlow

aiw
pi( ) dnNtot+( )

gn

ajw
pj( ) ddNtot+( )

gd
-------------------------------------------------------=

w Tn T⁄= w Tp T⁄= μlow
772 Sentaurus™ Device User Guide
N-2017.09



27: Energy-Dependent Parameters
Energy-Dependent Mobility
This example shows the output of the HydroHighFieldMobility section and the
specification of coefficients:

HydroHighFieldDependence:
{ * Parameter specifications for the high field degradation in 
 * some hydrodynamic models.
 * B) Approximation by the ratio of two irrational polynomials
 * (driving force 'CarrierTempDrivePolynomial'):
 * If Wmax(interval-1) < w < Wmax(interval), then:
 * mu_hf = mu*factor*(Numerator^Gn)/(Denominator^Gd),
 * where (Numerator or Denominator)={SIGMA[A(i)(w^P(i))]+D*Ni},
 * w=Tc/Tl; Ni(cm^-3) is total doping.
 * By default: Wmin(0)=Wmax(-1)=0; Wmax(0)=infinity.

 *      Wmax(interval)_ele =
 *      F(interval)_ele =
 *      Numerator(interval)_ele{
 *        A(0) =
 *        P(0)  =
 *        A(1)  =
 *        P(1)  =
 *        D     =
 *        G     =
 *     }
 *      Denominator(interval)_ele{
 *        A(0) =
 *        P(0)  =
 *        D     =
 *        G     =
 *     }
 *      F(interval)_hol =
 *      Wmax(interval)_hol =
       Denominator(0)_ele
{
         A(0) = 0.3
         P(0) = 0.0
         A(1)  = 1.0
         P(1)  = 2.
         A(2) = 0.001
         P(2) = 2.500
         D     = 3.00e-16
         G     = 0.2500
      }
}

Sentaurus™ Device User Guide 773
N-2017.09



27: Energy-Dependent Parameters
Energy-Dependent Mobility
Spline Interpolation

Instead of the rational polynomial in Eq. 863, a spline interpolation can be used as well. In this
case, the option CarrierTempDriveSpline must be used for the high-field mobility model
in the command file:

Physics {
Mobility (

HighFieldSaturation (CarrierTempDriveSpline)
)

}

The energy-dependent mobility is computed as

(864)

where the function  is defined by a sequence of value pairs in the parameter file:

HydroHighFieldDependence {
Spline (electron) {

0   1
1   1
2   2.5
4   4
10 5

}

Spline (hole) {
0   1
1   1
2   0.75
4   0.5
10 0.2

}
}

The given data points are interpolated by a cubic spline. Zero derivatives are imposed as
boundary conditions at the end points. The spline function remains constant beyond the end
points.

μ w( ) μlow spline w( )⋅=

spline w( )
774 Sentaurus™ Device User Guide
N-2017.09



27: Energy-Dependent Parameters
Energy-Dependent Peltier Coefficient
Energy-Dependent Peltier Coefficient

Sentaurus Device allows for the following modification of the expression of the energy flux
equation:

(865)

The standard expression corresponds to . If , then:

(866)

Sentaurus Device allows you to specify the function :

(867)

For the specification of , the following modification of Eq. 861 is used:

(868)

Coefficients must be specified in the HeatFlux parameter set, and the dependence can be
activated by specifying a nonzero factor .

For , the result is . This is an example of the
parameter file section for such a function :

HeatFlux
{ * Heat flux factor (0 <= hf <= 1)

hf_n = 1 # [1]
hf_p = 1 # [1]

* Coefficients can be defined also as:
 *      hf_new = hf*(1.+Delta(w))
 * where Delta(w) is the ratio of two irrational polynomials.
 * If Wmax(interval-1) < Wc < Wmax(interval), then:
 * Delta(w) = factor*(Numerator^Gn)/(Denominator^Gd),
 * where (Numerator or Denominator)=SIGMA[A(i)(w^P(i))], w=Tc/Tl
 * By default: Wmin(0)=Wmax(-1)=0; Wmax(0)=infinity.
 * Option can be activated by specifying nonzero 'factor'.
*      Wmax(interval)_ele = 
 *      F(interval)_ele = 1
 *      Numerator(interval)_ele{

Sn
5rn

2
--------

kTn

q
--------Jn fn

hfκ̂n

∂ wnΠ
n

( )
∂wn

---------------------- Tn∇+
 
 
 

–=

Πn 1= Πn 1 P w( )+=

∂ wnΠ
n

( )
∂wn

---------------------- 1 w
∂P w( )C

∂w
--------------------+=

Q

Q w( ) w
∂P w( )

∂w
----------------=

Q

Q w( ) f
aiw

pi( )( )
gn

ajw
pj( )( )

gd
----------------------------------=

f

Πn 1 1 1 w
2

+( )⁄+= Q 1 w
2

1+( )
1.5

⁄=
Qn
Sentaurus™ Device User Guide 775
N-2017.09



27: Energy-Dependent Parameters
Energy-Dependent Peltier Coefficient
 *        A(0) = 
 *        P(0) = 
 *        A(1) = 
 *        P(1) = 
 *        G     = 
 *     }
 *      Denominator(interval)_ele{
 *        A(0) = 
 *        P(0) = 
 *        G     = 
 *     }
*      Wmax(interval)_hol =
 *      F(interval)_hol = 1
        f(0)_ele = 1
       Denominator(0)_ele{
         A(0) = 1.
         P(0)  = 0.
         A(1)  = 1.
         P(1) = 2.
         G     = 1.5

}

Spline Interpolation

Instead of the rational polynomial in Eq. 868, a spline interpolation can be used as well. The
function  is defined in the parameter file by a sequence of value pairs:

HeatFlux {
hf_n = 1
hf_p = 1

Spline (electron) {
0   1
1   1
2   2.5
4   4
10 5

}

Spline (hole) {
0   1
1   1
2   0.75
4   0.5
10 0.2

}
}

Q w( )
776 Sentaurus™ Device User Guide
N-2017.09



27: Energy-Dependent Parameters
Energy-Dependent Peltier Coefficient
The given data points are interpolated by a cubic spline. Zero derivatives are imposed as
boundary conditions at the end points. The spline function remains constant beyond the end
points.
Sentaurus™ Device User Guide 777
N-2017.09



27: Energy-Dependent Parameters
Energy-Dependent Peltier Coefficient
778 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 28 Anisotropic Properties

This chapter discusses the anisotropic properties of semiconductor
devices.

Overview

In general, all equations for semiconductor devices can be written in the following form:

(869)

Here, vector  and the tensor coefficient , where  is a scalar function,
tensor  is a  (or , in two dimensions) symmetric matrix, and vector  is a first-
order differential expression. In the isotropic case, tensor  is the unit matrix. In the common
case, tensor  depends on the solution. Among the reasons why tensor  is a full matrix are
the anisotropic properties of semiconductors (such as SiC) and the influence of mechanical
stress (affects anisotropic mobility; see Chapter 31 on page 821).

Table 135 lists the anisotropic models for the tensor  that Sentaurus Device supports. 

Sentaurus Device provides different anisotropic approximations for discretization for the
Poisson, continuity, and thermodynamic equations, and for the density gradient model (see
Anisotropic Approximations on page 780). Note that anisotropic properties may have not only
factor , but also some generation–recombination models (see Anisotropic Avalanche
Generation on page 791).

Table 135 Anisotropic models

Tensor coefficient Equation or model

Mobility, Continuity equation for electrons and holes

Electrical permittivity, Poisson equation

Thermal conductivity, Thermodynamics equation

Quantum potential parameter, Density gradient model

∇– J⋅ R=

J μ̂g= μ̂ μ Â⋅= μ
Â 3 3× 2 2× g

Â
Â Â

μ̂

μ̂

ε̂

κ̂

α̂

μ̂

Sentaurus™ Device User Guide 779
N-2017.09



28: Anisotropic Properties
Overview
Anisotropic Approximations

Due to the difficulties of anisotropic simulation, Sentaurus Device offers different
approximations:

■ The accuracy of the default AverageAniso approximation depends on the Delaunay
properties of the virtual mesh obtained after anisotropic transformation. If this mesh is
Delaunay, the results are relatively accurate. Otherwise, the accuracy will degrade.

■ TensorGridAniso is the most robust approximation but it has some accuracy issues for
nonaxis-aligned meshes or if the anisotropy orientation does not coincide with the mesh
orientation.

■ The AnisoSG approximation gives the most accurate results and is independent of the
mesh orientation. Convergence, however, may be worse than for TensorGridAniso, for
example.

■ The StressSG approximation gives the most accurate results and is independent of the
mesh orientation. Convergence, however, may be worse than for TensorGridAniso.

AverageAniso

This is the default approximation and it uses a local (vertex-wise) linear transformation, which
transforms an anisotropic problem to an isotropic one. After this, Sentaurus Device uses the
AverageBoxMethod algorithm to compute control volumes and coefficients (see Chapter 37
on page 1011). The keyword AverageAniso in the Math section activates this algorithm. Due
to the requirements of AverageBoxMethod, the AverageAniso option requires that either
the input mesh consists of triangles only (tetrahedra in 3D) or the mesh is tensorial, with the
main axes of this tensor mesh and the main axes of the anisotropy aligned to the simulation
coordinate system.

TensorGridAniso

This approximation is simple and is correct only for tensor grids or grids close to tensor ones.
The anisotropic effects are modeled using a tensor-grid approximation. The eigenvalues and
eigenvectors of the tensor  are used as multiplication factors for the projections of the vector

 on mesh edges. The following options in the Math section activate this algorithm:

Math {
TensorGridAniso # only for stress mobility
TensorGridAniso(Piezo) # stress task, same as above
TensorGridAniso(Aniso) # anisotropic models, see this chapter
TensorGridAniso(Aniso Piezo) # anisotropic models and stress mobility

}

Â
g

780 Sentaurus™ Device User Guide
N-2017.09



28: Anisotropic Properties
Overview
AnisoSG

The anisotropic Scharfetter–Gummel (AnisoSG) approximation is available for the Poisson,
continuity, and thermodynamics equations. If the anisotropic direction is inconsistent with the
mesh, the AverageAniso and TensorGridAniso approximations may not be accurate
enough (mesh orientation effect). The AnisoSG approximation has no dependency on mesh
orientation. A description of this approximation for the continuity equation is provided here.

Traditionally, the Scharfetter–Gummel approximation is used for the continuity equation (see
Chapter 37 on page 1011), where the argument of the Bernoulli function  is a
projection of the effective field  on edge . If, for isotropic case,  depends on values at
edge nodes only, for an anisotropic problem, it is necessary to compute vector  elementwise.
This concept allowed to generalize the Scharfetter–Gummel approximation to the anisotropic
case. 

To activate the anisotropic Scharfetter–Gummel approximation, you must specify the keyword
AnisoSG in the global Math section:

Math { AnisoSG }

The AnisoSG branch, if it converges, guarantees that concentrations remain positive. However,
sometimes, there could be convergence problems. Switching off certain derivatives helps to
mitigate this problem. These derivatives are switched off if the node concentration is below the
AnisoSG_DerivativeMinDen value, which is  by default. This value can be
modified in the Math section:

Math {
AnisoSG
AnisoSG_DerivativeMinDen = 1e2 # [cm-3]

}

StressSG

The StressSG approximation is implemented for stress problems (it affects anisotropic
mobility; see Chapter 31 on page 821). To activate this approximation, you must specify the
StressSG keyword in the global Math section: 

Math { StressSG }

Crystal and Simulation Coordinate Systems

Sentaurus Device uses two coordinate systems: the simulation system (mesh geometry) and the
crystal system. Anisotropic material parameters are defined in the crystal system.

x∗ E∗ l,( )=
E∗ l x∗

E∗

10 [cm 3– ]
Sentaurus™ Device User Guide 781
N-2017.09



28: Anisotropic Properties
Overview
The x-axis and y-axis of the simulation coordinate system are defined in the parameter file:

LatticeParameters {
X = (1, 0,  0)
Y = (0, 0, -1)

}

The z-axis is computed as the outer vector product of the x-axis and y-axis. The simulation
system is defined relative to the crystal system. If the keyword CrystalAxis is present, the
crystal system is defined relative to the simulation system (see Using Stress and Strain on
page 823).

In the above example, the x-axis of the simulation system coincides with the x-axis of the
crystal system. The y-axis of the simulation system runs along the negative z-axis of the crystal
system. This is a common definition for 2D simulations of Piezoelectric_Polarization
(see Chapter 31 on page 821).

Instead of LatticeParameters, the keywords Piezo and PiezoParameters are
recognized as well. By default, Sentaurus Device uses X=(1,0,0), Y=(0,1,0), and
Z=(0,0,1).

Cylindrical Symmetry

Sentaurus Device supports only anisotropy with cylindrical symmetry. This means matrix 
can be written as:

 or (870)

where  are eigenvalues of , and  is the  orthogonal matrix from eigenvectors of
:

(871)

and the quantity  denotes the leading  submatrix of .

A

A Q
e   

 e  

  ea

Q
T

= A Q2:2
e  

 ea

Q2:2
T

=

e ea, A Q 3 3×
A

Q Ax Ay Az
=

Q2:2 2 2× Q
782 Sentaurus™ Device User Guide
N-2017.09



28: Anisotropic Properties
Overview
Anisotropic Direction

The vector  defines anisotropic direction. This direction may be defined in the Aniso
section of the command file in crystal (default) or simulation system coordinates; the default
value is the z-axis (the y-axis in the 2D case):

Physics {
Aniso( direction = (1, 1, 0) ) # anisotropic direction in crystal system
Aniso( direction(CrystalSystem) = (1, 1, 0) ) # same as above

# anisotropic direction in simulation system coordinate
Aniso(Mobility direction(SimulationSystem) = (0, 1, -1) ) 

}

The symbolic definition, such as direction = zAxis (xAxis or yAxis) is acceptable. This
vector defines the anisotropic direction for all Aniso models (except for the density gradient
model; see Anisotropic Directions for Density Gradient Model on page 784).

The next two examples are equivalent.

Example 1

Parameter file:
LatticeParameters {

X = ( 0.8, 0.6, 0)
Y = (-0.6, 0.8, 0)

}

Input command file:
Physics {

Aniso(Poisson direction=(0.5, 0.5))
} 

Az

Ycryst

Ysim
0.8

0.6

0.5

-0.6 0.5 0.8 Xcryst

Xsim

0.7

Aniso Direction Vector

0.1
Sentaurus™ Device User Guide 783
N-2017.09



28: Anisotropic Properties
Overview
Example 2

Parameter file: default LatticeParameters, that is, X = (1, 0, 0) and Y = (0, 
1, 0)

Input command file:
Physics {

Aniso(Poisson direction=(0.7, 0.1))
} 

Anisotropic Directions for Density Gradient Model

By default, the anisotropic direction of the density gradient model is the same as in all other
models. However, the density gradient model can have other anisotropic directions; moreover,
you can have three different axes of anisotropy.

Example 1

Global anisotropic models and density gradient model have different direction:

Physics {
Aniso(

# global anisotropic direction relative to crystal system
Direction(CrystalSystem)=(0.6, 0.8) Poisson Temperature

# aniso direction for DG model relative simulation system
eQuantumPotential{ Direction(SimulationSystem)=(1,1,0) }

)
}

Ycryst
Ysim

0.1
Aniso Direction Vector

0.7
Xcryst
Xsim
784 Sentaurus™ Device User Guide
N-2017.09



28: Anisotropic Properties
Overview
Parameter file:

QuantumPotentialParameters {
alpha[1] = 4 1 # aniso direction = (1, 1, 0) relative to simulation system
alpha[2] = 1 1 # isotropic value
alpha[3] = 1 1 # isotropic value, in 3D case alpha[3] = alpha[2]

}

Example 2

Anisotropic density gradient model has three anisotropic axes:

Aniso( eQuantumPotential(
AnisoAxes(SimulationSystem) = {

( 0.6, 0.8, 0)
(-0.8, 0.6, 0)

}
))

Parameter file:

QuantumPotentialParameters {
alpha[1] = 4 1 # aniso axis = ( 0.6, 0.8, 0)
alpha[2] = 1 1 # aniso axis = (-0.8, 0.6, 0)
alpha[3] = 2 1 # aniso axis = ( 0.0, 0.0, 1) this vector is computed

}

Orthogonal Matrix From Eigenvectors Q

If the anisotropic direction has the default value (z-axis in 3D or y-axis in 2D), then the matrix
is:

(872)

where  are defined in the LatticeParameters section.

If the anisotropic direction is a vector , then the matrix is:

(873)

The vectors  are computed by Sentaurus Device to ensure that the matrix Q is orthogonal.

Q R
T

R X

X
------- Y

Y
------- Z

Z
-------=,=

X Y Z, ,

Ad x y z, ,( )=

Q Ax Ay Az
Az, R

T
Ad Ad⁄⋅= =

Ax Ay,
Sentaurus™ Device User Guide 785
N-2017.09



28: Anisotropic Properties
Anisotropic Mobility
Anisotropic Mobility

In some semiconductors, such as silicon carbide, the electrons and holes may exhibit different
mobilities along different crystallographic axes.

Anisotropy Factor

In a 3D simulation, Sentaurus Device assumes that the electrons or holes exhibit a mobility
along the x-axis and y-axis, and an anisotropic mobility  along the z-axis. In a 2D
simulation, the regular mobility  is observed along the x-axis, and  is observed along
the y-axis. The anisotropy factor  is defined as the ratio:

(874)

Current Densities

In the isotropic case, the current densities can be expressed by:

(875)

(876)

where  and  are the currents without mobilities.

In the drift-diffusion model, you have:

(877)

(878)

as can be seen from Eq. 56 and Eq. 57, p. 183. For the thermodynamic model, Eq. 58 and
Eq. 59, p. 183 imply that:

(879)

(880)

μ
μaniso

μ μaniso

r

r
μ

μaniso
-------------=

Jn μngn=

Jp μpgp=

gn gp

gn nq Φn∇–=

gp pq Φp∇–=

gn nq Φn∇ Pn T∇+( )–=

gp pq Φp∇ Pp T∇+( )–=
786 Sentaurus™ Device User Guide
N-2017.09



28: Anisotropic Properties
Anisotropic Mobility
In the hydrodynamic case, you have:

(881)

(882)

according to Eq. 60 and Eq. 61, p. 184.

For anisotropic mobilities, Eq. 875 and Eq. 876 need to be rewritten as:

(883)

(884)

where  and  are the anisotropy factors for electrons and holes, respectively. If the crystal
reference system coincides with the coordinate system of Sentaurus Device, the matrices
are given by:

 or (885)

depending on the dimension of the problem. 

In general, however,  needs to be written as:

 or (886)

where  is defined in Eq. 870, p. 782 – Eq. 873, p. 785.

Driving Forces

In the isotropic case, the electric field parallel to the electron or hole current is given by (see
Eq. 350, p. 370):

(887)

gn n∇EC kTn∇n fn
td

kn∇Tn 1.5nkTn∇ mnln–+ +=

gp p∇EV kTp∇p– fp
td

kp∇Tp– 1.5pkTp∇ mpln–=

Jn μnArn
gn=

Jp μpArp
gp=

rn rp

Ar

Ar

1   

 1  

  1 r⁄

= Ar
1  

 1 r⁄
=

Ar

Ar Q
1   

 1  

  1 r⁄

Q
T

= Ar Q2:2
1  

 1 r⁄
Q2:2

T
=

Q

Fc
F Jc⋅

Jc
-------------

F gc⋅
gc

-------------= =
Sentaurus™ Device User Guide 787
N-2017.09



28: Anisotropic Properties
Anisotropic Mobility
For anisotropic mobilities:

(888)

Similarly, the electric field perpendicular to the current, as given in Eq. 328, p. 355, needs to
be rewritten as:

(889)

Eq. 352, p. 370 shows how the gradient of the Fermi potential  may be used as the driving
force in high-field saturation models. Instead, for anisotropic mobilities, Sentaurus Device
uses:

(890)

In the isotropic hydrodynamic Canali model, the driving force  satisfies:

(891)

as can be seen from Eq. 356, p. 372. To derive the appropriate expression in the anisotropic
case, it is assumed that  operates parallel to the current, that is:

(892)

where:

(893)

is the direction of the electron or hole current. 

Instead of Eq. 891, you now have:

(894)

or:

(895)

Fc
F Agc⋅

Agc

-----------------=

Fc ⊥, F2
F Agc⋅( )

2

Agc
2

------------------------–=

Φc

Fc A Φc∇=

Fc

Fc μFc⋅
wc w0–

τecq
------------------=

Fc

Fc Fcêc=

êc
Agc

Agc

------------=

μFc
2

Aêc( ) eĉ⋅
wc w0–

τecq
------------------=

Fc

wc w0–

τecqμAêc êc⋅
---------------------------------=
788 Sentaurus™ Device User Guide
N-2017.09



28: Anisotropic Properties
Anisotropic Mobility
Total Anisotropic Mobility

This is the simplest mode in Sentaurus Device. Only a total anisotropy factor  or  is
specified in the command file:

Physics {
Aniso(

eMobilityFactor (Total) = re 
hMobilityFactor (Total) = rh 

)
}

Sentaurus Device computes the mobility  for electrons or holes along the main
crystallographic axis as usual. The mobility  is then given by:

(896)

NOTE In this mode, Sentaurus Device does not update the driving forces as
discussed in Driving Forces on page 787.

Self-Consistent Anisotropic Mobility

This is the most accurate, but also the most expensive, mode in Sentaurus Device. The electron
and hole mobility models specified in the Physics section are evaluated separately for the
major and minor crystallographic axes, but with different parameters for each axis. This option
is activated in the Physics section for electron or hole mobilities as follows:

Physics {
Aniso(

eMobility
hMobility

)
}

To simplify matters, you can specify the following option to activate self-consistent,
anisotropic, mobility calculations for both electrons and holes:

Physics {
Aniso(

Mobility
)

}

re rh

μ
μaniso

μaniso
μ
r
---=
Sentaurus™ Device User Guide 789
N-2017.09



28: Anisotropic Properties
Anisotropic Mobility
Table 136 lists the mobility models that offer an anisotropic version. 

The PMI also supports anisotropic mobility calculations. The constructors of the classes
PMI_DopingDepMobility, PMI_EnormalMobility, and PMI_HighFieldMobility
contain an additional flag to distinguish between the isotropic and anisotropic case (see
Chapter 38 on page 1043). 

For example, you can specify these parameters for the constant mobility model in the
parameter file of Sentaurus Device:

ConstantMobility {
mumax = 1.4170e+03, 4.7050e+02
Exponent = 2.5, 2.2

}

The following parameters would then compute a reduced constant mobility along the
anisotropic axis:

ConstantMobility_aniso {
mumax = 1.0e+03, 4.0e+02
Exponent = 2.5, 2.2

}

In each vertex, Sentaurus Device introduces the anisotropy factors  and  as two additional
unknowns. For a given value of , the driving forces  and  are computed as discussed
in Driving Forces on page 787, and the mobilities along the isotropic and anisotropic axes are
obtained.

Table 136 Anisotropic mobility models

Isotropic model Anisotrophic model

ConstantMobility ConstantMobility_aniso

DopingDependence DopingDependence_aniso

EnormalDependence EnormalDependence_aniso

HighFieldDependence HighFieldDependence_aniso

UniBoDopingDependence UniBoDopingDependence_aniso

UniBoEnormalDependence UniBoEnormalDependence_aniso

UniBoHighFieldDependence UniBoHighFieldDependence_aniso

HydroHighFieldDependence HydroHighFieldDependence_aniso

re rh

r Fc Fc ⊥,
790 Sentaurus™ Device User Guide
N-2017.09



28: Anisotropic Properties
Anisotropic Avalanche Generation
The equation for the unknown factor  is then given by:

(897)

This nonlinear equation is solved in each vertex for both electron and hole mobilities.

Plot Section

Table 137 lists the plot variables that may be useful for visualizing anisotropic mobility
calculations. 

Anisotropic Avalanche Generation

Sentaurus Device computes the avalanche generation according to Eq. 437, p. 413. In the
isotropic case, the terms  and  can also be written, respectively, as:

(898)

and:

(899)

If anisotropic mobilities are switched on, Eq. 898 and Eq. 899 are replaced by:

(900)

Table 137 Plot variables for anisotropic mobility

Plot variable Description

eMobility Electron mobility along main axis

hMobility Hole mobility along main axis

eMobilityAniso Electron mobility along anisotropic axis

hMobilityAniso Hole mobility along anisotropic axis

eMobilityAnisoFactor Anisotropic factor for electrons

hMobilityAnisoFactor Anisotropic factor for holes

r

r
μ r( )

μaniso r( )
---------------------=

nvn pvp

nvn μn gn=

pvp μp gp=

nvn μn Arn
gn=
Sentaurus™ Device User Guide 791
N-2017.09



28: Anisotropic Properties
Anisotropic Avalanche Generation
and:

(901)

NOTE Eq. 900 and Eq. 901 only apply to total direction–dependent and self-
consistent mobility calculations. If the total anisotropic option (see
Total Anisotropic Mobility on page 789) is selected, Eq. 898 and
Eq. 899 are used.

Anisotropic avalanche calculations can be activated in the Physics section, independently for
electrons and holes:

Physics {
Aniso(

eAvalanche
hAvalanche

)
}

The keyword Avalanche activates calculations of anisotropic avalanche for both electrons
and holes:

Physics {
Aniso(

Avalanche
)

}

In the anisotropic mode, different avalanche parameters can be specified along the isotropic
and anisotropic axes. Table 138 shows the avalanche models that are supported. 

Sentaurus Device uses interpolation to compute avalanche parameters for an arbitrary direction
of the current. Let  be the direction of the electron or hole current as defined in Eq. 893. In
the crystal reference system, the current is given by:

(902)

Table 138 Anisotropic avalanche models

Isotropic model Anisotrophic model

vanOverstraetendeMan vanOverstraetendeMan_aniso

Okuto Okuto_aniso

pvp μp Arp
gp=

êc

ê'c Q
T

êc

e'x
e'y
e'z

= =
792 Sentaurus™ Device User Guide
N-2017.09



28: Anisotropic Properties
Anisotropic Electrical Permittivity
Sentaurus Device interpolates an avalanche parameter  depending on the direction of the
current  according to:

(903)

in a 3D simulation, and, in a 2D simulation:

(904)

The PMI also supports the calculation of anisotropic avalanche generation. The current without
mobility  is passed as an input parameter, and it can be used by the PMI code to determine
the model parameters depending on the direction of the current (see Avalanche Generation
Model on page 1100).

NOTE The Hatakeyama avalanche model is another anisotropic avalanche
model (see Hatakeyama Avalanche Model on page 423). However, it
must not be used with an Aniso(Avalanche) specification.

Anisotropic Electrical Permittivity

The electrical permittivity  in Eq. 37, p. 173 can have different values along different
crystallographic axes. If the crystallographic axes coincide with the coordinate system of
Sentaurus Device, the scalar  is replaced by the matrix:

 or (905)

depending on the dimension of the problem. For general crystallographic axes, the matrix  is
given by:

 or (906)

where  is defined in Eq. 870, p. 782 – Eq. 873, p. 785.

Anisotropic electrical permittivity is switched on using the keyword Poisson in the Physics
section of the command file (regionwise or materialwise specification is supported):

Physics (Material = "SiC"){
Aniso (Poisson)

}

p
êc

p ê'c( ) e'x
2

e'y
2

+( ) pisotropic⋅ e'z
2

panisotropic⋅+=

p ê'c( ) e'x
2

pisotropic⋅ e'y
2

panisotropic⋅+=

Agc

ε

ε

Ε
ε   

 ε  

  εaniso

= Ε ε  

 εaniso

=

Ε

Ε Q
ε   

 ε  

  εaniso

Q
T

= Ε Q2:2
ε  

 εaniso

Q2:2
T

=

Q

Sentaurus™ Device User Guide 793
N-2017.09



28: Anisotropic Properties
Anisotropic Thermal Conductivity
The model parameters for  and  can be specified in the parameter file. Table 139 lists the
names of the corresponding models. 

Different parameters can be specified for each region or each material. The following statement
in the command file of Sentaurus Device can be used to plot the electrical permittivities:

Plot {
DielectricConstant
"DielectricConstantAniso"

}

Anisotropic Thermal Conductivity

The thermal conductivity  in Eq. 68, p. 192 can have different values along different
crystallographic axes. If the crystallographic axes coincide with the coordinate system of
Sentaurus Device, the scalar  is replaced by the matrix:

 or (907)

depending on the dimension of the problem.

For general crystallographic axes, the matrix  is given by:

 or (908)

where  is defined in Eq. 870, p. 782 – Eq. 873, p. 785.

Anisotropic thermal conductivity is switched on using the keyword Temperature in the
Physics section of the command file (regionwise or materialwise specification is supported):

Physics(Material = "SiC"){
Aniso (Temperature)

}

Table 139 Anisotropic electrical permittivity models

Isotropic model Anisotrophic model

Epsilon Epsilon_aniso

ε εaniso

κ

κ

Κ
κ   

 κ  

  κaniso

= Κ κ  

 κaniso

=

Κ

Κ Q
κ   

 κ  

  κaniso

Q
T

= Κ Q2:2
κ  

 κaniso

Q2:2
T

=

Q

794 Sentaurus™ Device User Guide
N-2017.09



28: Anisotropic Properties
Anisotropic Density Gradient Model
The model parameters for  and  can be specified in the parameter file. Table 140 lists
the names of the corresponding models. 

Different parameters can be specified for each region or each material. The PMI can also be
used to compute anisotropic thermal conductivities. The constructor of the class
PMI_ThermalConductivity has an additional parameter to distinguish between the
isotropic and anisotropic directions (see Thermal Conductivity on page 1167). 

The following statement in the command file can be used to plot the thermal conductivities:

Plot {
"ThermalConductivity"
"ThermalConductivityAniso"

}

Anisotropic Density Gradient Model

The density gradient model provides support for anisotropic quantization. For more details, see
Density Gradient Quantization Model on page 294 and Anisotropic Directions for Density
Gradient Model on page 784.

Table 140 Anisotropic thermal conductivity models

Isotropic model Anisotrophic model

Kappa Kappa_aniso

κ κaniso
Sentaurus™ Device User Guide 795
N-2017.09



28: Anisotropic Properties
Anisotropic Density Gradient Model
796 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 29 Ferroelectric Materials

This chapter explains how ferroelectric materials are treated in a
simulation using Sentaurus Device.

In ferroelectric materials, the polarization  depends nonlinearly on the electric field . The
polarization at a given time depends on the electric field at that time and the electric field at
previous times. The history dependence leads to the well-known phenomenon of hysteresis,
which is used in nonvolatile memory technology.

Using Ferroelectrics

Sentaurus Device implements a model for ferroelectrics that features minor loop nesting and
memory wipeout. Figure 51 demonstrates these properties and Ferroelectrics Model on
page 799 discusses them further. 

Figure 51 Example polarization curve

To activate the model, specify the keyword Polarization in the Physics section of the
command file. Use the optional parameter Memory to prescribe the maximum allowed nesting
depth of minor loops. The smallest allowed value for Memory is 2; the default value is 10. If
minor loop nesting becomes too deep, the nesting property of the minor loops can be lost.
However, the polarization curve remains continuous.

P F

-150 -100 -50 0 50 100 150
F [kV/cm]

-20

-10

0

10

20

P
 [m

A
s/

cm
2 ]

 

a

b

c

d

e

f

g

h

i

k

Fc

Pr

Ps
Sentaurus™ Device User Guide 797
N-2017.09



29: Ferroelectric Materials
Using Ferroelectrics
The following example switches on the ferroelectric model in region Region.17 and sets the
size of the memory to 20 turning points for each element and each mesh axis:

Physics (region = "Region.17") {
Polarization (Memory=20)

}

To obtain a plot of the polarization field, specify Polarization/Vector in the Plot section
of the command file.

Sentaurus Device characterizes the static properties of a ferroelectric material by three
parameters: the remanent polarization , the saturation polarization , and the coercive field

. The hysteresis curve in Figure 51 on page 797 illustrates these quantities. Furthermore,
Sentaurus Device parameterizes the transient response of the ferroelectric material by the
relaxation times  and , and by a nonlinear coupling constant  (see Ferroelectrics Model
on page 799).

Specify the values for these parameters in the Polarization parameter set, for example:

Polarization
{ * Remanent polarization P_r, saturation polarization P_s, 
* and coercive field F_c for x,y,z direction (crystal axes)

P_r = (1.0000e-05, 1.0000e-05, 1.0000e-05) #[C/cm^2]
P_s = (2.0000e-05, 2.0000e-05, 2.0000e-05) #[C/cm^2]
F_c = (2.5000e+04, 2.5000e+04, 2.5000e+04) #[V/cm]

* Relaxation time for the auxiliary field tau_E, relaxation
* time for the polarization tau_P, nonlinear coupling kn.

tau_E = (0.0000e+00, 0.0000e+00, 0.0000e+00) #[s]
tau_P = (0.0000e+00, 0.0000e+00, 0.0000e+00) #[s]
kn = (0.0000e+00, 0.0000e+00, 0.0000e+00) #[cm*s/V]

}

The parameters in this example are the defaults for the material InsulatorX. For all other
materials, all default values are zero. Each of the three numbers given for any of the parameters
corresponds to the value for the respective coordinate axis of the mesh. If a P_s component is
zero, the ferroelectric model is disabled along the corresponding direction. If a P_s component
is nonzero, the respective P_r and F_c components must also be nonzero. Furthermore, the
P_r component must be smaller than the P_s component. By default, the relaxation times are
zero, which means that polarization follows the applied electric field instantaneously.

In devices with ferroelectric and semiconductor regions, it is sometimes difficult to obtain an
initial solution of the Poisson equation. In many cases, the LineSearchDamping option can
solve these problems. To use this option, start the simulation like:

coupled (LineSearchDamping=0.01) { Poisson }

See Damped Newton Iterations on page 139 for details about this parameter.

Pr Ps

Fc

τE τP kn
798 Sentaurus™ Device User Guide
N-2017.09



29: Ferroelectric Materials
Ferroelectrics Model
Ferroelectrics Model

The vector quantity  is split into its components along the main axes of the mesh coordinate
system. This results in one to three scalar problems. Sentaurus Device handles each problem
separately using the model from [1] with extensions for transient behavior [2].

First, Sentaurus Device computes an auxiliary field from the electric field :

(909)

Here,  is a material-specific time constant. For  or for quasistationary simulations,
.

From the auxiliary field, Sentaurus Device computes the auxiliary polarization . The
auxiliary polarization  is an algebraic function of the auxiliary field :

(910)

where  is the saturation polarization,  is the coercive field, and:

(911)

where  is the remanent polarization. In Eq. 910, the plus sign applies to the decreasing
auxiliary field and the minus sign applies to the increasing auxiliary field. The different signs
reflect the hysteretic behavior of the material.  and  in Eq. 910 result from the polarization
history of the material, see below.

Finally, from the auxiliary polarization and auxiliary field, Sentaurus Device computes the
actual polarization :

(912)

Here,  and  are material-specific constants. For  or for quasistationary
simulations, .

Upper and lower turning points are points in the -  diagram where the sweep direction
of the auxiliary field  changes from increasing to decreasing, and from decreasing to
increasing, respectively. At each bias point, the most recent upper and lower turning points,

 and , must both be on each of the two curves defined by Eq. 910; this
requirement determines  and .

P

Faux F

td
d

Faux t( )
F t( ) Faux t( )–

τE
----------------------------------=

τE τE 0=
Faux F=

Paux

Paux Faux

Paux c Ps w Faux Fc±( )⋅( ) Poff+tanh⋅ ⋅=

Ps Fc

w
1

2Fc
---------ln

Ps Pr+

Ps Pr–
-----------------=

Pr

Poff c

P

td
d

P t( )
Paux Faux t( )[ ] P t( )–

τP
------------------------------------------------- 1 kn td

d
Faux t( )+ 

 =

τP kn τP 0=
P Paux=

Paux Faux

Faux

Fu Pu( , ) Fl Pl( , )
Poff c
Sentaurus™ Device User Guide 799
N-2017.09



29: Ferroelectric Materials
Ferroelectrics Model
Sentaurus Device ‘memorizes’ turning points as they are encountered during a simulation. The
memory always contains  as the oldest and  as the second oldest turning point.
By using Eq. 910, these two points define a pair of curves with  and ; together,
the two curves form the saturation loop. All other pairs of turning points result in  and
define a pair of curves forming minor loops.

When the auxiliary field leaves the interval defined by  and  of the two newest turning
points, these two turning points are removed from the memory; this reflects the memory
wipeout observed in experiments. The pair of turning points that are newest in the memory,
after this removal, determines the further  relationship.

As the older of the dropped turning points was originally reached by walking on the curve
defined by the turning points that now (after dropping) again determine , the
polarization curve remains continuous. For example, see points e, f, and i in Figure 51 on
page 797. Furthermore, the minor loop defined by the two dropped turning points is nested
inside the minor loop defined by the present turning points. The nesting of minor loops is also
a feature known from experiments on ferroelectrics. Figure 51 illustrates this by the loops f-g
and i-k, both of which are nested in loop e-h, which in turn is nested in loop c-d.

In small-signal (AC) analysis (see Small-Signal AC Analysis on page 96), a very small
periodic signal is added to the DC bias. As a result, the (auxiliary) polarization at each point of
the ferroelectric material changes along a very small minor loop nested in the main loop that
stems from the DC variation of the bias voltage. The average slope of this minor loop is always
smaller than the slope of the main loop at the point where the loops touch. Consequently, even
at very low frequencies, the AC response of the system is different from what would be
obtained by taking the derivative of the DC curves.

As an example of how the turning point memory works, see Figure 51. The points on the
polarization curve are reached in the sequence a, b, c, d, e, f, g, f, h, i, k, i, e, c. For simplicity,
a quasistationary process is assumed and, therefore,  and . Starting the
simulation at point a, the newest point in memory is b (Sentaurus Device initializes it in this
way). The second newest point is a negative saturation point (l), and the oldest point is a
positive saturation point (u). This memory state is denoted by [blu]. For this state, a is on the
decreasing field curve. The curve segment (that is, the coefficients  and ) from a to b is
determined by the points l and b.

Ramping up from a makes a a turning point, so the memory becomes [ablu]. When crossing b
and proceeding to c, a and b are dropped from the memory. Therefore, the memory becomes
[lu]. These two points determine the curve from b to c. Turning at c, c is added to the memory,
giving [clu]. From c to d, use c and l; at d, the memory becomes [dclu]; at point e, [edclu]; at
f, [fedclu]; at g, [gfedclu]. Passing through f, the two newest points, f and g, are dropped and
the memory is [edclu]; at h, [hedclu]; at i, [ihedclu]; at k, [kihedclu]. At i again, i and k are
dropped, giving [hedclu]; at e, e and h are dropped, giving [dclu].

∞ Ps( , ) ∞– Ps–( , )
c 1= Poff 0=

c 1<

Fl Fu

Paux Faux( )

Paux Faux( )

Faux F= Paux P=

c Poff
800 Sentaurus™ Device User Guide
N-2017.09



29: Ferroelectric Materials
Ginzburg–Landau Model
At the beginning of a simulation, the memory contains one turning point chosen such that the
point ,  is on the minor loop so defined (for example, point b in Figure 51
on page 797). The nature of the model is such that it is not possible to have a state of the system
that is completely symmetric. In particular, even for a symmetric device and at the very
beginning of the simulation, . This asymmetry is most prominent for the
virginal curves (for example, a-b in Figure 51) of the ferroelectric, which are different for
different signs of voltage ramping.

Ginzburg–Landau Model

Under the correct conditions, ferroelectric material operates in a negative differential
capacitance region, which results in an amplification effect of the gate bias. This effect can
produce a body factor  that leads to . To model this effect, the standard
approach is to use the Ginzburg–Landau equation [3]:

(913)

where the free energy  of the ferroelectric is:

(914)

With Eq. 913 and Eq. 914, you have the electric field–polarization relation:

(915)

Here,  is the electric field in units of V/cm, and  is the polarization in units of .
Parameters of the model are:

■ , , and  are ferroelectric material parameters typically extracted from measurements.

■  is the viscosity that represents the finite time required for the polarization to switch.

■  is the strength of the polarization gradient. 

Table 141 Parameters and their default values for Ginzburg–Landau equation

Name Description Default value Unit

alpha  parameter –4e9 cm/F

beta  parameter –5e16 cm5/(FC2)

gamma  parameter 5e25 cm9/(FC4)

rho  viscosity 2.25e4

Eaux 0= Paux 0=

P E( ) P E–( )–≠

m 1< SS 60 mV/dec<

ρdP
dt
------- UP∇+ 0=

U

U αP
2 βP

4 γP
6

g P∇ 2
– E P⋅–+ +=

E 2αP 4βP
3

6γP
5

2gΔP– ρdP
dt
-------+ + +=

E P C/cm2

α β γ
ρ
g

α

β

γ

ρ Ωcm
Sentaurus™ Device User Guide 801
N-2017.09



29: Ferroelectric Materials
Ginzburg–Landau Model
Using the Ginzburg–Landau Model

To activate the Ginzburg–Landau model, you must add the keyword FEPolarization to the
global or regionwise Physics section in the input command file:

Physics (region = "FEregion1") {
FEPolarization (

direction=x alpha=-4e9 beta=-5e16 gamma=5e25 rho=2.25e4 g=0
)

}

Here, x defines the switchable polarization component that is solved.

NOTE Polarization is solved only along the specified direction, which is the
direction perpendicular to the gate, given the fact that the polarization
vector can switch only along this direction. To solve tri-gate structures
or FinFETs, you can define different ferroelectric regions and specify
the proper direction in each region.

NOTE In Version N-2017.09, parameters of the ferroelectric polarization
model are specified in the Physics section of the input file. In Version
O-2018.06, ferroelectric parameter specifications will move into
parameter files to allow for material-specific default settings and mole
fraction dependency for composite materials.

The g term represents the extra energy for forming the polarization domain wall, which should
be nonzero whenever polarization is not uniform. Typical values of g range from  to

.

In the Solve section of the input file, you must add the ferroelectric equation as follows:

Solve{
Coupled (Poisson Electron Hole FEPolarization...)

}

To simulate a ferroelectric using the Ginzburg–Landau model, it is suggested to use a
Transient simulation that represents the physical process that finds the free energy minimum
of the system. Convergence improves when the ferroelectric operates close to its critical field.

g Gradient term 0 cm3/F

direction Polarization direction x 1

Table 141 Parameters and their default values for Ginzburg–Landau equation (Continued)

Name Description Default value Unit

10 6–

10 2– cm3/F
802 Sentaurus™ Device User Guide
N-2017.09



29: Ferroelectric Materials
References
Even for QuasiStationary simulations, it is suggested to start with a Transient
simulation with a very small bias ramp such that the system finds its initial stable state.

The following example ramps the voltage to 0.001 with a Transient simulation, such that it
guarantees the ferroelectric system reaches its stable state, and then performs a
QuasiStationary simulation:

Transient (
MaxStep=1e-1 InitialStep=1e-2 MinStep=1e-3
InitialTime=0 FinalTime=1e-4 Increment=1.2
Goal { name=Top voltage=0.001 }

) { Coupled (Poisson Electron Hole FEPolarization) }

NewCurrentFilePrefix="quasi_"

QuasiStationary (
MaxStep=0.01 InitialStep=0.002 MinStep=1e-4
Goal { name=Top voltage=2 }

) { Coupled (Poisson Electron Hole FEPolarization) }

The polarization is stored in the dataset FEPolarization. To plot FEPolarization,
specify:

Plot {
FEPolarization

}

References

[1] B. Jiang et al., “Computationally Efficient Ferroelectric Capacitor Model for Circuit
Simulation,” in Symposium on VLSI Technology, Kyoto, Japan, pp. 141–142, June 1997.

[2] K. Dragosits, Modeling and Simulation of Ferroelectric Devices, Ph.D. thesis,
Technische Universität Wien, Vienna, Austria, December 2000.

[3] N. Ng, R. Ahluwalia, and D. J. Srolovitz, “Depletion-layer-induced size effects in
ferroelectric thin films: A Ginzburg-Landau model study,” Physical Review B, vol. 86,
p. 094104, September 2012.
Sentaurus™ Device User Guide 803
N-2017.09



29: Ferroelectric Materials
References
804 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 30 Ferromagnetism and Spin 
Transport

This chapter introduces the physics of spin transfer torque (STT)
devices and describes the models used to simulate their behavior in
Sentaurus Device.

A Brief Introduction to Spintronics

Conventional semiconductor devices are based on charge transport. Electrons are treated as
charged particles whose motion gives rise to current flow. In addition to their charge, electrons
carry an intrinsic angular momentum called the electron spin. A charged particle with angular
momentum acts as a magnetic dipole. In the absence of spatial ordering of the individual
magnetic moments, their magnetic fields cancel out, and the effect of spin on electronic
transport is small.

In ferromagnetic materials, however, the net magnetic moments of the inner electrons
(typically, d- or f-orbitals) at neighboring lattice sites are aligned in parallel by the exchange
interaction: Extended magnetic domains form, and the resulting magnetic field gives rise to a
large difference in the energy of the state of conduction electrons depending on the relative
orientation of magnetization and the spin direction.

The interaction between the spin of conduction electrons and the magnetization of
ferromagnetic regions incorporated into the device structure gives rise to a whole class of
spintronics devices. For example, the tunneling current between two ferromagnetic regions
separated by a thin insulator becomes a function of the angle between the magnetization
directions on either side of the barrier (the tunneling magnetoresistance effect). Conversely, the
flow of spin-polarized electrons is accompanied by the transport of angular momentum (the
spin current), and the absorption of spin current in a ferromagnetic region may change the
magnetization direction (the spin transfer torque effect) [1].

The following sections describe models in Sentaurus Device for the modeling of spintronics
devices, in particular, for spin-selective tunneling through magnetic tunnel junctions (MTJs)
and for the magnetization dynamics in ferromagnetic regions.

A simulation example for magnetization switching in an MTJ is available from the
Applications Library [2].
Sentaurus™ Device User Guide 805
N-2017.09



30: Ferromagnetism and Spin Transport
Transport Through Magnetic Tunnel Junctions
Transport Through Magnetic Tunnel Junctions

The magnetic direct tunneling model describes the charge and spin currents flowing through a
thin barrier layer sandwiched between two ferromagnetic regions. In contrast to a nonmagnetic
tunnel junction, the current across an MTJ depends on both the applied voltage across the
junction and the magnetization direction on either side of the barrier. This effect is called
tunneling magnetoresistance.

Magnetic Direct Tunneling Model

The magnetic direct tunneling model assumes the barrier layer to consist of a single material
and treats the tunneling barrier as trapezoidal. Figure 52 shows a schematic band diagram of
such an MTJ. 

Figure 52 Schematic band diagram of an MTJ

The current and spin transmission amplitudes for the MTJ are obtained by solving the
Schrödinger equation with open boundary conditions. This can be done by applying the
formalism of the non-equilibrium Green’s function (NEGF) [3][4]. However, for the situation
shown in Figure 52, finding the numeric solution to the open boundary may be accelerated by
an analytic ansatz: In the ferromagnetic regions (zero field), the spinor components of the
wavefunction may be expressed as linear combinations of forward- and backward-propagating
plane waves. In the barrier region (constant field), Airy functions (of the first and second kind)
are used instead.

At the interfaces, continuity of probability density and conservation of probability density flux
are enforced. The resulting model resembles the regular DirectTunneling model used in
Sentaurus Device to study the gate leakage currents of transistors (see Direct Tunneling on

Δ

Δ

EF

m*fm

m*fm

m*ox

qV

Ub

Oxide Barrier
Ferromagnetic Layer 1

Ferromagnetic Layer 2
806 Sentaurus™ Device User Guide
N-2017.09



30: Ferromagnetism and Spin Transport
Transport Through Magnetic Tunnel Junctions
page 718). However, instead of scalar wavefunctions, spinors are used to handle the spin degree
of freedom, and the integral over the crystal momentum component parallel to the interface is
retained.

Under certain restrictions ( ; equal masses in metal and barrier regions, moderate bias),
the results of the magnetic direct tunneling model reduce to those of the regular
DirectTunneling model (see Direct Tunneling on page 718). The Airy function formulation
of magnetic tunneling has been validated by direct comparison to an in-house NEGF
implementation. In the lattice-converged limit, there is exact agreement between the NEGF and
the Airy function results.

Using the Magnetic Direct Tunneling Model

The magnetic direct tunneling model is activated by specifying:

Tunneling(DirectTunneling(MTJ))

in the Physics section for the interface between the ferromagnetic and barrier materials in the
command file:

Physics (MaterialInterface="CoFeB/MgO") {
Tunneling(DirectTunneling(MTJ))

}

Physics Parameters for Magnetic Direct Tunneling

The parameters for the magnetic direct tunneling model are defined in the DirectTunneling
section of the parameter file pertaining to the required material (or region) interface, for
example:

MaterialInterface="CoFeB/MgO" {
DirectTunneling {

m_M = 0.73
m_dos = 0.73, 0 # hole m_dos must be zero
m_ins = 0.16, 999 # hole value is ignored
E_F_M = 2.25
E_barrier = 3.285, 999 # hole value is ignored
D_spin = 2.15

}
}

Δ 0=
Sentaurus™ Device User Guide 807
N-2017.09



30: Ferromagnetism and Spin Transport
Transport Through Magnetic Tunnel Junctions
The parameters for the magnetic direct tunneling model are described in Table 142. Relative to
the nonmagnetic direct tunneling, there is one additional parameter: the spin-energy splitting

. The ferromagnetic materials are assumed to be metals; therefore, the semiconductor
effective mass parameter m_S is not used, and only electron tunneling is considered. Hole
parameter values are ignored, but dummy values are required for correct parsing of the
parameter file. 

NOTE The parameters on either side of the barrier must be the same.

NOTE The image-force effective barrier model has not been tested in the
context of the magnetic direct tunneling model. It is disabled by default.

Math Parameters for Magnetic Direct Tunneling

The evaluation of the MTJ tunneling integrals as well as the value caching and interpolation
strategy for reusing previous results can be controlled by an MTJ statement in the Math section
of the command file, for example: 

Math {
MTJ(interpolate(kT(order=1 Grid=1e-3)))

}

Table 143 on page 809 summarizes the available parameters. Parameter names are subdivided
by a slash (/) to reflect the hierarchical structure of the MTJ statement. For example, the order
parameter in the preceding example is listed as interpolate/kT/order. 

Table 142 Coefficients for direct tunneling (values for MgO on CoFeB from [4][5])

Symbol Parameter name Electrons Holes Unit Description

E_F_M 2.25 -/- Fermi energy in ferromagnet (relative to 
conduction band).

D_spin 2.15 -/- Energy splitting between spin-up and spin-
down electrons in ferromagnet.

E_barrier 3.185 <ignored> Energy barrier (difference of conduction 
band edge in ferromagnet and barrier).

m_M 0.73 -/- Effective mass in ferromagnet.

m_ins 0.16 <ignored> Effective mass in barrier.

m_dos 0.73 0 The density-of-states mass parallel to the 
interface; the hole value must be zero.

Δ

EF eV

Δ eV

UB eV

mFM m0

mox m0

mdos m0
808 Sentaurus™ Device User Guide
N-2017.09



30: Ferromagnetism and Spin Transport
Magnetization Dynamics
Magnetization Dynamics

This section discusses the modeling of the magnetization dynamics inside a free ferromagnetic
layer in the presence of STT. The Landau–Lifshitz–Gilbert (LLG) equation is introduced with
a discussion of the expression used for the effective magnetic field in the macrospin
approximation. It is based on the presentation of magnetization dynamics and spin-current
interaction in [6][7].

Spin Dynamics of a Free Electron in a Magnetic Field

The spin angular momentum  and the magnetic moment  of a free electron are related by
the gyromagnetic ratio:

(916)

The energy  of a magnetic moment  in a local field  is given by .

Table 143 Math parameters for magnetic direct tunneling model

Parameter name Default Unit Description

interpolate/Voltage/Grid 1e-3 V Grid spacing for interpolation or snapping of the voltage across 
the MTJ.

interpolate/Voltage/order 2 – Interpolation order for the applied voltage:
0: Simple value snapping
1: Piecewise linear interpolation
2: Piecewise parabolic interpolation

interpolate/kT/Grid 1e-8  eV Grid spacing for interpolation or snapping of the temperature 
(multiplied by ) at both ends of a tunneling edge.

interpolate/kT/order 0 – Interpolation order for the junction temperature:
0: Simple value snapping
1: Bilinear interpolation

dE 0.01 eV Interval size for (total) energy integration.

dEp 0.01 eV Interval size for energy integration (contribution from surface 
parallel k-vector).

digits 10 – Number of significant digits in the tunneling integral.

kB

S μ

γ μ

S
------ 2.0023–

e
me
------

h
2
---⋅ 0<

μB

⋅= =

  

Ĥ μ B μ0H= Ĥ μ– B⋅=
Sentaurus™ Device User Guide 809
N-2017.09



30: Ferromagnetism and Spin Transport
Magnetization Dynamics
This Hamiltonian gives rise to the dynamic equation:

(917)

which describes the precession of the electron spin around the direction of the local magnetic
field. This may be expressed equivalently in terms of the magnetic moment instead of the spin
angular momentum as:

,where (918)

Magnetization Dynamics in a Ferromagnetic Layer

The magnetization vector  can be interpreted as a volume density  of magnetic dipoles
. In the absence of damping terms, the magnetization vector will precess around an effective

magnetic field  according to:

(919)

where the effective field is obtained by taking the derivative of the magnetic energy density 
with respect to the local magnetization:

(920)

The LLG equation accounts for the observation that, over time, the magnetization aligns itself
with the effective magnetic field, by adding a phenomenological viscous damping term [8]:

(921)

where  is the saturation magnetization (assumed to be a material constant), and  is
a phenomenological damping parameter.

In the presence of spin-polarized currents, the rate at which angular momentum is absorbed by
the ferromagnetic layer also needs to be taken into account.

The spin current  is defined as the rate at which angular momentum is injected into the
ferromagnetic layer (the magnetic direct tunneling model provides both the charge current 
and the spin current ).

td
d

S
i
h
--- Ĥ S[ , ]

i
h
---γμ0 S H⋅ S[ , ]– γμ0S H×= = =

td
d μ γ0μ H×–= γ0 γ μ0=

M N V⁄
μ

H eff

td
d

M γ0M Heff×–=

U

Heff
1
μ0
------ U

M
∇–=

td
d

M γ0M Heff×– α
Ms
-------M

td
d

M×

Gilbert damping

+=

    

Ms M= α

Q
I

Q

810 Sentaurus™ Device User Guide
N-2017.09



30: Ferromagnetism and Spin Transport
Magnetization Dynamics
It is assumed that the spin direction of the injected conduction electrons is aligned rapidly to
the magnetization of the ferromagnetic layer. During this process, the normal component:

(922)

of the injected angular momentum is transferred from the conduction electrons to the core
electrons of the ferromagnet and exerts an additional torque on the magnetization. This is the
eponymous spin transfer torque of STT-RAM:

(923)

In terms of the magnetization direction  and after the elimination of the time
derivative on the RHS of Eq. 923, the LLG equation with STT takes the form:

(924)

Contributions of the Magnetic Energy Density

As shown in Eq. 920, p. 810, the effective magnetic field that drives the magnetization
dynamics is related to the energy density . In general, the magnetization may be a position
and a time-dependent vector field . Then, the energy density  may be written as:

(925)

with contributions due to the following effects:

■ Exchange interaction: .

This term favors parallel alignment of nearby spins in a ferromagnet ( ). If this term
dominates, a single magnetic domain may span the entire sample.

■ Stray/demagnetizing field: .

The demagnetizing field is the magnetic field caused by the sum of all magnetic moments
in the sample. In sufficiently large samples, the energy content of the demagnetizing field
can be reduced by the formation of multiple magnetic domains. In smaller samples, this

Γs Q
1

Ms
2

-------M M Q⋅( )–
1

Ms
2

-------M Q M×( )×= =

td
d

M γ0M Heff×–
α

Ms
-------M

td
d

M× γ0Γs

μ0V
-----------

STT

+ +=

  

m M Ms⁄=

1 α2+( )
td

d
m γ0 m Heff

αΓs

μ0MsV
-----------------+

 
 
 

αm m Heff×( )× Γs

μ0MsV
-----------------+ +×

 
 
 

–=

U
M x t,( ) U

U UX Udemag Uaniso Uext+ + +=

UX A xi∂
∂mi

 
 

2

i x y z, ,=
=

A 0<

Udemag

μ0

2
-----M Hdemag⋅–=
Sentaurus™ Device User Guide 811
N-2017.09



30: Ferromagnetism and Spin Transport
Magnetization Dynamics
term favors aligning the magnetization direction along the longest extension of the sample
(like in a compass needle).

■ Magnetocrystalline anisotropy: .

In crystalline materials, the magnetic energy may depend on the direction of the
magnetization relative to the crystal axes.

■ Zeeman energy: .

Energy of the magnetic moments in an external magnetic field.

Energy Density and Effective Field in Macrospin 
Approximation

In the macrospin approximation, each magnetic region is considered to consist of a single,
perfectly aligned, magnetic domain. This removes the position dependency from the
magnetization vector field  of the previous section and reduces it to a single time-
dependent magnetization vector .

The macrospin approximation models the dominance of the exchange term over the remaining
terms in the energy density (a single perfect domain). Since there is no more position
dependency in the magnetization direction inside the sample,  vanishes.

In addition, the energy density  and, therefore, the effective magnetic field  are treated
as local functions of . This implies the assumption of a position-independent demagnetizing
field inside the ferromagnetic layer. It can be shown that, in an infinite thin film as well as in
an ellipsoidal [9] ferromagnetic sample, the demagnetizing field is exactly constant and
parallel to the magnetization direction. For a cylindrical thin-film geometry, this is still
approximately true.

At the level of the macrospin approximation, the effects of magnetocrystalline anisotropy and
the demagnetizing field become indistinguishable and are grouped together into a single
effective anisotropy term.

In Sentaurus Device, the energy density associated with this effective anisotropy is divided into
the uniaxial anisotropy:

(926)

where:

(927)

Uaniso

Uext M Bext⋅–=

M x t,( )
M t( )

UX

U Eeff

M

UK K 1 mz
2–( )=

K
1
2
---μ0MsHk=
812 Sentaurus™ Device User Guide
N-2017.09



30: Ferromagnetism and Spin Transport
Magnetization Dynamics
and  is the Stoner–Wohlfarth switching field, and the easy-plane anisotropy:

(928)

with:

(929)

where  is used as a parameter to account for deviations from the ideal thin-film geometry
( ).

Using Magnetization Dynamics in Device Simulations

Magnetization dynamics is included in the simulation if the equation name LLG is specified in
the Solve section of the command file. Usually, transient simulations are required for STT
devices.

To solve magnetizations, the current flow in metals, and the electrostatic potential
simultaneously, you must solve the LLG equation, the contact equation, and the Poisson
equation as a system of coupled equations. Therefore, a typical Solve statement for an STT
device simulation would be:

Transient (InitialTime=0 FinalTime=12e-9 maxstep=1.0e-11) {
Coupled { Poisson Contact LLG }

}

The time-step size must be limited to ensure that the high-frequency oscillations typical of
magnetization dynamics are captured.

Domain Selection and Initial Conditions

The definition of fixed and pinned regions, and of initial conditions for the magnetization
direction is handled by the Magnetism statement in the region-specific Physics sections:

Physics(Region="AnodeWell") {
Magnetism(PinnedMagnetization Init(phi=0.0 theta=0.0))

}

Physics(Region="CathodeWell") {
Magnetism(Init(phi=0.0 theta=3.14))

}

Hk

UP KPmx
2=

KP
1
2
---μ0MsMeff=

Meff

Ms Meff=
Sentaurus™ Device User Guide 813
N-2017.09



30: Ferromagnetism and Spin Transport
Magnetization Dynamics
Here, the magnetization in the region AnodeWell is pinned at  ( );
whereas, the magnetization in the region CathodeWell is free with initial conditions of

 and  (close to ).

An external magnetic field  (in A/m) may be specified in the Magnetism statement as
H_ext = (<Hx>, <Hy>, <Hz>).

Plotting of the Time-Dependent Magnetization

In the macrospin approximation, the magnetization is constant across each region. Then, the
full time evolution of the magnetization can be captured by plotting the average direction of the
magnetization vector in the free layer. In the simulation example [2], the free layer is called
CathodeWell, and plotting of the magnetization direction is triggered by the following
CurrentPlot section:

CurrentPlot { MagnetizationDir/Vector3D(average(Region="CathodeWell")) }

In addition to the magnetization direction in Cartesian coordinates, you can plot the
magnetization of the zenith angle Magnetization_theta and the azimuth
Magnetization_phi of the magnetization direction (  corresponds to the
positive -direction).

Parameters for Magnetization Dynamics

The parameters for magnetization dynamics (LLG equation) are defined in the Magnetism
section of the corresponding material or region in the parameter file. Table 144 summarizes the
available parameters. 

Table 144 Parameters for LLG equation (typical values shown)

Symbol Parameter name Value Unit Description

SaturationMagnetization 8.0e5 A/m Saturation magnetization of the 
ferromagnetic material.

alpha 0.01 1 Gilbert damping coefficient.

Hk 7957.75 A/m Stoner–Wohlfarth switching field (depends 
on layer geometry).

ϑ ϕ 0= = mz 1=

ϕ 0= ϑ 3.14= mz 1–=

Hext

ϑ ϕ 0= =
z

Ms

α

HK
814 Sentaurus™ Device User Guide
N-2017.09



30: Ferromagnetism and Spin Transport
Thermal Fluctuations
Time-Step Control for Magnetization Dynamics

To improve time-step control during the transient solution of the LLG equation, you can restrict
the maximum change of the magnetization direction during the simulation that may occur
during a single time step. If this limit is exceeded, the update is rejected, and the time step 
is reduced until the limit is met.

For example, a maximum local change of the Cartesian components of the magnetization of
0.1 per time step is requested in the Math section of the command file like this:

Math {
Magnetism(dxyz=0.1))

}

The default value for dxyz is 0.15.

Thermal Fluctuations

The magnetization dynamics may be influenced by thermal fluctuations. This effect may be
included in the analysis by replacing the deterministic effective field  with ,
where the thermal fluctuation field  is a stochastic field with the autocorrelation
function [10]:

(930)

Meff 5e5 A/m Effective magnetization for parameterizing 
the easy-plane anisotropy (geometry 
dependent).

A 1e-11 J/m Exchange stiffness of the ferromagnetic 
material (only used if macrospin is 
disabled; see Magnetization Dynamics 
Beyond Macrospin: Position-Dependent 
Exchange and Spin Waves on page 817).

Table 144 Parameters for LLG equation (typical values shown) (Continued)

Symbol Parameter name Value Unit Description

Meff

A

Δt

H eff H eff HT+
HT

HT
i t( )HT

j t′( )  2kTα
γ0μ0MsV
----------------------δi j, δ t t′–( )=
Sentaurus™ Device User Guide 815
N-2017.09



30: Ferromagnetism and Spin Transport
Parallel and Perpendicular Spin Transfer Torque
Using Thermal Fluctuations

Modeling of thermal fluctuations is activated by adding the ThermalFluctuations keyword
to the Magnetism statement of the Physics section:

Physics {
Magnetism(ThermalFluctuations)

}

The magnitude of the thermal fluctuation field may be modified by multiplication with the
optional parameter H_th_scaling_factor (default: 1). The syntax for suppressing  by
a factor of 2 (which corresponds to dividing the temperature by 4) is:

Physics {
Magnetism(ThermalFluctuations H_th_scaling_factor=0.5)

}

Parallel and Perpendicular Spin Transfer Torque

In an MTJ, it is customary to decompose the STT  (Eq. 922, p. 811) into perpendicular and
parallel (or in-plane) components, relative to the plane spanned by the magnetization
directions on both sides of the tunneling barrier.

If  is the unit normal vector of this plane, the perpendicular torque is defined as:

(931)

The in-plane torque is defined as:

(932)

Sometimes, it may be instructive to be able to modify the relative strength of the in-plane and
the perpendicular torque components. For this purpose, user-accessible scaling factors  and

 are provided. If they are modified from their default values of 1, the STT  in the LLG
equation (Eq. 924, p. 811) is replaced with an effective torque:

(933)

H T

Γs

n m1 m2×=

Γ⊥ n Γ⋅ s 
  n=

Γ|| n n Γs× 
 ×– Γs Γ⊥–= =

ε||

ε⊥ Γs

Γs eff, ε||Γ|| ε⊥Γ⊥+=
816 Sentaurus™ Device User Guide
N-2017.09



30: Ferromagnetism and Spin Transport
Magnetization Dynamics Beyond Macrospin: Position-Dependent Exchange and Spin Waves
In the command file, these scaling factors can be accessed from the Physics section:

Physics {
Magnetism(parallel_torque_scaling_factor=<double>) # 
Magnetism(perpendicular_torque_scaling_factor=<double>) # 

}

Magnetization Dynamics Beyond Macrospin: Position-
Dependent Exchange and Spin Waves

The macrospin approximation is based on the assumption that the effect of the exchange
interaction is much stronger than all other magnetic effects. Therefore, the most energetically
favorable magnetization configuration is a single perfectly aligned domain that spans the entire
ferromagnet.

In many structures, however, there is competition between the exchange interaction, which
favors single-domain behavior, and the demagnetizing field, which tries to break down
domains to reduce the energy content of the stray field. The nonlocality of the demagnetizing
field has not yet been implemented in Sentaurus Device. However, even without it, restoring
the vector-field character to the magnetization direction  and adding the exchange field:

(934)

to the effective field  of the LLG equation (Eq. 924, p. 811) leads to interesting phenomena
such as spin waves. This allows, for example, the modeling of the nonlocal switching behavior
of devices such as the spin-torque majority gate suggested in [11].

Figure 53 on page 818 shows a snapshot of the position-dependent magnetization direction in
a spin-torque majority gate.

ε||
ε⊥

m x t,( )

H
X

2A
μ0Ms
-------------∇2

m=

H eff
Sentaurus™ Device User Guide 817
N-2017.09



30: Ferromagnetism and Spin Transport
User-Defined Contributions to the Effective Magnetic Field of the LLG Equation
Figure 53 Snapshot of position-dependent magnetization in a spin-torque majority gate; the 
pinned layer is split into four pieces, and the MTJs with different applied voltages 
compete for switching of the cross-shaped free layer

Using Position-Dependent Exchange

The exchange term becomes active as soon as the node-merging mechanism of the macrospin
approximation is disabled:

Physics (Region="CathodeWell") {
Magnetism(-MacroSpin) # disable the macrospin approximation

}

User-Defined Contributions to the Effective Magnetic Field 
of the LLG Equation

Additional contributions to the  field of the LLG equation (Eq. 924, p. 811) can be defined
using the physical model interface (PMI). See Chapter 38 on page 1043 for general
information on the PMI and Ferromagnetism and Spin Transport on page 1294 for detailed
information on spintronics-specific PMI models.

H eff
818 Sentaurus™ Device User Guide
N-2017.09



30: Ferromagnetism and Spin Transport
References
References

[1] D. C. Ralph and M. D. Stiles, “Spin transfer torques,” Journal of Magnetism and
Magnetic Materials, vol. 320, no. 7, pp. 1190–1216, 2008.

[2] Simulation of Magnetization Switching in a CoFeB/MgO/CoFeB Magnetic Tunnel
Junction, available from TCAD Sentaurus Version N-2017.09 installation, go to
Applications_Library/Memory/STT_MTJ.

[3] D. Datta et al., “Quantitative Model for TMR and Spin-transfer Torque in MTJ devices,”
in IEDM Technical Digest, San Francisco, CA, USA, pp. 548–551, December 2010.

[4] Y. Hiramatsu et al., “NEGF Simulation of Spin-Transfer Torque in Magnetic Tunnel
Junctions,” in International Meeting for Future of Electron Devices, Osaka, Japan,
pp. 102–103, May 2011.

[5] D. Datta et al., “Voltage Asymmetry of Spin-Transfer Torques,” IEEE Transactions on
Nanotechnology, vol. 11, no. 2, pp. 261–272, 2012.

[6] J. Z. Sun, “Spin-current interaction with a monodomain magnetic body: A model study,”
Physical Review B, vol. 62, no. 1, pp. 570–578, 2000.

[7] J. Miltat, G. Albuquerque, and A. Thiaville, “An Introduction to Micromagnetics in the
Dynamic Regime,” Spin Dynamics in Confined Magnetic Structures I, vol. 83,
B. Hillebrands and K. Ounadjela (eds.), Springer: Berlin, pp. 1–34, 2002.

[8] T. L. Gilbert, “A Phenomenological Theory of Damping in Ferromagnetic Materials,”
IEEE Transactions on Magnetics, vol. 40, no. 6, pp. 3443–3449, 2004.

[9] J. A. Osborn, “Demagnetizing Factors of the General Ellipsoid,” Physical Review,
vol. 67, no. 11 and 12, pp. 351–357, 1945.

[10] J. Xiao, A. Zangwill, and M. D. Stiles, “Macrospin models of spin transfer dynamics,”
Physical Review B, vol. 72, no. 1, p. 014446, 2005.

[11] D. E. Nikonov, G. I. Bourianoff, and T. Ghani, “Proposal of a Spin Torque Majority
Gate Logic,” IEEE Electron Device Letters, vol. 32, no. 8, pp. 1128–1130, 2011.
Sentaurus™ Device User Guide 819
N-2017.09



30: Ferromagnetism and Spin Transport
References
820 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 31 Modeling Mechanical Stress Effect

This chapter presents an overview of the importance of stress in
device simulation.

Stress engineering is a key point to ensuring the high performance of CMOS devices.
Mechanical stress can affect workfunction, band gap, effective mass, carrier mobility, and
leakage currents. The stress is generated by many technological processes due to different
process temperatures and material properties. In addition, it can be added (such as silicon
layers onto SiGe bulk) to improve device performance.

Overview

Mechanical distortion of semiconductor microstructures results in a change in the band
structure and carrier mobility. These effects are well known, and appropriate computations of
the change in the strain-induced band structure are based on the deformation potential
theory [1]. The implementation of the deformation potential model in Sentaurus Device is
based on data and approaches presented in the literature [1][2][3][4]. Other approaches [5][6]
implemented in Sentaurus Device focus more on the description of piezoresistive effects.

Stress and Strain in Semiconductors

Generally, the stress tensor  is a symmetric  matrix. Therefore, it only has six
independent components, and it is convenient to express it in a contracted six-component
vector notation:

(935)

where pairs of indices are contracted using:

(936)

σ 3 3×

σ
σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

σxx

σyy

σzz

σyz

σxz

σxy

→

σ11

σ22

σ33

σ23

σ13

σ12

σ1

σ2

σ3

σ4

σ5

σ6

= = =

11 1 22 2 33 3 23 4 13 5 12 6→,→,→,→,→,→
Sentaurus™ Device User Guide 821
N-2017.09



31: Modeling Mechanical Stress Effect
Stress and Strain in Semiconductors
The contracted tensor notation simplifies tensor expressions. For example, one of the options
for computing the strain tensor  (which is needed for the deformation potential model) is
given by the generalized Hooke’s law for anisotropic materials:

(937)

where  is a component of the elastic compliance tensor . The elastic compliance tensor
is symmetric, which allows Eq. 937 to be written in a simplified contracted form:

 (938)

In addition to index contraction (Eq. 936), the following contraction rules for  and  were
used to obtain this result [7]:

(939)

Note that , , and  are often called engineering shear-strain components and are related
to the double-subscripted shear components that are used in the model equations by:

(940)

In crystals with cubic symmetry such as silicon, the number of independent coefficients of the
elastic compliance tensor (as well as with other material property tensors) reduces to three by
rotating the coordinate system parallel to the high-symmetric axes of the crystal [8]. This gives
the following (contracted) compliance tensor :

(941)

ε

εij Sijklσkl

l 1=

3


k 1=

3

=

Sijkl S

εi Sijσj

j 1=

6

=

εij Sijkl

εp = εij , if p 4<

 = 2εij , if p 3>

    
Spq = Sijkl , if p 4 and q 4<<

 = 4Sijkl , if p 3 and q 3>>

 = 2Sijkl , otherwise

ε4 ε5 ε6

ε4 = 2ε23 = 2ε32

ε5 = 2ε13 = 2ε31

ε6 = 2ε12 = 2ε21

S

S

S11 S12 S12 0 0 0

S12 S11 S12 0 0 0

S12 S12 S11 0 0 0

0 0 0 S44 0 0

0 0 0 0 S44 0

0 0 0 0 0 S44

=

822 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Stress and Strain in Semiconductors
where the coefficients , , and  correspond to parallel, perpendicular, and shear
components, respectively.

In Sentaurus Device, the stress tensor can be defined in the stress coordinate system
. To transfer this tensor to another coordinate system (for example, the crystal

system , which is a common operation), the following transformation rule between
two coordinate systems is applied:

 (942)

where  is the rotation matrix:

 (943)

Using Stress and Strain

Stress-dependent models are selected in the Physics{Piezo()} section of the command file.
Components of the stress and strain tensors (if they are constant over the device or region) also
are specified here, as well as the components  OriKddX and  OriKddY of the coordinate
system where stress and strain are defined (see Table 145):

Physics {
Piezo (

Stress = (XX, YY, ZZ, YZ, XZ, XY)
Strain = (XX, YY, ZZ, YZ, XZ, XY)
OriKddX = (1,0,0)
OriKddY = (0,1,0)
Model (...)

)
} 

Table 145 General keywords for Piezo

Parameter Description

Stress=(XX, YY, ZZ, YZ, XZ, XY) Specifies uniform stress [Pa] if the Piezo file is not given in the File 
section.

Strain=(XX, YY, ZZ, YZ, XZ, XY) Specifies uniform strain [1].

OriKddX = (1,0,0) Defines Miller indices of the stress system relative to the simulation system.

S11 S12 S44

e1 e2 e3, ,( )
e'1 e'2 e'3, ,( )

σi j
′

aik

l 1=

3


k 1=

3

 ajlσkl=

a

aik
e'i ek⋅

e'i ek

----------------=

e1 e2
Sentaurus™ Device User Guide 823
N-2017.09



31: Modeling Mechanical Stress Effect
Stress and Strain in Semiconductors
NOTE The stress system is always defined relative to the simulation coordinate
system of Sentaurus Device (in the Piezo section of the command file).
The simulation coordinate system is defined relative to the crystal
orientation system by default but, in the parameter file (see below), it is
possible to define the crystal system relative to the simulation system.
By default, all three coordinate systems coincide.

Stress Tensor

Apart from specifying a constant stress tensor in the Piezo section of the command file,
Sentaurus Device also provides different ways to define position-dependent stress values:

■ A field of stress values [Pa] (as obtained by mechanical structure analysis) is read by
specifying the Piezo entry in the File section:

File {
Piezo = <piezofile>

}

Sentaurus Device recognizes stress either as a single symmetric second-order tensor of
dimension 3 (Stress), or as six scalar values (StressXX, StressXY, StressXZ,
StressYY, StressYZ, and StressZZ).

■ A physical model interface can be used for stress specification (see Stress on page 1186).

■ The Mechanics command in the Solve section can update the stress tensor in response
to changes in bias conditions. In particular, the stress tensor can be computed as a function
of lattice temperature and electric field. This is described in Mechanics Solver on page 890.

NOTE Stress values in all these stress specifications should be in 
( ) and tensile stress should be positive according to
convention.

Strain Tensor

The strain tensor can be computed in one of the following ways:

■ According to the generalized Hooke’s law, strain can be obtained from stress through the
elastic compliance tensor  (see Eq. 937, p. 822).

OriKddY = (0,1,0) Defines Miller indices of the stress system relative to the simulation system.

Model(<options>) Selects stress-dependent models in <options> (see sections from 
Deformation of Band Structure on page 826 to Mobility Modeling on 
page 838).

Table 145 General keywords for Piezo (Continued)

Parameter Description

Pa
1 Pa 10 dyn cm2⁄=

S

824 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Stress and Strain in Semiconductors
■ A constant strain tensor can be specified in the Piezo section of the command file (see
Table 145 on page 823).

■ Sentaurus Device can read the strain tensor  from the TDR file (ElasticStrain field).
This requires that a Piezo file is specified in the File section.

By default, the strain tensor will be computed by Hooke’s law. If necessary, the required option
can be selected as follows in the Piezo section of the command file:

Physics {
Piezo (

Strain = Hooke
Strain = (XX, YY, ZZ, YZ, XZ, XY)
Strain = LoadFromFile

)
}

Stress Limits

Extremely high stress values can sometimes cause stress-dependent models to produce
nonphysical results. As an option, you can limit stress values read from files or specified in the
command file to a user-specified maximum. This is accomplished by specifying the
StressLimit parameter in the Math section of the command file:

Math {
StressLimit = 4e9 #[Pa]

}

The magnitude of all stress components at each semiconductor vertex is limited to the specified
value, but the sign of the stress value is retained. For example, with the above specification, a
stress value of  read from a file is limited to .

Crystallographic Orientation and Compliance Coefficients

The simulation coordinate system relative to the crystal coordinate system can be defined by
the X and Y vectors in the LatticeParameters section of the parameter file. The defaults are:

LatticeParameters {
X = (1, 0, 0)
Y = (0, 1, 0)

}

The simulation system is defined relative to the crystal system. Alternatively, there is an option
to represent the crystal system relative to the Sentaurus Device simulation system. In this case,
the keyword CrystalAxis must be in the LatticeParameters section, and the X and Y
vectors will represent the  and  axes of the crystal system in the Sentaurus Device
simulation system.

ε

σyy 8.2– 9×10= σyy 4– 9×10=

100  010 
Sentaurus™ Device User Guide 825
N-2017.09



31: Modeling Mechanical Stress Effect
Deformation of Band Structure
The elastic compliance coefficients   can be specified in the field S[i][j]
in the LatticeParameters section of the parameter file. If the cubic crystal system is
selected (by specifying CrystalSystem=0), it is sufficient to specify , , and . For
a hexagonal crystal system (CrystalSystem=1),  and  must also be specified.
Otherwise, all unspecified coefficients are set to 0.

The following section of the parameter file shows the defaults for silicon:

LatticeParameters {
* Crystal system and elasticity.
X = (1, 0, 0) # [1]
Y = (0, 1, 0) # [1]
S[1][1] = 0.77 # [1e-12 cm^2/dyn]
S[1][2] = -0.21 # [1e-12 cm^2/dyn]
S[4][4] = 1.25 # [1e-12 cm^2/dyn]
CrystalSystem = 0 # [1]
}

Deformation of Band Structure

In deformation potential theory [2][9], the strains are considered to be relatively small. The
change in energy of each carrier valley or band, caused by the small deformation of the lattice,
is a linear function of the strain.

For silicon, Bir and Pikus [9] proposed a model for the strain-induced change in the energy of
carrier valleys or bands (three  electron valleys, heavy-hole, and light-hole bands are
considered) where they ignore the shear strain for electrons and suggest nonlinear dependence
for holes (which corresponds to   theory [12]):

(944)

where  are deformation potentials,  corresponds to the carrier band number, and
 are the components of the strain tensor in the crystal coordinate system (see Stress and

Strain in Semiconductors on page 821 for a description of tensor transformations). The sign 
separates heavy-hole and light-hole bands of silicon.

Sij 10 12–  cm
2
/dyn[ ]

S11 S12 S44

S33 S13

Δ2

6 6× k p⋅

ΔEC i, Ξd ε'11 ε'22 ε'33+ +( ) Ξuε'i i+=

ΔEV i, a ε'11 ε'22 ε'33+ +( ) δE±=

δE
b

2

2
----- ε'11 ε'22–( )2 ε'22 ε'33–( )2 ε'11 ε'33–( )2

+ +( ) d
2 ε'12

2 ε'13
2 ε'23

2
+ +( )+=

Ξd Ξu a b d, , , , i
εij

′

±

826 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Deformation of Band Structure
The stress-induced change of the  electron valley energy in Eq. 944 corresponds to a simple
form of the linear deformation model. The model applied to arbitrary ellipsoidal bands (for
example, as for four L-electron valleys in germanium or -electron valley in III-V materials)
could be expressed as [10]:

(945)

where:

■  are linear deformation potentials.

■  is a unit  matrix.

■  is the strain tensor in the crystal coordinate system.

■  is the unit vector parallel to the k-vector of the main axis of the ellipsoidal valley .

NOTE The dyadic product is defined as .

For spherical bands such as, for example, the -electron valley with
isotropic effective mass, the deformation potential  should be equal
to zero in Eq. 945.

As previously mentioned, the linear deformation potential model (Eq. 945) is limited to small
strain and some specific band structures. For silicon, other models provide nonlinear
corrections. 

Using a degenerate  theory at the zone boundary X-point, the authors of [11] and [13]
derived an additional shear term for the  electron valleys in Eq. 944:

(946)

where:

■  is a dimensionless off-diagonal strain with .

■  is a shear strain component.

■  is the band separation between the two lowest conduction bands.

■  is the deformation potential responsible for the band-splitting of the two lowest
conduction bands [11]: .

The strain-induced shifts of valence bands can be computed using 6x6  theory for the
heavy-hole, light-hole, and split-off bands as described in [12]. The specification of the

Δ2

Γ

ΔEi Ξd1 Ξu eiei
T

 
 
 

+ :ε'=

Ξd Ξu,
1 3 3×
ε'

ei i

a:b aijbij

j


i
=

Γ
Ξu

k p⋅
Δ2

ΔEC i, Ξd ε11
′ ε22

′ ε33
′+ +( ) Ξuεi i

′

Δ
4
---ηi

2
– , ηi 1≤

2 ηi 1–( )Δ
4
---– , ηi 1>









+ +=

ηi

4Ξu ′εjk
′

Δ
------------------= j k i≠≠

εjk
′

Δ
Ξu ′

EΔ1
EΔ2

′–( )
X 001[ ]

4Ξu ′εjk
′=

k p⋅
Sentaurus™ Device User Guide 827
N-2017.09



31: Modeling Mechanical Stress Effect
Deformation of Band Structure
deformation potentials for these models and is described in Using Deformation Potential
Model on page 829.

Using the stress tensor  from the command file, Sentaurus Device recomputes it from the
stress coordinate system to the tensor  in the crystal system by Eq. 942. The strain tensor 
is a result of applying Hooke’s law Eq. 938 to the stress . Using Eq. 945, Eq. 946, or solving
the cubic equation from [12], the energy band change can be computed for each conduction
and valence carrier bands.

By default, Sentaurus Device does not modify the effective masses, but instead it computes
strain-induced conduction and valence band-edge shifts,  and , using an averaged
value of the individual band-edge shifts:

 (947)

where  and  are the number of subvalleys considered in the conduction and valence
bands, respectively, and . 

Alternatively, a more accurate representation of the band gap can be obtained by using the
minimum and maximum of the individual conduction and valence band shifts, respectively, as
follows: 

(948)

In this case, however, the strain dependency of the effective mass and the density-of-states
should be accounted for (see Strained Effective Masses and Density-of-States on page 830).

The band gap and affinity can be modified:

 (949)

where the index ‘0’ corresponds to the affinity and bandgap values before stress deformation.

σ
σ′ ε′

σ′

ΔEC ΔEV

ΔEC

kT300
------------- ln

1
nC
------

Δ– EC i,
kT300

----------------- 
 exp

i 1=

nC

–=

ΔEV

kT300
------------- ln

1
nV
------

ΔEV i,
kT300
-------------- 
 exp

i 1=

nV

=

nC nV

T300 300 K=

ΔEC min ΔEC i,( )=

ΔEV max ΔEV i,( )=

Eg Eg0 ΔEC ΔEV–+=

χ χ0 ΔEC–=
828 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Deformation of Band Structure
Using Deformation Potential Model

To activate the deformation potential models Eq. 944–Eq. 946 with  models for electrons
and holes, and Eq. 948 for the conduction band and valence band energy shifts, the following
must be specified in the Piezo section of the command file:

Physics (Region = "StrainedSilicon") {
Piezo(

Model(DeformationPotential(ekp hkp minimum)
)

}

NOTE Usage of DeformationPotential without the ekp and hkp options
is not recommended because an unsupported way of setting deformation
potentials in Eq. 944 will be used.

To modify the deformation potentials of these models, the following parameters in the section
LatticeParameters should be used:

LatticeParameters {
* Deformation potentials of k.p model for electron bands
xis = 7 # [eV]
dbs = 0.53 # [eV]
xiu = 9.16 # [eV]
xid = 0.77 # [eV]
Mkp = 1.2 # [1]
* Deformation potentials of k.p model for hole bands
adp = 2.1 # [eV]
bdp = -2.33 # [eV]
ddp = -4.75 # [eV]
dso = 0.044 # [eV]
* Deformation potentials and energy (in ref. to Delta-valley) for L-valleys
xiu_l = 11.5 # [eV]
xid_l = -6.58 # [eV]
e_l = 1.1 # [eV]
* Deformation potential and energy (in ref. to Delta-valley) for Gamma-valley
xid_gamma = -7.0 # [eV]
e_gamma = 2.3 # [eV]
}

This example shows the default parameter values for silicon. The parameters xis, dbs, xiu,
and xid correspond to the deformation potentials  of the  electron valleys in
Eq. 946. The parameters xiu_l and xid_l define the deformation potentials of the L-valleys
in Eq. 945, and e_l sets the relaxed energy difference between the L and  electron valleys
in the conduction band. The parameter xid_gamma defines the deformation potential of the -
valley, and the parameter e_gamma sets the relaxed energy difference between the  and 

k p⋅

Ξu ′ Δ Ξu Ξd, , , Δ2

Δ2

Γ
Γ Δ2
Sentaurus™ Device User Guide 829
N-2017.09



31: Modeling Mechanical Stress Effect
Deformation of Band Structure
electron valleys. The other parameters are the valence-band deformation potentials described
in [12]:

■ adp is the hydrostatic deformation potential.

■ bdp is the shear deformation potential.

■ ddp is the deformation potential.

■ dso is the spin-orbit splitting energy.

Using -valleys, L-valleys, and -valley for the conduction band representation, and 
 hole bands for the valence band, you can describe various semiconductor band structures.

Sentaurus Device provides default band-structure parameters for silicon, germanium, SiGe,
and several III–V materials in the LatticeParameters section. All parameters in this
section can be mole fraction dependent.

In applications where the multivalley model is used (see Multivalley Band Structure on
page 835), there is a possibility to use the option DeformationPotential(multivalley)
as an alternative to the other options. This option checks whether the multivalley model is
activated in the Physics section (if not, the multivalley option will be ignored) and, if so,
uses all the valleys specified in the model (including  and analytic ones with the
deformation potentials) to define the change to the band edge. This option allows you to
propagate the Multivalley bandgap and Affinity change to other models, such as
generation–recombination models.

NOTE Specifying DeformationPotential(minimum ekp hkp 
multivalley) with, for example, the eMultivalley model
activated will overwrite the options (minimum ekp) for electrons and
will use only the valleys of the eMultivalley specification to define
the change to the conduction band edge (accounting for the minimum
energy of each valley). The same specification without, for example, the
hMultivalley model means that the options (minimum hkp) will be
used to define the change to the valence band edge.

To see the changes to the conduction band and valence band edges related to the
DeformationPotential model separately, specify the following in the Plot section:

Plot {
eDeformationPotential hDeformationPotential

}

Strained Effective Masses and Density-of-States

Sentaurus Device provides options for computing strain-dependent effective mass for both
electrons and holes and, consequently, the strain-dependent conduction band and valence band
effective density-of-states (DOS).

Δ2 Γ 6 6×
k p⋅

k p⋅
830 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Deformation of Band Structure
Strained Electron Effective Mass and DOS

The conduction band in silicon is approximated by three pairs of equivalent  valleys.
Without stress, the DOS of each valley is:

(950)

where  can be defined by two effective mass components  and  (see Eq. 182, p. 262).

As described in Deformation of Band Structure on page 826, an applied stress induces a
relative shift of the energy  that is different for each  valley. In addition, in the
presence of shear stress, there is a large effective mass change for electrons. An analytic
derivation for this mass change can be found in [13] and is based on a two-band  theory.
To simplify the final expressions, the same dimensionless off-diagonal strain introduced in
Eq. 946 is used here:

(951)

Note that the  strain affects only the  valley along the -axis, where  = 1, 2, or 3
represents the [100], [010], or [001] axis, respectively.

When the  model [13] is evaluated at the band minima of the first conduction band, two
different branches for the transverse effective mass are obtained where  is the mass across
the stress direction, and  is the mass along the stress direction:

(952)

(953)

(954)

Δ2

NC i,
NC

3
------- i, 1 3,= =

NC ml mt

ΔEC i, Δ2

k p⋅

ηi

4Ξu ′εjk
′

Δ
------------------      j k≠ i≠,=

εjk
′ Δ2 i i

k p⋅
mt1 i,

mt2 i,

mt1 i, mt⁄
1

ηi

M
-----– 

 
1–

, ηi 1≤

1
sign ηi( )

M
--------------------– 

 
1–

, ηi 1>








=

mt2 i, mt⁄
1

ηi

M
-----+ 

 
1–

, ηi 1≤

1
sign ηi( )

M
--------------------+ 

 
1–

, ηi 1>








=

ml i, ml⁄
1 ηi

2
–( )

1–
, ηi 1<

1
1
ηi
--------– 

  1–
, ηi 1>









=

Sentaurus™ Device User Guide 831
N-2017.09



31: Modeling Mechanical Stress Effect
Deformation of Band Structure
In the above equations,  is a  model parameter that has been adjusted to provide a good
fit with the empirical pseudopotential method (EPM) results.

Another result of the  model [13] is that the nonparabolicity of the  valley changes with
stress as follows:

(955)

where  is the relaxed nonparabolicity of the  valley. Such stress-induced change of the
nonparabolicity in Eq. 955 can be accounted for with the eMultivalley(kpDOS
Nonparabolicity) option (see Multivalley Band Structure on page 267).

The stress-induced change of the effective DOS for each -valley can then be written as:

(956)

Accounting for the change of the stress-induced valley energy  and the carrier
redistribution between valleys, the strain-dependent conduction-band effective DOS can be
derived for Boltzmann statistics:

(957)

where:

(958)

and:

(959)

This is incorporated into Sentaurus Device as a strain-dependent electron effective mass using:

(960)

and:

(961)

M k p⋅

k p⋅ Δ2

α α0

1 2 ηmt M⁄( )2
+

1 ηmt M⁄( )2
–

---------------------------------------=

α0 Δ2

Δ2

NC i,
mt1 i,

mt
------------ 
  mt2 i,

mt
------------ 
  ml i,

ml
--------- 
  NC

3
------- 
 ⋅=

ΔEC i,

NC
′ γ NC⋅=

γ 1
NC
------- NC i,

ΔEC min, ΔEC i,–

kTn
----------------------------------------- 
 exp⋅

i 1=

3

⋅=

ΔEC min, min ΔEC i,( )=

mn
′ γ2 3⁄

mn⋅=

NC
′ mn

′

mn
------
 
 
 

3 2⁄

NC=
832 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Deformation of Band Structure
For materials such as Ge and III–V, the stress-related change of the effective DOS should
account for L- and -electron valleys as well. The stress effect in L- and -electron valleys is
described by the linear deformation potential model (Eq. 945) where the valley effective mass
change is not accounted for. This simplifies the model where L- and -valleys are added to 
similarly as suggested by Eq. 958:

(962)

where:

■  is the effective DOS of the -valley (corresponds to  in Eq. 956).

■  is the effective DOS of each L-valley.

■  is the effective DOS of each -valley.

■ The -valley, L-valley, and -valley energy shifts  are in reference to
the conduction band edge.

■  is the minimum between all energy shifts  (as in Eq. 959).

■  in Eq. 962 is the relaxed effective DOS of the conduction band, which is computed with
an account of all -, L-, and -valleys.

Strained Hole Effective Mass and DOS

To compute the hole effective DOS mass for arbitrary strain in silicon, the band structure
provided by the six-band  method is explicitly integrated assuming Boltzmann statistics
[14][15]. In this approximation, the total hole effective DOS mass is given by:

(963)

where , , and  are the ordered band edges for each of the three valence valleys, and
, , and  are the carrier-concentration masses for each of the valleys given by:

(964)

The energy-dependent DOS mass of each valley, , is given by:

(965)

Γ Γ

Γ γ

γ 1
NC
------- NΔ2 i, e

ΔEC min, ΔEΔ2 i,–

kTn
------------------------------------------
 
 
 

⋅
i 1=

3

 NL i, e

ΔEC min, ΔEL i,–

kTn
--------------------------------------- 
 

⋅
i 1=

4

 NΓ e

ΔEC min, ΔEΓ–

kTn
------------------------------------ 
 

⋅+ +

 
 
 
 
 

⋅=

NΔ2 i, Δ2 NC i,

NL i,

NΓ Γ
Δ2 Γ ΔEΔ2 i, ΔEL i, ΔEΓ, ,

ΔEC min, ΔEΔ2 i, ΔEL i, ΔEΓ, ,
NC

Δ2 Γ

k p⋅

mp
′ T( ) mcc,1

3 2⁄
e

E3 E1–( ) kT( )⁄–
mcc,2

3 2⁄
e

E3 E2–( ) kT( )⁄–
mcc,3

3 2⁄
+ +[ ]

2 3⁄
=

E1 E2 E3

mcc,1 mcc,2 mcc,3

mcc
3 2⁄

T( ) 2

π
------- kT( ) 3 2⁄–

E mDOS
3 2⁄

E( ) Ee
E kT( )⁄–

d

0

∞

=

mDOS

mDOS
3 2⁄

E( ) 2π2
h3

E
-------------------

1

2π( )3
-------------- ϕ θ θ( ) ∂k

∂E
------ k

2

ϕ θ E, ,
sind

0

π

d

0

2π

=
Sentaurus™ Device User Guide 833
N-2017.09



31: Modeling Mechanical Stress Effect
Deformation of Band Structure
The band structure–related integrand is computed from the inverse six-band  method in
polar k-space coordinates. The integrals in Eq. 964 and Eq. 965 are evaluated using optimized
quadrature rules.

The six-band  method is controlled by seven parameters: 

■ Three Luttinger–Kohn parameters ( , , ) that determine the band dispersion.

■ The spin-orbit split-off energy ( ).

■ Three deformation potentials (a, b, d) that determine the strain response.

The Luttinger–Kohn parameters and  have been set to reproduce the DOS mass for relaxed
silicon, , as given by Eq. 185, p. 263 as a function of temperature. The default deformation
potentials have been taken from the literature [16].

The strain-dependent valence-band effective DOS is then calculated from:

(966)

Using Strained Effective Masses and DOS

The strain-dependent effective mass and DOS calculations can be selected by specifying
DOS(eMass), DOS(hMass), or DOS(eMass hMass) as an argument to Piezo(Model())
in the Physics section of the command file. For example:

Physics {
Piezo (

Model (
DOS (eMass hMass)

)
)

}

Currently, these models have been calibrated only for strained silicon, germanium, SiGe, and
several III–V materials. Most of the model parameters are defined in the
LatticeParameters section of the parameter file. Parameters affecting the DOS(eMass)
model for  valleys include the deformation potentials of the  model for electron bands
(xis, dbs, xiu, xid) and the Sverdlov  parameter (Mkp). Parameters affecting the
DOS(eMass) model for L-valleys include the deformation potentials (xiu_l and xid_l), the
relaxed energy difference between  valleys and L-valleys (e_l), and the effective masses
(me_l0_l and me_l0_t) defined in the StressMobility section (the masses define the
effective DOS of one L-valley  in Eq. 962). Parameters affecting the DOS(eMass) model
for -valleys include the deformation potential (xid_gamma), the relaxed energy difference
between - and -valleys (e_gamma), and the effective mass (me0_gamma) defined in the
StressMobility section (the mass defines the effective DOS of one -valley  in

k p⋅

k p⋅
γ1 γ2 γ3

Δso

Δso

mp

NV
′ mp

′

mp
------
 
 
 

3 2⁄

NV=

Δ2 k p⋅
k p⋅

Δ2

NL i,
Γ

Δ2 Γ
Γ NΓ
834 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Deformation of Band Structure
Eq. 962). Parameters affecting the DOS(hMass) model include the deformation potentials of
the  model for hole bands (adp, bdp, ddp, dso) and the Luttinger parameters (gamma_1,
gamma_2, gamma_3). These parameters can be specified in the LatticeParameters section
of the parameter file and can be mole fraction dependent.

The DOS(hMass) model involves stress-dependent and lattice temperature–dependent
numeric integrations that can be very CPU intensive. For simulations at a constant lattice
temperature, you should only observe this CPU penalty once, usually at the beginning of the
simulation. For nonisothermal thermal simulations, these integrations would usually have to be
repeated for every lattice temperature change during the solution, resulting in a very prohibitive
simulation.

As an alternative, Sentaurus Device provides an option for modeling the lattice temperature
dependency of the strain-affected hole mass with analytic expressions that are fit to the full
numeric integrations for each stress in the device. A CPU penalty will still be observed at the
beginning of the simulation while fitting parameters are determined, but the remainder of the
simulation should proceed as usual since the analytic expression evaluations are very fast.

By default, the analytic lattice temperature fit is used with thermal simulations and numeric
integration is used for isothermal simulations. These defaults can be overridden by using the
AnaltyicLTFit or NumericalIntegration options for DOS(hMass):

DOS(eMass hMass(NumericalIntegration))
DOS(eMass hMass(AnalyticLTFit))

Multivalley Band Structure

The multivalley model is an alternative that accounts for the carrier population in various
valleys presented in the semiconductor band structure where the stress effect is accounted for
in each valley separately. Therefore, this model does not require to have effective corrections
applied to the conduction and valence band edge-energy and DOS. Based on such detailed
consideration of the carrier repopulation between valleys, this model gives a possibility to
account for the stress effect in both the carrier density and mobility consistently.

For a general description of the multivalley model and its implementation, see Multivalley
Band Structure on page 267. The multivalley model accounts for the stress effect in the band
structure by stress-induced change of the energy and effective masses in each valley. 

The stress-induced change in the valley energy is described in Deformation of Band Structure
on page 826. It is accounted for in both  bands [12][13] and arbitrary valleys defined in
the parameter file (see Using Multivalley Band Structure on page 270).

The stress-induced change in the valley effective mass is accounted for in the two-band 
model [13] for electrons and the   model [12] for holes by a computation of the

k p⋅

k p⋅

k p⋅
6 6× k p⋅
Sentaurus™ Device User Guide 835
N-2017.09



31: Modeling Mechanical Stress Effect
Deformation of Band Structure
effective DOS factors  in Eq. 198, p. 267 and Eq. 199, p. 267. The stress-induced
change of the effective DOS masses for each valley is described in Strained Effective Masses
and Density-of-States on page 830. 

Referring to Eq. 956 and Eq. 963, and using their variables, the effective DOS factors of each
 valley can be expressed as follows if only  bands are defined in the multivalley model:

(967)

For a general case, where both  bands and arbitrary valleys are defined, the effective DOS
factors are computed similarly to Eq. 207, p. 274.

In most III–V materials, the electron transport in the -valley must be accounted for properly.
Usually, this valley is strongly nonparabolic and its properties are affected by the stress.

According to the  perturbation theory [17], the electron -valley mass  could be
represented as  where:

■  is the -valley energy in reference to the valence band energy.

■  is the free electron mass.

■  is the valence band spin-orbit splitting energy.

■  is the squared conduction-to-valence momentum matrix element.

An assumption that  does not depend on the stress gives the following expression for the
stress-dependent -valley mass :

(968)

where ,  is the stress-related energy shift of the -valley,  is a fitting
parameter where, if , there is no stress effect in the -valley mass.

gn i, gp i,,

Δ2 k p⋅

gn i,
1
3
---

mt1 i,
mt

------------ 
  mt2 i,

mt
------------ 
  ml i,

ml
--------- 
 = gp i,

mcc i,
mp

------------ 
 

3 2⁄
=

k p⋅

Γ

k p⋅ Γ mΓ
m0 mΓ⁄ 1– P2 3⁄( ) 2 EΓ⁄ 1 EΓ Δ0+( )⁄+( )=

EΓ Γ
m0

Δ0

P2

P2

Γ m'Γ

Rm

2
EΓ
------

1
EΓ Δ0+
-------------------+

2
E'Γ
-------

1
E'Γ Δ0+
--------------------+

----------------------------------- 1–

 
 
 
 
 

Am 1+=

m'Γ
m0
--------

Rm

m0

mΓ
------- Rm 1–+

------------------------------=

E'Γ EΓ ΔEΓ+= ΔEΓ Γ Am

Am 0= Γ
836 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Deformation of Band Structure
Similarly, based on [18], the stress-dependent band nonparabolicity  of the -valley could
be expressed as follows:

(969)

where  is the relaxed band nonparabolicity of the -valley,  is a fitting parameter where,
if , there is no stress effect in the -valley nonparabolicity.

Using Multivalley Band Structure

The multivalley model is activated with the keyword MultiValley in the Physics section.
If the model must be activated only for electrons or holes, the keywords eMultiValley and
hMultiValley can be used. All options of the multivalley model can be used in stress
simulations (see Using Multivalley Band Structure on page 270).

NOTE Although the multivalley model works together with any
DeformationPotential model (it recomputes all valley energy
shifts with reference to the band edges defined by the deformation
potential model), Sentaurus Device stops with an error message if the
DOS statement is used (see Strained Effective Masses and Density-of-
States on page 830).

For the carrier density computation, all parameters of arbitrary valleys can be changed in the
MultiValley section of the parameter file (see Using Multivalley Band Structure on
page 270). However, for  bands, you should use the LatticeParameters section of the
parameter file (see Using Deformation Potential Model on page 829).

In III–V materials, the band nonparabolicity plays an important role in the carrier density and
mobility. To account for it in the multivalley model, use MultiValley(Nonparabolicity)
in the Physics section. To activate the stress-dependent -valley mass and the
nonparabolicity models, as in Eq. 968 and Eq. 969, the keywords m0 and alpha0 must be used
instead of m and alpha in the valley specification (see Using Multivalley Band Structure on
page 270). Such an option is possible only for valleys with isotropic mass. For example, for
InAs, it could be as follows:

eValley"Gamma"(m0=0.0244 energy=0.0 alpha0=1.39 degeneracy=1 xid=-10.2)

α'Γ Γ

Rα
EΓ

E'Γ
-------

1
m'Γ
m0
--------–

1
mΓ
m0
-------–

-----------------

 
 
 
 
 
  2

1–

 
 
 
 
 
 

Aα 1+=

α'Γ αΓRα=

αΓ Γ Aα
Aα 0= Γ

k p⋅

Γ

Sentaurus™ Device User Guide 837
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
The fitting parameters  and  from Eq. 968 and Eq. 969 can be specified globally for all
valleys as follows in the Multivalley section of the parameter file:

Multivalley{
BandgapMassFactor = 
BandgapAlphaFactor = 

}

The default value of both the fitting parameters  and  is equal to 1.

The multivalley band structure can be used to compute the stress-induced change in the carrier
mobility with the advanced mobility models, which account for the carrier interface
quantization in each valley (see Multivalley Electron Mobility Model on page 839 and
Multivalley Hole Mobility Model on page 849). For these models, additional band
structure–related parameters can be changed in the StressMobility section of the parameter
file. To have better flexibility and to use other than the multivalley MLDA quantization model
in the carrier density (see Quantization Models on page 283), there is an option to exclude the
multivalley model from the carrier density computation, but still have it in the stress-induced
mobility models. For that, use Multivalley(-Density).

Mobility Modeling

The presence of mechanical stress in device structures results in anisotropic carrier mobility
that must be described by a mobility tensor. The electron and hole current densities under such
conditions are given by:

(970)

where:

■  is the stress-dependent mobility tensor.

■  denotes the isotropic mobility without stress (the reference mobility in the specific
transport direction).

■  is the carrier current density without stress.

NOTE Eq. 970 is a general expression that is used to correct the carrier current
density . The mobility model corrections  described in this
section account for detailed semiconductor band structure, interface and
channel orientations effects, interface and geometric quantizations, and
so on. Therefore, these models are not limited to only stress problems
and can be used in other applications where such effects are important.
As a result, not related to stress problems, if the geometric quantization

Am Aα

Am
Aα

Am Aα

Jα
μα
μα0
---------
 
 
 

Jα0,=  α n p,=

μα

μα0

Jα0

Jα0 μα μα0⁄
838 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
model is used (with the ThinLayer keyword; see Nonparabolic Bands
and Geometric Quantization on page 303), the relative isotropic
mobility  is computed without the geometric quantization effect.
This allows you to account for a dependency of the carrier current
density  on the layer thickness due to the geometric quantization
effect.

The following sections describe options available in Sentaurus Device for including the effects
of stress, interface or channel orientation, and geometric confinement in thin layers on the
carrier mobilities  and .

NOTE For a general case that does not require you to consider any specific
transport direction in the reference mobility, you can use a full tensor
reference mobility . In this case, Eq. 970 must be rewritten as
follows . Such an option can be time consuming,
specially for holes.

Multivalley Electron Mobility Model

To calculate stress-induced electron mobility, Sentaurus Device considers several approaches
[6][13][20][21] for the mobility approximation, and it computes the mobility ratio (
tensor), which corrects the relaxed current density in Eq. 970. The simplest approach [6]
focuses on the modeling of the mobility changes due to the carrier redistribution between bands
in silicon. As a known example, the electron mobility is enhanced in a strained-silicon layer
grown on top of a thick, relaxed SiGe layer. Due to the lattice mismatch (which can be
controlled by the Ge mole fraction), the thin silicon layer appears to be ‘stretched’ (under
biaxial tension).

The origin of the electron mobility enhancement can be explained [6] by considering the six-
fold degeneracy in the conduction band. The biaxial tensile strain lowers two perpendicular
valleys ( ) with respect to the four-fold in-plane valleys ( ). Therefore, electrons are
redistributed between valleys and  is occupied more heavily. It is known that the
perpendicular effective mass is much lower than the longitudinal one. Therefore, this carrier
redistribution and reduced intervalley scattering enhance the electron mobility.

The model consistently accounts for a change of band energy as described in Deformation of
Band Structure on page 826, that is, a modification of the deformation potentials in Eq. 906,
p. 793 will affect the strain-silicon mobility model. In the crystal coordinate system, the model
gives only the diagonal elements of the electron mobility matrix.

μα0

Jα

μα μα0

μα0

Jα μα μα0( ) 1–
Jα0×=

3 3×

Δ2 Δ4

Δ2
Sentaurus™ Device User Guide 839
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
Based on the model [6] that accounts only for carrier occupation, the following expressions
have been suggested for the electron mobility:

(971)

where:

■  is electron mobility without the strain.

■  and  are the electron longitudinal and transverse masses in the subvalley,
respectively.

■  and  are computed by Eq. 906 and Eq. 947 or Eq. 948, respectively.

■ The index  corresponds to a direction (for example,  is the electron mobility in the
direction of the x-axis of the crystal system and, therefore,  should correspond to the
two-fold subvalley along the x-axis).

■  is quasi-Fermi level of electrons.

NOTE For the carrier quasi-Fermi levels, as for Eq. 971, there are two options
to be computed: (a) assuming the charge neutrality between carrier and
doping, and it gives only the doping dependence of the model and (b)
using the local carrier concentration (see Using Multivalley Electron
Mobility Model on page 846).

Derivation of Eq. 971 is based on consideration of the change in the stress-induced band energy
in bulk silicon. However, in MOSFETs, there is an additional influence of a quantization that
appears in the carrier channel at the silicon–oxide interface. For example, there is a reduction
of the stress effect with applied gate voltage. Partially, this is due to the Fermi-level dependency
on the carrier concentration, as well as to the quantization in the channel gives a different
carrier redistribution between electron bands (see Inversion Layer on page 844). 

Intervalley Scattering

Another effect of the stress-induced mobility change is intervalley scattering, which is
considered in [20] for the bulk case. According to that model, the total relaxation time in valley

 is expressed as follows:

(972)

μn ii, μn0 1
1 mnl mnt⁄–

1 2 mnl mnt⁄( )+
--------------------------------------

F1 2⁄
Fn EC– ΔEC i,–

kT
--------------------------------------- 
 

F1 2⁄
Fn EC– ΔEC–

kT
------------------------------------ 
 

--------------------------------------------------------- 1–

 
 
 
 
 

+=

μn0

mnl mnt

ΔEC i, ΔEC

i μn 11,
ΔEC 1,

Fn

i

1
τi
----

1

τg
-----

1

τi
f

----
1

τI
----+ +=
840 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
where:

■  denotes the momentum relaxation time due to acoustic intravalley scattering and
intervalley scattering between equivalent valleys (g-type scattering).

■  is the impurity scattering relaxation time.

■  is the relaxation time for intervalley scattering between nonequivalent valleys (f-type
scattering).

The intervalley scattering rate for electrons to scatter from initial valley  to final valley  can
be defined as [20]:

(973)

where  is the phonon energy and  is a constant. The relaxation time for this scattering
event can be defined as follows:

(974)

where  is the electron distribution function. 

Using the Fermi–Dirac distribution function and considering that electrons from the valley 
can be scattered into two valleys  and  ( ), a ratio between
unstrained and strained relaxation times for this intervalley scattering in valley  can be written
as:

(975)

where .

NOTE The authors in [20] used the Boltzmann distribution function to express
. As a result, Eq. 20 of [20] does not have any carrier concentration

(or doping) dependence, but Eq. 975 does have it through the Fermi
level .

τg

τI

τi
f

i j

S ε Δij,( ) C ε Δij
emi

–( )
1 2⁄ hωopt

kT
------------- 
  ε Δij

abs
–( )

1 2⁄
exp+=

Δi j
emi ΔEC j, ΔEC i, hωopt––=

Δij
abs ΔEC j, ΔEC i, hωopt+–=

hωopt C

1

τf
i j→( )

--------------------- S ε Δij,( )f ε Fn,( ) εd
0

∞

=

f ε Fn,( )

i
j l 1 τi

f⁄ 1 τf i j→( )⁄ 1 τf i l→( )⁄+=
i

hi
τf0

τi
f

------

F1 2⁄
η Δij

emi
–

kT
--------------------
 
 
 

F1 2⁄
η Δil

emi
–

kT
--------------------
 
 
  hωopt

kT
------------- 
  F1 2⁄

η Δij
abs

–

kT
-------------------
 
 
 

F1 2⁄
η Δi l

abs
–

kT
-------------------
 
 
 

+exp+ +

2 F1 2⁄
η hωopt+

kT
----------------------- 
  hωopt

kT
------------- 
 F1 2⁄

η hωopt–

kT
----------------------- 
 exp+

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------= =

η Fn EC–=

hi

Fn
Sentaurus™ Device User Guide 841
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
Considering undoped/doped and unstrained/strained cases, the paper [20] derives an
expression for total mobility change in valley , which is based on a doping-dependent
mobility model. With simplified doping dependence, a ratio between strained and unstrained
total relaxation times for the valley  can be expressed as follows:

(976)

where  is the sum of donor and acceptor impurities, and  is a fitting
parameter [20] as both others  and .

The final modification of the mobility along valley  (in Eq. 971), which includes the stress-
induced carrier redistribution and change in the intervalley scattering, is:

(977)

NOTE The model (Eq. 975 and Eq. 976) was developed originally for the bulk
case. However, in MOSFET channels, to obtain an agreement with
experimental data, the model and parameter , responsible for the
unstressed ratio between g-type and f-type scatterings, must be
modified (see Inversion Layer on page 844).

Effective Mass

It is known that the effective mass of electrons does not change significantly if the stress is
applied along the crystal axis, and it allows you to write the stress-induced mobility change in
the form of Eq. 971 and Eq. 977. However, an analysis based on the empirical nonlocal
pseudopotential theory [21] shows that, for the stresses applied along , the effective
mass changes strongly and it affects the electron mobility. The literature [21] suggests a simple
empirical polynomial approximation for the dependency of the effective mass on stress applied
along . Later, the two-band  theory [13] was developed for electrons with the main
analytic results for the effective masses described in Strained Electron Effective Mass and DOS
on page 831. 

i

i

τi

τ0
-----

1

1 hi 1–( ) 1 β 1–
–

1
Ntot

Nref
--------- 
 

α
+

---------------------------+

--------------------------------------------------------=

Ntot β 1 τg τf0⁄+=
Nref α

i

μn ii,
3μn0

1 2 mnl mnt⁄( )+
--------------------------------------

τi

τ0
-----F1 2⁄

η ΔEC i,–

kT
------------------------ 
  τj

τ0
-----

mnl

mnt
--------F1 2⁄

η ΔEC j,–

kT
------------------------ 
  τl

τ0
-----

mnl

mnt
--------F1 2⁄

η ΔEC l,–

kT
------------------------ 
 + +

F1 2⁄
η ΔEC i,–

kT
------------------------ 
  F1 2⁄

η ΔEC j,–

kT
------------------------ 
  F1 2⁄

η ΔEC l,–

kT
------------------------ 
 + +

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------⋅=

β

110 

110  k p⋅
842 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
To formulate the stress-induced change of the mobility generally (accounting for arbitrary
channel and interface orientations), the inverse conductivity mass tensor for the valley  is
represented in the following very general form:

(978)

where:

■  is the energy dispersion of valley  defined by the two-band  theory.

■  are the wavevectors.

■ The inverse mass tensor  is computed in the valley energy minima, which is a
good approximation for electron conductivity masses in silicon.

Near an interface, you can assume zero current perpendicular to the interface. This assumption
and a consideration of the carrier quantization near the interface [22] suggest that the 3x3
inverse conductivity mass tensor of Eq. 978 should be recomputed into a 2x2 in-plane tensor.
For the inverse conductivity mass tensor in the interface coordinate system (with components

) where the perpendicular axis has an index 3, the following recomputation into the 2x2 in-
plane symmetric tensor should be performed:

(979)

Setting  and , this tensor is rotated back to the crystal coordinate
system and is used as . Such a recomputation has an effect for cases where the valley
ellipsoid in k-space is not aligned to the interface.

Another optional mass transformation can be performed for 1D carrier transport that appears,
for example, in nanowires. The 1D mass transformation is performed in the vicinity of the
interface and with a specified direction of the 1D carrier transport. This direction (the user-
defined vector in the simulation coordinate system) is projected on to the interface plane. The
projected in-plane vector and the normal vector to the interface define a coordinate system
where the tensor from Eq. 979 (with 2D transport mass transformation) is rotated. Assuming
that the index 1 of the rotated tensor is along the 1D transport direction, the corresponding
inverse mass tensor component can be written as:

(980)

i

mcond i,( ) 1– 1
h2
-----

∂2εi
k( )

∂kj∂kl
-----------------=

εi k( ) i k p⋅
kj kl,

mcond i,( ) 1–

wij

w'11 w11

w13
2

w33
--------–=

w'22 w22

w23
2

w33
--------–=

w'12 w12

w13w23

w33
----------------–=

w'13 w'23 0= = w'33 w33=
mcond i,( ) 1–

w''11 w'11

w'12( )2

w'22
----------------–=
Sentaurus™ Device User Guide 843
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
Similar to Eq. 979, when setting  and , this
diagonal tensor is rotated back to the crystal coordinate system and is used as .

To account for such stress-induced mass change, Eq. 971 and Eq. 977 are generalized as stated
in the next section, Inversion Layer.

Inversion Layer

Generally, using only the valley data, the total mobility tensor could be written in the following
general form, which generalizes Eq. 971, and Eq. 977:

(981)

where:

■  is a local valley occupation.

■  is the ratio of stressed and unstressed relaxation times as it is in Eq. 976.

■  is the inverse conductivity mass tensor Eq. 978.

To use Eq. 981 in Sentaurus Device stress modeling, the mobility tensor  should be divided
by unstressed mobility  because the stress effect is accounted for as a multiplication factor
to TCAD mobility (for example, the Lombardi model) used in the device simulation.
Therefore, the unstressed mobility  also is computed by Eq. 981, but with zero stress.

In the multivalley representation, Eq. 981 is general enough to describe the mobility for both
bulk and MOSFET inversion layer cases, but a difference between these cases is in the 
and  terms. For inversion layers, the quantization effect must be accounted for in each
valley separately. 

At this point, only the multivalley MLDA model gives such a possibility (see MLDA Model on
page 300). Therefore, for the inversion layer mobility, the local valley occupation is computed
by the multivalley MLDA model where the quantization mass  in the perpendicular
direction to the interface is computed using stressed  bands (by a rotation of the inverse
mass tensor  to an interface coordinate system).

NOTE The multivalley MLDA model accounts for arbitrary interface
orientation automatically (see Interface Orientation and Stress
Dependencies on page 301), which complements the general inverse
mass tensor  in Eq. 978, and it gives users an automatic
option that accounts for both channel and interface orientations
simultaneously.

w''12 w''13 w''23 0= = = w''22 w'22 w''33 w'33=,=
mcond i,( ) 1–

μn qτ0

ni

n
----

τi

τ0
----- mcond i,( )

i


1–
=

ni n⁄
τi τ0⁄
mcond i,( ) 1–

μn

μn0

μn0

ni n⁄
τi τ0⁄

mq

k p⋅
mcond i,( ) 1–

mcond i,( ) 1–
844 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
For the inversion layer mobility model, there are some changes to the scattering ratio  in
Eq. 975. First, the DOS used in Eq. 973 is a parabolic bulk DOS, which makes such a scattering
model mostly applicable to the bulk case. The MLDA quantization model (Eq. 234) gives an
MLDA DOS  that becomes the bulk DOS at a distance from the interface where the
quantum effect is small. Second, Eq. 973 accounts only for the intervalley optical phonon
scattering, but Eq. 982 includes both intervalley and intravalley scattering with acoustic and
optical phonons.

In addition, this equation takes into account an effect of the interface quantization in the
scattering by the following use of both MLDA and bulk DOS:

(982)

where:

■  is the electron bulk DOS of the valley .

■  is a valley minimum energy difference between valleys  and .

■  is the ratio of the acoustic-phonon deformation potential and the sound velocity.

■  is the mass density.

■  is the optical-phonon energy.

■  is the optical-phonon deformation potential.

■  is the phonon number.

NOTE For the bulk case,  and, therefore, Eq. 982 can be
simplified to regular bulk scattering rate equations. Eq. 982 accounts for
both interband and intraband phonon scattering with the same
deformation potentials, but there is an option to control the interband
scattering factor.

τi τ0⁄

Di ε z,( )

D
j ε z,( )

j


τac
i ε z,( )

--------------------------
2πkT

hρ
-------------

Dac

cl
-------- 
 

2
Dbulk

j ε( )Dbulk
k ε Δε0

k i,
–( )

k


j
=

D
j ε z,( )

j


τope
i ε z,( )

--------------------------
πhDop

2

ρhωopt
----------------- Nop 1+( ) Dbulk

j ε( )Dbulk
k ε hωopt Δε0

k i,
––( )

k


j
=

D
j ε z,( )

j


τopa
i ε z,( )

--------------------------
πhDop

2

ρhωopt
-----------------Nop Dbulk

j ε( )Dbulk
k ε hωopt Δε0

k i,
–+( )

k


j
=

S
i ε z,( ) 1

τac
i ε z,( )

--------------------
1

τope
i ε z,( )

----------------------
1

τopa
i ε z,( )

----------------------+ +=

Dbulk
i ε( ) 2

2π( )3
-------------

dS

∇kε
i k( )

---------------------

εi
k( ) ε=

°= i

Δε0
k i, ΔEC k, ΔEC i,–= i k

Dac

cl
-------

ρ
hωopt

Dop

Nop hωopt kT⁄( ) 1–exp[ ] 1–=

Dj ε z,( ) Dbulk
j ε( )=
Sentaurus™ Device User Guide 845
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
Using Eq. 982 will activate a numeric integration in Eq. 974 with Gauss–Laguerre quadratures
as described in Nonparabolic Band Structure on page 268. Another change in the scattering
ratio  is based on comparisons to various stress- and orientation-dependent experimental
data. It gives the new user-defined parameter  for the inversion layer (see Using Multivalley
Electron Mobility Model on page 846).

For the bulk case, the unstressed mobility  computed by Eq. 981 is always isotropic.
However, for the MOSFET on a (110) silicon substrate, it is not. In this case, Eq. 981 without
stress gives anisotropic unstressed electron mobility, and a ratio between the mobilities of the
<100> and <110> channel orientations is equal to approximately 1.1. This ratio is in reasonable
agreement to experimentally observed data where the ratio changes from 1.2 to 1.1 for a high-
gate electric field.

NOTE By default, the unstressed mobility  (in Eq. 970) is always computed
for a <110> channel orientation and for a substrate orientation that
corresponds to the auto-orientation Lombardi option (see Auto-
Orientation for Lombardi Model on page 337). Such a default requires
you to have calibrated the Lombardi model parameters for the <110>
channel (critical for MOSFETs on (110) substrate where the unstressed
mobility is anisotropic).

Using Multivalley Electron Mobility Model

The stress-induced mobility model can be activated regionwise or materialwise. To activate the
inversion layer model (see Inversion Layer on page 844), the eMultivalley(MLDA)
statement must be specified in the Physics section. In this case, all valleys defined by the
multivalley model (for example, with eMultivalley(kpDOS parfile); see Multivalley
Band Structure on page 267) will be used in the model. However, currently, it is calibrated for
silicon, germanium, and SiGe band structures (with - and L-valleys), and for InGaAs
materials where the -valley carrier transport is mostly important. The keyword MLDA
activates the multivalley MLDA quantization model (see MLDA Model on page 300), which
is applied to both the density and the inversion layer stress-induced mobility models. To use
another quantization model in the density computation, specify the -Density option in the
eMultivalley statement (see MLDA Application Notes on page 308). To ensure that
electron stress-related models are consistent and physically correct, the Physics section
should contain the following:

Physics {
eMultiValley(MLDA)
Piezo(Model(Mobility(eSubband(Fermi EffectiveMass Scattering(MLDA)))))

}

NOTE If the model is used without options, as eSubband, then the
recommended options are activated, and this is equivalent to
eSubband(Doping EffectiveMass Scattering(MLDA)).

τi τ0⁄
β

μn0

μn0

Δ2

Γ

846 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
The keyword Fermi defines that the Fermi–Dirac distribution function is used in the mobility
models Eq. 971, Eq. 977, and Eq. 981 with the carrier self-consistent quasi-Fermi energy. To
activate only doping-dependent quasi-Fermi energy, use eSubband(Doping). If neither
Fermi nor Doping is used, the Boltzmann distribution function is used, which illuminates the
quasi-Fermi energy dependency.

To activate the model for a stress-induced change of the electron effective mass (see Effective
Mass on page 842, Eq. 978), use the keywords Mobility(eSubband(EffectiveMass)).
If this keyword is not present, the unit diagonal (and stress-independent) tensor is used as

 in Eq. 981.

Using EffectiveMass(-Transport) excludes the 2D inverse conductivity mass tensor
recomputation (Eq. 979). With the option EffectiveMass(Transport<vector>), you
can activate the 1D transport mass recomputation (Eq. 980) where <vector> represents the
direction of 1D carrier transport in the simulation coordinate system.

The unstressed longitudinal and perpendicular effective masses  and  for this model (to
be used in two-band  theory; see Strained Electron Effective Mass and DOS on page 831)
are defined as follows:

StressMobility {
me_l0 = 0.914 # [1]
me_t0 = 0.196 # [1]

}

Usually for III–V materials, the two-band  model for -valleys should not be used, and
all valleys must be defined in the Multivalley section of the parameter file with all needed
masses, energy shifts, deformation potentials, and so on. For some III–V materials such as
InGaAs, GaAs, and InAs, all valleys of the semiconductor band structure are defined by the
default in the parameter file. For such materials (where the electron -valley is the lowest), the
band nonparabolicity, the stress-induced -valley mass change, and the geometric
quantization effects in thin layers are important.

To activate the related models, the following statement must be used:

eMultiValley(MLDA Nonparabolicity ThinLayer)

See Nonparabolic Bands and Geometric Quantization on page 303 and Multivalley Band
Structure on page 835.

The statement Scattering(MLDA) means that the scattering rate is computed with Eq. 982.
If the keyword Scattering is not present, then  is unit and stress independent in
Eq. 977 and Eq. 981. The keyword MLDA in the Scattering statement defines that the MLDA
DOS is used in the scattering rate as this is in Eq. 982. However, using only the keyword
Scattering (without MLDA) activates the simplified bulk scattering rate of Eq. 973.

mcond i,( ) 1–

ml mt

k p⋅

k p⋅ Δ2

Γ
Γ

τi τ0⁄
Sentaurus™ Device User Guide 847
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
For III–V materials, the statement Scattering(MLDA2) might be used, which replaces the
bulk DOS  by the MLDA DOS  in Eq. 982.

The parameters of the intervalley scattering model can be specified in the same
StressMobility section of the parameter file, as this is below for silicon:

StressMobility {
Ephonon = 0.06 # [eV]
Dop = 1.25e9 # [eV/cm]
Dac_cl = 1.027e-5 # [eVs/cm]
beta = 1.22 # [1]
beta_mlda = (1.5,1.5,1.5) # [1]
Nref = 3e19 # [cm^-3]
alpha = 0.65 # [1]

}

where Ephonon is  in Eq. 973 and Eq. 982, Dop is , and Dac_cl is , in
Eq. 982. The parameters Nref and alpha correspond to the impurity scattering parameters

 in Eq. 976. The fitting parameter beta in Eq. 976 is  for the bulk case, and
beta_mlda defines  for the inversion layer case for three interface orientations (100), (110),
and (111). This gives additional calibration flexibility to users. Although, as described for
Eq. 976, the parameter  was initially introduced specifically for silicon, but generally, it is an
estimation of the ratio of the total scattering rate to the scattering rate of scattering events that
do not depend on the stress and layer thickness in the device, with no stress and no geometric
confinement.

NOTE The inversion layer mobility model (  in Eq. 970) is designed to work
with arbitrary channel and interface orientations. This orientation is
simply defined by a specification of only the X and Y simulation
coordinate axes in reference to the crystal coordinate system in the
LatticeParameters section (see Using Deformation Potential
Model on page 829).

NOTE The reference isotropic mobility (  in Eq. 970), by default, is
computed for the <110> channel direction. Such a default requires you
to have calibrated the Lombardi model parameters for the <110>
channel (critical for (110) interface orientation where the unstressed
mobility is anisotropic). However, if you want to use <100>/(110)
Lombardi model parameters, the keyword -RelChDir110 must be
used inside the eSubband statement. For a general case of the tensor
reference mobility ( ), the keyword -AutoOrientation must be
used instead.

All parameters of the StressMobility model can be mole fraction dependent. You can check
this in the SiGe material parameter file.

Dbulk
j ε( ) Dj ε z,( )

hωopt Dop Dac cl⁄

Nref α, β
β

β

μn

μn0

μn0
848 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
Multivalley Hole Mobility Model

Similar to the electron stress-induced mobility model (Eq. 981), the total hole mobility tensor
can be written in the following general form, which can be applied to both bulk and inversion
layer cases [23]:

(983)

where:

■  is a local hole-band occupation.

■  is a ratio of the stressed and unstressed valence-band relaxation times.

■  is the inverse conductivity hole mass tensor.

The model accounts for the six-band  hole band structure [14] in all of the above three
terms of Eq. 983. In the case of the inversion layer, the model computes the six-band 
MLDA DOS of each band as described in MLDA Model on page 300 and, correspondingly, it
affects all terms of Eq. 983. Finally, the model computes the mobility ratio (  tensor),
which corrects the relaxed current density in Eq. 970.

Effective Mass

The inverse mass tensor  of the band  in Eq. 983 is based on an averaging of the
reciprocal mass tensor in -space and energy space. If the reciprocal mass tensor at any

-vector is expressed as follows:

(984)

then the averaging in -space is performed in accordance to the DOS computation (Eq. 237,
p. 302), which for the inversion layer can be formulated as:

(985)

μp qτ0

pi

p
----

τ
τ0
----- mcond i,( )

i


1–
=

pi p⁄
τ τ0⁄
mcond i,( ) 1–

k p⋅
k p⋅

3 3×

mcond i,( ) 1–
i

k
k

wjl
i

k( ) 1
h2
-----

∂2εi k( )
∂kj∂kl
-----------------=

k

wjl
i ε z,( )

2

2π( )3
--------------

wjl
i

k( )

∇kεi
k( )

--------------------- 1 i2zγkp kj

wj3 k( )

w33 k( )
-----------------

j


 
 
 
 

exp– dS

εi
k( ) ε=

°

D
i ε z,( )

----------------------------------------------------------------------------------------------------------------------------------------=
Sentaurus™ Device User Guide 849
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
Finally, the inverse mass tensor of the band  is computed as an averaged value over the energy
space with the carrier distribution function  accounted:

(986)

where:

■  is a hole-band concentration ( ).

■  is a symmetric  tensor, which depends on the quasi-Fermi energy  and
the distance from interface  (for the inversion layer case).

Similar to the computation of the hole-band concentration , the integral over the energy in
Eq. 986 is computed using Gauss–Laguerre quadratures and, for that, the energy-dependent
reciprocal mass tensor (Eq. 985) is computed on a predefined energy mesh (same as for the
DOS ).

Optionally, you can account for the 2D (in the vicinity of interfaces) or the 1D (in nanowires)
carrier transport nature in the inverse mass tensor . This is similar to recomputation
of the electron transport effective masses (Eq. 979 and Eq. 980). However, for holes, it is
performed for all considered energies and, correspondingly, it uses the inverse mass tensor
components .

Scattering

The scattering model defines the ratio of the stressed and unstressed valence-band momentum
relaxation times . The model considers four scattering mechanisms (which are affected
by the stress) for holes in each band assisted by: acoustic phonon, optical phonon emission,
optical phonon absorption, and simplified impurity scattering.

The phonon-assisted relaxation times can be expressed as follows for the band  in the case of
the inversion layer:

(987)

i
f ε Fp,( )

mcond i,( )
1–

D
i ε z,( )wjl

i ε z,( )f ε Fp,( ) εd
0

∞


pi

-----------------------------------------------------------------------=

pi pi Fp z,( ) Di ε z,( )f ε Fp,( ) εd
0

∞

=

mcond i,( ) 1–
3 3× Fp

z

pi

Di ε z,( )

mcond i,( ) 1–

wjl
i ε z,( )

τ τ0⁄

i

D
j ε z,( )

j


τac
i ε z,( )

--------------------------
2πkT

hρ
-------------

Dac

cl
-------- 
 

2
Dbulk

j ε( )Dbulk
k ε Δε0

k i,
–( )

k


j
=

D
j ε z,( )

j


τope
i ε z,( )

--------------------------
πhDop

2

ρεop
---------------- Nop 1+( ) Dbulk

j ε( )Dbulk
k ε εop Δε0

k i,
––( )

k


j
=

D
j ε z,( )

j


τopa
i ε z,( )

--------------------------
πhDop

2

ρεop
----------------Nop Dbulk

j ε( )Dbulk
k ε εop Δε0

k i,
–+( )

k


j
=
850 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
where:

■  is the hole bulk DOS of the band .

■  is a band minimum energy difference between bands  and .

■  is a ratio of the acoustic-phonon deformation potential by the sound velocity.

■  is the mass density.

■  is the optical-phonon energy.

■  is the optical-phonon deformation potential.

■  is the phonon number.

NOTE For the bulk case,  and, therefore, Eq. 987 can be
simplified to regular bulk scattering rate equations. Eq. 987 accounts for
both interband and intraband phonon scattering with the same
deformation potentials, but you have an option to control the interband
scattering factor.

Based on Eq. 987, the total phonon-limited hole-scattering rate in the band  is written as:

(988)

Therefore, the macroscopic phonon-limited momentum relaxation time of the full valence
band can be expressed similarly for electrons (Eq. 975):

(989)

where  depends on the quasi-Fermi energy  and the distance from interface  (for the
inversion layer case). The impurity scattering is introduced also similarly to how it is
performed for electrons in Eq. 976, and the ratio of the stressed and unstressed valence-band
relaxation times in Eq. 983 is expressed as follows:

(990)

Dbulk
i ε( ) 2

2π( )3
-------------

dS

∇kε
i k( )

---------------------

εi
k( ) ε=

°= i

Δε0
k i, i k

Dac

cl
-------

ρ
εop

Dop

Nop εop kT⁄( ) 1–exp[ ] 1–=

Dj ε z,( ) Dbulk
j ε( )=

i

1

τph
i ε z,( )

--------------------
1

τac
i ε z,( )

--------------------
1

τope
i ε z,( )

----------------------
1

τopa
i ε z,( )

----------------------+ +=

1

τph
-------

D
i ε z,( ) 1

τph
i ε z,( )

--------------------f ε Fp,( ) εd
0

∞


i


p
-------------------------------------------------------------------------------=

τph Fp z

τ
τ0
-----

1

1
τ0

ph

τph
------- 1–
 
 
  1 β 1–

–

1
Ntot

Nref
--------- 
 

α
+

---------------------------+

-----------------------------------------------------------=
Sentaurus™ Device User Guide 851
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
where:

■  is the phonon-limited momentum relaxation time in the valence band for zero stress
computed using Eq. 988 and Eq. 989.

■  is the doping concentration.

■  are fitting parameters of the impurity scattering model.

■  is a fitting parameter that can be represented as , where  is a
relaxation time of other scattering mechanisms that are not accounted for in Eq. 987 and
that are independent of the stress. Therefore, for example, if the stress-independent
scattering rate (not accounted for in Eq. 987) is much higher than , then  and
therefore . However, if this rate is negligible, then .

NOTE The default value of the parameter  is different for the bulk and
inversion layer simulations. Some fitting of this parameter was
performed to obtain a reasonable agreement of the model (Eq. 983) to
multiple stress and orientation data.

Using Multivalley Hole Mobility Model

The stress-induced hole mobility model can be activated with hMultivalley(kpDOS)
because the model uses the six-band  valence band structure. The model works in two
modes: bulk and inversion layer (in the presence of hMultivalley(MLDA kpDOS) and inside
semiconductor–insulator interface vicinity). Generally, all valleys defined by the multivalley
model (for example, with hMultivalley(kpDOS parfile); see Multivalley Band Structure
on page 267) will be used in the model. However, currently, it is calibrated only for silicon,
germanium, and SiGe band structures with the six-band  model. With
hMultivalley(MLDA), the multivalley MLDA quantization model (see MLDA Model on
page 300) is applied to both the density and the inversion layer stress-induced mobility model.
To use another quantization model in the density computation, specify the -Density option
in the hMultivalley statement (see MLDA Application Notes on page 308).

The model can be used regionwise or materialwise and, typically, for PMOSFET stress
simulations, it can be activated with the following keyword in the Mobility statement of the
Piezo model:

Physics {
hMultivalley( MLDA kpDOS )
Piezo( Model(Mobility(hSubband(Fermi EffectiveMass Scattering(MLDA)))) )

}

The keyword Fermi defines that the Fermi–Dirac distribution function is used in Eq. 986 and
Eq. 989 with the carrier self-consistent quasi-Fermi energy. To activate only doping-dependent
quasi-Fermi energy, the keywords hSubband(Doping) should be used. If neither of these
keywords (Fermi and Doping) is used, the Boltzmann distribution function is used and this
illuminates the quasi-Fermi energy dependency in the mobility model (Eq. 983).

τ0
ph

Ntot

Nref α,
β β 1 τindep τ0

ph⁄+= τindep

1 τ0
ph⁄ β 1=

τ τ0⁄ 1= β 1– 0=

β

k p⋅

k p⋅
852 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
NOTE If the model is used without options, as hSubband, then the
recommended options are activated, and this is equivalent to
hSubband(Doping EffectiveMass Scattering(MLDA)).

The keyword EffectiveMass means that the inverse mass tensor (Eq. 986) is computed. If
this keyword is not present, the unit diagonal (and stress-independent) tensor is used as

 in Eq. 983. Using EffectiveMass(Transport) activates the 2D inverse
conductivity mass tensor recomputation (similar to Eq. 979 for electrons). With the option
EffectiveMass(Transport<vector>), you can activate the 1D transport mass
recomputation (similar to Eq. 980 for electrons) where <vector> represents the direction of
1D carrier transport in the simulation coordinate system.

The statement Scattering(MLDA) means that the scattering model (Eq. 987–Eq. 990) is
used. If the keyword Scattering is not present, then  is unit and stress independent in
Eq. 983. The keyword MLDA in the Scattering statement defines that MLDA DOS is used in
the scattering rate (exactly as it is in Eq. 987), but using only the keyword Scattering
(without MLDA) gives the bulk scattering rates (  in Eq. 987).

The scattering model parameters (see Eq. 987 and Eq. 990) can be specified in the parameter
file in the StressMobility section as follows:

StressMobility {
Ephonon_h = 0.0612 # [eV]
Dop_h = 7.47e8 # [eV/cm]
Dac_cl_h = 7.5e-6 # [eVs/cm]
beta_h = 1e10 # [1]
beta_mlda_h = (6.5,1.2,2.5) # [1]
Nref_h = 3e19 # [cm^-3]
alpha_h = 0.85 # [1]

}

where Ephonon_h corresponds to  used in Eq. 987, Dop_h is  and Dac_cl_h is 
in Eq. 987, beta_h is  in Eq. 990 for the bulk case, and beta_mlda_h defines  for the
inversion layer case for three interface orientations (100), (110), (111). These  values are a
result of the calibration of the stress effect in mobility produced by the model in comparison to
measurement and other simulation data. The parameters Nref_h and alpha_h correspond to
the impurity scattering parameters  in Eq. 990.

All conductivity mass–related parameters (used to compute  in Eq. 986) are defined
by the six-band  model and must be specified in the LatticeParameter section (see
Using Strained Effective Masses and DOS on page 834). 

mcond i,( ) 1–

τ τ0⁄

Dj ε z,( ) Dbulk
j ε( )=

εop Dop Dac cl⁄
β β

β

Nref α,

mcond i,( ) 1–

k p⋅
Sentaurus™ Device User Guide 853
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
NOTE By default, the unstressed mobility  (in Eq. 970) is always computed
for a <110> channel orientation and for substrate orientation, which
corresponds to the auto-orientation Lombardi option (see Auto-
Orientation for Lombardi Model on page 337). Such a default requires
you to have calibrated the Lombardi model parameters for the <110>
channel (critical for (110) interface orientation where the unstressed
mobility is anisotropic). However, if you want to use <100>/(110)
Lombardi model parameters, the keyword -RelChDir110 must be
used inside the hSubband statement.

NOTE For a general case of the tensor reference mobility ( ), the keyword
-AutoOrientation must be used inside the hSubband statement.
This option can be time consuming because additional tensor operations
and mobility computations must be performed for each mesh node.

All parameters of the StressMobility model can be mole fraction dependent. You can check
this in the SiGe material parameter file.

Intel Stress-Induced Hole Mobility Model

Intel [24] suggested a mobility model for strained PMOS devices based on the occupancy of
different parts of the topmost valence band. As shown in Figure 54, under zero stress, the
topmost valence band has a fourfold symmetry with arms along  and . Each
ellipsoid is characterized by a transverse mass  and a longitudinal mass . 

Figure 54 Sketch of Intel two-ellipsoid model; one ellipsoid is aligned 
along <110> and the other along <–110>

As compressive uniaxial stress along  is applied, one of the arms shrinks and the band
becomes a single ellipsoidal band. In Figure 54, this modification of the band structure is
modeled as the splitting and change in curvature of two ellipsoidal bands. With applied stress,
the maximum energy associated with each of these bands splits with carriers preferentially

μp0

μp0

110  110 
mt ml

<010>

<110>

<100>

<–110>

Ellipsoid 2 Ellipsoid 1

110 
854 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
occupying the upper valley. In addition, the transverse and longitudinal effective masses of
each of these two valleys change with stress.

Under zero stress, the occupancies of the two ellipsoids are assumed equal and the mobility is
isotropic with a value:

(991)

where  is the scattering time and the index ‘0’ in effective masses corresponds to the
unstressed case.

Accounting for stress-induced reoccupation of these ellipsoids  and , and assuming that
the scattering time  is the same for both valleys and is independent of stress, the relative
change in mobility is given by a diagonal tensor in the ,  coordinate system
as [24]:

(992)

Denoting the energy split between the two values as , the occupancies for the two valleys are
given by:

(993)

where  is the lattice temperature.

Stress Dependencies

Intel decomposes the planar stress tensor in the crystallographic coordinate system as:

(994)

where  is the biaxial component,  is the anti-symmetric component, and  is the shear
component. The basic model parameters (  and ) are expanded in powers of these
components. The longitudinal mass  is assumed to be stress independent, that is,

.

μ0 q τ  0.5
mt0
--------

0.5
ml0
--------+=

τ 

f1 f2

τ 
110  110 

1
Δμ110

μ0
--------------+

1
Δμ 110–

μ0
-----------------+

2ml0m
t0

ml0 mt0+
-----------------------

f1

mt1
--------

f2

ml2
--------+ 0

0
f1

ml1
--------

f2

mt2
--------+

=

Δ

f1
1

1 Δ kT⁄–( )exp+
-----------------------------------------=

f2 1 f1–=

T

S b a+ s

s b a–
=

b a s
1 mt⁄ Δ

ml

ml1 ml2 ml0= =
Sentaurus™ Device User Guide 855
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
The symmetry of the top valence band enforces some consistency relations on the basic
parameters and its power-law expansions. For example, the mobility enhancement along

, when uniaxial stress along  is applied, must be equal to the enhancement along
 when uniaxial stress along  is applied. In addition, when biaxial stress is applied,

the mobility enhancements along  and  must be the same. Enforcing these
symmetries, the following expressions can be written:

(995)

where the fitting parameters  can be specified in the StressMobility
section of the parameter file. The default values of these parameters are based on fitting the
model to various PMOSFET stress data described in the literature [25].

Generalization of Model

The original Intel model considered only 2D planes. Therefore, it was extended and
generalized in several issues: the three-dimensional case, doping dependence, and carrier
redistribution between more than two valleys.

To generalize the model for the three-dimensional case, three  planes where the model
is applied separately are considered. It is assumed that the valence band is a sum of six
ellipsoids and this is consistent with the model suggested in the literature [26]. Sentaurus
Device transforms the stress tensor into the crystal system and then, considering these three

 planes, it selects only the corresponding components of the stress tensor. For example,
for the ,  plane, Sentaurus Device takes only the , , and  stress components
and recomputes them into , , and  of Eq. 994. Additionally, a modification of the effective
mass perpendicular to the plane (parallel to the  direction) was introduced to account
better for  simulation cases: , where the parameter  can
be modified in the parameter file.

With this modification, the diagonal tensor of the stress-induced mobility change in the ,
,  coordinate system can be written as:

(996)

110  110 
110  110 

110  110 

Δ d1s=

1
mt1
--------

1
mt0
-------- 1 st1s st2s

2
bt1b bt2b

2
+ + + +( )=

1
mt2
--------

1
mt0
-------- 1  st1– s st2s

2
bt1b bt2b

2
+ + +( )=

d1 st1 st2 bt1 bt2, , , ,

100 

100{ }
100[ ] 010[ ] s1 s2 s6

a b s
001[ ]

001  1 mt 001 ⁄ 1 bttb+( ) mt0⁄= btt

110 
110  001 

Δμ110

Δμ 110–

Δμ001

μ0

f1

mt1
--------

f2

ml2
--------+ 

  0.5
mt0
--------

0.5
ml0
--------+ 

  1–⁄ 0 0

0
f1

ml1
--------

f2

mt2
--------+ 

  0.5
mt0
--------

0.5
ml0
--------+ 

  1–⁄ 0

0 0 mt0 mt 001 ⁄ 1–

=

856 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
Next, the relative change of the mobility is computed independently for each plane and it is
summed in the crystal system. Finally, the mobility change tensor is transformed from the
crystal system to the simulation one.

The carrier occupation of the two valleys (see Eq. 993) is derived assuming Boltzmann
statistics and the same density-of-states in both these valleys. To obtain a doping dependence,
it is necessary to consider Fermi–Dirac statistics and, in this case, the following expression is
obtained: 

(997)

where  is the hole quasi-Fermi level that is computed either assuming charge neutrality
between carrier and doping, which gives only the doping dependency of the model or using
carrier local concentration.

As previously discussed, the generalized model considers six ellipsoids and, therefore, the
carrier reoccupation between all these valleys must be accounted for. This is not a simple
problem because the stress-induced energy shift of each valley must be accounted for. 

As an experimental option, Sentaurus Device gives the following simplified expressions:

(998)

where  is equal to the number of ellipsoids that you want to consider. The value of  can
be specified in the parameter file. The default value is 2, which transforms Eq. 998 into
Eq. 997.

NOTE For this multi-ellipsoid option and , the sum  even
without the stress. Therefore, Eq. 996 is slightly modified also to
account for this different initial occupation.

f1
1

1 F1 2⁄
EV Fp– Δ–

kT
-------------------------- 
  F1 2⁄

EV Fp–

kT
----------------- 
 ⁄+

--------------------------------------------------------------------------------------------=

f2 1 f1–=

Fp

f1

F1 2⁄
EV Fp–

kT
----------------- 
 

Ne 1–( )F
1 2⁄

EV Fp–

kT
----------------- 
  F1 2⁄

EV Fp– Δ–

kT
-------------------------- 
 +

----------------------------------------------------------------------------------------------------------=

f2

F1 2⁄
EV Fp– Δ–

kT
-------------------------- 
 

Ne 1–( )F
1 2⁄

EV Fp–

kT
----------------- 
  F1 2⁄

EV Fp– Δ–

kT
-------------------------- 
 +

----------------------------------------------------------------------------------------------------------=

Ne Ne

Ne 2> f1 f2 1<+
Sentaurus™ Device User Guide 857
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
Using Intel Mobility Model

To select the Intel stress-induced hole mobility model, you must include the following keyword
in the Mobility statement of the Piezo model:

Physics {
Piezo( Model(Mobility(hSixBand)) )

}

The keyword hSixBand assumes Boltzmann statistics and, in this case, Eq. 993 will be
activated. To have doping dependence (see Eq. 997), the keyword hSixBand(Doping)
should be specified, but to have carrier concentration dependency (Fermi statistics), use the
keywords hSixBand(Fermi). The model parameters (see Eq. 995) can be specified in the
StressMobility section of the parameter file as follows:

StressMobility {
mh_l0 = 0.48 # [1]
mh_t0 = 0.15 # [1]
ne = 2 # [1]
d1 = -6.0000e-11 # [eV/Pa]
st1 = -9.4426e-10 # [1/Pa]
st2 = 4.3066e-19 # [1/Pa^2]
bt1 = -1.0086e-10 # [1/Pa]
bt2 = 6.5886e-21 # [1/Pa^2]
btt = 1.2000e-10 # [1/Pa]

}

PMOS transistors are usually oriented in the direction to have maximum stress effect. To define
this direction for the x-axis of a Sentaurus Device simulation, the following parameter set can
be specified for the 2D case:

LatticeParameters {
X = (1, 0, 1) #[1]
Y = (0, 1, 0) #[1]

}

The hSixBand carrier occupancies  and  are calculated in the crystallographic coordinate
system for each band. To plot these values, use the following keywords in the Plot section of
the command file:

■ f1BandOccupancy001 = Occupancy of the  ellipsoid in the (001) plane

■ f2BandOccupancy001 = Occupancy of the  ellipsoid in the (001) plane

■ f1BandOccupancy010 = Occupancy of the  ellipsoid in the (010) plane

■ f2BandOccupancy010 = Occupancy of the  ellipsoid in the (010) plane

■ f1BandOccupancy100 = Occupancy of the  ellipsoid in the (100) plane

■ f2BandOccupancy100 = Occupancy of the  ellipsoid in the (100) plane

f1 f2

110 

110 

110 

110 

110 

110 
858 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
Piezoresistance Mobility Model

This approach [5][7][27] focuses on the modeling of the piezoresistive effect. The model is
based on an expansion of the mobility enhancement tensor in terms of stress. Sentaurus Device
provides options for computing either a first-order or a second-order piezoresistance mobility
model. The first-order model accounts for a linear dependency on stress; whereas, the second-
order model accounts for both linear and quadratic dependencies on stress.

The electron or hole mobility enhancement tensor, expanded up to second order in stress, is
given by:

(999)

where:

■  is a component of the electron or hole stress-dependent mobility tensor.

■  denotes the isotropic mobility without stress.

■  is the Kronecker delta function.

■  is a component of the stress tensor.

■  is a component of the first-order electron or hole piezoconductance tensor.

■  is a component of the second-order electron or hole piezoconductance tensor.

The piezoconductance tensors are symmetric, which allows Eq. 999 to be written in a
contracted form using index contraction (Eq. 936) and conventional contraction rules (see [7],
for example):

(1000)

The components of the piezoconductance tensors are related to the components of the more
familiar piezoresistance tensors through the following relations [7]:

(1001)

where  and  are components of the first-order and second-order piezoresistance tensors,
respectively. When the first-order model is used (the default), only the first summation in
Eq. 1000 is included in the calculation. When the second-order model is used, the full
expression given by Eq. 1000 is used.

μi j

μ0
------ δij Πijklσkl

l 1=

3


k 1=

3

 Πijklmnσ
kl

σ
mn

n 1=

3


m 1=

3


l 1=

3


k 1=

3

+ +=

μij

μ0

δij

σkl

Πijkl

Πijklmn

μi

μ0
------ δi1 δi2 δi3+ +( ) Πijσj

j 1=

6

 Πijkσ
j
σ

k

k 1=

6


j 1=

6

+ +=

πi j = Πi j–           ↔ Πi j = πij–

πi jk = Πi jk ΠijΠik+–           ↔ Πi jk = πijk πi jπik+–

πij πijk
Sentaurus™ Device User Guide 859
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
In crystals with cubic symmetry such as silicon, the number of independent coefficients of the
first-order piezoresistance tensor reduces to three by rotating the coordinate system parallel to
the high-symmetric axes of the crystal [8] resulting in the following  tensor:

(1002)

The second-order piezoresistance tensor has only nine independent components and can be
expressed with the following  tensor:

(1003)

Since the coordinate system of the simulation is not necessarily parallel to the high-symmetric
axis of the crystal, the orientations of the x-axis and y-axis of the crystal system can be
specified in the command file (see Using Stress and Strain on page 823). 

Doping and Temperature Dependency

A simple model for the doping and temperature variation of the first-order and second-order
piezoconductance coefficients is given by [7][28]:

(1004)

6 6×

πij[ ]

π11 π12 π12 0 0 0

π12 π11 π12 0 0 0

π12 π12 π11 0 0 0

0 0 0 π44 0 0

0 0 0 0 π44 0

0 0 0 0 0 π44

=

6 6 6××

π1jk[ ]

π111 π112 π112 0 0 0

π112 π122 π123 0 0 0

π112 π123 π122 0 0 0

0 0 0 π144 0 0

0 0 0 0 π166 0

0 0 0 0 0 π166

= π2 jk[ ]

π122 π112 π123 0 0 0

π112 π111 π112 0 0 0

π123 π112 π122 0 0 0

0 0 0 π166 0 0

0 0 0 0 π144 0

0 0 0 0 0 π166

= π3jk[ ]

π122 π123 π112 0 0 0

π123 π122 π112 0 0 0

π112 π112 π111 0 0 0

0 0 0 π166 0 0

0 0 0 0 π166 0

0 0 0 0 0 π144

=

π4jk[ ]

0 0 0 π441 0 0

0 0 0 π661 0 0

0 0 0 π661 0 0

π441 π661 π661 0 0 0

0 0 0 0 0 π456

0 0 0 0 π456 0

= π5 jk[ ]

0 0 0 0 π661 0

0 0 0 0 π441 0

0 0 0 0 π661 0

0 0 0 0 0 π456

π661 π441 π661 0 0 0

0 0 0 π456 0 0

= π6jk[ ]

0 0 0 0 0 π661

0 0 0 0 0 π661

0 0 0 0 0 π441

0 0 0 0 π456 0

0 0 0 π456 0 0

π661 π661 π441 0 0 0

=

Πi j N T,( ) = P1 N T,( )Πij 0 300K,( )

Πijk N T,( ) = P2 N T,( )Πijk 0 300K,( )
860 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
where  and  are piezoconductance coefficients for low-doped
silicon at , and and  are doping factors given by:

(1005)

In Eq. 1005,  is a Fermi–Dirac integral of order “r” and  is the Fermi energy measured
from the band edge in units of  (  and ).
Doping dependency is introduced by assuming charge neutrality in the calculation of the Fermi
energy.

NOTE For minority carriers, the doping factors  and  are
equal to 1. In addition, Sentaurus Device allows the calculation to be
suppressed for majority carriers when the doping is below a user-
specified doping threshold (see Stress Mobility Model for Minority
Carriers on page 877).

The temperature and doping variation of the piezoresistance coefficients is obtained by
combining Eq. 1001 and Eq. 1004. An exception to this is when the first-order model is used.
In this case, the piezoresistance coefficients are split between a constant part (associated with
changes in the effective masses) and a part that varies with temperature and doping (associated
with anisotropic scattering):

(1006)

The default values of the piezoresistance coefficients for low-doped silicon at  are listed
in Table 146 on page 862 and Table 147 on page 862. They can be changed in the parameter
file as described in Using Piezoresistance Mobility Model on page 861.

Using Piezoresistance Mobility Model

The command file syntax for the piezoresistance mobility models, including options, is:

Physics {
Piezo (

Model (
Mobility (

Tensor (
[FirstOrder | SecondOrder] [Enormal | <pmi_model>] [Kanda]
[ParameterSetName= "<psname>" | AutoOrientation]

)
)

)

Πij 0 300K,( ) Πijk 0 300K,( )
300 K P1 N T,( ) P2 N T,( )

P1 N T,( ) =
300K

T
------------- 
  F 1– η( )

F0 η( )
-----------------

P2 N T,( ) =
300K

T
------------- 
  2 F 2– η( )

F0 η( )
-----------------

Fr η( ) η
kT ηn EF n, EC–( ) kT( )⁄= ηp EV EF p,–( ) kT( )⁄=

P1 N T,( ) P2 N T,( )

πi j N T,( ) πi j var, P1 N T,( ) πij con,+=

300 K
Sentaurus™ Device User Guide 861
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
)
}

The keyword Tensor selects the anisotropic tensor model for electron and hole mobility.
Alternatively, the keywords eTensor or hTensor can be used to select this model for only one
carrier.

The keyword FirstOrder or SecondOrder selects the first-order or second-order model,
respectively. The default is FirstOrder. When the FirstOrder model is used, Sentaurus
Device uses the piezoresistance coefficients shown in Table 146. These can be changed from
their default values in the Piezoresistance section of the parameter file. 

When the SecondOrder model is used, Sentaurus Device uses the piezoresistance coefficients
shown in Table 147. These also can be changed from their default values in the
Piezoresistance section of the parameter file. Note that the SecondOrder model uses a
different set of first-order piezoresistance coefficients than the FirstOrder model. This
allows the FirstOrder and SecondOrder models to be calibrated separately. 

Table 146 Piezoresistance coefficients for FirstOrder model: Defaults for silicon

Symbol Parameter name Electrons Holes Unit

p11var

p12var

p44var

p11con 0.0

p12con 0.0

p44con 0.0

Table 147 Piezoresistance coefficients for SecondOrder model: Defaults for silicon

Symbol Parameter name Electrons Holes Unit

p11 0.0

p12

p44

p111

p112

p122

p123

p144

π11 var, 1.026 10
9–×– 1.5 10

11–× Pa
1–

π12 var, 5.34 10
10–× 1.5 10

11–× Pa
1–

π44 var, 1.36 10
10–×– 1.1 10

9–× Pa
1–

π11 con, 5.1 10
11–× Pa

1–

π12 con, 2.6– 10
11–× Pa

1–

π44 con, 2.8 10
10–× Pa

1–

π11 1.1 10
9–×– Pa

1–

π12 4.5 10
10–× 2.0 10

11–× Pa
1–

π44 2.5 10
10–× 1.19 10

9–× Pa
1–

π111 6.6 10
19–× 4.5– 10

19–× Pa
2–

π112 5.5– 10
20–× 2.8 10

19–× Pa
2–

π122 2.2– 10
20–× 2.5– 10

19–× Pa
2–

π123 8.8 10
19–× 2.0 10

20–× Pa
2–

π144 1.0 10
20–× 3.3– 10

19–× Pa
2–
862 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
The keyword Kanda activates the calculation of the doping factors  and 
(see Eq. 1005). If Kanda is not specified, these factors are equal to 1.

Named Parameter Sets for Piezoresistance

The Piezoresistance parameter set can be named. For example, in the parameter file, you
can write the following to declare a parameter set with the name myset:

Piezoresistance "myset" { ... }

To use a named parameter set, specify its name with ParameterSetName as an option to
Tensor as shown in the command file syntax (see Using Piezoresistance Mobility Model on
page 861).

By default, the unnamed parameter set is used.

Auto-Orientation for Piezoresistance

The piezoresistance models support the auto-orientation framework (see Auto-Orientation
Framework on page 37) that switches between different named parameter sets based on the
orientation of the nearest interface. This can be activated by specifying AutoOrientation as
an argument to Tensor in the command file. 

Enormal- and MoleFraction-Dependent Piezo Coefficients

Measured data shows that the piezoresistive coefficients can have dependencies with respect to
the normal electric field  or the mole fraction  or both. Sentaurus Device has a calibration
option to specify these dependencies of the piezoresistive coefficients.

This model is based on the piezoresistive prefactors . The new coefficients are
calculated from:

(1007)

p166

p661

p456

p441 0.0

Table 147 Piezoresistance coefficients for SecondOrder model: Defaults for silicon 

Symbol Parameter name Electrons Holes Unit

π166 6.9– 10
19–× 6.6 10

19–× Pa
2–

π661 6.0 10
21–× 3.1– 10

19–× Pa
2–

π456 2.0 10
20–× 3.0– 10

19–× Pa
2–

π441 2.0 10
20–× Pa

2–

P1 N T,( ) P2 N T,( )

E⊥ x

Pij Pij E⊥ x,( )=

πij new, Pij E⊥ x,( ) πij⋅=
Sentaurus™ Device User Guide 863
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
Sentaurus Device allows a piecewise linear or spline approximation (the third degree) of the
prefactors over the normal electric field and a piecewise linear or piecewise cubic
approximation over the mole fraction (see Ternary Semiconductor Composition on page 25).

Using Piezoresistive Prefactors Model

To activate this model, add the keyword Enormal to the subsection {e,h}Tensor, for
example:

Physics {
...
Piezo(

Model(Mobility(eTensor(Kanda Enormal)))
)

}

The implementation of this model is based on the PMI (see Piezoresistive Coefficients on
page 1237). The keyword Enormal means that Sentaurus Device uses the PMI predefined
model PmiEnormalPiezoResist. You can create your own PMI models and, in this case, the
keyword Enormal must be replaced by the name of the PMI model (for example,
eTensor("my_pmi_model")) and the parameter file must contain a corresponding section.

NOTE Piezoresistive prefactors are only available when using the
FirstOrder piezoresistance mobility model. In addition, named
parameter sets and auto-orientation are not supported for piezoresistive
prefactors.

By default, the values of all prefactors are equal to 1. These values can be changed in the
section PmiEnormalPiezoResist of the parameter file. The following examples show how
to use this section.

Example 1

This example shows the section of the parameter file for purely Enormal-dependent
prefactors:

Material = "Silicon" {
* Example 1: Only Enormal dependence of piezoresistive coefficients
PmiEnormPiezoResist
{

eEnormalFormula = 2 # cubic spline
*  = 0 # no Enormal dependence (default)
*  = 1 # piecewise linear approximation
*  = 2 # cubic spline approximation 

eNumberOfEnormalNodes = 3 # number of nodes for Spline(Enormal)
864 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
# _k is _"index of node"
eEnormal_1 = 1.0e+5 # [V/cm

eP11_1 = 1.0 # [1]
eP12_1 = 1.0 # [1]
eP44_1 = 1.0 # [1]

eEnormal_2 = 4.0e+5 # [V/cm]
eP11_2 = 0.75  # [1]
eP12_2 = 0.75 # [1]
eP44_2 = 0.75  # [1]

eEnormal_3 = 7.0e+5 # [V/cm]
eP11_3 = 0.5 # [1]
eP12_3 = 0.5 # [1]
eP44_3 = 0.5 # [1]

hEnormalFormula = 1 # piecewise linear approximation
hNumberOfEnormalNodes = 4 # number of nodes

# _k is _"index of the node"
hEnormal_1 = 1.0e+5 # [V/cm]

hP11_1 = 1.0 # [1]
hP12_1 = 1.0 # [1]
hP44_1 = 1.0 # [1]

hEnormal_2 = 1.9e+5 # [V/cm]
hP11_2 = 0.969625 # [1]
hP12_2 = 0.969625 # [1]
hP44_2 = 0.969625 # [1]

hEnormal_3 = 6.1e+5 # [V/cm]
hP11_3 = 0.530375 # [1]
hP12_3 = 0.530375 # [1]
hP44_3 = 0.530375 # [1]

hEnormal_4 = 7.0e+5 # [V/cm]
hP11_4 = 0.5 # [1]
hP12_4 = 0.5 # [1]
hP44_4 = 0.5 # [1]

}
}

Sentaurus™ Device User Guide 865
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
Figure 55 shows the dependency of these piezo prefactors with respect to Enormal. 

Figure 55 Example of cubic spline and piecewise linear approximation of piezo prefactors

Example 2

This example shows the section of the parameter file for purely MoleFraction-dependent
prefactors:

Material = "SiliconGermanium" {
* Mole dependent material: SiliconGermanium (x=0) = Silicon
* Mole dependent material: SiliconGermanium (x=1) = Germanium
* Example 2: Only MoleFraction dependence.
PmiEnormPiezoResist
{

eMoleFormula = 1 # piecewise linear approximation
eMoleFractionIntervals = 1 # number of MoleFraction intervals

# i.e. x0=0, x1=1

# _i is _"index of mole fraction value"
eXmax_0 = 0

eP11_0 = 1 # [1]
eP12_0 = 1 # [1]
eP44_0 = 1 # [1]

hPij(En) − Piecewise linear approximation
ePij(En) − Cubic spline 

Enormal  [V/cm]
200000 400000 600000

P
ij 

P
re

fa
ct

or
s 

 [1
]

0.5

0.6

0.7

0.8

0.9

1

866 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
eXmax_1 = 1
eP11_1 = 0.5 # [1]
eP12_1 = 0.5 # [1]
eP44_1 = 0.5 # [1]

hMoleFormula = 2 # piecewise cubic approximation
hMoleFractionIntervals = 2

# see Ternary Semiconductor Composition on page 25
# P = P[i-1] + A[i]*dx + B[i]*dx^2 + C[i]*dx^3
# where:
# A[i] = (P[i]-P[i-1])/dx[i] - B[i]*dx[i] - C[i]*dx[i]
# dx[i] = xMax[i] - xMax[i-1]
# dx = x - xMax[i-1]
# i = 1,..,nbMoleIntervals

# _i is _"index of mole fraction value"
hXmax_0 = 0

hP11_0 = 1 # [1]
hP12_0 = 1 # [1]
hP44_0 = 1 # [1]

hXmax_1 = 0.5
hP11_1 = 2 # [1]
hP12_1 = 2 # [1]
hP44_1 = 2 # [1]

# B and C coefficients
hB11_1 = 4.
hC11_1 = 0.
hB12_1 = 4.
hC12_1 = 0.
hB44_1 = 4.
hC44_1 = 0.

hXmax_2 = 1
hP11_2 = 3 # [1]
hP12_2 = 3 # [1]
hP44_2 = 3 # [1]

# B and C coefficients
hB11_2 = -4.
hC11_2 = 0.
hB12_2 = -4.
hC12_2 = 0.
hB44_2 = -4.
hC44_2 = 0.

}
}

Sentaurus™ Device User Guide 867
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
Figure 56 shows the dependency of the hPij prefactors of the previous example with respect
to MoleFraction. 

Figure 56 Example of piecewise cubic approximation

Example 3

This example shows the section of the parameter file for Enormal- and MoleFraction-
dependent prefactors:

Material = "SiliconGermanium" {
* Mole dependent material: SiliconGermanium (x=0) = Silicon
* Mole dependent material: SiliconGermanium (x=1) = Germanium

* Example 3: Enormal and MoleFraction dependent piezoresistance prefactors
* (general case)
PmiEnormPiezoResist
{

eMoleFormula = 2 # piecewise cubic approximation
eMoleFractionIntervals = 1 # i.e. x0=0, x1=1

# begin description for mole fraction x0=0
eXmax_0 = 0
eEnormalFormula_0 = 2       # cubic spline
eNumberOfEnormalNodes_0 = 3 # number of nodes for Spline(Enormal)

hPij(MoleFraction) − Piecewice cubic approximation

MoleFraction  [1]
0 0.2 0.4 0.6 0.8 1

hP
ij 

P
re

fa
ct

or
s

1

1.5

2

2.5

3

868 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
 
# _i_k is _"index of mole fraction value"_"index of node for Spline"

eEnormal_0_1 = 1.0e+5 # [V/cm]
eP11_0_1 = 1.0 # [1]
eP12_0_1 = 1.0 # [1]
eP44_0_1 = 1.0 # [1]

eEnormal_0_2 = 4.0e+5 # [V/cm]
eP11_0_2 = 0.75 # [1]
eP12_0_2 = 0.75 # [1]
eP44_0_2 = 0.75 # [1]

eEnormal_0_3 = 7.0e+5 # [V/cm]
eP11_0_3 = 0.5 # [1]
eP12_0_3 = 0.5 # [1]
eP44_0_3 = 0.5 # [1]

# end description for mole fraction x0=0

# begin description for mole fraction x1=1
eXmax_1 = 1
eEnormalFormula_1 = 1 # piecewise linear approximation
eNumberOfEnormalNodes_1 = 2 # number of nodes

# _i_k is _"index of mole fraction value"_"index of node for Spline"
eEnormal_1_1 = 1.0e+5 # [V/cm]

eP11_1_1 = 1.0 # [1]
eP12_1_1 = 1.0 # [1]
eP44_1_1 = 1.0 # [1]

eEnormal_1_2 = 7.0e+5 # [V/cm]
eP11_1_2 = 0.5 # [1]
eP12_1_2 = 0.5 # [1]
eP44_1_2 = 0.5 # [1]

# B and C coefficients
hB11_1 = 3.
hC11_1 = -2.
hB12_1 = 3.
hC12_1 = -2.
hB44_1 = 3.
hC44_1 = -2.

# end description for mole fraction x1=1

# hPij prefactors are equal to default values (i.e. 1)
}
}

Sentaurus™ Device User Guide 869
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
Figure 57 shows the difference between Id–Vg curves for a MOSFET. The parameter file
section PmiEnormPiezoResist is the same as in Example 1 on page 864. The Physics
section is:

Physics {
Fermi
Mobility( Phumob HighFieldsat Enormal )
EffectiveIntrinsicDensity( BandGapNarrowing(OldSlotboom) )
Recombination( SRH(DopingDependence) )
Piezo(

Model( Mobility(eTensor(Kanda Enormal)) DeformationPotential )
Stress = (1.3e8, 0, 0, 0, 0, 0)

)
} 

Figure 57 Id–Vg curve, with Enormal-dependent piezo prefactors, shifts downwards

Isotropic Factor Models

Sentaurus Device provides options for calculating stress-dependent enhancement factors that
are applied to mobility as isotropic factors. These options, known as Factor models, can be
used as an alternative to the tensor-based models and provide a robust approximate solution for
cases where current in the device is predominantly in a direction parallel to one of the
coordinate axes.

Pij(En) = Cubic spline approximation
Pij(En) = 1 (no dependence over Enormal)

Id−Vg, Vd = 0.01 V, StressXX = 1.3e+8 Pa

0

1e-05

2e-05

3e-05

1 2 3 4
870 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
By default, the mobility enhancement factor  calculated from a Factor model is applied to
the total unstressed low-field mobility, :

(1008)

where:

(1009)

However, the option ApplyToMobilityComponents allows the enhancement factor to be
applied to individual mobility components (see Factor Models Applied to Mobility
Components on page 876).

The choices for isotropic Factor models include FirstOrder or SecondOrder
piezoresistance models, EffectiveStressModel, a mobility stress factor PMI model, and
an SFactor dataset or PMI model.

Using Isotropic Factor Models

The command file syntax for the isotropic Factor models, including options, is:

Physics {
Piezo (

Model (
Mobility (

Factor (
[ FirstOrder | SecondOrder |
EffectiveStressModel([AxisAlignedNormals]) |
<mobility_stress_factor_pmi_model> |
SFactor="<dataset_name-or-pmi_model_name>" ]

[ChannelDirection=<n>] [Kanda]
[AutoOrientation | ParameterSetName="<psname>"]
[ApplyToMobilityComponents]

)
)

)
)

}

The keyword Factor selects an isotropic factor model for electron and hole mobility.
Alternatively, the keywords eFactor or hFactor can be used to select these models for only
one carrier.

Descriptions of the model choices and options are given in the following sections.

γ
μlow,0

μlow γμlow,0=

γ 1
Δμlow

μlow,0
--------------+=
Sentaurus™ Device User Guide 871
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
Piezoresistance Factor Models

These models are based on the full piezoresistance tensor calculations described in
Piezoresistance Mobility Model on page 859.

The piezoresistance Factor models use one of the diagonal components of the piezoresistance
mobility enhancement tensor in the simulation coordinate system (Eq. 1000 after
transformation from the crystallographic coordinate system) as the isotropic factor  that is
applied to mobility. When using this option, the channel direction must be specified using the
ChannelDirection parameter, which determines the component of the mobility
enhancement tensor to use (the default is ChannelDirection=1):

(1010)

As with the piezoresistance tensor models, either a FirstOrder or SecondOrder model can
be selected, and piezoresistance coefficients can be specified in the Piezoresistance
section of the parameter file (see Table 146 on page 862 and Table 147 on page 862).

Effective Stress Model

The EffectiveStressModel is an isotropic Factor model that relates the mobility
enhancement  in a device to an effective stress parameter that is calculated from the diagonal
components of the 3D stress tensor [29]:

(1011)

where:

(1012)

γ

γ
μ'1 μ0⁄ = μ'xx μ0⁄ , ChannelDirection=1

μ'2 μ0⁄ = μ'yy μ0⁄ , ChannelDirection=2

μ'3 μ0⁄ = μ'zz μ0⁄ , ChannelDirection=3








=

γ

γ 1
μ0
------

A1 A2–

1
Seff S0–

t
------------------- 
 exp+

-------------------------------------------- A2+

 
 
 
 
 

=

A1

a10 a11

F⊥

10
6
 V/cm

-----------------------
 
 
 

a12

F⊥

10
6
 V/cm

-----------------------
 
 
  2

+ + , F⊥ F0 10
6
 V/cm×≤

a10 a11F0 a12F0
2

+ + , F⊥ F0 10
6
 V/cm×>








=

872 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
(1013)

(1014)

(1015)

 is the normal electric field and , , , , , , , , , , , , ,
and  are model parameters.

Effective Stress

In Eq. 1011,  is an effective stress parameter and is given by:

(1016)

where  and  are model parameters, and  is a diagonal component of the stress tensor.
The subscripts in Eq. 1016 have the following meaning:

(1017)

The assignment of , , and  is on a vertex-by-vertex basis.

 is always assigned the diagonal component of stress that is associated with the
ChannelDirection specification:

(1018)

A2

a20 a21

F⊥

10
6
 V/cm

-----------------------
 
 
 

a22

F⊥

10
6
 V/cm

-----------------------
 
 
  2

+ + , F⊥ F0 10
6
 V/cm×≤

a20 a21F0 a22F0
2

+ + , F⊥ F0 10
6
 V/cm×>








=

S0

s00 s01

F⊥

10
6
 V/cm

-----------------------
 
 
 

s02

F⊥

10
6
 V/cm

-----------------------
 
 
  2

+ + , F⊥ F0 10
6
 V/cm×≤

s00 s01F0 s02F0
2

+ + , F⊥ F0 10
6
 V/cm×>








=

t t0 t1

F⊥

10
6
 V/cm

-----------------------
 
 
 

t2

F⊥

10
6
 V/cm

-----------------------
 
 
  2

+ +=

F⊥ μ0 a10 a11 a12 a20 a21 a22 s00 s01 s02 t0 t1 t2

F0

Seff

Seff MPa( ) αi

Sii

10
6
 Pa

----------------
 
 
 

βij

Sii

10
6
 Pa

----------------
 
 
  Sjj

10
6
 Pa

----------------
 
 
 

j i≥

3


i 1=

3

+

i 1=

3

=

αi βij Sii

i j,
1 channel direction→
2 nearest interface normal direction→
3 in-plane direction→






=

S11 S22 S33

S11

S11

σxx , ChannelDirection=1

σyy , ChannelDirection=2

σzz , ChannelDirection=3








=

Sentaurus™ Device User Guide 873
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
The assignment of  and  is performed automatically by Sentaurus Device and depends
on the dimensionality of the structure, ChannelDirection, and the nearest interface normal
direction.

In 2D structures with :

■ If , then  and .

■ If , then  and .

In 3D structures, or 2D structures with , the nearest interface normal may not be
aligned with an axis direction. In this case, a stress transformation is made to a coordinate
system ( , , ) where  is aligned with the channel direction,  is aligned with the
component of the nearest interface normal that is not in the channel direction, and  is aligned
with . After the stress transformation, the stress assignments are:

(1019)

Alternatively, the  assignment also can be made by choosing the diagonal stress component
corresponding to the direction for which the nearest interface normal has its largest component
(excluding any component in the channel direction). In this case, the assignment is performed
as if the interface normal is aligned along an axis.  is then taken as the component that is
not assigned to  or . To select this option, specify AxisAlignedNormals as an
argument to the EffectiveStressModel.

Effective Stress Model Parameters

The EffectiveStressModel parameters can be specified in the EffectiveStressModel
parameter set in the parameter file. Table 148 lists the model parameters from [29] for two
different surface orientations. The (100) parameters are used by default. 

Table 148 Effective stress model parameters

Symbol Parameter 
name

(100)/<110> 
Electrons

(100)/<110> 
Holes

(110)/<110> 
Electrons

(110)/<110> 
Holes

Unit

alpha1 1.0 1.0 1.0 1.0 MPa

alpha2 –1.7 –0.4 0.8 –0.3 MPa

alpha3 0.7 –0.6 –1.8 –0.7 MPa

beta11 0.0 0.0 0.0 0.0 MPa

beta12 0.0 0.0 0.0 0.0 MPa

beta13 0.0 –0.00004 0.0 0.0 MPa

S22 S33

S11 σzz≠
S11 σxx= S22 σyy= S33 σzz=

S11 σyy= S22 σxx= S33 σzz=

S11 σzz=

x'ˆ y'ˆ z'ˆ x'ˆ y'ˆ

z'ˆ

x'ˆ y'ˆ×

S11 = σx'x'

S22 = σy'y'

S33 = σz'z'

S22

S33

S11 S22

α1

α2

α3

β11

β12

β13
874 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
By default, the  parameter is ignored. Specifying  causes a fixed value of the
normal field to be used in the evaluation of  instead of the actual normal field. This is useful
for calibration or examination of model behavior.

Mobility Stress Factor PMI Model

A mobility stress factor PMI model (see Mobility Stress Factor on page 1193) created by the
user can be utilized to obtain a mobility enhancement factor. In addition to stress, this type of
PMI model allows a dependency on the normal electric field.

If specified, the Factor options ChannelDirection=<n>, AutoOrientation, and
ParameterSetName="<psname>" are passed as parameters to the mobility stress factor PMI
model (AutoOrientation is passed as AutoOrientation=1).

beta22 0.0 0.00006 0.0 0.0001 MPa

beta23 0.0 –0.00018 0.0 0.0 MPa

beta33 0.0 0.00011 0.0 0.0 MPa

mu0 810.0 212.0 326.0 1235.0

a10 565.0 2460.0 270.0 505.0

a11 –81.0 0.0 0.0 –365.0

a12 –44.0 0.0 0.0 164.0

a20 2028.0 42.0 761.0 9136.0

a21 –1992.0 0.0 0.0 –25027.0

a22 920.0 0.0 0.0 24494.0

s00 1334.0 –1338.0 799.0 –2084.0 MPa

s01 –2646.0 0.0 0.0 6879.0 MPa

s02 875.0 0.0 0.0 –6896.0 MPa

t0 882.0 524.0 417.0 –650.0 MPa

t1 –987.0 0.0 0.0 0.0 MPa

t2 604.0 0.0 0.0 0.0 MPa

F0 0.5 1

F_fixed –1 –1 –1 –1 MV/cm

Table 148 Effective stress model parameters (Continued)

Symbol Parameter 
name

(100)/<110> 
Electrons

(100)/<110> 
Holes

(110)/<110> 
Electrons

(110)/<110> 
Holes

Unit

β22

β23

β33

μ0 cm
2
/(Vs)

a10 cm
2
/(Vs)

a11 cm
2
/(Vs)

a12 cm
2
/(Vs)

a20 cm
2
/(Vs)

a21 cm
2
/(Vs)

a22 cm
2
/(Vs)

s00

s01

s02

t0

t1

t2

F0 10
10

10
10

10
10

Ffixed

Ffixed Ffixed 0≥
γ

Sentaurus™ Device User Guide 875
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
SFactor Dataset or PMI Model

The SFactor parameter can be used to obtain an isotropic mobility enhancement factor from
a dataset or a PMI model.

If SFactor="<dataset_name>" is used, the vertex values of  are taken directly from the
specified dataset name, which can include the PMI user fields PMIUserField0 through
PMIUserField299.

If SFactor="<pmi_model_name>" is used, the vertex values of  are calculated from a
space factor PMI model (see Space Factor on page 1190). If specified, the Factor options
ChannelDirection=<n>, AutoOrientation, and ParameterSetName="<psname>"
are passed as parameters to the space factor PMI model (AutoOrientation is passed as
AutoOrientation=1).

Isotropic Factor Model Options

Kanda Parameter

The Kanda parameter can be specified for all isotropic factor models to include a doping and
temperature dependency in the enhancement factor calculation. In the case of the FirstOrder
and SecondOrder piezoresistance models, this is included as described in Doping and
Temperature Dependency on page 860. For the EffectiveStressModel and SFactor
models, the enhancement factor given by Eq. 1009 is modified to include the  factor
(see Eq. 1005):

(1020)

Named Parameter Sets and Auto-Orientation

The piezoresistance models and the EffectiveStressModel support the use of named
parameter sets (see Named Parameter Sets on page 36) and the auto-orientation framework
(see Auto-Orientation Framework on page 37). To use one of these capabilities, specify
ParameterSetName="<psname>" or AutoOrientation as an argument to Factor in the
command file.

Factor Models Applied to Mobility Components

By default, the isotropic mobility enhancement factor  calculated by a Factor model is
applied to total low-field mobility. However, the calculated enhancement factor can be applied
to select mobility components (for example, only to acoustic phonon mobility or surface
roughness mobility in the Lombardi model) by specifying the option

γ

γ

P1 N T,( )

γ 1 P1 N T,( )
Δμlow

μlow,0
--------------+=

γ

876 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
ApplyToMobilityComponents. When this option is selected, mobility models that support
this feature apply an enhancement factor  to the  mobility component for which a stress
scaling factor  is available:

(1021)

If , then . If , then  and no stress enhancement factor is applied to
this component. In most cases, the stress scaling factors have a value of 0 or 1, but intermediate
values are allowed.

The  parameters are specified in the parameter file in the parameter set associated with the
mobility model. The mobility models that support this feature and the available stress scaling
parameters are shown in Table 149. 

Stress Mobility Model for Minority Carriers

Measured data shows that the stress dependency of minority carrier mobility (like the mobility
of carriers in the channel of a MOSFET) is different from the stress dependency of majority
carrier mobility. For example, the stress effect for minority carriers may have a dependency on
electric field and, perhaps, a different (or smaller) doping dependency.

As a calibration option, Sentaurus Device provides an additional factor  for the stress effect
applied to minority carrier mobility:

(1022)

Table 149 Mobility models that support the ApplyToMobilityComponents feature

Model Parameter set name Available stress scaling parameters

Coulomb2D Coulomb2DMobility

IALMob IALMob , , , , 

Lombardi EnormalDependence , 

NegInterfaceCharge NegInterfaceChargeMobility

PosInterfaceCharge PosInterfaceChargeMobility

RCS RCSMobility

RPS RPSMobility

ThinLayer ThinLayerMobility , , 

γi ith

ai

γi 1 ai γ 1–( )+=

ai 1= γi γ= ai 0= γi 1=

ai

aC

aph,2D aph,3D aC,2D aC,3D asr

aac asr

aC

aC

arcs

arps

abp asp atf

β

μ μ0= 1 β
Δμstress

μ0
------------------+

 
 
 
Sentaurus™ Device User Guide 877
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
where  is the stress-induced change of the mobility tensor for any stress model
described in this chapter. The minority carrier factor  can be specified (the default value is
equal to 1) in the Piezo section of the command file using the keywords eMinorityFactor
and hMinorityFactor for electrons and holes, respectively, for example:

Physics {
Piezo( Model(Mobility(eMinorityFactor = 0.5 hMinorityFactor = 0.5) ) )

}

In some cases, it is useful to switch off the doping dependency of the stress models and also to
have the minority carrier factor  applied to portions of the device where the carrier is actually
a majority carrier (for example, in low-doped parts of MOSFET source/drain regions). This can
be achieved by specifying the parameter DopingThreshold=  as an argument to
eMinorityFactor or hMinorityFactor, for example:

Physics {
Piezo( Model(Mobility(eMinorityFactor(DopingThreshold=1e18) = 0.5

hMinorityFactor(DopingThreshold=-1e18) = 0.5) ) )
}

When DopingThreshold=  is specified, the behavior of the program depends on the
relation of  to the local net doping, :

(1023)

NOTE DopingThreshold=0 corresponds to the regular definition of minority
and majority carriers. To apply the factor  to a portion of the majority
carrier mobility, specify  for electrons and  for holes.

NOTE When the DopingThreshold condition is met (and the doping
dependency of the stress models is switched off), the Tensor(Kanda)
model will behave like Tensor(), the eSubBand(Doping) model
will behave like eSubBand(), and the hSixBand(Doping) model
will behave like hSixBand().

NOTE Specifying eMinorityFactor=0.5 is not the same as specifying
eMinorityFactor(ThresholdDoping=0)=0.5 because, in the
latter case, the stress model doping dependency is switched off for
carriers where this factor is applied.

Δμstress

β

β

Nth

Nth

Nth ND NA–

μn: ND NA Nth  eMinorityFactor = β is applied, stress model doping dependency is switched off→<–

μp: ND NA Nth  hMinorityFactor = β is applied, stress model doping dependency is switched off→>–

β
Nth 0> Nth 0<
878 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
Dependency of Saturation Velocity on Stress

Eq. 1022 can be rewritten in the following form (see Current Densities on page 786):

(1024)

where:

■  are eigenvalues of the tensor .

■  is the orthogonal matrix from eigenvectors (main directions) of this tensor.

In high electric fields, the mobility along the main directions is proportional to the saturation
velocity: . Therefore, the dependence of the saturation velocity on stress is
similar to the mobility (with the factor ). However, measured data shows that saturation
velocity can have a different stress effect or no stress effect. Sentaurus Device has a calibration
option to modify the dependency of saturation velocity on stress in the following form for the
main directions:

(1025)

where  is the stress-independent saturation velocity and  is a user-defined scalar factor.
This factor can be specified using the keyword SaturationFactor in the Piezo section of
the command file. For example:

Physics {
Piezo( Model( Mobility(SaturationFactor = 0.5) ) )

}

This parameter can be specified separately for electrons and holes, for example:

Physics {
Piezo( Model( Mobility(eSaturationFactor = 0.5 hSaturationFactor = 0) ) )

}

The default value for  is 1. This is equivalent to applying the stress enhancement factor to
total mobility with . Using  with a Caughey–Thomas-type mobility (see
Eq. 340, p. 363) is equivalent to applying the stress enhancement factor only to the low-field
mobility, , with . Figure 58 on page 880 shows how the Id–Vd curves depend
on the parameter SaturationFactor.

μ μ0= Q

1 t1+ 0 0

0 1 t2+ 0

0 0 1 t3+

Q
T

ti βΔμstress

μ0
----------------

Q

μi ~ 
vsat

F
------- 1 ti+( )

1 ti+

vsat i, vsat 0,
1 α t⋅ i+( )

1 ti+( )
-------------------------⋅=

vsat 0, α

α
vsat i, vsat 0,= α 0=

μlow vsat i, vsat 0,=
Sentaurus™ Device User Guide 879
N-2017.09



31: Modeling Mechanical Stress Effect
Mobility Modeling
Figure 58 Dependency of Id–Vd curves on SaturationFactor, with Vg = 1.5 V, 
and Stress = (0.6e9, 0, 0, 0, 0, 0)

Mobility Enhancement Limits

With high stress values, the stress-dependent mobility models in Sentaurus Device can
sometimes cause the mobility to become negative or, in some cases, to become unrealistically
large. This is particularly true for the piezoresistance mobility models. To prevent this,
minimum and maximum stress enhancement factors for both electron and hole mobility can be
specified in the Piezoresistance section of the parameter file. The following example
shows the default values for MinStressFactor and MaxStressFactor:

Piezoresistance {
MinStressFactor = 1e-5 , 1e-5 # [1]
MaxStressFactor = 10 , 10 # [1]

}

NOTE Although these parameters are specified in the Piezoresistance
section of the parameter file, these limits are applied to all stress-
dependent mobility models.

SaturationFactor=0.0
SaturationFactor=0.5
SaturationFactor=1.0

Vd [V]
0

Id
 [A

]

0

5e-05

0.0001

1 2
880 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Numeric Approximations for Tensor Mobility
Plotting Mobility Enhancement Factors

The mobility multiplication tensor ( ) can be plotted on the mesh nodes. This tensor is a
symmetric  matrix and, therefore, has six independent values. To plot these values on the
mesh nodes for electron and hole mobilities, use the keywords:

■ eMobilityStressFactorXX, eMobilityStressFactorYY,
eMobilityStressFactorZZ 

■ eMobilityStressFactorYZ, eMobilityStressFactorXZ,
eMobilityStressFactorXY 

■ hMobilityStressFactorXX, hMobilityStressFactorYY,
hMobilityStressFactorZZ 

■ hMobilityStressFactorYZ, hMobilityStressFactorXZ,
hMobilityStressFactorXY 

Numeric Approximations for Tensor Mobility

Tensor Grid Option

Due to an applied mechanical stress, the mobility can become a tensor. The numeric
approximation of the transport equations with tensor mobility is complicated (see Chapter 28
on page 779). However, if the mesh is a tensor one, the approximation is simpler. For this
option, off-diagonal mobility elements are not used and, therefore, there are no mixed
derivatives in the approximation. Such an approximation gives an M-matrix property for the
Jacobian and it permits stable stress simulations. Very often, critical regions are simple and the
mesh constructed in such regions can be close to a tensor one.

NOTE The off-diagonal elements of the mobility tensor appear only if there is
a shear stress or the simulation coordinate system of Sentaurus Device
is different from the crystal system.

To activate this simple tensor-grid approximation, the keyword TensorGridAniso in the
Math section must be specified. 

By default, Sentaurus Device uses the AverageAniso approximation (see AverageAniso on
page 780) which is based on a local transformation of an anisotropic task (stress-induced
mobility tensor) to an isotropic one. 

μ μ0⁄
3 3×
Sentaurus™ Device User Guide 881
N-2017.09



31: Modeling Mechanical Stress Effect
Numeric Approximations for Tensor Mobility
The StressSG approximation (see StressSG on page 781) gives the most accurate results and
is independent of the mesh orientation. Convergence, however, may be worse than for
TensorGridAniso.

NOTE All approximation options do not guarantee a correct solution for
arbitrary mesh and stress. Experiments with these options can give an
estimation of ignored terms.

Stress Tensor Applied to Low-Field Mobility

In all the previous models, the stress tensor factor was a linear factor applied to high-field
mobility. Sentaurus Device allows also to apply the following diagonal mobility tensor factor
to the low-field mobility:

(1026)

where:

■  are the diagonal elements of the stress tensor factor  in Eq. 1022, p. 877.
In this model, off-diagonal elements are not used.

■  is a scalar function that computes the high-field mobility (see High-Field
Saturation on page 361).

This model can be specified in the Math section of the command file as follows:

Math { StressMobilityDependence = TensorFactor }

In this case, the dependency of saturation velocity on stress is given by:

(1027)

which results in the same dependency on SaturationFactor described in Dependency of
Saturation Velocity on Stress on page 879 when a Caughey–Thomas-type mobility model is
used.

The high-field mobility tensor (in Eq. 1026) and the corresponding factors
 can be plotted on the mesh nodes. To plot these values for

electron and hole mobilities, use the following keywords in the Plot section:

■ eTensorMobilityXX, eTensorMobilityYY, eTensorMobilityZZ 

■ hTensorMobilityXX, hTensorMobilityYY, hTensorMobilityZZ 

μhigh

μhigh μlow sxx …,⋅( ) 0 0

0 μhigh μlow syy …,⋅( ) 0

0 0 μhigh μlow szz …,⋅( )

=

sii 1 β
Δμstress

μ0
------------------+

 
 
 

μhigh …( )

vsat i, vsat 0, 1 α t⋅ i+( )⋅=

μhigh μlow sii …,⋅( ) μhigh μlow …,( )⁄
882 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Piezoelectric Polarization
■ eTensorMobilityFactorXX, eTensorMobilityFactorYY,
eTensorMobilityFactorZZ 

■ hTensorMobilityFactorXX, hTensorMobilityFactorYY,
hTensorMobilityFactorZZ 

Piezoelectric Polarization

Sentaurus Device provides two models (strain and stress) to compute polarization effects
in GaN devices. They can be activated in the Physics section of the command file as follows:

Physics {
Piezoelectric_Polarization (strain)
Piezoelectric_Polarization (stress)

}

Sentaurus Device also offers a corresponding PMI model (see Piezoelectric Polarization on
page 1219).

Strain Model

The piezoelectric polarization vector  can be expressed as a function of the local strain tensor
 as follows:

(1028)

Here,  is the spontaneous polarization vector [ ], and the quantities  denote the
strain-charge piezoelectric coefficients [ ].

The quantities  and  are defined in the crystal system. The polarization vector is first
computed in crystal coordinates and is converted to simulation coordinates afterwards.

P
ε

Px

Py

Pz

Px
sp

Py
sp

Pz
sp

e11 e12 e13 e14 e15 e16

e21 e22 e23 e24 e25 e26

e31 e32 e33 e34 e35 e36

εxx

εyy

εzz

εyz

εxz

εxy

+=

Psp C cm2⁄ eij

C cm2⁄

Psp eij
Sentaurus™ Device User Guide 883
N-2017.09



31: Modeling Mechanical Stress Effect
Piezoelectric Polarization
This general model is evaluated in either of the following circumstances:

■ A constant strain tensor has been specified in the Piezo section of the command file.

■ The strain tensor is read from a TDR file. This requires the specification of both
Strain=LoadFromFile within the Physics{Piezo{...}} section and
Piezo=<file> within the File section of the command file.

Otherwise, the simplified model by Ambacher described in Simplified Strain Model will be
selected.

Simplified Strain Model

This model is based on the work by Ambacher et al. [30][31]. It captures the first-order effect
of polarization vectors in AlGaN/GaN HFETs: The interface charge induced is due to the
discontinuity in the vertical component of the polarization vector at material interfaces.

The polarization vector is computed as follows:

(1029)

where:

■  for Formula=1.

■  for Formula=2.

■  denotes the spontaneous polarization vector [ ].

■  is a piezoelectric coefficient [cm/V].

■  are stiffness constants [Pa].

■  are strain–charge piezoelectric coefficients [ ]. The value of strain is
computed as:

(1030)

where  represents the strained lattice constant [ ],  is the unstrained lattice constant
[ ], and ‘relax’ denotes a relaxation parameter [1].

The quantities , , , and  are defined in the crystal system. The polarization vector
is first computed in crystal coordinates and is converted to simulation coordinates afterwards.

Px

Py

Pz

Px
sp

Py
sp

Pz
sp

Pstrain+

=

Pstrain 2d31 strain c11 c12 2c13
2 c33⁄–+( )⋅ ⋅=

Pstrain 2strain e31 e33c13 c33⁄–( )⋅=

Psp C cm2⁄
d31

cij

e31 e33, C cm2⁄

strain 1 relax–( ) a0 a–( ) a⁄⋅=

a0 Å a
Å

Psp dij cij eij
884 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Piezoelectric Polarization
Stress Model

Although, in most practical situations, there are only in-plane stress components due to lattice
mismatch, the vertical and shear stress components give rise to in-plane piezopolarization
components, which lead to volume charge densities and, therefore, potential variations. The
stress model computes the full polarization vector in tensor form without simplifying
assumptions:

(1031)

where  denotes the spontaneous polarization vector [ ],  are the piezoelectric
coefficients [cm/V], and:

(1032)

is the stress tensor [Pa].

The quantities  and  are defined in the crystal system. The stress tensor  is defined in
the stress system. It is first converted from stress coordinates to crystal coordinates. Then, the
polarization vector is computed in crystal coordinates. Afterwards, the polarization vector is
converted to simulation coordinates.

Poisson Equation

Based on the polarization vector, the piezoelectric charge is computed according to:

(1033)

where activation is a nonnegative real calibration parameter (default is 1).

Px

Py

Pz

Px
sp

Py
sp

Pz
sp

d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

σxx

σyy

σzz

σyz

σxz

σxy

+=

Psp C cm2⁄ dij

σxx

σyy

σzz

σyz

σxz

σxy

Psp dij σ

qPE activation P∇–=
Sentaurus™ Device User Guide 885
N-2017.09



31: Modeling Mechanical Stress Effect
Piezoelectric Polarization
This value can be defined in the Physics section:

Physics (MaterialInterface="AlGaN/GaN"){
Piezoelectric_Polarization (strain activation=0.5)

}

The  value is added to the right-hand side of the Poisson equation:

(1034)

Only the first  components of the polarization vector are used to compute the polarization
charge, where  denotes the dimension of the problem.

Parameter File

The following parameters can be specified in the parameter file. All of them are mole fraction
dependent, except a0 and relax:

Piezoelectric_Polarization {
# piezoelectric coefficients [cm/V]
d11 = ...
d12 = ...
...
d36 = ...

# spontaneous polarization [C/cm^2]
psp_x = ...
psp_y = ...
psp_z = ...

Formula = ...

# stiffness constants [Pa]
c11 = ...
c12 = ...
c13 = ...
c33 = ...

# piezoelectric coefficients [C/cm^2]
e11 = ...
e12 = ...
...
e36 = ...

# strain parameters [Å]
a0 = ... 

qPE

ε∇ φ∇⋅ q p n– ND NA– qPE+ +( )–=

d
d

886 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Piezoelectric Polarization
a = ... 
relax = ... # [1]

}

Coordinate Systems

The x-axis and y-axis of the simulation coordinate system are defined in the parameter file:

LatticeParameters {
X = (1, 0,  0)
Y = (0, 0, -1)

}

The z-axis is computed as the outer vector product of the x-axis and y-axis. The simulation
system is defined relative to the crystal system. If the keyword CrystalAxis is present, the
crystal system is defined relative to the simulation system (see Using Stress and Strain on
page 823).

In the above example, the x-axis of the simulation system coincides with the x-axis of the
crystal system. The y-axis of the simulation system runs along the negative z-axis of the crystal
system. This is a common definition for 2D simulations.

If no LatticeParameters section is found in the parameter file, the following defaults take
effect:

LatticeParameters {
X = (1, 0, 0)
Y = (0, 1, 0)

}

The x-axis and y-axis of the stress system are defined in the Physics section:

Physics {
Piezo (

OriKddX = (-0.96 0.28 0)
OriKddY = (0.28 0.96 0)

}
}

The z-axis is computed as the outer vector product of the x-axis and y-axis. The stress system
is defined relative to the simulation system (see Using Stress and Strain on page 823).
Sentaurus™ Device User Guide 887
N-2017.09



31: Modeling Mechanical Stress Effect
Piezoelectric Polarization
Converse Piezoelectric Field

The values of the converse piezoelectric field are very important for applications. The dataset
ConversePiezoelectricField can be added to the Plot variables (see Table 178 on
page 1340). This dataset is a dimensionless tensor and is computed using the following tensor
relationship:

(1035)

where  are piezoelectric coefficients and  are electric-field components.

Piezoelectric Datasets

The piezoelectric polarization vector and the piezoelectric charge can be plotted by:

Plot {
PE_Polarization/vector
PE_Charge

}

Discontinuous Piezoelectric Charge at Heterointerfaces

Any interface has two sides (side1 and side2). If a vertex lies at the interface and heteromodels
are switched on, this vertex is a double point and the piezoelectric charge has two values (q1
and q2). If the polarization vector is a constant vector, then q1 = –q2 and the total charge is
equal to zero. In the case of double points, Sentaurus Device creates an output file that contains
two values of the piezoelectric charge, that is, the charge distributions are interface
discontinuous even in homogeneous structures. Sentaurus Device contains two datasets
(continuous and discontinuous) for the piezoelectric charge:

Plot {
PE_Charge # continuous distribution in any case
PiezoCharge # discontinuous distribution at the interface for heteromodels

}

ConversePiezoelectricFieldXX

ConversePiezoelectricFieldYY

ConversePiezoelectricFieldZZ

ConversePiezoelectricFieldYZ

ConversePiezoelectricFieldXZ

ConversePiezoelectricFieldXY

d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

t

Ex

Ey

Ez

=

dij Ek
888 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Piezoelectric Polarization
Gate-Dependent Polarization in GaN Devices

In this model, the polarization vector  has an additional term along the z-axis in the crystal
system, which is dependent on the  component of the electric field [32]:

(1036)

This problem can be converted into an equivalent problem with an anisotropic permittivity
tensor (z-component increased by ):

(1037)

where  is equal to Eq. 1029, p. 884 (  is Formula 2).

The gate-dependent polarization model can be activated in the Physics section as follows:

Physics {
Piezoelectric_Polarization (strain(GateDependent))

}

Two-Dimensional Simulations

For a 2D simulation, you must ensure that the anisotropic direction (defined in the crystal
coordinate system) lies within the xy plane of the simulation system. You can specify explicitly
the transformation from the crystal (lattice) coordinate system to the simulation (mesh)
coordinate system in the LatticeParameters section of the parameter file (see Coordinate
Systems on page 887).

If no LatticeParameters section is found in the parameter file, the following defaults take
effect:

LatticeParameters {
X = (1, 0, 0)
Y = (0, 1, 0)

}

Similarly, the default anisotropic direction in a 2D simulation is the y-axis in the crystal system,
which coincides with the default y-axis in the simulation system.

P
Ez

Pz
new

Pz e33
2

c33⁄( ) Ez⋅+=

e33
2 c33⁄

∇
κaEx

κaEy

κcEz

–








•

0

0

e33
2

c33
-------Ez 








– ∇

κa

κa

κc

e33
2

c33
-------+

∇ϕ

 
 
 
 
 
 
 
 

• ρ– ∇+ P•= =

P Pstrain
Sentaurus™ Device User Guide 889
N-2017.09



31: Modeling Mechanical Stress Effect
Mechanics Solver
However, the following values of LatticeParameters are selected frequently for 2D
simulations:

LatticeParameters {
X = (1, 0, 0)
Y = (0, 0, -1)

}

In this case, the y-axis in the simulation system runs along the negative z-axis in the crystal
system and, therefore, it is necessary to declare the z-axis in the crystal system as the
anisotropic direction:

Physics {
Aniso(direction = zAxis)

}

Mechanics Solver

NOTE The mechanics solver in Sentaurus Device is an experimental feature,
and it may be modified in future releases.

During a device simulation, the stress tensor may change as a function of the solution variables,
for example:

■ Different materials have different thermal expansion coefficients. This thermal mismatch
leads to stress changes as a function of the lattice temperature of the device. The influence
of thermomechanical stress on device performance has been studied in [33] and [34].

■ The electrical degradation of GaN HEMTs is described in [35]. The authors propose the
formation of defects due to excessive stress associated with the inverse piezoelectric effect.
In this case, the stress tensor changes as a function of the local electric field.

Sentaurus Device provides a Mechanics statement in the Solve section to recompute the
stress tensor in response to changes in bias conditions:

Solve {
Mechanics

Plugin (...)
{ Poisson Electron Hole Mechanics }

Quasistationary (...)
{ Plugin (Iterations=0 BreakOnFailure) {

Coupled { Poisson Electron Hole }
Mechanics

}
}

890 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mechanics Solver
Transient (...)
{ Plugin (Iterations=0 BreakOnFailure) {

Coupled { Poisson Electron Hole }
Mechanics

}
}

}

During a mixed-mode simulation, the Mechanics statement is applied by default to all the
physical devices in the circuit. However, it is also possible to apply it to selected devices only:

Solve {
Mechanics # all devices

"mos1".Mechanics "mos2".Mechanics # selected devices only
}

Sentaurus Device relies on Sentaurus Interconnect to update the stress tensor. A Mechanics
statement in the Solve section performs the following operations:

■ Sentaurus Device creates an input structure (TDR file) for Sentaurus Interconnect with the
current solution variables, such as the electrostatic potential  or the lattice temperature ,
as well as a Sentaurus Interconnect command file.

■ Sentaurus Device invokes Sentaurus Interconnect.

■ Sentaurus Interconnect updates the mechanical stress and produces an output TDR file.

■ Sentaurus Device reads the TDR file generated by Sentaurus Interconnect and updates the
stress tensor.

As a consequence of this approach, the mechanical equations cannot be solved self-
consistently with the device equations. Therefore, a Mechanics statement in the Solve
section can only appear as an individual statement, or within a Plugin command. It cannot
appear within a Coupled command.

Options for the stress solver can be specified in a Mechanics section within the global
Physics section:

Physics {
Mechanics (

binary = "..."
parameter = "..."
command = "..."
initial_structure = "..."

)
}

φ T
Sentaurus™ Device User Guide 891
N-2017.09



31: Modeling Mechanical Stress Effect
Mechanics Solver
The following options are supported:

■ binary = "..." 

Name of the Sentaurus Interconnect binary. The default is "sinterconnect -u" (where
the -u option switches off the log file). Use this option to select a particular release, for
example:

binary = "sinterconnect -rel N-2017.09"

The binary specification also can be an option of the Mechanics statement in the Solve
section:

Solve {
Mechanics (binary = "...")

}

■ parameter = "..." 

Defines Sentaurus Interconnect parameters (pdbSet commands). You can either specify
all the parameters directly or use the Tcl source statement to read another file:

parameter = "source mechanics.par"

Sentaurus Interconnect can update the stress tensor as a function of the local electric field.
To enable this option, use the following command:

pdbSet Mechanics InversePiezoEffect 1

By default, this option is switched off.

The values of the piezoelectric tensor  must be specified by pdbSetDouble commands
for each region:

pdbSetDouble <region> Mechanics PiezoElectricTensor<ij> <value>

where , . The values must be specified in units of , which
is equivalent to .

The parameter specification also can be an option of the Mechanics statement in the
Solve section:

Solve {
Mechanics (parameter = "...")

}

■ command = "..." 

This option defines the Tcl command file for Sentaurus Interconnect. You can either
specify all the commands directly or use the Tcl source statement to read another file:

command = "source mechanics.cmd"

e

i 1…6= j 1…3= dyn Vcm( )⁄
10 7– C/cm2
892 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
Mechanics Solver
Sentaurus Device defines the Tcl variables shown in Table 150 for use in the Sentaurus
Interconnect command file. 

To compute an updated stress tensor, a short solve command must be executed. The
following commands represent the default for command:

init tdr= $sdevice_load !load.commands
mode mechanics
select z= PrevLatticeTemperature name= Temperature
solve time= 1<min> t.final.profile= LatticeTemperature
struct tdr= $sdevice_save

The command specification also can be an option of the Mechanics statement in the
Solve section:

Solve {
Mechanics (command = "...")

}

■ initial_structure = "..." 

Before calling Sentaurus Interconnect, Sentaurus Device creates an input structure that
contains the current solution variables, such as the electrostatic potential  or the lattice
temperature . During the course of a simulation, this input structure is always based on
the output structure obtained from the last call of Sentaurus Interconnect.

For the first call of Sentaurus Interconnect, the input structure is based on the TDR file
specified by the initial_structure option. It is recommended to specify a Sentaurus
Interconnect structure that still contains gas regions:

initial_structure = "n1_fps.tdr"

In this way, a remeshing in Sentaurus Interconnect can be avoided.

If this option is not specified, the initial input structure will be based on the Sentaurus
Device structure specified in the File section.

Table 150 Tcl variables

Variable Description

sdevice_load Name of the file that must be loaded at the beginning by a Sentaurus 
Interconnect init command.

sdevice_save Name of the file that must be saved at the end by a Sentaurus Interconnect 
struct command.

sdevice_load_temperature Initial average device temperature in kelvin of the device defined in 
$sdevice_load.

sdevice_save_temperature Final average device temperature in kelvin of the device to be saved in 
$sdevice_save.

φ
T

Sentaurus™ Device User Guide 893
N-2017.09



31: Modeling Mechanical Stress Effect
References
NOTE It is assumed that the stress tensor in the initial structure is identical to
the stress tensor in Sentaurus Device (as loaded by the Piezo statement
in the File section). If a stress tensor is missing, it will be copied from
the Sentaurus Device stress tensor. 

References

[1] J. Bardeen and W. Shockley, “Deformation Potentials and Mobilities in Non-Planar
Crystals,” Physical Review, vol. 80, no. 1, pp. 72–80, 1950.

[2] I. Goroff and L. Kleinman, “Deformation Potentials in Silicon. III. Effects of a General
Strain on Conduction and Valence Levels,” Physical Review, vol. 132, no. 3,
pp. 1080–1084, 1963.

[3] J. J. Wortman, J. R. Hauser, and R. M. Burger, “Effect of Mechanical Stress on p-n
Junction Device Characteristics,” Journal of Applied Physics, vol. 35, no. 7,
pp. 2122–2131, 1964.

[4] P. Smeys, Geometry and Stress Effects in Scaled Integrated Circuit Isolation
Technologies, Ph.D. thesis, Stanford University, Stanford, CA, USA, August 1996.

[5] M. Lades et al., “Analysis of Piezoresistive Effects in Silicon Structures Using
Multidimensional Process and Device Simulation,” in Simulation of Semiconductor
Devices and Processes (SISDEP), vol. 6, Erlangen, Germany, pp. 22–25, September
1995.

[6] J. L. Egley and D. Chidambarrao, “Strain Effects on Device Characteristics:
Implementation in Drift-Diffusion Simulators,” Solid-State Electronics, vol. 36, no. 12,
pp. 1653–1664, 1993.

[7] K. Matsuda et al., “Nonlinear piezoresistance effects in silicon,” Journal of Applied
Physics, vol. 73, no. 4, pp. 1838–1847, 1993.

[8] J. F. Nye, Physical Properties of Crystals, Oxford: Clarendon Press, 1985.

[9] G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors, New
York: John Wiley & Sons, 1974.

[10] C. Herring and E. Vogt, “Transport and Deformation-Potential Theory for Many-Valley
Semiconductors with Anisotropic Scattering,” Physical Review, vol. 101, no. 3,
pp. 944–961, 1956.

[11] E. Ungersboeck et al., “The Effect of General Strain on the Band Structure and Electron
Mobility of Silicon,” IEEE Transactions on Electron Devices, vol. 54, no. 9,
pp. 2183–2190, 2007.

[12] T. Manku and A. Nathan, “Valence energy-band structure for strained group-IV
semiconductors,” Journal of Applied Physics, vol. 73, no. 3, pp. 1205–1213, 1993.
894 Sentaurus™ Device User Guide
N-2017.09



31: Modeling Mechanical Stress Effect
References
[13] V. Sverdlov et al., “Effects of Shear Strain on the Conduction Band in Silicon: An
Efficient Two-Band  Theory,” in Proceedings of the 37th European Solid-State
Device Research Conference (ESSDERC), Munich, Germany, pp. 386–389, September
2007.

[14] F. L. Madarasz, J. E. Lang, and P. M. Hemeger, “Effective masses for nonparabolic
bands in p-type silicon,” Journal of Applied Physics, vol. 52, no. 7, pp. 4646–4648,
1981.

[15] C.Y.-P. Chao and S. L. Chuang, “Spin-orbit-coupling effects on the valence-band
structure of strained semiconductor quantum wells,” Physical Review B, vol. 46, no. 7,
pp. 4110–4122, 1992.

[16] M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier
mobility in strained Si, Ge, and SiGe alloys,” Journal of Applied Physics, vol. 80, no. 4,
pp. 2234–2252, 1996.

[17] C. Hermann and C. Weisbuch, “  perturbation theory in III-V compounds and
alloys: a reexamination,” Physical Review B, vol. 15, no. 2, pp. 823–833, 1977.

[18] V. Ariel-Altschul, E. Finkman, and G. Bahir, “Approximations for Carrier Density in
Nonparabolic Semiconductors,” IEEE Transactions on Electron Devices, vol. 39, no. 6,
pp. 1312–1316, 1992.

[19] S. Reggiani, Report on the Low-Field Carrier Mobility Model in MOSFETs with biaxial/
uniaxial stress conditions, Internal Report, Advanced Research Center on Electronic
Systems (ARCES), University of Bologna, Bologna, Italy, 2009.

[20] S. Dhar et al., “Electron Mobility Model for Strained-Si Devices,” IEEE Transactions
on Electron Devices, vol. 52, no. 4, pp. 527–533, 2005.

[21] E. Ungersboeck et al., “Physical Modeling of Electron Mobility Enhancement for
Arbitrarily Strained Silicon,” in 11th International Workshop on Computational
Electronics (IWCE), Vienna, Austria, pp. 141–142, May 2006.

[22] F. Stern and W. E. Howard, “Properties of Semiconductor Surface Inversion Layers in
the Electric Quantum Limit,” Physical Review, vol. 163, no. 3. pp. 816–835, 1967.

[23] O. Penzin, L. Smith, and F. O. Heinz, “Low Field Mobility Model for MOSFET Stress
and Surface/Channel Orientation Effects,” as discussed at the 42nd IEEE Semiconductor
Interface Specialists Conference (SISC), Arlington, VA, USA, December 2011.

[24] B. Obradovic et al., “A Physically-Based Analytic Model for Stress-Induced Hole
Mobility Enhancement,” in 10th International Workshop on Computational Electronics
(IWCE), West Lafayette, IN, USA, pp. 26–27, October 2004.

[25] L. Smith et al., “Exploring the Limits of Stress-Enhanced Hole Mobility,” IEEE
Electron Device Letters, vol. 26, no. 9, pp. 652–654, 2005.

[26] J. R. Watling, A. Asenov, and J. R. Barker, “Efficient Hole Transport Model in Warped
Bands for Use in the Simulation of Si/SiGe MOSFETs,” in International Workshop on
Computational Electronics (IWCE), Osaka, Japan, pp. 96–99, October 1998.

k p⋅

k p⋅
Sentaurus™ Device User Guide 895
N-2017.09



31: Modeling Mechanical Stress Effect
References
[27] Z. Wang, Modélisation de la piézorésistivité du Silicium: Application à la simulation de
dispositifs M.O.S., Ph.D. thesis, Université des Sciences et Technologies de Lille, Lille,
France, 1994.

[28] Y. Kanda, “A Graphical Representation of the Piezoresistance Coefficients in Silicon,”
IEEE Transactions on Electron Devices, vol. ED-29, no. 1, pp. 64–70, 1982.

[29] A. Kumar et al., “A Simple, Unified 3D Stress Model for Device Design in Stress-
Enhanced Mobility Technologies,” in International Conference on Simulation of
Semiconductor Processes and Devices (SISPAD), Denver, CO, USA, pp. 300–303,
September, 2012.

[30] O. Ambacher et al., “Two-dimensional electron gases induced by spontaneous and
piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,”
Journal of Applied Physics, vol. 85, no. 6, pp. 3222–3233, 1999.

[31] O. Ambacher et al., “Two dimensional electron gases induced by spontaneous and
piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” Journal
of Applied Physics, vol. 87, no. 1, pp. 334–344, 2000.

[32] A. Ashok et al., “Importance of the Gate-Dependent Polarization Charge on the
Operation of GaN HEMTs,” IEEE Transactions on Electron Devices, vol. 56, no. 5,
pp. 998–1006, 2009.

[33] G. Y. Huang and C. M. Tan, “Electrical–Thermal–Stress Coupled-Field Effect in SOI
and Partial SOI Lateral Power Diode,” IEEE Transactions on Power Electronics,
vol. 26, no. 6, pp. 1723–1732, 2011.

[34] C. M. Tan and G. Huang, “Comparison of SOI and Partial-SOI LDMOSFETs Using
Electrical–Thermal–Stress Coupled-Field Effect,” IEEE Transactions on Electron
Devices, vol. 58, no. 10, pp. 3494–3500, 2011.

[35] J. Joh and J. A. del Alamo, “Mechanisms for Electrical Degradation of GaN High-
Electron Mobility Transistors,” in IEDM Technical Digest, San Francisco, CA, USA,
pp. 1–4, December 2006.
896 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 32 Galvanic Transport Model

This chapter describes the model for carrier transport in magnetic
fields.

Model Description

For analysis of magnetic field effects in semiconductor devices, the transport equations
governing the flow of electrons and holes in the interior of the device must be set up and solved.

To this end, the commonly used drift-diffusion-based model of the carrier current densities 
and  must be augmented by magnetic field–dependent terms that account for the action of
the transport equations governing the flow of electrons and holes in the interior of the device,
the Lorentz force on the motion of the carriers [1][2][3]:

with (1038)

where:

■  is current vector without mobility (see Current Densities on page 786).

■  is the Hall mobility.

■  is the magnetic induction vector, and  is the magnitude of this vector.

The perpendicular (transverse) components of Hall and drift mobility are related by
and , where  and  denote the Hall scattering factors. In the case of

bulk silicon, typical values are  and .

Using Galvanic Transport Model

In the Physics section of the command file, specify the magnetic field vector using the
keyword MagneticField = (<x>,<y>,<z>). In the following example, a field of 0.1 Tesla
is applied parallel to the z-axis:

Physics {...
MagneticField = (0.0, 0.0, 0.1)

}

This parameter can be ramped (see Ramping Physical Parameter Values on page 78).

Jn

Jp

Jα μαgα μα
1

1 μα
*

B( )2
+

--------------------------- μα
* B gα× μα

* B μα
* 

B gα×( )×+[ ]+= α n p,=

gα

μα
*

B B

μn
* rnμn= μp

* rpμp= rn rp

rn 1.1= rp 0.7–=
Sentaurus™ Device User Guide 897
N-2017.09



32: Galvanic Transport Model
Discretization Scheme for Continuity Equations
Discretization Scheme for Continuity Equations

Sentaurus Device uses a modified discretization scheme for continuity equations in a constant
magnetic field. This scheme contains an additive term to the effective electric field in the
Scharfetter–Gummel approximation, that is, in this approximation, the argument to the
Bernoulli function has an additional magnetic term. This discretization scheme has good
convergence and mesh stability (the new approximation does not demand a special grid).

NOTE The galvanic transport model cannot be combined with the following
models: hydrodynamic, impact ionization, aniso, piezo, and quantum
modeling.

NOTE The value of the magnetic field is a critical parameter for convergence.
For doping-dependent mobility, the convergence is reliable up to

. For more general mobility, the convergence has a limit of the
magnetic field up to .

References

[1] W. Allegretto, A. Nathan, and H. Baltes, “Numerical Analysis of Magnetic-Field-
Sensitive Bipolar Devices,” IEEE Transactions on Computer-Aided Design, vol. 10,
no. 4, pp. 501–511, 1991.

[2] C. Riccobene et al., “Operating Principle of Dual Collector Magnetotransistors Studied
by Two-Dimensional Simulation,” IEEE Transactions on Electron Devices, vol. 41,
no. 7, pp. 1136–1148, 1994.

[3] C. Riccobene et al., “First Three-Dimensional Numerical Analysis of Magnetic Vector
Probe,” in IEDM Technical Digest, San Francisco, USA, pp. 727–730, December 1994.

B 10 T=
B 1 T=
898 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 33 Thermal Properties

This chapter describes the models that are important for lattice
heating and the thermodynamic model: heat capacity, thermal
conductivity, and thermoelectric power.

Heat Capacity

Table 151 lists the values of the heat capacity used in the simulator. 

By default, or when you specify HeatCapacity(TempDep) in the Physics section, the
temperature dependency of the lattice heat capacity is modeled by the empirical function:

(1039)

The equation coefficients can be specified in the parameter file by using the syntax:

LatticeHeatCapacity{
cv = 1.63 # [J/(K cm^3)]
cv_b = 0.0000e+00 # [J/(K^2 cm^3)]
cv_c = 0.0000e+00 # [J/(K^3 cm^3)]
cv_d = 0.0000e+00 # [J/(K^3 cm^3)]

}

All these coefficients can be mole fraction–dependent for mole-dependent materials.

To use a PMI model to compute heat capacity, specify the name of the model as a string as an
option to HeatCapacity (see Heat Capacity on page 1177). To use a multistate
configuration–dependent PMI for heat capacity, specify the model and its parameters as
arguments to PMIModel, which, in turn, is an argument to HeatCapacity (see Multistate
Configuration–Dependent Heat Capacity on page 1180).

Table 151 Values of heat capacity c for various materials

Material c [J/K cm3] Reference

Silicon 1.63 [1]

Ceramic 2.78 [2]

SiO2 1.67 [2]

Poly Si 1.63 Si≈

cL cv cv_bT cv_cT2 cv_dT3+ + +=
Sentaurus™ Device User Guide 899
N-2017.09



33: Thermal Properties
Heat Capacity
To use a constant lattice heat capacity without touching the parameter file, specify
HeatCapacity(Constant).

The pmi_msc_heatcapacity Model

The model may depend on state occupation probabilities of a multistate configuration (MSC).
If no explicit dependency on an MSC is given, it enables a piecewise linear (pwl) dependency
on the lattice temperature, that is, it reads:

(1040)

If the model depends on an MSC, for each MSC state, the heat capacity can be pwl
temperature–dependent. The overall heat capacity is then averaged according to:

(1041)

where the sum is taken over all MSC states, and  are the state occupation probabilities.

The model is activated in the Physics section by:

HeatCapacity ( PMIModel ( Name="pmi_msc_heatcapacity" MSConfig="msc0" ) ) 

Table 152 lists the parameters of the model. With cv, you specify a constant heat capacity,
which is used as a global (no MSC dependency) or default state heat capacity. However, if you
specify cv_nb_Tpairs greater than zero, the global and default state heat capacities are
piecewise linear. In that case, you must specify the interpolation points as pairs of temperature
and heat capacity values by cv_Tp<int>_X and cv_Tp<int>_Y, respectively. <int> ranges
from zero to one less than cv_nb_Tpairs. The global cv_ parameters can be prefixed with:

<state_name>_

for the named MSC states to overwrite the default state behavior.

Table 152 Parameters of pmi_msc_heatcapacity

Name Symbol Default Unit Range Description

plot – 0 – {0,1} Plot parameter to screen

cv 0. real Constant value

cv_nb_Tpairs – 0 – >=0 Number of interpolation points

cv_Tp<int>_X -– – K real Temperature at <int>-th 
interpolation point

cv_Tp<int>_Y – – real Value at <int>-th interpolation point

cV cV T( )=

cV cV i, T( )si

i
=

si

cV J/Kcm
3

J/Kcm
3

900 Sentaurus™ Device User Guide
N-2017.09



33: Thermal Properties
Thermal Conductivity
Thermal Conductivity

Sentaurus Device uses the following temperature-dependent thermal conductivity  in
silicon [3]:

(1042)

where , , and . The
range of validity is from  to well above . Values of the thermal conductivity for
some materials are given in Table 153.

As additional options to the standard specification of the thermal conductivity model, there are
two different expressions to define either thermal resistivity  or thermal conductivity
for any material. This is performed by using Formula in the parameter file or special keywords
in the command file.

For Formula=0 (thermal resistivity specification), Sentaurus Device uses:

(1043)

For Formula=1 (thermal conductivity specification), it is:

(1044)

NOTE Sentaurus Device stores six independent parameters, namely, 1/kappa,
1/kappa_b, and 1/kappa_c for the thermal resistivity model in
Eq. 1043, and kappa, kappa_b, and kappa_c for the thermal
conductivity model in Eq. 1044. In particular, a change of kappa will
not modify 1/kappa and vice versa. The same applies to both kappa_b
and 1/kappa_b, as well as kappa_c and 1/kappa_c.

Table 153 Values of thermal conductivity  of silicon versus temperature

Material  [W/(cm K)] Reference

Silicon Eq. 1042  [3]

Ceramic 0.167  [4]

SiO2 0.014  [1]

Poly Si 1.5

κ

κ T( ) 1

a bT cT
2

+ +
-------------------------------=

a 0.03 cmKW 1–= b 1.56 3–×10 cmW 1–= c 1.65 6–×10 cmW 1– K 1–=
200 K 600 K

κ
κ

Si≈

χ 1 κ⁄=

χ 1/kappa 1/kappa_bT 1/kappa_cT2+ +=

κ kappa kappa_bT kappa_cT2+ +=
Sentaurus™ Device User Guide 901
N-2017.09



33: Thermal Properties
Thermal Conductivity
Use the following syntax in the parameter file to select the required model and to specify the
coefficients:

Kappa{
Formula = 0
1/kappa = 0.03 # [K cm/W]
1/kappa_b = 1.5600e-03 # [cm/W]
1/kappa_c = 1.6500e-06 # [cm/(W K)]
kappa = 1.5 # [W/(K cm)]
kappa_b = 0.0000e+00 # [W/(K^2 cm)]
kappa_c = 0.0000e+00 # [W/(K^3 cm))]

}

The Physics section of the command file provides more flexibility to switch these
expressions by using the keywords:

ThermalConductivity(
TempDep Conductivity # Formula = 1
Constant Conductivity # Formula = 1 without temperature dependence
TempDep Resistivity # Formula = 0
Constant Resistivity # Formula = 0 without temperature dependence

By default, Sentaurus Device uses Formula specified in the parameter file. All these
coefficients in the parameter file can be mole dependent for mole-dependent materials.

Furthermore, a simple PMI and a multistate configuration–dependent PMI are available to
compute thermal conductivity. See Thermal Conductivity on page 1167 and Multistate
Configuration–Dependent Thermal Conductivity on page 1173 for details.

The AllDependent Thermal Conductivity Model

In general, thermal conductivity  is a function of lattice temperature , doping density ,
layer thickness , and mole fraction . Starting with the Boltzmann transport equation for
phonons and with relaxation time approximations,  is expressed as an integral over phonon
frequency [5]:

(1045)

(1046)

(1047)

κ T N
dLy x

κ

κ 1
3
---

1
2π2
--------- nj

τω j,
vω j,
---------C ω( )ω2 ωd

0

ω0 j,


j
⋅ ⋅ ⋅=

C x( ) kx2ex ex 1–( ) 2–=

x hω
kT
-------=
902 Sentaurus™ Device User Guide
N-2017.09



33: Thermal Properties
Thermal Conductivity
For each phonon branch ,  is the peak frequency,  is the sound velocity, and  is
the total relaxation time. For the longitudinal mode ( ), . For the transverse mode
( ), .

Bulk Thermal Conductivity Computation

The total relaxation time is calculated with given scattering mechanisms. For pure bulk
material [5]:

(1048)

(1049)

(1050)

(1051)

(1052)

(1053)

Eq. 1048, Eq. 1049, and Eq. 1050 represent the phonon relaxation time for the longitudinal and
transverse branches. For the transverse branch, the normal (N) process and the Umklapp (U)
process are solved separately. The frequencies and phonon velocities are extracted from the
bulk phonon dispersion:

■  is the turning point of the transverse branch, where the U process starts to have an
effect.

■  is the peak frequency of the transverse branch.

■  is the peak frequency of the longitudinal branch.

■  is the turning point of the longitudinal branch.

■  is the velocity of the longitudinal mode when .

■  is the velocity of the longitudinal mode when .

■  is the velocity of the transverse mode when .

■  is the velocity of the transverse mode when .

■ , , and  are fitting parameters.

κ ω0 j, v0 j, τ0 j,
j L= nL 1=

j T= nT 1=

τLN
1–

BLω2T3 τI
1– τb

1–
0 ω ω3< <,+ +=

τTN
1–

BTωT4 τI
1– τb

1– ω ω1<,+ +=

τTU
1–

BTUω2 xsinh⁄ τI
1– τb

1– ω1 ω ω2< <,+ +=

τI
1–

AIω4=

τb
1– vs

FL
-------=

vs
1
3
--- vL

1–
2vT

1–
+( )

1–
=

ω1

ω2

ω3

ω4

vL ω ω< 4

vLp ω4 ω ω< < 3

vT ω ω< 1

vTU ω1 ω ω< < 2

BL BT BTU
Sentaurus™ Device User Guide 903
N-2017.09



33: Thermal Properties
Thermal Conductivity
■  and  represent scattering due to point defects and the boundary, where:

•  is the scattering strength due to defects.

•  is the bulk sample dimension.

The model is activated in the command file by:

Physics (...) {
ThermalConductivity ( AllDep )

}

Example of Parameter File Segment

Kappa {
...
omega1 = 2.357e13 #[s^-1]
omega2 = 2.749e13 #[s^-1]
...

}

Table 154 summarizes the parameters for bulk silicon and germanium. 

Table 154 Parameters for bulk silicon and germanium

Name Symbol Silicon Germanium Unit

omega1 2.357e13 1.322e13 1/s

omega2 2.749e13 1.545e13 1/s

omega3 7.463e13 4.36e13 1/s

omega4 4.582e13 2.514e13 1/s

vL 8.48e3 4.92e3 m/s

vLp 4.24e3 2.46e3 m/s

vT 5.86e3 3.55e3 m/s

vTU 2e3 1.3e3 m/s

BL 2e-24 6.9e-24 s/K3 

BT 9.3e-13 1e-11 1/K4 

BTU 5.5e-18 5e-18 s

AI 1.32e-45 2.4e-45 s3 

Lb 0.716e-2 0.24e-2 m

V_h 12.1e-6 13.6e-6 m3/mol

τI
1– τb

1–

AI

L

ω1

ω2

ω3

ω4

νL

νLp

νT

νTU

BL

BT

BTU

AI

L

V

904 Sentaurus™ Device User Guide
N-2017.09



33: Thermal Properties
Thermal Conductivity
NOTE To achieve good agreement with measurement, it is necessary to
understand the relative contribution of the three phonon branches to :

 mainly determines the high-temperature range. The absolute values
of  and  determine the peak value of , while their relative ratio

 affects the slope of  at low temperatures: The lower the ratio,
the larger the slope. The fitting parameters , , and  are
determined accordingly.

Bulk Relaxation Time With Doping

In the case of doped samples,  decreases due to phonon scattering with impurities and free
carriers. The phonon-impurity scattering is treated in a similar way to point defects [6]:

(1054)

(1055)

(1056)

(1057)

 and  model the impact of mass and radius differences between the host atom and the
impurity atom with the given doping concentration , where:

■  is the crystal volume of the host atom.

■  is the mass of the host atom.

■  is the mass of the impurity atom.

■  is the radius of the host atom.

M_h 28 72.6 Da

R_h 146e-12 125e-12 m

epsilon 11.7 16.2 1

m_c 0.9 0.9 1

m_v 0.58 0.58 1

rho 2.329e3 5.323e3 kg/m3 

Table 154 Parameters for bulk silicon and germanium (Continued)

Name Symbol Silicon Germanium Unit

M

R

εs

me

mh

ρ

κ
κTU

κT κL κ
κT κL⁄ κ

BL BT BTU

κ

τimpurity
1–

Aω4=

A AI AδM AδR Ax+ + +=

AδM
NV2

4πvs
3

------------
M Mdoped–

M
--------------------------- 
 

2
=

AδR
2NV2

πvs
3

--------------Q0
2ϒ2

R Rdoped–

R
------------------------ 
 

2
=

AδM AδR

N

V

M

Mdoped

R

Sentaurus™ Device User Guide 905
N-2017.09



33: Thermal Properties
Thermal Conductivity
■  is the radius of the impurity atom.

■  is a constant corresponding to the impurity.

■  is a fitting parameter.

The impact of phonon-carrier scattering is considered with two parts: the free carriers in the
metallic state and the carriers bound to the impurity center. With a given carrier concentration

, the concentrations of bound carriers  and metallic carriers  are [7]:

(1058)

(1059)

(1060)

(1061)

where the Bohr radius  is:

(1062)

Here:

■  is the dielectric constant.

■  (or ) is the electron (or hole) effective mass of the host atom.

The relaxation time related to bound carriers is [8]:

(1063)

(1064)

where:

■  is the shear deformation potential.

■  is the crystal mass density.

■ , , and  are parameters corresponding to each phonon mode.

Rdoped

Q0

Ax

n Nn Nm

Nn n tc–( )exp=

Nm n 1 tc–( )exp–[ ]=

tc 4π 3⁄( )nrc
3=

rc 144 π2⁄( )1 3/ aB=

aB

aB

4πε0h2

m0e2
------------------
 
 
  εs

ε0
----- 
  m0

me
------ 
 =

εs

me mh

τbound j,
1–

ω4 1 3⁄( )Ξu[ ]4

10πρ2vs
2

------------------------------------χ2 ω
vs
---- 
  vL

5– χ2 ω
vL
----- 
  3

2
---vT

5– χ2 ω
vT
----- 
 + wj

2Δ2

Δ2 h2ω2–( )2
-------------------------------- 2Nn( )⋅⋅=

χ qj( ) 1 1 4⁄( )aB
2 qj

2+[ ] 2–=

Ξu

ρ
wL wT wTU
906 Sentaurus™ Device User Guide
N-2017.09



33: Thermal Properties
Thermal Conductivity
For carriers in metallic states, the relaxation time is [6]:

(1065)

(1066)

where:

■  is the deformation potential.

■  is a fitting parameter.

Eq. 1065 and Eq. 1066 are continuous at , which imposes the following relation:

(1067)

Eq. 1054, Eq. 1063, Eq. 1065, and Eq. 1066 are added to Eq. 1048, Eq. 1049, and Eq. 1050 to
solve for , which is the bulk relaxation time.

Table 155 summarizes the parameters for phosphorus and boron in silicon bulk samples. 

, , and  are fitted to experiments for a given doping concentration and doping material.

Table 155 Parameters for phosphorus and boron in silicon bulk samples

Symbol Name Phosphorus Name Boron Unit

M_n 30.9 M_p 10.8 Da

R_n 123e-12 R_p 117e-12 m

Q0_n 4 Q0_p 15 1

Eu_n 9 Eu_p 45 eV

wL_n 0.2 wL_p 0.02 1

wT_n 8 wT_p 6 1

wTU_n 0.9e6 wTU_p 2e6 1

τfree
1–

meED( )2ω

2πρh3vs

-------------------------- q 2kF<,=

τfree
1–

bNm meED( )2

ρh3q5aB
3

--------------------------------- q 2kF>,=

ED

b

q 2kF=

kF

bNmπ
32aB

3
--------------
 
 
  1 6/

=

τB j,

Mdoped

Rdoped

Q0

Ξu

wL

wT

wTU

ED b Ax
Sentaurus™ Device User Guide 907
N-2017.09



33: Thermal Properties
Thermal Conductivity
Table 156 summarizes the parameters for phosphorus-doped silicon samples. 

Table 157 summarizes the parameters for boron-doped silicon samples. 

NOTE To achieve good agreement with measurements for various doping
concentrations, it is suggested to first determine , , and  for
low-doping concentration samples:  mainly determines the high-
temperature range, and  and  determine the peak value and their
ratio  determines the slope of the low-temperature range. For
moderate doping cases, free-carrier scattering starts to have an effect;
therefore,  and  are used to further fit the low-temperature range.
For high doping cases, bound-carrier scattering is insignificant;
therefore,  is mainly determined by , , and .

In general, , , and  must be fitted for each doping concentration. To provide a good
guess for their values, a numerical table can be defined in the parameter file:

Kappa {
NumericalTable (

** N ED_n ED_p b Ax
7.5e16 0 0.5 8 0
2.5e17 0.05 0.5 8 0
...

)
}

Table 156 Fitting parameters for phosphorus-doped silicon bulk samples

Symbol Name Doping concentration [cm–3] Unit

7.5e16 2.5e17 4.7e17 1e18 2e19 1.7e20

ED_n 0 0.05 0.22 0.5 1.33 2.33 eV

b 0 8 8 8 186 286 1

Ax 0 0 11.75 11.75 6.75 11.75

Table 157 Fitting parameters for boron-doped silicon bulk samples

Symbol Name Doping concentration [cm–3] Unit

1e13 4e15 4e16

ED_p 0 0 0.5 eV

b 0 0 18 1

Ax 0 0 1.2

ED

b

Ax
10

45–
s

3×

ED

b

Ax
10

45–
s

3×

wL wT wTU

wTU

wL wT

wL wT⁄

ED b

κ ED b Ax

ED b Ax
908 Sentaurus™ Device User Guide
N-2017.09



33: Thermal Properties
Thermal Conductivity
The numerical table defines the fitted values of ED_n, ED_p, b, and Ax for some specific doping
concentrations . For other doping concentrations, these parameters are determined by
interpolating the given values in the NumericalTable.

Thin-Layer Relaxation Time

For thin layers with thickness , the relaxation time decreases [9]:

(1068)

(1069)

where:

(1070)

(1071)

(1072)

where:

■  is the layer thickness.

■  is a constant to adjust the mean free path in some situations.

■  is a fitting parameter.

The layer thickness is computed internally by setting the LayerThickness command in the
Physics section (see LayerThickness Command on page 310). Alternatively, you can define
the layer thickness by setting the parameter  if LayerThickness is not defined. By
default,  is 0.3 m, which ensures , thereby the bulk relaxation time is taken
into account. Table 158 summarizes the parameters for thin-layer silicon samples. 

Table 158 Default values for thin-layer parameters and the numeric integral

Symbol Name Value Range Unit

dLy 3e-1 real m

r_del 1 [0,1] 1

eta 1.5e-10 real m

Nomg 3 integer 1

order 2 integer 1

N

dLy

τLy j, F δj p,( )τB j,=

F δj p,( ) 1 1
3

8δj
------- 1 p–( )+⁄=

δj rδd
Ly

vjτB j,( )⁄=

p
16π3η2

λ2
------------------– 

 exp=

λ 2πvs ω⁄=

dLy

rδ

η

dLy

dLy F δj p,( ) 1=

dLy

rδ

η

Nω

ζ

Sentaurus™ Device User Guide 909
N-2017.09



33: Thermal Properties
Thermal Conductivity
Mole Fraction–Dependent Relaxation Time

To compute  for alloy materials such as SiGe, the parameters are interpolated according to
the standard Vegard law. This is performed using the built-in MoleFraction-dependent
functionality in Sentaurus Device. All parameters in Table 154 on page 904 are
MoleFraction-dependent parameters. An example of the parameter file is:

Kappa {
...
omega1(0) = 2.357e13 #[s^-1]
omega1(1) = 1.322e13 #[s^-1]
...
AI(0) = 1.32e-45 #[s^3]
AI(1) = 2.4e-45 #[s^3]
Xmax(1) = 1
B(AI(1)) = -3.74e-42 

}

NOTE Impurity scattering is significant in alloy materials. Therefore,
B(AI(1)) is fitted to achieve good agreement with measurement.

Eq. 1045 involves an integral over phonon frequency. The numeric integration is solved with
the Gauss quadrature method, which can be fine-tuned by adjusting the following parameters:

■  is the number of integration points.

■  is the order of the Legendre polynomial that is used in the Gauss quadrature method.

Table 158 on page 909 lists the default values of these two parameters. More integration points
and higher orders generally lead to more accurate results, while the performance decreases
significantly. Nevertheless, when using  and , the computed  agrees well with
measurements.

The ConnellyThermalConductivity Model

For thin layers, the scattering of acoustic phonons at interfaces reduces the mean free path and
reduces thermal conductivities. In the review paper [10], an integral equation describes the
geometric effect of the reduced phonon path. The actual model provides an excellent fit of the
behavior. The thermal conductivity  is given by:

(1073)

κ

Nω

ζ

Nω 3= ζ 2= κ

κ

κ κbulk

t t0+

0.6Λ t t0+ +
------------------------------ 
 

η
=

910 Sentaurus™ Device User Guide
N-2017.09



33: Thermal Properties
Thermal Conductivity
where:

■  is the layer thickness extracted by the simulator for the layer.

■  is the phonon penetration at interfaces.

■  is the phonon mean free path.

■  is the power exponent for the thickness dependency.

■  is the bulk thermal conductivity. 

Layer Thickness Computation

The layer thickness  is computed internally (see LayerThickness Command on page 310). By
default, the model uses the layer thickness quantity LayerThickness. Setting
UseLayerThicknessField=1 selects the quantity LayerThicknessField.

Bulk Thermal Conductivity Computation

The bulk thermal conductivity  is computed from parameters found in the section given
by the bulkmodel parameter. It recognizes the parameters given in Table 160. 

Table 159 Parameters of the ConnellyThermalConductivity model

Name Symbol Default Unit Range Description

plot – 0 – {0,1} Plots parameter to screen

lambda 0.3 real Phonon mean free path

t0 5e-4 >=0 Phonon penetration at interfaces

eta 0.8 1 real Power exponent

UseLayerThicknessField – 0 – {0,1} Selects layer thickness quantity

bulkmodel – "Kappa" – string Name for bulk model parameter

Table 160 Parameters of ConnellyThermalConductivity for bulk thermal conductivity

Name Symbol Default Unit Range Description

Formula – 0 – {0,1} Selects formula

a1 1. W/K cm real see Eq. 1075

b1 0. W/K2 cm real

c1 0. W/K3 cm real

a0 1. K cm/W real see Eq. 1074

t

t0

Λ
η
κbulk

Λ μm

t0 μm

η

t

κbulk

a1

b1

c1

a0
Sentaurus™ Device User Guide 911
N-2017.09



33: Thermal Properties
Thermal Conductivity
Similar to the default model, for Formula=0:

(1074)

For Formula=1:

(1075)

The model is activated in the command file by:

Physics (...) {
ThermalConductivity ( "ConnellyThermalConductivity" )

}

Example of Parameter File Segment

Material = "MyMaterial" {
ConnellyThermalConductivity {

lambda = 0.3 * [um]
...
UseLayerThicknessField = 0 * use LayerThickness/LayerThicknessField
bulkmodel = "MyKappa" * bulk model name

}
MyKappa { * parameter section specified by 'bulkmodel'

Formula = 0 * select formula
...

}
}

The pmi_msc_thermalconductivity Model

This model depends on the lattice temperature and the state occupation probabilities of an
MSC. If it does not depend on an MSC, it enables a pwl temperature dependency and reads as:

(1076)

b0 0. cm/W real

c0 0. cm/W K real

Table 160 Parameters of ConnellyThermalConductivity for bulk thermal conductivity 

Name Symbol Default Unit Range Description

b0

c0

κbulk
1

a0 b0T c0T
2

++
---------------------------------------=

κbulk a1 b1T c1T
2

++=

κ κ T( )=
912 Sentaurus™ Device User Guide
N-2017.09



33: Thermal Properties
Thermoelectric Power (TEP)
If an explicit MSC dependency is given, the global thermal conductivity is computed as:

(1077)

where the sum is taken over all MSC states,  are the state thermal conductivities, and  are
the state occupation probabilities. 

The model is enabled in the Physics section by:

ThermalConductivity (
PMIModel ( Name="pmi_msc_thermalconductivity" MSConfig="m0" )

) 

See The pmi_msc_heatcapacity Model on page 900 for an explanation of the individual
parameters and how the parameters can be overwritten for individual MSC states. Only the
name of the parameters (use kappa) and the unit changes.

Thermoelectric Power (TEP)

Sentaurus Device supports the following choices for computing the thermoelectric powers 
and  in semiconductors:

■ Use a tabulated set of experimental values for silicon as a function of temperature and
carrier concentration.

■ Use analytic formulas with two adjustable parameters  and .

■ As a user-defined function of the carrier density and the lattice temperature (thermoelectric
power PMI).

In metals, the thermoelectric power  is only allowed as a user-defined function of the electric
field vector and the lattice temperature (as a PMI model).

Table 161 Parameters of pmi_msc_thermalconductivity

Name Symbol Default Unit Range Description

plot – 0 – {0,1} Plot parameter to screen

kappa 0. W/Kcm real Constant value

kappa_nb_Tpairs – 0 – >=0 Number of interpolation points

kappa_Tp<int>_X – – K real Temperature at <int>-th 
interpolation point

kappa_Tp<int>_Y – – W/Kcm real Value at <int>-th interpolation 
point

κ κi T( )si

i
=

κi si

κ

Pn

Pp

κ s

P

Sentaurus™ Device User Guide 913
N-2017.09



33: Thermal Properties
Thermoelectric Power (TEP)
Physical Models

Table-Based TEPower Model

By default, Sentaurus Device computes the thermoelectric powers  and  using a table of
experimental values of TEPs for silicon published by Geballe and Hull [11] as functions of
temperature and carrier concentration. Sentaurus Device extrapolates  and  linearly
for temperatures between  and , thereby preserving the  dependency of data
presented at higher temperatures by Fulkerson et al. [12], which holds up to near the intrinsic
temperature.

 and  are shown in Figure 59 as a function of temperature and carrier concentration as
used in Sentaurus Device. 

Figure 59 TEPs (left)  and (right)  as a function of temperature and carrier 
concentration

Analytic TEPower Model

As an alternative, analytic formulas as described in [13][14] can be used to compute the
thermoelectric powers in nongenerate semiconductors:

(1078)

(1079)

where you can adjust the parameters  and  in the parameter file. Table 162 on page 915 lists
the parameters and their default values. 

Pn Pp

PnT PpT
360 K 500 K 1 T⁄

Pn Pp

250 300 350 400 450 500

Temperature [K]

n=1e14 cm-3

n=1e15 cm-3

n=1e16 cm-3

n=1e17 cm-3

n=1e18 cm-3

n=1e19 cm-3

P
n 

[m
V

/K
]

±0.5

±1.0

±1.5

±2.0
250 300 350 400 450 500

Temperature [K]

p=1e19 cm-3

p=1e18 cm-3

p=1e17 cm-3

p=1e16 cm-3

p=1e15 cm-3

p=1e14 cm-3
P

p 
[m

V
/K

]

0.5

1.0

1.5

Pn Pp

Pn κ n
k
q
---

5
2
--- sn– 
  NC

n
------- 
 ln+–=

Pp κp
k
q
---

5
2
--- sp– 
  NV

p
------- 
 ln+=

κ s
914 Sentaurus™ Device User Guide
N-2017.09



33: Thermal Properties
Thermoelectric Power (TEP)
PMI_ThermoElectricPower Model

In the most general case, the TEPs in semiconductors can be computed using the thermoelectric
power PMI (see Thermoelectric Power on page 1269) as functions of the lattice temperature
and the carrier density. Both the standard and simplified PMI (with automatic derivatives) are
supported.

Thermoelectric Power in Metals

In metals, thermoelectric power is defined as a PMI depending on the gradient of the Fermi
potential  and the lattice temperature  (see Metal Thermoelectric Power on page 1274).
It is used in connection with thermodynamic transport in metals (Seebeck effect).

Using Thermoelectric Power

The thermoelectric powers in semiconductors are computed automatically when the
Temperature equation is solved and the keyword Thermodynamic is specified in the global
Physics section. By default, tabulated silicon data is used.

To enable an analytic formula (Eq. 1078, p. 914, Eq. 1079, p. 914) or thermoelectric power
PMI models either regionwise, or materialwise, or globally, the keyword TEPower with
Analytic or the PMI name as an option must be specified in the corresponding Physics
section. For example:

Physics(Region="region1") {
TEPower(Analytic) # analytic formula TEP model in "region1"

}

Physics(Region="region2") {
TEPower(pmi_tepower) # PMI in "region2"

}

activates an analytic formula in "region1", the thermoelectric power PMI pmi_tepower in
"region2", and tabulated data interpolation in all other semiconductor regions.

Table 162 Parameters of analytic TEPower model

Parameter name Symbol Default Unit Range Description

s_n 1. – real See Eq. 1078

s_p 1. – real See Eq. 1079

scale_n 1. – real See Eq. 1078

scale_p 1. – real See Eq. 1079

sn

sp

κn

κp

∇ΦM T
Sentaurus™ Device User Guide 915
N-2017.09



33: Thermal Properties
Heating at Contacts, Metal–Semiconductor and Conductive Insulator–Semiconductor Interfaces
For backward compatibility, the keyword AnalyticTEP in the Physics section is still
available to activate an analytic formula TEP globally. It is equivalent to specifying
TEPower(Analytic) in the global Physics section.

The coefficients for the thermoelectric powers defined by the analytic formula are available in
the TEPower parameter set (see Table 153 on page 901).

The thermoelectric power in metals is activated selectively when the Temperature equation
is solved and the keyword Thermodynamic is specified in the global Physics section. To
active it regionwise, materialwise, or globally, the keyword MetalTEPower with the metal
thermoelectric power PMI name as an option must be specified in the corresponding Physics
sections. For example:

Physics(Material="Copper") {
MetalTEPower(pmi_tepower)

}

activates the metal TEP computation and thermodynamic transport in the copper part of the
device.

Heating at Contacts, Metal–Semiconductor and 
Conductive Insulator–Semiconductor Interfaces

The Peltier heat at a contact, or a metal–semiconductor interface, or a conductive
insulator–semiconductor interface is modeled as:

(1080)

(1081)

where:

■  is the heat density at the interface or contact (when  there is heating; when 
cooling).

■  and  are the electron and hole current densities normal to the interface or contact.

■  and  are the energy differences for electrons and holes across the interface or at
the contact.

■ , , , and  are fitting parameters with .

Q Jn αnΔEn 1 αn–( )Δεn+( )=

Q Jp αpΔEp 1 αp–( )Δεp+( )=

Q Q 0,> Q 0,<

Jn Jp

ΔEn ΔEp

αn αp Δεn Δεp 0 αn αp 1≤,≤
916 Sentaurus™ Device User Guide
N-2017.09



33: Thermal Properties
Heating at Contacts, Metal–Semiconductor and Conductive Insulator–Semiconductor Interfaces
For the thermodynamic model, Sentaurus Device computes the energy differences for electrons
and holes as:

(1082)

(1083)

where , , , and  are fitting parameters.

For the default lattice temperature model and the hydrodynamic model, Sentaurus Device
computes the energy differences for electrons and holes as:

(1084)

(1085)

To activate Peltier heat, the keyword MSPeltierHeat must be specified inside the
corresponding interface or electrode Physics section:

Physics(MaterialInterface="Silicon/Metal") {
MSPeltierHeat
...

}

or:

Physics(Electrode="cathode") {
MSPeltierHeat
...

}

The fitting parameters , , , and  can be specified in the MSPeltierHeat parameter
set of the region interface or electrode for which the Peltier heat is computed:

MaterialInterface = "Silicon/Metal" {
MSPeltierHeat
{

alpha  = 1.0 , 1.0 # [1]
beta  = 1.0 , 1.0
gamma  = 1.0 , 1.0
deltaE = 0.0 , 0.0 # [eV]

}
}

Their default values are  and .

ΔEn ΦM βn Φn γnTPn+( )– 1 βn–( )EC q⁄+=

ΔEp ΦM βp Φp γpTPp+( ) 1 βp–( )E
V

q⁄+–=

βn βp γn γp

ΔEn ΦM EC q⁄+=

ΔEp ΦM EV q⁄+=

α β γ Δε

αn αp βn βp γn γp 1= = = = = = Δεn Δεp 0 eV= =
Sentaurus™ Device User Guide 917
N-2017.09



33: Thermal Properties
References
References

[1] S. M. Sze, Physics of Semiconductor Devices, New York: John Wiley & Sons, 2nd ed.,
1981.

[2] D. J. Dean, Thermal Design of Electronic Circuit Boards and Packages, Ayr, Scotland:
Electrochemical Publications Limited, 1985.

[3] C. J. Glassbrenner and G. A. Slack, “Thermal Conductivity of Silicon and Germanium
from 3oK to the Melting Point,” Physical Review, vol. 134, no. 4A, pp. A1058–A1069,
1964.

[4] S. S. Furkay, “Thermal Characterization of Plastic and Ceramic Surface-Mount
Components,” IEEE Transactions on Components, Hybrids, and Manufacturing
Technology, vol. 11, no. 4, pp. 521–527, 1988.

[5] M. G. Holland, “Analysis of Lattice Thermal Conductivity,” Physical Review, vol. 132,
no. 6, pp. 2461–2471, 1963.

[6] M. Asheghi et al., “Thermal conduction in doped single-crystal silicon films,” Journal
of Applied Physics, vol. 91, no. 8, pp. 5079–5088, 2002.

[7] N. Mikoshiba, “Model for the Metal–Nonmetal Transition in Impure Semiconductors,”
Reviews of Modern Physics, vol. 40, no. 4, pp. 833–838, 1968.

[8] D. Fortier and K. Suzuki, “Effect of P Donors on Thermal Phonon Scattering in Si,”
Le Journal de Physique, vol. 37, pp. 143–147, February 1976.

[9] E. H. Sondheimer, “The mean free path of electrons in metals,” Advances in Physics,
vol. 50, no. 6, pp. 499–537, 2001.

[10] A. M. Marconnet, M. Asheghi, and K. E. Goodson, “From the Casimir Limit to
Phononic Crystals: 20 Years of Phonon Transport Studies Using Silicon-on-Insulator
Technology,” Journal of Heat Transfer, vol. 135, no. 6, p. 061601, 2013.

[11] T. H. Geballe and G. W. Hull, “Seebeck Effect in Silicon,” Physical Review, vol. 98,
no. 4, pp. 940–947, 1955.

[12] W. Fulkerson et al., “Thermal Conductivity, Electrical Resistivity, and Seebeck
Coefficient of Silicon from 100 to 1300oK,” Physical Review, vol. 167, no. 3,
pp. 765–782, 1968.

[13] R. A. Smith, Semiconductors, Cambridge: Cambridge University Press, 2nd ed., 1978.

[14] C. Herring, “The Role of Low-Frequency Phonons in Thermoelectricity and Thermal
Conduction,” in Semiconductors and Phosphors: Proceedings of the International
Colloquium, Garmisch-Partenkirchen, Germany, pp. 184–235, August 1956.
918 Sentaurus™ Device User Guide
N-2017.09



Part III Physics of Light-Emitting Diodes

This part of the Sentaurus™ Device User Guide contains the following chapters:

Chapter 34 Light-Emitting Diodes on page 921

Chapter 35 Modeling Quantum Wells on page 961





CHAPTER 34 Light-Emitting Diodes

This chapter describes the physics and the models used in light-
emitting diode simulations.

NOTE LED simulations present unique challenges that require problem-
specific model and numerics setups. Contact TCAD Support for advice
if you are interested in simulating LEDs (see Contacting Your Local
TCAD Support Team Directly on page xliii).

Modeling Light-Emitting Diodes

From an electronic perspective, light-emitting diodes (LEDs) are similar to lasers operating
below the lasing threshold. Consequently, the electronic model contains similar electrothermal
parts and quantum-well physics as in the case of a laser simulation.

The key difference between an LED and a laser is a resonant cavity design for lasers that
enhances the coherent stimulated emission at a single frequency (for each mode). An LED
emits a continuous spectrum of wavelengths based on spontaneous emission of photons in the
active region. However, an alternative design for LEDs with a resonant cavity – the resonant
cavity LED (RCLED) – uses the resonance characteristics to cause an amplified spontaneous
emission in a narrower spectrum to allow for superbright emissions.

The simulation of LEDs presents many challenges. The large dimension of typical LED
structures, in the range of a few hundred micrometers, prohibits the use of standard time-
domain electromagnetic methods such as finite difference and finite element. These methods
require at least 10 points per wavelength and typical emissions are of the order of . A
quick estimate gives a necessary mesh size in the order of 10 million mesh points for a 2D
geometry. Alternatively, the use of the raytracing method approximates the optical intensity
inside the device as well as the amount of light that can be extracted from the device. In many
cases, a 2D simulation is not sufficient and a 3D simulation is required to give an accurate
account of the physical effects associated with the geometric design of the LED.

Innovative designs such as inverted pyramid structures, chamfering of various corners, surface
roughening, and drilling holes are performed in an attempt to extract the maximum amount of
light from the device. The device editor Sentaurus Structure Editor is well equipped to create
complex 3D devices and provides great versatility in exploring different realistic LED designs.

1 μm
Sentaurus™ Device User Guide 921
N-2017.09



34: Light-Emitting Diodes
Coupling Electronics and Optics in LED Simulations
Photon recycling is important because most of the light rays are trapped within the device by
total internal reflection. There are two types of photon recycling: for nonactive regions and for
the active region. The nonactive-region photon recycling involves absorption of photons in the
nonactive regions to produce optically generated electron–hole pairs, and these subsequently
join the drift-diffusion processes of the general carrier population. The active-region photon
recycling is more complicated, and interested users are referred to [1][2] for its basic theory.

Coupling Electronics and Optics in LED Simulations

An LED simulation solves the Poisson equation, carrier continuity equations, temperature
equation, and Schrödinger equation self-consistently. Figure 60 illustrates the coupling of the
various equation systems in an LED simulation. 

Figure 60 Flowchart of the coupling between the electronics and optics for an LED 
simulation

Single-Grid Versus Dual-Grid LED Simulation

Both single-grid and dual-grid LED simulations are possible. However, in the case of a single-
grid simulation, raytracing takes a longer time for the following reason: Raytracing builds a
binary tree for each starting ray. Each branch of the tree corresponds to a ray at a mesh cell
boundary. If the materials in two adjoining cells are different, the ray splits into refracted and
reflected rays, creating two new branches. If the materials are the same in adjoining cells, the
propagated ray creates a new branch. A fine mesh increases the depth of the branching
significantly. Each new branch of the binary tree is created dynamically and, if dynamic
memory allocation of the machine is not sufficiently fast, the tree creation of the raytracing
becomes a bottleneck in the simulation.

Photon 
Recycling

Electrical Problem
Poisson equation
Carrier continuity equations
Temperature/Hydrodynamic equations
Quantum-well scattering equations

Refractive index,
absorption, wavelength

Optical Problem
Raytracing (far field, 
extraction efficiency)

Spontaneous emission power
density at each active vertex

Gain Calculations
Schrödinger equation

Spontaneous emission rate

Active region carrier densities
922 Sentaurus™ Device User Guide
N-2017.09



34: Light-Emitting Diodes
Electrical Transport in LEDs
To overcome this problem, the grids for the electrical problem and the raytracing problem are
separated. The optical grid for raytracing is meshed coarsely. The binary tree created will be
smaller and raytracing is more efficient. Such a coarse mesh enables you to compute the
extraction efficiency and output radiation pattern. However, the optical intensity within the
device cannot be resolved well with a coarse mesh.

Electrical Transport in LEDs

Besides the drift-diffusion transport of typical semiconductor devices, the LED requires
additional physical models to compute various optical effects. These physical models are
described in the following sections.

Spontaneous Emission Rate and Power

In the active region, the spontaneous emission of photons depletes the carrier population. At
each active vertex, the spontaneous emission (or recombination of carriers) rate (units of

) is an integral of the spontaneous emission:

(1086)

where the optical mode density is:

(1087)

and  is defined in Eq. 1113, p. 962. The total spontaneous emission power density at
each active vertex (units of ) is:

(1088)

This equation is similar to Eq. 1086, except that an additional energy term, , is
included in the integrand to account for the energy spectrum of the spontaneous emission.

#s 1– m 3–

Ractive
sp

x y z, ,( ) r
sp

E( )ρopt
E( ) Ed

0

∞

=

ρopt
E( )

ng
2
E

2

π2
h

3
c

2
-----------------=

rsp E( )
Js 1– m 3–

ΔP
sp

x y z, ,( ) r
sp

E( )ρopt
E( ) hω( ) Ed⋅

0

∞

=

E hω=
Sentaurus™ Device User Guide 923
N-2017.09



34: Light-Emitting Diodes
Electrical Transport in LEDs
In LED simulations, the spontaneous emission spectrum, , broadens significantly with
increasing injected carriers. The integrals in Eq. 1086 and Eq. 1088 are based on a Riemann
sum and, as with numeric integration, truncates at an internally set energy value. You can
change the truncation value and the Riemann integration interval with the following syntax in
the command file:

Physics {...
LED (...

Optics (...)
SponScaling = 1.0
SponIntegration(<energyspan>,<numpoints>)

)
}

where <energyspan> is a floating-point number (in eV) and is measured from the edge of the
energy bandgap, and <numpoints> is an integer denoting the number of discretized intervals
to use within this energy span.

The total spontaneous emission power is the volume integral of the power density over all the
active vertices:

(1089)

This is the total spontaneous emission power that is computed and output in an LED
simulation. 

Since you are dealing with a spectrum for the spontaneous emission, it is evident from Eq. 1086
and Eq. 1088 that the integral sum of the photon rate and the integral sum of the photon power
are not simply related by a constant photon energy, that is:

(1090)

Spontaneous Emission Power Spectrum

The LED spontaneous emission power spectrum can be plotted by activating the GainPlot
section. The syntax consists of defining the number of discretized points for the spectrum and
the span of the spectrum to plot:

File {...
ModeGain = "ngainplot_des"

}

GainPlot {
Range = (<float>, <float>) # specific range in eV
Range = Auto # automatically determines range

rsp E( )

Ptotal
sp ΔP

sp
x y z, ,( ) Vd

active region–( )
=

ΔP
sp

x y z, ,( ) hω0( )Ractive
sp

x y z, ,( )≠
924 Sentaurus™ Device User Guide
N-2017.09



34: Light-Emitting Diodes
Electrical Transport in LEDs
Intervals = <integer> # number of discretized points
}

Solve {...
PlotGain( Range=(0,1) Intervals=5 )

}

In the gain file, the quantity SponEmissionPowerPereV (W/eV) is plotted. Integrating this
quantity over the energy (eV) span recovers the total LED power.

Current File and Plot Variables for LED Simulation

When an LED simulation is run, specific LED result variables are output to the plot file.
Table 163 and Table 164 on page 926 list the current file output and the plot variables valid for
LED simulation. 

Table 163 Current file for LED simulation

Dataset group Dataset Unit Description

LedWavelength nm Average wavelength of LED 
simulation.

n_Contact
p_Contact

Charge C

eCurrent A

hCurrent A

InnerVoltage V

OuterVoltage V

TotalCurrent A

Photon_Exited Rate of photon escaping from device.

Photon_ExtEfficiency 1 Photon extraction efficiency.

Photon_NetPhotonRecycle Net photon-recycling photon rate.

Photon_NonActiveAbsorb Rate of photon absorption in 
nonactive regions.

Photon_Spontaneous Spontaneous emission photon rate.

Photon_Trapped Rate of trapped photons in device.

Power_Absorption W Absorption power.

Power_ASE W Amplified spontaneous emission 
power.

Power_Exited W Power escaping from device.

s
1–

s
1–

s
1–

s
1–

s
1–
Sentaurus™ Device User Guide 925
N-2017.09



34: Light-Emitting Diodes
Electrical Transport in LEDs
LedWavelength is computed automatically in the simulation. It is taken as the wavelength
where the peak of the spontaneous spectrum occurs. Different options for computing the
wavelength are available (see LED Wavelength on page 927). For clarity, photon rate and
power output results are separated into two groups:

■ The photon rate group has units of .

■ The power group has units of .

Photon and power quantities need to be computed separately if a spectrum is involved. Suppose
that the spontaneous emission coefficient is  (units of ). The photon rate is

 (Eq. 1086, p. 923 with ), while the power is 
(Eq. 1088, p. 923). The extraction coefficient is the ratio of the exited and internal quantities,

Power_ExtEfficiency 1 Power extraction efficiency.

Power_NetPhotonRecycle W Net photon-recycling power.

Power_NonActiveAbsorb W Power absorbed in nonactive regions.

Power_ReEmit W Re-emission power.

Power_SpecConvertGain W Net power gain of spectral 
conversion.

Power_Spontaneous W Spontaneous emission power.

Power_Total W Total internal optical power of LED.

Power_Trapped W Power trapped inside device.

Time 1
s

For quasistationary.
For transient.

Table 164 Plot variables for LED simulation

Plot variable Dataset name Unit Description

DielectricConstant 1 Dielectric profile.

LED_TraceSource Influence of each active vertex on the 
total extracted light.

MatGain OpticalMaterialGain Local material gain.

RayTraceIntensity Optical intensity from raytracing.

RayTrees Raytree structure. Not available for 
the compact memory option.

SpontaneousRecombination Sum of spontaneous emission.

Table 163 Current file for LED simulation (Continued)

Dataset group Dataset Unit Description

m
1–

Wcm
3–

cm
3–
s

1–

s 1–

W

rsp' eV 1– cm 3– s 1–

rsp' Ed rsp' rsp E( ) ρopt E( )×= rsp' E⋅ Ed
926 Sentaurus™ Device User Guide
N-2017.09



34: Light-Emitting Diodes
Electrical Transport in LEDs
so the photon rate (Photon_ExtEfficiency) and power (Power_ExtEfficiency)
extraction efficiencies are different.

The only case when Photon_ExtEfficiency=Power_ExtEfficiency is for a single
wavelength simulation that does not involve a spectrum.

The total outcoupled (exited) power is then (Power_ExtEfficiency x (Power_Total-
Power_NonActiveAbsorb)), where the total internal optical power is:

Power_Total = Power_Spontaneous + Power_NetPhotonRecycle + 
Power_SpecConvertGain (1091)

The photon rate extraction efficiency has been computed using:

Photon_ExtEfficiency = Photon_Exited / (Photon_Spontaneous + 
Photon_NetPhotonRecycle-Photon_NonActiveAbsorb) (1092)

For power conservation in a nonactive photon-recycling case, you have:

Power_Total = Power_Spontaneous 
= Power_Exited + Power_Trapped + 
Power_NonActiveAbsorb (1093)

Power_Trapped refers to the power of the photons that are trapped (by total internal reflection
or possibly nonconverging raytracing) indefinitely in the raytracing simulation. In a realistic
scenario, the trapped photons decay in the device by some mechanism.

NOTE Users are responsible for introducing losses within the device (perhaps
by introducing nonzero extinction coefficients in appropriate regions) to
ensure proper treatment of the trapped photons.

NOTE The Power_NetPhotonRecycle, Power_SpecConvertGain, and
Photon_NetPhotonRecycle quantities pertain only to the active-
region photon-recycling model. These quantities are zero if the active-
region photon-recycling model is not activated.

LED Wavelength

There are different ways of computing or inputting the LED wavelength:

■ AutoPeak: A robust algorithm based on the multisection method is used to search for the
peak of the spontaneous emission rate spectrum (  versus E-curve). Then, the energy of
the peak  is translated into the LED wavelength.

■ AutoPeakPower: The same algorithm as for AutoPeak is used on the spontaneous
emission power spectrum (  versus E-curve).

rsp'

rsp'

rsp'E
Sentaurus™ Device User Guide 927
N-2017.09



34: Light-Emitting Diodes
Electrical Transport in LEDs
■ Effective: An effective wavelength is computed such that:

LED power = LED photon rate x photon_energy (1094)

where photon_energy is a direct inverse function of the effective wavelength.

■ User inputs a fixed LED wavelength.

The keywords for activating the various LED wavelength options are:

Physics {...
LED (...

Optics (...
RayTrace (...

Wavelength = <float> | AutoPeak | Effective | AutoPeakPower
)

)
)

}

NOTE If no Wavelength keyword is specified, the old peak wavelength
search algorithm is used.

Optical Absorption Heat

Photon absorption heat in semiconductor materials can be simplified into two processes:

■ Interband absorption: When a photon is absorbed across the forbidden band gap in a
semiconductor, it is absorbed to create an electron–hole pair. The excess energy (photon
energy minus the band gap) of the new electron–hole pair is assumed to thermalize,
resulting in eventual lattice heating.

■ Intraband absorption: A photon can be absorbed to increase the energy of a carrier. The
excess energy relaxes eventually, contributing to lattice heating.

In both processes, it is assumed that the eventual lattice heating (in a quasistationary
simulation) occurs in the locality of photon absorption.

In LEDs, the extraction efficiency ranges between 40% and 60% commonly. This means a
significant portion of the spontaneous light power is trapped within the device. The trapped
light is ultimately absorbed and becomes the source of photon absorption heat.
928 Sentaurus™ Device User Guide
N-2017.09



34: Light-Emitting Diodes
Electrical Transport in LEDs
Other keywords in the Physics section have been added. As far as possible, the syntax has
been kept similar to that of the QuantumYield model (see Quantum Yield Models on
page 544):

Plot {...
OpticalAbsorptionHeat # units of [W/cm^3]

}

Physics {...
LED(...)
OpticalAbsorptionHeat (

StepFunction (
Wavelength = float # um
Energy = float # eV
Bandgap # auto-checking of band gap
EffectiveBandgap # auto-checking of band gap

)
ScalingFactor = float # default is 1.0

)
}

Some comments about the different StepFunction choices:

■ When the keyword Wavelength or Energy is used, the wavelength or energy of the
photons is checked against this value. If the photon wavelength or energy is smaller or
larger than this cutoff value, convert the optical generation totally into optical absorption
heat, and set optical generation at the vertex to 0.

■ The keywords Bandgap and EffectiveBandgap refer to the cutoff energy of the step
function at  and , respectively. If the photon energy is
greater than the cutoff energy (interband absorption), deduct the band gap to obtain the
excess energy but do not deduct the optical generation. If the photon energy is less than the
cutoff energy (intraband absorption), set the excess energy to the photon energy. In both
cases, the excess energy will be converted to a heat source term for the lattice temperature
equation.

■ A ScalingFactor is introduced to allow for flexible fine-tuning.

■ The OpticalAbsorptionHeat statement can be specified globally in the Physics
section or the materialwise or regionwise Physics section.

Quantum Well Physics

The physics in the quantum well (QW) is described in detail in Chapter 35 on page 961. Due
to the size of the LED structure, it is recommended that you start with representing quantum
wells as bulk active regions, and then contact TCAD Support for assistance in the more
advanced settings (see Contacting Your Local TCAD Support Team Directly on page xliii).

Eg Ebgn– Eg Ebgn– 2 3 2⁄( )kT⋅+( )
Sentaurus™ Device User Guide 929
N-2017.09



34: Light-Emitting Diodes
Electrical Transport in LEDs
The scattering transport into QWs is approximated with thermionic emission for the best
convergence behavior. The corrections of the carrier densities due to quantizations of the QW
can be taken into account in the localized QW model (see Localized Quantum-Well Model on
page 978).

Accelerating Gain Calculations and LED Simulations

The computation bottleneck in LED simulations with gain tables is the calculation of the
spontaneous emission rate at every Newton step. The spontaneous emission rate (unit is ) is
an energy integral of the spontaneous emission coefficient (unit is ), and the
integration is performed as a Riemann sum. To accelerate this calculation, a Gaussian
quadrature integration can be used instead. 

All gain calculations (with or without the gain tables) can be accelerated by specifying the
following syntax in the Math section of the command file:

Math {...
BroadeningIntegration ( GaussianQuadrature ( Order = 10 ) )
SponEmissionIntegration ( GaussianQuadrature ( Order = 5 ) )

}

The Gaussian quadrature numeric integration then is used in all parts of the gain calculations
including broadening effects.

The order can be from 1 to 20. This order refers to the order of the Legendre polynomial that
is used to fit the spontaneous emission spectrum in the energy range of the integration. The
Gaussian quadrature integration is exact for any spectrum that can be expressed as a
polynomial.

NOTE Convergence issues can be experienced in some situations. In such
cases, switch off the Gaussian quadrature integration for
SponEmissionIntegration and BroadeningIntegration in the
Math section.

Discussion of LED Physics

Many physical effects manifest in an LED structure. Current spreading is important to ensure
that the current is channeled to supply the spontaneous emission sources at strategic locations
that will provide the optimal extraction efficiency.

Changes to the geometric shape of the LED are made to extract more light from the structure.
In most cases, the major part of the light produced is trapped within the structure through total

s 1–

s 1– eV 1– cm 3–
930 Sentaurus™ Device User Guide
N-2017.09



34: Light-Emitting Diodes
LED Optics: Raytracing
internal reflection. As a result, the nonactive-region and active-region photon-recycling effect
becomes relevant. This important physics has been incorporated into different physical models
within Sentaurus Device. The nonactive photon-recycling (absorption of photons in nonactive
regions) is switched on automatically by default. In most cases, the nonactive photon-recycling
model is sufficient to capture the major physical effects because the volume of the active region
is insignificant compared to the nonactive regions. Nonetheless, the active-region photon-
recycling model can become important if there is a very high stimulated gain, which is usually
not the case for GaN LEDs.

Important aspects of LED design are simulated easily by Sentaurus Device. These include
current spreading flow, geometric design, and extraction efficiency.

LED Optics: Raytracing

Raytracing is used to compute the intensity of light inside an LED, as well as the rays that
escape from the LED cavity to give the signature radiation pattern for the LED output. The
basic theory of raytracing is presented in Raytracing on page 593.

Arbitrary boundary conditions can be defined. A detailed description of how to set up the
boundary conditions for raytracing is discussed in Boundary Condition for Raytracing on
page 605. This is particularly useful in 3D simulations where you can define reflecting planes
to use symmetry for reducing the size of the simulation model.

In addition, you can use reflecting planes to take into account external components such as
reflectors, an example of which is shown in Figure 61. 

Figure 61 Using the reflecting boundary condition to define a reflector for LED raytracing

The raytracer needs to include the use of the ComplexRefractiveIndex model and to define
the polarization vector. The syntax for this is:

Physics {...
ComplexRefractiveIndex (...

WavelengthDep ( real imag )
CarrierDep( real imag )
GainDep( real ) # or real(log)

External
Reflector
Sentaurus™ Device User Guide 931
N-2017.09



34: Light-Emitting Diodes
LED Optics: Raytracing
TemperatureDep( real )
CRImodel ( Name = "crimodelname" )

)
LED (...

Optics (
RayTrace(

PolarizationVector = Random # or (x y z) vector
RetraceCRIchange = float # fractional change to retrace rays
...

)
)

)
}

When PolarizationVector=Random is chosen, random vectors that are perpendicular to
the starting ray directions are generated and assigned to be the polarization vector of each
starting ray. The direction of each starting ray is described in Isotropic Starting Rays From
Spontaneous Emission Sources and Anisotropic Starting Rays From Spontaneous Emission
Sources on page 934.

The keyword RetraceCRIchange specifies the fractional change of the complex refractive
index (either the real or imaginary part) from its previous state that will force a total
recomputation of raytracing.

Compact Memory Raytracing

A compact memory model has been built for LED raytracing. In the compact memory model,
the raytrees are no longer saved, and necessary quantities are computed as required and
extracted to compact storages of optical generation and optical intensity. As a result, the
memory use and footprint are significantly reduced, thereby enabling the raytracing simulation
of large LED structures. The syntax for activation is:

Physics {...
LED (...

RayTrace(...
CompactMemoryOption

)
)

}

NOTE The full active photon-recycling model does not work with the compact
memory model.
932 Sentaurus™ Device User Guide
N-2017.09



34: Light-Emitting Diodes
LED Optics: Raytracing
Isotropic Starting Rays From Spontaneous Emission 
Sources

The source of radiation from an LED is mainly from spontaneous emissions in the active region
(this is further discussed in Spontaneous Emission Rate and Power on page 923). The
spontaneous emission in the active region of the LED is assumed to be an isotropic source of
radiation and can be conveniently represented by uniform rays emitting from each active
vertex, as shown in Figure 62. 

Figure 62 Uniform rays radiating isotropically from an active vertex source in (left) 2D space 
and (right) 3D space: only one-eighth of spherical space is shown for the 3D case

Isotropy requires that the surface area associated with each ray must be the same. The isotropy
of the rays in 2D space is apparent. In 3D space, achieving isotropy is not as simple as dividing
the angles uniformly. The elemental surface area of a sphere is , so uniformly
angular-distributed rays are weighted by  and, therefore, do not signify isotropy.

To approximate this problem in 3D, a geodesic dome approximation is used (the geodesic
dome is not strictly isotropic). Rays are directed at the vertices of the geodesic dome. The
algorithm starts by constructing an octahedron and, then, recursively splits each triangular face
of the octahedron into four smaller triangles.

The first stage of this splitting process is shown in Figure 62 (right), where rays are directed at
the vertices of each triangle. The minimum number of rays is six, that is, one is directed along
each positive and negative direction of the axes. If the first stage of recursive splitting is
applied, a few more rays are constructed as shown in Figure 62, and the number of starting rays
becomes 18. The second stage of recursive splitting gives 68 rays and so on. Therefore, you are
constrained to selecting a fixed set of starting rays in the 3D case. Alternatively, you can input
your own set of isotropic starting rays (see Reading Starting Rays From File on page 936).

2D
3D

r2 θ θd( ) φd( )sin
θsin
Sentaurus™ Device User Guide 933
N-2017.09



34: Light-Emitting Diodes
LED Optics: Raytracing
Anisotropic Starting Rays From Spontaneous Emission 
Sources

In some LED designs, the geometry governs the polarization of the optical field in the device.
The spontaneous gain is dependent on the direction of this polarization. Consequently, this
leads to an anisotropic spontaneous-emission pattern at the source.

The anisotropic emission pattern is proposed to be described by the following parametric
equations:

(1095)

(1096)

(1097)

where the intensity is given by:

(1098)

The bases of sine and cosine are chosen based on the fact that the optical matrix element has
such a functional form when polarization is considered (see Importing Gain and Spontaneous
Emission Data With PMI on page 982). By changing the values of d1 to d6, different emission
shapes can be orientated in different directions, and this feature allows you to modify the
anisotropy of the spontaneous emission.

The syntax required to activate the anisotropic spontaneous emission feature is:

Physics {...
LED (...

Optics(...
RayTrace(...

EmissionType(
#Isotropic # default
Anisotropic(

Sine(d1 d2 d3)
Cosine(d4 d5 d6)

)
)

)
)

)
}

Ex d1 φ( )sin⋅ d4 φ( )cos⋅+=

Ey d2 φ( )sin⋅ d5 φ( )cos⋅+=

Ez d3 θ( )sin⋅ d6 θ( )cos⋅+=

I Ex
2

Ey
2

Ez
2

+ +=
934 Sentaurus™ Device User Guide
N-2017.09



34: Light-Emitting Diodes
LED Optics: Raytracing
Randomizing Starting Rays

Spontaneous emission is a random process. To take into account the random nature of this
process and still ensure that the emission of the starting rays from each active vertex source is
isotropic, a randomized shift of the entire isotropic ray emission is introduced.

This is best illustrated in Figure 63 where only four starting rays are used for clarity. For each
active vertex, a random angle is generated to determine the random shift of the distribution of
the isotropic starting rays. The same concept is also used for the 3D case, and this gives a
simple randomization strategy for using raytracing to model the spontaneous emissions. 

Figure 63 Shifting the distribution of entire isotropic starting rays by an angle 

Pseudorandom Starting Rays

Randomization of the starting rays is activated by the keyword RaysRandomOffset in the
following syntax:

Physics {...
LED (...

RayTrace (...
RaysRandomOffset

# RaysRandomOffset (RandomSeed = 123) # seeding the generator
)

)
}

You also can fix the seed of the random number generator, and this will compute a
pseudorandom set of starting rays, so that repeated runs of the same simulation will reproduce
exactly the same raytracing results.

NOTE Without the keyword RaysRandomOffset, the default is a fixed
angular shift that is determined by the active vertex number.

Shift by angle α
α

α

Sentaurus™ Device User Guide 935
N-2017.09



34: Light-Emitting Diodes
LED Optics: Raytracing
Reading Starting Rays From File

The geodesic ray distribution is not truly isotropic. As a result, some percentages of error are
incurred when isotropy is really needed. To circumvent this issue, a new feature to allow you
to read in a set of source isotropic starting rays has been implemented. The syntax is:

Physics {...
LED (...

Optics (...
RayTrace (...

RaysPerVertex = 1000
SourceRaysFromFile("sourcerays.txt")

)
)

)
}

It is important to note that RaysPerVertex specifies the number of direction vectors to read
from the file. The file specified with SourceRaysFromFile contains 3D direction vectors for
each starting ray; an example of which is sourcerays.txt:

-0.239117 0.788883 0.566115
0.776959 0.548552 -0.308911
-0.607096 -0.042603 0.793485
-0.158313 -0.276546 -0.947871
0.347036 -0.805488 0.480370
...

There are several methods for generating 3D isotropic rays, for example, the constrained
centroid Voronoï tessellation (CCVT). On the other hand, you can also use this option to import
experimentally measured ray distribution profiles.

Moving Starting Rays on Boundaries

Starting rays from active vertices on boundaries create the problem that half of those rays are
propagated directly out of the device. To alleviate this problem, a new feature is implemented
to allow you to shift the starting position of such rays inwards of the device. Typical values used
are from 1 to 5 nm. The syntax is:

Physics {...
LED (...

Optics (...
RayTrace (...

MoveBoundaryStartRays(float) # [nm]
)

936 Sentaurus™ Device User Guide
N-2017.09



34: Light-Emitting Diodes
LED Optics: Raytracing
)
)

}

Clustering Active Vertices

In 3D LED simulations, the number of active vertices can grow significantly when the
electrical mesh is refined. This directly implies that the number of starting rays for raytracing
increases significantly because that is a direct function of the number of active vertices.

Consequently, the resultant raytree is an exponential function of the number of starting rays,
and this results in a very large raytracing problem, which can derail the simulation time and, in
part, the memory usage (since the compact memory model declares storage arrays of the size
of the number of active vertices).

The solution is to group the active vertices into clusters, with each cluster serving as a
distributed source of starting rays for raytracing. 

Three possible strategies of clustering the active vertices have been implemented.

Plane Area Cluster

Users select the total number of clusters to be generated. Then, this number is translated into
equal area zones (also taking into account the aspect ratio) of the automatically detected QW
plane. The active vertices are subsequently grouped into each of these zones such that each
zone forms a cluster. The algorithm for plane area clustering is described as follows:

Assume you input the required cluster size, . The aim is to fit as many squarish elements (of
size ) into the QW plane area (size ) as possible, as shown in Figure 64. 

Figure 64 Fitting as many squarish elements of size d x d into QW plane

Nc

d d× XY

X

Y
d x d
Sentaurus™ Device User Guide 937
N-2017.09



34: Light-Emitting Diodes
LED Optics: Raytracing
The constraints of the problem are:

(1099)

,  is an integer (1100)

,  is an integer (1101)

Solving gives:

(1102)

(1103)

Finally, the adjusted cluster size becomes:

(1104)

If no active vertices fall within a plane area segment, that segment is not added to the list of
clusters. Therefore, you may see a smaller number of clusters than .

Nodal Clustering

A recursive algorithm is used to calculate how to group the active vertices for each cluster, such
that each cluster receives, more or less, the same number of active vertices. The algorithm
alternates the x- and y-coordinate partitioning of the list of active vertices, in an attempt to
group a cluster of nearest neighboring active vertices. Unfortunately, this may not result in an
even spatial distribution of clusters, which is a disadvantage of this method.

Optical Grid Element Clustering

The number of clusters cannot be set by users as it is defined by the number of optical grid
elements. Active regions must be defined in both the electrical and optical grids. An effective
bulk region in the optical grid is used to describe the active QW layers and can be meshed
according to user requirements. Then, the electrical active vertices are grouped inside each of
the optical grid active elements such that each optical-grid active element forms a cluster. In
this way, you can control the distribution of the clusters for greater modeling flexibility.

NOTE In all the above clustering methodologies, the center of each cluster is
determined by the average of the active vertices that it encloses.

Nc
XY

d
2

-------=

X Nxd= Nx

Y Nyd= Ny

Nx INTEGER( ) X Y⁄( )Nc=

Ny INTEGER( ) Y X⁄( )Nx=

Nc' Nx Ny×=

Nc'
938 Sentaurus™ Device User Guide
N-2017.09



34: Light-Emitting Diodes
LED Optics: Raytracing
Using the Clustering Feature

The following keywords in the LED framework activate the clustering feature:

Physics {...
LED ( ...

Raytrace (...
ClusterActive(

ClusterQuantity = Nodes | PlaneArea | OpticalGridElement
NumberOfClusters = <integer> # for Nodes | PlaneArea

)
)

)
}

Debugging Raytracing

Rays are assumed, by default, to irradiate isotropically from each active vertex. In the case of
quantum wells, an artifact of this assumption may cause unrealistic spikes in the radiation
pattern. Consider those source rays that are directed within the plane of the quantum wells.
These rays will mostly transmit out of the device at the ending vertical edges of the quantum
wells. Realistically, the rays would have a much higher probability of being absorbed and re-
emitted into another direction than traversing the entire plane of the quantum well. 

To circumvent this problem, use the anisotropic emission as described in Anisotropic Starting
Rays From Spontaneous Emission Sources on page 934. Alternatively, one can try to exclude
the source rays emitting within a certain angular range from the horizontal plane, that is, the
plane of the quantum well. The power from these excluded rays will be distributed equally to
the rest of the rays that are not within this angular range. This results in an approximate
anisotropic emission shape at each active vertex. The syntax for this exclusion is:

Physics { ...
LED ( ...

Optics ( ...
RayTrace ( ...

ExcludeHorizontalSource(<float>) # in degrees
)

)
)

}

To add more flexibility to LED raytracing, debugging features are implemented. These include:

■ Setting a fixed observation center for the LED radiation calculations.

■ Fixing a constant wavelength for raytracing.
Sentaurus™ Device User Guide 939
N-2017.09



34: Light-Emitting Diodes
LED Optics: Raytracing
■ Allowing you to print and track the LED radiation rays (in a certain angular zone) back to
its source active vertex.

These features are described in this syntax:

Physics { ...
LED ( ...

Optics ( ...
RayTrace ( ...

ObservationCenter = (<float> <float>) 
# in micrometers, 3 entries for 3D

Wavelength = 888 # [nm] set fixed wavelength
DebugLEDRadiation(<filename> <StartAngle> <EndAngle> 

<MinIntensity>)
)

)
)

}

Print Options in Raytracing

The original Print feature of raytracing causes all ray paths to be printed. With multiple
reflections or refractions and a large number of starting rays, the resultant image can become
a black smudge. To reduce the number of ray paths that are printed, a Skip option is
implemented within the Print feature. In addition, you can trace the ray paths originating
from only a single active vertex. These features are described in this syntax:

Physics {
LED (

Optics (
RayTrace (

Print(Skip(<int>)) # skip printing every <int> ray paths
Print(ActiveVertex(<int>)) # print only rays from active vertex

# <int>
PrintSourceVertices(<filename>)
ProgressMarkers = <int> # 1-100% intervals (integer)

)
)

)
}

The option PrintSourceVertices(<filename>) outputs the list of active vertices, their
global index numbering, and coordinates into the file specified by <filename>. If the number
of source rays is large or the optical mesh is fine, raytracing takes some time to be completed.
In this case, you can use the keyword ProgressMarkers=<int> to set the incremental
completion meter.
940 Sentaurus™ Device User Guide
N-2017.09



34: Light-Emitting Diodes
LED Optics: Raytracing
The Print option only outputs rays as lines with no other information. To obtain a raytree that
contains intensity and other information, you can plot the raytree using the keyword RayTrees
in the Plot section of the command file:

Plot {...
RayTrees

}

The resultant raytree is plotted in TDR format and can be visualized by Sentaurus Visual,
where each branch of the raytree can be accessed individually.

Interfacing LED Starting Rays to LightTools®

To facilitate the rapid design of LED structures with its luminaire, the starting rays from active
region vertices can be output directly to a ray file formatted for use in LightTools. Figure 65
shows a probable design flow. 

Figure 65 LED design flow to optimize extraction efficiency by LightTools and coupled to 
Sentaurus Device LED device simulation

The set of rays is derived from the LED spontaneous emission power spectrum at each vertex
of the device. This means that there is wavelength variability such that each starting ray carries
a starting position, a direction, an intensity value, and a wavelength.

This feature is an extension of the Disable keyword, so that the internal Sentaurus Device
raytracing engine will not be activated. The syntax is:

File {...
Plot = "n99_des.tdr"

}

Physics {...
LED (

RayTrace(
Disable(

OutputLightToolsRays (

Sentaurus Device LightTools

• Layer Design
• Current Spreading
• QW Emissions

Optimize LED Shape
for Maximum 
Extraction EfficiencyAltered Shape of Device

QW Emission at Active

Vertices Treated as Source
of Rays

 

Sentaurus™ Device User Guide 941
N-2017.09



34: Light-Emitting Diodes
LED Optics: Raytracing
WavelengthDiscretization = <integer> # spectrum discretization
RaysPerCluster = <integer> # rays emitting from each

# active cluster
IsotropyType = InBuilt | Random | UserRays # default is InBuilt
SaveType = Ascii | Binary # choose ASCII or binary format

)
)
ClusterActive()
RaysPerVertex = <integer> # used with SourceRaysFromFile()
SourceRaysFromFile(string)

)
)

}

Solve {...
Plot( Range=(0,1) Intervals=5 )

}

This feature can be used in conjunction with the ClusterActive section, so that the active
vertices can be grouped into clusters to reduce the final number of rays. If the ClusterActive
section is not present, every active vertex will be used as emission centers for the starting rays.
It is also possible to import an isotropic distribution of point source rays from a file to be used
for random-rotated distribution at different vertices. The span of the spectrum at each active
cluster is computed automatically and divided into the numbers as specified by
WavelengthDiscretization. The total number of starting rays is:

WavelengthDiscretization * RaysPerCluster * NumberOfActiveClusters

Two types of ray file format for LightTools can be chosen: ASCII or binary. The base name for
the LightTools ray files is derived from the plot file name and is appended with either
_lighttools.txt for the ASCII format or _lighttools.ray for the binary format.

For example, according to the above syntax, the following are the corresponding file names for
the LightTools ray files:

n99_000000_des_lighttools.txt
n99_000001_des_lighttools.txt
...
n99_000000_des_lighttools.ray
n99_000001_des_lighttools.ray
...

These files can be read directly by LightTools as volume sources of rays (refer to the
LightTools manual for more information).
942 Sentaurus™ Device User Guide
N-2017.09



34: Light-Emitting Diodes
LED Radiation Pattern
Example: n99_000000_des_lighttools.txt

This example is an ASCII-formatted LightTools ray file (version 2.0 format):

# Synopsys Sentaurus Device to LightTools
# Ray Data Export File
LT_RDF_VERSION: 2.0
DATANAME: SentaurusDeviceRayData
LT_DATATYPE: radiant_power
LT_RADIANT_FLUX: 1.946806e-04
LT_FAR_FIELD_DATA: NO
LT_COLOR_INFO: wavelength
LT_LENGTH_UNITS: micrometers
LT_DATA_ORIGIN:             0              0              0
LT_STARTOFDATA
0.000000e+00 4.290000e-01 0.000000e+00 -0.163343 -0.986569 0.000000 
5.451892e-05 470.395656
0.000000e+00 4.290000e-01 0.000000e+00 -0.163343 -0.986569 0.000000 
1.817405e-04 459.664919
....
LT_ENDOFDATA

The first three columns denote the starting position (in micrometers) of the ray, the next three
columns show the direction vector, and this is followed by the fractional power (as a fraction
of LT_RADIANT_FLUX), and ends with the wavelength (in nanometers).

LED Radiation Pattern

Raytracing does not contain phase information, so it is not possible to compute the far-field
pattern for an LED structure. Instead, the outgoing rays from the LED raytracing are used to
produce the radiation pattern.

In 2D space, this is equivalent to moving a detector in a circle around the LED as shown in
Figure 66 on page 944.

In 3D space, the detector is moved around on a sphere. The circle and sphere have centers that
correspond to the center of the device. Sentaurus Device automatically determines the center
of the device to be the midpoint of the device on each axis. Nonetheless, there is an option to
allow you to set the center of observation (see Debugging Raytracing on page 939 and
Table 271 on page 1455).

To examine the optical intensity inside the LED, use RayTraceIntensity in the Plot
statement. 
Sentaurus™ Device User Guide 943
N-2017.09



34: Light-Emitting Diodes
LED Radiation Pattern
Figure 66 Measuring the radiation pattern in a circular path around LED at observation 
radius, R

The syntax required to activate and plot the LED radiation pattern is located in the File,
Physics-LED-Optics-RayTrace, and Solve-quasistationary sections of the
command file:

File {...
# ----- Activate LED radiation pattern and save -----
LEDRadiation = "rad"

}
...
Physics {...

LED (...
Optics (...

RayTrace(...
LEDRadiationPara(1000.0,180) # (radius_micrometers, Npoints)
ObservationCenter = (2.0 3.5 5.5)  # set center

)
)

)
}
...
Solve {...

# ----- Specify quasistationary -----
quasistationary (...

PlotLEDRadiation { range=(0,1) intervals=3 }

Goal {name="p_Contact" voltage=1.8})
{...}

}

R

LED
φ = 0
944 Sentaurus™ Device User Guide
N-2017.09



34: Light-Emitting Diodes
LED Radiation Pattern
The LED radiation plot syntax works in the same way as GainPlot (see Spontaneous
Emission Power Spectrum on page 924) in the Quasistationary statement.

An explanation of this example is:

■ The base file name, "rad", of the LED radiation pattern files is specified by
LEDRadiation in the File section. The keyword LEDRadiation also activates the LED
radiation plot.

■ The parameters for the LED radiation plot are specified by the keyword
LEDRadiationPara in the Physics-Optics-RayTrace section. You must specify the
observation radius (in micrometers) and the discretization of the observation circle (2D) or
sphere (3D).

■ You can set the center of observation by including the keyword ObservationCenter. If
this is not set, the center is automatically computed as the middle point of the span of the
device on each axis.

■ The LED radiation pattern can only be computed and plotted within the
Quasistationary statement. The keyword PlotLEDRadiation controls the number of
LED radiation plots to produce.

■ The argument range=(0,1) in the PlotLEDRadiation keyword is mapped to the initial
and final bias conditions. In this example, the initial and final (goal) p_Contact voltages
are 0 V and 1.8 V, respectively. The number of intervals=3, which gives a total of four
(= 3+1) LED radiation plots at 0 V, 0.6 V, 1.2 V, and 1.8 V. In general, specifying
intervals=n produces (n+1) plots.

■ If the LED structure is symmetric, the LED radiation is only computed on a semicircle.

The following sections briefly describe the files that are produced in the LED radiation plot for
the 2D and 3D cases.

Two-Dimensional LED Radiation Pattern and Output Files

Activating the LED radiation plot for a 2D LED simulation produces two different files (using
the base name "rad"): 

rad_000000_LEDRad.plt The normalized radiation pattern versus observation angle,
which can be viewed in Inspect.

rad_000000_LEDRad_Polar0.tdr The normalized radiation pattern projected onto a grid file
and can be viewed in Sentaurus Visual. The polar plot of the
LED radiation pattern is then shown.
Sentaurus™ Device User Guide 945
N-2017.09



34: Light-Emitting Diodes
LED Radiation Pattern
A sample output of the radiation plot of a 2D nonsymmetric LED structure is shown in
Figure 67. The lower-left image corresponds to the file rad_000000_LEDRad.plt plotted by
Inspect, and the right image is the product of the file rad_000000_LEDRad_Polar.tdr
plotted by Sentaurus Visual. 

Figure 67 (Upper left) LED internal optical intensity, (lower left) normalized radiation 
intensity versus observation angle, and (right) polar radiation plot computed by 
Sentaurus Device in 2D LED simulation

Three-Dimensional LED Radiation Pattern and Output 
Files

There are two output files for the radiation pattern in the case of a 3D LED simulation: 

rad_000000_des.tdr Data file containing the normalized radiation pattern. Use
Sentaurus Visual for this file, and the spherical plot of the 3D
LED radiation pattern is then shown. A sample of the
radiation pattern of a 3D LED simulation is shown in
Figure 68 on page 947.

rad_000000_des_3Dslices.plt The 3D radiation pattern is extracted into polar plots on three
planes that can be visualized using Inspect:
– XYplane: ; plot far field for  to .
– XZplane: , ; plot far field for  to .
– YZplane: , ; plot far field for  
to .

Polar Plot

Observation Angle [degree]

LE
D

 N
or

m
al

iz
ed

 R
ad

ia
tio

n

0 100 200 300

0.2

0.4

0.6

0.8

1

θ π 2⁄= φ 0= 2π
φ 0= π θ 0= 2π
φ π 2⁄= 3π 2⁄ θ 0=

2π
946 Sentaurus™ Device User Guide
N-2017.09



34: Light-Emitting Diodes
LED Radiation Pattern
Figure 68 (Left) LED internal optical intensity and (right) normalized radiation intensity 
projected on a sphere of 3D LED simulation

Staggered 3D Grid LED Radiation Pattern

In discretizing a 3D far-field collection sphere with regular longitudinal and latitude lines, the
size of each surficial element critically depends on its location on the sphere. At the polar
regions, the elements are very small compared to those along the equator. As the discretization
increases, the disparity between the polar and equator surficial elements increases at the same
rate.

The sampling rate for rays is constrained by the smallest collecting element, which, in this case,
is the much smaller surficial element at the poles. In most cases, the polar regions are
undersampled and the equator regions are oversampled due to the disparity in surficial element
areas between the two regions. Undersampling at the poles also could lead to anomalous spikes
in the far field since the far-field intensity is computed by the total ray power impinging that
element and is divided by the elemental area. To adequately sample the polar regions, a
significant number of rays must be used, resulting in a very large raytracing problem that may
not be necessary.

To circumvent the abovementioned problems, the spherical collection space must be composed
of more uniformly distributed elemental areas. The baseline requirement is that each elemental
area on the surface of the collection sphere must be approximately the same size. The following
simple approach is used:

1. Divide the sphere into concentric rings in the latitude planes. Each ring has a thickness of:

(1105)

2. For each concentric ring, further subdivide the ring into elements with a width that is
approximately .

Radiation on a Sphere xx
y y

dθ R θd RΔθ= =

dθ
Sentaurus™ Device User Guide 947
N-2017.09



34: Light-Emitting Diodes
LED Radiation Pattern
Mathematically, assume that the sphere is divided into  rings, so that the thickness of each
ring is:

(1106)

In each concentric ring ( ) bound between  and , choose the order of  such that:

(1107)

The circumference at  is . The constraint needed here is such that:

(1108)

where  is the number of divisions for the concentric ring ( ) and is an integer. Solving
gives:

(1109)

At the poles of the sphere (  and ), the concentric rings collapse into a cap. The
following constraint is imposed for these polar cap regions (essentially trying to match
triangular area elements with squarish area elements):

(1110)

Simplifying gives the number of divisions for the polar cap rings:

(1111)

The total number of elemental areas is .

Table 165 lists the total number of elements obtained from this simple approach. 

Table 165 Total number of elements and area information as a function of 

Total number of 
surface elements

Smallest area 
(unit radius)

Largest area 
(unit radius)

Area skew = ratio of 
largest/smallest area

5 36 0.314159 0.399994 1.273

10 146 0.074372 0.097081 1.305

20 554 0.017705 0.024573 1.388

50 3296 0.002857 0.003945 1.381

100 12976 0.000715 0.000987 1.380

Nθ

dθ R
π

Nθ
------ 
 =

i θ1 θ2 θ

θ2( ) θ1( )sin>sin

θ2 Cθ2 R θ2( ) 2π×sin=

Cθ2

Nφ i( )
------------- dθ=

Nφ i( ) i

Nφ i( ) INTEGER( ) 2 θ2( ) Nθ×sin[ ]=

θ 0= θ π=

0.5
Cθ2

Nφ i( )
------------- 
 × dθ× dθ

2
=

Nφ i( ) INTEGER( ) θ2( ) Nθ×sin[ ]=

Nφ i( )

Nθ

Nθ
948 Sentaurus™ Device User Guide
N-2017.09



34: Light-Emitting Diodes
LED Radiation Pattern
As  increases, it is clear from Table 165 that the area skew (ratio of largest to smallest
elemental area) stabilizes to a value of approximately 1.38.

To activate the new staggered 3D far-field grid, use the syntax:

Physics {
LED (

RayTrace(
Staggered3DFarfieldGrid

)
)

}

If the keyword Staggered3DFarfieldGrid is not specified, the collection sphere reverts to
the old ( , ) scheme to maintain backward compatibility.

Spectrum-Dependent LED Radiation Pattern

Unlike a laser beam with single-frequency emissions, rays emitting from an LED carry a
spectrum of frequencies (or energies). Sentaurus Device monitors the spectrum of each ray as
it undergoes the process of raytracing in and out of the device. The resultant spectrum of the
LED radiation pattern can then be plotted.

To activate this feature, include the keyword LEDSpectrum in the command file:

Physics {...
LED (...

Optics (...
RayTrace(...

LEDSpectrum(<startenergy> <endenergy> <numpoints>)
)

)
)

}

150 29013 0.000318 0.000439 1.381

200 51426 0.000179 0.000247 1.380

Table 165 Total number of elements and area information as a function of  (Continued)

Total number of 
surface elements

Smallest area 
(unit radius)

Largest area 
(unit radius)

Area skew = ratio of 
largest/smallest area

Nθ

Nθ

Nθ

θ φ
Sentaurus™ Device User Guide 949
N-2017.09



34: Light-Emitting Diodes
LED Radiation Pattern
This feature must be used in conjunction with the LEDRadiation feature so that the file names
of the LED radiation plots and the observation angles can be specified. Other notable aspects
of the syntax are:

■ <startenergy> and <endenergy> give the energy range of the spectrum to be
monitored. These parameters are floating-point entries with units of eV.

■ <numpoints> is an integer determining the number of discretized points in the specified
energy range.

Tracing Source of Output Rays

Optimizing the extraction efficiency is critical in an LED design. Other than modifying the
shape of the device, you can use the fact that the rays originating from certain zones in the
active region have a higher escape or extraction rate. By designing the shape of the contact to
channel higher currents into these zones, the extraction efficiency can effectively be increased.

To facilitate the identification of such zones, a feature that correlates the output rays to their
source active vertices is implemented. The intensity of each output ray is added to an
LED_TraceSource variable at each active vertex. At the end of the simulation, a profile of
LED_TraceSource is obtained, which provides an indication of the best localized regions to
which more current can be channeled.

The activation of this feature requires keywords to be inserted into two different statements of
the command file:

Plot { ...
LED_TraceSource

}

Physics { ...
LED ( ...

Optics(
RayTrace ( ...

TraceSource()
)

)
)

}

NOTE A far-field observation radius must be set for the TraceSource feature.
950 Sentaurus™ Device User Guide
N-2017.09



34: Light-Emitting Diodes
Interfacing Far-Field Rays to LightTools
Interfacing Far-Field Rays to LightTools

LightTools is a robust raytracer that accepts a list of source rays as input, and it can optimize
the packaging design for LEDs, that is, the luminaire. Such a design flow is shown in Figure 69. 

Figure 69 Secondary LED design flow to optimize luminaire design by LightTools and 
coupled to Sentaurus Device LED device simulation

An interface has been built in Sentaurus Device to output farfield rays from an LED device
simulation that can be input into LightTools as source rays. This feature requires the LED
radiation plot to be activated simultaneously so that the rays can be output at various
quasistationary and transient states. The syntax for activating this feature is:

Physics {
LED (

Optics (
Raytracer (

ExternalMaterialCRIFile = "string"
OutputLightToolsFarfieldRays (

Filename = "farfield"
WavelengthDiscretization = <integer>
SaveType = Ascii | Binary

)
)

)
)

}

The energy span of the spectrum is computed automatically, and you only need to input the
wavelength discretization. The spectrum information is embedded inside the ray information
as wavelength and relative intensity values. The relative intensity is a fraction of the total far-
field power.

• Activate thermal
• Inhomogeneous 

raytracing in LED 

• Optimize device
shape for thermal 
behavior and device
performance 

Far-Field Rays

• Luminaire design

• Phosphor
distribution, design,
and optimization 

LightToolsTCAD
Sentaurus™ Device User Guide 951
N-2017.09



34: Light-Emitting Diodes
Interfacing Far-Field Rays to LightTools
NOTE In Sentaurus Device, raytracing and wavelength dependency of the
refractive index can only be specified by using the complex refractive
index model.

When the LED is embedded in another medium, the keyword ExternalMaterialCRIFile
can be included to take wavelength-dependent complex refractive index changes into account
(see External Material in Raytracer on page 615).

You have the option to output the ray information to either an ASCII file or a binary file. The
ray information consists of the position vector (x,y,z), the direction cosine (x,y,z), the relative
intensity, and the wavelength. Both file types contain identifying headers that are required by
LightTools. The resultant name of the file is the user name with the suffix _lighttools.txt
for the ASCII format or the suffix _lighttools.ray for the binary format. An example of
an ASCII-formatted file is presented in Example: farfield_lighttools.txt.

Example: farfield_lighttools.txt
# Synopsys Sentaurus Device Farfield to LightTools
# Ray Data Export File
LT_RDF_VERSION: 2.0
DATANAME: SentaurusDeviceFarfieldRayData
LT_DATATYPE: radiant_power
LT_RADIANT_FLUX: 2.066459e-05
LT_FAR_FIELD_DATA: NO
LT_COLOR_INFO: wavelength
LT_LENGTH_UNITS: micrometers
LT_DATA_ORIGIN:             0              0              0
LT_STARTOFDATA
5.351638e+01 2.716777e+02 8.281585e+01 -0.198138 0.651751 0.732094
1.648189e-08 390.559610
3.000000e+02 7.388091e+01 4.290000e-01 0.637854 0.770158 0.000000
4.411254e-04 390.559610
1.001089e+02 3.000000e+02 4.290000e-01 -0.637854 0.770158 0.000000
2.585151e-05 390.559610
0.000000e+00 1.943600e+02 4.290000e-01 -0.637854 -0.770158 0.000000
2.783280e-06 390.559610
1.735878e+02 0.000000e+00 4.290000e-01 0.637854 -0.770158 0.000000
1.631101e-07 390.559610
952 Sentaurus™ Device User Guide
N-2017.09



34: Light-Emitting Diodes
Nonactive Region Absorption (Photon Recycling)
Nonactive Region Absorption (Photon Recycling)

The default setting for LED simulations includes the contribution of absorbed photons in
nonactive regions to the continuity equation as a generation rate. This is the basic concept of
the nonactive-region photon recycling. In most cases, LEDs are designed with larger bandgap
material in nonactive regions to eradicate intraband absorption. 

As a result, it may not be necessary to include very small values of nonactive absorption in
some situations. To allow for such flexibility, nonactive absorption can be switched off as an
option. The syntax is:

Physics { ...
LED ( ...

Optics ( ...
RayTrace ( ...

NonActiveAbsorptionOff
OptGenScaling = <float>
BackgroundOptGen(<float>) # [#/cm^3]

)
)

)
}

If the keyword NonActiveAbsorptionOff is used, the plot variable OpticalGeneration
still show values, but these values are not included in the continuity equation. A scaling factor,
OptGenScaling, can be defined to scale the final value of optical generation. You also can set
a background optical generation with the keyword BackgroundOptGen.

Device Physics and Tuning Parameters

Unlike a laser diode, an LED does not have a threshold current. Therefore, the carriers in the
active region are not limited to any threshold value. This means that the spontaneous gain
spectrum continues to grow as the bias current increases. The limiting factor for growth is when
the QW active region is completely filled and leakage current increases significantly, or dark
recombination processes start to dominate with increasing bias and temperature.

There are four main design concerns for an LED:

■ Designing the basic layers to optimize the internal quantum efficiency. Polarization charge
sheets are needed for AlGaN–GaN–InGaN interfaces, and junction tunneling models might
be needed for thin electron-blocking layers. For mature QW technology such as InGaAsP
systems, there can be predictive value in advanced  gain calculations for optical gain.
However, for difficult-to-grow materials such as InGaN/AlGaN QWs, the uncertainties of

k p⋅
Sentaurus™ Device User Guide 953
N-2017.09



34: Light-Emitting Diodes
Device Physics and Tuning Parameters
growth, mole fraction grading, interface clarity, and so on, make predictive modeling of
optical gain almost impossible.

■ Extraction efficiency. This is mainly a problem of the geometric shape of the LED structure
and the complex refractive index profile of the structure. Temperature, wavelength, and
carrier distribution can alter the complex refractive index profile, so the extraction
efficiency changes with increasing current injection. Many LED structures have tapered
sidewalls to help couple more light out of the device. The slope of the taper can be set as a
parameter using Sentaurus Workbench, and the automatic parameter variation feature can
be used to optimize the extraction efficiency of the LED geometry.

■ Current spreading. It is desirable to spread the current uniformly across the entire active
region so that total spontaneous emissions can be increased. In Sentaurus Device, there is
an option to switch off raytracing in an LED simulation. Switching off raytracing only
forgoes the extraction efficiency and radiation pattern computation; the total spontaneous
emission power is still calculated. This can assist you in the faster optimization of an LED
device for uniform current spreading.

■ Thermal management, hot spots, how much heat is produced and how to cool the device.
Temperature distribution also affects the mobility and complex refractive index profile and,
therefore, impacts the current spreading profile and optical extraction efficiency.

Example of 3D GaN LED Simulation

An LED simulation is best run with a dual-grid approach. The electrical grid must be dense in
vicinities where carrier transport details are important. On the other hand, a coarse grid is
needed for raytracing. The following is a skeletal sample of command file syntax for a dual-
grid 3D GaN LED simulation. Only highlights of the syntax that are important to LED
simulations have been included. 

The typical command file syntax is:

#########################
## Global declarations ##
#########################
File {...}

Math {
Digits = 5
NoAutomaticCircuitContact
DirectCurrent
Method = blocked
# ILS should be chosen for big 3D simulations
# For 2D, use Pardiso
Submethod=ILS(set= 5)

ILSrc= "
set (5) {
954 Sentaurus™ Device User Guide
N-2017.09



34: Light-Emitting Diodes
Device Physics and Tuning Parameters
iterative(gmres(100), tolrel=1e-11, tolunprec=1e-4, tolabs=0,
maxit=200);

preconditioning(ilut(1e-9,-1), right);
ordering(symmetric=nd, nonsymmetric=mpsilst);
options(compact=yes, linscale=0, fit=5, refinebasis=1,

refineresidual=30, verbose=5);
}; "

Derivatives
Notdamped=20
Iterations=15
RelErrControl
ErrRef(electron)=1e7
ErrRef(hole)=1e7
ElementEdgeCurrent
ExtendedPrecision
DualGridInterpolation ( Method=Simple )
NumberOfThreads = maximum
Extrapolate

}

####################################
## Define the optical solver part ##
####################################
OpticalDevice optDevice {

File {
Grid = "optic_msh.tdr"
Parameters = "optparafile.par"

}
RaytraceBC {...}
Physics {

ComplexRefractiveIndex (
WavelengthDep (real imag)
TemperatureDep(real)

)
}
Physics(Region="EffectiveQW”) { Active }

}

#######################################
## Define the electronic solver part ##
#######################################
Device elDevice {

Electrode {...}

Thermode {...
{ Name="T_contact" Temperature=300.0 SurfaceResistance=0.05 }

}

File {
Sentaurus™ Device User Guide 955
N-2017.09



34: Light-Emitting Diodes
Device Physics and Tuning Parameters
Grid = "elec_msh.tdr"
Parameters = "elecparafile.par"
Current = "elsolver"
Plot =    "elsolver"
LEDRadiation = "farfield"
Gain = "gainfilename"

}

# ----- Choose special LED related plot variables to output -----
Plot {...

RayTraceIntensity
OpticalGeneration
LED_TraceSource
OpticalAbsorptionHeat

# RayTrees            # not for compact memory option
}

# ----- Specify gain plot parameters -----
GainPlot { ... }

Physics {
Mobility ()
EffectiveIntrinsicDensity (NoBandGapNarrowing)
AreaFactor = 1
IncompleteIonization
Thermionic
Fermi
RecGenHeat

OpticalAbsorptionHeat(
Scaling = 1.0
StepFunction( EffectiveBandgap )

)

# Complex refractive index model needed for raytracer
ComplexRefractiveIndex (

WavelengthDep (real imag)
TemperatureDep (real)

)

LED (
SponScaling = 1   * scale matrix element with this factor
Optics (

RayTrace(
# Disable       # this is for purely electrical investigation

CompactMemoryOption           # use compact memory model
Coordinates = Cartesian
Staggered3DFarfieldGrid
956 Sentaurus™ Device User Guide
N-2017.09



34: Light-Emitting Diodes
Device Physics and Tuning Parameters
# ----- Set ray starting and terminating conditions -----
PolarizationVector = Random
RaysPerVertex = 20
RaysRandomOffset (RandomSeed = 123)
Depthlimit = 100
MinIntensity = 1e-5

# ---------- Set output options ---------
TraceSource()

LEDRadiationPara(10000,60)    # (<radius-microns>, Npoints)

# Choose LED wavelength option
# Fixed wavelength by entering a <float>, units in [nm]
Wavelength=AutoPeak # or Effective or AutoPeakPower or <float>

)
)
# ----- Quantum well options -----

QWTransport
QWExtension = autodetect
Strain

Broadening = 0.04
Lorentzian

)

# Turn on tunneling for electron blocking layer if necessary
# eBarrierTunneling "rline1" ()

}

# ----- Define recombination models for non-active regions -----
Physics (material = "AlGaN") { Recombination (SRH(TempDep) Radiative) }
Physics (material = "GaN") { Recombination (SRH(TempDep) Radiative) }

# ----- Set QWs as active regions ----
Physics (region="QW1") { Recombination(-Radiative SRH(TempDep)) Active }
...
Physics (region="QW6") { Recombination(-Radiative SRH(TempDep)) Active }

# ---- Include polarization sheet charges between interfaces ----
Physics (RegionInterface="Window/Cap") {

Traps(FixedCharge Conc=-2.666746e+12)
}
Physics (RegionInterface="Barrier6/Buffer") {

Traps(FixedCharge Conc=-1e+12)
}
Physics (RegionInterface="Barrier0/Window") {

Traps(FixedCharge Conc=3.8e+12)
Sentaurus™ Device User Guide 957
N-2017.09



34: Light-Emitting Diodes
Device Physics and Tuning Parameters
}
Physics(RegionInterface="Barrier0/QW1") {Traps((FixedCharge Conc=1e12))}
Physics(RegionInterface="QW1/Barrier1") {Traps((FixedCharge Conc=-1e12))}
...

Math {
# ---- Define tunneling nonlocal line for electron blocking layer ----
NonLocal "rline1" (

Barrier(Region = "Window")
)
}

}

###############################################################
## Define mixed-mode system section for dual grid simulation ##
###############################################################
System {

elDevice d1 ( anode=vdd cathode=gnd ) { Physics { OptSolver="opt" } }
Vsource_pset drive(vdd gnd) { dc = 2.72 }
Set ( gnd = 0.0 )
optDevice opt ()

}

#############################
## Define solving sequence ##
#############################
Solve {

Coupled (Iterations = 40) { Poisson }
Coupled (Iterations = 40) { Poisson Electron Hole }
Coupled { Poisson Electron Hole Contact Circuit }
Coupled { Poisson Electron Hole Contact Circuit Temperature }
Quasistationary (

InitialStep = 0.05
MaxStep = 0.05
Minstep = 5e-3
Plot { range=(0,1) intervals=5 }
PlotGain { range=(0,1) intervals=5 }
PlotLEDRadiation { range=(0,1) intervals=5 }
Goal { Parameter=drive.dc Value=3.8 }

) {
# Full self-consistent electrical+thermal+optics simulation
Plugin(breakonfailure) {

Coupled(Iterations = 20) {Electron Hole Poisson Contact Circuit 
Temperature}

Optics
}

}
}

958 Sentaurus™ Device User Guide
N-2017.09



34: Light-Emitting Diodes
Device Physics and Tuning Parameters
Some comments about the command file syntax:

■ Multithreading for the raytracer can be activated by specifying NumberOfThreads in the
global Math section. A value of maximum has been chosen in this case so that Sentaurus
Device will use the maximum number of threads available on the machine.

■ The solver must be ILS for 3D simulations, due to the large matrix that needs to be solved.
The parameters for ILS must be tuned for optimal convergence.

■ ExtendedPrecision is recommended for use in GaN device simulations.

■ Various special raytrace boundary conditions can be chosen and are set in the RayTraceBC
section. For details about these special boundary contacts, see Boundary Condition for
Raytracing on page 605.

■ Polarization charges at AlGaN–GaN–InGaN interfaces are added using fixed trap charges.

■ The wavelength used in raytracing is computed automatically to be the wavelength at the
peak of the spontaneous emission spectrum. If a fixed wavelength is required, you have the
option of setting it by using the Wavelength keyword.

■ The QW regions must be labelled as Active in both the optical and electrical device
declarations so that proper internal mapping can be performed. You also must include the
keyword Recombination(-Radiative) in the QW active regions because the
spontaneous emission computation in these regions uses the special LED model and,
therefore, the default radiative recombination model should be switched off.

■ The ComplexRefractiveIndex model must be used in conjunction with the raytracer.
In addition, a PolarizationVector must be defined with the raytracer.

■ When CompactMemoryOption is chosen, the raytrees are not saved internally, so plotting
the RayTrees or using Print(Skip(<integer>)) is disabled.

■ Activating the nonlocal tunneling model requires the keyword eBarrierTunneling in
the Physics section and the NonLocal line definition in the Math section (see Nonlocal
Tunneling at Interfaces, Contacts, and Junctions on page 722 for more details).

■ The Plugin feature is used to create the full self-consistent simulation framework between
the electrical, thermal, and optics. To disengage full self-consistency, remark off the
Plugin and Optics statements, in which case, the Optics will only be solved once at
each bias step.

■ The dual-grid electrical and optical feature has been used. If you select a single-grid
simulation, you only need to copy the Physics-LED section of this example and insert it
into the Physics section of a typical single-grid command file.

NOTE Raytracing can be disabled in an LED simulation by using the keyword
Disable in the RayTrace statement if you do not require the
computation of the extraction efficiency and radiation pattern.

Table 271 on page 1455 lists all the arguments for the LED RayTrace option.
Sentaurus™ Device User Guide 959
N-2017.09



34: Light-Emitting Diodes
References
References

[1] W.-C. Ng and M. Pfeiffer, “Generalized Photon Recycling Theory for 2D and 3D LED
Simulation in Sentaurus Device,” in 6th International Conference on Numerical
Simulation of Optoelectronic Devices (NUSOD-06), Singapore, pp. 127–128,
September 2006.

[2] W.-C. Ng and G. Létay, “A Generalized 2D and 3D White LED Device Simulator
Integrating Photon Recycling and Luminescent Spectral Conversion Effects,” in
Proceedings of SPIE, Light-Emitting Diodes: Research, Manufacturing, and
Applications XI, vol. 6486, February 2007.
960 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 35 Modeling Quantum Wells

This chapter presents the physics of quantum wells, and methods of
gain calculations for the quantum wells and bulk regions.

These gain methods include the simple rectangular well model, and gain physical model
interface (PMI). Various gain-broadening mechanisms and strain effects are discussed. A
localized quantum well (QW) model is presented together with a simplified InGaN/GaN QW
gain model.

Overview

In this section, the focus is on two aspects of modeling the quantum well:

■ Radiative recombination processes important in a quantum well

■ Gain calculations

A few types of recombination processes are important in the quantum well:

■ Auger and Shockley–Read–Hall (SRH) recombinations deplete the QW carriers, and they
form the dark current.

■ Radiative recombination contains the stimulated and spontaneous recombination
processes, which are important processes in LEDs.

These recombinations must be added to the carrier continuity equations to ensure the
conservation of particles.

The gain calculation is based on Fermi’s golden rule and describes quantitatively the radiative
emissions in the form of the stimulated and spontaneous emission coefficients. These
coefficients contain the optical matrix element , which describes the probability of the
radiative recombination processes. In the quantum well, computing the optical matrix element
requires knowledge of the QW subbands and QW wavefunctions.

Sentaurus Device offers several options for computing the gain spectrum:

■ A simple finite well model with analytic solutions. In addition, strain effects and
polarization dependence of the optical matrix element are handled separately.

■ A localized QW model that uses a trapezoidal QW model to take localized electric field
effects into account.

Mij
2

Sentaurus™ Device User Guide 961
N-2017.09



35: Modeling Quantum Wells
Radiative Recombination and Gain Coefficients
■ A simplified InGaN/GaN QW gain model that provides analytic forms to adjust the
parameters of the effective masses, various band offsets, and so on. These are subsequently
used in the gain calculations.

■ A nonlocal QW model that uses the 1D Schrödinger solver on a nonlocal mesh to compute
the QW subbands and QW wavefunctions (see Nonlocal Mesh for 1D Schrödinger on
page 286). This model supports arbitrary potential wells.

■ User-specified gain routines in C++ language can be coupled self-consistently with
Sentaurus Device using the physical model interface (PMI).

Radiative Recombination and Gain Coefficients

After the carriers are captured in the active region, they experience either dark recombination
processes (such as Auger and SRH) or radiative recombination processes (such as stimulated
and spontaneous emissions), or escape from the active region. This section describes how
stimulated and spontaneous emissions are computed in Sentaurus Device.

Stimulated and Spontaneous Emission Coefficients

In the active region of the LED, radiative recombination is treated locally at each active vertex.
The stimulated and spontaneous emissions are computed using Fermi’s golden rule.

At each active vertex of the quantum wells, the local stimulated emission coefficient is:

(1112)

and the local spontaneous emission coefficient is:

(1113)

where (for general III–V materials):

(1114)

(1115)

r
st

hω( ) ECo kst Mi j,
2
D E( )d

i j,
 fi

C
E( ) fj

V
E( ) 1–+( )× L E( )=

r
sp

hω( ) ECo ksp Mi j,
2

d
i j,
 D E( )fi

C
E( )fj

V
E( )L E( )=

C0
πe

2

ngcε0m0
2ω

-------------------------=

Mi j,
2

Pij Oi j,
2 m0

me
------ 1– 
 m0Eg Eg Δ+( )

12 Eg
2
3
---Δ+ 

 
----------------------------------=
962 Sentaurus™ Device User Guide
N-2017.09



35: Modeling Quantum Wells
Radiative Recombination and Gain Coefficients
(1116)

(1117)

(1118)

(1119)

(1120)

 is the gain-broadening function. The electron, light-hole, and heavy-hole subbands are
denoted by the indices  and .  and  are the local Fermi–Dirac distributions for the
conduction and valence bands,  is the reduced density-of-states,  is the overlap
integral of the quantum mechanical wavefunctions, and  is the polarization-dependent
factor of the momentum (optical) matrix element . The spin-orbit split-off energy is 
and  is the bandgap energy. The polarization-dependent factor  in the optical matrix
element is set to 1.0 for LED simulations. These emission coefficients determine the rate of
production of photons when given the number of available quantum well carriers at the active
vertex.

For materials of wurtzite crystal structure (InGaN), the optical matrix element  and hole
masses are different. These are explained in detail in Electronic Band Structure for Wurtzite
Crystals on page 967.

 and  are scaling factors for the optical matrix element  of the stimulated and
spontaneous emissions, respectively. They have been introduced to allow you to tune the
stimulated and spontaneous gain curves. Consequently, these parameters can change the
threshold current. 

The activating keywords are StimScaling and SponScaling in the Physics-LED section
of the command file:

Physics {...
LED (...

Oi j, dxζi x( )ζ∗j x( )
∞–

∞

=

f i Φn E, ,( )
C

1

EC Ei qΦn

mr

me
------E+ + +

kBT
----------------------------------------------------

 
 
 
 
 

exp+

 
 
 
 
 

1–

=

f j Φp E, ,( )
V

1

EV Ej– qΦp

mr

mh
------E–+

kBT
----------------------------------------------------

 
 
 
 
 

exp+

 
 
 
 
 

1–

=

D E( )
r mr

πh
2
Lx

---------------=

mr
1

me
------

1
mh
------+

 
 
  1–

=

L E( )
i j fi E( )

C fj E( )
V

D E( )
r Oi j,

2

Pij

Mi j,
2 Δ

Eg Pij

Mi j,
2

kst ksp Mi j,
2

Sentaurus™ Device User Guide 963
N-2017.09



35: Modeling Quantum Wells
Radiative Recombination and Gain Coefficients
Optics (...)
# ---- Scale stimulated & spontaneous gain ----
StimScaling = 1.0 # default value is 1.0
SponScaling = 1.0 # default value is 1.0

)
}

The differential gains for electrons and holes are given by the derivatives of the coefficient of
stimulated emission  (see Eq. 1112) with regard to the respective carrier density. They
can be plotted by including the keywords eDifferentialGain and hDifferentialGain
in the Plot section of the command file.

Active Bulk Material Gain

The stimulated and spontaneous emission coefficients discussed are derived for the quantum
well. However, these coefficients can apply to bulk materials with slight modifications. In bulk
active materials, it is assumed that the optical matrix element is isotropic. The sum over the
subbands is reduced to one electron, and one heavy-hole and one light-hole level, because there
is no quantum-mechanical confinement in bulk material. In addition, the subband energies are
set to , and the following coefficients are modified:

(1121)

(1122)

(1123)

All other expressions remain the same.

Stimulated Recombination Rate

The radiative emissions contribute to the production of photons but they also deplete the carrier
population in the active region. At each active vertex, the stimulated recombination rate of the
carriers must be equal to the sum of the photon production rate of every lasing mode so that
conservation of particles is ensured. The stimulated recombination rate for each active vertex
is:

(1124)

rst hω( )

Ei 0=

Oi j, 1=

D
r

E( ) 1

2π2
---------

2mr

h
2

---------
 
 
  3 2⁄

E
1 2⁄

=

Pi j, 1=

R
st

x y,( ) r
st

hωi( )Si Ψi x y,( ) 2

i
=
964 Sentaurus™ Device User Guide
N-2017.09



35: Modeling Quantum Wells
Gain-Broadening Models
where the sum is taken over all lasing modes. The stimulated emission coefficient is computed
locally at this active vertex and its value is taken at the lasing energy, , of mode .  is the
photon rate of mode , solved from the corresponding photon rate equation of mode , and

 is the local optical field intensity of mode  at this active vertex. This stimulated
recombination rate is entered in the continuity equations to account for the correct depletion of
carriers by stimulated emissions.

The total stimulated recombination rates on active vertices can be plotted by including the
keyword StimulatedRecombination in the Plot section of the command file.

Spontaneous Recombination Rate

The spontaneous emission rate and power are described in Spontaneous Emission Rate and
Power on page 923. The total spontaneous recombination rates on active vertices can be plotted
by including the keyword SpontaneousRecombination in the Plot section of the
command file.

Fitting Stimulated and Spontaneous Emission Spectra

The stimulated and spontaneous emission spectra can be fine-tuned by scaling and shifting.
The spectra can be scaled in magnitude by the keywords StimScaling=<float> and
SponScaling=<float> in the Physics-LED section. It is also possible to shift the effective
emission wavelength (and, therefore, the spectra) by an energy amount specified as
GainShift=<float>.

Gain-Broadening Models

Three different line-shape broadening models are available: Lorentzian, Landsberg, and
hyperbolic-cosine. These line-shape functions, , are embedded in the radiative emission
coefficients in Eq. 1112 and Eq. 1113 to account for broadening of the gain spectrum.

Lorentzian Broadening

Lorentzian broadening assumes that the probability of finding an electron or a hole in a given
state decays exponentially in time [1]. The line-shape function is:

(1125)

hωi i Si

i i
Ψi x y,( ) 2 i

L E( )

L E( ) Γ 2π( )⁄
Eg hω– E+( )2 Γ 2⁄( )2

+
-------------------------------------------------------------=
Sentaurus™ Device User Guide 965
N-2017.09



35: Modeling Quantum Wells
Gain-Broadening Models
Landsberg Broadening

The Landsberg model gives a narrower, asymmetric line-shape broadening, and its line-shape
function is:

(1126)

where:

(1127)

and  is the quasi-Fermi level separation. The coefficients  are:

(1128)

Hyperbolic-Cosine Broadening

The hyperbolic-cosine function has a broader tail on the low-energy side compared to
Lorentzian broadening, and the line-shape function is:

(1129)

Syntax to Activate Broadening

You can select only one line-shape function for gain broadening. This is activated by the
keyword Broadening in the Physics-LED section of the command file:

Physics {...
LED (...

Optics (...)
# --- Lineshape broadening functions, choose one only ----
Broadening (Type=Lorentzian Gamma=0.01)

# Broadening (Type=Landsberg Gamma=0.01) # Gamma in [eV]
# Broadening (Type=CosHyper Gamma=0.01)

L E( ) Γ E( )( ) 2π( )⁄

Eg hω– E+( )2 Γ E( ) 2⁄( )2
+

----------------------------------------------------------------------=

Γ E( ) Γ ak
E

qΨp qΨn–
--------------------------- 
  k

k 0=

3

=

qΨp qΨn– ak

a0 1=

a1 2.229–=

a2 1.458=

a3 0.229–=

L E( ) 1
4Γ
------

1
E

2Γ
------ 
 2cosh

--------------------------⋅=
966 Sentaurus™ Device User Guide
N-2017.09



35: Modeling Quantum Wells
Gain-Broadening Models
)
}

Gamma is the line width , which must be defined in units of eV. If no Broadening keyword
is detected, Sentaurus Device assumes the gain is unbroadened and does not perform the energy
integral in Eq. 1112 and Eq. 1113.

Electronic Band Structure for Wurtzite Crystals

To account for the strong coupling of the three valence bands (heavy holes (HH), light holes
(LH), and crystal-field split-holes (CH)) in wurtzite crystals, the localized quantum-well model
in Sentaurus Device supports a parabolic band approximation using effective masses at the -
point. It is derived from the three-band  method and considers strain effects assuming a
growth direction along the -axis of the hexagonal lattice. Based on general band-structure
parameters for wurtzite crystals and a given strain defined by the mismatch of lattice constants,
the band offsets and effective masses parallel and perpendicular to the growth direction are
computed.

Starting from the diagonal strain tensor defined as:

(1130)

(1131)

(1132)

where  corresponds to the lattice constant of the substrate, and  is the lattice constant of
the unstrained layer. The energies of the valence band edge can be written as [2]:

(1133)

(1134)

(1135)

Γ

Γ
k p⋅

c

εxx εyy

as a0–

a0
----------------= =

εzz 2
C13

C33
--------εxx–=

εxy εyz εzx 0= = =

as a0

Ehh
0 Ev

0 Δ1 Δ2 θε λε+ + + +=

Elh
0 Ev

0
Δ1 Δ2– θε+

2
------------------------------ λε

Δ1 Δ2– θε+

2
------------------------------ 
 

2
2Δ3

2
++ + +=

Ech
0 Ev

0
Δ1 Δ2– θε+

2
------------------------------ λε

Δ1 Δ2– θε+

2
------------------------------ 
 

2
2Δ3

2
+–+ +=
Sentaurus™ Device User Guide 967
N-2017.09



35: Modeling Quantum Wells
Gain-Broadening Models
with  and  expressing their dependency on the shear deformation potentials  to :

(1136)

(1137)

The strain-dependent conduction band edge is given by:

(1138)

where the energy shift  is due to the hydrostatic deformation potentials parallel ( ) and
perpendicular ( ) to the growth direction:

(1139)

In the above expressions for the band edges (Eq. 1133–Eq. 1135, and Eq. 1138),  is used as
the reference energy and stands for the CH band-edge energy in the absence of spin-orbit
interaction. A summary of all band structure–related and strain-related parameters used in this
section along with their specification in the Sentaurus Device parameter file is given in
Table 166 and Table 167. 

Table 166 Parameters defined in BandstructureParameters section of parameter file

Symbol Parameter name Unit Description

A1 – Hole effective mass parameter.

A2 – Hole effective mass parameter.

A3 – Hole effective mass parameter.

A4 – Hole effective mass parameter.

so eV Spin-orbit split energy.

cr eV Crystal-field split energy.

eV Defined as .

eV Defined as .

eV Defined as .

Table 167 Parameters defined in QWStrain section of parameter file

Symbol Parameter name Unit Description

a0 m Lattice constant at T = 300 K.

alpha m/K Model parameters describing linear temperature dependency 
of lattice constant: 

Tpar K

θε λε D1 D4

θε D3εzz D4 εxx εyy+( )+=

λε D1εzz D2 εxx εyy+( )+=

Ec
0 Ev

0 Δ1 Δ2 Eg Pcε+ + + +=

Pcε acz

act

Pcε aczεzz act εxx εyy+( )+=

Ev
0

A1

A2

A3

A4

Δso

Δcr

Δ1 Δcr Δ1=

Δ2 Δso 3Δ2=

Δ3 Δso 3Δ3=

a0

α
a0 T( ) a0 α T T0–( )+=

T0
968 Sentaurus™ Device User Guide
N-2017.09



35: Modeling Quantum Wells
Gain-Broadening Models
Based on a three-band  Hamiltonian matrix needed to describe the strong coupling of the
three valence bands, analytic solutions for the dispersion relations  can be derived [2][3] 
[4]. Performing a series expansion of  at the -point up to the second order in  yields the
effective masses that are used with the localized quantum-well model:

(1140)

(1141)

(1142)

(1143)

(1144)

(1145)

where  to  are called the hole effective mass parameters, which must be specified by users
as shown in Table 166 on page 968.

C_33 eV Elastic constant.

C_13 eV Elastic constant.

a_c eV Hydrostatic deformation potential parallel to crystal growth 
direction1.

a_c eV Hydrostatic deformation potential perpendicular to crystal 
growth direction1.

D1 eV Shear deformation potential.

D2 eV Shear deformation potential.

D3 eV Shear deformation potential.

D4 eV Shear deformation potential.

1.  and  are assumed to be equal.

Table 167 Parameters defined in QWStrain section of parameter file (Continued)

Symbol Parameter name Unit Description

C33

C13

acz

act

D1

D2

D3

D4

acz act

6 6×
E k( )

E Γ k

mhh
z m0 A1 A3+( ) 1–

–=

mhh
t m0 A2 A4+( ) 1–

–=

mlh
z m0 A1

Elh
0 λε–

Elh
0 Ech

0–
-----------------------
 
 
 

A3+
 
 
  1–

–=

mlh
t m0 A2

Elh
0 λε–

Elh
0 Ech

0–
-----------------------
 
 
 

A4+
 
 
  1–

–=

mch
z m0 A1

Ech
0 λε–

Ech
0 Elh

0–
-----------------------
 
 
 

A3+
 
 
  1–

–=

mch
t m0 A2

Ech
0 λε–

Ech
0 Elh

0–
-----------------------
 
 
 

A4+
 
 
  1–

–=

A1 A4
Sentaurus™ Device User Guide 969
N-2017.09



35: Modeling Quantum Wells
Gain-Broadening Models
To activate the simplified model for the treatment of the band structure of wurtzite crystals, the
crystal type must be indicated in the Physics section of the command file.

If strain is to be accounted for, the substrate lattice constant must be specified as a reference
for the computation of the strain tensor in each layer as shown here:

Physics {
LED (

Bandstructure ( CrystalType = Wurtzite )
Strain ( RefLatticeConst = 3.183e-10 ) #[m]

)
}

Besides the computation of the band-edge energies and the effective masses using the formulas
in Eq. 1133–Eq. 1135, Eq. 1138, and Eq. 1140–Eq. 1145, it is possible to define these
quantities explicitly. Each valence band can be characterized by a ladder specification as
described in Explicit Ladder Specification on page 288. For materials exhibiting the wurtzite
crystal structure, the syntax of the explicit ladder specification is extended to classify the
specific hole type (HH, LH, or CH). This is needed for labeling the corresponding results such
as subband energies or overlapping integrals during visualization.

For example, to explicitly define the properties of the various valence bands considering
arbitrary strain, that is, the amount of strain is not declared to the tool, the ladder specification
in the SchroedingerParameters section reads as follows:

SchroedingerParameters {
Formula = 0,4
hLadder(0.4376, 1.349, 1, 0.002, HeavyHole)
hLadder(0.4373, 0.4375, 1, 0.003, LightHole)
hLadder(0.4376, 0.4378, 1, 0.004, CrystalFieldSplitHole)

}

where the first and second entry of hLadder correspond to the values for the parallel ( ) and
the perpendicular ( ) effective mass. The third entry indicates the ladder degeneracy, which
is set to 1 for GaN-based semiconductors, and the fourth entry is used to specify the band offset
with respect to the valence band edge without strain in eV. To activate the explicit ladder
specification, the value of Formula for holes must be set to 4.

NOTE In this parameter file excerpt of the SchroedingerParameters
section, the value of Formula for electrons is set to 0, which uses the
isotropic density-of-states mass as both the quantization mass ( ) and
the mass ( ) perpendicular to it.

The keyword Formula is used to select one of several options for defining effective masses
and band offsets, which are summarized in Table 168 on page 971. You can specify a single
value, which only affects the specification for holes and uses the default value of 0 for

mz

mt

mz

mt
970 Sentaurus™ Device User Guide
N-2017.09



35: Modeling Quantum Wells
Gain-Broadening Models
electrons. Using a value pair allows the explicit specification of Formula for both electrons
(first value) and holes (second value). 

Optical Transition Matrix Element for Wurtzite Crystals

To compute the spontaneous emission spectrum, , in LED simulations as defined in
Eq. 1113, p. 962, the optical transition matrix element must be evaluated. For quantum wells
grown along the -axis of the wurtzite crystal, the polarization-dependent transition matrix
element for the different conduction band–to–valence band transitions can be written as [5]:

(1146)

(1147)

(1148)

(1149)

Table 168 Supported values of Formula for localized quantum-well model

Formula Description Limitations

0 Use isotropic density-of-states mass as  and 
.

Only supported for electrons.

2 Use me, mh, and ml to specify relative effective 
mass for electrons, heavy holes, and light holes, 
respectively.

Only supported for electrons, light holes, and 
heavy holes. Cannot be used if 
NumberOfValenceBands is set to a value 
greater than 2 in the command file.
No distinction between  and . Band offsets 
due to strain cannot be specified explicitly.

4 Use eLadder(...) specification for 
electrons, and use hLadder(...) 
specification for holes.

5 Effective masses and band offsets are computed 
based on parameters specified in 
BandstructureParameters and 
QWStrain sections using parabolic band 
approximation as described in Electronic Band 
Structure for Wurtzite Crystals on page 967.

Only supported for holes.

mz

mt

mz mt

rsp E( )

c

Mhh
TE 2 3

2
---Oij Mb

TE( )2
=

Mlh
TE 2 3

2
--- θe( )2

cos Oij Mb
TE( )2

=

Mch
TE 2

0=

Mhh
TM 2

0=
Sentaurus™ Device User Guide 971
N-2017.09



35: Modeling Quantum Wells
Gain-Broadening Models
(1150)

(1151)

where  refers to the overlap integral between the envelope wavefunctions of the -th
electron subband and the -th valence subband. The anisotropic bulk momentum matrix
elements are given by:

(1152)

(1153)

where  and  denote the relative electron mass parallel and perpendicular to the
quantization direction, respectively, and  denotes the electron rest mass. The angle  is
defined as:

(1154)

where  refers to the electron vector, and  at the -point of the quantum-well
subband.

Arbitrary polarization is modeled as a linear combination of TE and TM polarization according
to:

(1155)

where  is called the PolarizationFactor, which can be set in the QWLocal section as
shown here. For purely TE or TM simulations, it is sufficient to set Polarization to the
respective identifier:

Physics {
QWLocal (

Polarization = TE # TM
# or
Polarization = Mixed
PolarizationFactor = 0.4 # must be in interval [0 1]

)
}

Mlh
TM 2 3

2
--- θe( )2

sin Oij Mb
TM( )2

=

Mch
TM 2 3

2
---Oij Mb

TM( )2
=

Oij i
j

Mb
TE( )2 m0

6
------

1
mc

z
------ 1– 
  Eg Δ1 Δ2+ +( ) Eg 2Δ2+( ) 2Δ3

2
–

Eg 2Δ2+
-------------------------------------------------------------------------------=

Mb
TM( )2 m0

6
------

1
mc

t
------ 1– 
 Eg Eg Δ1 Δ2+ +( ) Eg 2Δ2+( ) 2Δ3

2
–[ ]

Eg Δ1 Δ+
2

+( ) Eg Δ2+( ) Δ3
2

–
------------------------------------------------------------------------------------------=

mc
z mc

t

m0 θe

kz k θe( )cos=

k θe( )cos 1= Γ

Mi j,
2

a Mi j,
TE 2

1 a–( ) Mi j,
TM 2⋅+⋅=

a

972 Sentaurus™ Device User Guide
N-2017.09



35: Modeling Quantum Wells
Simple Quantum-Well Subband Model
Simple Quantum-Well Subband Model

This section describes the solution of the Schrödinger equation for a simple finite quantum-
well model. This is the default model in Sentaurus Device. This simple quantum-well (QW)
subband model is combined with separate QW strain (see Strain Effects on page 976) to model
most (III–V material) quantum-well systems.

In a quantum well, the carriers are confined in one direction. Of interest are the subband
energies and wavefunctions of the bound states, which can be solved from the Schrödinger
equation. In this simple QW subband model, it is assumed that the bands for the electron, heavy
hole, and light hole are decoupled, and the subbands are solved independently by a 1D
Schrödinger equation.

The time-independent 1D Schrödinger equation in the effective mass approximation is:

(1156)

where  is the -th quantum mechanical wavefunction,  is the -th energy eigenvalue,
and  is the finite well shape potential. 

With the following ansatz for the even wavefunctions:

(1157)

and the odd wavefunctions:

(1158)

Eq. 1156 becomes [1]:

(1159)

(1160)

h
2

2
-----

x∂
∂ 1

m x( )
------------

x∂
∂

– V x( ) E
i

–+ 
  ζi

x( ) 0=

ζi x( ) i Ei i
V x( )

ζ x( ) C1

κl
2
----- 
  e

α x l 2⁄–( )–
cos , x l 2⁄>

κx( )cos , x l 2⁄≤





=

ζ x( ) C2

κl
2
----- 
  e

x l 2⁄+−( )+−sin± x l 2⁄>,

κx( )sin x l 2⁄≤,





=

α l
2
---

mb

mw
-------κ l

2
--- κ l

2
--- 

 cot+ 0=

α l
2
---

mb

mw
-------κ l

2
--- κ l

2
--- 

 tan– 0=
Sentaurus™ Device User Guide 973
N-2017.09



35: Modeling Quantum Wells
Simple Quantum-Well Subband Model
with:

(1161)

(1162)

The first transcendental equation gives the even eigenvalues, and the second one gives the odd
eigenvalues. The wavefunctions are immediately obtained with Eq. 1157 and Eq. 1158 after
the subband energy  has been computed. Having obtained the wavefunctions and subband
energies, the carrier densities of the 1D-confined system are also computed by:

(1163)

(1164)

where  is the Fermi integral of the order 0, and ,  denote the chemical potentials.
The indices  and  denote the heavy and light holes, respectively. 

The effective densities of states are:

(1165)

(1166)

where  is the thickness of the quantum well. The thickness of each quantum well is
automatically detected in Sentaurus Device by scanning the material regions for the keyword
Active.

The effective masses of the carriers in the quantum well can be changed inside the parameter
file:

eDOSMass
{
 * For effective mass specification Formula1 (me approximation):
 * or Formula2 (Nc300) can be used :
        Formula = 2     # [1] 
 * Formula2:
 * me/m0 = (Nc300/2.540e19)^2/3 
 * Nc(T) = Nc300 * (T/300)^3/2

κ
2mwE

h
-------------------=

α
2mb ΔEc E–( )

h
---------------------------------------=

E

n x( ) Ne
2D ζi x( ) 2

F0 ηn Ei–( )
i
=

p x( ) Nhh
2D ζj x( )

2
F0 ηp Ehh

j
–( ) Nlh

2D ζm x( )
2
F0 ηp Elh

m
–( )

m
+

j
=

F0 x( ) ηn ηp

hh lh

Ne
2D kBTme

h
2πLx

----------------=

Nlh hh⁄
2D kBTmlh hh⁄

h
2πLx

--------------------------=

Lx
974 Sentaurus™ Device User Guide
N-2017.09



35: Modeling Quantum Wells
Simple Quantum-Well Subband Model
        Nc300   = 8.7200e+16    # [cm-3]
 * Mole fraction dependent model.
 * If just above parameters are specified, then its values will be
 * used for any mole fraction instead of an interpolation below.
 * The linear interpolation is used on interval [0,1].
        Nc300(1)        = 6.4200e+17    # [cm-3]
}
...
SchroedingerParameters:
{ * For the hole masses for Schroedinger equation you can
 * use different formulas.
 * formula=1 (for materials with Si-like hole band structure)
 *   m(k)/m0=1/(A+-sqrt(B+C*((xy)^2+(yz)^2+(zx)^2)))
 *   where k=(x,y,z) is unit normal vector in reciprocal
 *   space. '+' for light hole band, '-' for heavy hole band
 * formula=2: Heavy hole mass mh and light hole mass ml are
 *   specified explicitly.
 * Formula 2 parameters:
        Formula = 2     # [1]
        ml      = 0.027 # [1]
        mh      = 0.08 # [1]
 * Mole fraction dependent model.
 * If just above parameters are specified, then its values will be
 * used for any mole fraction instead of an interpolation below.
 * The linear interpolation is used on interval [0,1].
        ml(1)   = 0.094 # [1]
        mh(1)   = 0.08 # [1]
}

Syntax for Simple Quantum-Well Model

This simple QW subband model is the default model when the QWTransport model is
activated:

Physics {...
LED (...

Optics (...)
# ----- Specify QW model and physics -----
QWTransport
QWExtension = AutoDetect # QW widths auto-detection

)
}

Table 265 on page 1453 provides the keywords that are associated with this simple QW model.
Sentaurus™ Device User Guide 975
N-2017.09



35: Modeling Quantum Wells
Strain Effects
Strain Effects

It is well known that strain of the quantum well modifies the stimulated and spontaneous
emission gain spectra. Due to the deformation potentials in the crystal at the well–bulk
interface and valence band mixing effects, band structure modifications occur mainly for the
valence bands. They have an impact on the optical recombination and transport properties.

In the simple QW subband model discussed in the previous section, a simpler approach to the
QW strain effects is adopted. The simple QW subband model does not include
nonparabolicities of the band structure, arising from valence band mixing and strain, in a
rigorous manner. However, by carefully selecting the effective masses in the well, a good
approximation of the strained band structure can be obtained [6]. The effective masses can be
changed in the parameter file as previously shown.

Basically, strain has two impacts on the band structure. Due to the deformation potentials, the
effective band offsets of the conduction and valence bands are modified. This is included in the
simple QW subband model by:

(1167)

(1168)

(1169)

where  and  are the hydrostatic deformation potential of the conduction and valence
bands, respectively. The shear deformation potential is denoted with  and  is the spin-orbit
split-off energy. The elastic stiffness constants are  and , and  is the relative lattice
constant difference in the active region. The hydrostatic component of the strain shifts the
conduction band offset by  and shifts the valence band offset by

.

The shear component of the strain decouples the light hole and heavy hole bands at the  point,
and shifts the valence bands by an amount of  in opposite
directions.

δEC 2ac 1
C12

C11
--------– 

  ε=

δEV
HH

2aν 1
C12

C11
--------– 

  ε b 1 2
C12

C11
--------+ 

  ε+=

δEV
LH

2aν 1
C12

C11
--------– 

  ε b– 1 2
C12

C11
--------+ 

  ε Δ
2
---

1
2
--- Δ2

9δEsh
2

2δEshΔ–+– 
 –+=

an ac

b Δ
C11 C12 ε

δEC

δEV
0 2aν 1 C12 C11⁄–( )ε=

Γ
δEsh b 1 2C12 C11⁄+( )ε=
976 Sentaurus™ Device User Guide
N-2017.09



35: Modeling Quantum Wells
Strain Effects
Syntax for Quantum-Well Strain

The strain shift can be activated by the keyword Strain in the Physics-LED section of the
command file:

Physics {...
LED (...

Optics (...)
# --- QW physics ---
QWTransport
QWExtension = AutoDetect
# --- QW strain ---
Strain

)
}

The parameters , , and  can be entered as a_nu, a_c, and b_shear, respectively, in the
QWStrain section of the parameter file:

QWStrain
{
 * Deformation Potentials (a_nu, a_c, b, C_12, C_11
 * and strainConstant eps :
 * Formula:
 * eps = (a_bulk - a_active)/a_active
 * dE_c = ...
 * dE_lh = ...
 * dE_hh = ...

eps = -1.0000e-02 # [1]
* a_nu = 1.27 # [1]
* a_c = -5.0400e+00 # [1]
* b_shear = -1.7000e+00 # [1]
* C_11 = 10.11 # [1]
* C_12 = 5.61 # [1]

}

The elastic stiffness constants  and  can be specified by C_11 and C_12. Due to valence
band mixing and strain, the valence bands can become nonparabolic. However, within a small
range from the band edge, parabolicity can still be assumed. In the simulation, you can modify
the effective heavy hole and light hole masses in the parameter file for the subband calculation
to account for this effect. 

The spin-orbit split-off energy can be specified in the BandstructureParameters section
of the parameter file:

BandstructureParameters{
...

an ac b

C11 C12
Sentaurus™ Device User Guide 977
N-2017.09



35: Modeling Quantum Wells
Localized Quantum-Well Model
so = 0.34 # [eV]
...

}

Localized Quantum-Well Model

In GaN-based quantum-well systems, the polarization charge sheets at the interfaces of the
quantum well or barrier induce a large field within the quantum well. These fields skew the
energy bands and cause mismatches in the alignment of the electron and hole wavefunctions.

The localized quantum-well model takes into account field effects in a fully coupled
methodology. The activation syntax is included in the Physics section of each active quantum
well:

Physics (region="QW1") {...
Active(Type=QuantumWell)
QWLocal (

NumberOfElectronSubbands = 5
NumberOfLightHoleSubbands = 2
NumberOfHeavyHoleSubbands = 4
NumberOfCrystalFieldSplitHoleSubbands = 3
NumberOfValenceBands = 3

# -ElectricFieldDep
WidthExtraction (

# indicate side regions or materials of QW if sides 
# do not coincide with domain boundaries
SideRegion = ("reg1", ..., "regn")
SideMaterial = ("mat1", ..., "matn")
MinAngle = (<float>, <float>)
ChordWeight = <float>

)
)

}

By default, the electric field dependency is activated in the localized quantum-well model.
However, it can be deactivated by using the -ElectricFieldDep keyword. The maximum
number of subbands for electrons, heavy holes (HH), light holes (LH), and crystal-field split-
holes (CH) must be specified to enable Sentaurus Device to limit the scope of the computation.
The actual number of subbands used is computed as the simulation progresses. By default, only
the heavy-hole (HH) band and the light-hole (LH) band are considered. Changing the value of
NumberOfValenceBands from 2 to 3 includes the crystal-field split-hole (CH) band in the
computation and is the recommended setting for materials exhibiting the wurtzite crystal
system.
978 Sentaurus™ Device User Guide
N-2017.09



35: Modeling Quantum Wells
Localized Quantum-Well Model
A WidthExtraction section is included to enable you to specify how the quantum-well
thickness can be extracted. This thickness is important to define the quantum-well width so as
to compute the solution to the Schrödinger equation. MinAngle and ChordWeight are
parameters used in a special method to compute the thickness of the quantum-well layer that
is not aligned to one of the major axes (see Thickness Extraction on page 313).

If the QWLocal section is defined in the global Physics section, the parameters of the
maximum number of bands in each band are applied to all the specified
Active(Type=QuantumWell) regions.

By default, the localized quantum-well model does not account for the correction of the
densities in the quantum well due to quantization. To take quantization into account, use the
eDensityCorrection and hDensityCorrection options of QWLocal. For more details,
see Quantum-Well Quantization Model on page 309.

NOTE The variables in Table 169 also apply to the nonlocal quantum-well
model. 

Table 169 Variables for plotting when using the localized quantum-well model

Variable Description

QW_chEigenEnergy Eigenenergies of the crystal-field split-hole bound states [eV].

QW_chNumberOfBoundStates Actual number of QW bound states for crystal-field split-holes.

QW_chRelativeEffectiveMass Relative effective mass of crystal-field split-holes.

QW_chStrainBandShift Shift in crystal-field split-hole band due to strain effects.

QW_eEigenEnergy Eigenenergies of the electron bound states [eV].

QW_ElectricFieldProjection Electric field in the QW [V/cm].
NOTE This variable does not apply to the nonlocal quantum-well model.

QW_eNumberOfBoundStates Actual number of QW bound states for electrons.

QW_eRelativeEffectiveMass Relative effective mass of electrons.

QW_eStrainBandShift Shift in conduction band due to strain effects.

QW_hhEigenEnergy Eigenenergies of the heavy-hole bound states [eV].

QW_hhNumberOfBoundStates Actual number of QW bound states for heavy holes.

QW_hhRelativeEffectiveMass Relative effective mass of heavy holes.

QW_hhStrainBandShift Shift in heavy-hole band due to strain effects.

QW_lhEigenEnergy Eigenenergies of the light-hole bound states [eV].

QW_lhNumberOfBoundStates Actual number of QW bound states for light holes.

QW_lhRelativeEffectiveMass Relative effective mass of light holes.
Sentaurus™ Device User Guide 979
N-2017.09



35: Modeling Quantum Wells
Nonlocal Quantum-Well Model Using 1D Schrödinger Solver
You also can include any of the variables in Table 169 on page 979 in the CurrentPlot
statement, for example:

CurrentPlot { ...
QW_eEigenEnergy (

Minimum (Region = "QW1")
Maximum (Region = "QW1")
Average (Region = "QW1")

)
}

NOTE As this is an advanced model, if you are interested in using this model,
contact TCAD Support for assistance in evaluating whether this model
is suitable for use in your device (see Contacting Your Local TCAD
Support Team Directly on page xliii).

Nonlocal Quantum-Well Model Using 1D Schrödinger 
Solver

The most rigorous model available in Sentaurus Device to model quantum wells is the 1D
Schrödinger solver on a nonlocal mesh that covers the quantum-well structure (see Nonlocal
Mesh for 1D Schrödinger on page 286). A nonlocal mesh consists of numerous cutlines
parallel to the quantization direction on which the potential distribution and effective masses
are extracted. On each nonlocal line, the 1D Schrödinger solver computes the eigenenergies
and the wavefunctions. Then, the eigenenergies of the bound states and the overlap integrals of
the wavefunctions for the various optical transitions are interpolated back to the device
simulation mesh to calculate the radiative recombination.

This model also supports the simulation of mole fraction–graded quantum wells by defining
the band-structure parameters and the effective masses as mole fraction dependent (see Mole-
Fraction Specification on page 17 and Parameters for Composition-Dependent Materials on
page 24).

QW_lhStrainBandShift Shift in light-hole band due to strain effects.

QW_OverlapIntegral Overlap integrals between electron and hole wavefunctions.

QW_QuantizationDirection Quantization direction of the QW.

QW_Width Extracted width of the QW [ ].

Table 169 Variables for plotting when using the localized quantum-well model (Continued)

Variable Description

μm
980 Sentaurus™ Device User Guide
N-2017.09



35: Modeling Quantum Wells
Nonlocal Quantum-Well Model Using 1D Schrödinger Solver
To use the 1D Schrödinger solver for quantum wells:

1. Construct a special-purpose nonlocal mesh that covers the quantum-well structure (see
Nonlocal Mesh for 1D Schrödinger on page 286). The nonlocal lines should extend beyond
the well region into the barrier regions on either side by approximately the well width.

2. Activate the 1D Schrödinger solver on the nonlocal line mesh with appropriate parameters
(see Using 1D Schrödinger on page 287, 1D Schrödinger Parameters on page 287, and
Electronic Band Structure for Wurtzite Crystals on page 967).

3. Mark quantum-well regions as active by specifying Active(Type=QuantumWell) in the
corresponding region-specific Physics sections.

For example, to use the 1D Schrödinger solver to simulate a quantum well that is 3 nm wide
and whose plane is perpendicular to the z-axis, specify the following syntax in the command
file:

Physics (Region="QW1") { Active(Type=QuantumWell) }

NonLocal "QW1" (
RegionInterface="QW1/Barrier0"
Length = 6e-7
Permeation = 3e-7
Direction = (0 0 1)
MaxAngle = 5
Discretization = 1e-8
-Transparent(Region="Barrier0")

)

Physics {
Schroedinger "QW1" (Electron Hole Polarization = TE -DensityCorrection)

}

By default, the nonlocal quantum-well model accounts for the correction of the densities in the
quantum well due to quantization. However, at the beginning, it is recommended to disable the
correction of the densities (-DensityCorrection) as it has an adverse effect on convergence
as shown in this example. For details, see 1D Schrödinger Model on page 290.

The variables in Table 169 on page 979 can be plotted when using the nonlocal quantum-well
model. These variables also can be specified in the CurrentPlot statement (see Tracking
Additional Data in the Current File on page 110) and the NonlocalPlot statement (see
Visualizing Schrödinger Solutions on page 290).

NOTE As this is an advanced model, if you are interested in using this model,
contact TCAD Support for assistance in evaluating whether this model
is suitable for use in your device (see Contacting Your Local TCAD
Support Team Directly on page xliii).
Sentaurus™ Device User Guide 981
N-2017.09



35: Modeling Quantum Wells
Importing Gain and Spontaneous Emission Data With PMI
Importing Gain and Spontaneous Emission Data With PMI

Sentaurus Device can import external stimulated and spontaneous emission data through the
physical model interface (PMI). The gain PMI concept is illustrated in Figure 70.

Sentaurus Device calls the user-written gain calculations through the PMI with the variables:
electron density , hole density , electron temperature , hole temperature , and
transition energy . The user-written gain calculation then returns the gain  and the
derivatives of gain with respect to , , , and  to Sentaurus Device. The derivatives are
required to ensure proper convergence of the Newton iterations. In this way, the user-import
gain is made self-consistent within the simulation. 

Figure 70 Concept of the gain PMI

Implementing Gain PMI

The PMI uses the object-orientation capability of the C++ language (see Chapter 38 on
page 1043). A brief outline is given here of the gain PMI.

In the Sentaurus Device header file PMIModels.h, the following base class is defined for gain:

class PMI_StimEmissionCoeff : public PMI_Vertex_Interface {
public:

PMI_StimEmissionCoeff (const PMI_Environment& env);
virtual ~PMI_StimEmissionCoeff ();

virtual void Compute_rstim
(double E,
double n,
double p,
double et,

n p eT hT
E g

n p eT hT

Sentaurus Device
supplies , , ,

, and 
n p eT

hT E

, , , , n p eT hT E

,

, , , 

g E n p eT hT,, , ,( )

dg
dn
------

dg
dp
------

dg
deT
---------

dg
dhT
----------

PMI

Users supply gain
and derivatives
982 Sentaurus™ Device User Guide
N-2017.09



35: Modeling Quantum Wells
Importing Gain and Spontaneous Emission Data With PMI
double ht,
double& rstim) = 0;

virtual void Compute_drstimdn
(double E,
double n,
double p,
double et,
double ht,
double& drstimdn) = 0;

virtual void Compute_drstimdp
(double E,
double n,
double p,
double et,
double ht,
double& drstimdp) = 0;

virtual void Compute_drstimdet
(double E,

   double n,
   double p,
   double et,
   double ht,
   double& drstimdet) = 0;

virtual void Compute_drstimdht
(double E,
double n,
double p,
double et,
double ht,
double& drstimdht) = 0;

};

To implement the PMI model for gain, you must declare a derived class in the user-written
header file:

#include "PMIModels.h"

class StimEmissionCoeff : public PMI_StimEmissionCoeff {
// User-defined variables for his/her own routines
private:
double a, b, c, d;

public:
// Need a constructor and destructor for this class
StimEmissionCoeff (const PMI_Environment& env);
Sentaurus™ Device User Guide 983
N-2017.09



35: Modeling Quantum Wells
Importing Gain and Spontaneous Emission Data With PMI
~StimEmissionCoeff ();

// --- User needs to write the following routines in the .C file ---
// The value of the function is return as the last pointer argument

// stimulated emission coeff value
void Compute_rstim (double E,

double n,
double p,
double et,
double ht,
double& rstim);

 
// derivative wrt n
void Compute_drstimdn (double E,

double n,
double p,
double et,
double ht,
double& drstimdn);

// derivative wrt p
void Compute_drstimdp (double E,

double n,
double p,
double et,
double ht,
double& drstimdp);

// derivative wrt eT
void Compute_drstimdet (double E,

double n,
double p,
double et,
double ht,
double& drstimdet);

// derivative wrt hT
void Compute_drstimdht (double E,

double n,
double p,
double et,
double ht,
double& drstimdht);

};
984 Sentaurus™ Device User Guide
N-2017.09



35: Modeling Quantum Wells
References
Next, you must write the functions Compute_rstim, Compute_drstimdn,
Compute_drstimdp, Compute_drstimdet, and Compute_drstimdht to return the
values of the stimulated emission coefficient and its derivatives to Sentaurus Device using this
gain PMI. If you have, for example, a table of gain values, you must implement the above
functions to interpolate the values of the gain and derivatives from the table.

The spontaneous emission coefficient can also be imported using the PMI. The implementation
is exactly the same as the stimulated emission coefficient, and you only need to replace
StimEmissionCoeff with SponEmissionCoeff in the above code example.

References

[1] L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, New
York: John Wiley & Sons, 1995.

[2] S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well
wurtzite semiconductors,” Semiconductor Science and Technology, vol. 12, no. 3,
pp. 252–263, 1997.

[3] S. L. Chuang and C. S. Chang, “k.p method for strained wurtzite semiconductors,”
Physical Review B, vol. 54, no. 4, pp. 2491–2504, 1996.

[4] M. Kumagai, S. L. Chuang, and H. Ando, “Analytical solutions of the block-
diagonalized Hamiltonian for strained wurtzite semiconductors,” Physical Review B,
vol. 57, no. 24, pp. 15303–15314, 1998.

[5] S. L. Chuang, “Optical Gain of Strained Wurtzite GaN Quantum-Well Lasers,” IEEE
Journal of Quantum Electronics, vol. 32, no. 10. pp. 1791–1800, 1996.

[6] Z.-M. Li et al., “Incorporation of Strain Into a Two-Dimensional Model of Quantum-
Well Semiconductor Lasers,” IEEE Journal of Quantum Electronics, vol. 29, no. 2,
pp. 346–354, 1993.
Sentaurus™ Device User Guide 985
N-2017.09



35: Modeling Quantum Wells
References
986 Sentaurus™ Device User Guide
N-2017.09



Part IV Mesh and Numeric Methods

This part of the Sentaurus™ Device User Guide contains the following chapters:

Chapter 36 Automatic Grid Generation and Adaptation Module AGM on page 989

Chapter 37 Numeric Methods on page 1011





CHAPTER 36 Automatic Grid Generation and 
Adaptation Module AGM

This chapter describes the automatic generation and adaptation
module for quadtree-based simulation grids of physical devices in
stationary simulations.

The approach is based on a local anisotropic grid adaptation technique for the stationary drift-
diffusion model [1][2][3] and has been extended formally to thermodynamic and
hydrodynamic simulations.

Overview

NOTE In its current status, AGM is not designed to improve the speed of
simulations but rather to support users in generating simulation grids in
a semi-automatic fashion. In fact, using AGM slows down the
simulation time considerably as the control of the grid sizes is difficult,
and the recomputation of solutions on adaptively generated grids is, in
the presence of strong nonlinearities, a time-consuming task. Therefore,
it is not recommended to use AGM throughout large simulation projects
in a fully automatic adaptation mode. The integration of AGM in
Sentaurus Device is incomplete as incompatibilities occur with certain
features of Sentaurus Device.

The accuracy of approximate solutions computed by many simulation tools depends strongly
on the simulation grid used in the discretization of the underlying problem. The major aim of
grid adaptation is to obtain numeric solutions with a controlled accuracy tolerance using a
minimal amount of computer resources using a posteriori error indicators to construct
appropriate simulation grids. The main building blocks of a local grid adaptation module for
stationary problems are the adaptation criteria (local error indicators that somehow determine
the quality of grid elements), the adaptation scheme (determining whether and how the grid
will be modified on the basis of the adaptation criteria), and the recomputation procedure of
the approximate solution on adaptively generated grids. In the framework of finite-element
methods for linear, scalar, and elliptic boundary-value problems, grid adaptation has reached a
mature status [4].

The semiconductor device problem consists of a nonlinearly coupled system of partial
differential equations, and the true solution of the problem exhibits layer behavior and
Sentaurus™ Device User Guide 989
N-2017.09



36: Automatic Grid Generation and Adaptation Module AGM
Overview
singularities, posing additional difficulties for grid adaptation modules. Several adaptation
criteria have been proposed in the literature [1]. For the overall robustness of adaptive
simulations, the recomputation of the solution is a very serious (and, sometimes, very time-
consuming) problem.

The adaptation procedure used in Sentaurus Device is based on the approach developed in [1],
[2], and [3]. It uses the idea of equidistributing local dissipation rate errors and aims at accurate
computations of the terminal currents of the device. A quadtree mesh structure is used to enable
anisotropic grid adaptation on boundary Delaunay meshes required by the discretization used
in Sentaurus Device. The recomputation procedure relies on local and global characterizations
of dominating nonlinearities and includes relaxation techniques based on the solution of local
boundary value problems and a global homotopy technique for large avalanche generation.

The intention of the AGM module in its current status is to support the generation of a
simulation grid and to provide some flexibility for users to influence the adaptation process.
This allows users to find, in a semi-automatic process, a compromise of accuracy requirements
and mesh sizes. The module supports:

■ Two-dimensional device structures

■ Default quadtree refinement approach of Sentaurus Mesh

■ Grid adaptation for stationary problems (adaptive Coupled and Quasistationary)

Coarsening during adaptation is not supported.

Grid adaptation of 3D devices also is formally supported using the octree approach of
Sentaurus Mesh but, for realistic structures, the performance remains beyond acceptable limits.

General Adaptation Procedure

The general grid adaptation flow is outlined in the following example:

compute solution on actual grid

coupled adaptation loop {
// adaptation decision
for all adaptive devices {

check if adaptation is required
}
check if coupled adaptation is required

// adaptation strategy
for all adaptive devices {

generate new grid
initialize data on new grid and perform local smoothing

}

990 Sentaurus™ Device User Guide
N-2017.09



36: Automatic Grid Generation and Adaptation Module AGM
Overview
// recompute solution
solve fully coupled system on new grids

}

The core ingredients of the flow are the adaptation criteria, which decide whether and how the
grid is modified, and the meshing engine, which performs the changes of the grid. Sentaurus
Device makes use of the Sentaurus Mesh meshing engine.

Adaptation Scheme

The meshing engine builds a refinement tree, which consists of axis-aligned refinement boxes.
The root refinement box covers the whole device structure. A refinement box in the tree is split
into several finer refinement boxes according to refinement requests. The leaf elements of the
tree cover the whole device by nonoverlapping refinement boxes.

Adaptation Decision

The decision as to whether a new mesh will be constructed is based on local and global
adaptation criteria. The local adaptation criteria are, in general, applied to the leaf elements of
the refinement tree.

Adaptation Criteria

The adaptation criteria determine whether and how the grid will be modified. In [1], adaptation
criteria for the nonlinearly coupled system of equations for the drift-diffusion model have been
proposed, aiming at accurate computations of the terminal currents of the device. They use the
close relationship between the system dissipation rate and the terminal currents, and estimate
the error of the dissipation rate. This is performed by either solving related local Dirichlet
problems or using the residual error estimation technique. Both techniques are well known in
the framework of finite-element discretizations for scalar and elliptic boundary-value
problems [4].

In practice, these criteria are often computationally too expensive, lead to large grid sizes, and
are hard to control by users. Sentaurus Device supports two types of refinement criterion. The
first type supports refinement based on values of a scalar field. It is a heuristic refinement, does
not provide error estimation, is easily controlled by users, and is useful if physically relevant
fields are considered. The second type adopts the residual error estimator for the dissipation
rate of [1].
Sentaurus™ Device User Guide 991
N-2017.09



36: Automatic Grid Generation and Adaptation Module AGM
Overview
Refinement on Local-Field Variation

These criteria control the variation of a scalar field on grid elements. For a user-specified field
represented on vertices of the grid, elements are refined if differences of the vertex values
exceed a user-supplied value. Using the doping concentration as a field, such criteria are
typically used in mesh generation processes. In the adaptation module, you can use any scalar
field defined on vertices known by the simulator, for example, ConductionBandEnergy or
DissipationRateDensity. 

Refinement on Residual Error Estimation

The residual adaptation criteria, so far applicable only to 2D structures, estimate the error of
the quantity  per grid element . In analogy to standard methods, they measure jumps of the
density of interest across inter-element boundaries. The error for a 2D element  is given as:

(1170)

where:

■  denotes the approximate element functional density (on element  and ,
respectively).

■  is the set of (semiconductor) elements sharing an edge with .

■  is the number of elements.

■  is the volume of .

So far, the residual refinement criterion is only available for the AGM dissipation rate
AGMDissipationRate, which is defined as:

(1171)

where  is the weighted absolute sum of individual generation–recombination
processes with their individual weights . You can modify all weights .

Solution Recomputation

For the recomputation of the solution, data is interpolated onto the new simulation grid, and
iterative smoothing techniques are applied to improve the robustness of the procedure. 

F T
T

ηT F( ) T
Ne T( )
----------------- ωF

h
T′( ) ωF

h
T( )–

T ′ Ne T( )∈
=

ωF
h T( ) T T′

Ne T( ) T

Ne T( )
T T

DAGM ŵn μnn Jn
2

xd

Ω
 ŵp μpp Jp

2
xd

Ω
 ŵrkT Rabs ln

np
ni,effpi,eff
---------------------- 
  xd

Ω
+ +=

Rabs ŵRi
Ri=

ŵRi
ŵi
992 Sentaurus™ Device User Guide
N-2017.09



36: Automatic Grid Generation and Adaptation Module AGM
Specifying Grid Adaptations
Device-Level Data Smoothing

In the first step, the electrostatic potential is adjusted to interpolated data by applying the so-
called electrostatic potential correction (EPC), that is, a mixed linear and nonlinear Poisson
equation is solved using a Newton algorithm. To achieve almost self-consistent solutions for
the coupled equations of the device, local Dirichlet problems are solved approximately,
resulting in the so-called nonlinear node block Jacobi iteration (NBJI). The node block
iterations are performed only on a subset of all grid vertices.

For remarkable avalanche generation, a homotopy technique (or continuation technique), here
called avalanche homotopy, is applied to improve the robustness of the recomputation
procedure, that is, the true avalanche generation is decoupled globally from the equations and
is integrated stepwise into the solution process. As the avalanche generation  is an additive
term, the equations to be solved  can be split into a basic part 
and the avalanche generation term , where  represents the unknown solution variables.
With the fixed avalanche generation  interpolated from the old grid, the avalanche
homotopy now reads:

(1172)

where  is the homotopy parameter ramped from 0 to 1. For , the homotopy is
reduced to a simplified problem, while for  the fully coupled system is solved. Therefore,
the avalanche homotopy is similar to a quasistationary simulation where the avalanche
generation is ramped (instead of specified parameters).

System-Level Data Smoothing

On the system level, a self-consistent solution for the original fully coupled system of
equations is computed by the Newton algorithm.

Specifying Grid Adaptations

If you want to perform simulations using the grid adaptation capability, you must specify which
device instances should be adaptive by adding a GridAdaptation section into the device
instance description. The device structure must be defined, for example, in the form of a
Sentaurus Mesh boundary file and command file, by specifying Boundary in the
corresponding File section.

Having the device instance adaptive, you must indicate which solve statements should invoke
grid adaptation; otherwise, no adaptation occurs.

Fava

F x( ) Fb x( ) Fava x( )+ 0= = Fb

Fava x
F ava

)

Hava x t,( ) Fb x( ) 1 t–( ) F ava tFava x( )+ +=

)

t 0 1;[ ]∈ t 0=
t 1=
Sentaurus™ Device User Guide 993
N-2017.09



36: Automatic Grid Generation and Adaptation Module AGM
Adaptive Device Instances
The following illustrates the basic components for a single-device simulation:

File { ...
Boundary = "meshing_bnd.tdr" * input boundary description
Grid = "./DIR-test/grid_des" * reinterpreted as OUTPUT

}
GridAdaptation ( ... ) * device adaptation parameters
Solve { ...

Coupled ( ... GridAdaptation ( ... ) ) { ... }
Quasistationary ( ... GridAdaptation ( ... ) ) { ... }

}

The relevant keywords are:

■ Boundary in File: Specify the (common) base name for the Sentaurus Mesh boundary
and command files, defining the device structure.

■ Grid in File: In contrast to nonadaptive simulations, where Grid specifies the input
device structure, here Grid is used to output files. As soon as you plot a device structure,
the simulator creates additionally a file that contains the grid and all doping species, which
can be used as fixed input device structures. These files are numbered automatically.

■ GridAdaptation in Device section or global section: Specify the device-specific
adaptation parameters as described in Adaptive Device Instances on page 994.

■ GridAdaptation in Coupled/Quasistationary: Make the solve statement adaptive
as described in Adaptive Solve Statements on page 1003.

Adaptive Device Instances

A device instance is adaptive if the keyword GridAdaptation is specified as a section of the
instance description. Several parameters can be passed to the instance by specifying parameter
entries for the keyword, that is:

GridAdaptation ( <agm-device-par-list> )

Device Structure Initialization

The device structure is defined by some geometric information (including contacts, regions,
and material information) and some data fields defined in the regions (such as doping profiles).

You can initialize the device structure for the AGM module in two ways, either using the
Sentaurus Mesh boundary and command file, or using an element grid file (in TDR format).
994 Sentaurus™ Device User Guide
N-2017.09



36: Automatic Grid Generation and Adaptation Module AGM
Adaptive Device Instances
The initialization method is selected in the Meshing section of the GridAdaptation section:

GridAdaptation ( ...
Meshing ( ...

InitializationMethod = FromBoundaryAndCommand | FromElementGrid
)

)

Initialization From Sentaurus Mesh Boundary and Command Files

For this initialization method, the AGM module requires a description of the device structure
in the form of a Sentaurus Mesh boundary file and command file. From the boundary file, the
geometric structure is taken; while in the command file, doping profiles and refinement
information are defined. The boundary file is specified in the File section of the device by:

File { ... Boundary = "meshing_bnd.tdr" }

and the corresponding command file is read. All refinement statements in the Sentaurus Mesh
command file are applied (or explicitly disabled by -UseMeshCommandFileRefinement).

Initialization From Element Grid File

You need to select InitializationMethod = FromElementGrid. In this case, the
specified BoundaryFile of the Math section is assumed to be an element grid file. The grid
given in this file is taken as the first simulation mesh of the device. Necessary doping profiles
must be contained in the file.

The AGM module extracts from the grid itself some approximating refinement information,
which is used if the first adaptive Solve statement evaluates whether grid adaptation will be
performed.

Extracting Refinement Information

There are alternative approaches to extracting refinement information from the element grid:
ElementSize, Laplacian, and Gaussian. They are selected by Method in
FromElementGrid.

The ElementSize method tries to approximate the refinement by inspecting explicitly the
size of the elements. The refinement stops if a direction-dependent resolution is reached.

The Laplacian and Gaussian methods try to approximate the point density extracted from
the element grid but, in general, they do not approximate the elements directly. Therefore, the
generated refinement information is more regular, and the generated grids have, in general,
only some sparse similarity to the given grid, leading typically to a large number of vertices.
For this reason, the Laplacian and Gaussian methods are not recommended.
Sentaurus™ Device User Guide 995
N-2017.09



36: Automatic Grid Generation and Adaptation Module AGM
Adaptive Device Instances
Parameters Affecting Initialization From Element Grid

The parameters affecting the structure initialization from the element grid are specified in
FromElementGrid:

■ ElementSize: Specifies the parameters for the ElementSize method:

• Resolution: Specifies the size (in ) per direction when refinement stops. This
allows you to avoid refinement to artificially small elements in the approximated grid.

■ Gaussian: Specifies the parameters for the Gaussian method:

• Alpha: Determines the density of the approximating grid (larger than or equal to 1.).
Small values lead to coarser grids.

■ Method: Selects the method approximating the given grid. The alternatives are
ElementSize, Laplacian, and Gaussian.

NOTE The meshing parameters AxisAligned2d and AxisAligned3d have
an explicit impact on refinement information (see Parameters Affecting
Meshing Engine on page 998). The meshing parameters
Delaunizer2d and Delaunizer3d do not affect refinement
information directly, but they are taken into account when building the
simulation grid.

Example

GridAdaptation ( ...
Meshing ( ...

InitializeMethod=FromElementGrid
FromElementGrid (

Method=ElementSize
ElementSize ( Resolution = ( 1.e-4 1.e-4 1.e-4 ) )
Gaussian ( Alpha=1. )

)
)

)

Device Adaptation Parameters

There are parameters that affect the grid generation process or the device-specific smoothing
process.

μm
996 Sentaurus™ Device User Guide
N-2017.09



36: Automatic Grid Generation and Adaptation Module AGM
Adaptive Device Instances
Parameters Affecting Grid Generation

The following device parameters are supported:

■ MaxCLoops: Determines the maximum number of adaptations of this instance within one
coupled adaptation.

■ Weights: Modifies the AGM dissipation rate (see Eq. 1171, p. 992) of the instance used
in the adaptation criteria. The keywords eCurrent, hCurrent, and Recombination
refer to the weights , , and , respectively; while Avalanche, for example, refers
to the corresponding weight of the avalanche generation in . By default, all weights
are 1.

Example

GridAdaptation ( ...
MaxCLoops = 5
Weights ( eCurrent=1.e-2 hCurrent=1.e-1 Recombination=1.e-3 Avalanche=1. )

)

Parameters Affecting Smoothing

The following parameters influence device-specific data smoothing:

■ Poisson: Uses the electrostatic potential correction (EPC) procedure.

■ Smooth: Uses the node block Jacobi iteration (NBJI) procedure.

■ AvaHomotopy: Uses the avalanche homotopy procedure. You can change to some extent
its behavior, as it takes the following parameters:

• Iterations: Sets the number of iterations for the Newton algorithms used during its
application (internally, this number is multiplied by 5).

• LinearParametrization: Uses a linear parameterization of the homotopy
parameter.

• Extrapolate: Allows extrapolation during avalanche homotopy.

• Off: Switches off avalanche homotopy.

Example

GridAdaptation ( ...
* parameters affecting recomputation
Poisson * use electrostatic potential correction (EPC)
Smooth * use node block Jacobi iteration (NBJI)
AvaHomotopy ( -Off Iterations=5 LinearParametrization Extrapolate )

)

ŵn ŵp ŵr

Rabs
Sentaurus™ Device User Guide 997
N-2017.09



36: Automatic Grid Generation and Adaptation Module AGM
Adaptive Device Instances
Parameters Affecting Meshing Engine

Several parameters are passed to the meshing engine, which are collected in the Meshing
section. Within this section, you have the following parameters:

■ AxisAligned2d: Sets the parameters for the axis-aligned algorithm in two dimensions
(quadtree approach). See Table 213 on page 1418 for valid options, and refer to the
Sentaurus™ Mesh User Guide for their definitions.

■ AxisAligned3d: Sets the parameters for the axis-aligned algorithm in three dimensions
(octree approach). See Table 213 for valid options, and refer to the Sentaurus™ Mesh User
Guide for their definitions.

■ Delaunizer2d: Sets the parameters for the delaunizer of the meshing engine in two
dimensions. See Table 219 on page 1420 for valid options, and refer to the Sentaurus™
Mesh User Guide for their definitions.

■ Delaunizer3d: Sets the parameters for the delaunizer of the meshing engine in three
dimensions. See Table 219 for valid options, and refer to the Sentaurus™ Mesh User Guide
for their definitions.

■ InitializationMethod: Selects the mode to initialize the AGM module, that is, either
the default FromBoundaryAndCommand or FromElementGrid.

■ UseMeshCommandFileRefinement: Uses the refinement specification in the mesh
command file to generate the initial grid if FromBoundaryAndCommand is used. Default
is true.

Example

GridAdaptation ( ...
Meshing ( ...

InitializationMethod=FromBoundaryAndCommand
UseMeshCommandFileRefinement
AxisAligned2d ( ... MaxNeighborRatio=1.e6 )
AxisAligned3d ( Smoothing )
Delaunizer2d ( MaxAngle=165. )
Delaunizer3d ( MaxSolidAngle=360. )

)
)

Adaptation Criteria

The adaptation criteria are listed in the device-specific GridAdaptation section (see
Command File Example on page 1005 and Table 222 on page 1421). Several types of
adaptation criteria are available. The adaptation criteria are applied to the leaf elements of the
actual refinement tree and decide individually if the leaf element must be refined. A leaf
998 Sentaurus™ Device User Guide
N-2017.09



36: Automatic Grid Generation and Adaptation Module AGM
Adaptive Device Instances
element is refined if one criterion decides to refine it, that is, the adaptation criteria are
combined by the Boolean OR operation.

Global Adaptation Constraints

The adaptation of the mesh can be disabled, based on the number of leaf elements to be refined,
using ElementLimit. Let  be the actual number of leaf elements of the refinement tree
and  be the number of leaf elements marked for adaptation (based on the adaptation
criteria), then adaptation is disabled if:

(1173)

where  and  are user-defined parameters.

To prevent artefacts at low numbers of leaf elements and to avoid adaptation at large numbers
of leaf elements, you can restrict the application of the element limit to a range for  by
using the parameters Minimum and Maximum. For example:

GridAdaptation ( ...
ElementLimit ( * trigger adaptation using number of marked leaf elements

Fraction = 1.e-4 * fraction of number of (total) leaf elements
Ignore = 0 * absolute number of leaf elements
Minimum = 1.e3 * apply for number of leaf elements above bound
Maximum = 1.e5 * apply for number of leaf elements below bound

)
)

Parameters Common to All Refinement Criteria

The following parameters are common for all refinement criteria (see also Table 215 on
page 1419). Observe that some of the parameters can be ramped in quasistationary simulations
(see Rampable Adaptation Parameters on page 1005):

■ MaxElementSize: The maximal-allowed edge length in axis directions.

■ MinElementSize: The minimal-allowed edge length in axis directions.

■ MeshDomain: This allows you to reference to a spatial domain where the criterion will be
applied. The domains are defined in the Math section as described below.

■ RefinementScale: Defines a real-valued value  that limits adaptation within one
coupled adaptation iteration to refinement boxes that are large compared to the actual
refinement tree. That is, axis-aligned refinement boxes (of size  in axis-direction ) are
only refined if  is greater than the minimum size of overlapping leaf elements of the
refinement tree. Larger values of  lead to more refinement per adaptation iteration.

Nleaf

Nadapt

Nadapt CFraction Nleaf⋅ CIgnore+≤

CFraction CIgnore

Nleaf

s

bi i
s bi⋅

s

Sentaurus™ Device User Guide 999
N-2017.09



36: Automatic Grid Generation and Adaptation Module AGM
Adaptive Device Instances
Example

GridAdaptation ( ...
Criterion "c1"( ... )
Criterion "c2"( ... )

)

Criterion Type: Element

A given vertex-based scalar quantity must fulfill the condition:

(1174)

where  and  are the quantity values at the vertices of each element edge. 

If the logarithmic scale is selected, the following condition must be fulfilled:

(1175)

This condition simplifies for values larger than  to  and accounts
for smaller values and even negative values in a suitable fashion.

Parameters

In addition to the general criterion parameters (see Table 215 on page 1419), the following
options are supported (see also Table 216 on page 1419):

■ DataName: Selects the physical vertex-based quantity.

■ AbsError: The parameter  in both the linear and logarithmic condition above.

■ Logarithmic: Uses the logarithmic condition.

■ RelError: The parameter  in both the linear and logarithmic condition above.

Example

Criterion "c1" (
Type = Element * criterion type
DataName = "DopingConcentration" * considered quantity
Logarithmic * select logarithmic scale
AbsError = 1.e14 * ignore values below given value
RelError=10. * error bound (10. means each decade)
MaxElementSize = ( 0.1 0.2 ) * maximal edge length in axis direction
MinElementSize = ( 1.e-2 1.e-3 ) * minimal edge length in axis direction
MeshDomain = "md1" * "md1" defined in Math

)

a1 a2– εRεA<

a1 a2

sign a1( ) max a1 εA⁄ 1,( )( )ln sign a2( ) max a2 εA⁄ 1,( )( )ln– εR( )ln<

εA a1( ) a2( )ln–ln εR( )ln<

εA

εR
1000 Sentaurus™ Device User Guide
N-2017.09



36: Automatic Grid Generation and Adaptation Module AGM
Adaptive Device Instances
Criterion Type: Integral0

This criterion type refines elements with large integral values of a user-defined density-like
quantity. An axis-aligned refinement box  is not refined if:

(1176)

where:

■  is the maximal value of quantity  within refinement box .

■  is the volume of the axis-aligned refinement box.

■  is a user-definable reference volume.

■  is the reference value of quantity , computed from the integral average within a user-
definable range.

■  is a positive number.

Some remarks:

■ For nonpositive functions the absolute modulus is considered.

■ The power  allows you to scale the element size according powers of the local value of
quantity .

■ The refinement direction is given by (and restricted to) the gradient of the quantity ,
leading to anisotropic refinement. You might choose some kind of scaled isotropic
refinement (see the IsotropicRefinement parameter).

Parameters

The criterion has the following specific parameters (see Table 217 on page 1419):

■ DataName: The considered vertex-based quantity .

■ QuantityPower: Defines the power value  for quantity .

■ ReferenceElementSize: Specifies for each axis-direction  a size  (in ) that
defines the reference volume .

■ ReferenceQuantityRange: Defines a range for the reference value  (in units of the
quantity ).

■ IsotropicRefinement: Refines the refinement box  isotropically. This means that the
box is preferably refined in axis-direction  with the largest ratio , where  is the
box size in direction , and  is the corresponding size given by
ReferenceElementSize.

B

B fB
p

B0 f0
p<

fB f B

B

B0

f0 f

p

p
f

f

f

p f

i di μm
B0 d1 … dd⋅ ⋅=

f0

f

B
i bi di⁄ bi

i di
Sentaurus™ Device User Guide 1001
N-2017.09



36: Automatic Grid Generation and Adaptation Module AGM
Adaptive Device Instances
Example

Criterion "c1" (
Type = Integral0
DataName = "eDensity"
QuantityPower = 0.5
ReferenceElementSize = (0.1 0.2 0.1)
ReferenceQuantityRange = ( 1.e15 1e17 )

)

Criterion Type: Residual

This criterion estimates an error for the integral of the AGM dissipation rate density over the
specified mesh domain. The mesh is not refined if the condition:

(1177)

is fulfilled, where  is the sum of the element error estimators of the AGM dissipation rate in
the definition domain.

Parameters

Besides the general criterion parameters (see Table 215 on page 1419), the following
parameters are supported (see also Table 218 on page 1420):

■ AbsError: The parameter  in the condition above.

■ RelError: The parameter  in the condition above.

Example

Criterion "c1" (
Type = Residual * criterion type
AbsError = 1.e-5 * global lower bound (units of dissipation rate)
RelError = 1.e-1 * global relative error
MaxElementSize = (0.1 0.2)
MinElementSize = (1.e-2 1.e-3)
MeshDomain = "semi" * restrict to mesh domain

)

Mesh Domains

Mesh domains describe a geometric location of the simulation domain and are specified in the
Math section of the instance. They are given as the union or intersection of a list of some basic
mesh domain descriptions or other mesh domains, and are used to describe the definition
domain of the refinement criteria.

η εR D εA+( )<

η

εA

εR
1002 Sentaurus™ Device User Guide
N-2017.09



36: Automatic Grid Generation and Adaptation Module AGM
Adaptive Solve Statements
Parameters

The available parameters are (see also Table 225 on page 1423):
■ Type: Specifies which operation is applied to the list of spatial domains. You can select

either union or intersection by specifying Cup or Cap, respectively. Building the union is
the default operation.

■ Region: The spatial domain covered by the region.

■ Box: Defines an axis-aligned box by specifying minimum and maximum coordinates.

■ MeshDomain: Another mesh domain defined before.

Example

Math { ...
* mesh domain "semi" is the union of specified regions
MeshDomain "semi" ( Region="bulk" Region="R2" )
* mesh domain "channel" is intersection of the mesh domain "semi"
* and the specified box
MeshDomain "channel" (

Type=Cap MeshDomain="semi" Box((-5 1.e-5 0.) (5 1.e-3 1.)) )
}

Adaptive Solve Statements

Grid adaptation is only performed for explicitly adaptive solve statements using the keyword
GridAdaptation. Only the highest level Coupled and Quasistationary solve statements
can be adaptive.

General Adaptive Solve Statements

The following parameter entries are interpreted by all adaptive solve statements:

■ MaxCLoops: Sets maximal number of adaptation iterations per adaptive coupled system
(default is 100000).

■ Plot: Enables device plots for all intermediate device grids.

■ CurrentPlot: Enables plotting to current file after each coupled adaptation.
Sentaurus™ Device User Guide 1003
N-2017.09



36: Automatic Grid Generation and Adaptation Module AGM
Adaptive Solve Statements
Adaptive Coupled Solve Statements

A Coupled solve statement can be adaptive if it is the highest level solve statement, and it can
look like:

Coupled ( ... GridAdaptation ( MaxCLoops = 5 ) )
{ Poisson Electron Hole }

Adaptive Quasistationary Solve Statements

In the current implementation, a Quasistationary can be adaptive only if (a) it is the highest
level solve statement, and (b) its system consists of a Coupled solve statement, that is, Plugin
statements are not yet supported.

In adaptive quasistationary simulations, it may be useful to restrict the adaptation to certain
ranges of the ramped parameter. This can be achieved by specifying parameter ranges or
iteration numbers in a similar fashion as in Plot in solve statements using the Time,
IterationStep, and Iterations keywords, for example.

Parameters

Besides the parameters for all adaptive solve statements, you can provide:

■ Iterations: Adapts at specific iterations of the ramping process.

■ IterationStep: Adapts only after a specified number of iterations.

■ Time: Adapts if the ramping parameter falls into given ranges.

Example

Quasistationary ( ...
GridAdaptation ( ...

IterationStep = 10
Iterations = ( 2 ; 7 )
Time = ( Range = ( 0.2 0.4 ) ; range = (0. 1.) 

intervals = 5 ; 0.1 ; 0.99 )
)

) { ... }

The fixed times specified by Time do not force adaptation at these values (which can be
achieved by other methods, for example, adding plot statements for the required parameter
values).
1004 Sentaurus™ Device User Guide
N-2017.09



36: Automatic Grid Generation and Adaptation Module AGM
Performing Adaptive Simulations
Performing Adaptive Simulations

Rampable Adaptation Parameters

Some of the criteria parameters can be ramped in quasistationary Goal statements. So far, this
set includes the values given by MaxElementSize, MinElementSize, AbsError, and
RelError. You have to refer to these parameters by their full qualified name.

Example

GridAdaptation ( ...
Criterion "c1" ( Type = Element MaxElementSize = ( 0.1 0.2 ) ... )

)
Solve { ...

Quasistationary ( ...
Goal ( ModelParameter="AGM/Criterion(c1)/AbsError" Value=1.e12 )
Goal ( ModelParameter="AGM/Criterion(c1)/MaxElementSize[0]" 

Value=1.e-2 )
) { ... }

}

Command File Example

The following example excerpt of a command file illustrates the adaptation specification:

File { ...
* device structure input
* (and implicit corresponding mesh command file)
Boundary = "meshing_bnd.tdr" * input boundary file
Grid = "./DIR-n2/n2_grid_des" * used as OUTPUT base name

}
Math { ...

MeshDomain "semi" ( Region="R1" Region="R2" )
}
GridAdaptation ( * device-specific adaptation parameters

MaxCLoops = 5 * max number of adaptations per adaptive Coupled

* recomputation parameters
Poisson * perform electrostatic potential correction
Smooth * perform node block Jacobi iteration
AvaHomotopy ( Iterations=5 )
Sentaurus™ Device User Guide 1005
N-2017.09



36: Automatic Grid Generation and Adaptation Module AGM
Limitations and Recommendations
* refine on doping concentration
Criterion "c1" ( Type=Element DataName="DopingConcentration"

AbsError=1.e12 RelError=10. Logarithmic
MaxElementSize=(0.1 0.1) MinElementSize=(1.e-2 1.e-2)
MeshDomain="semi"

)
)
Solve {

Coupled { Poisson Electron Hole } * compute solution on initial grid

* ramp goals of interest with adaptation
Quasistationary ( ...

GridAdaptation * adaptive quasistationary
) { Coupled { Poisson Electron Hole } }

}
Plot { ...

AGMDissipationRate AGMDissipationRateDensity
GradAGMDissipationRateDensity/Vector
AGMDissipationRateAbsJump * error estimator of residual criterion

}

Limitations and Recommendations

Limitations

The grid adaptation approach implemented in Sentaurus Device has been developed for the
drift-diffusion model and 2D quadtree-based simulation grids. For convenience, the approach
has been formally extended to support other transport models and features available in
Sentaurus Device, that is, AGM is formally compatible with the drift-diffusion,
thermodynamic, and hydrodynamic transport models.

Nevertheless, it must be noted that AGM has been applied, so far, only to the drift-diffusion
model and silicon devices. Total incompatibility is to be expected with the Schrödinger
equation solver, heterostructures, interface conditions, and LED equations. These
incompatibilities are only partially checked after command file parsing.
1006 Sentaurus™ Device User Guide
N-2017.09



36: Automatic Grid Generation and Adaptation Module AGM
Limitations and Recommendations
Recommendations

Initial Grid Construction

Using the structure initialization from the boundary and command files, the very first initial
grid is constructed applying the refinement information from the mesh command file
(assuming UseMeshCommandFileRefinement is true).

If UseMeshCommandFileRefinement is disabled, the initial grid consists essentially only of
boundary vertices. To construct in the later case a realistic initial grid, some artificial
quasistationary may be necessary, which ramps the criteria parameters such that these become
effective.

Accuracy of Terminal Currents as Adaptation Goal

The choice of appropriate adaptation criteria depends on the adaptation goal. In most adaptive
simulation procedures, the local discretization errors are used as adaptation criteria. This
approach is not practicable for device simulation as the criteria lead to overwhelmingly large
grid sizes. The residual adaptation criterion for the functional AGMDissipationRate aims
for accurate computations of the device terminal currents, a minimal requirement for all
simulation cases, allowing in principle some unresolved solution layers, which do not
contribute to the terminal current computation.

AGM Simulation Times

Each coupled adaptation iteration requires remarkable simulation time. In contrast to linear or
easy-to-solve problems, for device simulation, most time is consumed in the recomputation
procedure of the solution due to the extreme nonlinearities of the problem and not in the pure
adaptation of the grid. 

The most time-consuming parts in many AGM simulations are (in order of importance):

1. Avalanche homotopy if the computation for  fails to converge (can be very
expensive).

2. NBJI smoothing step (for large grid sizes).

3. EPC smoothing step.

4. Grid generation.

t 1=
Sentaurus™ Device User Guide 1007
N-2017.09



36: Automatic Grid Generation and Adaptation Module AGM
References
Large Grid Sizes

The low convergence order of the discretization causes relatively large grid sizes even for low
accuracy requirements. Especially in the vicinity of solution layers and singularities, the point
density is difficult to control.

To avoid such problems, increase MinElementSize for the responsible criterion: Elements
that reach the allowed minimal edge length are no longer refined, and their local error does not
contribute to the global error used in the adaptation decision. Therefore, realistic minimal
element sizes stop refinement in singularities and layers.

Convergence Problems After Adaptation

It has been observed that, for very coarse simulation grids, the recomputation procedure shows
convergence problems. Such problems can be solved by using slightly refined initial grids or
by refining the coarsest possible grid (reduce MaxElementSize in refinement criteria). 

AGM and Extrapolation

After adaptation within a quasistationary, extrapolation is not possible and the parameter step
size may decrease. Extrapolation is supported as soon as two consecutive solutions are
computed on the same mesh.

3D Grid Adaptation

The 3D grid adaptation has been formally integrated and tested for very simple test structures.
However, for realistic structures, the implementation has not yet been optimized or extensively
tested. Therefore, practical 3D grid adaptation is still not possible.

References

[1] B. Schmithüsen, Grid Adaptation for the Stationary Two-Dimensional Drift-Diffusion
Model in Semiconductor Device Simulation, Series in Microelectronics, vol. 126,
Konstanz, Germany: Hartung-Gorre, 2002.

[2] B. Schmithüsen, K. Gärtner, and W. Fichtner, A Grid Adaptation Procedure for the
Stationary 2D Drift-Diffusion Model Based on Local Dissipation Rate Error
Estimation: Part I - Background, Technical Report 2001/02, Integrated Systems
Laboratory, ETH, Zurich, Switzerland, December 2001.
1008 Sentaurus™ Device User Guide
N-2017.09



36: Automatic Grid Generation and Adaptation Module AGM
References
[3] B. Schmithüsen, K. Gärtner, and W. Fichtner, A Grid Adaptation Procedure for the
Stationary 2D Drift-Diffusion Model Based on Local Dissipation Rate Error
Estimation: Part II - Examples, Technical Report 2001/03, Integrated Systems
Laboratory, ETH, Zurich, Switzerland, December 2001.

[4] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement
Techniques, Chichester: Wiley Teubner, 1996.
Sentaurus™ Device User Guide 1009
N-2017.09



36: Automatic Grid Generation and Adaptation Module AGM
References
1010 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 37 Numeric Methods

This chapter presents some of the numeric methods used in
Sentaurus Device.

Discretization

The well-known ‘box discretization’ [1][2][3] is applied to discretize the partial differential
equations (PDEs). This method integrates the PDEs over a test volume such as that shown in
Figure 71, which applies the Gaussian theorem and discretizes the resulting terms to a first-
order approximation. 

Figure 71 Single box for a triangular mesh in two dimensions

In general, box discretization discretizes each PDE of the form:

(1178)

into:

(1179)

with values listed in Table 170 on page 1012. 

dij

lij

Ωi

element e

Ωi
e

dij
e

∇ J⋅ R+ 0=

κi j jij⋅
j i≠
 μ Ωi( ) ri⋅+ 0=
Sentaurus™ Device User Guide 1011
N-2017.09



37: Numeric Methods
Discretization
In this case, the physical parameters  and  have the values listed in Table 171, where
 is the Bernoulli function. 

One special feature of Sentaurus Device is that the actual assembly of the nonlinear equations
is performed elementwise, that is:

(1180)

This expression is equivalent to Eq. 1179 but has the advantage that some parameters (such as
, , ) can be handled elementwise, which is useful for numeric stability and physical

exactness. In the 2D case, the box method coefficients have simple visual values: 
(see Figure 71 on page 1011). In the 3D case, these values are not trivial.

Extended Precision

Although the coordinates of vertices of a mesh are stored with “double” precision accuracy,
Sentaurus Device computes box method coefficients and control volumes, by default, with
“long double” extended-precision accuracy. This is especially important for the accurate
calculation of box method parameters in meshes that contain sliver elements. The procedure is
as follows:

1. Read “double” precision coordinates of the mesh vertices.

2. Convert these coordinates to “long double” extended precision.

Table 170 Box method parameters: coefficients and control volumes

Dimension   

1D Box length

2D Box area

3D Box volume

Table 171 Equations

Equation

Poisson

Electron continuity

Hole continuity

Temperature

κi j μ Ωi( )

1 lij⁄

dij lij⁄

Dij lij⁄

jij ri

B x( ) x ex 1–( )⁄=

jij ri

ε ui uj–( ) ρi–

μn
niB ui uj–( ) njB uj ui–( )–( ) Ri Gi–

td
d

ni+

μp
pjB uj ui–( ) piB ui uj–( )–( ) Ri Gi–

td
d

pi+

κ Ti Tj–( ) Hi td
d

Tici–

κi j
e

jij
e⋅

j vertices e( )∈
 

 
 

μ Ωi
e( ) ri

e⋅+
 
 
 

e elements i( )∈
 0=

ε μn μp

κij
e dij

e lij⁄=
1012 Sentaurus™ Device User Guide
N-2017.09



37: Numeric Methods
Box Method Coefficients in 3D Case
3. Compute box method parameters with “long double” extended precision.

4. Convert coefficients and control volumes back to “double” precision.

The extended-precision calculation of box method parameters can be switched off by
specifying -BM_ExtendedPrecision in the global Math section of the command file.

NOTE Extended-precision box method calculations are switched off if the
global Math section contains either BoxCoefficientsFromFile, or
BoxMeasureFromFile, or NaturalBoxMethod (see Saving and
Restoring Box Method Coefficients on page 1021).

Box Method Coefficients in 3D Case

This section describes the coefficients of the box method in the 3D case.

Basic Definitions

Delaunay Mesh 
A mesh is a Delaunay mesh if the interior of the circumsphere (circumcircle for two
dimensions) of each element contains no mesh vertices.

Obtuse Element 
An element is called obtuse if the center of the circumsphere (circumcircle) is outside this
element.

Obtuse Face 
Let Pf be the plane that contains the face f of an element. Each plane splits 3D space into two
half-spaces Sf1 and Sf2. A face f is called obtuse if the center of the circumsphere of the
element and the element itself lie in different half-spaces Sf1, Sf2.

NOTE In the 2D case, an obtuse triangle has only one obtuse edge.

NOTE In the 3D case:

• An obtuse prism has only one obtuse face.

• An obtuse tetrahedron has one or two obtuse faces.

• An obtuse pyramid has one, two, or three obtuse faces.
Sentaurus™ Device User Guide 1013
N-2017.09



37: Numeric Methods
Box Method Coefficients in 3D Case
Non-Delaunay Element 
An obtuse element is called non-Delaunay if the interior of the circumsphere (circumcircle)
around this element contains another mesh vertex.

Voronoï Element Center and Voronoï Face Center 
Let  be a mesh element. The center circumsphere (circle for two dimensions) around the
element  is called the Voronoï element center . Let  be the face of the element . The
center circumcircle around the face  is called the Voronoï face center .

Voronoï Box and Face of the Voronoï Box 
Let  be a vertex of the mesh and let  be the set of edges connected to vertex

. Let  be the mid-perpendicular plane for the edge . The plane  splits 3D space into
two half-spaces. Let  be the half-space that contains the vertex . The intersection of all
half-spaces  is called the Voronoï box  of vertex . Therefore, the Voronoï box  is the
convex polyhedron and any face of  is a convex polygon that lies in the mid-perpendicular
plane . This face called the face of the Voronoï box .

In addition, let  be the set of elements per vertex  and let  be
the set of elements per edge . For the Delaunay mesh, the next two propositions hold:

1. The vertices of the Voronoï box  are Voronoï element centers .

2. The vertices of the face of the Voronoï box  are Voronoï element centers
 (see Figure 72 – Figure 74). 

Figure 72 Face of Voronoï box for Delaunay mesh without obtuse elements: view of mid-
perpendicular plane at edge e with Voronoï element centers  and the Voronoï 
face center  between elements  and 

T
T VT f T

f Vf

v evn 1 n N≤ ≤( )
v Pev

n evn Pev
n

Sev
n v

Sev
n Bv v Bv

Bv

Pev
n Fev

n

Tv
m 1 m M≤ ≤( ) v Tev

k 1 k K≤ ≤( )
ev

Bv V
Tv

1 V
Tv

2 … V
Tv

M, , ,( )

Fev
n

V
Tev

1 V
Tev

2 … V
Tev

K, , ,( )

V
T

1

V
T

2

V
T

3

V
T

4

V
T

5
V

f
1 2,

V
f
2 3,

V
f
3 4,

V
f
4 5,

V
f
5 1,

me

elem. 1

elem. 2

elem. 3

elem. 4

elem. 5

V
T

i

V
f
i i 1+, T

i
T

i 1+
1014 Sentaurus™ Device User Guide
N-2017.09



37: Numeric Methods
Box Method Coefficients in 3D Case
Figure 73 Element 5 is an obtuse element; the face of the Voronoï box is a polygon 
, and all vertices are Voronoï element centers

Figure 74 Element 5 is a non-Delaunay element; the face of the Voronoï box is a polygon 
, and vertex R is not a Voronoï element center

Element Intersection Box Method Algorithm

Sentaurus Device uses the element intersection box method algorithm. Let  be the area of
intersection . For example:

1. Not obtuse elements (see Figure 72) or elements  in (see Figure 73 and
Figure 74):

V
T

1

V
T

2

V
T

3

V
T

4

V
T

5

V
f
1 2,

V
f
2 3,

V
f
3 4,

V
f
4 5,

V
f
5 1,

me

p

V
T

1 V
T

2 V
T

3 V
T

4 V
T

5 V,
T

1
, , , ,( )

V
T

1

V
T

2

V
T

3

V
T

4

V
T

5

V
f
1 2,

V
f
2 3,

V
f
3 4,

V
f
4 5, V

f
5 1,

meR

p

V
T

1 V
T

2 V
T

3 R V
T

1, , , ,( )

Seν
T

i

Feν Ti∩

T1 T2 T3, ,

Seν
T

i
Area me V

f
i 1– i, V

T
i V

f
i i 1+,
·

me, , , ,( )=
Sentaurus™ Device User Guide 1015
N-2017.09



37: Numeric Methods
Box Method Coefficients in 3D Case
2. Obtuse elements (see Figure 73 on page 1015):

 and 

3. Non-Delaunay elements (see Figure 74 on page 1015):

 and 

Let edge  have vertices . If all elements around this edge are Delaunay elements, then
. For non-Delaunay elements, .

The parameters needed for discretization,  and  from Eq. 1180, p. 1012, are 2D
arrays  and  (  is a vertex of the element, and  is the edge
of the element).

The options for computing the box method coefficients are:

■ AverageBoxMethod 

(1181)

For non-Delaunay elements, you have the average coefficient value.

■ NaturalBoxMethod 

(1182)

This algorithm has no averaging.

Both algorithms have the same coefficients for the Delaunay mesh. Only one box method
algorithm can be activated. After computing the box method coefficients, Sentaurus Device
uses these values for computation control volumes  using standard analytic formulas.

Truncated Obtuse Elements

If a mesh has no obtuse elements, you have element-volume conservation for Measure values
(see Figure 75 on page 1017):

(1183)

Seν
T

4
Area me V

f
3 4, V

T
4 V

T
5 p me, , , , ,( )= Seν

T
5

Area me p V,
f
5 1, me, ,( )=

Seν
T

4
Area me V

f
3 4, R p me, , , ,( )= Seν

T
5

Area me p V,
f
5 1, me, ,( )=

e ν1 v2,
Seν1

T
i

Seν2
T

i
= Seν1

T
i

Seν2
T

i≠

μ Ωi
e( ) κij

e

μ Ti ν,( ) κ Ti e,( ) ν Ti∈ e e ν1 ν2,( )=

κ T
i

e,( ) 0.5 Seν1
T

i
Seν2

T
i

+( ) length e( )( )⁄⋅=

κ T
i

e,( ) Seν1
T

i
( ) length e( )( )⁄=

μ Ti ν,( )

Vol T
i( ) μ T

i ν,( )

v T
i∈

=
1016 Sentaurus™ Device User Guide
N-2017.09



37: Numeric Methods
Box Method Coefficients in 3D Case
Figure 75 Element-volume conservation for mesh without obtuse elements

For a Delaunay mesh, you have total-volume conservation (see Figure 76):

(1184)

Figure 76 Total-volume conservation for Delaunay mesh

For a non-Delaunay mesh, you have no even total-volume conservation (see Figure 77 on
page 1018):

(1185)

v1

v2

v3

v4

1

2

3

4

5

6

V Vol T
i( )

i
≡ μ T

i ν,( )

v T
i∈


i
 VBM≡=

v1

v2

v3

v4

1

2

3

4

5

6

δV abs V VBM–( ) 0>=
Sentaurus™ Device User Guide 1017
N-2017.09



37: Numeric Methods
Box Method Coefficients in 3D Case
Figure 77 Violation of total-volume conservation for non-Delaunay mesh

There are problems for which element-volume conservation is very important (such as optical
electronic or diffusion in Sentaurus Process). For these operations, Sentaurus Device has the
special option MixAverageBoxMethod.

In this case, Sentaurus Device uses AverageBoxMethod to compute the coefficients and the
algorithm truncation obtuse elements to compute the control volumes. Figure 78 shows the
difference between the original and truncated Voronoï polygons in the 2D case. 

Figure 78 Algorithm truncation obtuse element: (a) Voronoï polygons before truncation – 
P1(v1,1,2,5,4,v1), P2(v2,1,2,3,v2), P3(v3,3,2,5,6,v3), P4(v4,4,5,6,v4); 
(b) Voronoï polygons after truncation – P1(v1,1,2,8,6,5,v1), P2(v2,1,2,3,4,v2), 
P3(v3,4,3,8,6,7,v3), P4(v4,5,6,7,v4)

For the 3D case, a similar algorithm of truncation is used.

Table 211 on page 1403 lists all the available options for computing box method parameters.

v1

v2

v3

v4

1

2

3

4

5

6

a)

v1

v2

v3

v4

1

2

3

4

5

6

b)

v1

v2

v3

v4

1

2 3

4

5

6

7

8

1018 Sentaurus™ Device User Guide
N-2017.09



37: Numeric Methods
Box Method Coefficients in 3D Case
Weighted Box Method Coefficients

The main goal of any space discretization is the generation of a Delaunay mesh. In this case,
the box method coefficients are positive and the finite volume scheme [1] (Eq. 1180, p. 1012)
is monotone. For a non-Delaunay mesh, the AverageBoxMethod coefficients are positive but
the order of the approximation of PDEs is less than one. Sentaurus Mesh can use special
technology – Delaunay–Voronoï weights – for which the weighted Voronoï diagram has no
overlap control volume for a non-Delaunay mesh. As a result, the finite volume scheme is
monotone and the order of the approximation PDEs is equal to one.

Weighted Points

A weighted point  is interpreted as a sphere (circle in two dimensions) with a
center  and radius . The weighted distance between  and  is defined as [4]
[5][6]:

(1186)

The weighted points  and  are orthogonal if the weighted distance vanishes: .

In the 3D case, any four weighted points have a common orthogonal sphere called an
orthosphere. Unless the four centers lie in a common plane, the orthosphere is unique and has
a finite radius.

In the 2D case, any three weighted points have a common circle called an orthocircle. Unless
the three centers lie in a common line, the orthocircle is unique and has a finite radius (see
Figure 79). 

Figure 79 Since the radii of all weighted vertices are positive, their centers lie outside the 
orthocircle

p̃ p P2,( )=
p P p̃ x̃ x X,( )=

p̃ x̃– p x–
2

P
2

– X
2

–=

p̃ x̃ p̃ x̃– 0=
Sentaurus™ Device User Guide 1019
N-2017.09



37: Numeric Methods
Box Method Coefficients in 3D Case
Weighted Voronoï Diagram

The weighted generalization of the Voronoï diagram is obtained by substituting a weighted
vertex for vertices and an orthosphere (orthocircle) for circumspheres (circumcircles).

The weighted bisector plane  between  and  is the locus of points at an equal-weighted
distance from  and . The center of the orthosphere  is the intersection of the bisector
planes . The weighted middle point  between  and  is the intersection of
the segment  and the bisector plane . The value  is equal to:

(1187)

where:

, (1188)

Therefore, the weighted bisector plane  is orthogonal to the segment  and contains
the weighted middle point , which is sufficient to compute the weighted coefficients and
control volumes. If the radius , the middle point  and the weighted
Voronoï diagram has no overlap control volume for non-Delaunay meshes (see Figure 80).
This is the main property of the weighted Voronoï diagram. 

Figure 80 Two-dimensional non-Delaunay mesh: (left) not weighted Voronoï diagram has 
overlap elements and (right) weighted Voronoï diagram has no overlap elements

Sentaurus Process computes the squared radii ( , plot name: DelVorWeight [ ]) of the
weighted vertices and writes them to a TDR file (see Sentaurus™ Process User Guide, Table 88
on page 742; option StoreDelaunayWeight). If the keyword WeightedVoronoiBox is
specified in the Math section of the command file, Sentaurus Device reads the corresponding
arrays from a TDR file and computes the weighted coefficients and measure.

Bij p̃i p̃j

p̃i p̃j x
x Bi j≠ i j∩= mij p̃i p̃j

pi pj,[ ] Bij mij

mij αipi αjpj+=

αi 0.5 1
Pi

2
Pj

2
–

pi pj–
2

----------------------–
 
 
 

= αj 1 α– i=

Bij pi pj,[ ]
mij

Pi Pj≠ mij 0.5 pi pj+( )≠

v1

v2

v3

v4

1

2

3

4

5

6

v2

v3v1

v4

.. .
.

1

2

3

4

5

6

Pi
2 μm2
1020 Sentaurus™ Device User Guide
N-2017.09



37: Numeric Methods
Box Method Coefficients in 3D Case
Saving and Restoring Box Method Coefficients

Usually, the coefficients needed for discretization are computed inside Sentaurus Device. For
experimental purposes, it may be preferred to use externally provided data. Measure and
Coefficients (  and  from Eq. 1180, p. 1012) can be stored in, and loaded into and
from the debug file. There are two options for element numbering in such files:

■ Internal Sentaurus Device numbering with MeasureCoefficientsDebug as the debug
file name.

■ Mesh numbering (from grid file) with MeasureCoefficients.debug as the debug file
name for this option. 

If the keyword BoxMeasureFromFile or BoxCoefficientsFromFile is specified in the
Math section and there is file MeasureCoefficientsDebug in the simulation directory,
Sentaurus Device reads the corresponding arrays from this file. 

If the keyword BoxMeasureFromFile(GrdNumbering) or the keyword
BoxCoefficientsFromFile(GrdNumbering) is specified and there is the file
MeasureCoefficients.debug, Sentaurus Device reads the corresponding arrays from this
file. If there are no such debug files but these keywords are specified, Sentaurus Device
computes Measure and Coefficients and writes them in the corresponding file.

The format of the MeasureCoefficientsDebug file is as follows. In line k of the Measure
section, the control volume for each element-vertex j of element k is stored (that is, value
Measure[k][j]). The numeration of elements and local numeration of vertices inside the
element (see Figure 83 on page 1080) correspond to the internal Sentaurus Device numbering. 

The Coefficients section in this file has a similar format. For example, the Measure
section in the file can appear as follows:

Measure {
8.719666833501378e-08 4.359833416750702e-08 4.359833416750729e-08
8.719666833501378e-08 4.359833416750702e-08 4.359833416750729e-08
...

}

The format of the MeasureCoefficients.debug file is different. There are four section:
Info, Elem_type, Measure, and Coefficients. In line k of the Measure section, the
control volume for each element-vertex j of element k is stored (that is, value
Measure[k][j]). The numeration of elements and local numeration of vertices inside the
element correspond to the grid file. The Coefficients section in the debug file has similar
format. For example, the file can look like:

Info {
dimension       = 2

μe Ωi( ) κij
e

Sentaurus™ Device User Guide 1021
N-2017.09



37: Numeric Methods
Box Method Coefficients in 3D Case
nb_vertices     = 10
nb_grd_elements = 11
nb_des_elements = 7
}

Elem_type {
point       = 0 
line        = 1 
triangle    = 2 
rectangle   = 3 
tetrahedron = 5 
pyramid     = 6 
prism       = 7 
cuboid      = 8 
}

                                 Measure { # unit = [um^2]
# grd_elem des_elem elem_type 

0 0 2 1.828427124999999e+00 9.142135625000004e-01 9.142135625000002e-01
1 1 2 4.052251462735666e+00 4.052251462735666e+00 8.104502925471332e+00
...
7 -1 1 # contact or interface 
8 -1 1 # contact or interface 
...

}

                                 Coefficients { # unit = [1] 
# grd_elem des_elem elem_type 

0 0 2 1.093836321204215e+00 1.100111438811216e-16 2.285533906249999e-01
1 1 2 0.000000000000000e+00 8.379715512271076e-01 8.379715512271076e-01
...
7 -1 1 # contact or interface 
8 -1 1 # contact or interface 
...

}

Statistics About Non-Delaunay Elements

Information about region non-Delaunay elements and interface non-Delaunay elements is
contained in the log file. For more information, see Utilities User Guide, Chapter 4 on page 25.
1022 Sentaurus™ Device User Guide
N-2017.09



37: Numeric Methods
Box Method Coefficients in 3D Case
Region Non-Delaunay Elements

A log file contains common data about the mesh and information about non-Delaunay elements
per region (for Delaunay mesh DeltaVolume=0 and non-DelaunayVolume=0):

/-------- Region non-Delaunay elements ---------------------------------------------------------------
Region Volume BoxMethodVolume DeltaVolume Elements non-Delaunay non-DelaunayVolume
name [um2]  [um2]           [%]                   Elements    [um2] [%] 

-----------------------------------------------------------------------------------------------------
Nitride 1.9500000e-04 2.2635574e-04  16.080        53      12 (22.64 %)  1.8215e-04 (1.1e-05)

. . .
Oxide 6.0618645e-03 8.0705629e-03 33.137      2500     818 (32.72 %)  2.3715e-04 (2.0e-04)
Silicon 3.5548100e-02 4.9531996e-02 39.338     12656    5057 (39.96 %)  1.0715e-04 (1.0e-05)
Total 4.6402113e-02 6.4934852e-02 39.939     16550    6383 (38.57 %)  2.9218e-04 (2.1e-05)

\-----------------------------------------------------------------------------------------------------

Interface Non-Delaunay Elements

An interface element is an element that has a face (or edge in two dimensions) lying on the
interface. A non-Delaunay element is an interface non-Delaunay element only if its obtuse face
lies on the surface of the interface (see Figure 81). 

Figure 81 Blue (1, 2, 3) and green (4, 5, 6) elements are oxide and silicon interface 
elements, respectively. Elements 2 and 4 are non-Delaunay elements, not 
interface non-Delaunay elements. Only element 3 is an interface non-Delaunay 
element.

The following is an example of a log file for interface non-Delaunay elements:

/-------- Interface non Delaunay elements ------------------------------------
 Region1       Elements non Delaunay     Volume            non Delaunay
 Region2                  Elements         [um2]          DeltaVolume [um2]
 -----------------------------------------------------------------------------
..............................................................................
 silicon  3 0 ( 0.00 %)   1.5775139e-03   0.0000000e+00 ( 0.00 %)
 oxide  3  1 ( 33.0 %)   1.6776069e-03   0.1100000e-03 ( 0.10 %)
..............................................................................
Total  6 1 ( 16.0 %)   3.6951838e-02   0.1100000e+00 ( 0.05 %)
\-----------------------------------------------------------------------------

Oxide

Silicon

1 2
3

4
5

6

Sentaurus™ Device User Guide 1023
N-2017.09



37: Numeric Methods
AC Simulation
Plot Section

Table 172 lists the plot variables that may be useful for visualizing box method statistics (see
Scalar Data on page 1340). See Utilities User Guide, Chapter 4 on page 25 for the definitions
of these variables. 

AC Simulation

AC simulation is based on small-signal AC analysis. The response of the device to ‘small’
sinusoidal signals superimposed upon an established DC bias is computed as a function of
frequency and DC operating point. Steady-state solution is used to build up a linear algebraic
system [7] whose solution provides the real and imaginary parts of the variation of the solution
vector  induced by small sinusoidal perturbation at the contacts.

Table 172 Plot variable for box method data

Plot variable Location

BM_AngleElements Element

BM_CoeffIntersectionNonDelaunayElements Element

BM_ElementsWithCommonObtuseFace Element

BM_ElementsWithObtuseFaceOnBoundaryDevice Element

BM_ElementVolume Element

BM_IntersectionNonDelaunayElements Element

BM_VolumeIntersectionNonDelaunayElements Element

BM_wCoeffIntersectionNonDelaunayElements Element

BM_wElementsWithCommonObtuseFace Element

BM_wElementsWithObtuseFaceOnBoundaryDevice Element

BM_wIntersectionNonDelaunayElements Element

BM_wVolumeIntersectionNonDelaunayElements Element

BM_AngleVertex Vertex

BM_EdgesPerVertex Vertex

BM_ElementsPerVertex Vertex

BM_ShortestEdge Vertex

φ n p Tn Tp T, , , , ,( )
1024 Sentaurus™ Device User Guide
N-2017.09



37: Numeric Methods
AC Simulation
AC Response

The AC response is obtained from the three basic semiconductor equations (see Eq. 37, p. 173
and Eq. 53, p. 181) and from up to three additional energy conservation equations to account
for electron, hole, and lattice temperature responses. In the following description of the AC
system, the temperatures have been omitted in the solution vector and Jacobian for simplicity,
a complete description being formally obtained by adding the temperature responses to the
solution vector and the corresponding lines to the system Jacobian. 

After discretization, the simplified system of equations can be symbolically represented at the
node  of the computation mesh as:

(1189)

(1190)

(1191)

where  and  are nonlinear functions of the vector arguments , and the dot denotes
time differentiation. 

By substituting the vector functions of the form  into Eq. 1189, Eq. 1190,
and Eq. 1191 where ,  is the value of  at the DC operating point, and  is the
corresponding response (or the phasor uniquely identifying the complex perturbation) and then
expanding the nonlinear functions  and  in the Taylor series around the DC operating point
and keeping only the first-order terms (the small-signal approximation), the AC system of
equations at the node  can be written as:

(1192)

where the solution vector is scaled with respect to terminal voltages (at the contact where the
voltage is applied,  is 1). Therefore, the unit of carrier density responses is  and the
potential response is unitless.

The matrix of Eq. 1192 differs from the Jacobian of the system of equations Eq. 1189,
Eq. 1190, and Eq. 1191 only by pure imaginary additive terms involving derivatives of  with
respect to carrier densities.

i

Fφi φ n p, ,( ) 0=

Fni φ n p, ,( ) G
·

ni n( )=

Fpi φ n p, ,( ) G
·

pi p( )=

F G φ n p, ,

ξtotal ξDC ξ̃eiωt+=
ξ φ n p, ,= ξDC ξ ξ̃

F G

i

∂Fφi

∂φj
-----------

∂Fφi

∂nj
-----------

∂Fφi

∂pj
-----------

∂Fni

∂φj
-----------

∂Fni

∂nj
----------- iω

∂Gni

∂nj
-----------–

∂Fni

∂pj
-----------

∂Fpi

∂φj
-----------

∂Fpi

∂nj
-----------

∂Fpi

∂pj
----------- iω

∂Gpi

∂pj
-----------–

DC

φ̃j

ñj

p̃j
j
 0=

φ̃ cm 3– V 1–

G

Sentaurus™ Device User Guide 1025
N-2017.09



37: Numeric Methods
AC Simulation
The global AC matrix system is obtained by imposing the corresponding AC boundary
conditions and performing the summation (assembling the global matrix).

Common AC boundary conditions used in AC simulation are Neumann boundary and
oxide–semiconductor jump conditions carried over directly from DC simulation; Dirichlet
boundary conditions for carrier densities where  and  at Ohmic contacts are ;
and Dirichlet boundary conditions for AC potential at Ohmic contacts that are used to excite
the system.

After assembling the global AC matrix and taking into account the boundary conditions, the
AC system becomes:

(1193)

where  is the Jacobian matrix,  contains the contributions of the  functions to the matrix,
 is a real vector dependent on the AC voltage drive, and  is the AC solution vector. 

By writing the solution vector as  with  and  the real and imaginary part of
the solution vector respectively, the AC system can be rewritten using only real arithmetic as:

(1194)

The AC response is actually computed by solving the system Eq. 1193 or Eq. 1194.

An ACPlot statement in the ACCoupled command is used to plot AC responses
. The responses are plotted in the AC plot file of Sentaurus Device with a

separate file for each frequency. 

For details of the ACPlot statement, see Table 187 on page 1385. For details and examples of
small-signal AC analysis, see Small-Signal AC Analysis on page 96.

AC Current Density Responses

When the AC system is solved, the AC current density responses , , and  are computed
using:

(1195)

(1196)

n p ñ p̃ 0= =

J iD+[ ]X̃ B=

J D G
B X̃

X̃ XR iXI+= XR XI

J D–

D J

XR

XI

B

0
=

φ̃ ñ p̃ T̃n T̃p T̃, , , , ,( )

J̃D J̃n J̃p

J̃D iωε φ̃∇–=

J̃n
∂Jn

∂φ
--------

DC

φ̃ ∂Jn

∂n
--------

DC

ñ
∂Jn

∂p
--------

DC

p̃+ +=
1026 Sentaurus™ Device User Guide
N-2017.09



37: Numeric Methods
Harmonic Balance Analysis
(1197)

The unit of current density responses is .

The responses of the heat fluxes for the lattice ( ), electrons ( ), and holes ( ) are
analogous. Their unit is .

The ACPlot statement in the System section is used to plot the AC current density responses.
The responses are added to the AC solution response in the AC plot files of Sentaurus Device.

Harmonic Balance Analysis

Harmonic balance (HB) analysis is a frequency domain method to solve periodic and quasi-
periodic time-dependent problems for steady-state solutions [8][9]. It is a popular method for
RF circuit design applications. While transient discretization schemes allow the simulation of
arbitrary time-dependent problems, HB more efficiently models periodic and quasi-periodic
problems for systems with time constants that vary by many orders of magnitude. The detailed
command file syntax is given Harmonic Balance on page 101.

Harmonic Balance Equation

In general, the dynamic mixed-mode simulation problem takes the form:

(1198)

where  and  are nonlinear functions,  represents explicitly time-dependent devices (in
particular, voltage or current sources), and the function  is the vector of all solution variables.

Let , …,  be a set of different frequencies with , then both the sources and the
solution are approximated by a truncated Fourier series:

(1199)

A formal Fourier transform of Eq. 1198 results in the HB equation for the problem:

(1200)

where  and  are the finite Fourier series of  and , respectively,  is the frequency
matrix, and  is the vector of all Fourier coefficients of .

J̃p
∂Jp

∂φ
--------

DC

φ̃ ∂Jp

∂p
--------

DC

p̃
∂Jp

∂n
--------

DC

ñ+ +=

Acm 2– V 1–

S̃L S̃n S̃p

Wcm 2– V 1–

td
d

q r u t r,( ),[ ] f r u t r,( ) w t( ),,[ ]+ 0=

f q w
u

f1 fK fk 0>

u t( ) U0 Uk iωkt( )exp Uk
*

i– ωkt( )exp+{ }
1 k K≤ ≤
+=

L U( ) iΩQ U( ) F U( )+ 0= =

F Q f q Ω
U u
Sentaurus™ Device User Guide 1027
N-2017.09



37: Numeric Methods
Harmonic Balance Analysis
Multitone Harmonic Balance Analysis

The multitone harmonic balance (HB) analysis makes use of the multidimensional Fourier
transformation (MDFT). This means that the problem is mapped onto a problem in a
multidimensional frequency and multidimensional time domain, hereby exploiting the
equivalence of Fourier spectra of quasi-periodic functions with their corresponding
multidimensional functions.

Multidimensional Fourier Transformation

The multidimensional Fourier transformation (MDFT) maps multidimensional functions onto
a multidimensional spectrum.

Let  be a positive integer, the number of tones, , …, , be a finite set of different positive
numbers, the base frequencies of tones, and , …,  nonnegative integer numbers, the
maximal number of harmonics for each tone.

Define for each tone  the -th base period , the -th circular frequency
, the -th (minimum) number of sampling points , and the -th

(maximum) sampling interval .

Furthermore, let  denote the -dimensional vector, and let
 denote the -matrix composed of the values .

The set of multi-indices associated with  is given by:

(1201)

Let  be a function on the -dimensional space  given by:

(1202)

with given complex numbers , then:

(1203)

with .  is the multidimensional spectrum of .

M f̂1 f̂M

H1 HM

m m Tm:=1 f̂m⁄ m
ωm:=2π f̂m m Sm:=2Hm 1+ m

δm Tm Sm⁄=

x x1 … xM, ,( )T= M
Dx diag x1 … xM, ,( )= M M× x1 … xM, ,

H

K := h ZM∈  : H– m hm Hm≤ ≤  for all 1 m M≤ ≤{ }

uM M CM

u
M

t1 … tM, ,( ) Uh
M

ihDωt( )exp

h K∈
=

Uh
M

Uh
M 1

T
--- … u

M
t1 … tM, ,( )  i– hDωt( ) td 1… td Mexp

0

TM


0

T1

=

T:=Π1 m M≤ ≤ Tm UM Uh
M( )h K∈= uM
1028 Sentaurus™ Device User Guide
N-2017.09



37: Numeric Methods
Harmonic Balance Analysis
Sampling the function in all dimensions at the equidistant sampling points
, the discrete MDFT is written formally as:

(1204)

that is,  is a linear map from  onto  where  is the total number of
sampling points.

Quasi-Periodic Functions

The multidimensional function  can be projected onto a one-dimensional time space by:

(1205)

Functions satisfying this representation are called quasi-periodic. The set:

(1206)

is the spectrum domain associated with  and  (or ). The projection is invertible if, for two
different multi-indices  and  in , the resulting frequencies  and  are different.
Note that the one-dimensional Fourier spectrum of  coincides with the multidimensional
spectrum of .

While for the multidimensional function   sample points can be specified to compute the
multidimensional spectrum, the one-dimensional sample points for  are not well defined (but
are rather virtual in the multidimensional time domain).

Multidimensional Frequency Domain Problem

The multitone HB analysis is essentially a translation of (one-dimensional or
multidimensional) time-domain problems in a multidimensional frequency domain. Though
originally derived from a time-domain problem, the circuit equations are directly specified in
a multidimensional frequency domain. This avoids sampling of (one-dimensional) time-
dependent sources, which cannot be performed accurately on a sample set of size . This is the
reason why the compact circuit models must provide the CMI-HB-MDFT function set.

The Fourier transformation of quasi-periodic functions is the composition:

(1207)

where  is the multidimensional Fourier transformation of Eq. 1204 and  is the inverse
of the projection Eq. 1205.

ts Dδs 0 s S<≤( )=

U
M ΓM

u
M

=

ΓM CS CS S:=Π1 m M≤ ≤ Sm

uM

u t( ) := u
M

t … t, ,( ) Uh ihωt( )exp

h K∈
=

Λ:= fh R∈  : fh h f̂⋅=  for all h K∈{ }

f K H
h

1
h

2
K fh1

fh2

u
uM

uM S
u

S

Γ ΓM
° P

1–
=

ΓM P 1–
Sentaurus™ Device User Guide 1029
N-2017.09



37: Numeric Methods
Harmonic Balance Analysis
One-Tone Harmonic Balance Analysis

For one-tone HB analysis, the standard discrete Fourier transformation can be used, which
includes that the sampling points are defined explicitly in a (one-dimensional) time domain.
Therefore, the problem can be extracted directly from the time-domain formulation of the
circuit.

Solving HB Equation

The HB equation (Eq. 1200) is a nonlinear equation in  and is solved by the Newton
algorithm. In each Newton step, the linear equation:

(1208)

must be solved.

The Jacobian  in Fourier space is computed from the Jacobian in the time domain as
follows: For a nonlinear scalar function  and a -periodic scalar signal , the
Fourier coefficients  of  are approximated:

(1209)

where  and  are the discrete Fourier transform operator and its inverse,  is the vector of
the time samples , and  is the vector of values . 

The derivatives of the -th Fourier component  with respect to the -th Fourier component
 read:

(1210)

The corresponding Jacobian is written in the compact form:

 with (1211)

For scalar functions  and ,  is a diagonal matrix; for vector-valued functions  and , 
is a block-diagonal matrix.

Using the notation above, Eq. 1200 becomes:

(1212)

U

L∂
U∂

------- U( ) δU⋅ L U( )–=

L∂ U∂⁄
g : R R→ T u t( )

G CS∈ g u t( )( )

G U( ) Γg û( ) Γg Γ 1– U( )= =

Γ Γ 1– û
u ti( ) g û( ) g u ti( )( )

k Gk j
Uj

Gk∂
Uj∂

--------- U( ) Γkl Uj∂
∂g

ûl( )
l
 Γkl u∂

∂g
ûl( )Γl j

1–

l
= =

G∂
U∂

------- ΓĴuΓ 1–= Ĵu
g∂
u∂

----- û( )=

g u Ĵu g u Ĵu

L U( ) iΩΓq û U( )( ) Γf û U( )( )+ 0= =
1030 Sentaurus™ Device User Guide
N-2017.09



37: Numeric Methods
Harmonic Balance Analysis
and Eq. 1208 for the Newton step takes the form:

(1213)

The Newton algorithm constructs a sequence  of the Fourier coefficients of the time-domain
solution vector . The sequence is regarded as converged if both the residual  and the
update error are small.

Solving HB Newton Step Equation

The memory requirements for storing the HB Jacobian matrix typically become very large, as
its size is increased by a factor of  compared to the corresponding DC or transient matrix.
For a very small number of harmonics and a moderately sized simulation grid, using a direct
linear solver may be feasible. However, the use of the GMRES(m) iterative method is
recommended for most applications.

Restarted GMRES Method

The HB module makes use of a preconditioned restarted generalized minimum residual
GMRES(m) method [10], a Krylow subspace method, which does not need to store the
Jacobian in memory, as only matrix-vector products have to be computed.

GMRES(m) requires a suitable preconditioner to achieve convergence. A (left) preconditioner
 is a matrix that approximates a given matrix , but is much easier to invert than  itself.

Instead of solving the linear equation  for given  and , the (left) preconditioned
problem  is solved. The preconditioner used for HB [11] takes the form:

(1214)

where the matrix , and similarly , is computed as:

(1215)

and  denotes the Jacobian of  with respect to . The preconditioner equals the HB Jacobian
in the limit of small signals, where the coupling terms between the frequencies vanish.
Therefore, each diagonal block of  corresponds to the AC matrix for the respective harmonic.
This preconditioner is well suited to ‘moderately large’ signal applications.

iΩΓĴqΓ 1– ΓĴfΓ 1–+( )δU L U( )–=

Uk

u L Uk( )

S2

P A A
Ax b= A b

P 1– Ax P 1– b=

P iΩ
Jq 0

...

0 Jq

Jf 0

...

0 Jf

+=

Jf Jq

Jf
1
S
--- Jf ts( )

0 s S 1–≤≤
=

Jf f u

P

Sentaurus™ Device User Guide 1031
N-2017.09



37: Numeric Methods
Transient Simulation
The preconditioner can be computed without an explicit Fourier transform, and its inversion is
more economical than for the full Jacobian. The inversion is performed by applying a complex
direct solver for each harmonic component separately, thereby requiring the computational
costs of solving  complex-valued linear systems. The computational complexity is
of the order  for inverting the preconditioner, and  for one complete iteration
step of the iterative solver, while the number of iterations necessary to achieve convergence is
unknown (but bounded).

Direct Solver Method

For the direct solver, the complex-valued  linear system (Eq. 1213) is transformed to a
 real-valued problem, which is possible as only real-valued functions are involved. The

resulting linear system is solved by the direct solver PARDISO. The direct solver requires the
entire matrix stored in memory. Therefore, the memory capacity is easily exceeded for
increasing . Additionally, the computational complexity is of the order .

Transient Simulation

Transient equations used in semiconductor device models and circuit analysis can be formally
written as a set of ordinary differential equations:

(1216)

which can be mapped to the DC and transient parts of the PDEs. 

Sentaurus Device uses implicit discretization of transient equations (see Eq. 1216) and
supports two discretization schemes: simple backward Euler (BE) and composite trapezoidal
rule/backward differentiation formula (TRBDF), which is the default. 

Backward Euler Method

Backward Euler is a very stable method, but it has only a first-order of approximation over
time-step . The discretization can be written as:

(1217)

The local truncation error (LTE) estimation is based on the comparison of the obtained solution
 with the linear extrapolation from the previous time-step.

S 1+( ) 2⁄
O S( ) O S S( )ln( )

S S×
S S×

S O S3( )

td
d

q z t( )( ) f t z t( ),( )+ 0=

hn

q tn hn+( ) hnf tn hn+( )+ q tn( )=

q tn hn+( )
1032 Sentaurus™ Device User Guide
N-2017.09



37: Numeric Methods
Transient Simulation
The extrapolated solution is written as:

(1218)

Then, in every point, the relative error can be estimated as .

Using Eq. 1217 and Eq. 1218, and estimating the norm of relative error, Sentaurus Device
computes the value:

(1219)

where the sum is taken over all unknowns (that is, all free vertices of all equations),
and and  are the relative and absolute transient errors, respectively.

The next time-step is estimated as:

(1220)

The value of the estimated time-step is used for  computation (see Controlling Transient
Simulations on page 1034).

TRBDF Composite Method

The transient scheme [12] for the approximation of Eq. 1216 is briefly reviewed in this section.
From each time point , the next time point  (  is the current step size) is not directly
reached. Instead, a step in between to  is made. This improves the accuracy of the
method.  has been shown to be the optimal value. Using this, two nonlinear
systems are reached. 

For the trapezoidal rule (TR) step:

(1221)

and for the BDF2 step:

(1222)

qextr q tn( )
f tn( ) f tn hn+( )+

2
----------------------------------------hn–=

q tn hn+( ) qextr–( ) q tn hn+( )⁄

r
1
N
----

f tn hn+( ) f tn( )–

εR,tr qn tn hn+( ) εA,tr+
----------------------------------------------------------hn 
 
  2

i 1=

N

=

εR,tr εA,tr

hest hnr
1 2⁄–

=

hn 1+

tn tn hn+ hn

tn γhn+
γ 2 2–=

2q tn γhn+( ) γhnf tn γhn+( )+ 2q tn( ) γhnf tn( )–=

2 γ–( )q tn hn+( ) 1 γ–( )hnf tn hn+( )+ 1 γ⁄( ) q tn γhn+( ) 1 γ–( )2
q tn( )–( )=
Sentaurus™ Device User Guide 1033
N-2017.09



37: Numeric Methods
Transient Simulation
The local truncation error (LTE) is estimated after such a double step as:

(1223)

(1224)

Sentaurus Device then computes the following value from this:

(1225)

where the sum is taken over all unknowns (that is, all free vertices of all equations),
and and  are the relative and absolute transient errors, respectively. Since the TRBDF
method has a second-order approximation over , the next step can be estimated as:

(1226)

The value of the estimated time-step is used for  computation (see Controlling Transient
Simulations on page 1034).

Controlling Transient Simulations

By default, Sentaurus Device uses the TRBDF method. To switch to backward Euler (BE), the
statement Transient=BE must be specified in the Math section.

To evaluate whether a time-step was successful and to provide an estimate for the next step size,
the following rules are applied:

■ If one of the nonlinear systems cannot be solved, the step is refused and tried again with
.

■ Otherwise, the inequality  is tested. If it is fulfilled, the transient simulation
proceeds with . Otherwise, the step is re-tried with .

■ The LTE is checked only if the CheckTransientError option is selected; otherwise, the
selection of the next time-step is based only on convergence of nonlinear iterations.

To activate LTE evaluation and time-step control, CheckTransientError must be specified
either globally (in the Math section) or locally as an option in the Transient statement. The
keyword NoCheckTransientError disables time-step control. The value of the relative
error is defined by the parameter TransientDigits according to Eq. 14, p. 88.

τ
f tn( )

γ
-----------

f tn γhn+( )

γ 1 γ–( )
---------------------------–

f tn hn+( )

1 γ–
------------------------+=

C
3γ2

– 4γ 2–+
12 2 γ–( )

----------------------------------=

r
1
N
----

τi

εR,tr qn tn hn+( ) εA,tr+
----------------------------------------------------------
 
 
  2

i 1=

N

=

εR,tr εA,tr

hn

hest hnr
1 3⁄–

=

hn 1+

hn 0.5 hn⋅=

r 2frej<
hn 1+ hest= hn 0.9 hest⋅=
1034 Sentaurus™ Device User Guide
N-2017.09



37: Numeric Methods
Transient Simulation
Absolute error is given by the keyword TransientError or recomputed from
TransientErrRef ( ) using Eq. 15, p. 89 (if RelErrControl is switched on).
Sentaurus Device provides the default values of , , and . The coefficient  is
equal to 1 by default. You can define the values of , , , and  globally in the
Math section, or specify them as options in the Transient statement. In the latter case, it
overwrites the default and Math specifications for this command.

Floating Gates

During a transient time step, the charge  of a floating gate is updated as a function of the
injection current :

(1227)

 represents the charge increase for the time step .

Because the floating-gate charge is not updated self-consistently during a transient step, but
only as a postprocessing operation, the numeric update is given by:

(1228)

where . The error of this numeric approximation is estimated by:

(1229)

With the option CheckTransientError, the error  in the charge update is monitored
as well. In the case of relative error control (RelErrControl), a transient step is only accepted
if the following condition holds:

(1230)

The values of Digits and ErrRef can be specified in the Math section:

Math {
TransientDigits = 3
TransientErrRef (Charge) = 1.602192e-19

}

xref,tr

εR,tr εA,tr xref,tr frej

εR,tr εA,tr xref,tr frej

Q
i

ΔQ i t( ) td

t1

t2

=

ΔQ t1 t2[ , ]

ΔQ i t1( ) Δt⋅=

Δt t2 t1–=

ΔQerror

i t2( ) i t1( )–

2
-------------------------------Δt=

ΔQerror

ΔQerror

10
Digits–

Q ErrRef+( )
-------------------------------------------------------------------- 1<
Sentaurus™ Device User Guide 1035
N-2017.09



37: Numeric Methods
Nonlinear Solvers
In the case of absolute error control (-RelErrControl), a transient step is only accepted if
the following condition holds:

(1231)

The electron charge  is used as a scaling factor. The values of Digits
and Error can be specified in the Math section:

Math {
TransientDigits = 3
TransientError (Charge) = 1e-3

}

Note that the values of ErrRef and Error are related by the equation:

(1232)

Nonlinear Solvers

In the next two sections, the Digits variable corresponds to the keyword Digits, which can
be given in the Math section (see Convergence and Error Control on page 137), or in
parentheses of each Plugin or Coupled statement.

Fully Coupled Solution

For the solution of nonlinear systems, the scheme developed by Bank and Rose [13] is applied.
This scheme tries to solve the nonlinear system  by the Newton method:

(1233)

(1234)

where  is selected such that , but is as close as possible to 1. Sentaurus Device
handles the error by computing an error function that can be defined by two methods.

The Newton iterations stop if the convergence criteria are fulfilled. One convergence criterion
is the norm of the right-hand side, that is,  in Eq. 1233. Another natural criterion may be
the relative error of the variables measured, such as .

ΔQerror

q
-----------------

10
Digits– Q

q
------- Error+

----------------------------------------------------------- 1<

q 1.602192 10 19– C⋅=

ErrRef
Error

10
Digits–

-------------------------q=

g z( ) 0=

g g'x+ 0=

z
j

z–
j 1+

λx=

λ gk 1+ gk<

g
λx( )
z

-----------
1036 Sentaurus™ Device User Guide
N-2017.09



37: Numeric Methods
Nonlinear Solvers
Figure 82 Newton iteration

Conversely, for very small  updates,  must be measured with respect to some reference
value of the variable . The formula used in Sentaurus Device as the second convergence
criterion is:

(1235)

where  is the solution of the equation  (Poisson, electron, hole, and so on) at node
after Newton iteration . The constant  is given by the total number of nodes multiplied by
the total number of equations. The parameter  is the relative error criterion. 

The value of  is set by specifying the following in the Math section:

Math{...
Digits = 5

}

where 5 is the default for Digits. The reference values  ensure numeric stability even
for cases when  is zero or very small. This error condition ensures that the respective
equations are solved to an accuracy of approximately .

Eq. 1235 can be written in the symbolic form:

(1236)

z

g(z)

g(z  )j

g(z    )j+1

z j+1z j
λx

z λx
zref

1
εR
-----

1
N
----

z e i j, ,( ) z e i j 1–, ,( )–
z e i j, ,( ) zref e( )+

---------------------------------------------------------

e i,
 1<

z e i j, ,( ) e i
j N

εR

εR 10 Digits–=

zref e( )
z e i j, ,( )

zref e( )εR

1
εR
----- λx

zj zref+
------------------ 1<
Sentaurus™ Device User Guide 1037
N-2017.09



37: Numeric Methods
Nonlinear Solvers
Eq. 1236 can also be rewritten in the equivalent form:

(1237)

where  and .

 is the normalization factor (for example, it is the intrinsic carrier density
 for electron and hole equations, and the thermal voltage 

for the Poisson equation).

The absolute error is related to the relative error through:

 (1238)

Sentaurus Device supports two schemes for controlling the error conditions. The default
scheme is based on Eq. 1235. The default values for the parameters  are listed in Table 191
on page 1388. They also are accessible in the Math section:

Math{...
ErrRef( Electron ) = 1e10
ErrRef( Hole )     = 1e10

}

The second scheme is activated with the keyword -RelErrControl in the Math section and
is based on Eq. 1237. The default values for the parameters  are listed in Table 191. They
also are accessible in the Math section:

Math{...
-RelErrControl
Error( Electron ) = 1e-5
Error( Hole )     = 1e-5

}

‘Plugin’ Iterations

This is the traditional scheme, which is also known as ‘Gummel iterations’ in most other device
simulators. Consider that there are n sets of nonlinear systems . (  can be, for
example, 3 and the sets can be the Poisson equation and two continuity equations.) This method
starts with values  and then solves each set  separately and consecutively. 

λx

εRz
j εA+

---------------------- 1<

z
j

zj z∗⁄= x x z∗⁄=

z∗
ni 1.48 10×10 cm 3–= uT0 25.8 mV=

εA εR

zref

z∗
-------=

zref

εA

gj z1…zn( ) 0= n

z1
1( ) … zn

1( ), , gj 0=
1038 Sentaurus™ Device User Guide
N-2017.09



37: Numeric Methods
References
One loop could be:

(1239)

If an update  of the solution between two successive plugin iterations is defined as:

(1240)

Eq. 1236 or Eq. 1237 can be applied for convergence control in plugin iterations.

References

[1] R. E. Bank, D. J. Rose, and W. Fichtner, “Numerical Methods for Semiconductor
Device Simulation,” IEEE Transactions on Electron Devices, vol. ED-30, no. 9,
pp. 1031–1041, 1983.

[2] R. S. Varga, Matrix Iterative Analysis, Englewood Cliffs, New Jersey: Prentice-Hall,
1962.

[3] E. M. Buturla et al., “Finite-Element Analysis of Semiconductor Devices: The
FIELDAY Program,” IBM Journal of Research and Development, vol. 25, no. 4,
pp. 218–231, 1981.

[4] H. Edelsbrunner, “Triangulations and meshes in computational geometry,” Acta
Numerica, vol. 9, pp. 133–213, March 2000.

[5] S.-W. Cheng et al., “Sliver Exudation,” Journal of the ACM, vol. 47, no. 5, pp. 883–904,
2000.

[6] H. Edelsbrunner and D. Guoy, “An Experimental Study of Sliver Exudation,” in
Proceedings of the 10th International Meshing Roundtable, Newport Beach, CA, USA,
pp. 307–316, October 2001.

[7] S. E. Laux, “Application of Sinusoidal Steady-State Analysis to Numerical Device
Simulation,” in New Problems and New Solutions for Device and Process Modelling:
An International Short Course held in association with the NASECODE IV Conference,
Dublin, Ireland, pp. 60–71, 1985.

[8] B. Troyanovsky, Z. Yu, and R. W. Dutton, “Physics-based simulation of nonlinear
distortion in semiconductor devices using the harmonic balance method,” Computer
Methods in Applied Mechanics and Engineering, vol. 181, no. 4, pp. 467–482, 2000.

[9] P. J. C. Rodrigues, Computer-Aided Analysis of Nonlinear Microwave Circuits, Boston:
Artech House, 1998.

g1 z1z2
i( )…zn

i( )( ) 0= z1
i 1+( )

…

g1 z1
i 1+( )…zn 1–

i 1+( )
zn( ) 0= zn

i 1+( )

λx( )

λx( ) zj
i 1+( )

zj
i( )

–=
Sentaurus™ Device User Guide 1039
N-2017.09



37: Numeric Methods
References
[10] Y. Saad, Iterative Methods for Sparse Linear Systems, Philadelphia: SIAM, 2nd ed.,
2003.

[11] P. Feldmann, B. Melville, and D. Long, “Efficient Frequency Domain Analysis of Large
Nonlinear Analog Circuits,” in Proceedings of the IEEE Custom Integrated Circuits
Conference, San Diego, CA, USA, pp. 461–464, May 1996.

[12] R. E. Bank et al., “Transient Simulation of Silicon Devices and Circuits,” IEEE
Transactions on Computer-Aided Design, vol. CAD-4, no. 4, pp. 436–451, 1985.

[13] R. E. Bank and D. J. Rose, “Global Approximate Newton Methods,” Numerische
Mathematik, vol. 37, no. 2, pp. 279–295, 1981.
1040 Sentaurus™ Device User Guide
N-2017.09



Part V External Interfaces

This part of the Sentaurus™ Device User Guide contains the following chapters:

Chapter 38 Physical Model Interface on page 1043

Chapter 39 Tcl Interfaces on page 1309





CHAPTER 38 Physical Model Interface

This chapter discusses the flexible interface that is used to add new
physical models to Sentaurus Device.

Overview

The physical model interface (PMI) provides direct access to certain models in the
semiconductor transport equations. You can provide new C++ functions to compute these
models, and Sentaurus Device loads the functions at runtime using the dynamic loader. No
access to the Sentaurus Device source code is necessary. You can modify the following models:

■ Generation–recombination rate , see Eq. 53, p. 181

■ Avalanche generation, that is, ionization coefficient  in Eq. 419, p. 406

■ Electron and hole mobilities  and , see Eq. 56 and Eq. 57, p. 183 

■ Band gap, see Chapter 12 on page 249

■ Bandgap narrowing , see Band Gap and Electron Affinity on page 249

■ Complex refractive index, see Complex Refractive Index Model Interface on page 586

■ Electron affinity, see Band Gap and Electron Affinity on page 249

■ Apparent band-edge shift, see Density Gradient Quantization Model on page 294

■ Multistate configuration–dependent apparent band-edge shift, see Apparent Band-Edge
Shift on page 483

■ Multistate configuration–dependent thermal conductivity, heat capacity, and mobility, see
Thermal Conductivity, Heat Capacity, and Mobility on page 485

■ Effective mass, see Effective Masses and Effective Density-of-States on page 261

■ Energy relaxation times , see Eq. 84, p. 197 to Eq. 86, p. 197

■ Lifetimes , as used in SRH recombination (see Eq. 275, p. 331) and CDL recombination
(see Eq. 395, p. 398)

■ Thermal conductivity , see Eq. 69, p. 193 and Eq. 78, p. 196

■ Heat capacity , see Eq. 69, p. 193 and Eq. 92, p. 198

■ Optical quantum yield, see Quantum Yield Models on page 544 and Optical Quantum
Yield on page 1183

■ Stress, see Stress on page 1186

Rnet

α
μn μp

Ebgn

τ
τ

κ
cL
Sentaurus™ Device User Guide 1043
N-2017.09



38: Physical Model Interface
Overview
■ Space factor, see Metal Workfunction on page 242, Energetic and Spatial Distribution of
Traps on page 450, Using the Trap Degradation Model on page 495, Using the eNMP
Model on page 516, and SFactor Dataset or PMI Model on page 876

■ Mobility stress factor, see Mobility Stress Factor PMI Model on page 875

■ Trap capture and emission rates, see Local Capture and Emission Rates From PMI on
page 461

■ Trap energy shift, see Trap Energy Shift on page 1205

■ eNMP transition rates, see eNMP Transition Rates PMI Model on page 519

■ Piezoelectric polarization, see Piezoelectric Polarization on page 883

■ Incomplete ionization, see Chapter 13 on page 277

■ Hot-carrier injection, see Chapter 25 on page 737

■ Piezoresistive coefficients, see Piezoresistance Mobility Model on page 859

■ Raytracing contact, see Boundary Condition for Raytracing on page 605

■ Spatial distribution function, see Heavy Ions on page 668

■ Metal resistivity, see Transport in Metals on page 239

■ Heat generation rate, see Thermodynamic Model for Lattice Temperature on page 193

■ Thermoelectric power, see Thermoelectric Power (TEP) on page 913

■ Metal thermoelectric power, see Thermoelectric Power (TEP) on page 913

■ Diffusivity, see Hydrogen Transport on page 500

■ Gamma factor, see Density Gradient Model on page 294

■ Schottky resistance, see Resistive Contacts on page 213 and Resistive Interfaces on
page 219

■ Ferromagnetism and spin transport, see Chapter 30 on page 805

A separate interface is provided to add new entries to the current plot file, see Current Plot File
of Sentaurus Device on page 1239.

An interface is available that allows postprocessing of data during a transient simulation (see
Postprocess for Transient Simulation on page 1244).

A separate interface is provided for preprocessing data during a Newton iteration process and
Newton step control (see Preprocessing for Newton Iterations and Newton Step Control on
page 1246).

For most models, Sentaurus Device provides two equivalent interfaces:

■ The standard interface (see Standard C++ Interface on page 1045) is based on the data type
double. Separate subroutines must be written to evaluate the model and its derivatives.
This interface provides performance comparable to the built-in models in Sentaurus
Device.
1044 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Standard C++ Interface
■ The simplified interface (see Simplified C++ Interface on page 1049) is based on the data
type pmi_float. Only a single subroutine must be implemented to evaluate the model.
For local models, the derivatives of the model are obtained by automatic differentiation.
Furthermore, this interface also supports extended precision floating-point arithmetic (see
Extended Precision on page 168).

The following steps are needed to use a PMI model in a Sentaurus Device simulation:

■ A C++ subroutine must be implemented to evaluate the PMI model. In the case of the
standard interface, additional C++ subroutines must be written to evaluate the derivatives
of the PMI model with respect to all input variables.

■ The cmi script produces a shared object file that Sentaurus Device loads at runtime (see
Shared Object Code on page 1065).

NOTE The version of the C++ compiler used for a PMI model must be identical
to the version of the C++ compiler used at Synopsys to compile
Sentaurus Device. Use the command cmi -a to verify the compiler
versions.

■ The PMIPath variable must be defined in the File section of the command file. This
defines the search path for the shared object files. A PMI model is activated in the Physics
section of the command file by specifying its name (see Command File of Sentaurus
Device on page 1065).

■ Parameters for PMI models can appear in the parameter file (see Parameter File of
Sentaurus Device on page 1088).

These steps are discussed further in the following sections. The source code for the examples
is in the directory $STROOT/tcad/$STRELEASE/lib/sdevice/src.

Standard C++ Interface

For each PMI model, you must implement a C++ subroutine to evaluate the model. Additional
subroutines are necessary to evaluate the derivatives of the model with respect to all the input
variables. More specifically, you must implement a C++ class that is derived from a base class
declared in the header file PMIModels.h. In addition, a so-called virtual constructor function
must be provided, which allocates an instance of the derived class.

For example, consider the implementation of Auger recombination as a new PMI model. (The
built-in Auger recombination model is discussed in Auger Recombination on page 408.)

In its simplest form, Auger recombination can be written as:

(1241)Rnet C n p+( ) np ni,eff
2–( )⋅ ⋅=
Sentaurus™ Device User Guide 1045
N-2017.09



38: Physical Model Interface
Standard C++ Interface
Sentaurus Device needs to evaluate the value of  and the derivatives:

(1242)

In the header file PMIModels.h, the following base class is defined for recombination models:

class PMI_Recombination : public PMI_Vertex_Interface {

public:
  PMI_Recombination (const PMI_Environment& env);
  virtual ~PMI_Recombination ();

  virtual void Compute_r
    (const double t, const double n, const double p,
     const double nie, const double f, double& r) = 0;

  virtual void Compute_drdt
    (const double t, const double n, const double p,
     const double nie, const double f, double& drdt) = 0;

  virtual void Compute_drdn
    (const double t, const double n, const double p,
     const double nie, const double f, double& drdn) = 0;

  virtual void Compute_drdp
    (const double t, const double n, const double p,
     const double nie, const double f, double& drdp) = 0;

  virtual void Compute_drdnie
    (const double t, const double n, const double p,
     const double nie, const double f, double& drdnie) = 0;

  virtual void Compute_drdf
    (const double t, const double n, const double p,
     const double nie, const double f, double& drdf) = 0;
};

Rnet

Rnet∂
n∂

------------ C np ni,eff
2– n p+( )p+( )=

Rnet∂
p∂

------------ C np ni,eff
2– n p+( )n+( )=

Rnet∂
ni,eff∂

------------- 2C n p+( )ni,eff–=
1046 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Standard C++ Interface
To implement a PMI model for Auger recombination, you must declare a derived class:

#include "PMIModels.h"

class Auger_Recombination : public PMI_Recombination {

  double C;

public:
  Auger_Recombination (const PMI_Environment& env);
  ~Auger_Recombination ();

  void Compute_r
    (const double t, const double n, const double p,
     const double nie, const double f, double& r);

  void Compute_drdt
    (const double t, const double n, const double p,
     const double nie, const double f, double& drdt);

  void Compute_drdn
    (const double t, const double n, const double p,
     const double nie, const double f, double& drdn);

  void Compute_drdp
    (const double t, const double n, const double p,
     const double nie, const double f, double& drdp);

  void Compute_drdnie
    (const double t, const double n, const double p,
     const double nie, const double f, double& drdnie);

  void Compute_drdf
    (const double t, const double n, const double p,
     const double nie, const double f, double& drdf);
};

The constructor of the derived class is invoked for each region of the device. In this example,
the variable C is initialized from the parameter file:

Auger_Recombination::
Auger_Recombination (const PMI_Environment& env) :
PMI_Recombination (env)

{ C = InitParameter ("C", 1e-30);
}

If the parameter  is not found in the parameter file, a default value of  is used (see
Parameter File of Sentaurus Device on page 1088). During a Newton iteration, Sentaurus
Device evaluates a PMI model for each mesh vertex. The method Compute_r() computes the

C 10 30–
Sentaurus™ Device User Guide 1047
N-2017.09



38: Physical Model Interface
Standard C++ Interface
recombination rate for a given vertex. According to the parameter list, the recombination rate
can depend on the following variables:

The result of the function is stored in the parameter r:

void Auger_Recombination::
Compute_r (const double t, const double n, const double p,

const double nie, const double f, double& r)
{ r = C * (n + p) * (n*p - nie*nie);
if (r < 0.0) {
r = 0.0;

}
}

Besides Compute_r(), you must implement other methods to compute the partial derivatives
of the recombination rate with respect to the input variables t, n, p, nie, and f. The
implementation of Compute_drdn() to compute the value of  is:

void Auger_Recombination::
Compute_drdn (const double t, const double n, const double p,
const double nie, const double f, double& drdn)
{ double r = C * (n + p) * (n*p - nie*nie);
  if (r < 0.0) {
    drdn = 0.0;
  } else {
    drdn = C * ((n*p - nie*nie) + (n + p) * p);
  }
}

Finally, you must provide a so-called virtual constructor function, which allocates a variable of
the new class:

extern "C"
PMI_Recombination* new_PMI_Recombination (const PMI_Environment& env)
{ return new Auger_Recombination (env);
}

NOTE This function must have C linkage and exactly the same name as
declared in the header file PMIModels.h.

t Lattice temperature

n Electron density

p Hole density

nie Effective intrinsic density

f Absolute value of electric field

R∂ n∂⁄
1048 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Simplified C++ Interface
Simplified C++ Interface

There are PMI models that utilize the simplified C++ interface. Such PMI models, referred to
as simplified PMI models, need to implement essentially only one function that computes the
numeric value of the quantity of interest at the actual vertex of the simulation mesh. Derivatives
of the quantity with respect to input quantities can be extracted automatically.

There are three C++ types that provide the appropriate interface for users:

■ The simplified PMI models utilize a special numeric data type pmi_float (see Numeric
Data Type pmi_float on page 1049).

■ The simplified PMI models are derived from the PMI_Vertex_Common_Base class,
providing an interface at the scope of the PMI model (see Runtime Support at Model Scope
on page 1068).

■ The main function of a simplified PMI model is called compute and has the form:

void compute ( const Input& input, Output& output )

where Input is a class derived from the PMI_Vertex_Input_Base class, providing
runtime support at the compute scope (see Runtime Support at Compute Scope on
page 1070).

Numeric Data Type pmi_float

The simplified interface is based on the data type pmi_float. This data type behaves similar
to a double, and it supports all the usual arithmetic operations:

■ Assignment:

pmi_float x = 2;
pmi_float y (x);

■ Unary operators:

+x; -y;

■ Binary operators:

x + y; x - y; x * y; x / y;

■ Comparisons:

x == y; x != y; x < y; x <= y; x > y; x >= y;

■ Mathematical functions:

abs(x); acos(x); acosh(x); asin(x); asinh(x); atan(x); atanh(x);
atan2(y,x); cos(x); cosh(x); erf(x); erfc(x); exp(x); expm1(x); hypot(x,y);
Sentaurus™ Device User Guide 1049
N-2017.09



38: Physical Model Interface
Simplified C++ Interface
isinf(x); isnan(x); ldexp(x,exp); log(x); log1p(x); log10(x); pow(x,y);
pow_int(x,n); sin(x); sinh(x); sqrt(x); tan(x); tanh(x);

■ Output:

std::cout << x;

The static function:

pmi_e_precision pmi_float::get_precision ()

returns the accuracy of the floating-point arithmetic. The result is expressed as an enumeration
type:

enum pmi_e_precision {
pmi_c_np, // normal precision (double): -ExtendedPrecision
pmi_c_xp, // extended precision (long double): ExtendedPrecision
pmi_c_dd, // double-double: ExtendedPrecision(128)
pmi_c_qd, // quad-double: ExtendedPrecision(256)
pmi_c_mp // arbitrary precision: ExtendedPrecision(Digits=...)

};

Because the class pmi_float supports automatic differentiation, it must store both the value
of a variable and the gradient vector of the derivatives with respect to the independent variables.
The following methods are available to read the value of a variable, the size of its gradient
vector, and the components of the gradient vector:

template <class des_t_float> des_t_float get_value ();
size_t size_gradient ();
template <class des_t_float> des_t_float get_gradient (size_t i);

Additional methods are available to set the value of a variable or its gradient:

template <class des_t_float> void set_value (const des_t_float a);
template <class des_t_float> void set_gradient (size_t i,

const des_t_float a);

NOTE These methods for reading and writing the value and the gradient of a
variable are not necessary for most models. They may be useful in cases
where automatic differentiation yields wrong results.

Pseudo-Implementation of a Simplified PMI Model

Compared to the standard interface, the simplified interface only requires the implementation
of a single subroutine to evaluate the model. As in Standard C++ Interface on page 1045, the
following discusses how Auger recombination can be implemented as a PMI model.
1050 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Simplified C++ Interface
The header file PMI.h defines the following base class for recombination models:

class PMI_Recombination_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float t;    // lattice temperature
pmi_float n;    // electron density
pmi_float p;    // hole density
pmi_float nie; // effective intrinsic density
pmi_float f;    // absolute value of electric field

};

class Output {
public:

pmi_float r; // recombination rate
};

PMI_Recombination_Base (const PMI_Environment& env);
virtual ~PMI_Recombination_Base ();

virtual void compute (const Input& input, Output& output) = 0;
};

To implement a user model, you must first declare a derived class:

#include "PMI.h"

class Auger_Recombination : public PMI_Recombination_Base {

private:
double C;

public:
Auger_Recombination (const PMI_Environment& env);
~Auger_Recombination ();

virtual void compute (const Input& input, Output& output);
};

In the constructor, the variable C is initialized from the parameter file:

Auger_Recombination::
Auger_Recombination (const PMI_Environment& env) :

PMI_Recombination_Base (env)

{ C = InitParameter ("C", 1e-30);
}

Sentaurus™ Device User Guide 1051
N-2017.09



38: Physical Model Interface
Simplified C++ Interface
The constructor is called for each region of the device to ensure that regionwise parameters are
handled correctly.

Next, the actual Compute function must be implemented. It relies on the auxiliary classes
Input and Output to read the input variables, and to store the recombination rate:

void Auger_Recombination::
compute (const Input& input, Output& output)

{ output.r = C * (input.n + input.p) *
(input.n*input.p - input.nie*input.nie);

if (output.r < 0.0) {
output.r = 0.0;

}
}

Finally, a virtual constructor must be supplied to allocate instances of the class
Auger_Recombination:

extern "C"
PMI_Recombination_Base* new_PMI_Recombination_Base

(const PMI_Environment& env)

{ return new Auger_Recombination (env);
}

NOTE This function must have C linkage and exactly the same name as
declared in the header file PMI.h.

It is possible to implement a model using both the standard interface and the simplified
interface within the same file. In this case, Sentaurus Device will select the version based on
the floating-point precision:

■ The standard interface is selected for normal precision (64 bits). This ensures a
performance similar to built-in models.

■ The simplified interface is selected for extended precision floating-point arithmetic. No
loss of accuracy occurs when the PMI model is invoked.

NOTE The simplified interface is ideally suited for prototyping a new model.
No derivatives need to be implemented, which accelerates the
development cycle. After a model has been validated, it can be
converted easily into the standard interface for performance-critical
applications.

As the simplified interface calculates the derivatives for you, it is easy to overlook cases where
the expressions themselves are well defined, but their derivatives are not. Assume, for example,
1052 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Nonlocal Interface
that your model computes , and you have ensured that  cannot become negative.
This is not enough because, when , the derivative  becomes infinite.

NOTE Ensure that not only the expressions you use, but also their derivatives
are always valid.

Nonlocal Interface

With the nonlocal interface model, values can be computed based on nonlocal values of the
input variables. For example, the generation–recombination rate in a vertex may depend on the
carrier densities observed in a remote vertex.

A nonlocal interface provides more flexibility but, in turn, requires additional functionality in
the user PMI code. You must implement separate C++ functions for the following purposes:

Dependencies:

The variables that the model depends on must be declared, for example, electrostatic
potential or carrier densities.

Structure of the Jacobian matrices:

For each input variable, the structure (stencil) of the corresponding Jacobian matrix must
be declared, for example:

model value in vertex 17 depends on:
electrostatic potential in vertex 22
electron density in vertex 55

model value in vertex 18 depends on:
hole density in vertex 35
lattice temperature in vertex 44

Model values and their derivatives:

The code must evaluate the model values and their derivatives with respect to all
dependencies.

Update of Jacobian matrices:

Optionally, the PMI can require an update in the structure of the Jacobian matrices. This
can be useful if the model does not have purely geometric dependencies, but depends on
the values of the solution as well. In this case, Sentaurus Device calls the PMI to request
the updated structures of the Jacobian matrices.

n n0– n n0–
n n0= 1 2 n n0–⁄
Sentaurus™ Device User Guide 1053
N-2017.09



38: Physical Model Interface
Nonlocal Interface
Nonlocal PMIs are available with both the data type double (see Standard C++ Interface on
page 1045) and the data type pmi_float (see Simplified C++ Interface on page 1049).
However, the data type pmi_float is used only to support extended-precision floating-point
arithmetic. It is not used for the purpose of automatic differentiation.

Jacobian Matrix

Sentaurus Device provides the classes des_jacobian (standard C++ interface) and
sdevice_jacobian (simplified C++ interface) to represent Jacobian matrices. These classes
are used to:

■ Define the structure of the Jacobian matrices, that is, the dependencies of the model values
on the input variables.

■ Store the derivatives of the model values with respect to the input variables.

The size of a Jacobian matrix depends on the location of the model and the location of the input
variable. The number of rows is determined by the location of the model. For example, the
number of rows for a vertex-based model is given by the number of mesh vertices.

The supported locations are given by the type des_data::des_location (for the standard
C++ interface):

typedef
enum { vertex, edge, element, rivertex, element_vertex } des_location;

and by the type sdevice_data::sdevice_location (for the simplified C++ interface):

typedef
enum { vertex, edge, element, rivertex, element_vertex } sdevice_location;

Similarly, the number of columns of a Jacobian matrix is determined by the location of the
input variable. For example, the number of columns for an edge-based input variable is given
by the number of mesh edges.

For a scalar model depending on a scalar input variable, each Jacobian entry is also a simple
scalar. However, Sentaurus Device also supports the general case where the model value, or the
input variable, or both are vector quantities. In this case, each entry in the Jacobian matrix
becomes a small dense matrix of size number-of-inner-rows multiplied by number-of-inner-
columns. The number of inner rows is given by the number of model values (1 for a scalar or
the mesh dimension for vectors). Similarly, the number of inner columns is determined by the
number of variable values (1 for a scalar or the mesh dimension for vectors).
1054 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Nonlocal Interface
The class des_jacobian provides the following methods:

des_jacobian (int rows, int cols, int inner_rows, int inner_cols);

int size_rows () const;
int size_cols () const;
int size_inner_rows () const;
int size_inner_cols () const;
int size_matrix () const;

void define_element (int row, int col);
double* element (int row, int col);

des_jacobian_iterator begin ();
des_jacobian_iterator end ();
des_jacobian_iterator lower_bound (int row, int col);
des_jacobian_iterator upper_bound (int row, int col);

void set (double value);

NOTE The class sdevice_jacobian from the simplified C++ interface
provides the same methods, except that the data type pmi_float is
used instead of double.

The constructor creates a new empty Jacobian matrix with the given dimensions.

The methods size_rows() and size_cols() return the number of rows and columns,
respectively. Similarly, the methods size_inner_rows() and size_inner_cols() return
the number of inner rows and inner columns, respectively. The method size_matrix()
returns the number of nonzero elements in the Jacobian.

Use the method define_element() to define the location of a nonzero matrix element. The
value of the nonzero entry remains unspecified at this point. However, the required storage is
allocated.

The method element() returns a pointer to an entry of the Jacobian matrix. A NULL pointer
is returned for a nonexistent entry. The pointer defines the beginning of a dense matrix of size
number-of-inner-rows multiplied by number-of-inner-columns. The entries in this matrix are
stored in row-major order (C style). This means that the derivative of the -th component of
the result with respect to the -th component of the input variable is stored in the location:

element() + i * size_inner_cols() + j

The two functions begin() and end() return iterators to traverse the nonzero elements of the
Jacobian matrix. A typical loop would be:

des_jacobian J;
for (des_jacobian_iterator it = J.begin(); it != J.end(); it++) {

i
j

Sentaurus™ Device User Guide 1055
N-2017.09



38: Physical Model Interface
Nonlocal Interface
int row = it.row();
int col = it.col();
double* value = it.val();
// process element (row,col)

}

The functions lower_bound() and upper_bound() provide a way to quickly find a range
of nonzero elements. The function lower_bound() returns an iterator to the first nonzero
element not less than (row,col) in row-major order. Similarly, upper_bound() returns an
iterator to the first nonzero element greater than (row,col) in row-major order. Both functions
can return end() to indicate a nonexistent element.

The following code fragment visits all nonzero elements in row 25:

des_jacobian J;
des_jacobian_iterator it_begin = J.lower_bound (25, 0);
des_jacobian_iterator it_end = J.lower_bound (26, 0);
for (des_jacobian_iterator it = it_begin; it != it_end; it++) {

int row = it.row();
int col = it.col();
double* value = it.val();
// process element (row,col)

}

The method set() can be used to initialize all matrix elements with a given value.

Example: Point-to-Point Tunneling Model

As an example, for a nonlocal generation–recombination model, consider a simple point-to-
point tunneling model between two vertices  and . The model compares the electron and
hole quasi-Fermi potentials in these two vertices. If , the tunneling rate  is
computed as:

(1243)

where  is the conduction band energy,  is the valence band energy, and .
The nonlocal transport is modeled by using the tunneling rate  as an electron recombination
rate in vertex 1 and a hole recombination rate in vertex 2.

Similarly, if , the tunneling rate  is computed as:

(1244)

v1 v2

Φn 1, Φp 2,< r

r Ae
B– EV 2, EC 1,–( )2 Δ

1 Δ+
-------------=

EC EV Δ Φp 2, Φn 1,–=
r

Φp 1, Φn 2,> r

r Ae
B– EC 2, EV 1,–( )2 Δ

1 Δ+
-------------=
1056 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Nonlocal Interface
where . In this case,  is used as a hole recombination rate in vertex 1 and as
an electron recombination rate in vertex 2.

In the header file PMIModels.h, the following base class is defined for nonlocal
generation–recombination models:

class PMI_NonLocal_Recombination : public PMI_Device_Interface {

public:
class Input {
public:

const des_region* region;          // all vertices belong to this region
const std::vector<int>& vertices; // list of vertices

};

class Output {
public:

std::vector<double>& elec; // nonlocal recombination rates (electrons)
std::vector<double>& hole; // nonlocal recombination rates (holes)
des_id_to_jacobian_map& J_elec; // derivatives (electrons)
des_id_to_jacobian_map& J_hole; // derivatives (holes)

};

PMI_NonLocal_Recombination (const PMI_Device_Environment& env);
virtual ~PMI_NonLocal_Recombination ();

virtual void
DefineDependencies (std::vector<des_data::des_id>& dependencies) = 0;

virtual void DefineJacobians (des_id_to_jacobian_map& J_elec,
des_id_to_jacobian_map& J_hole) = 0;

virtual void Compute_parallel (const Input& input, Output& output) = 0;

virtual bool NeedNewEdges () { return false; }
};

To implement the point-to-point tunneling model, you must declare a derived class:

#include "PMIModels.h"

class P2P_Recombination : public PMI_NonLocal_Recombination {

private:
double A, B; // model parameters
int v1, v2; // vertex 1, vertex 2
double measure1, measure2; // semiconductor node measures for vertex 1 and 2

public:
P2P_Recombination (const PMI_Device_Environment& env);

Δ Φp 1, Φn 2,–= r
Sentaurus™ Device User Guide 1057
N-2017.09



38: Physical Model Interface
Nonlocal Interface
void DefineDependencies (std::vector<des_data::des_id>& dependencies);
void DefineJacobians (des_id_to_jacobian_map& J_elec,

des_id_to_jacobian_map& J_hole);
void Compute_parallel (const PMI_NonLocal_Recombination::Input& input,

PMI_NonLocal_Recombination::Output& output);
bool NeedNewEdges ();

};

The constructor of the derived class reads the model parameters and computes the
semiconductor node measures for the two vertices  and :

P2P_Recombination::
P2P_Recombination (const PMI_Device_Environment& env) :

PMI_NonLocal_Recombination (env)
{ A = InitParameter ("A", 1e25);

B = InitParameter ("B", 50);
v1 = InitParameter ("v1", 0);
v2 = InitParameter ("v2", 1);

const des_mesh* mesh = Mesh ();
des_data* data = Data ();
const double*const* measure = data->ReadMeasure ();

// semiconductor node measure for vertex 1
measure1 = 0;
des_vertex* vertex1 = mesh->vertex (v1);
for (size_t eli = 0; eli < vertex1->size_element (); eli++) {

des_element* el = vertex1->element (eli);
if (el->bulk ()->material () == "Silicon") {

for (size_t vi = 0; vi < el->size_vertex (); vi++) {
des_vertex* v = el->vertex (vi);
if (v == vertex1) {

measure1 += measure [el->index()][vi];
}

}
}

}

// semiconductor node measure for vertex 2
measure2 = 0;
des_vertex* vertex2 = mesh->vertex (v2);
for (size_t eli = 0; eli < vertex2->size_element (); eli++) {

des_element* el = vertex2->element (eli);
if (el->bulk ()->material () == "Silicon") {

for (size_t vi = 0; vi < el->size_vertex (); vi++) {
des_vertex* v = el->vertex (vi);
if (v == vertex2) {

measure2 += measure [el->index()][vi];

v1 v2
1058 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Nonlocal Interface
}
}

}
}

}

The InitParameter() method for reading a parameter is documented in Runtime Support
for Vertex-Based PMI Models on page 1067. Similarly, the functions for accessing the device
mesh are discussed in Mesh-Based Runtime Support on page 1076.

The semiconductor node measures are used later in the Compute_parallel() method. They
are necessary to ensure current conservation for arbitrary meshes.

The method DefineDependencies() defines the variables that will be read later when
Compute_parallel() is invoked:

void P2P_Recombination::
DefineDependencies (std::vector<des_data::des_id>& dependencies)
{ dependencies.push_back (des_data::des_id (des_data::scalar,

des_data::vertex,
"eQuasiFermiPotential"));

dependencies.push_back (des_data::des_id (des_data::scalar,
des_data::vertex,
"hQuasiFermiPotential"));

dependencies.push_back (des_data::des_id (des_data::scalar,
des_data::vertex,
"ConductionBandEnergy"));

dependencies.push_back (des_data::des_id (des_data::scalar,
des_data::vertex,
"ValenceBandEnergy"));

}

The tables in Appendix F on page 1339 show the variables that are available to all mesh-based
PMIs. However, the following restrictions must be observed with regard to nonlocal models:

■ Constant fields such as doping concentration, mole fraction concentrations, stress fields, or
PMI user fields can be used without restrictions. No dependencies need to be defined in
DefineDependencies(), and no derivatives need to be computed.

■ Nonlocal PMIs can only use certain solution-dependent fields. Table 173 lists the subset of
variables that are supported. 

Table 173 Solution-dependent data available to nonlocal PMI models

Data name Type Location Description

BandGap scalar vertex Intrinsic band gap 

BandgapNarrowing scalar vertex Bandgap narrowing 

Eg

Ebgn
Sentaurus™ Device User Guide 1059
N-2017.09



38: Physical Model Interface
Nonlocal Interface
ConductionBandEnergy scalar element_vertex Conduction band energy 

vertex

eDensity scalar vertex Electron density 

eEffectiveStateDensity scalar vertex Conduction band density-of-states (DOS) 

EffectiveIntrinsicDensity scalar vertex Effective intrinsic density 

ElectricField scalar element Electric field 

vertex

vector element

vertex

ElectronAffinity scalar vertex Electron affinity 

ElectrostaticPotential scalar vertex Electrostatic potential 

eQuasiFermiPotential scalar vertex Electron quasi-Fermi potential 

eRelativeEffectiveMass scalar vertex Electron DOS mass 

eTemperature scalar vertex Electron temperature 

hDensity scalar vertex Hole density 

hEffectiveStateDensity scalar vertex Valence band DOS 

hQuasiFermiPotential scalar vertex Hole quasi-Fermi potential 

hRelativeEffectiveMass scalar vertex Hole DOS mass 

hTemperature scalar vertex Hole temperature 

InsulatorElectricField scalar vertex Electric field  on insulator

vector

IntrinsicDensity scalar vertex Intrinsic density 

LatticeTemperature scalar vertex Lattice temperature 

SemiconductorElectricField scalar vertex Electric field  on semiconductor

vector

SemiconductorGradValencebandEnergy scalar element Gradient of valence band energy 

vector

Table 173 Solution-dependent data available to nonlocal PMI models (Continued)

Data name Type Location Description

EC

n

NC

ni eff,

F

χ

φ

Φn

mn

Tn

p

NV

Φp

mp

Tp

F

ni

T

F

∇EV
1060 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Nonlocal Interface
The method DefineJacobians() must perform two operations:

■ Allocate all Jacobian matrices with the correct dimensions (see Jacobian Matrix on
page 1054).

■ Define the nonzero elements in all the Jacobian matrices. All the nonzero derivatives that
will be computed later in the method Compute_parallel() must be defined at this point.
The method Compute_parallel() cannot allocate additional nonzero entries.

For the point-to-point tunneling model, the method DefineJacobians() would be:

void P2P_Recombination::
DefineJacobians (des_id_to_jacobian_map& J_elec,
                 des_id_to_jacobian_map& J_hole)
{ const des_mesh* mesh = Mesh ();
const int n_vertices = mesh->size_vertex ();

// allocate Jacobians
des_jacobian*& J_elec_eQF = J_elec [des_data::des_id

(des_data::scalar, des_data::vertex, "eQuasiFermiPotential")];
des_jacobian*& J_elec_hQF = J_elec [des_data::des_id

(des_data::scalar, des_data::vertex, "hQuasiFermiPotential")];
des_jacobian*& J_elec_EC = J_elec [des_data::des_id

(des_data::scalar, des_data::vertex, "ConductionBandEnergy")];
des_jacobian*& J_elec_EV = J_elec [des_data::des_id

(des_data::scalar, des_data::vertex, "ValenceBandEnergy")];

des_jacobian*& J_hole_eQF = J_hole [des_data::des_id
(des_data::scalar, des_data::vertex, "eQuasiFermiPotential")];

des_jacobian*& J_hole_hQF = J_hole [des_data::des_id
(des_data::scalar, des_data::vertex, "hQuasiFermiPotential")];

des_jacobian*& J_hole_EC = J_hole [des_data::des_id
(des_data::scalar, des_data::vertex, "ConductionBandEnergy")];

des_jacobian*& J_hole_EV = J_hole [des_data::des_id
(des_data::scalar, des_data::vertex, "ValenceBandEnergy")];

J_elec_eQF = new des_jacobian (n_vertices, n_vertices, 1, 1);
J_elec_hQF = new des_jacobian (n_vertices, n_vertices, 1, 1);
J_elec_EC = new des_jacobian (n_vertices, n_vertices, 1, 1);
J_elec_EV = new des_jacobian (n_vertices, n_vertices, 1, 1);

J_hole_eQF = new des_jacobian (n_vertices, n_vertices, 1, 1);
J_hole_hQF = new des_jacobian (n_vertices, n_vertices, 1, 1);

ValenceBandEnergy scalar element_vertex Valence band energy 

vertex

Table 173 Solution-dependent data available to nonlocal PMI models (Continued)

Data name Type Location Description

EV
Sentaurus™ Device User Guide 1061
N-2017.09



38: Physical Model Interface
Nonlocal Interface
J_hole_EC = new des_jacobian (n_vertices, n_vertices, 1, 1);
J_hole_EV = new des_jacobian (n_vertices, n_vertices, 1, 1);

// define nonzero entries in Jacobians
J_elec_eQF->define_element (v1, v1);
J_elec_eQF->define_element (v2, v2);

J_elec_hQF->define_element (v1, v2);
J_elec_hQF->define_element (v2, v1);

J_elec_EC->define_element (v1, v1);
J_elec_EC->define_element (v2, v2);

J_elec_EV->define_element (v1, v2);
J_elec_EV->define_element (v2, v1);

J_hole_eQF->define_element (v1, v2);
J_hole_eQF->define_element (v2, v1);

J_hole_hQF->define_element (v1, v1);
J_hole_hQF->define_element (v2, v2);

J_hole_EC->define_element (v1, v2);
J_hole_EC->define_element (v2, v1);

J_hole_EV->define_element (v1, v1);
J_hole_EV->define_element (v2, v2);

}

The method Compute_parallel() computes the electron and hole recombination rates and
their derivatives. It may be called during the parallel assembly in Sentaurus Device. Therefore,
it must be implemented in a thread-safe manner. During each call, only the model values and
their derivatives for the vertices appearing in the vector Input::vertices must be
computed.

The recombination rates are multiplied by the semiconductor node measure of the source
vertex. This ensures current conservation for arbitrary meshes.

void P2P_Recombination::
Compute_parallel (const PMI_NonLocal_Recombination::Input& input, 
PMI_NonLocal_Recombination::Output& output)
{ des_data* data = Data ();

const double* eQF =
data->ReadScalar (des_data::vertex, "eQuasiFermiPotential");

const double* hQF =
data->ReadScalar (des_data::vertex, "hQuasiFermiPotential");

const double* EC =
1062 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Nonlocal Interface
data->ReadScalar (des_data::vertex, "ConductionBandEnergy");
const double* EV =

data->ReadScalar (des_data::vertex, "ValenceBandEnergy");

des_jacobian* J_elec_eQF = output.J_elec [des_data::des_id
(des_data::scalar, des_data::vertex, "eQuasiFermiPotential")];

des_jacobian* J_elec_hQF = output.J_elec [des_data::des_id
(des_data::scalar, des_data::vertex, "hQuasiFermiPotential")];

des_jacobian* J_elec_EC = output.J_elec [des_data::des_id
(des_data::scalar, des_data::vertex, "ConductionBandEnergy")];

des_jacobian* J_elec_EV = output.J_elec [des_data::des_id
(des_data::scalar, des_data::vertex, "ValenceBandEnergy")];

des_jacobian* J_hole_eQF = output.J_hole [des_data::des_id
(des_data::scalar, des_data::vertex, "eQuasiFermiPotential")];

des_jacobian* J_hole_hQF = output.J_hole [des_data::des_id
(des_data::scalar, des_data::vertex, "hQuasiFermiPotential")];

des_jacobian* J_hole_EC = output.J_hole [des_data::des_id
(des_data::scalar, des_data::vertex, "ConductionBandEnergy")];

des_jacobian* J_hole_EV = output.J_hole [des_data::des_id
(des_data::scalar, des_data::vertex, "ValenceBandEnergy")];

// compute electron and hole recombination for vertices in input domain
for (size_t vi = 0; vi < input.vertices.size (); vi++) {

const int v = input.vertices [vi];
if (v == v1 || v == v2) {

const int v_other = (v == v1) ? v2 : v1;
const double weight = (v == v1) ? measure2 : measure1;

if (eQF [v] < hQF [v_other]) {
double delta = hQF [v_other] - eQF [v]; // delta > 0
double rate = A * exp (-B * (EV [v_other] - EC [v]) *

(EV [v_other] - EC [v])) *
delta / (1 + delta);

double elec = weight * rate;

// electron recombination
output.elec [v] += elec;

// derivatives
double deriv_QF = elec / (delta * (1 + delta));
double deriv_ECEV = 2 * elec * B * (EV [v_other] - EC [v]);
*J_elec_eQF->element (v, v) -= deriv_QF;
*J_elec_hQF->element (v, v_other) += deriv_QF;
*J_elec_EC->element (v, v) += deriv_ECEV;
*J_elec_EV->element (v, v_other) -= deriv_ECEV;

}

Sentaurus™ Device User Guide 1063
N-2017.09



38: Physical Model Interface
Nonlocal Interface
if (hQF [v] > eQF [v_other]) {
double delta = hQF [v] - eQF [v_other]; // delta > 0
double rate = A * exp (-B * (EC [v_other] - EV [v]) *

(EC [v_other] - EV [v])) *
delta / (1 + delta);

double hole = weight * rate;

// hole recombination
output.hole [v] += hole;

// derivatives
double deriv_QF = hole / (delta * (1 + delta));
double deriv_ECEV = 2 * hole * B * (EC [v_other] - EV [v]);
*J_hole_eQF->element (v, v_other) -= deriv_QF;
*J_hole_hQF->element (v, v) += deriv_QF;
*J_hole_EC->element (v, v_other) -= deriv_ECEV;
*J_hole_EV->element (v, v) += deriv_ECEV;

}
}

}
}

In this example, the dependencies of the model do not change as a function of the solution.
Therefore, the method NeedNewEdges() simply returns false:

bool P2P_Recombination::
NeedNewEdges ()
{ return false; // nonlocal edges do not depend on solution
}

Finally, you must provide a so-called virtual constructor function, which allocates a variable of
the new class:

extern "C"
PMI_NonLocal_Recombination*

new_PMI_NonLocal_Recombination (const PMI_Device_Environment& env)
{ return new P2P_Recombination (env);
}

NOTE This function must have C linkage and exactly the same name as
declared in the header file PMIModels.h.

The example presented in this section uses the data type double according to the standard C++
interface defined in the header file PMIModels.h. Alternatively, the simplified C++ interface
defined in the header file PMI.h uses the data type pmi_float to support extended-precision
floating-point arithmetic.
1064 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Shared Object Code
It is possible to implement a nonlocal model using both the standard interface and the
simplified interface within the same file. In this case, Sentaurus Device selects the version
based on the floating-point precision:

■ The standard interface is selected for normal precision (64-bits). This ensures a
performance similar to built-in models.

■ The simplified interface is selected for extended-precision floating-point arithmetic. No
loss of accuracy occurs when the PMI model is invoked.

Shared Object Code

Sentaurus Device assumes that the shared object code corresponding to a PMI model can be
found in the file modelname.so.arch. The base name of this file must be identical to the
name of the PMI model. The extension .arch depends on the hardware architecture. The script
cmi, which is also a part of the CMI, can be used to produce the shared object files (see
Compact Models User Guide, Runtime Support on page 150).

Command File of Sentaurus Device

To load PMI models into Sentaurus Device, the PMIPath search path must be defined in the
File section of the command file. The value of PMIPath consists of a sequence of directories,
for example:

File {
PMIPath = ". /home/joe/lib /home/mary/sdevice/lib"

}

For each PMI model, which appears in the Physics section, the given directories are searched
for a corresponding shared object file modelname.so.arch.

The PMI in Sentaurus Device provides access to mesh-based scalar fields specified by you.
These fields must be defined on the device grid in a separate TDR (extension .tdr) data file.
Up to 300 datasets (PMIUserField0, ..., PMIUserField299) can be defined.
Sentaurus Device reads the user-defined fields if the corresponding file name is given in the
command file:

File {
PMIUserFields = "fields"

}

Sentaurus™ Device User Guide 1065
N-2017.09



38: Physical Model Interface
Command File of Sentaurus Device
A PMI model can be activated in the Physics section of the command file by specifying the
name of the PMI model in the appropriate part of the Physics section. Examples for different
types of PMI models are:

■ Generation–recombination models:

Physics {
Recombination (pmi_model_name ...)

}

■ Avalanche generation:

Physics {
Recombination (Avalanche (pmi_model_name ...))

}

■ Mobility models:

Physics {
Mobility (

DopingDependence (pmi_model_name)
Enormal (pmi_model_name)
ToCurrentEnormal (pmi_model_name)
HighFieldSaturation (pmi_model_name driving_force)

)
}

A PMI model name can only consist of alphanumeric characters and underscores (_). The first
character must be either a letter or an underscore. A PMI model name can also be quoted as
"model_name" to avoid conflicts with Sentaurus Device keywords.

All the PMI models can be specified regionwise or materialwise:

Physics (region = "Region.1") {
...
}
Physics (material = "AlGaAs") {
...
}

PMI models also recognize parameters in the command file. Usually, command file parameters
are listed in parentheses after the model name, for example:

Physics {
Recombination (pmi_model_name (a = 1

b = "string"
c = (1.2 3.4 5.6 7.8)
d = ("red" "blue" "green")))

}

1066 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Runtime Support for Vertex-Based PMI Models
For certain models, the syntax differs from the above example, and this will be noted in the
documentation (see Appendix G on page 1377).

NOTE PMI model parameters also can be specified in the parameter file (see
Parameter File of Sentaurus Device on page 1088). Parameters in the
command file take precedence over parameters in the parameter file.

Certain values of PMI models can be plotted in the Plot section of the command file. The
following identifiers are recognized:

■ Generation–recombination models:

Plot {
PMIRecombination
PMIeNonLocalRecombination PMIhNonLocalRecombination

}

■ User-defined fields:

Plot {
PMIUserField0 PMIUserField1 ... PMIUserField299

}

■ Piezoelectric polarization:

Plot {
PE_Polarization/vector PE_Charge

}

■ Metal conductivity (see Metal Resistivity on page 1260):

Plot {
MetalConductivity

}

The current plot PMI can be used to add entries to the current plot file:

CurrentPlot {
pmi_CurrentPlot

}

Runtime Support for Vertex-Based PMI Models

Inside vertex-based PMI models, you can access several functions described here. Essentially,
they are split into two groups, namely, functions that are valid at the scope of the PMI model
and functions that are valid only within the scope of compute functions.
Sentaurus™ Device User Guide 1067
N-2017.09



38: Physical Model Interface
Runtime Support for Vertex-Based PMI Models
Runtime Support at Model Scope

A standard vertex-based PMI is derived from the base class PMI_Vertex_Interface;
whereas, a simplified vertex-based PMI is derived from the base class PMI_Vertex_Base.
Both base classes are derived from the PMI_Vertex_Common_Base class and provide the
following shared functionality:

const char* Name () const;
const char* Filename () const;
const char* ReadRegionName () const;
const char* ReadRegionMaterial () const;
des_materialgroup ReadRegionMaterialGroup () const;

const char* ReadDeviceName () const;

const PMIBaseParam* ReadParameter (const char* name
[, const char* modelName]) const;

double InitParameter (const char* name, double defaultvalue
[, const char* modelName]) const;

void InitParameter (const char* name, std::vector<double>& value
[, const char* modelName]) const;

const char* InitStringParameter (const char* name,
const char* defaultvalue
[, const char* modelName]) const;

void InitStringParameter (const char* name,
std::vector<const char*>& value
[, const char* modelName]) const;

void double InitModelParameter (const char* name,
 const char* modelName,

double defaultvalue);
void double InitOptoModelParameter(const char* name, double defaultvalue);

int ReadDimension () const;
void ReadReferenceCoordinates (double ref [3][3]) const;

size_t NumberOfMSConfigStates (const std::string& msconfig_name) const;
const std::string& MSConfigStateName (const std::string& msconfig_name,

size_t state_index) const;

The method Name() returns the name of the PMI model as specified in the command file.
Similarly, Filename() returns the name of the corresponding shared object file.

For the current region, you can call ReadRegionName() to determine its name,
ReadRegionMaterial() to return the name of the region material, and
ReadRegionMaterialGroup() to find the material group.
1068 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Runtime Support for Vertex-Based PMI Models
The possible values for the material group are:

PMI_Vertex_Common_Base::conductor
PMI_Vertex_Common_Base::insulator
PMI_Vertex_Common_Base::semiconductor
PMI_Vertex_Common_Base::unknown

ReadDeviceName() returns the name of the device.

The methods ReadParameter(), InitParameter(), and InitStringParameter()
read the value of a parameter from the parameter file or command file (see Parameter File of
Sentaurus Device on page 1088 and Command File of Sentaurus Device on page 1065). In
these methods, modelName is an optional argument that allows the value of a parameter to be
read from a different PMI model. The method InitModelParameter() allows PMI access
to any built-in Sentaurus Device mole-fraction or constant parameters. modelName specifies
the built-in model and name is the parameter within the specified model. When no valid model
name or parameter name is found, the provided defaultvalue is returned instead.
InitModelParameter is available only in the Compute function not in the PMI constructor.
Similarly, the InitOptoModelParameter() method gives the PMI access to built-in
numeric optoelectronic parameters. In this case, name is the full path to the parameter.
ReadDimension() returns the dimension of the problem. The method
ReadReferenceCoordinates() provides access to the reference coordinate system. It will
return the identity matrix:

(1245)

in the case of the unified coordinate system (UCS). Otherwise, another coordinate system
matrix is returned.

Multistate configuration–dependent models can call the two methods
NumberOfMSConfigStates() and MSConfigStateName(). They return the number of
states and the name of a state, respectively.

Reaction–Diffusion Species Interface (Model Scope)

The interface to reaction–diffusion (RD) species is the same for both standard and simplified
PMI models, as it is provided in the common base class PMI_Vertex_Common_Base. The
interface provides the following functions:

■ size_t RDSpecies_size ()
Returns the number of RD species defined for the actual device. Note that not all of these
species need to be defined in the actual device region.

ref
1 0 0
0 1 0

0 0 1

=

Sentaurus™ Device User Guide 1069
N-2017.09



38: Physical Model Interface
Runtime Support for Vertex-Based PMI Models
■ void get_RDSpecies_name (size_t isp, std::string& spname)
Returns the name of the species with device index isp.

■ bool RDSpecies_is_defined (size_t isp)
Returns true if the species with device index isp is defined in the actual region.

For simplified PMI models, the values for RD species concentrations can be extracted in the
compute function from the Input interface (see Reaction–Diffusion Species Interface
(Compute Scope) on page 1074). Note that standard PMI models do not have such an interface,
that is, accessing RD species concentrations is not supported in this interface. However, within
all PMI models, you can read such values using the ReadScalar(const char*) function.

Runtime Support at Compute Scope

The following interface functions depend on the local vertex where a model is evaluated. They
are not available in the constructor of the PMI, but should only be called in the Compute
function. In the case of the standard interface, these functions are a part of the base class
PMI_Vertex_Interface; whereas, the simplified interface provides them through the base
class PMI_Vertex_Input_Base:

void ReadCoordinate (double& x, double& y, double& z) const;
void ReadNearestInterfaceNormal (double& nx, double& ny, double& nz) const;
double ReadDistanceFromSemiconductorInsulatorInterface() const;
double ReadDistanceFromHighkInsulator() const;
int ReadNearestInterfaceOrientation() const;

double ReadLayerThickness () const;
double ReadLayerThicknessField () const;

double ReadTime () const;
double ReadTransientStepSize () const;
PMI_StepType ReadTransientStepType () const;

double ReadxMoleFraction () const;
double ReadyMoleFraction () const;

double ReadDoping (PMI_DopingSpecies species) const;
double ReadDoping (const char* SpeciesName) const;

double ReadDielectricConstant() const;
double ReadSemiconductorDielectricConstant() const;

int ReadDopingWell () const;

int IsUserFieldDefined (PMI_UserFieldIndex index) const;
double ReadUserField (PMI_UserFieldIndex index) const;
1070 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Runtime Support for Vertex-Based PMI Models
void WriteUserField (PMI_UserFieldIndex index, double value) const;

double ReadStress (PMI_StressIndex index) const;

bool ReadMSCOccupations (const std::string& msc_name, double* values) const;

double ReadeSHEDistribution (double energy) const;
double ReadhSHEDistribution (double energy) const;
double ReadeSHETotalDOS (double energy) const;
double ReadhSHETotalDOS (double energy) const;
double ReadeSHETotalGSV (double energy) const;
double ReadhSHETotalGSV (double energy) const;

NOTE The support functions for the simplified interface use the data type
pmi_float; whereas, the support functions for the standard interface
use the data type double. However, their functionality is identical, and
only the double version is documented.

The function ReadCoordinate() provides the coordinates of the current vertex [ ].

The function ReadNearestInterfaceNormal() provides the components of a unit vector
in the direction of the nearest interface normal.

ReadDistanceFromSemiconductorInsulatorInterface() returns the distance of the
current vertex to the nearest semiconductor–insulator interface (in ) if the current vertex is
in a semiconductor region; otherwise, the function returns minus that distance.

ReadDistanceFromHighkInsulator() returns the distance of the current vertex to the
nearest high-k insulator (in ). If no high-k insulator is found in the structure, the function
returns a value < 0.

ReadNearestInterfaceOrientation() returns the auto-orientation framework
orientation (as a three-digit integer) that is closest to the actual orientation at the nearest
interface vertex (see Auto-Orientation Framework on page 37).

ReadLayerThickness() returns the value of the LayerThickness array [ ] for the
current vertex (see LayerThickness Command on page 310).

ReadLayerThicknessField() returns the value of the LayerThicknessField array
[ ] for the current vertex (see LayerThickness Command on page 310).

The functions ReadTime() and ReadTransientStepSize() return the simulation time
and the current step size during a transient simulation [ ]. ReadTransientStepType()
provides access to the actual transient step type.

μm

μm

μm

μm

μm

s

Sentaurus™ Device User Guide 1071
N-2017.09



38: Physical Model Interface
Runtime Support for Vertex-Based PMI Models
The enumeration type PMI_StepType is defined for identification:

enum PMI_StepType {
PMI_UndefinedStepType = 0,
PMI_TR = 1,
PMI_BDF = 2,
PMI_BE = 3

}

The methods ReadxMoleFraction() and ReadyMoleFraction() return the x and y mole
fractions, respectively.

The methods ReadDoping(species) and ReadDoping(SpeciesName) return the doping
profiles for the current vertex [ ]. The string SpeciesName is the same as in the file
datexcodes.txt (see Doping Specification on page 11). The enumeration type
PMI_DopingSpecies is used to select the doping species, the incomplete ionization doping
species, and their derivatives:

enum PMI_DopingSpecies {
// Acceptors
PMI_BoronActive, // active Boron concentration
PMI_BoronChemical, // chemical Boron concentration
PMI_AluminumActive, // active Aluminum concentration
PMI_AluminumChemical, // chemical Aluminum concentration
PMI_IndiumActive, // active Indium concentration
PMI_IndiumChemical, // chemical Indium concentration
PMI_PDopantActive, // active PDopant concentration
PMI_PDopantChemical, // chemical PDopant concentration
PMI_Acceptor, // total acceptor concentration

// incomplete ionization entries
PMI_AcceptorMinus, // total incomplete ionization acceptor concentration
PMI_AcceptorMinusPer_hDensity,
PMI_AcceptorMinusPerT,

// Donors
PMI_PhosphorusActive, // active Phosphorus concentration
PMI_PhosphorusChemical, // chemical Phosphorus concentration
PMI_ArsenicActive, // active Arsenic concentration
PMI_ArsenicChemical, // chemical Arsenic concentration
PMI_AntimonyActive, // active Antimony concentration
PMI_AntimonyChemical, // chemical Antimony concentration
PMI_NitrogenActive, // active Nitrogen concentration
PMI_NitrogenChemical, // chemical Nitrogen concentration
PMI_NDopantActive, // active NDopant concentration
PMI_NDopantChemical, // chemical NDopant concentration
PMI_Donor, // total donor concentration

cm 3–
1072 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Runtime Support for Vertex-Based PMI Models
// incomplete ionization entries
PMI_DonorPlus, // total incomplete ionization donor concentration
PMI_DonorPlusPer_eDensity,
PMI_DonorPlusPerT

// additional species
PMI_Carbon,
PMI_CarbonChemical // chemical Carbon concentration

};

NOTE The species PMI_Acceptor and PMI_Donor are always defined. The
remaining entries are only defined if they occur in the simulated device.
The incomplete ionization entries are only accessible if the option
IncompleteIonization is activated (see Chapter 13 on page 277).

The ReadDielectricConstant and ReadSemiconductorDielectricConstant
methods return the dielectric constant for the current vertex. The second method accounts for
only the dielectric constant in semiconductor.

The ReadDopingWell() method returns the index of the doping well for the current vertex
(see Initial Guess for Electrostatic Potential and Quasi-Fermi Potentials in Doping Wells on
page 178).

The method IsUserFieldDefined() checks if a user-defined field has been specified. The
enumeration type PMI_UserFieldIndex selects the desired field:

enum PMI_UserFieldIndex {
PMI_UserField0, PMI_UserField1, ..., PMI_UserField99

};

If a specific user-field is defined, the method ReadUserField() reads its value for the current
vertex. For time-dependent user-fields, this is the value written in the last successful time step.
WriteUserField() allows the modification of the value of a specific user-field for the
current vertex. It writes to an auxiliary field. After a transient time step is finished, this
auxiliary field becomes the field accessible with ReadUserField().

The method ReadStress() returns the value of one of the following stress components:

enum PMI_StressIndex {
PMI_StressXX, PMI_StressYY, PMI_StressZZ,
PMI_StressYZ, PMI_StressXZ, PMI_StressXY

};
Sentaurus™ Device User Guide 1073
N-2017.09



38: Physical Model Interface
Runtime Support for Vertex-Based PMI Models
Reaction–Diffusion Species Interface (Compute Scope)

For simplified PMI models, the class PMI_Vertex_Input_Base provides an interface for the
extraction of RD species concentrations. Accessing the species concentrations through this
interface supports the automatic derivative computations of the model quantity with respect to
the species concentrations. For standard PMI models, such an interface is not supported. If the
interface is enabled for the actual PMI model, the following function is available:

■ bool RDSpecies_supported ()
Accesses the actual Input class support to RD species and their concentrations. If there is
no support, the other functions cannot be used. Most of the models do not support this
interface.

If the RDSpecies_supported() function returns true, additional functions can be used:

■ size_t RDSpecies_size ()
Returns the number of RD species defined for the actual device. Note that not all of these
species can be defined in the actual region.

■ void get_RDSpecies_name (size_t isp, std::string& spname)
Returns the name of the species with device index isp.

■ bool RDSpecies_is_defined (size_t isp)
Returns true if the species with device index isp is defined in the actual region.

■ pmi_float RDSpecies_concentration (size_t isp)
Returns the value of the concentration of the RD species with device index isp.

Experimental Runtime Support Functions

Vertex-based PMI models also have access to the following runtime functions:

double ReadScalar (const char* name) const;
void ReadVector (const char* name, double vector [3]) const;

These functions can be called in Compute, and they provide access to scalar and vector data of
Sentaurus Device. See Table 178 on page 1340 and Table 179 on page 1372 for an overview of
available data.

NOTE This is an experimental feature, and it is provided ‘as is’, without
warranty of any kind. In particular, you should be aware of the following
limitations:

• Whenever you access additional data in Sentaurus Device, you
introduce new model dependencies. However, Sentaurus Device is
unable to take into account the corresponding derivatives.
Therefore, the convergence of the Newton solver may be affected.
1074 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Runtime Support for Vertex-Based PMI Models
• It is possible to introduce cyclic dependencies, which will result in
an infinite loop.

Vertex-Based Runtime Support for Multistate 
Configuration–Dependent Models

The base class PMI_MSC_Vertex_Interface provides the same support as
PMI_Vertex_Interface, plus additional functions needed by models that depend on a
multistate configuration (see Chapter 18 on page 473):

class PMI_MSC_Vertex_Interface : public PMI_Vertex_Interface
{
public:
PMI_MSC_Vertex_Interface(const PMI_Environment&,
const std::string& msconfig_name,
int model_index,
const std::string& model_string);

const std::string& msconfig_name () const;
size_t nb_states () const;
std::string& state ( size_t index ) const;
int model_index () const;
const std::string& model_string () const;
virtual void init_parameter (){};

};

NOTE In the case of the simplified interface, the base class
PMI_MSC_Vertex_Base is used instead. However, it provides the
same functionality as the base class PMI_MSC_Vertex_Interface
and, therefore, it is not documented separately.

The constructor argument msconfig_name determines the name of the multistate
configuration on which the model depends, and the constructor arguments model_index and
model_string are an integer and a string that you can evaluate in your model. You call the
constructor PMI_MSC_Vertex_Interface only indirectly using constructors of base classes of
multistate configuration–dependent PMIs.

The function nb_states returns the number of states in the selected multistate configuration,
state returns the name of a particular state, and msconfig_name, model_index, and
model_string return the arguments of the constructor of the same name.

The function init_parameter is always called before the parameters are changed. It allows
you to keep model-internal data up-to-date in cases such as ramping of parameters.
Sentaurus™ Device User Guide 1075
N-2017.09



38: Physical Model Interface
Mesh-Based Runtime Support
Mesh-Based Runtime Support

A standard mesh-based PMI is derived from the base class PMI_Device_Interface;
whereas, a simplified mesh-based PMI is derived from the base class PMI_Device_Base.
Both base classes provide the following shared functionality:

const char* Name () const;

const PMIBaseParam* ReadParameter (const char* name
[, const char* modelName]) const;

double InitParameter (const char* name, double defaultvalue
[, const char* modelName]) const;

void InitParameter (const char* name, std::vector<double>& value
[, const char* modelName]) const;

const char* InitStringParameter (const char* name,
const char* defaultvalue
[, const char* modelName]) const;

void InitStringParameter (const char* name,
std::vector<const char*>& value
[, const char* modelName]) const;

const des_mesh* Mesh () const;
des_data* Data () const;

The method Name() returns the name of the PMI model as specified in the command file. The
methods ReadParameter(), InitParameter(), and InitStringParameter() read the
value of a parameter from the parameter file or command file (see Parameter File of Sentaurus
Device on page 1088 and Command File of Sentaurus Device on page 1065). In these methods,
modelName is an optional argument that allows the value of a parameter to be read from a
different PMI model.

NOTE Parameters for a mesh-based PMI must appear in the global parameter
section in the parameter file. Regionwise or materialwise parameters are
not supported.

The methods Mesh() and Data() provide access to the mesh and data of Sentaurus Device
(see Device Mesh on page 1077 and Device Data on page 1084).

NOTE In the case of the standard interface, the method Data() returns a
variable of type des_data; whereas, in the case of the simplified
interface, it returns a variable of type device_data. The type
des_data is based on the data type double, and sdevice_data uses
the data type pmi_float. Otherwise, their functionality is identical.
1076 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Mesh-Based Runtime Support
The following interface functions should only be called in the Compute function, but not in the
constructor. The standard interface provides them as members of the base class
PMI_Device_Interface; whereas, the simplified interface provides them as members of the
base class PMI_Device_Input_Base:

double ReadTime () const;
double ReadTransientStepSize () const;
PMI_StepType ReadTransientStepType () const;
double ReadLayerThickness (int vertex) const;
double ReadLayerThicknessField (int vertex) const;

NOTE The support functions for the simplified interface use the data type
pmi_float; whereas, the support functions for the standard interface
use the data type double. However, their functionality is identical, and
only the double version is documented.

The functions ReadTime() and ReadTransientStepSize() return the simulation time
and the current step size during a transient simulation [ ]. ReadTransientStepType()
provides access to the actual transient step type. The enumeration type PMI_StepType is
defined for identification:

enum PMI_StepType {
PMI_UndefinedStepType = 0,
PMI_TR = 1,
PMI_BDF = 2,
PMI_BE = 3

}

The functions ReadLayerThickness() and ReadLayerThicknessField() return the
corresponding values LayerThickness and LayerThicknessField (see LayerThickness
Command on page 310).

Device Mesh

A device mesh of Sentaurus Device consists of a number of regions. A region is either a contact
region consisting of a list of contact vertices or a bulk region consisting of a list of elements.
An element is described by a list of vertices.

Vertex

In the file PMIModels.h, the class des_vertex is declared as follows:

class des_vertex {

public:

s

Sentaurus™ Device User Guide 1077
N-2017.09



38: Physical Model Interface
Mesh-Based Runtime Support
size_t index () const;
size_t element_vertex_index (const des_element* element) const;

const double* coord () const;
double coord (size_t i) const;

bool equal_coord (des_vertex* v) const;

size_t size_edge () const;
des_edge* edge (size_t i) const;

size_t size_element () const;
des_element* element (size_t i) const;

size_t size_region () const;
des_region* region (size_t i) const;

size_t size_regioninterface () const;
des_regioninterface* regioninterface (size_t i) const;

};

The value of index() can be used as an index for vertex-based data (see Device Data on
page 1084). Similarly, the value of element_vertex_index() can be used as an index for
element-vertex-based data.

The location of a vertex [ ] is given by its coordinates coord(). The two versions of the
coord() function return the coordinates either as a vector or as individual components. The
function equal_coord() should be used to check if two vertices have the same coordinates.
For example, Sentaurus Device duplicates vertices along heterointerfaces. Consequently, two
vertices with different indices can share the same coordinates.

size_edge() returns the number of edges connected to a vertex. The method edge() can be
used to retrieve the i-th edge. 

size_region() returns the number of regions containing a vertex. The method region()
can be used to retrieve the i-th region.

size_regioninterface() reports how many region interfaces a vertex belongs to. The i-th
region interface is returned by the method regioninterface().

μm
1078 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Mesh-Based Runtime Support
Edge

In the file PMIModels.h, the class des_edge is declared as follows:

class des_edge {

public:
size_t index () const;

des_vertex* start () const;
des_vertex* end () const;

size_t size_element () const;
des_element* element (size_t i) const;

size_t size_region () const;
des_region* region (size_t i) const;

};

The value of index() can be used as an index for edge-based data (see Device Data on
page 1084).

start() and end() return the first and second vertex connected to the edge, respectively.

size_element() returns the number of elements connected to an edge. The method
element() can be used to retrieve the i-th element.

size_region() returns the number of regions containing an edge. The method region()
can be used to retrieve the i-th region.

Element

In the file PMIModels.h, the class des_element is declared as follows:

class des_element {

public:
typedef enum { point, line, triangle, rectangle, tetrahedron,

pyramid, prism, cuboid, tetrabrick } des_type;

size_t index () const;

des_type type () const;

size_t size_vertex () const;
des_vertex* vertex (size_t i) const;
Sentaurus™ Device User Guide 1079
N-2017.09



38: Physical Model Interface
Mesh-Based Runtime Support
size_t size_edge () const;
des_edge* edge (size_t i) const;

des_bulk* bulk () const;

size_t element_vertex_offset () const;
};

Figure 83 shows the numbering of vertices and edges for all element types. 

Figure 83 Vertex and edge numbering

The value of index() can be used as an index for element-based data (see Device Data on
page 1084). Similarly, element_vertex_offset() returns the start index for element-
vertex-based data in this element.

Point Line

Triangle

Rectangle
Tetrahedron

Pyramid
Prism

CuboidTetrabrick

2

0 1

2 3

0 1

2

3

0 1

2

3

4

0 1

2

4

0 1

2

3

4

6 7

1

0

2

3

4

5

0 1

0 0 1

5

5

6

3

e0

e1 e2

e0

e0

e1
e2

e3

e4

e5
e6

e10
e9

e11

e8e7

e2 e4

e6

e7
e8

e5

e1

e0

e3

e0

e2

e8
e11

e10

e9

e4
e6

e1 e5
e3

e7

e2

e0

e1

e4

e5

e3 e0

e2e1

e3

e0

e1 e6
e4

e5 e3e2
e7
1080 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Mesh-Based Runtime Support
type() returns the type of an element (point, line, triangle, rectangle, tetrahedron, pyramid,
prism, cuboid, or tetrabrick). An element is mainly described by its vertices. size_vertex()
returns the number of vertices in an element, and the method vertex() can be used to retrieve
the i-th vertex. size_edge() returns the number of edges of an element. The method edge()
can be used to retrieve the i-th edge. The method bulk() returns the bulk region containing
the element.

Region

In the file PMIModels.h, the base class des_region is declared as follows:

class des_region {

public:
typedef enum { bulk, contact } des_type;

virtual des_type type () const = 0;

std::string name () const;

size_t size_vertex () const;
des_vertex* vertex (size_t i) const;

size_t size_edge () const;
des_edge* edge (size_t i) const;

};

A mesh of Sentaurus Device consists of two types of region: bulk regions and contacts. The
virtual method type() returns the type of a region. The name of a region is returned by
name(). size_vertex() returns the number of vertices in a region. The method vertex()
can be used to retrieve the i-th vertex. size_edge() returns the number of edges in a region.
The method edge() can be used to retrieve the i-th edge.

The class des_bulk is derived from des_region:

class des_bulk : public des_region {

public:
des_type type () const;

std::string material () const;

size_t size_element () const;
des_element* element (size_t i) const;

size_t size_regioninterface () const;
des_regioninterface* regioninterface (size_t i) const;

};
Sentaurus™ Device User Guide 1081
N-2017.09



38: Physical Model Interface
Mesh-Based Runtime Support
material() returns the name of the material in a bulk region. size_element() returns the
number of elements in a region. The method element() can be used to retrieve the i-th
element. size_regioninterface() reports how many region interfaces are connected to
this bulk region. The i-th region interface can then be retrieved by the method
regioninterface().

Similarly, the class des_contact is also derived from des_region:

class des_contact : public des_region {

public:
des_type type () const;

};

Region Interface

A region interface separates two bulk regions. It is described by the following class:

class des_regioninterface {

public:
size_t index () const;

des_bulk* bulk1 () const;
des_bulk* bulk2 () const;

bool is_heterointerface () const;

size_t size_vertex () const;
des_vertex* vertex (size_t i) const;
size_t index (size_t local_vertex_index) const;

};

The value of index() is used to access the surface measure array (see Device Data on
page 1084).

The two bulk regions connected to a region interface are returned by bulk1() and bulk2().

Use is_heterointerface() to determine if double points exist for this interface. For a
heterointerface, each vertex belongs to either region 1 or region 2, but not both. For a regular
interface, each vertex belongs to both region 1 and region 2.

The number of vertices contained in a region interface is returned by the method
size_vertex(). The i-th vertex can be obtained by invoking vertex(). The method
index(size_t local_vertex_index) is used to obtain the correct index for interface-
based data (see Device Data on page 1084).
1082 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Mesh-Based Runtime Support
Mesh

In the file PMIModels.h, the class des_mesh is declared as follows:

class des_mesh {

public:
int dim () const;
void ref_coordinates (double ref [3][3]) const;
double ref_coordinates (int i, int j) const;

size_t size_vertex () const;
size_t size_element_vertex () const;
des_vertex* vertex (size_t i) const;

size_t size_edge () const;
des_edge* edge (size_t i) const;

size_t size_element () const;
des_element* element (size_t i) const;
void find_elements (double x, double y, double z,

std::vector<des_element*>& elements) const;

size_t size_region () const;
des_region* region (size_t i) const;

size_t size_regioninterface () const;
des_regioninterface* regioninterface (size_t i) const;

};

The dimension of the mesh is given by dim(). The possible values are 1, 2, and 3. The two
ref_coordinates() methods provide access to the reference coordinate system, either to
the entire matrix or individual components of the matrix. They will return the identity matrix:

(1246)

in the case of the unified coordinate system. Otherwise, another coordinate system matrix will
be returned.

size_vertex() returns the number of vertices in the mesh. Similarly, the function
size_element_vertex() returns the total number of element vertices in the mesh. The
method vertex() can be used to retrieve the i-th vertex. size_edge() returns the number
of edges in the mesh. The method edge() can be used to retrieve the i-th edge.
size_element() returns the number of elements in the mesh. The method element() can

ref
1 0 0

0 1 0
0 0 1

=

Sentaurus™ Device User Guide 1083
N-2017.09



38: Physical Model Interface
Mesh-Based Runtime Support
be used to retrieve the i-th element. For a given point with coordinates (x, y, z) in units of [ ],
the method find_elements() computes a list of elements that contain this point.

size_region() returns the number of regions in the mesh. The method region() can be
used to retrieve the i-th region. There are size_regioninterface() region interfaces in the
mesh, and the i-th interface is returned by invoking regioninterface().

Device Data

The class des_data provides the following functionality:

typedef enum { vertex, edge, element, rivertex, element_vertex } des_location;

const double*const* ReadCoefficient ();
const double*const* ReadMeasure ();
const double*const* ReadSurfaceMeasure ();
const double*const* ReadContactMeasure ();

const double* ReadScalar (des_location location, std::string name, 
bool update=false);

const double*const* ReadVector (des_location location, std::string name,
bool update=false);

void WriteScalar (des_location location, std::string name,
const double* newvalue);

const double*const* ReadGradient (des_location location, std::string name,
bool update=false);

const double* ReadFlux (des_location location, std::string name,
bool update=false);

size_t NumberOfMSCStates (const std::string& msc_name) const;
bool ReadMSCStateName (const std::string& msc_name, size_t state_index,

std::string& state_name) const;
bool ReadMSCOccupations (const std::string& msc_name,

const des_region* region,
double*const* values) const;

double ReadeSHEDistribution (des_bulk* r, des_vertex* v, double energy) const;
double ReadhSHEDistribution (des_bulk* r, des_vertex* v, double energy) const;
double ReadeSHETotalDOS (des_bulk* r, double energy) const;
double ReadhSHETotalDOS (des_bulk* r, double energy) const;
double ReadeSHETotalGSV (des_bulk* r, double energy) const;
double ReadhSHETotalGSV (des_bulk* r, double energy) const;

double interpolate (des_element* element,
                    const std::vector<double>& vertex_values,
                    double x, double y, double z,
                    des_interpolation interpolation = linear,
                    double arsinhfactor = 1) const;

μm
1084 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Mesh-Based Runtime Support
NOTE In the case of the simplified interface, the class sdevice_data
provides the same methods, but uses the data type pmi_float instead
of double. Otherwise, the functionality is identical.

The methods ReadCoefficient() and ReadMeasure() return the box method coefficients
 and measure  used in Sentaurus Device (see Discretization on page 1011).

The ReadCoefficient() method returns a two-dimensional array. The two indices are the
element index and the local edge number. The units are  in one dimension,  in two
dimensions, and  in three dimensions.

The following code fragment reads the coefficients for all element edges:

const des_mesh* mesh = Mesh();
des_data* data = Data();
const double*const* coeff = data->ReadCoefficient();
for (size_t eli = 0; eli < mesh->size_element(); eli++) {

des_element* el = mesh->element(eli);
for (size_t ei = 0; ei < el->size_edge(); ei++) {

des_edge* e = el->edge(ei);
const double c = coeff[el->index()][ei];

}
}

NOTE The values  returned by ReadCoefficient() are element–edge
coefficients. The edge coefficients  can be obtained by adding the
contributions from all elements connected to an edge .

The ReadMeasure() method returns a two-dimensional array. The two indices are the
element index and the local vertex number. The units are  in one dimension,  in two
dimensions, and  in three dimensions.

The following code fragment reads the measures for all element vertices:

const des_mesh* mesh = Mesh();
des_data* data = Data();
const double*const* measure = data->ReadMeasure();
for (size_t eli = 0; eli < mesh->size_element(); eli++) {

des_element* el = mesh->element(eli);
for (size_t vi = 0; vi < el->size_vertex(); vi++) {

des_vertex* v = el->vertex(vi);
const double m = measure[el->index()][vi];

}
}

κij μij

μm 1– 1
μm

κij

κi

i

μm μm2

μm3
Sentaurus™ Device User Guide 1085
N-2017.09



38: Physical Model Interface
Mesh-Based Runtime Support
NOTE The values  returned by ReadMeasure() are element–vertex
measures. The node measures  can be obtained by adding the
contributions from all elements connected to a vertex .

The method ReadSurfaceMeasure() provides the surface measure associated with region
interface vertices (edge length [ ] in two dimensions and surface area [ ] in three
dimensions). The two indices are the region interface index and the local vertex number.

The method ReadContactMeasure() provides the contact measure associated with contact
vertices (edge length [cm] in two dimensions and contact area [ ] in three dimensions). The
two indices are the contact index and the local vertex number.

By default, the PMI read functions use a caching mechanism to access internal data entries (for
performance reasons). The cache is updated after computing the initial values for the Newton
process and after convergence of Newton iterations. This means that, during Newton iterations,
the read functions return unchanged arrays. The ReadScalar(), ReadVector(),
ReadGradient(), and ReadFlux() methods have an additional parameter update (default
is false). If update=true, these methods will update array values for each call to that
function. The standard call of these methods (update=false) is a good solution for
postprocessing PMI functions (see Current Plot File of Sentaurus Device on page 1239). The
update=false call of these methods is necessary for PMI models that are used during the
Newton process (see Preprocessing for Newton Iterations and Newton Step Control on
page 1246).

The methods ReadScalar(), ReadVector(), and WriteScalar() provide access to the
data of Sentaurus Device. The values can be located on vertices, edges, elements, or region
interfaces. See Table 178 on page 1340 and Table 179 on page 1372 for an overview of
available scalar and vector data.

ReadScalar() returns a read-only one-dimensional array. Use the index() method in the
classes des_vertex, des_edge, or des_element to access the array elements. The proper
addressing of region interface datasets is shown in the code fragment below.

ReadVector() returns a read-only two-dimensional array. The first index selects the
dimension (0, 1, 2) and the second index is used in the same way as for scalar data.

WriteScalar() writes back a one-dimensional array. The organization of the array is the
same as for the arrays obtained with ReadScalar(). You must ensure that the size of the array
is sufficient to hold all required entries.

ReadGradient() returns a 2D array that contains, for each vertex, the gradient of a chosen
variable. Thereby, the first index selects the partial derivative:

(1247)

μij

μi

i

μm μm2

cm2

0[ ]
x∂

∂
 
  1[ ],

y∂
∂

 
  2[ ],

z∂
∂

 
 = = =
1086 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Mesh-Based Runtime Support
The second index identifies the vertex. The actual implementation of ReadGradient() works
for vertex-based datasets only.

ReadFlux() returns an array that contains, for each vertex, the surface integral of the gradient
of a chosen variable taken over the boundary of the box divided by the box volume. The actual
implementation of ReadFlux() works for vertex-based datasets only.

The following code fragment traverses all region interfaces and reads the surface measure and
a dataset for each region interface vertex:

const des_mesh* mesh = Mesh();
des_data* data = Data();
const double*const* surface = data->ReadSurfaceMeasure();
const double* hot_elec = data->ReadScalar(des_data::rivertex,

"HotElectronInj");
for (size_t rii = 0; rii < mesh->size_regioninterface(); rii++) {

des_regioninterface* ri = mesh->regioninterface(rii);
for (size_t vi = 0; vi < ri->size_vertex(); vi++) {

des_vertex* v = ri->vertex(vi);
const double sm = surface[ri->index()][vi];
const double he = hot_elec[ri->index(vi)];

}
}

The following code fragment traverses all contacts and reads the contact measure for each
contact vertex:

const des_mesh* mesh = Mesh();
des_data* data = Data();
const double*const* contact_measure = data->ReadContactMeasure();
for (size_t ri = 0; ri < mesh->size_region(); ri++) {

des_region* r = mesh->region(ri);
if (r->type() == des_region::contact) {

for (size_t vi = 0; vi < r->size_vertex(); vi++) {
const double m = contact_measure[ri][vi];

}
}

}

The method interpolate() can be called to interpolate a vertex-based field within an
element. The location of the interpolation is given by the coordinates (x, y, z) in units of [ ].
The field values  on the element vertices must be supplied in the vector vertex_values. 

The following code fragment shows the proper usage:

std::vector<double> vertex_values;
double x = 1.0; // interpolation location
double y = 1.0;

μm
vi
Sentaurus™ Device User Guide 1087
N-2017.09



38: Physical Model Interface
Parameter File of Sentaurus Device
double z = 1.0;

for (size_t vi = 0; vi < element->size_vertex (); vi++) {
  des_vertex* v = element->vertex (vi);
  double vertex_value = 1.0; // value of field on vertex v
  vertex_values.push_back (vertex_value);
}
double result = data->interpolate (element, vertex_values, x, y, z,

des_data::arsinh, 10.0);

The following interpolation modes are supported:

des_data::linear
des_data::logarithmic
des_data::arsinh

Depending on the interpolation scheme (linear, logarithmic, or arsinh), the interpolated value
 is given by:

(1248)

(1249)

(1250)

Sentaurus Device determines the weights  based on the distance of the point (x, y, z) from
the vertices of the element. The weights are nonnegative and add up to 1.

Parameter File of Sentaurus Device

For each PMI model, a corresponding section with the same name can appear in the parameter
file:

PMI_model_name {
par1 = value
par2 = value
...

}

v

v wivi

i
=

v e

wi vlog i

i


=

v
1
f
--- wi fvi( )asinh

i
 
 
 

sinh=

wi
1088 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Parameter File of Sentaurus Device
NOTE Parameter names can only consist of alphanumeric characters and
underscores (_). The first character must be either a letter or an
underscore.

Parameters can be numbers, or strings, or arrays of numbers or strings:

PMI_model_name {
a = 1
b = "string"
c = (1.2 3.4 5.6 7.8)
d = ("red" "blue" "green")

}

NOTE Arrays must consist of either numbers or strings only. Mixed arrays
containing both numbers and strings are not supported. An empty array,
such as c=(), is considered a numeric array of size 0.

The parameters can be specified regionwise and materialwise:

Region = "Region.1" {
PMI_model_name {
...
}

}
Material = "AlGaAs" {

PMI_model_name {
...
}

}

The method ReadParameter() can be used to obtain the value of a parameter given its name.
ReadParameter() returns a pointer to a variable of type PMIBaseParam:

const PMIBaseParam* p = ReadParameter ("name of parameter");

A NULL pointer indicates that the parameter has not been defined in the parameter file.
Otherwise, the method:

PMIBaseParam::ValueType()

returns the value type (PMIBaseParam::real or PMIBaseParam::string) of the
parameter. Similarly, the method:

PMIBaseParam::DataType()

returns the data type (PMIBaseParam::scalar or PMIBaseParam::vector) of the
parameter. In the case of an array parameter, the size of the array can be obtained by:

PMIBaseParam::size()
Sentaurus™ Device User Guide 1089
N-2017.09



38: Physical Model Interface
Parameter File of Sentaurus Device
The size of scalar parameters is always 1.

Depending on the type of a parameter, its value can be accessed through an assignment
statement:

double a = *p; // real, scalar
double b = (*p)[index]; // real, vector
const char* c= *p; // string, scalar
const char* d = (*p)[index]; // string, vector

An error occurs if the type of a parameter is incompatible with the left-hand side in the
assignment statement.

In the case of a real scalar parameter, the method InitParameter() checks if the parameter
has been specified in the parameter file:

double value = InitParameter ("pi", 3.14159);

If the parameter has been specified, the given value is taken. Otherwise, the default value is
used.

An alternative version of InitParameter() is available for vector-valued parameters:

std::vector<double> v;
v.push_back (-1); // default value
v.push_back (-2); // default value
InitParameter ("vec", v);

If the parameter vec is found in the parameter file, the vector v is redefined with the new
values. Otherwise, the existing default values in v are left unchanged.

Variants of these two methods are also available for string parameters:

const char* value = InitStringParameter ("scalar string", "default value");
std::vector<const char*> s;
InitStringParameter ("vector string parameter", s);

NOTE PMI model parameters also can be specified in the command file (see
Command File of Sentaurus Device on page 1065). Parameters in the
command file take precedence over parameters in the parameter file.
1090 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Parallelization
Parallelization

During a parallel simulation, Sentaurus Device may invoke a PMI model concurrently from
different threads. Therefore the computational functions must be implemented in a thread-safe
manner. The following rules guarantee a thread-safe PMI:

■ Do not use global variables.

■ Class variables are only modified in the constructor and destructor. Class variables may be
read in the computational functions, but they must not be modified.

■ Within the computational functions, all temporary variables are allocated as either
automatic variables or dynamic variables with the help of the new and delete operators.

Thread-Local Storage

The thread-local storage template class PMI_TLS provides a mechanism to store data per
thread. This can be useful to optimize the runtime performance of a PMI. Consider an example
where a large data structure is allocated and deallocated with each compute call:

class Recombination : public PMI_Recombination_Base {
public:

...
void compute (const Input& input, Output& output)
{

BigData data;
data.initialize ();
// compute output

}
};

With the help of the template class PMI_TLS, a copy of BigData is allocated for each thread
on demand:

class Recombination : public PMI_Recombination_Base {
private:

PMI_TLS<BigData> Data;

public:
...
void compute (const Input& input, Output& output)
{

bool exists;
BigData& data = Data.local (exists);
if (!exists) {

data.initialize ();
Sentaurus™ Device User Guide 1091
N-2017.09



38: Physical Model Interface
Debugging
}
// compute output

}
};

The function call Data.local(exists) creates a new instance of BigData for each thread
if it does not exist already. The argument exists is used to check if data has been freshly
allocated. In this case, data is initialized. Otherwise, it was already initialized in a previous
compute() call.

The template class PMI_TLS is declared as follows:

template <typename T> class PMI_TLS {
public:

T& local (bool& exists);
T& local ();
size_t size () const;
T& operator [] (size_t index);

};

Both variants of the method local() return a reference to a thread-local element. The optional
argument exists indicates whether the element has been newly allocated (false), or if it was
already present (true).

The function size() returns the number of allocated elements. The array access operator []
can be used to iterate over the elements of the container.

NOTE The array access operator [] should only be used in a sequential section
of the code. For example, it may be used in the destructor of the PMI.

Debugging

Print statements represent the simplest approach for debugging a PMI. They can be inserted
anywhere in the code to print the values of a variable, for example:

void Auger_Recombination::
compute (const Input& input, Output& output)

{ output.r = C * (input.n + input.p) *
(input.n*input.p - input.nie*input.nie);

if (output.r < 0.0) {
output.r = 0.0;

}
std::cout << "n   = " << input.n << std::endl;
std::cout << "p   = " << input.p << std::endl;
1092 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Debugging
std::cout << "nie = " << input.nie << std::endl;
std::cout << "r   = " << output.r << std::endl;

}

It is also possible to use a debugger to catch errors in a PMI subroutine. The following
instructions apply to gdb, the GNU debugger. The same approach also can be adjusted to work
with other debuggers:

■ Compile the PMI source code in debug mode by using the -g option:

cmi -g pmi_Auger.C

■ Determine the name of the Sentaurus Device binary. The command:

sdevice -@ldd

should produce output similar to the following:

path to executable: /usr/sentaurus/tcad/N-2017.09/linux64/bin
executable: sdevice-1.4

/usr/sentaurus/tcad/N-2017.09/linux64/bin/sdevice-1.4:
ELF 64-bit LSB executable, AMD x86-64, version 1 (SYSV),
for GNU/Linux 2.6.9, dynamically linked (uses shared libs), stripped

In this example, /usr/sentaurus/tcad/N-2017.09/linux64/bin/sdevice-1.4
is the name of the Sentaurus Device binary.

■ Start the debugger gdb on the Sentaurus Device binary:

gdb /usr/sentaurus/tcad/N-2017.09/linux64/bin/sdevice-1.4

■ Verify the setting of the environment variables:

show environment

In particular, the variables STROOT and STRELEASE must be defined properly. If necessary,
use the following gdb command to define these variables:

set environment STROOT /usr/sentaurus
set environment STRELEASE N-2017.09

■ It is not possible to define a break point in the PMI code until the corresponding shared
object file has been loaded. Therefore, run your simulation:

run pp1_des.cmd

and watch for messages regarding the loading of shared object files. All the shared object
files for PMIs are loaded at the very beginning, usually within seconds of starting Sentaurus
Device. Afterwards, use the shortcut keys Ctrl+C to interrupt the simulation.

■ You can now define a break point in the PMI source code, for example:

break pmi_Auger.C:100

This command inserts a break point on line 100 in the file pmi_Auger.C.
Sentaurus™ Device User Guide 1093
N-2017.09



38: Physical Model Interface
Generation–Recombination Model
■ After defining all required break points, you can resume the simulation with the command:

continue

The debugger will now stop whenever the control flow reaches a break point, and all the
standard gdb commands are available for debugging.

Generation–Recombination Model

The recombination rate  appears in the electron and hole continuity equations (see Eq. 53,
p. 181).

Dependencies

The recombination rate  may depend on these variables:

The PMI model must compute the following results: 

In the case of the standard interface, the following derivatives must be computed as well: 

t Lattice temperature [ ]

n Electron density [ ]

p Hole density [ ]

nie Effective intrinsic density [ ]

f Absolute value of electric field [ ]

r Generation–recombination rate [ ]

drdt Derivative of r with respect to t [ ]

drdn Derivative of r with respect to n [ ]

drdp Derivative of r with respect to p [ ]

drdnie Derivative of r with respect to nie [ ]

drdf Derivative of r with respect to f [ ]

Rnet

Rnet

K

cm 3–

cm 3–

cm 3–

Vcm 1–

cm 3– s 1–

cm 3– s 1– K 1–

s 1–

s 1–

s 1–

cm 2– s 1– V 1–
1094 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Generation–Recombination Model
Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_Recombination : public PMI_Vertex_Interface {

public:
  PMI_Recombination (const PMI_Environment& env);
  virtual ~PMI_Recombination ();

virtual useCorrectedDensities() {return false;}

  virtual void Compute_r
    (const double t, const double n, const double p,
     const double nie, const double f, double& r) = 0;

  virtual void Compute_drdt
    (const double t, const double n, const double p,
     const double nie, const double f, double& drdt) = 0;

  virtual void Compute_drdn
    (const double t, const double n, const double p,
     const double nie, const double f, double& drdn) = 0;

  virtual void Compute_drdp
    (const double t, const double n, const double p,
     const double nie, const double f, double& drdp) = 0;

  virtual void Compute_drdnie
    (const double t, const double n, const double p,
     const double nie, const double f, double& drdnie) = 0;
virtual void Compute_drdf

    (const double t, const double n, const double p,
     const double nie, const double f, double& drdf) = 0;
};

The prototype for the virtual constructor is:

typedef PMI_Recombination* new_PMI_Recombination_func
(const PMI_Environment& env);

extern "C" new_PMI_Recombination_func new_PMI_Recombination;

By default, Sentaurus Device assumes that a PMI generation–recombination model depends on
the electric field. However, you can implement the optional function
PMI_Recombination_ElectricField() to indicate whether the model depends on the
electric field. 
Sentaurus™ Device User Guide 1095
N-2017.09



38: Physical Model Interface
Generation–Recombination Model
By default, the generation–recombination PMI passes uncorrected carrier and intrinsic
densities regardless of quantum corrections or Fermi statistics activation in the Sentaurus
Device command file.

To force Sentaurus Device to pass the corrected carrier and intrinsic densities to the
generation–recombination PMI, the virtual function useCorrectedDensity() in the PMI
must return true. For visualization purposes, two new data entries are available:

■ QCEffectiveIntrinsicDensity is an improved version of
EffectiveIntrinsicDensity and contains corrections due to Fermi statistics and
quantization effects.

■ QCEffectiveBandgap is the EffectiveBandgap with extra narrowing due to the
quantum potentials and all the effects implemented through the quantum-potential
framework.

If the model does not depend on the electric field (return value of 0), the method
Compute_drdf() is not called, and the matrix assembly in Sentaurus Device works more
efficiently:

typedef int PMI_Recombination_ElectricField_func ();
extern "C"
PMI_Recombination_ElectricField_func PMI_Recombination_ElectricField;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_Recombination_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float t;    // lattice temperature
pmi_float n;    // electron density
pmi_float p;    // hole density
pmi_float nie; // effective intrinsic density
pmi_float f;    // absolute value of electric field

};

class Output {
public:

pmi_float r; // recombination rate
};

PMI_Recombination_Base (const PMI_Environment& env);
virtual ~PMI_Recombination_Base ();
1096 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Nonlocal Generation–Recombination Model
virtual useCorrectedDensities() {return false;}

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_Recombination_Base* new_PMI_Recombination_Base_func
(const PMI_Environment& env);

extern "C" new_PMI_Recombination_Base_func new_PMI_Recombination_Base;

The optional function PMI_Recombination_ElectricField() is recognized as well, as in
the case of the standard interface.

Example: Auger Recombination

See Standard C++ Interface on page 1045 and Simplified C++ Interface on page 1049.

Nonlocal Generation–Recombination Model

The nonlocal generation–recombination model computes individual electron and hole
recombination rates in Eq. 53, p. 181. The name of the PMI model must appear as a
recombination model within the Physics section of the command file:

Physics {
Recombination (pmi_model_name)

}

The computed electron and hole recombination rates also can be plotted in the Plot section:

Plot {
PMIeNonLocalRecombination
PMIhNonLocalRecombination

}

Dependencies

Nonlocal Interface on page 1053 discusses the supported dependencies of nonlocal models.
The actual dependencies must be defined with the method DefineDependencies(), and the
Jacobian matrices must be defined with the method DefineJacobians().
Sentaurus™ Device User Guide 1097
N-2017.09



38: Physical Model Interface
Nonlocal Generation–Recombination Model
The method Compute_parallel() must compute the following results for the vertices
defined in the input argument:

Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_NonLocal_Recombination : public PMI_Device_Interface {

public:
class Input {
public:

const des_region* region;          // all vertices belong to this region
const std::vector<int>& vertices; // list of vertices

};

class Output {
public:

std::vector<double>& elec; // nonlocal recombination rates (electrons)
std::vector<double>& hole; // nonlocal recombination rates (holes)
des_id_to_jacobian_map& J_elec; // derivatives (electrons)
des_id_to_jacobian_map& J_hole; // derivatives (holes)

};

PMI_NonLocal_Recombination (const PMI_Device_Environment& env);
virtual ~PMI_NonLocal_Recombination ();

virtual void DefineDependencies
(std::vector<des_data::des_id>& dependencies) = 0;

virtual void DefineJacobians (des_id_to_jacobian_map& J_elec,
                                des_id_to_jacobian_map& J_hole) = 0;

virtual void Compute_parallel (const Input& input, Output& output) = 0;

virtual bool NeedNewEdges () { return false; }
};

elec Vector of electron recombination rates [ ]

hole Vector of hole recombination rates [ ]

J_elec Map of electron Jacobian matrices

J_hole Map of hole Jacobian matrices

cm 3– s 1–

cm 3– s 1–
1098 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Nonlocal Generation–Recombination Model
The prototype for the virtual constructor is:

typedef PMI_NonLocal_Recombination* new_PMI_NonLocal_Recombination_func
(const PMI_Device_Environment& env);

extern "C" new_PMI_NonLocal_Recombination_func new_PMI_NonLocal_Recombination;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_NonLocal_Recombination_Base : public PMI_Device_Base {

public:
class Input : public PMI_Device_Input_Base {
public:

const des_region* region;          // all vertices belong to this region
const std::vector<int>& vertices; // list of vertices

};

class Output {
public:

std::vector<pmi_float>& elec;
// nonlocal recombination rates (electrons)

std::vector<pmi_float>& hole; // nonlocal recombination rates (holes)
sdevice_id_to_jacobian_map& J_elec; // derivatives (electrons)
sdevice_id_to_jacobian_map& J_hole; // derivatives (holes)

};

PMI_NonLocal_Recombination_Base (const PMI_Device_Environment& env);
virtual ~PMI_NonLocal_Recombination_Base ();

virtual void DefineDependencies
(std::vector<sdevice_data::sdevice_id>& dependencies) = 0;

virtual void DefineJacobians (sdevice_id_to_jacobian_map& J_elec,
                                sdevice_id_to_jacobian_map& J_hole) = 0;

virtual void Compute_parallel (const Input& input, Output& output) = 0;

virtual bool NeedNewEdges () { return false; }
};

The prototype for the virtual constructor is given as:

typedef PMI_NonLocal_Recombination_Base*
new_PMI_NonLocal_Recombination_Base_func

(const PMI_Device_Environment& env);
Sentaurus™ Device User Guide 1099
N-2017.09



38: Physical Model Interface
Avalanche Generation Model
extern "C" new_PMI_NonLocal_Recombination_Base_func
new_PMI_NonLocal_Recombination_Base;

Example: Point-to-Point Tunneling Model

This example is presented in Example: Point-to-Point Tunneling Model on page 1056.

Avalanche Generation Model

The generation rate due to impact ionization can be expressed as:

(1251)

where  and  are the ionization coefficients for electrons and holes, respectively (compare
with Eq. 419, p. 406). The PMI in Sentaurus Device allows you to redefine the calculation of

 and .

Dependencies

The ionization coefficients  and  may depend on the following variables: 

The parameter ct represents the electron temperature during the calculation of  and the hole
temperature during the calculation of .

The parameter currentWoMob can be used to compute anisotropic avalanche generation. Only
the first  components of the vector currentWoMob are defined, where  is equal to the
dimension of the problem. It is recommended that only the direction of the vector
currentWoMob is taken into account, but not its magnitude.

F Driving force [ ]

t Lattice temperature [K]

bg Band gap [eV]

ct Carrier temperature [K]

currentWoMob[3] Current without mobility [ ]

G
|| αnnvn αppvp+=

αn αp

αn αp

αn αp

Vcm 1–

cm 4– AVs

αn

αp

d d
1100 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Avalanche Generation Model
The PMI model must compute the following results: 

In the case of the standard interface, the following derivatives must be computed as well: 

Only the first  components of the vector dalphadcurrentWoMob need to be computed.

Standard C++ Interface

Different driving forces for avalanche generation can be selected in the command file. The
enumeration type PMI_AvalancheDrivingForce, defined in PMIModels.h, is used to
reflect your selection:

enum PMI_AvalancheDrivingForce {
PMI_AvalancheElectricField,
PMI_AvalancheParallelElectricField,
PMI_AvalancheGradQuasiFermi,
PMI_AvalancheCarrierTemperatureCanali

};

The following base class is declared in the file PMIModels.h:

class PMI_Avalanche : public PMI_Vertex_Interface {

private:
  const PMI_AvalancheDrivingForce drivingForce;

public:
  PMI_Avalanche (const PMI_Environment& env,
                 const PMI_AvalancheDrivingForce force);
  virtual ~PMI_Avalanche ();

  PMI_AvalancheDrivingForce AvalancheDrivingForce () const
    { return drivingForce; }

alpha Ionization coefficient [ ]

dalphadF Derivative of alpha with respect to F [ ]

dalphadt Derivative of alpha with respect to t [ ]

dalphadbg Derivative of alpha with respect to bg [ ]

dalphadct Derivative of alpha with respect to ct [ ]

dalphadcurrentWoMob[3] Derivative of alpha with respect to currentWoMob
[ ]

cm 1–

V 1–

cm 1– K 1–

cm 1– eV 1–

cm 1– K 1–

cm3A 1– V 1– s 1–

d

Sentaurus™ Device User Guide 1101
N-2017.09



38: Physical Model Interface
Avalanche Generation Model
  virtual void Compute_alpha
    (const double F, const double t, const double bg,
     const double ct, const double currentWoMob[3], double& alpha) = 0;

  virtual void Compute_dalphadF
    (const double F, const double t, const double bg,
     const double ct, const double currentWoMob[3], double& dalphadF) = 0;

  virtual void Compute_dalphadt
    (const double F, const double t, const double bg,
     const double ct, const double currentWoMob[3], double& dalphadt) = 0;

  virtual void Compute_dalphadbg
    (const double F, const double t, const double bg,
     const double ct, const double currentWoMob[3], double& dalphadbg) = 0;

  virtual void Compute_dalphadct
    (const double F, const double t, const double bg,
     const double ct, const double currentWoMob[3], double& dalphadct) = 0;

  virtual void Compute_dalphadcurrentWoMob
    (const double F, const double t, const double bg,
     const double ct, const double currentWoMob[3],

double dalphadcurrentWoMob[3]) = 0;
};

Two virtual constructors are required for the calculation of the ionization coefficients  and
:

typedef PMI_Avalanche* new_PMI_Avalanche_func
(const PMI_Environment& env, const PMI_AvalancheDrivingForce force);

extern "C" new_PMI_Avalanche_func new_PMI_e_Avalanche;
extern "C" new_PMI_Avalanche_func new_PMI_h_Avalanche;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_Avalanche_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float F;                // driving force
pmi_float t;                // lattice temperature
pmi_float bg;               // band gap

αn

αp
1102 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Avalanche Generation Model
pmi_float ct;               // carrier temperature
pmi_float currentWoMob[3]; // current density (without mobility)

};

class Output {
public:

pmi_float alpha; // ionization coefficient
};

PMI_Avalanche_Base (const PMI_Environment& env,
const PMI_AvalancheDrivingForce force);

virtual ~PMI_Avalanche_Base ();

PMI_AvalancheDrivingForce AvalancheDrivingForce () const;

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_Avalanche_Base* new_PMI_Avalanche_Base_func
(const PMI_Environment& env, const PMI_AvalancheDrivingForce force);

extern "C" new_PMI_Avalanche_Base_func new_PMI_e_Avalanche_Base;
extern "C" new_PMI_Avalanche_Base_func new_PMI_h_Avalanche_Base;

Example: Okuto Model

Okuto and Crowell propose the following expression for the ionization coefficient :

(1252)

This built-in model is discussed in Okuto–Crowell Model on page 417 and its implementation
as a PMI model is:

#include "PMIModels.h"

class Okuto_Avalanche : public PMI_Avalanche {

protected:
  const double T0;
  double a, b, c, d;
  
public:
  Okuto_Avalanche (const PMI_Environment& env,
                   const PMI_AvalancheDrivingForce force);

α

α F( ) a 1 c T T0–( )+[ ]F
b 1 d T T0–( )+[ ]

F
----------------------------------------- 
 

2
–exp=
Sentaurus™ Device User Guide 1103
N-2017.09



38: Physical Model Interface
Avalanche Generation Model
  ~Okuto_Avalanche ();

  void Compute_alpha
    (const double F, const double t, const double bg,
     const double ct, const double currentWoMob[3], double& alpha);

  void Compute_dalphadF
    (const double F, const double t, const double bg,
     const double ct, const double currentWoMob[3], double& dalphadF);

  void Compute_dalphadt
    (const double F, const double t, const double bg,
     const double ct, const double currentWoMob[3], double& dalphadt);

  void Compute_dalphadbg
    (const double F, const double t, const double bg,
     const double ct, const double currentWoMob[3], double& dalphadbg);

  void Compute_dalphadct
    (const double F, const double t, const double bg,
     const double ct, const double currentWoMob[3], double& dalphadct);

  void Compute_dalphadcurrentWoMob
    (const double F, const double t, const double bg,
     const double ct, const double currentWoMob[3], double 
dalphadcurrentWoMob[3]);
};

Okuto_Avalanche::
Okuto_Avalanche (const PMI_Environment& env,
                 const PMI_AvalancheDrivingForce force) :
  PMI_Avalanche (env, force),
  T0 (300.0)
{
}

Okuto_Avalanche::
~Okuto_Avalanche ()
{
}

void Okuto_Avalanche::
Compute_alpha (const double F, const double t, const double bg,

const double ct, const double currentWoMob[3], double& alpha)
{ const double aa = a * (1.0 + c * (t - T0));
  const double bb = b * (1.0 + d * (t - T0)) / F;
  alpha = aa * F * exp (-bb*bb);
}

1104 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Avalanche Generation Model
void Okuto_Avalanche::
Compute_dalphadF (const double F, const double t, const double bg,

const double ct, const double currentWoMob[3], double& 
dalphadF)
{ const double aa = a * (1.0 + c * (t - T0));
  const double bb = b * (1.0 + d * (t - T0)) / F;
  const double alpha = aa * F * exp (-bb*bb);
  dalphadF = (alpha / F) * (1.0 + 2.0*bb*bb);
}

void Okuto_Avalanche::
Compute_dalphadt (const double F, const double t, const double bg,

const double ct, const double currentWoMob[3], double& 
dalphadt)
{ const double aa = a * (1.0 + c * (t - T0));
  const double bb = b * (1.0 + d * (t - T0)) / F;
  const double tmp = F * exp (-bb*bb);
  dalphadt = tmp * (a * c - 2.0 * aa * bb * b * d / F);
}

void Okuto_Avalanche::
Compute_dalphadbg (const double F, const double t, const double bg,

const double ct, const double currentWoMob[3], double& 
dalphadbg)
{ dalphadbg = 0.0;
}

void Okuto_Avalanche::
Compute_dalphadct (const double F, const double t, const double bg,

const double ct, const double currentWoMob[3], double& 
dalphadct)
{ dalphadct = 0.0;
}

void Okuto_Avalanche::
Compute_dalphadcurrentWoMob (const double F, const double t, const double bg,

const double ct, const double currentWoMob[3],
double dalphadcurrentWoMob[3])

{ const int dim = ReadDimension ();
for (int k = 0; k < dim; k++) {
dalphadcurrentWoMob [k] = 0.0;

}
}

class Okuto_e_Avalanche : public Okuto_Avalanche {

public:
Sentaurus™ Device User Guide 1105
N-2017.09



38: Physical Model Interface
Avalanche Generation Model
  Okuto_e_Avalanche (const PMI_Environment& env,
                     const PMI_AvalancheDrivingForce force);

  ~Okuto_e_Avalanche () {}
};

Okuto_e_Avalanche::
Okuto_e_Avalanche (const PMI_Environment& env,
                   const PMI_AvalancheDrivingForce force) :
  Okuto_Avalanche (env, force)
{ // default values
  a = InitParameter ("a_e", 0.426);
  b = InitParameter ("b_e", 4.81e5);
  c = InitParameter ("c_e", 3.05e-4);
  d = InitParameter ("d_e", 6.86e-4);
}

class Okuto_h_Avalanche : public Okuto_Avalanche {

public:
  Okuto_h_Avalanche (const PMI_Environment& env,
                     const PMI_AvalancheDrivingForce force);

  ~Okuto_h_Avalanche () {}
};

Okuto_h_Avalanche::
Okuto_h_Avalanche (const PMI_Environment& env,
                   const PMI_AvalancheDrivingForce force) :
  Okuto_Avalanche (env, force)
{ // default values
  a = InitParameter ("a_h", 0.243);
  b = InitParameter ("b_h", 6.53e+5);
  c = InitParameter ("c_h", 5.35e-4);
  d = InitParameter ("d_h", 5.67e-4);
}

extern "C"
PMI_Avalanche* new_PMI_e_Avalanche
  (const PMI_Environment& env, const PMI_AvalancheDrivingForce force)
{ return new Okuto_e_Avalanche (env, force);
}

extern "C"
PMI_Avalanche* new_PMI_h_Avalanche
  (const PMI_Environment& env, const PMI_AvalancheDrivingForce force)
{ return new Okuto_h_Avalanche (env, force);
}

1106 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Mobility Models
Mobility Models

Sentaurus Device supports three types of PMI mobility models:

■ Doping-dependent mobility

■ Mobility degradation at interfaces

■ High-field saturation

PMI and built-in models can be used simultaneously. See Chapter 15 on page 317 for more
information about how the contributions of the different models are combined. PMI mobility
models support anisotropic calculations and can be evaluated along different crystallographic
axes. The enumeration type:

enum PMI_AnisotropyType {
PMI_Isotropic,
PMI_Anisotropic

};

determines the axis. The default is isotropic mobility. If anisotropic mobilities are activated in
the command file, the PMI mobility classes are also instantiated in the anisotropic direction.

Doping-Dependent Mobility

A doping-dependent PMI model must account for both the constant mobility and doping-
dependent mobility models discussed in Mobility due to Phonon Scattering on page 318
and Doping-Dependent Mobility Degradation on page 318.

Dependencies

The constant mobility and doping-dependent mobility  may depend on the following
variables: 

t Lattice temperature [K]

n Electron density [ ]

p Hole density [ ]

μdop

cm 3–

cm 3–
Sentaurus™ Device User Guide 1107
N-2017.09



38: Physical Model Interface
Doping-Dependent Mobility
The PMI model must compute the following results:

In the case of the standard interface, the following derivatives must be computed as well: 

In most cases, it is not necessary to compute the derivatives with respect to the dopant
concentrations. 

However, to model random dopant fluctuations (see Random Dopant Fluctuations on
page 683), the PMI model must override the functions that compute the following values: 

Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_DopingDepMobility : public PMI_Vertex_Interface {

private:
const PMI_AnisotropyType anisoType;

public:
  PMI_DopingDepMobility (const PMI_Environment& env,

const PMI_AnisotropyType anisotype);
  virtual ~PMI_DopingDepMobility ();

PMI_AnisotropyType AnisotropyType () const { return anisoType; }

  virtual void Compute_m
    (const double n, const double p,
     const double t, double& m) = 0;

  virtual void Compute_dmdn
    (const double n, const double p,
     const double t, double& dmdn) = 0;

m Mobility  [ ]

dmdn Derivative of  with respect to n [ ]

dmdp Derivative of  with respect to p [ ]

dmdt Derivative of  with respect to t [ ]

dmdNa Derivative of  with respect to the acceptor concentration [ ]

dmdNd Derivative of  with respect to the donor concentration [ ]

μdop cm2V 1– s 1–

μdop cm5V 1– s 1–

μdop cm5V 1– s 1–

μdop cm2V 1– s 1– K 1–

μdop cm5V 1– s 1–

μdop cm5V 1– s 1–
1108 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Doping-Dependent Mobility
  virtual void Compute_dmdp
    (const double n, const double p,
     const double t, double& dmdp) = 0;

  virtual void Compute_dmdt
    (const double n, const double p,
     const double t, double& dmdt) = 0;

virtual void Compute_dmdNa
    (const double n, const double p,
     const double t, double& dmdNa);

virtual void Compute_dmdNd
    (const double n, const double p,
     const double t, double& dmdNd);
};

Two virtual constructors are required for electron and hole mobilities:

typedef PMI_DopingDepMobility* new_PMI_DopingDepMobility_func
(const PMI_Environment& env, const PMI_AnisotropyType anisotype);

extern "C" new_PMI_DopingDepMobility_func new_PMI_DopingDep_e_Mobility;
extern "C" new_PMI_DopingDepMobility_func new_PMI_DopingDep_h_Mobility;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_DopingDepMobility_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float n;         // electron density
pmi_float p;         // hole density
pmi_float t;         // lattice temperature
pmi_float acceptor; // total acceptor concentration
pmi_float donor;     // total donor concentration

};

class Output {
public:

pmi_float m; // doping-dependent mobility
};

PMI_DopingDepMobility_Base (const PMI_Environment& env,
Sentaurus™ Device User Guide 1109
N-2017.09



38: Physical Model Interface
Doping-Dependent Mobility
const PMI_AnisotropyType anisotype);
virtual ~PMI_DopingDepMobility_Base ();

PMI_AnisotropyType AnisotropyType () const;

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_DopingDepMobility_Base* new_PMI_DopingDepMobility_Base_func
(const PMI_Environment& env, const PMI_AnisotropyType anisotype);

extern "C" new_PMI_DopingDepMobility_Base_func 
new_PMI_DopingDep_e_Mobility_Base;

extern "C" new_PMI_DopingDepMobility_Base_func
new_PMI_DopingDep_h_Mobility_Base;

Example: Masetti Model

The built-in Masetti model (see Masetti Model on page 320) can also be implemented as a PMI
model:

#include "PMIModels.h"

class Masetti_DopingDepMobility : public PMI_DopingDepMobility {
protected:
  const double T0;
  double mumax, Exponent, mumin1, mumin2, mu1, Pc, Cr, Cs, alpha, beta;

public:
  Masetti_DopingDepMobility (const PMI_Environment& env,

const PMI_AnisotropyType anisotype);
  ~Masetti_DopingDepMobility () {}

  void Compute_m
    (const double n, const double p,
     const double t, double& m);

  void Compute_dmdn
    (const double n, const double p,
     const double t, double& dmdn);

  void Compute_dmdp
    (const double n, const double p,
     const double t, double& dmdp);

  void Compute_dmdt
1110 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Doping-Dependent Mobility
    (const double n, const double p,
     const double t, double& dmdt);
};

Masetti_DopingDepMobility::
Masetti_DopingDepMobility (const PMI_Environment& env,

const PMI_AnisotropyType anisotype) :
  PMI_DopingDepMobility (env, anisotype),
  T0 (300.0)
{
}

void Masetti_DopingDepMobility::
Compute_m (const double n, const double p,
           const double t, double& m)
{ const double mu_const = mumax * pow (t/T0, -Exponent);
  const double Ni = Max (ReadDoping (PMI_Donor) +
                         ReadDoping (PMI_Acceptor), 1.0);
  m = mumin1 * exp (-Pc / Ni) +
      (mu_const - mumin2) / (1.0 + pow (Ni / Cr, alpha)) -
      mu1 / (1.0 + pow (Cs / Ni, beta));
}

void Masetti_DopingDepMobility::
Compute_dmdn (const double n, const double p,
              const double t, double& dmdn)
{ dmdn = 0.0;
}

void Masetti_DopingDepMobility::
Compute_dmdp (const double n, const double p,
              const double t, double& dmdp)
{ dmdp = 0.0;
}

void Masetti_DopingDepMobility::
Compute_dmdt (const double n, const double p,
              const double t, double& dmdt)
{ const double Ni = Max (ReadDoping (PMI_Donor) +
                         ReadDoping (PMI_Acceptor), 1.0);
  dmdt = mumax * (-Exponent/T0) * pow (t/T0, -Exponent - 1.0) /
         (1.0 + pow (Ni / Cr, alpha));
}

class Masetti_e_DopingDepMobility : public Masetti_DopingDepMobility {
public:
  Masetti_e_DopingDepMobility (const PMI_Environment& env,
Sentaurus™ Device User Guide 1111
N-2017.09



38: Physical Model Interface
Doping-Dependent Mobility
const PMI_AnisotropyType anisotype);
  ~Masetti_e_DopingDepMobility () {}
};

Masetti_e_DopingDepMobility::
Masetti_e_DopingDepMobility (const PMI_Environment& env,

const PMI_AnisotropyType anisotype) :
  Masetti_DopingDepMobility (env, anisotype)

{ // default values
  mumax = InitParameter ("mumax_e", 1417.0);
  Exponent = InitParameter ("Exponent_e", 2.5);
  mumin1 = InitParameter ("mumin1_e", 52.2);
  mumin2 = InitParameter ("mumin2_e", 52.2);
  mu1 = InitParameter ("mu1_e", 43.4);
  Pc = InitParameter ("Pc_e", 0.0);
  Cr = InitParameter ("Cr_e", 9.68e16);
  Cs = InitParameter ("Cs_e", 3.43e20);
  alpha = InitParameter ("alpha_e", 0.680);
  beta = InitParameter ("beta_e", 2.0);
}

class Masetti_h_DopingDepMobility : public Masetti_DopingDepMobility {
public:
  Masetti_h_DopingDepMobility (const PMI_Environment& env,

const PMI_AnisotropyType anisotype);
  ~Masetti_h_DopingDepMobility () {}
};

Masetti_h_DopingDepMobility::
Masetti_h_DopingDepMobility (const PMI_Environment& env,

const PMI_AnisotropyType anisotype) :
  Masetti_DopingDepMobility (env, anisotype)

{ // default values
  mumax = InitParameter ("mumax_h", 470.5);
  Exponent = InitParameter ("Exponent_h", 2.2);
  mumin1 = InitParameter ("mumin1_h", 44.9);
  mumin2 = InitParameter ("mumin2_h", 0.0);
  mu1 = InitParameter ("mu1_h", 29.0);
  Pc = InitParameter ("Pc_h", 9.23e16);
  Cr = InitParameter ("Cr_h", 2.23e17);
  Cs = InitParameter ("Cs_h", 6.10e20);
  alpha = InitParameter ("alpha_h", 0.719);
  beta = InitParameter ("beta_h", 2.0);
}

extern "C"
1112 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Multistate Configuration–Dependent Bulk Mobility
PMI_DopingDepMobility* new_PMI_DopingDep_e_Mobility
  (const PMI_Environment& env, const PMI_AnisotropyType anisotype)
{ return new Masetti_e_DopingDepMobility (env, anisotype);
}

extern "C"
PMI_DopingDepMobility* new_PMI_DopingDep_h_Mobility
  (const PMI_Environment& env, const PMI_AnisotropyType anisotype)
{ return new Masetti_h_DopingDepMobility (env, anisotype);
}

Multistate Configuration–Dependent Bulk Mobility

This PMI allows you to implement multistate configuration (MSC)–dependent bulk mobility
models.

Command File

To activate a PMI of this type, as an option to eMobility, hMobility, or Mobility in the
Physics section, specify:

DopingDependence(
PMIModel (

Name = <string>
MSConfig = <string>
Index = <int>
String = <string>

)
)

The options of PMIModel are described in Command File on page 1173.

Dependencies

The mobility may depend on the variables: 

n Electron density [ ]

p Hole density [ ]

T Lattice temperature [ ]

cm 3–

cm 3–

K

Sentaurus™ Device User Guide 1113
N-2017.09



38: Physical Model Interface
Multistate Configuration–Dependent Bulk Mobility
The model must compute the following quantities: 

In the case of the standard interface, the following derivatives must be computed as well: 

Standard C++ Interface

The PMI offers a base class that presents the following interface:

class PMI_MSC_Mobility : public PMI_MSC_Vertex_Interface
{
public:
PMI_MSC_Mobility (const PMI_Environment& env,
const std::string& msconfig_name,
const int model_index,
const std::string& model_string,
const PMI_AnisotropyType aniso);

// otherwise, see Standard C++ Interface on page 1175
};

Apart from the name of the base class and the constructor, the explanations in Standard C++
Interface on page 1175 apply here as well.

eT Electron temperature [ ]

hT Hole temperature [ ]

s Multistate configuration occupation probabilities [ ]

val Mobility  [ ]

dval_dn Derivative with respect to electron density [ ]

dval_dp Derivative with respect to hole density [ ]

dval_dT Derivative with respect to lattice temperature [ ]

dval_deT Derivative with respect to electron temperature [ ]

dval_dhT Derivative with respect to hole temperature [ ]

dval_ds Derivative with respect to multistate configuration occupation probabilities
[ ]

K

K

1

μdop cm2V 1– s 1–

cm5V 1– s 1–

cm5V 1– s 1–

cm2V 1– s 1– K 1–

cm2V 1– s 1– K 1–

cm2V 1– s 1– K 1–

cm2V 1– s 1–
1114 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Multistate Configuration–Dependent Bulk Mobility
The following virtual constructor must be implemented:

typedef PMI_MSC_Mobility* new_PMI_MSC_Mobility_func
(const PMI_Environment& env, const std::string& msconfig_name,
int model_index, const std::string& model_string,
const PMI_AnisotropyType anisotype);

extern "C" new_PMI_MSC_Mobility_func new_PMI_MSC_Mobility;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_MSC_Mobility_Base : public PMI_MSC_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

const pmi_float& n () const;   // electron density
const pmi_float& p () const;   // hole density
const pmi_float& T () const;   // lattice temperature
const pmi_float& eT () const; // electron temperature
const pmi_float& hT () const; // hole temperature
const pmi_float& s (size_t ind) const; // phase fraction

};

class Output {
public:

pmi_float& val (); // mobility
};

PMI_MSC_Mobility_Base (const PMI_Environment& env,
const std::string& msconfig_name,
const int model_index,
const std::string& model_string,
const PMI_AnisotropyType anisotype);

virtual ~PMI_MSC_Mobility_Base ();

PMI_AnisotropyType AnisotropyType () const;

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_MSC_Mobility_Base* new_PMI_MSC_Mobility_Base_func
(const PMI_Environment& env, const std::string& msconfig_name,
const int model_index, const std::string& model_string,
Sentaurus™ Device User Guide 1115
N-2017.09



38: Physical Model Interface
Mobility Degradation at Interfaces
const PMI_AnisotropyType anisotype);
extern "C" new_PMI_MSC_Mobility_Base_func new_PMI_MSC_Mobility_Base;

Mobility Degradation at Interfaces

Sentaurus Device uses Mathiessen’s rule:

(1253)

to combine the constant and doping-dependent mobility , and the surface contribution
 (see Mobility Degradation at Interfaces on page 332). To express no mobility

degradation, for example, in the bulk of a device, it is necessary to set . To avoid
numeric difficulties, the PMI requires the calculation of the inverse mobility  instead
of .

As an additional precaution, Sentaurus Device does not evaluate the PMI model if the normal
electric field  is less than EnormMinimum, where EnormMinimum is a parameter that can
be specified in the PMI_model_name section of the parameter file. By default,
EnormMinimum = 1 V/cm is used.

Dependencies

The mobility degradation at interfaces may depend on the following variables: 

NOTE If Sentaurus Device cannot determine the distance to the nearest
interface, the value of  is used.

dist Distance to nearest interface [cm]

pot Electrostatic potential [V]

enorm Normal electric field [ ]

t Lattice temperature [K]

n Electron density [ ]

p Hole density [ ]

ct Carrier temperature [K]

1
μ
---

1
μdop
----------

1
μenormal
------------------+=

μdop

μenormal

μenormal ∞=
1 μenormal⁄

μenormal

F⊥

Vcm 1–

cm 3–

cm 3–

dist 1010=
1116 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Mobility Degradation at Interfaces
NOTE The carrier temperature ct represents the electron temperature during
the evaluation of the model for electrons, and the hole temperature
during the evaluation of the model for holes. The parameter ct is only
defined for hydrodynamic simulations. Otherwise, the value of ct = 0
is used.

The PMI model must compute the following results: 

In the case of the standard interface, the following derivatives must be computed as well: 

In most cases, it is not necessary to compute the derivatives with respect to the dopant
concentrations. However, to model random dopant fluctuations (see Random Dopant
Fluctuations on page 683), the PMI model must override the functions that compute the
following values: 

Standard C++ Interface

The enumeration type PMI_EnormalType describes the type of the normal electric field :

enum PMI_EnormalType {
PMI_EnormalToCurrent,
PMI_EnormalToInterface

};

muinv Inverse of mobility  [ ]

dmuinvdpot Derivative of  with respect to pot [ ]

dmuinvdenorm Derivative of  with respect to enorm [ ]

dmuinvdn Derivative of  with respect to n [ ]

dmuinvdp Derivative of  with respect to p [ ]

dmuinvdt Derivative of  with respect to t [ ]

dmuinvdct Derivative of  with respect to ct [ ]

dmuinvdNa Derivative of  with respect to the acceptor concentration [ ]

dmuinvdNd Derivative of  with respect to the donor concentration [ ]

1 μenormal⁄ cm 2– Vs

1 μenormal⁄ cm 2– s

1 μenormal⁄ cm 1– s

1 μenormal⁄ cmVs

1 μenormal⁄ cmVs

1 μenormal⁄ cm 2– VsK 1–

1 μenormal⁄ cm 2– VsK 1–

1 μenormal⁄ cmVs

1 μenormal⁄ cmVs

F⊥
Sentaurus™ Device User Guide 1117
N-2017.09



38: Physical Model Interface
Mobility Degradation at Interfaces
The following base class is declared in the file PMIModels.h:

class PMI_EnormalMobility : public PMI_Vertex_Interface {

public:
  PMI_EnormalMobility (const PMI_Environment& env,
                       const PMI_EnormalType type,

const PMI_AnisotropyType anisotype);

  virtual ~PMI_EnormalMobility ();

  PMI_EnormalType EnormalType () const;
PMI_AnisotropyType AnisotropyType () const;

  virtual void Compute_muinv
    (const double dist, const double pot,
     const double enorm, const double n, const double p,
     const double t, const double ct, double& muinv) = 0;

  virtual void Compute_dmuinvdpot
    (const double dist, const double pot,
     const double enorm, const double n, const double p,
     const double t, const double ct, double& dmuinvdpot) = 0;

  virtual void Compute_dmuinvdenorm
    (const double dist, const double pot,
     const double enorm, const double n, const double p,
     const double t, const double ct, double& dmuinvdenorm) = 0;

  virtual void Compute_dmuinvdn
    (const double dist, const double pot,
     const double enorm, const double n, const double p,
     const double t, const double ct, double& dmuinvdn) = 0;

  virtual void Compute_dmuinvdp
    (const double dist, const double pot,
     const double enorm, const double n, const double p,
     const double t, const double ct, double& dmuinvdp) = 0;

  virtual void Compute_dmuinvdt
    (const double dist, const double pot,
     const double enorm, const double n, const double p,
     const double t, const double ct, double& dmuinvdt) = 0;

  virtual void Compute_dmuinvdct
    (const double dist, const double pot,
     const double enorm, const double n, const double p,
     const double t, const double ct, double& dmuinvdct) = 0;
1118 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Mobility Degradation at Interfaces
virtual void Compute_dmuinvdNa
    (const double dist, const double pot,
     const double enorm, const double n, const double p,
     const double t, const double ct, double& dmuinvdNa);

virtual void Compute_dmuinvdNd
    (const double dist, const double pot,
     const double enorm, const double n, const double p,
     const double t, const double ct, double& dmuinvdNd);
};

Two virtual constructors are required for electron and hole mobilities:

typedef PMI_EnormalMobility* new_PMI_EnormalMobility_func
  (const PMI_Environment& env, const PMI_EnormalType type,

const PMI_AnisotropyType anisotype);
extern "C" new_PMI_EnormalMobility_func new_PMI_Enormal_e_Mobility;
extern "C" new_PMI_EnormalMobility_func new_PMI_Enormal_h_Mobility;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_EnormalMobility_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float dist;      // distance to nearest interface
pmi_float pot;       // electrostatic potential
pmi_float enorm;     // normal electric field
pmi_float n;         // electron density
pmi_float p;         // hole density
pmi_float t;         // lattice temperature
pmi_float ct;        // carrier temperature
pmi_float acceptor; // total acceptor concentration
pmi_float donor;     // total donor concentration

};

class Output {
public:

pmi_float muinv; // inverse of mobility degradation
};

PMI_EnormalMobility_Base (const PMI_Environment& env,
const PMI_EnormalType type,
const PMI_AnisotropyType anisotype);
Sentaurus™ Device User Guide 1119
N-2017.09



38: Physical Model Interface
Mobility Degradation at Interfaces
virtual ~PMI_EnormalMobility_Base ();

PMI_EnormalType EnormalType () const;
PMI_AnisotropyType AnisotropyType () const;

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_EnormalMobility_Base* new_PMI_EnormalMobility_Base_func
(const PMI_Environment& env, const PMI_EnormalType type,
const PMI_AnisotropyType anisotype);

extern "C" new_PMI_EnormalMobility_Base_func new_PMI_Enormal_e_Mobility_Base;
extern "C" new_PMI_EnormalMobility_Base_func new_PMI_Enormal_h_Mobility_Base;

Example: Lombardi Model

This example illustrates the implementation of a slightly simplified Lombardi model (see
Mobility Degradation at Interfaces on page 332) using the PMI. The contribution due to
acoustic phonon-scattering has the form:

(1254)

where .

The contribution due to surface roughness scattering is given by:

(1255)

The mobilities  and  are combined according to Mathiessen’s rule with an additional
damping factor:

(1256)

where  is the distance to the nearest semiconductor–insulator interface point:

#include "PMIModels.h"

class Lombardi_EnormalMobility : public PMI_EnormalMobility {

μac
B

F⊥
------

CNi
λ

F⊥
1 3⁄

T T0⁄( )
------------------------------+=

T0 300 K=

μsr

F⊥
2

δ
------

F⊥
3

η
------+

 
 
 

1–

=

μac μsr

1
μenormal
------------------ e

l
lcrit
-------–

1
μac
-------

1
μsr
-------+ 

 ⋅=

l

1120 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Mobility Degradation at Interfaces
protected:
  const double T0;
  double B, C, lambda, delta, eta, l_crit;

public:
  Lombardi_EnormalMobility (const PMI_Environment& env,
                            const PMI_EnormalType type,

const PMI_AnisotropyType anisotype);

~Lombardi_EnormalMobility ();

  void Compute_muinv
    (const double dist, const double pot,
     const double enorm, const double n, const double p,
     const double t, const double ct, double& muinv);

  void Compute_dmuinvdpot
    (const double dist, const double pot,
     const double enorm, const double n, const double p,
     const double t, const double ct, double& dmuinvdpot);

  void Compute_dmuinvdenorm
    (const double dist, const double pot,
     const double enorm, const double n, const double p,
     const double t, const double ct, double& dmuinvdenorm);

  void Compute_dmuinvdn
    (const double dist, const double pot,
     const double enorm, const double n, const double p,
     const double t, const double ct, double& dmuinvdn);

  void Compute_dmuinvdp
    (const double dist, const double pot,
     const double enorm, const double n, const double p,
     const double t, const double ct, double& dmuinvdp);

  void Compute_dmuinvdt
    (const double dist, const double pot,
     const double enorm, const double n, const double p,
     const double t, const double ct, double& dmuinvdt);

  void Compute_dmuinvdct
    (const double dist, const double pot,
     const double enorm, const double n, const double p,
     const double t, const double ct, double& dmuinvdct);
};
Sentaurus™ Device User Guide 1121
N-2017.09



38: Physical Model Interface
Mobility Degradation at Interfaces
Lombardi_EnormalMobility::
Lombardi_EnormalMobility (const PMI_Environment& env,
                          const PMI_EnormalType type,

const PMI_AnisotropyType anisotype) :
  PMI_EnormalMobility (env, type, anisotype),
  T0 (300.0)
{
}

Lombardi_EnormalMobility::
~Lombardi_EnormalMobility ()
{
}

void Lombardi_EnormalMobility::
Compute_muinv (const double dist, const double pot,
               const double enorm, const double n, const double p,
               const double t, const double ct, double& muinv)
{ const double Ni = ReadDoping (PMI_Donor) + ReadDoping (PMI_Acceptor);
  const double denom_ac_inv =
    B + pow (enorm, 2.0/3.0) * C * pow (Ni, lambda) * T0 / t;
  const double mu_ac_inv = enorm / denom_ac_inv;
  const double mu_sr_inv = enorm * enorm / delta + pow (enorm, 3.0) / eta;
  const double damping = exp (-dist/l_crit);
  muinv = damping * (mu_ac_inv + mu_sr_inv);
}

void Lombardi_EnormalMobility::
Compute_dmuinvdpot (const double dist, const double pot,
                    const double enorm, const double n, const double p,
                    const double t, const double ct, double& dmuinvdpot)
{ dmuinvdpot = 0.0;
}

void Lombardi_EnormalMobility::
Compute_dmuinvdenorm (const double dist, const double pot,
                      const double enorm, const double n, const double p,
                      const double t, const double ct, double& dmuinvdenorm)
{ const double Ni = ReadDoping (PMI_Donor) + ReadDoping (PMI_Acceptor);
  const double denom_ac_inv =
    B + pow (enorm, 2.0/3.0) * C * pow (Ni, lambda) * T0 / t;
  const double dmu_ac_inv_denorm =
    (2.0 * B + denom_ac_inv) / (3.0 * denom_ac_inv * denom_ac_inv);
  const double mu_sr_inv_denorm =
    2.0 * enorm / delta + 3.0 * enorm * enorm / eta;
  const double damping = exp (-dist/l_crit);
  dmuinvdenorm = damping * (dmu_ac_inv_denorm + mu_sr_inv_denorm);
}

1122 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Mobility Degradation at Interfaces
void Lombardi_EnormalMobility::
Compute_dmuinvdn (const double dist, const double pot,
                  const double enorm, const double n, const double p,
                  const double t, const double ct, double& dmuinvdn)
{ dmuinvdn = 0.0;
}

void Lombardi_EnormalMobility::
Compute_dmuinvdp (const double dist, const double pot,
                  const double enorm, const double n, const double p,
                  const double t, const double ct, double& dmuinvdp)
{ dmuinvdp = 0.0;
}

void Lombardi_EnormalMobility::
Compute_dmuinvdt (const double dist, const double pot,
                  const double enorm, const double n, const double p,
                  const double t, const double ct, double& dmuinvdt)
{ const double Ni = ReadDoping (PMI_Donor) + ReadDoping (PMI_Acceptor);
  const double factor = pow (enorm, 2.0/3.0) * C * pow (Ni, lambda) * T0;
  const double denom_ac_inv = B + factor / t;
  const double dmu_ac_inv_dt =
    enorm * factor / (denom_ac_inv * denom_ac_inv * t * t);
  const double damping = exp (-dist/l_crit);
  dmuinvdt = damping * dmu_ac_inv_dt;
}

void Lombardi_EnormalMobility::
Compute_dmuinvdct (const double dist, const double pot,
                   const double enorm, const double n, const double p,
                   const double t, const double ct, double& dmuinvdct)
{ dmuinvdct = 0.0;
}

class Lombardi_e_EnormalMobility : public Lombardi_EnormalMobility {
public:
  Lombardi_e_EnormalMobility (const PMI_Environment& env,
                              const PMI_EnormalType type,

const PMI_AnisotropyType anisotype);

  ~Lombardi_e_EnormalMobility () {}
};

Lombardi_e_EnormalMobility::
Lombardi_e_EnormalMobility (const PMI_Environment& env,
                            const PMI_EnormalType type,

const PMI_AnisotropyType anisotype) :
Sentaurus™ Device User Guide 1123
N-2017.09



38: Physical Model Interface
Mobility Degradation at Interfaces
  Lombardi_EnormalMobility (env, type, anisotype)
{ // default values
  B = InitParameter ("B_e", 4.750e7);
  C = InitParameter ("C_e", 580.0);
  lambda = InitParameter ("lambda_e", 0.125);
  delta = InitParameter ("delta_e", 5.82e14);
  eta = InitParameter ("eta_e", 5.82e30);
  l_crit = InitParameter ("l_crit_e", 1.0e-6);
}

class Lombardi_h_EnormalMobility : public Lombardi_EnormalMobility {
public:
  Lombardi_h_EnormalMobility (const PMI_Environment& env,
                              const PMI_EnormalType type,

const PMI_AnisotropyType anisotype);

  ~Lombardi_h_EnormalMobility () {}
};

Lombardi_h_EnormalMobility::
Lombardi_h_EnormalMobility (const PMI_Environment& env,
                            const PMI_EnormalType type,

const PMI_AnisotropyType anisotype) :
  Lombardi_EnormalMobility (env, type, anisotype)
{ // default values
  B = InitParameter ("B_h", 9.925e6);
  C = InitParameter ("C_h", 2947.0);
  lambda = InitParameter ("lambda_h", 0.0317);
  delta = InitParameter ("delta_h", 2.0546e14);
  eta = InitParameter ("eta_h", 2.0546e30);
  l_crit = InitParameter ("l_crit_h", 1.0e-6);
}

extern "C"
PMI_EnormalMobility* new_PMI_Enormal_e_Mobility
  (const PMI_Environment& env, const PMI_EnormalType type,

const PMI_AnisotropyType anisotype)
{ return new Lombardi_e_EnormalMobility (env, type, anisotype);
}

extern "C"
PMI_EnormalMobility* new_PMI_Enormal_h_Mobility
  (const PMI_Environment& env, const PMI_EnormalType type,

const PMI_AnisotropyType anisotype)
{ return new Lombardi_h_EnormalMobility (env, type, anisotype);
}

1124 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
High-Field Saturation Model
High-Field Saturation Model

The high-field saturation model computes the final mobility  as a function of the low-field
mobility  and the driving force  (see High-Field Saturation on page 361).

Dependencies

The mobility  computed by a high-field mobility model may depend on the following
variables: 

NOTE The carrier temperature ct represents the electron temperature during
the evaluation of the model for electrons, and the hole temperature
during the evaluation of the model for holes. The parameter ct is only
defined for hydrodynamic simulations. Otherwise, the value of 
is used.

The PMI model must compute the following results: 

In the case of the standard interface, the following derivatives must be computed as well: 

pot Electrostatic potential [V]

t Lattice temperature [K]

n Electron density [ ]

p Hole density [ ]

ct Carrier temperature [K]

mulow Low-field mobility  [ ]

F Driving force [ ]

mu Mobility  [ ]

dmudpot Derivative of  with respect to pot [ ]

dmudn Derivative of  with respect to n [ ]

dmudp Derivative of  with respect to p [ ]

dmudt Derivative of  with respect to t [ ]

μ
μlow Fhfs

μ

cm 3–

cm 3–

μlow cm2V 1– s 1–

Vcm 1–

ct 0=

μ cm2V 1– s 1–

μ cm2V 2– s 1–

μ cm5V 1– s 1–

μ cm5V 1– s 1–

μ cm2V 1– s 1– K 1–
Sentaurus™ Device User Guide 1125
N-2017.09



38: Physical Model Interface
High-Field Saturation Model
In most cases, it is not necessary to compute the derivatives with respect to the dopant
concentrations. However, to model random dopant fluctuations (see Random Dopant
Fluctuations on page 683), the PMI model must override the functions that compute the
following values: 

Standard C++ Interface

The enumeration type PMI_HighFieldDrivingForce describes the driving force as
specified in the command file:

enum PMI_HighFieldDrivingForce {
PMI_HighFieldParallelElectricField,
PMI_HighFieldParallelToInterfaceElectricField,
PMI_HighFieldGradQuasiFermi

};

The following base class is declared in the file PMIModels.h:

class PMI_HighFieldMobility : public PMI_Vertex_Interface {

private:
  const PMI_HighFieldDrivingForce drivingForce;
const PMI_AnisotropyType anisoType;

public:
  PMI_HighFieldMobility (const PMI_Environment& env,
                         const PMI_HighFieldDrivingForce force,

const PMI_AnisotropyType anisotype);

  virtual ~PMI_HighFieldMobility ();

  PMI_HighFieldDrivingForce HighFieldDrivingForce () const;
PMI_AnisotropyType AnisotropyType () const;

  virtual void Compute_mu
    (const double pot, const double n,

dmudct Derivative of  with respect to ct [ ]

dmudmulow Derivative of  with respect to mulow (1)

dmudF Derivative of  with respect to F [ ]

dmudNa Derivative of  with respect to the acceptor concentration [ ]

dmudNd Derivative of  with respect to the donor concentration [ ]

μ cm2V 1– s 1– K 1–

μ

μ cm3V 2– s 1–

μ cm5V 1– s 1–

μ cm5V 1– s 1–
1126 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
High-Field Saturation Model
     const double p, const double t, const double ct,
     const double mulow, const double F, double& mu) = 0;

  virtual void Compute_dmudpot
    (const double pot, const double n,
     const double p, const double t, const double ct,
     const double mulow, const double F, double& dmudpot) = 0;

  virtual void Compute_dmudn
    (const double pot, const double n,
     const double p, const double t, const double ct,
     const double mulow, const double F, double& dmudn) = 0;

  virtual void Compute_dmudp
    (const double pot, const double n,
     const double p, const double t, const double ct,
     const double mulow, const double F, double& dmudp) = 0;

  virtual void Compute_dmudt
    (const double pot, const double n,
     const double p, const double t, const double ct,
     const double mulow, const double F, double& dmudt) = 0;

  virtual void Compute_dmudct
    (const double pot, const double n,
     const double p, const double t, const double ct,
     const double mulow, const double F, double& dmudct) = 0;

  virtual void Compute_dmudmulow
    (const double pot, const double n,
     const double p, const double t, const double ct,
     const double mulow, const double F, double& dmudmulow) = 0;

  virtual void Compute_dmudF
    (const double pot, const double n,
     const double p, const double t, const double ct,
     const double mulow, const double F, double& dmudF) = 0;

virtual void Compute_dmudNa
    (const double pot, const double n,
     const double p, const double t, const double ct,
     const double mulow, const double F, double& dmudNa);

virtual void Compute_dmudNd
    (const double pot, const double n,
     const double p, const double t, const double ct,
     const double mulow, const double F, double& dmudNd);
};
Sentaurus™ Device User Guide 1127
N-2017.09



38: Physical Model Interface
High-Field Saturation Model
Two virtual constructors are required for electron and hole mobilities:

typedef PMI_HighFieldMobility* new_PMI_HighFieldMobility_func
(const PMI_Environment& env, const PMI_HighFieldDrivingForce force,
const PMI_AnisotropyType anisotype);

extern "C" new_PMI_HighFieldMobility_func new_PMI_HighField_e_Mobility;
extern "C" new_PMI_HighFieldMobility_func new_PMI_HighField_h_Mobility;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_HighFieldMobility_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float pot;       // electrostatic potential
pmi_float n;         // electron density
pmi_float p;         // hole density
pmi_float t;         // lattice temperature
pmi_float ct;        // carrier temperature
pmi_float mulow;     // low field mobility
pmi_float F;         // driving force
pmi_float acceptor; // total acceptor concentration
pmi_float donor;     // total donor concentration

};

class Output {
public:

pmi_float mu; // mobility
};

PMI_HighFieldMobility_Base (const PMI_Environment& env,
const PMI_HighFieldDrivingForce force,
const PMI_AnisotropyType anisotype);

virtual ~PMI_HighFieldMobility_Base ();

PMI_HighFieldDrivingForce HighFieldDrivingForce () const;
PMI_AnisotropyType AnisotropyType () const;

virtual void compute (const Input& input, Output& output) = 0;
};
1128 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
High-Field Saturation Model
The prototype for the virtual constructor is given as:

typedef PMI_HighFieldMobility_Base* new_PMI_HighFieldMobility_Base_func
(const PMI_Environment& env, const PMI_HighFieldDrivingForce force,
const PMI_AnisotropyType anisotype);

extern "C" new_PMI_HighFieldMobility_Base_func
new_PMI_HighField_e_Mobility_Base;

extern "C" new_PMI_HighFieldMobility_Base_func
new_PMI_HighField_h_Mobility_Base;

Example: Canali Model

This example presents the PMI implementation of the Canali model:

(1257)

where:

(1258)

and:

(1259)

The built-in Canali model is discussed in Extended Canali Model on page 363.

#include "PMIModels.h"

class Canali_HighFieldMobility : public PMI_HighFieldMobility {

private:
  double beta, vsat, Fabs, val, valb, valb1, valb11b;
  void Compute_internal (const double t, const double mulow,
                         const double F);

protected:
  const double T0;
  double beta0, betaexp, vsat0, vsatexp;

public:
  Canali_HighFieldMobility (const PMI_Environment& env,
                            const PMI_HighFieldDrivingForce force,

μ
μlow

1
μlowFhfs

vsat
-------------------- 
 

β
+

1 β⁄----------------------------------------------------=

β β0
T
T0
----- 
 

βexp

=

vsat vsat0
T
T0
----- 
 

vsat,exp

=

Sentaurus™ Device User Guide 1129
N-2017.09



38: Physical Model Interface
High-Field Saturation Model
const PMI_AnisotropyType anisotype);

  ~Canali_HighFieldMobility ();

  void Compute_mu
    (const double pot, const double n,
     const double p, const double t, const double ct,
     const double mulow, const double F,
     double& mu);

  void Compute_dmudpot
    (const double pot, const double n,
     const double p, const double t, const double ct,
     const double mulow, const double F, double& dmudpot);

  void Compute_dmudn
    (const double pot, const double n,
     const double p, const double t, const double ct,
     const double mulow, const double F, double& dmudn);

  void Compute_dmudp
    (const double pot, const double n,
     const double p, const double t, const double ct,
     const double mulow, const double F, double& dmudp);

  void Compute_dmudt
    (const double pot, const double n,
     const double p, const double t, const double ct,
     const double mulow, const double F, double& dmudt);

  void Compute_dmudct
    (const double pot, const double n,
     const double p, const double t, const double ct,
     const double mulow, const double F, double& dmudct);

  void Compute_dmudmulow
    (const double pot, const double n,
     const double p, const double t, const double ct,
     const double mulow, const double F, double& dmudmulow);

  void Compute_dmudF
    (const double pot, const double n,
     const double p, const double t, const double ct,
     const double mulow, const double F, double& dmudF);
};

void Canali_HighFieldMobility::
Compute_internal (const double t, const double mulow, const double F)
1130 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
High-Field Saturation Model
{ beta = beta0 * pow (t/T0, betaexp);
  vsat = vsat0 * pow (t/T0, -vsatexp);
  Fabs = fabs (F);
  val = mulow * Fabs / vsat;
  valb = pow (val, beta);
  valb1 = 1.0 + valb;
  valb11b = pow (valb1, 1.0/beta);
}

Canali_HighFieldMobility::
Canali_HighFieldMobility (const PMI_Environment& env,
                          const PMI_HighFieldDrivingForce force,

const PMI_AnisotropyType anisotype) :
  PMI_HighFieldMobility (env, force, anisotype),
  T0 (300.0)
{
}

Canali_HighFieldMobility::
~Canali_HighFieldMobility ()
{
}

void Canali_HighFieldMobility::
Compute_mu (const double pot, const double n,
            const double p, const double t, const double ct,
            const double mulow, const double F, double& mu)
{ Compute_internal (t, mulow, F);
  mu = mulow / valb11b;
}

void Canali_HighFieldMobility::
Compute_dmudpot (const double pot, const double n,
                 const double p, const double t, const double ct,
                 const double mulow, const double F, double& dmudpot)
{ dmudpot = 0.0;
}

void Canali_HighFieldMobility::
Compute_dmudn (const double pot, const double n,
               const double p, const double t, const double ct,
               const double mulow, const double F, double& dmudn)
{ dmudn = 0.0;
}

void Canali_HighFieldMobility::
Compute_dmudp (const double pot, const double n,
Sentaurus™ Device User Guide 1131
N-2017.09



38: Physical Model Interface
High-Field Saturation Model
               const double p, const double t, const double ct,
               const double mulow, const double F, double& dmudp)
{ dmudp = 0.0;
}

void Canali_HighFieldMobility::
Compute_dmudt (const double pot, const double n,
               const double p, const double t, const double ct,
               const double mulow, const double F, double& dmudt)
{ Compute_internal (t, mulow, F);
  const double mu = mulow / valb11b;
  const double dmudbeta = mu * (log (valb1) / (beta*beta) -
                                valb * log (val) / (beta * valb1));
  const double dmudvsat = (mu * valb) / (valb1 * vsat);
  const double dbetadt = beta * betaexp / t;
  const double dvsatdt = -vsat * vsatexp / t;
  dmudt = dmudbeta * dbetadt + dmudvsat * dvsatdt;
}

void Canali_HighFieldMobility::
Compute_dmudct (const double pot, const double n,
                const double p, const double t, const double ct,
                const double mulow, const double F, double& dmudct)
{ dmudct = 0.0;
}

void Canali_HighFieldMobility::
Compute_dmudmulow (const double pot, const double n,
                   const double p, const double t, const double ct,
                   const double mulow, const double F, double& dmudmulow)
{ Compute_internal (t, mulow, F);
  dmudmulow = 1.0 / (valb1 * valb11b);
}

void Canali_HighFieldMobility::
Compute_dmudF (const double pot, const double n,
               const double p, const double t, const double ct,
               const double mulow, const double F, double& dmudF)
{ Compute_internal (t, mulow, F);
  const double mu = mulow / valb11b;
  const double signF = (F >= 0.0) ? 1.0 : -1.0;
  dmudF = -mu * pow (mulow/vsat, beta) * pow (Fabs, beta-1.0) *
          signF / valb1;
}

class Canali_e_HighFieldMobility : public Canali_HighFieldMobility {
public:
  Canali_e_HighFieldMobility (const PMI_Environment& env,
1132 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
High-Field Saturation Model
                              const PMI_HighFieldDrivingForce force,
const PMI_AnisotropyType anisotype);

  ~Canali_e_HighFieldMobility () {}
};

Canali_e_HighFieldMobility::
Canali_e_HighFieldMobility (const PMI_Environment& env,
                            const PMI_HighFieldDrivingForce force,

const PMI_AnisotropyType anisotype) :
  Canali_HighFieldMobility (env, force, anisotype)
{ // default values
  beta0 = InitParameter ("beta0_e", 1.109);
  betaexp = InitParameter ("betaexp_e", 0.66);
  vsat0 = InitParameter ("vsat0_e", 1.07e7);
  vsatexp = InitParameter ("vsatexp_e", 0.87);
}

class Canali_h_HighFieldMobility : public Canali_HighFieldMobility {
public:
  Canali_h_HighFieldMobility (const PMI_Environment& env,
                              const PMI_HighFieldDrivingForce force,

const PMI_AnisotropyType anisotype);

  ~Canali_h_HighFieldMobility () {}
};

Canali_h_HighFieldMobility::
Canali_h_HighFieldMobility (const PMI_Environment& env,
                            const PMI_HighFieldDrivingForce force,

const PMI_AnisotropyType anisotype) :
  Canali_HighFieldMobility (env, force, anisotype)
{ // default values
  beta0 = InitParameter ("beta0_h", 1.213);
  betaexp = InitParameter ("betaexp_h", 0.17);
  vsat0 = InitParameter ("vsat0_h", 8.37e6);
  vsatexp = InitParameter ("vsatexp_h", 0.52);
}

extern "C"
PMI_HighFieldMobility* new_PMI_HighField_e_Mobility
  (const PMI_Environment& env, const PMI_HighFieldDrivingForce force,

const PMI_AnisotropyType anisotype)
{ return new Canali_e_HighFieldMobility (env, force, anisotype);
}

extern "C"
PMI_HighFieldMobility* new_PMI_HighField_h_Mobility
Sentaurus™ Device User Guide 1133
N-2017.09



38: Physical Model Interface
High-Field Saturation With Two Driving Forces
  (const PMI_Environment& env, const PMI_HighFieldDrivingForce force,
const PMI_AnisotropyType anisotype)

{ return new Canali_h_HighFieldMobility (env, force, anisotype);
}

High-Field Saturation With Two Driving Forces

This PMI allows you to compute the final mobility  as a function of the low-field mobility
 and two driving fields (see High-Field Saturation on page 361). One field is the gradient

of the quasi-Fermi energy; the other is derived from the electric field (see Driving Force
Models on page 369). 

Command File

The model is specified using PMIModel as an option to HighFieldSaturation,
eHighFieldSaturation, or hHighFieldSaturation. The name of the model must be
provided with the Name parameter of PMIModel. Optionally, an index and a string can be
specified, which will be passed to and interpreted by the model:

eMobility(
HighFieldSaturation(

PMIModel (
Name = <string>
Index = <int>
String = <string>)

EparallelToInterface | Eparallel | ElectricField)
)

Dependencies

The high-field mobility may depend on the following variables: 

mulow Low-field mobility  [ ]

n Electron density [ ]

p Hole density [ ]

T Lattice temperature [ ]

cT Carrier temperature [ ]

μ
μlow

μlow cm2V 1– s 1–

cm 3–

cm 3–

K

K

1134 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
High-Field Saturation With Two Driving Forces
The electric field used to obtain Epar is determined by EparallelToInterface,
Eparallel, or ElectricField as for other high-field mobility models (see Driving Force
Models on page 369). With EparallelToInterface, the electric field used to compute
EprodQF is the projection of the electric field parallel to the interface; otherwise, the full
electric field is used to obtain EprodQF.

The PMI model must compute the following results: 

In the case of the standard interface, the following derivatives must be computed as well: 

Epar Modulus of electric field driving force [ ]

gradQF Modulus of gradient of the quasi-Fermi energy [ ]

EprodQF Scalar product of electric field driving force and gradient of quasi-Fermi
energy [ ]

Na0 Acceptor concentration [ ]

Nd0 Donor concentration [ ]

val High-field mobility  [ ]

dval_dmulow Derivative of  with respect to mulow [ ]

dval_dn Derivative of  with respect to n [ ]

dval_dp Derivative of  with respect to p [ ]

dval_dT Derivative of  with respect to T [ ]

dval_dcT Derivative of  with respect to cT [ ]

dval_dEpar Derivative of  with respect to Epar [ ]

dval_dgradQF Derivative of  with respect to gradQF [ ]

dval_dEprodQF Derivative of  with respect to EprodQF [ ]

dval_dNa0 Derivative of  with respect to Na0 [ ]

dval_dNd0 Derivative of  with respect to Nd0 [ ]

Vcm 1–

eVcm 1–

eVVcm 2–

cm 3–

cm 3–

μ cm2V 1– s 1–

μ 1

μ cm5V 1– s 1–

μ cm5V 1– s 1–

μ cm2V 1– s 1– K 1–

μ cm2V 1– s 1– K 1–

μ cm3V 2– s 1–

μ cm3eV 1– V 1– s 1–

μ cm4eV 1– V 2– s 1–

μ cm5V 1– s 1–

μ cm5V 1– s 1–
Sentaurus™ Device User Guide 1135
N-2017.09



38: Physical Model Interface
High-Field Saturation With Two Driving Forces
Standard C++ Interface

The PMI base class is declared in PMIModels.h as:

class PMI_HighFieldMobility2 : public PMI_Vertex_Interface {

public:
// the input data coming from the simulator
class idata {
public:

double mulow() const;     // low-field mobility
double n() const;         // electron density
double p() const;         // hole density
double T() const;         // lattice temperature
double cT() const;        // carrier temperature
double Epar() const;      // parallel electric field
double gradQF() const;    // gradient of quasi-Fermi energy
double EprodQF() const; // product gradient QF and electric field
double Na0() const;       // acceptor concentration
double Nd0() const;       // donor concentration

};

// the results computed by the PMI
class odata {
public:

double& val();            // mobility
double& dval_dmulow();    // derivative wrt. low-field mobility
double& dval_dn();        // wrt. electron density
double& dval_dp();        // wrt. hole density
double& dval_dT();        // wrt. lattice temperature
double& dval_dcT();       // wrt. carrier temperature
double& dval_dEpar();     // wrt. parallel electric field
double& dval_dgradQF();   // wrt. gradient of quasi-Fermi energy
double& dval_dEprodQF(); // wrt. product gradient QF and field
double& dval_dNa0();      // wrt. acceptor concentration
double& dval_dNd0();      // wrt. donor concentration

};

// constructor and destructor
PMI_HighFieldMobility2(const PMI_Environment& env,

const int model_index,
const std::string& model_string,
const PMI_AnisotropyType anisotype);

virtual ~PMI_HighFieldMobility2();

PMI_AnisotropyType AnisotropyType () const;
1136 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
High-Field Saturation With Two Driving Forces
// compute value and derivatives
virtual void compute(const idata* id, odata* od) = 0;

};

The Compute function receives its input from id. It returns the results using od by assignment
using the member functions of od. The framework initializes the values of the derivatives to
zero, so you only have to compute derivatives for variables the PMI actually uses.

The following virtual constructor must be implemented:

typedef PMI_HighFieldMobility2* new_PMI_HighFieldMobility2_func
(const PMI_Environment& env,
int model_index,
const std::string& model_string,
const PMI_AnisotropyType anisotype);

extern "C" new_PMI_HighFieldMobility2_func new_PMI_HighFieldMobility2;

Simplified C++ Interface

The following base class is declared in PMI.h:

class PMI_HighFieldMobility2_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

Input (const PMI_HighFieldMobility2_Base* highfieldmobility2_base,
const int vertex);

pmi_float mulow;     // low-field mobility
pmi_float n;         // electron density
pmi_float p;         // hole density
pmi_float T;         // lattice temperature
pmi_float cT;        // carrier temperature
pmi_float Epar;      // parallel electric field
pmi_float gradQF;    // gradient of quasi-Fermi energy
pmi_float EprodQF;   // product gradient QF and electric field
pmi_float Na0;       // acceptor concentration
pmi_float Nd0;       // donor concentration

};

class Output {
public:

pmi_float val; // mobility
};

PMI_HighFieldMobility2_Base (const PMI_Environment& env,
const int model_index,
Sentaurus™ Device User Guide 1137
N-2017.09



38: Physical Model Interface
Band Gap
const std::string& model_string,
const PMI_AnisotropyType anisotype);

virtual ~PMI_HighFieldMobility2_Base ();

int model_index () const;
const std::string& model_string () const;
PMI_AnisotropyType AnisotropyType () const;

virtual void compute (const Input& input, Output& output) = 0;
};

The following virtual constructor is provided:

typedef PMI_HighFieldMobility2_Base* new_PMI_HighFieldMobility2_Base_func
(const PMI_Environment& env, const int model_index,
const std::string& model_string, const PMI_AnisotropyType anisotype);

extern "C" 
new_PMI_HighFieldMobility2_Base_func new_PMI_HighField_Mobility2_Base;

Band Gap

Sentaurus Device provides a PMI to compute the energy band gap  in a semiconductor. It
can be specified in the Physics section of the command file, for example:

Physics {
EffectiveIntrinsicDensity (

BandGap (pmi_model_name)
)

}

The default bandgap model in Sentaurus Device is selected explicitly by the keyword
Default:

Physics {
EffectiveIntrinsicDensity (

BandGap (Default)
)

}

Dependencies

The band gap  may depend on: 

t Lattice temperature [K]

Eg

Eg
1138 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Band Gap
The PMI model must compute the following results: 

In the case of the standard interface, the following derivatives must be computed as well: 

Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_BandGap : public PMI_Vertex_Interface {

public:
  PMI_BandGap (const PMI_Environment& env);
  virtual ~PMI_BandGap ();

  virtual void Compute_bg
    (const double t, double& bg) = 0;

  virtual void Compute_dbgdt
    (const double t, double& dbgdt) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_BandGap* new_PMI_BandGap_func (const PMI_Environment& env);
extern "C" new_PMI_BandGap_func new_PMI_BandGap;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_BandGap_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float t; // lattice temperature
};

class Output {
public:

bg Band gap  [eV]

dbgdt Derivative of bg with respect to t [ ]

Eg

eVK 1–
Sentaurus™ Device User Guide 1139
N-2017.09



38: Physical Model Interface
Band Gap
pmi_float bg; // band gap
};

PMI_BandGap_Base (const PMI_Environment& env);
virtual ~PMI_BandGap_Base ();

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_BandGap_Base* new_PMI_BandGap_Base_func
(const PMI_Environment& env);

extern "C" new_PMI_BandGap_Base_func new_PMI_BandGap_Base;

Example: Default Bandgap Model

Sentaurus Device uses the following default bandgap model:

(1260)

 denotes the band gap at .

#include "PMIModels.h"

class Default_BandGap : public PMI_BandGap {

private:
  double Eg0, alpha, beta;

public:
  Default_BandGap (const PMI_Environment& env);

  ~Default_BandGap ();

  void Compute_bg (const double t, double& bg);

  void Compute_dbgdt (const double t, double& dbgdt);
};

Default_BandGap::
Default_BandGap (const PMI_Environment& env) :
  PMI_BandGap (env)
{ Eg0 = InitParameter ("Eg0", 1.16964);
  alpha = InitParameter ("alpha", 4.73e-4);
  beta = InitParameter ("beta", 636);

Eg t( ) Eg 0( ) αt2

t β+
-----------–=

Eg 0( ) 0 K
1140 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Bandgap Narrowing
}

Default_BandGap::
~Default_BandGap ()
{
}

void Default_BandGap::
Compute_bg (const double t, double& bg)
{ bg = Eg0 - alpha * t * t / (t + beta);
}

void Default_BandGap::
Compute_dbgdt (const double t, double& dbgdt)
{ dbgdt = - alpha * t * (t + 2.0 * beta) / ((t + beta) * (t + beta));
}
extern "C"
PMI_BandGap* new_PMI_BandGap
  (const PMI_Environment& env)
{ return new Default_BandGap (env);
}

Bandgap Narrowing

Sentaurus Device provides a PMI to compute bandgap narrowing (see Band Gap and Electron
Affinity on page 249). A user model is activated with the keyword
EffectiveIntrinsicDensity in the Physics section of the command file:

Physics {
EffectiveIntrinsicDensity (pmi_model_name)

}

Dependencies

A PMI bandgap narrowing model has no explicit dependencies. However, it can depend on
doping concentrations through the runtime support.

The PMI model must compute: 

In most cases, it is not necessary to compute the derivatives with respect to the dopant
concentrations. However, to model dopant fluctuations (see Chapter 23 on page 675), in the

bgn Bandgap narrowing  [eV]ΔEg
0

Sentaurus™ Device User Guide 1141
N-2017.09



38: Physical Model Interface
Bandgap Narrowing
standard interface the PMI model must override the functions that compute the following
values: 

Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_BandGapNarrowing : public PMI_Vertex_Interface {
public:

PMI_BandGapNarrowing (const PMI_Environment& env);
virtual ~PMI_BandGapNarrowing ();
virtual void Compute_bgn (double& bgn) = 0;
virtual void Compute_dbgndNa (double& dbgndNa);
virtual void Compute_dbgndNd (double& dbgndNd);

};

The following virtual constructor must be implemented:

typedef PMI_BandGapNarrowing* new_PMI_BandGapNarrowing_func
(const PMI_Environment& env);

extern "C" new_PMI_BandGapNarrowing_func new_PMI_BandGapNarrowing;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_BandGapNarrowing_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float acceptor; // total acceptor concentration
pmi_float donor;     // total donor concentration

};

class Output {
public:

pmi_float bgn; // bandgap narrowing
};

PMI_BandGapNarrowing_Base (const PMI_Environment& env);

dbgndNa Derivative of  with respect to the acceptor concentration [ ]

dbgndNd Derivative of  with respect to the donor concentration [ ]

ΔEg
0 cm3eV

ΔEg
0 cm3eV
1142 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Bandgap Narrowing
virtual ~PMI_BandGapNarrowing_Base ();

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_BandGapNarrowing_Base* new_PMI_BandGapNarrowing_Base_func
(const PMI_Environment& env);

extern "C" new_PMI_BandGapNarrowing_Base_func new_PMI_BandGapNarrowing_Base;

Example: Default Model

The default bandgap narrowing model in Sentaurus Device (Bennett–Wilson) is given by:

(1261)

See Band Gap and Electron Affinity on page 249.

This model can be implemented as a PMI model as follows:

#include "PMIModels.h"

class Bennett_BandGapNarrowing : public PMI_BandGapNarrowing {

private:
double Ebgn, Nref;

public:
Bennett_BandGapNarrowing (const PMI_Environment& env);

~Bennett_BandGapNarrowing ();

void Compute_bgn (double& bgn);
};

Bennett_BandGapNarrowing::
Bennett_BandGapNarrowing (const PMI_Environment& env) :

PMI_BandGapNarrowing (env)
{ Ebgn = InitParameter ("Ebgn", 6.84e-3);
Nref = InitParameter ("Nref", 3.162e18);

}

Bennett_BandGapNarrowing::

ΔEg
0 Eref ln

Ntot

Nref
---------

2
, Ntot Nref,>

0, Ntot Nref.≤





=

Sentaurus™ Device User Guide 1143
N-2017.09



38: Physical Model Interface
Apparent Band-Edge Shift
~Bennett_BandGapNarrowing ()
{
}

void Bennett_BandGapNarrowing::
Compute_bgn (double& bgn)
{ const double Na = ReadDoping (PMI_Acceptor);
const double Nd = ReadDoping (PMI_Donor);
const double Ni = Na + Nd;
if (Ni > Nref) {

const double tmp = log (Ni / Nref);
bgn = Ebgn * tmp * tmp;

} else {
bgn = 0.0;

}
}

extern "C"
PMI_BandGapNarrowing* new_PMI_BandGapNarrowing

(const PMI_Environment& env)
{ return new Bennett_BandGapNarrowing (env);
}

Apparent Band-Edge Shift

The apparent band-edge shift  is a quantity similar to bandgap narrowing. In contrast to
bandgap narrowing, the apparent band-edge shift can depend on the solution variables (electron
and hole densities, lattice temperature, and electric field). Conversely, the apparent band-edge
shift does not take effect in all situations where a real band-edge shift takes effect (this is why
the band-edge shift is called ‘apparent’). 

Implementationwise, the apparent band-edge shift is an extension of the density gradient model
(see Density Gradient Quantization Model on page 294). For the PMI model, this implies:

■ Sentaurus Device applies the apparent band-edge shift  everywhere where it applies
quantization corrections.

■ By default, the apparent band-edge shift that Sentaurus Device computes is not equal to
, but contains contributions from quantization. To remove them, set 

(see Density Gradient Quantization Model on page 294).

■ Apart from a specification in the Physics section, it is necessary to specify additional
equations in the Solve section (see Using the Density Gradient Model on page 296).

To select a model to compute , specify its name using the LocalModel keyword (see
Table 294 on page 1470). The same models for  can be used for the shift of the conduction

ΛPMI

ΛPMI

ΛPMI γ 0=

ΛPMI

ΛPMI
1144 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Apparent Band-Edge Shift
and valence bands. A positive value of  means that the band shifts outwards, away from
midgap (therefore, the band gap widens).

Dependencies

The apparent band-edge shift  may depend on: 

The PMI model must compute the following values: 

In the case of the standard interface, the following derivatives must be computed as well: 

Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_ApparentBandEdgeShift : public PMI_Vertex_Interface {

public:
PMI_ApparentBandEdgeShift (const PMI_Environment& env);
virtual ~PMI_ApparentBandEdgeShift ();

virtual void Compute_shift
(const double n, const double p,
const double t, const double f,
double& shift) = 0;

n Electron density [ ]

p Hole density [ ]

t Lattice temperature [ ]

F Absolute value of the electric field [ ]

shift Apparent band-edge shift  [ ]

dshiftdn Derivative of  with respect to n [ ]

dshiftdp Derivative of  with respect to p [ ]

dshiftdt Derivative of  with respect to t [ ]

dshiftdf Derivative of  with respect to f [ ]

ΛPMI

ΛPMI

cm 3–

cm 3–

K

Vcm 1–

ΛPMI eV

ΛPMI eVcm3

ΛPMI eVcm3

ΛPMI eVK 1–

ΛPMI eVcmV 1–
Sentaurus™ Device User Guide 1145
N-2017.09



38: Physical Model Interface
Apparent Band-Edge Shift
virtual void Compute_dshiftdn
(const double n, const double p,
const double t, const double f,
double& dshiftdn) = 0;

virtual void Compute_dshiftdp
(const double n, const double p,
const double t, const double f,
double& dshiftdp) = 0;

virtual void Compute_dshiftdt
(const double n, const double p,
const double t, const double f,
double& dshiftdt) = 0;

virtual void Compute_dshiftdf
(const double n, const double p,
const double t, const double f,
double& dshiftdf) = 0;

};

The following virtual constructor must be implemented:

typedef PMI_ApparentBandEdgeShift* new_PMI_ApparentBandEdgeShift_func
(const PMI_Environment& env);

extern "C" new_PMI_ApparentBandEdgeShift_func new_PMI_ApparentBandEdgeShift;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_ApparentBandEdgeShift_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float n; // electron density
pmi_float p; // hole density
pmi_float t; // lattice temperature
pmi_float f; // absolute value of electric field

};

class Output {
public:

pmi_float shift; // apparent band-edge shift
};
1146 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Multistate Configuration–Dependent Apparent Band-Edge Shift
PMI_ApparentBandEdgeShift_Base (const PMI_Environment& env);
virtual ~PMI_ApparentBandEdgeShift_Base ();

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_ApparentBandEdgeShift_Base*
new_PMI_ApparentBandEdgeShift_Base_func (const PMI_Environment& env);

extern "C" new_PMI_ApparentBandEdgeShift_Base_func
new_PMI_ApparentBandEdgeShift_Base;

Multistate Configuration–Dependent Apparent Band-Edge 
Shift

The multistate configuration (MSC)–dependent, apparent band-edge shift model is a variant of
the apparent band-edge shift model (see Apparent Band-Edge Shift on page 1144). Besides
dependencies on the solution variables, electron and hole densities, lattice temperature, and
carrier temperatures, it allows dependencies on all state occupation rates of an arbitrary
reference MSC defined by MSConfig. The remarks made for the apparent band-edge shift in
connection with the density gradient model are valid here as well.

The model can be selected as arguments of the keywords eBandEdgeShift,
hBandEdgeShift, and BandEdgeShift (see Apparent Band-Edge Shift on page 483) in the
MSConfig specification. The optional model index parameter allows you to implement, in the
same model, several variants that can be accessed from the command file.

Dependencies

The MSC apparent band-edge shift  may depend on: 

n Electron density [ ]

p Hole density [ ]

t Lattice temperature [ ]

ct Carrier temperature[ ]

s Vector of state occupation rates of the reference MSC [ ]

ΛPMI

cm 3–

cm 3–

K

K

1

Sentaurus™ Device User Guide 1147
N-2017.09



38: Physical Model Interface
Multistate Configuration–Dependent Apparent Band-Edge Shift
The PMI model must compute the following values if the dependency is used: 

In the case of the standard interface, the following derivatives must be computed as well: 

Additional Functionality

The PMI model provides additional functionality.

Using Dependencies

You can use the function set_dependency_used to switch on or off the dependencies of this
model explicitly (the default is on). For used dependencies, the function computing the
corresponding derivative must be provided; for unused dependencies, the functions are not
called.

Updating Actual Status

Before calling the computation functions (compute_val and compute_dval_dX), the
simulator passes the actual values of the dependencies to the model using
set_actual_status. The model parameters are updated by init_parameter before the
actual status is updated.

shift Apparent band-edge shift  [ ]

dshiftdn Derivative of  with respect to n [ ]

dshiftdp Derivative of  with respect to p [ ]

dshiftdt Derivative of  with respect to t [ ]

dshiftdf Derivative of  with respect to ct [ ]

dshiftds Derivative of  with respect to s [ ]

ΛPMI eV

ΛPMI eVcm3

ΛPMI eVcm3

ΛPMI eVK 1–

ΛPMI eVK 1–

ΛPMI eV
1148 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Multistate Configuration–Dependent Apparent Band-Edge Shift
Standard C++ Interface

The following base class (here, only an extract) is declared in the file PMIModels.h:

class PMI_MSC_ApparentBandEdgeShift : public PMI_MSC_Vertex_Interface {

public:
enum e_var { var_n, var_p, var_T, var_eT, var_hT, var_s, var_undefined };

class input_data {
public:
input_data ();
~input_data ();
double& val ( e_var var, size_t ind );
double val ( e_var var, size_t ind ) const;

};

public:
PMI_MSC_ApparentBandEdgeShift (const PMI_Environment& env,
const std::string& msconfig_name, int model_index = 0);

virtual ~PMI_MSC_ApparentBandEdgeShift ();

// get names of MSConfig and its states
const std::string& msconfig_name () const;
size_t nb_states () const;
const std::string& state ( size_t index ) const;

virtual void set_actual_status (
const PMI_MSC_ApparentBandEdgeShift::input_data& id );

// compute value and derivatives
virtual void compute_val ( double& val );
virtual void compute_dval_dn ( double& val );
virtual void compute_dval_dp ( double& val );
virtual void compute_dval_dT ( double& val );
virtual void compute_dval_deT ( double& val );
virtual void compute_dval_dhT ( double& val );
virtual void compute_dval_ds ( std::vector<double>& val );

// support ramping of parameters
virtual void init_parameter ();

// handle dependencies
void set_dependency_used (
PMI_MSC_ApparentBandEdgeShift::e_var var, bool flag );

bool dependency_used ( PMI_MSC_ApparentBandEdgeShift::e_var var ) const;
};
Sentaurus™ Device User Guide 1149
N-2017.09



38: Physical Model Interface
Multistate Configuration–Dependent Apparent Band-Edge Shift
The following virtual constructor must be implemented:

typedef PMI_MSC_ApparentBandEdgeShift* new_PMI_MSC_ApparentBandEdgeShift_func
(const PMI_Environment& env,
const std::string& msconfig_name,
int model_index);

extern "C" new_PMI_ApparentBandEdgeShift_func
new_PMI_MSC_ApparentBandEdgeShift;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_MSC_ApparentBandEdgeShift_Base : public PMI_MSC_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float n;   // electron density
pmi_float p;   // hole density
pmi_float T;   // lattice temperature
pmi_float eT; // electron temperature
pmi_float hT; // hole temperature
std::vector<pmi_float> s; // phase fraction

};

class Output {
public:

pmi_float val; // apparent band-edge shift
};

PMI_MSC_ApparentBandEdgeShift_Base (const PMI_Environment& env,
const std::string& msconfig_name,
const int model_index);

virtual ~PMI_MSC_ApparentBandEdgeShift_Base ();

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_MSC_ApparentBandEdgeShift_Base*
new_PMI_MSC_ApparentBandEdgeShift_Base_func

(const PMI_Environment& env, const std::string& msconfig_name,
const int model_index);

extern "C" new_PMI_MSC_ApparentBandEdgeShift_Base_func
new_PMI_MSC_ApparentBandEdgeShift_Base;
1150 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Electron Affinity
Electron Affinity

The electron affinity , that is, the energy separation between the conduction band and vacuum
level, can be specified by using a PMI. The syntax in the command file is:

Physics {
Affinity (pmi_model_name)

}

The default affinity model in Sentaurus Device can be selected explicitly by the keyword
Default:

Physics {
Affinity (Default)

}

Dependencies

The electron affinity  may depend on: 

The PMI model must compute: 

In the case of the standard interface, the following derivative must be computed as well: 

Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_Affinity : public PMI_Vertex_Interface {

public:
PMI_Affinity (const PMI_Environment& env);
virtual ~PMI_Affinity ();

virtual void Compute_affinity

t Lattice temperature [K]

affinity Electron affinity  [eV]

affinitydt Derivative of affinity with respect to t [ ]

χ

χ

χ

eVK 1–
Sentaurus™ Device User Guide 1151
N-2017.09



38: Physical Model Interface
Electron Affinity
(const double t, double& affinity) = 0;

virtual void Compute_daffinitydt
(const double t, double& daffinitydt) = 0;

};

The prototype for the virtual constructor is:

typedef PMI_Affinity* new_PMI_Affinity_func
(const PMI_Environment& env);

extern "C" new_PMI_Affinity_func new_PMI_Affinity;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_Affinity_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float t; // lattice temperature
};

class Output {
public:

pmi_float affinity; // electron affinity
};

PMI_Affinity_Base (const PMI_Environment& env);
virtual ~PMI_Affinity_Base ();

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_Affinity_Base* new_PMI_Affinity_Base_func
(const PMI_Environment& env);

extern "C" new_PMI_Affinity_Base_func new_PMI_Affinity_Base;
1152 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Electron Affinity
Example: Default Affinity Model

By default, Sentaurus Device uses this formula to compute :

(1262)

 denotes the affinity at .

#include "PMIModels.h"

class Default_Affinity : public PMI_Affinity {

private:
  double Affinity0, alpha, beta;

public:
  Default_Affinity (const PMI_Environment& env);

  ~Default_Affinity ();

  void Compute_affinity (const double t, double& affinity);

  void Compute_daffinitydt (const double t, double& daffinitydt);

};

Default_Affinity::
Default_Affinity (const PMI_Environment& env) :
  PMI_Affinity (env)
{ Affinity0 = InitParameter ("Affinity0", 4.05);
  alpha = InitParameter ("alpha", 4.73e-4);
  beta = InitParameter ("beta", 636);
}

Default_Affinity::
~Default_Affinity ()
{
}

void Default_Affinity::
Compute_affinity (const double t, double& affinity)
{ affinity = Affinity0 + 0.5 * alpha * t * t / (t + beta);
}

void Default_Affinity::
Compute_daffinitydt (const double t, double& daffinitydt)

χ

χ t( ) χ 0( ) 0.5
αt2

t β+
-----------+=

χ 0( ) 0 K
Sentaurus™ Device User Guide 1153
N-2017.09



38: Physical Model Interface
Effective Mass
{ daffinitydt = 0.5 * alpha * t * (t + 2.0 * beta) /
                ((t + beta) * (t + beta));
}
extern "C"
PMI_Affinity* new_PMI_Affinity
  (const PMI_Environment& env)
{ return new Default_Affinity (env);
}

Effective Mass

Sentaurus Device provides a PMI to compute the effective mass of electrons and holes. The
effective mass is always expressed as a multiple of the electron mass in vacuum. The name of
the PMI model must appear in the Physics section of the command file:

Physics {
EffectiveMass (pmi_model_name)

}

Dependencies

The relative effective mass may depend on the following variables: 

The PMI model must compute the following results: 

In the case of the standard interface, the following derivatives must be computed as well: 

t Lattice temperature [K]

bg Band gap [eV]

m Relative effective mass (1)

dmdt Derivative of m with respect to t [ ]

dmdbg Derivative of m with respect to bg [ ]

K 1–

eV 1–
1154 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Effective Mass
Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_EffectiveMass : public PMI_Vertex_Interface {

public:
  PMI_EffectiveMass (const PMI_Environment& env);
  virtual ~PMI_EffectiveMass ();

  virtual void Compute_m
    (const double t, const double bg, double& m) = 0;

  virtual void Compute_dmdt
    (const double t, const double bg, double& dmdt) = 0;

virtual void Compute_dmdbg
(const double t, const double bg, double& dmdbg) = 0;
};

Two virtual constructors are necessary to compute the effective mass of electrons and holes:

typedef PMI_EffectiveMass* new_PMI_EffectiveMass_func
(const PMI_Environment& env);

extern "C" new_PMI_EffectiveMass_func new_PMI_e_EffectiveMass;
extern "C" new_PMI_EffectiveMass_func new_PMI_h_EffectiveMass;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_EffectiveMass_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float t;   // lattice temperature
pmi_float bg; // band gap

};

class Output {
public:

pmi_float m; // effective mass
};
Sentaurus™ Device User Guide 1155
N-2017.09



38: Physical Model Interface
Effective Mass
PMI_EffectiveMass_Base (const PMI_Environment& env);
virtual ~PMI_EffectiveMass_Base ();

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_EffectiveMass_Base* new_PMI_EffectiveMass_Base_func
(const PMI_Environment& env);

extern "C" new_PMI_EffectiveMass_Base_func new_PMI_e_EffectiveMass_Base;
extern "C" new_PMI_EffectiveMass_Base_func new_PMI_h_EffectiveMass_Base;

Example: Linear Effective Mass Model

A simple, linear effective mass model is given by:

(1263)

 denotes the mass at . It can be implemented as follows:

#include "PMIModels.h"

class Linear_EffectiveMass : public PMI_EffectiveMass {

protected:
  double mass_300, dmass_dt;

public:
  Linear_EffectiveMass (const PMI_Environment& env);

  ~Linear_EffectiveMass ();

  void Compute_m (const double t, const double bg, double& m);

  void Compute_dmdt (const double t, const double bg, double& dmdt);

  void Compute_dmdbg (const double t, const double bg, double& dmdbg);
};

Linear_EffectiveMass::
Linear_EffectiveMass (const PMI_Environment& env) :
  PMI_EffectiveMass (env)
{
}

m m300
md
td

------- t 300–( )+=

m300 300 K
1156 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Effective Mass
Linear_EffectiveMass::
~Linear_EffectiveMass ()
{
}

void Linear_EffectiveMass::
Compute_m (const double t, const double bg, double& m)
{ m = mass_300 + dmass_dt * (t - 300.0);
}

void Linear_EffectiveMass::
Compute_dmdt (const double t, const double bg, double& dmdt)
{ dmdt = dmass_dt;
}

void Linear_EffectiveMass::
Compute_dmdbg (const double t, const double bg, double& dmdbg)
{ dmdbg = 0.0;
}

class Linear_e_EffectiveMass : public Linear_EffectiveMass {

public:
  Linear_e_EffectiveMass (const PMI_Environment& env);

  ~Linear_e_EffectiveMass () {}

};

Linear_e_EffectiveMass::
Linear_e_EffectiveMass (const PMI_Environment& env) :
  Linear_EffectiveMass (env)
{ mass_300 = InitParameter ("mass_e_300", 1.09);
  dmass_dt = InitParameter ("dmass_e_dt", 1.6e-4);
}

class Linear_h_EffectiveMass : public Linear_EffectiveMass {

public:
  Linear_h_EffectiveMass (const PMI_Environment& env);

  ~Linear_h_EffectiveMass () {}

};

Linear_h_EffectiveMass::
Linear_h_EffectiveMass (const PMI_Environment& env) :
  Linear_EffectiveMass (env)
Sentaurus™ Device User Guide 1157
N-2017.09



38: Physical Model Interface
Energy Relaxation Times
{ mass_300 = InitParameter ("mass_h_300", 1.15);
  dmass_dt = InitParameter ("dmass_h_dt", 9.2e-4);
}

extern "C"
PMI_EffectiveMass* new_PMI_e_EffectiveMass
  (const PMI_Environment& env)
{ return new Linear_e_EffectiveMass (env);
}

extern "C"
PMI_EffectiveMass* new_PMI_h_EffectiveMass
  (const PMI_Environment& env)
{ return new Linear_h_EffectiveMass (env);
}

Energy Relaxation Times

The model for the energy relaxation times  in Eq. 83 and Eq. 84, p. 197 can be specified in
the Physics section of the command file. The four available possibilities are:

Physics {
EnergyRelaxationTimes (

formula
constant
irrational
pmi_model_name

)
}

These entries have the following meaning: 

formula Use the value of formula in the parameter file (default)

constant Use constant energy relaxation times (formula = 1)

irrational Use the ratio of two irrational polynomials (formula = 2)

pmi_model_name Call a PMI model to compute the energy relaxation times

τ

1158 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Energy Relaxation Times
Dependencies

The energy relaxation time  may depend on the variable: 

NOTE The parameter ct represents the electron temperature during the
calculation of  and the hole temperature during the calculation of .

The PMI model must compute the following results: 

In the case of the standard interface, the following derivative must be computed as well: 

Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_EnergyRelaxationTime : public PMI_Vertex_Interface {

public:
PMI_EnergyRelaxationTime (const PMI_Environment& env);

virtual ~PMI_EnergyRelaxationTime ();

virtual void Compute_tau
(const double ct, double& tau) = 0;

virtual void Compute_dtaudct
(const double ct, double& dtaudct) = 0;

};

The following two virtual constructors must be implemented for electron and hole energy
relaxation times:

typedef PMI_EnergyRelaxationTime* new_PMI_EnergyRelaxationTime_func
(const PMI_Environment& env);

extern "C" new_PMI_EnergyRelaxationTime_func new_PMI_e_EnergyRelaxationTime;
extern "C" new_PMI_EnergyRelaxationTime_func new_PMI_h_EnergyRelaxationTime;

ct Carrier temperature [K]

tau Energy relaxation time  [s]

dtaudct Derivative of  with respect to ct [ ]

τ

τn τp

τ

τ sK 1–
Sentaurus™ Device User Guide 1159
N-2017.09



38: Physical Model Interface
Energy Relaxation Times
Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_EnergyRelaxationTime_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float ct; // carrier temperature
};

class Output {
public:

pmi_float tau; // energy relaxation time
};

PMI_EnergyRelaxationTime_Base (const PMI_Environment& env);
virtual ~PMI_EnergyRelaxationTime_Base ();

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_EnergyRelaxationTime_Base* new_PMI_EnergyRelaxationTime_Base_func
(const PMI_Environment& env);

extern "C" new_PMI_EnergyRelaxationTime_Base_func
new_PMI_e_EnergyRelaxationTime_Base;

extern "C" new_PMI_EnergyRelaxationTime_Base_func
new_PMI_h_EnergyRelaxationTime_Base;

Example: Constant Energy Relaxation Times

The following C++ code implements constant energy relaxation times:

#include "PMIModels.h"

class Const_EnergyRelaxationTime : public PMI_EnergyRelaxationTime {

protected:
  double tau_const;

public:
  Const_EnergyRelaxationTime (const PMI_Environment& env);
1160 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Energy Relaxation Times
  ~Const_EnergyRelaxationTime ();

  void Compute_tau
    (const double ct, double& tau);

  void Compute_dtaudct
    (const double ct, double& dtaudct);

};

Const_EnergyRelaxationTime::
Const_EnergyRelaxationTime (const PMI_Environment& env) :
  PMI_EnergyRelaxationTime (env)
{
}

Const_EnergyRelaxationTime::
~Const_EnergyRelaxationTime ()
{
}

void Const_EnergyRelaxationTime::
Compute_tau (const double ct, double& tau)
{ tau = tau_const;
}

void Const_EnergyRelaxationTime::
Compute_dtaudct (const double ct, double& dtaudct)
{ dtaudct = 0.0;
}

class Const_e_EnergyRelaxationTime : public Const_EnergyRelaxationTime {

public:
  Const_e_EnergyRelaxationTime (const PMI_Environment& env);

  ~Const_e_EnergyRelaxationTime () {}

};

Const_e_EnergyRelaxationTime::
Const_e_EnergyRelaxationTime (const PMI_Environment& env) :
  Const_EnergyRelaxationTime (env)
{ tau_const = InitParameter ("tau_const_e", 0.3e-12);
}

class Const_h_EnergyRelaxationTime : public Const_EnergyRelaxationTime {
Sentaurus™ Device User Guide 1161
N-2017.09



38: Physical Model Interface
Lifetimes
public:
  Const_h_EnergyRelaxationTime (const PMI_Environment& env);

  ~Const_h_EnergyRelaxationTime () {}

};

Const_h_EnergyRelaxationTime::
Const_h_EnergyRelaxationTime (const PMI_Environment& env) :
  Const_EnergyRelaxationTime (env)

{ tau_const = InitParameter ("tau_const_h", 0.25e-12);
}

extern "C"
PMI_EnergyRelaxationTime* new_PMI_e_EnergyRelaxationTime
  (const PMI_Environment& env)
{ return new Const_e_EnergyRelaxationTime (env);
}

extern "C"
PMI_EnergyRelaxationTime* new_PMI_h_EnergyRelaxationTime
  (const PMI_Environment& env)
{ return new Const_h_EnergyRelaxationTime (env);
}

Lifetimes

This PMI provides access to the electron and hole lifetimes,  and , in the SRH
recombination (see Eq. 275, p. 331) and the coupled defect level (CDL) recombination (see
Eq. 395, p. 398). In the command file, the names of the lifetime models are given as arguments
to the SRH or CDL keywords:

Physics {
Recombination (SRH (pmi_model_name))

}

or:

Physics {
Recombination (CDL (pmi_model_name))

}

NOTE A PMI model overrides all other keywords in an SRH or a CDL statement.

τn τp
1162 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Lifetimes
Dependencies

A PMI lifetime model may depend on the variable: 

It must compute the following results: 

In the case of the standard interface, the following derivative must be computed as well: 

Standard C++ Interface

The enumeration type PMI_LifetimeModel describes where the PMI lifetime is used:

enum PMI_LifetimeModel {
PMI_SRH,
PMI_CDL1,
PMI_CDL2

};

The following base class is declared in the file PMIModels.h:

class PMI_Lifetime : public PMI_Vertex_Interface {

private:
const PMI_LifetimeModel lifetimeModel;

public:
PMI_Lifetime (const PMI_Environment& env,

const PMI_LifetimeModel model);

virtual ~PMI_Lifetime ();

PMI_LifetimeModel LifetimeModel () const { return lifetimeModel; }

virtual void Compute_tau
(const double t, double& tau) = 0;

t Lattice temperature [K]

tau Lifetime  [s]

dtaudt Derivative of  with respect to lattice temperature [ ]

τ

τ sK 1–
Sentaurus™ Device User Guide 1163
N-2017.09



38: Physical Model Interface
Lifetimes
virtual void Compute_dtaudt
(const double t, double& dtaudt) = 0;

};

Two virtual constructors must be implemented for electron and hole lifetimes:

typedef PMI_Lifetime* new_PMI_Lifetime_func
(const PMI_Environment& env, const PMI_LifetimeModel model);

extern "C" new_PMI_Lifetime_func new_PMI_e_Lifetime;
extern "C" new_PMI_Lifetime_func new_PMI_h_Lifetime;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_Lifetime_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float t; // lattice temperature
};

class Output {
public:

pmi_float tau; // lifetime
};

PMI_Lifetime_Base (const PMI_Environment& env,
const PMI_LifetimeModel model);

virtual ~PMI_Lifetime_Base ();

PMI_LifetimeModel LifetimeModel () const;

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_Lifetime_Base* new_PMI_Lifetime_Base_func
(const PMI_Environment& env, const PMI_LifetimeModel model);

extern "C" new_PMI_Lifetime_Base_func new_PMI_e_Lifetime_Base;
extern "C" new_PMI_Lifetime_Base_func new_PMI_h_Lifetime_Base;
1164 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Lifetimes
Example: Doping- and Temperature-Dependent Lifetimes

The following example combines doping-dependent lifetimes (Scharfetter) and temperature
dependence (power law):

(1264)

#include "PMIModels.h"

class Scharfetter_Lifetime : public PMI_Lifetime {

protected:
  const double T0;
  double taumin, taumax, Nref, gamma, Talpha;

public:
  Scharfetter_Lifetime (const PMI_Environment& env,
                        const PMI_LifetimeModel model);

  ~Scharfetter_Lifetime ();
  void Compute_tau
    (const double t, double& tau);

  void Compute_dtaudt
    (const double t, double& dtaudt);

};

Scharfetter_Lifetime::
Scharfetter_Lifetime (const PMI_Environment& env,
                      const PMI_LifetimeModel model) :
  PMI_Lifetime (env, model),
  T0 (300.0)
{
}

Scharfetter_Lifetime::
~Scharfetter_Lifetime ()
{
}

void Scharfetter_Lifetime::
Compute_tau (const double t, double& tau)
{ const double Ni = ReadDoping (PMI_Acceptor) + ReadDoping (PMI_Donor);

τ τmin

τmax τmin–

1
NA,0 ND,0+

Nref
---------------------------- 
 

γ
+

---------------------------------------------+

 
 
 
 
 

T
300 K
-------------- 
 α

=

Sentaurus™ Device User Guide 1165
N-2017.09



38: Physical Model Interface
Lifetimes
  tau = taumin + (taumax - taumin) / (1.0 + pow (Ni/Nref, gamma));
  tau *= pow (t/T0, Talpha);
}

void Scharfetter_Lifetime::
Compute_dtaudt (const double t, double& dtaudt)
{ const double Ni = ReadDoping (PMI_Acceptor) + ReadDoping (PMI_Donor);
  dtaudt = taumin + (taumax - taumin) / (1.0 + pow (Ni/Nref, gamma));
  dtaudt *= (Talpha/T0) * pow (t/T0, Talpha-1.0);
}

class Scharfetter_e_Lifetime : public Scharfetter_Lifetime {

public:
  Scharfetter_e_Lifetime (const PMI_Environment& env,
                          const PMI_LifetimeModel model);

  ~Scharfetter_e_Lifetime () {}

};
Scharfetter_e_Lifetime::
Scharfetter_e_Lifetime (const PMI_Environment& env,
                        const PMI_LifetimeModel model) :
  Scharfetter_Lifetime (env, model)
{ taumin = InitParameter ("taumin_e", 0.0);
  taumax = InitParameter ("taumax_e", 1.0e-5);
  Nref = InitParameter ("Nref_e", 1.0e16);
  gamma = InitParameter ("gamma_e", 1.0);
  Talpha = InitParameter ("Talpha_e", -1.5);
}

class Scharfetter_h_Lifetime : public Scharfetter_Lifetime {

public:
  Scharfetter_h_Lifetime (const PMI_Environment& env,
                          const PMI_LifetimeModel model);

  ~Scharfetter_h_Lifetime () {}

};

Scharfetter_h_Lifetime::
Scharfetter_h_Lifetime (const PMI_Environment& env,
                        const PMI_LifetimeModel model) :
  Scharfetter_Lifetime (env, model)

{ taumin = InitParameter ("taumin_h", 0.0);
  taumax = InitParameter ("taumax_h", 3.0e-6);
1166 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Thermal Conductivity
  Nref = InitParameter ("Nref_h", 1.0e16);
  gamma = InitParameter ("gamma_h", 1.0);
  Talpha = InitParameter ("Talpha_h", -1.5);
}

extern "C"
PMI_Lifetime* new_PMI_e_Lifetime
  (const PMI_Environment& env, const PMI_LifetimeModel model)
{ return new Scharfetter_e_Lifetime (env, model);
}

extern "C"
PMI_Lifetime* new_PMI_h_Lifetime
  (const PMI_Environment& env, const PMI_LifetimeModel model)
{ return new Scharfetter_h_Lifetime (env, model);
}

Thermal Conductivity

The PMI provides access to the lattice thermal conductivity  in Eq. 68, p. 192. To activate it,
in the Physics section of the command file, specify:

Physics {
ThermalConductivity (

<string>
)

}

where the string is the name of the PMI model.

The PMI supports anisotropic thermal conductivity, and the model can be evaluated along
different crystallographic axes. The enumeration type PMI_AnisotropyType as defined in
Mobility Models on page 1107 determines the axis. The default is isotropic thermal
conductivity. If anisotropic thermal conductivity is activated in the command file, the PMI class
PMI_ThermalConductivity is also instantiated in the anisotropic direction.

Dependencies

The thermal conductivity  may depend on the variable: 

t Lattice temperature [K]

κ

κ

Sentaurus™ Device User Guide 1167
N-2017.09



38: Physical Model Interface
Thermal Conductivity
The PMI model must compute the following results: 

In the case of the standard interface, the following derivative must be computed as well: 

Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_ThermalConductivity : public PMI_Vertex_Interface {

public:
PMI_ThermalConductivity (const PMI_Environment& env,

const PMI_AnisotropyType anisotype);

virtual ~PMI_ThermalConductivity ();

PMI_AnisotropyType AnisotropyType () const { return anisoType; }

virtual void Compute_kappa
(const double t, double& kappa) = 0;

virtual void Compute_dkappadt
(const double t, double& dkappadt) = 0;

};

The following virtual constructor must be implemented:

typedef PMI_ThermalConductivity* new_PMI_ThermalConductivity_func
(const PMI_Environment& env, const PMI_AnisotropyType anisotype);

extern "C" new_PMI_ThermalConductivity_func
new_PMI_ThermalConductivity;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_ThermalConductivity_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {

kappa Thermal conductivity  [ ]

dkappadt derivative of  with respect to t [ ]

κ Wcm 1– K 1–

κ Wcm 1– K 2–
1168 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Thermal Conductivity
public:
pmi_float t; // lattice temperature

};

class Output {
public:

pmi_float kappa; // thermal conductivity
};

PMI_ThermalConductivity_Base (const PMI_Environment& env,
const PMI_AnisotropyType anisotype);

virtual ~PMI_ThermalConductivity_Base ();

PMI_AnisotropyType AnisotropyType () const;

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_ThermalConductivity_Base* new_PMI_ThermalConductivity_Base_func
(const PMI_Environment& env, const PMI_AnisotropyType anisotype);

extern "C" new_PMI_ThermalConductivity_Base_func
new_PMI_ThermalConductivity_Base;

Example: Temperature-Dependent Thermal Conductivity

The following C++ code implements the temperature-dependent thermal conductivity:

(1265)

as given in Eq. 1042, p. 901.

#include "PMIModels.h"

class TempDep_ThermalConductivity : public PMI_ThermalConductivity {
private:
  double a, b, c;

public:
  TempDep_ThermalConductivity (const PMI_Environment& env, const 
PMI_AnisotropyType anisotype);
  ~TempDep_ThermalConductivity ();

  void Compute_kappa

κ T( ) 1

a bT cT
2

+ +
-------------------------------=
Sentaurus™ Device User Guide 1169
N-2017.09



38: Physical Model Interface
Thermal Conductivity
    (const double t, double& kappa);

  void Compute_dkappadt
    (const double t, double& dkappadt);
};

TempDep_ThermalConductivity::
TempDep_ThermalConductivity (const PMI_Environment& env, const 
PMI_AnisotropyType anisotype) :
  PMI_ThermalConductivity (env, anisotype)
{ // default values
  a = InitParameter ("a", 0.03);
  b = InitParameter ("b", 1.56e-03);
  c = InitParameter ("c", 1.65e-06);
}

TempDep_ThermalConductivity::
~TempDep_ThermalConductivity ()
{
}

void TempDep_ThermalConductivity::
Compute_kappa (const double t, double& kappa)
{ kappa = 1.0 / (a + b*t + c*t*t);
}

void TempDep_ThermalConductivity::
Compute_dkappadt (const double t, double& dkappadt)
{ const double kappa = 1.0 / (a + b*t + c*t*t);
  dkappadt = -kappa * kappa * (b + 2.0*c*t);
}

extern "C"
PMI_ThermalConductivity* new_PMI_ThermalConductivity
  (const PMI_Environment& env, const PMI_AnisotropyType anisotype)
{ return new TempDep_ThermalConductivity (env, anisotype);
}

1170 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Thermal Conductivity
Example: Thin-Layer Thermal Conductivity

In this example, thermal conductivity depends on the doping and thickness of layers. In this
case, the external LayerThickness command (see LayerThickness Command on page 310)
must be specified in the command file:

Physics (Material="Silicon") {
LayerThickness(<parameters>) # external command for thickness extraction
ThermalConductivity (ThinLayerKappa)

}

The following C++ code implements the thin-layer doping-dependent thermal conductivity
(see $STROOT/tcad/$STRELEASE/lib/sdevice/src/pmi_ThinLayerKappa/
ThinLayerKappa.C):

(1266)

where:

#include <math.h>
#include "PMI.h"

class ThinLayer_ThermalConductivity : public PMI_ThermalConductivity_Base 
{
private:
  double kappa0;                    //  [W/(K*cm)]
  double ScaleDoping;               //  [cm-3]
  double ScaleThickness;            //  [um]
  double d0, a0, a1, a2, alpha;     //  [1]
  double h0, b0, b1, b2, beta;      //  [1]

public:
  ThinLayer_ThermalConductivity (const PMI_Environment& env,
                                 const PMI_AnisotropyType anisotype);
  ~ThinLayer_ThermalConductivity ();

  void compute (const Input& input, Output& output);

Constant value [ ]

Doping/ScaleDoping (unitless doping)

LayerThickness/ScaleThickness (unitless layer thickness)

κ κ0 κd d( ) κh h( )⋅⋅=

κ0 Wcm 1– K 1–

d

h

κd d( ) a2 d d0–( )2 a1 d d0–( ) a0+ +( ) α d d0–( )( )exp⋅=

κh h( ) b2 h h0–( )2 b1 h h0–( ) b0+ +( ) β h h0–( )( )exp⋅=
Sentaurus™ Device User Guide 1171
N-2017.09



38: Physical Model Interface
Thermal Conductivity
};

ThinLayer_ThermalConductivity::
ThinLayer_ThermalConductivity (const PMI_Environment& env,
                               const PMI_AnisotropyType anisotype) :
  PMI_ThermalConductivity_Base (env, anisotype)
{ // default values
  kappa0 = InitParameter("kappa0", 1.);             // [W/(K*cm)]

  ScaleDoping = InitParameter("ScaleDoping", 1.e+18);    // [cm-3]
  d0    = InitParameter("d0", 1.);     // [1]
  a0    = InitParameter("a0", 1.);     // [1]
  a1    = InitParameter("a1", 0.);     // [1]
  a2    = InitParameter("a2", 0.);     // [1]
  alpha = InitParameter("alpha", 0.);  // [1]

  ScaleThickness = InitParameter("ScaleThickness", 1.e-3);  // [um] = 1 nm
  h0    = InitParameter("h0", 1.);     // [1]
  b0    = InitParameter("b0", 1.);     // [1]
  b1    = InitParameter("b1", 0.);     // [1]
  b2    = InitParameter("b2", 0.);     // [1]
  beta  = InitParameter("beta", 0.);   // [1]
}

ThinLayer_ThermalConductivity::
~ThinLayer_ThermalConductivity ()
{}

void ThinLayer_ThermalConductivity::
compute (const Input& input, Output& output)
{
  const double h  = input.ReadLayerThickness()/ScaleThickness;
  pmi_float Nd = input.ReadDoping(PMI_Donor);
  pmi_float Na = input.ReadDoping(PMI_Acceptor);
  pmi_float d  = (Nd - Na)/ScaleDoping;

  pmi_float kd = (a2*(d-d0)*(d-d0) + a1*(d-d0) + a0)*exp(alpha*(d-d0));
  pmi_float kh = (b2*(h-h0)*(h-h0) + b1*(h-h0) + b0)*exp(beta*(h-h0));

  pmi_float kappa = kappa0*kd*kh;

  output.kappa = kappa;  //  [W/(K*cm)]
}

1172 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Multistate Configuration–Dependent Thermal Conductivity
extern "C"
PMI_ThermalConductivity_Base* new_PMI_ThermalConductivity_Base
  (const PMI_Environment& env, const PMI_AnisotropyType anisotype)
{ return new ThinLayer_ThermalConductivity (env, anisotype);
}

The following example is a parameter file for the formula :

Material = "Silicon" {

ThinLayerKappa {
kappa0 = 1  # [W/(K*cm)]

ScaleDoping = 1.e+18    # [cm-3]
d0    = 0     # [1]
a0    = 1     # [1]
a1    = 1     # [1]
a2    = 2     # [1]
alpha = 0     # [1]

ScaleThickness = 1.e-3  # [um] = 1 nm
h0    = 0     # [1]
b0    = 1     # [1]
b1    = 0     # [1]
b2    = 0     # [1]
beta  = 0.1   # [1]

}
}

Multistate Configuration–Dependent Thermal 
Conductivity

This PMI provides access to the lattice thermal conductivity  in Eq. 68, p. 192 and allows it
to depend on a multistate configuration (see Chapter 18 on page 473).

Command File

To activate a PMI of this type, in the Physics section, specify:

ThermalConductivity(
PMIModel (

Name = <string>
MSConfig = <string>
Index = <int>

κ 2d2 d 1+ +( ) 0.1 h⋅( )exp⋅=

κ

Sentaurus™ Device User Guide 1173
N-2017.09



38: Physical Model Interface
Multistate Configuration–Dependent Thermal Conductivity
String = <string>
)

)

Here, Name is the name of the PMI model; its specification is mandatory. MSConfig selects
the name of the multistate configuration. MSConfig defaults to an empty string, which means
the model does not depend on any multistate configuration. Index and String are optional;
they determine the arguments model_index and model_string that are passed to the virtual
constructor (see below); the interpretation of those arguments is up to the PMI model. Index
defaults to zero, and String defaults to the empty string.

Dependencies

The thermal conductivity may depend on the variables: 

The model must compute the following quantities: 

In the case of the standard interface, the following derivatives must be computed as well: 

n Electron density [ ]

p Hole density [ ]

T Lattice temperature [ ]

eT Electron temperature [ ]

hT Hole temperature [ ]

s Multistate configuration occupation probabilities [ ]

val Thermal conductivity [ ]

dval_dn Derivative with respect to electron density [ ]

dval_dp Derivative with respect to hole density [ ]

dval_dT Derivative with respect to lattice temperature [ ]

dval_deT Derivative with respect to electron temperature [ ]

dval_dhT Derivative with respect to hole temperature [ ]

dval_ds Derivative with respect to multistate configuration occupation probabilities
[ ]

cm 3–

cm 3–

K

K

K

1

Wcm 1– K 1–

Wcm2K 1–

Wcm2K 1–

Wcm 1– K 2–

Wcm 1– K 2–

Wcm 1– K 2–

Wcm 1– K 1–
1174 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Multistate Configuration–Dependent Thermal Conductivity
Standard C++ Interface

The PMI offers a base class that presents the following interface:

class PMI_MSC_ThermalConductivity : public PMI_MSC_Vertex_Interface
{
public:
class idata {
public:
double n () const;
double p () const;
double T () const;
double eT () const;
double hT () const;
double s (size_t ind) const;

};

class odata {
  public:

double& val ();
double& dval_dn ();
double& dval_dp ();
double& dval_dT ();
double& dval_deT ();
double& dval_dhT ();
double& dval_ds ( size_t ind );

};

PMI_MSC_ThermalConductivity(const PMI_Environment& env,
const std::string& msconfig_name,
const int model_index,
const std::string& model_string,
const PMI_AnisotropyType anisotype);

virtual ~PMI_MSC_ThermalConductivity ();

PMI_AnisotropyType AnisotropyType () const;

virtual void compute
(const idata* id,
odata* od ) = 0;

};

The Compute function receives its input from id. It returns the results using od by assignment
using the member functions of od. The PMI framework initializes the values of the derivatives
to zero, so you do not have to do anything for derivatives with respect to the variables on which
your model does not depend.
Sentaurus™ Device User Guide 1175
N-2017.09



38: Physical Model Interface
Multistate Configuration–Dependent Thermal Conductivity
The following virtual constructor must be implemented:

typedef PMI_MSC_ThermalConductivity* new_PMI_MSC_ThermalConductivity_func
(const PMI_Environment& env, const std::string& msconfig_name,
int model_index, const std::string& model_string,
const PMI_AnisotropyType anisotype);

extern "C" new_PMI_MSC_ThermalConductivity_func
new_PMI_MSC_ThermalConductivity;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_MSC_ThermalConductivity_Base : public PMI_MSC_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

const pmi_float& n () const;   // electron density
const pmi_float& p () const;   // hole density
const pmi_float& T () const;   // lattice temperature
const pmi_float& eT () const; // electron temperature
const pmi_float& hT () const; // hole temperature
const pmi_float& s (size_t ind) const; // phase fraction

};

class Output {
public:

pmi_float& val (); // thermal conductivity
};

PMI_MSC_ThermalConductivity_Base (const PMI_Environment& env,
const std::string& msconfig_name,
const int model_index,
const std::string& model_string,
const PMI_AnisotropyType anisotype);

virtual ~PMI_MSC_ThermalConductivity_Base ();

PMI_AnisotropyType AnisotropyType () const;

virtual void compute (const Input& input, Output& output) = 0;
};
1176 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Heat Capacity
The prototype for the virtual constructor is given as:

typedef PMI_MSC_ThermalConductivity_Base*
new_PMI_MSC_ThermalConductivity_Base_func

(const PMI_Environment& env, const std::string& msconfig_name,
const int model_index, const std::string& model_string,
const PMI_AnisotropyType anisotype);

extern "C" new_PMI_MSC_ThermalConductivity_Base_func
new_PMI_MSC_ThermalConductivity_Base;

Heat Capacity

The model for lattice heat capacity in Eq. 68, p. 192 can be specified in the Physics section
of the command file. The following two possibilities are available:

Physics {
HeatCapacity (

constant
pmi_model_name

)
}

These entries have the following meaning: 

Dependencies

The heat capacity  may depend on the variable: 

The PMI model must compute the following results: 

In the case of the standard interface, the following derivative must be computed as well: 

constant Use constant heat capacity (default)

pmi_model_name Call a PMI model to compute the heat capacity

t Lattice temperature [K]

c Heat capacity  [ ]

dcdt Derivative of  with respect to t [ ]

cL

cL JK 1– cm 3–

cL JK 2– cm 3–
Sentaurus™ Device User Guide 1177
N-2017.09



38: Physical Model Interface
Heat Capacity
Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_HeatCapacity : public PMI_Vertex_Interface {

public:
PMI_HeatCapacity (const PMI_Environment& env);

virtual ~PMI_HeatCapacity ();

virtual void Compute_c
(const double t, double& c) = 0;

virtual void Compute_dcdt
(const double t, double& dcdt) = 0

};

The following virtual constructor must be implemented:

typedef PMI_HeatCapacity* new_PMI_HeatCapacity_func
(const PMI_Environment& env);

extern "C" new_PMI_HeatCapacity_func new_PMI_HeatCapacity;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_HeatCapacity_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float t; // lattice temperature
};

class Output {
public:

pmi_float c; // heat capacity
};

PMI_HeatCapacity_Base (const PMI_Environment& env);
virtual ~PMI_HeatCapacity_Base ();

virtual void compute (const Input& input, Output& output) = 0;
};
1178 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Heat Capacity
The prototype for the virtual constructor is given as:

typedef PMI_HeatCapacity_Base* new_PMI_HeatCapacity_Base_func
(const PMI_Environment& env);

extern "C" new_PMI_HeatCapacity_Base_func new_PMI_HeatCapacity_Base;

Example: Constant Heat Capacity

The following C++ code implements constant heat capacity:

#include "PMIModels.h"

class Constant_HeatCapacity : public PMI_HeatCapacity {
private:
  double cv;

public:
  Constant_HeatCapacity (const PMI_Environment& env);
  ~Constant_HeatCapacity ();

  void Compute_c
    (const double t, double& c);

  void Compute_dcdt
    (const double t, double& dcdt);
};

Constant_HeatCapacity::
Constant_HeatCapacity (const PMI_Environment& env) :
  PMI_HeatCapacity (env)
{ // default values
  cv = InitParameter ("cv", 1.63);
}

Constant_HeatCapacity::
~Constant_HeatCapacity ()
{
}

void Constant_HeatCapacity::
Compute_c (const double t, double& c)
{ c = cv;
}

void Constant_HeatCapacity::
Compute_dcdt (const double t, double& dcdt)
{ dcdt = 0.0;
Sentaurus™ Device User Guide 1179
N-2017.09



38: Physical Model Interface
Multistate Configuration–Dependent Heat Capacity
}

extern "C"
PMI_HeatCapacity* new_PMI_HeatCapacity
  (const PMI_Environment& env)
{ return new Constant_HeatCapacity (env);
}

Multistate Configuration–Dependent Heat Capacity

This PMI computes the lattice heat capacity and allows it to depend on a multistate
configuration (see Chapter 18 on page 473).

Command File

To activate a PMI of this type, in the Physics section, specify:

HeatCapacity(
PMIModel (

Name = <string>
MSConfig = <string>
Index = <int>
String = <string>

)
)

The options of PMIModel are described in Command File on page 1173.

Dependencies

The heat capacity may depend on the variables: 

n Electron density [ ]

p Hole density [ ]

T Lattice temperature [ ]

eT Electron temperature [ ]

hT Hole temperature [ ]

s Multistate configuration occupation probabilities [ ]

cm 3–

cm 3–

K

K

K

1

1180 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Multistate Configuration–Dependent Heat Capacity
The model must compute the following quantities: 

In the case of the standard interface, the following derivatives must be computed as well: 

Standard C++ Interface

The PMI offers a base class that presents the following interface:

class PMI_MSC_HeatCapacity : public PMI_MSC_Vertex_Interface
{
public:
PMI_MSC_HeatCapacity (const PMI_Environment& env,
const std::string& msconfig_name,
const int model_index,
const std::string& model_string);

// otherwise, see Standard C++ Interface on page 1175
};

Apart from the base class name and the constructor, the explanations in Standard C++ Interface
on page 1175 apply here as well.

The following virtual constructor must be implemented:

typedef PMI_MSC_HeatCapacity* new_PMI_MSC_HeatCapacity_func
(const PMI_Environment& env, const std::string& msconfig_name,
int model_index, const std::string& model_string);

extern "C" new_PMI_MSC_HeatCapacity_func new_PMI_MSC_HeatCapacity;

val Heat capacity [ ]

dval_dn Derivative with respect to electron density [ ]

dval_dp Derivative with respect to hole density [ ]

dval_dT Derivative with respect to lattice temperature [ ]

dval_deT Derivative with respect to electron temperature [ ]

dval_dhT Derivative with respect to hole temperature [ ]

dval_ds Derivative with respect to multistate configuration occupation
probabilities [ ]

Jcm 3– K 1–

JK 1–

JK 1–

Jcm 3– K 2–

Jcm 3– K 2–

Jcm 3– K 2–

Jcm 3– K 1–
Sentaurus™ Device User Guide 1181
N-2017.09



38: Physical Model Interface
Multistate Configuration–Dependent Heat Capacity
Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_MSC_HeatCapacity_Base : public PMI_MSC_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

const pmi_float& n () const;   // electron density
const pmi_float& p () const;   // hole density
const pmi_float& T () const;   // lattice temperature
const pmi_float& eT () const; // electron temperature
const pmi_float& hT () const; // hole temperature
const pmi_float& s (size_t ind) const; // phase fraction

};

class Output {
public:

Output (NS_PMI_MSC::odata* odata);

pmi_float& val (); // heat capacity
};

PMI_MSC_HeatCapacity_Base (const PMI_Environment& env,
const std::string& msconfig_name,
const int model_index,
const std::string& model_string);

virtual ~PMI_MSC_HeatCapacity_Base ();

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_MSC_Mobility_Base* new_PMI_MSC_Mobility_Base_func
(const PMI_Environment& env, const std::string& msconfig_name,
const int model_index, const std::string& model_string,
const PMI_AnisotropyType anisotype);

extern "C" new_PMI_MSC_HeatCapacity_Base_func new_PMI_MSC_HeatCapacity_Base;
1182 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Optical Quantum Yield
Optical Quantum Yield

The quantum yield factors , , and  defined by Eq. 643, p. 546 can be accessed
through a PMI. In the command file, the PMI is specified in the QuantumYield section as
follows:

Physics {
Optics (

OpticalGeneration (
QuantumYield (

...
pmiModel = "<pmi_model_name>"

)
)

)
}

Dependencies

The quantum yield factors , , and  may depend on the variables: 

n Electron density [ ]

p Hole density [ ]

T Lattice temperature [ ]

bg Bandgap energy  [eV]

bg_eff Effective bandgap energy (includes bandgap narrowing)  [eV]

wavelength Wavelength of incident light  [ ]

cplxRefIndex Refractive index

cplxExtCoeff Extinction coefficient

n_0 Base refractive index

k_0 Base extinction coefficient

d_n_lambda Wavelength-dependent part of refractive index

d_k_lambda Wavelength-dependent part of extinction coefficient

d_n_temp Temperature-dependent part of refractive index

ηG ηTEg
ηT0

ηG ηTEg
ηT0

cm 3–

cm 3–

K

Eg

Eg,eff

λ μm
Sentaurus™ Device User Guide 1183
N-2017.09



38: Physical Model Interface
Optical Quantum Yield
The PMI model must compute the following results: 

Standard C++ Interface

The following base class (public interface) is declared in the file PMIModels.h:

class PMI_OpticalQuantumYield : public PMI_Vertex_Interface
{
public:

// the input data coming from the simulator

class idata {
public:

idata(const void*);
double n() const; 
double p() const; 
double T() const; 
double bg() const; 
double bg_eff() const; 
double wavelength() const; 
double cplxRefIndex() const; 
double cplxExtCoeff() const; 
double n_0() const; 
double k_0() const; 
double d_n_lambda() const; 
double d_k_lambda() const; 
double d_n_temp() const; 
double d_n_carr() const; 
double d_k_carr() const; 
double d_n_gain() const; 

};

// the results computed by the PMI
class odata {

public:

d_n_carr Carrier-dependent part of refractive index

d_k_carr Carrier-dependent part of extinction coefficient

d_n_gain Gain-dependent part of refractive index

eta_G Quantum yield

eta_T_Eg Thermalization yield (band gap)

eta_T0 Thermalization yield (vacuum)
1184 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Optical Quantum Yield
odata(void*);
double& eta_G();
double& eta_T_Eg();
double& eta_T0();

};

// constructor and destructor
PMI_OpticalQuantumYield(const PMI_Environment& env);
virtual ~PMI_OpticalQuantumYield();

// compute value and derivatives
virtual void compute(const idata* id, odata* od ) = 0;

};

The prototype for the virtual constructor is given as:

typedef PMI_OpticalQuantumYield* new_PMI_OpticalQuantumYield_func
(const PMI_Environment& env);

extern "C" new_PMI_OpticalQuantumYield_func new_PMI_OpticalQuantumYield;

Simplified C++ Interface

The following base class (public interface) is declared in the file PMI.h:

class PMI_OpticalQuantumYield_Base : public PMI_Vertex_Base {
public:

class Input : public PMI_Vertex_Input_Base {
public:

Input (const PMI_OpticalQuantumYield_Base* opticalquantumyield_base, 
const int vertex);
pmi_float n;
pmi_float p;
pmi_float T;
pmi_float bg;
pmi_float bg_eff;
pmi_float wavelength;
pmi_float cplxRefIndex;
pmi_float cplxExtCoeff;
pmi_float n_0; 
pmi_float k_0;
pmi_float d_n_lambda;
pmi_float d_k_lambda;
pmi_float d_n_temp;
pmi_float d_n_carr;
pmi_float d_k_carr;
pmi_float d_n_gain;

};
Sentaurus™ Device User Guide 1185
N-2017.09



38: Physical Model Interface
Stress
class Output {
public:

pmi_float eta_G;
pmi_float eta_T_Eg;
pmi_float eta_T0;

};

PMI_OpticalQuantumYield_Base (const PMI_Environment& env);
virtual ~PMI_OpticalQuantumYield_Base ();
virtual void compute (const Input& input, Output& output) = 0;

};

The prototype for the virtual constructor is given as:

typedef PMI_OpticalQuantumYield_Base* new_PMI_OpticalQuantumYield_Base_func
(const PMI_Environment& env);

extern "C" new_PMI_OpticalQuantumYield_Base_func 
new_PMI_OpticalQuantumYield_Base;

Stress

Sentaurus Device supports a PMI for mechanical stress (see Chapter 31 on page 821). The
name of the PMI model must appear in the Piezo section of the command file:

Physics {
Piezo (

Stress = pmi_model_name
)

}

Dependencies

A PMI stress model has no explicit dependencies. However, it can depend on doping
concentrations and mole fractions through the runtime support.

The PMI model must compute the following results: 

stress_xx XX component of stress tensor [Pa]

stress_yy YY component of stress tensor [Pa]

stress_zz ZZ component of stress tensor [Pa]
1186 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Stress
Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_Stress : public PMI_Vertex_Interface {

public:
PMI_Stress (const PMI_Environment& env);
virtual ~PMI_Stress ();

virtual void Compute_StressXX
(double& stress_xx) = 0;

virtual void Compute_StressYY
(double& stress_yy) = 0;

virtual void Compute_StressZZ
(double& stress_zz) = 0;

virtual void Compute_StressYZ
(double& stress_yz) = 0;

virtual void Compute_StressXZ
(double& stress_xz) = 0;

virtual void Compute_StressXY
(double& stress_xy) = 0;

};

The prototype for the virtual constructor is given as:

typedef PMI_Stress* new_PMI_Stress_func
(const PMI_Environment& env);

extern "C" new_PMI_Stress_func new_PMI_Stress;

stress_yz YZ component of stress tensor [Pa]

stress_xz XZ component of stress tensor [Pa]

stress_xy XY component of stress tensor [Pa]
Sentaurus™ Device User Guide 1187
N-2017.09



38: Physical Model Interface
Stress
Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_Stress_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:
};

class Output {
public:

pmi_float stress_xx; // xx component of stress
pmi_float stress_yy; // yy component of stress
pmi_float stress_zz; // zz component of stress
pmi_float stress_yz; // yz component of stress
pmi_float stress_xz; // xz component of stress
pmi_float stress_xy; // xy component of stress

};

PMI_Stress_Base (const PMI_Environment& env);
virtual ~PMI_Stress_Base ();

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_Stress_Base* new_PMI_Stress_Base_func
(const PMI_Environment& env);

extern "C" new_PMI_Stress_Base_func new_PMI_Stress_Base;

Example: Constant Stress Model

The following code returns constant values for the stress tensor:

#include "PMIModels.h"

class Constant_Stress : public PMI_Stress {

private:
  double xx, yy, zz, yz, xz, xy;

public:
  Constant_Stress (const PMI_Environment& env);
1188 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Stress
  ~Constant_Stress ();

  void Compute_StressXX (double& stress_xx);
  void Compute_StressYY (double& stress_yy);
  void Compute_StressZZ (double& stress_zz);
  void Compute_StressYZ (double& stress_yz);
  void Compute_StressXZ (double& stress_xz);
  void Compute_StressXY (double& stress_xy);

};

Constant_Stress::
Constant_Stress (const PMI_Environment& env) :
  PMI_Stress (env)
{ xx = InitParameter ("xx", 100);
  yy = InitParameter ("yy", -4e9);
  zz = InitParameter ("zz", 300);
  yz = InitParameter ("yz", 400);
  xz = InitParameter ("xz", 500);
  xy = InitParameter ("xy", 600);
}

Constant_Stress::
~Constant_Stress ()
{
}

void Constant_Stress::
Compute_StressXX (double& stress_xx)
{ stress_xx = xx;
}

void Constant_Stress::
Compute_StressYY (double& stress_yy)
{ stress_yy = yy;
}

void Constant_Stress::
Compute_StressZZ (double& stress_zz)
{ stress_zz = zz;
}

void Constant_Stress::
Compute_StressYZ (double& stress_yz)
{ stress_yz = yz;
}

Sentaurus™ Device User Guide 1189
N-2017.09



38: Physical Model Interface
Space Factor
void Constant_Stress::
Compute_StressXZ (double& stress_xz)
{ stress_xz = xz;
}

void Constant_Stress::
Compute_StressXY (double& stress_xy)
{ stress_xy = xy;
}

extern "C"
PMI_Stress* new_PMI_Stress (const PMI_Environment& env)
{ return new Constant_Stress (env);
}

Space Factor

The space distribution of the metal workfunction (see Metal Workfunction on page 242), traps
(see Energetic and Spatial Distribution of Traps on page 450), the bond concentration (see
Using the Trap Degradation Model on page 495), the extended nonradiative multiphonon
(eNMP) model precursor concentration (see Using the eNMP Model on page 516), and
piezoresistance enhancement factors (see SFactor Dataset or PMI Model on page 876) can be
computed by a space factor PMI. The name of the PMI is specified in the appropriate Physics
section as follows:

Physics (Material | Region = "<name>") {
MetalWorkfunction (SFactor=pmi_model_name ...)

}

or:

Physics {
Traps (SFactor=pmi_model_name ...)

}

or:

Physics {
Traps (BondConcSFactor=pmi_model_name ...)

}

or:

Physics (MaterialInterface | RegionInterface = "<name1>/<name2>"){
eNMP (SFactor=pmi_model_name ...)

}

1190 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Space Factor
or:

Physics {
Piezo (

Model (
Mobility (

Factor (
SFactor=pmi_model_name
[ChannelDirection=<n>] 
[AutoOrientation | ParameterSetName="<psname>"]

)
)

)
)

}

In the last specification, the Factor options ChannelDirection=<n>, AutoOrientation,
and ParameterSetName="<psname>", if specified, are passed as parameters to the space
factor PMI model (AutoOrientation is passed as AutoOrientation=1).

NOTE The name of the PMI model must not coincide with the name of an
internal field of Sentaurus Device. Otherwise, Sentaurus Device takes
the value of the internal field as the space factor. 

Dependencies

A PMI space factor model has no explicit dependencies. The model must compute: 

Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_SpaceFactor : public PMI_Vertex_Interface {

public:
PMI_SpaceFactor (const PMI_Environment& env);
virtual ~PMI_SpaceFactor ();

virtual void Compute_spacefactor
(double& spacefactor) = 0;

};

spacefactor Space factor (1) or [ ]cm 3–
Sentaurus™ Device User Guide 1191
N-2017.09



38: Physical Model Interface
Space Factor
The prototype for the virtual constructor is given as:

typedef PMI_SpaceFactor* new_PMI_SpaceFactor_func
(const PMI_Environment& env);

extern "C" new_PMI_SpaceFactor_func new_PMI_SpaceFactor;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_SpaceFactor_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:
};

class Output {
public:

pmi_float spacefactor; // space factor
};

PMI_SpaceFactor_Base (const PMI_Environment& env);
virtual ~PMI_SpaceFactor_Base ();

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_SpaceFactor_Base* new_PMI_SpaceFactor_Base_func
(const PMI_Environment& env);

extern "C" new_PMI_SpaceFactor_Base_func new_PMI_SpaceFactor_Base;

Example: PMI User Field as Space Factor

The following code reads the space factor from a PMI user field:

#include "PMIModels.h"

class pmi_spacefactor : public PMI_SpaceFactor {

public:
  pmi_spacefactor (const PMI_Environment& env);
  ~pmi_spacefactor ();
1192 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Mobility Stress Factor
  void Compute_spacefactor (double& spacefactor);
};

pmi_spacefactor::
pmi_spacefactor (const PMI_Environment& env) :
  PMI_SpaceFactor (env)
{
}

pmi_spacefactor::
~pmi_spacefactor ()
{
}

void pmi_spacefactor::
Compute_spacefactor (double& spacefactor)
{ spacefactor = ReadUserField (PMI_UserField1);
}

extern "C"
PMI_SpaceFactor* new_PMI_SpaceFactor
  (const PMI_Environment& env)
{ return new pmi_spacefactor (env);
}

Mobility Stress Factor

Stress-dependent isotropic mobility enhancement factors can be computed by a mobility stress
factor PMI. These factors are applied to total low-field mobility or mobility components as
described in Isotropic Factor Models on page 870.

The name of a mobility stress factor PMI model is specified as a Factor option in the
command file (see Using Isotropic Factor Models on page 871):

Physics {
Piezo (

Model (
Mobility (

Factor (
pmi_model_name
[ChannelDirection=<n>]
[AutoOrientation | ParameterSetName="<psname>"]

)
)

)

Sentaurus™ Device User Guide 1193
N-2017.09



38: Physical Model Interface
Mobility Stress Factor
)
}

If specified, the Factor options ChannelDirection=<n>, AutoOrientation, and
ParameterSetName="<psname>" are passed as parameters to the mobility stress factor PMI
model (AutoOrientation is passed as AutoOrientation=1).

Dependencies

A mobility stress factor PMI model may depend on the following variable: 

The PMI model must compute the following result: 

In the case of the standard interface, the following derivative must be computed as well: 

Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_MobilityStressFactor : public PMI_Vertex_Interface {

public:
  PMI_MobilityStressFactor (const PMI_Environment& env);

  virtual ~PMI_MobilityStressFactor ();

virtual void Compute_mobilitystressfactor
    (const double enorm, double& mobilitystressfactor,
     double& dmobilitystressfactordenorm) = 0;
};

enorm Normal electric field [ ]

mobilitystressfactor Stress-dependent mobility enhancement factor [ ]

dmobilitystressfactordenorm Derivative of the mobility stress factor with respect to 
[ ]

Vcm 1–

1

Enormal

cmV 1–
1194 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Mobility Stress Factor
Two virtual constructors are required for electron and hole mobility factors:

typedef PMI_MobilityStressFactor* new_PMI_MobilityStressFactor_func
  (const PMI_Environment& env);
extern "C" new_PMI_MobilityStressFactor_func new_PMI_e_MobilityStressFactor;
extern "C" new_PMI_MobilityStressFactor_func new_PMI_h_MobilityStressFactor;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_MobilityStressFactor_Base : public PMI_Vertex_Base {

public:
  class Input : public PMI_Vertex_Input_Base {
  public:
    pmi_float enorm;  // normal to interface electric field
  };

  class Output {
  public:
    pmi_float mobilitystressfactor;  // mobility enhancement stress factor
  };
  PMI_MobilityStressFactor_Base (const PMI_Environment& env);
  virtual ~PMI_MobilityStressFactor_Base ();
  virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_MobilityStressFactor_Base* new_PMI_MobilityStressFactor_Base_func
(const PMI_Environment& env);

extern "C" new_PMI_MobilityStressFactor_Base_func
new_PMI_e_MobilityStressFactor_Base;

extern "C" new_PMI_MobilityStressFactor_Base_func
new_PMI_h_MobilityStressFactor_Base;

Example: Effective Stress Model

This example illustrates the implementation of the EffectiveStressModel (see Effective
Stress Model on page 872) using the standard C++ interface:

#include "PMI.h"
#include <cmath>

class pmi_EffectiveStressModel : public PMI_MobilityStressFactor {
Sentaurus™ Device User Guide 1195
N-2017.09



38: Physical Model Interface
Mobility Stress Factor
protected:
  int cd, dim;
  double alpha1,alpha2,alpha3,beta11,beta12,beta13,beta22,beta23,beta33;
  double mu0,a10,a11,a12,a20,a21,a22,s00,s01,s02,t0,t1,t2,F0;

public:
  pmi_EffectiveStressModel (const PMI_Environment& env);
  ~pmi_EffectiveStressModel ();
  void Compute_mobilitystressfactor (const double enorm,

     double& mobilitystressfactor,
     double& dmobilitystressfactordenorm);

};

pmi_EffectiveStressModel::
pmi_EffectiveStressModel (const PMI_Environment& env) :
  PMI_MobilityStressFactor (env)
{
}

pmi_EffectiveStressModel::
~pmi_EffectiveStressModel ()
{
}
void pmi_EffectiveStressModel::
Compute_mobilitystressfactor (const double enorm,

      double& mobilitystressfactor,
      double& dmobilitystressfactordenorm)

{
  // Get stress components and convert to MPa.
  double stress[6];
  stress[0] = 1.e-6*ReadStress(PMI_StressXX);
  stress[1] = 1.e-6*ReadStress(PMI_StressYY);
  stress[2] = 1.e-6*ReadStress(PMI_StressZZ);
  stress[3] = 1.e-6*ReadStress(PMI_StressYZ);
  stress[4] = 1.e-6*ReadStress(PMI_StressXZ);
  stress[5] = 1.e-6*ReadStress(PMI_StressXY);

  // Get the diagonal stresses used in the calculation.
  double S11 = 0.0, S22 = 0.0, S33 = 0.0;

  // 1D cases and 2D cases where cd != 2.
  if (dim == 1 || (dim == 2 && cd <2)) {
    const int nd = (cd == 0) ? 1 : 0;
    const int pd = 3-cd-nd;
    S11 = stress[cd];
    S22 = stress[nd];
    S33 = stress[pd];
1196 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Mobility Stress Factor
  }

  // Otherwise, do a stress transformation to get the stress components.
  else {
    // Normal direction vector.
    double norm[3];
    ReadNearestInterfaceNormal(norm[0], norm[1], norm[2]);
    norm[cd] = 0.0;
    if (norm[0] == 0. && norm[1] == 0. && norm[2] == 0.0) {
      if (cd == 0) norm[1] = 1.0;
      else norm[0] = 1.0;
    }
    else {
      const double mag=sqrt(norm[0]*norm[0]+norm[1]*norm[1]+norm[2]*norm[2]);
      norm[0] /= mag; norm[1] /= mag; norm[2] /= mag;
    }
    
    // Channel direction vector.
    double chan[3] = {0.0};
    chan[cd] = 1.0;
    
    // In-plane direction vector.
    double plan[3];
    plan[0] = chan[1]*norm[2] - chan[2]*norm[1];
    plan[1] = chan[2]*norm[0] - chan[0]*norm[2];
    plan[2] = chan[0]*norm[1] - chan[1]*norm[0];
    
    // Rotation matrix.
    double a[3][3];
    a[0][0]=chan[0]; a[0][1]=chan[1]; a[0][2]=chan[2];
    a[1][0]=norm[0]; a[1][1]=norm[1]; a[1][2]=norm[2];
    a[2][0]=plan[0]; a[2][1]=plan[1]; a[2][2]=plan[2];
    
    // Get the diagonal components of the transformed stress tensor.
    double SD[3][3];
    SD[0][0] = stress[0]; SD[1][1] = stress[1]; SD[2][2] = stress[2];
    SD[0][1] = SD[1][0] = stress[5];
    SD[0][2] = SD[2][0] = stress[4];
    SD[1][2] = SD[2][1] = stress[3];

 // Channel direction.
    S11 = SD[cd][cd];

    // Normal direction.
    for (int i=0; i<3; ++i) {
      for (int j=0; j<3; ++j) {

S22 += a[1][i]*a[1][j]*SD[i][j];
      }
Sentaurus™ Device User Guide 1197
N-2017.09



38: Physical Model Interface
Mobility Stress Factor
    }

    // In-plane direction.
    for (int i=0; i<3; ++i) {
      for (int j=0; j<3; ++j) {

S33 += a[2][i]*a[2][j]*SD[i][j];
      }
    }
  }
  
  // Effective stress.
  const double Seff = alpha1*S11 + alpha2*S22 + alpha3*S33
    + beta11*S11*S11 + beta12*S11*S22 + beta13*S11*S33
    + beta22*S22*S22 + beta23*S22*S33 + beta33*S33*S33;

  // Convert field to MV/cm.
  const double F = 1.e-6*enorm;

  // Get the stress factor.
  const double FF = (F < F0) ? F : F0;
  const double F2 = FF*FF;
  const double A1 = a10 + a11*FF + a12*F2;
  const double A2 = a20 + a21*FF + a22*F2;
  const double S0 = s00 + s01*FF + s02*F2;
  const double t  =  t0 +  t1*F +  t2*F*F;
  const double sarg = (Seff - S0)/t;
  const double expsarg = exp(sarg);
  const double expsargp1 = 1. + expsarg;
  mobilitystressfactor = ((A1-A2)/expsargp1 + A2)/mu0;

  // Derivative wrt enorm.
  const double dA1dF = (F < F0) ? a11 + 2.*a12*F : 0.0;
  const double dA2dF = (F < F0) ? a21 + 2.*a22*F : 0.0;
  const double dS0dF = (F < F0) ? s01 + 2.*s02*F : 0.0;
  const double dtdF  =  t1 + 2.*t2*F;
  const double dsfdF = (dA1dF + expsarg*dA2dF + (A1-A2)*expsarg*

(dS0dF + sarg*dtdF)/(t*expsargp1))/(mu0*expsargp1);
  dmobilitystressfactordenorm = 1.e-6*dsfdF;
}

class pmi_e_EffectiveStressModel : public pmi_EffectiveStressModel {
public:
  pmi_e_EffectiveStressModel (const PMI_Environment& env);
  ~pmi_e_EffectiveStressModel () {}
};

pmi_e_EffectiveStressModel::
pmi_e_EffectiveStressModel (const PMI_Environment& env)
1198 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Mobility Stress Factor
  : pmi_EffectiveStressModel (env)
{ 
  // Get channel direction and dimension.
  const double dchannelDirection = InitParameter("ChannelDirection", 1.0);
  cd = (dchannelDirection == 2.0) ? 1 : ((dchannelDirection == 3.0) ? 2 : 0);
  dim = ReadDimension();

  alpha1 = InitParameter ("alpha1_e",  1.0);
  alpha2 = InitParameter ("alpha2_e", -1.7);
  alpha3 = InitParameter ("alpha3_e",  0.7);
  beta11 = InitParameter ("beta11_e",  0.0);
  beta12 = InitParameter ("beta12_e",  0.0);
  beta13 = InitParameter ("beta13_e",  0.0);
  beta22 = InitParameter ("beta22_e",  0.0);
  beta23 = InitParameter ("beta23_e",  0.0);
  beta33 = InitParameter ("beta33_e",  0.0);
  mu0 = InitParameter ("mu0_e",   810.0);
  a10 = InitParameter ("a10_e",   565.0);
  a11 = InitParameter ("a11_e",   -81.0);
  a12 = InitParameter ("a12_e",   -44.0);
  a20 = InitParameter ("a20_e",  2028.0);
  a21 = InitParameter ("a21_e", -1992.0);
  a22 = InitParameter ("a22_e",   920.0);
  s00 = InitParameter ("s00_e",  1334.0);
  s01 = InitParameter ("s01_e", -2646.0);
  s02 = InitParameter ("s02_e",   875.0);
  t0 = InitParameter ("t0_e" ,   882.0);
  t1 = InitParameter ("t1_e" ,  -987.0);
  t2 = InitParameter ("t2_e" ,   604.0);
  F0 = InitParameter ("F0_e" ,   1.e10);
}

class pmi_h_EffectiveStressModel : public pmi_EffectiveStressModel {
public:
  pmi_h_EffectiveStressModel (const PMI_Environment& env);
  ~pmi_h_EffectiveStressModel () {}
};

pmi_h_EffectiveStressModel::
pmi_h_EffectiveStressModel (const PMI_Environment& env)
  : pmi_EffectiveStressModel (env)
{
  // Get channel direction and dimension.
  const double dchannelDirection = InitParameter("ChannelDirection", 1.0);
  cd = (dchannelDirection == 2.0) ? 1 : ((dchannelDirection == 3.0) ? 2 : 0);
  dim = ReadDimension();

  alpha1 = InitParameter ("alpha1_h",  1.0);
Sentaurus™ Device User Guide 1199
N-2017.09



38: Physical Model Interface
Trap Capture and Emission Rates
  alpha2 = InitParameter ("alpha2_h", -0.4);
  alpha3 = InitParameter ("alpha3_h", -0.6);
  beta11 = InitParameter ("beta11_h",  0.0);
  beta12 = InitParameter ("beta12_h",  0.0);
  beta13 = InitParameter ("beta13_h", -0.00004);
  beta22 = InitParameter ("beta22_h",  0.00006);
  beta23 = InitParameter ("beta23_h", -0.00018);
  beta33 = InitParameter ("beta33_h",  0.00011);
  mu0 = InitParameter ("mu0_h",   212.0);
  a10 = InitParameter ("a10_h",  2460.0);
  a11 = InitParameter ("a11_h",     0.0);
  a12 = InitParameter ("a12_h",     0.0);
  a20 = InitParameter ("a20_h",    42.0);
  a21 = InitParameter ("a21_h",     0.0);
  a22 = InitParameter ("a22_h",     0.0);
  s00 = InitParameter ("s00_h", -1338.0);
  s01 = InitParameter ("s01_h",     0.0);
  s02 = InitParameter ("s02_h",     0.0);
  t0 = InitParameter ("t0_h" ,   524.0);
  t1 = InitParameter ("t1_h" ,     0.0);
  t2 = InitParameter ("t2_h" ,     0.0);
  F0 = InitParameter ("F0_h" ,   1.e10);
}

extern "C"
PMI_MobilityStressFactor* new_PMI_e_MobilityStressFactor
  (const PMI_Environment& env)
{ return new pmi_e_EffectiveStressModel (env);
}

extern "C"
PMI_MobilityStressFactor* new_PMI_h_MobilityStressFactor
  (const PMI_Environment& env)
{ return new pmi_h_EffectiveStressModel (env);
}

Trap Capture and Emission Rates

The present PMI model can be used to define either capture and emission rates for traps (see
, , , and  in Trap Occupation Dynamics on page 455) or the transitions between

states of multistate configurations (see Specifying Multistate Configurations on page 475). The
model is an arbitrary function of , , , , , and .

cC
n cV

p eC
n eV

p

n p T Tn Tp F
1200 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Trap Capture and Emission Rates
Traps

In the command file, specify the model with the CBRate and VBRate options to Traps.

For example:

Traps((CBRate=("modelX",17) VBRate="modelY") ... )

uses the user-specified model modelX to compute  and  (see Local Trap Capture and
Emission on page 457), and modelY to compute  and . The 17 is passed as the second
argument to the virtual constructor for modelX; modelY is passed as a default value of 0
instead. The interpretation of these integers is left to the user-specified models. They allow you
to select among different parameters or model variants, without having to reimplement the full
model for each different choice of parameters or each minor model variation.

Multistate Configurations

The present model is used for transitions of multistate configurations by the keyword CEModel
(see Specifying Multistate Configurations on page 475), for example:

MSConfig { ...
Transition ( Name="t1" To = "c" From="a" CEModel ("modelX" 5) )

}

where 5 is the optional model index parameter that defaults to 0.

Dependencies

The capture and emission rates may depend on the variables: 

n Electron density [ ]

p Hole density [ ]

t Lattice temperature [ ]

tn Electron temperature [ ]

tp Hole temperature [ ]

f Electric field [ ]

cC
n eC

n

cV
p eV

p

cm 3–

cm 3–

K

K

K

Vcm 1–
Sentaurus™ Device User Guide 1201
N-2017.09



38: Physical Model Interface
Trap Capture and Emission Rates
The PMI model must compute the following results (note that the carrier type that is captured
and emitted is determined by the band to which the model is applied): 

In the case of the standard interface, the following derivatives must be computed as well: 

Standard C++ Interface

The following base class is declared in PMIModels.h:

class PMI_TrapCaptureEmission : public PMI_Vertex_Interface {
public:
PMI_TrapCaptureEmission(const PMI_Environment& env);
virtual ~PMI_TrapCaptureEmission();

virtual void Compute_rates
(const double n, const double p, const double t,
const double tn, const double tp, const double f,
double& capture, double& emission) = 0;

virtual void Compute_dratesdn

capture Capture rate [ ]

emission Emission rate [ ]

dcapturedn Derivative of capture rate with respect to n [ ]

demissiondn Derivative of emission rate with respect to n [ ]

dcapturedp Derivative of capture rate with respect to p [ ]

demissiondp Derivative of emission rate with respect to p [ ]

dcapturedt Derivative of capture rate with respect to t [ ]

demissiondt Derivative of emission rate with respect to t [ ]

dcapturedtn Derivative of capture rate with respect to tn [ ]

demissiondtn Derivative of emission rate with respect to tn [ ]

dcapturedtp Derivative of capture rate with respect to tp [ ]

demissiondtp Derivative of emission rate with respect to tp [ ]

dcapturedf Derivative of capture rate with respect to f [ ]

demissiondf Derivative of emission rate with respect to f [ ]

s 1–

s 1–

s 1– cm3

s 1– cm3

s 1– cm3

s 1– cm3

s 1– K 1–

s 1– K 1–

s 1– K 1–

s 1– K 1–

s 1– K 1–

s 1– K 1–

s 1– V 1– cm

s 1– V 1– cm
1202 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Trap Capture and Emission Rates
(const double n, const double p, const double t,
const double tn, const double tp, const double f,
double& dcapturedn, double& demissiondn) = 0;

virtual void Compute_dratesdp
(const double n, const double p, const double t,
const double tn, const double tp, const double f,
double& dcapturedp, double& demissiondp) = 0;

virtual void Compute_dratesdt
(const double n, const double p, const double t,
const double tn, const double tp, const double f,
double& dcapturedt, double& demissiondt) = 0;

virtual void Compute_dratesdtn
(const double n, const double p, const double t,
const double tn, const double tp, const double f,
double& dcapturedtn, double& demissiondtn) = 0;

virtual void Compute_dratesdtp
(const double n, const double p, const double t,
const double tn, const double tp, const double f,
double& dcapturedtp, double& demissiondtp) = 0;

virtual void Compute_dratesdf
(const double n, const double p, const double t,
const double tn, const double tp, const double f,
double& dcapturedf, double& demissiondf) = 0;

};

The following virtual constructor must be implemented:

typedef PMI_TrapCaptureEmission* new_PMI_TrapCaptureEmission_func
(const PMI_Environment& env, int id);

extern "C" new_PMI_TrapCaptureEmission_func new_PMI_TrapCaptureEmission;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_TrapCaptureEmission_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float n;   // electron density
pmi_float p;   // hole density
Sentaurus™ Device User Guide 1203
N-2017.09



38: Physical Model Interface
Trap Capture and Emission Rates
pmi_float t;   // lattice temperature
pmi_float tn; // electron temperature
pmi_float tp; // hole temperature
pmi_float f;   // absolute value of electric field
pmi_float nc; // lattice effective state density for electrons
pmi_float nv; // lattice effective state density for holes
pmi_float egeff; // effective band gap

};

class Output {
public:

pmi_float capture; // capture rate
pmi_float emission; // emission rate

};

PMI_TrapCaptureEmission_Base (const PMI_Environment& env);
virtual ~PMI_TrapCaptureEmission_Base ();

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_TrapCaptureEmission_Base* new_PMI_TrapCaptureEmission_Base_func
(const PMI_Environment& env, int id);

extern "C" new_PMI_TrapCaptureEmission_Base_func
new_PMI_TrapCaptureEmission_Base;

Example: CEModel_ArrheniusLaw

The model has the structure of the Arrhenius law. It depends on the temperature. 

Table 174 Model parameters

Symbol Parameter name Default  Unit Description

DeltaE 0. eV Energy difference

g 1. 1 Degeneracy factor

r0 1. Maximal transition rate

Eact 0. eV Activation energy

δE

g

r0 s 1–

Eact
1204 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Trap Energy Shift
Let  and  be the energy difference and activation energy. The capture and emission rates
are given by:

(1267)

(1268)

The model is shipped with Sentaurus Device. A more flexible and general way to specify
Arrhenius law transitions is provided by the transition model pmi_ce_msc (see Arrhenius Law
(Formula=0) on page 479).

Trap Energy Shift

The present PMI determines a shift  of trap energies that depends on the electric field and
the lattice temperature at the location of the vertex or at a position given with
ReferencePoint (see Energetic and Spatial Distribution of Traps on page 450).

Command File

The energy shift model is specified by EnergyShift=<model name> or
EnergyShift=(<model name>, <int>) as an option to Traps in the Physics section.
The optional integer defaults to zero and is passed as the argument id to the virtual constructor
of the PMI (see below). The interpretation of id is dependent on the user-specified model.

Dependencies

The trap energy shift can depend on the variables: 

The PMI model must compute the following results: 

f Electric field vector [ ], a vector with up to three components,
for the field in the x-, y-, and z-direction

t Lattice temperature [ ]

shift Energy shift [ ]

δE Eact

c r0 Eact– kT⁄( )exp=

e r0g Eact δE+ – kT⁄( )exp=

Eshift

Vcm 1–

K

eV
Sentaurus™ Device User Guide 1205
N-2017.09



38: Physical Model Interface
Trap Energy Shift
In the case of the standard interface, the following derivatives must be computed as well: 

Standard C++ Interface

The following base class is declared in PMIModels.h:

class PMI_TrapEnergyShift : public PMI_Vertex_Interface {

public:
PMI_TrapEnergyShift(const PMI_Environment& env);
virtual ~PMI_TrapEnergyShift();

virtual void Compute_shift(
const double f[3], const double t, double& shift) = 0;

virtual void Compute_dshiftdf(
const double f[3], const double t, double df[3]) = 0;

virtual void Compute_dshiftdt(
const double f[3], const double t, double& dt) = 0;

};

The following virtual constructor must be implemented:

typedef PMI_TrapEnergyShift* new_PMI_TrapEnergyShift_func
(const PMI_Environment& env, int id);

extern "C" new_PMI_TrapEnergyShift_func new_PMI_TrapEnergyShift;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_TrapEnergyShift_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float f[3]; // electric field vector
pmi_float t;     // lattice temperature

};

class Output {

dshiftdf Derivative of energy shift with respect to each component of f
[ ], a vector with up to three entries

dshiftdt Derivative of energy shift with respect to t [ ]

eVcmV 1–

eVK 1–
1206 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
eNMP Transition Rates
public:
pmi_float shift; // trap energy shift

};

PMI_TrapEnergyShift_Base (const PMI_Environment& env);
virtual ~PMI_TrapEnergyShift_Base ();

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_TrapEnergyShift_Base* new_PMI_TrapEnergyShift_Base_func
(const PMI_Environment& env, int id);

extern "C" new_PMI_TrapEnergyShift_Base_func new_PMI_TrapEnergyShift_Base;

eNMP Transition Rates

Transition rates used in the extended nonradiative multiphonon (eNMP) model can be
computed by an eNMP transition rates PMI model. The computed transition rates are used in
the solution of the eNMP model rate equations (see eNMP Model Description on page 514).

To use a PMI for calculating the transition rates, specify the PMI model name as an option to
eNMP in the Physics section of the command file:

Physics (MaterialInterface | RegionInterface = "<name1>/<name2>") {
eNMP (

pmi_model_name [StateCharge=<1 or -1>] ...
)

}

The eNMP model requires the calculation of eight transition rates occurring between four
states. For the built-in eNMP model, the metastable states are designated with primes (that is,

 and ). To simplify the naming of the transition rates for the PMI, the following definitions
are made:

■ state 3 = state 

■ state 4 = state 

In addition, when a PMI model is used to calculate the transition rates, the sign of the charge
states can be specified with the StateCharge parameter in the command file. By default, the
charge states are assumed to be positive (StateCharge > 0). To designate that the charge
states are negative, specify StateCharge < 0.

1' 2'

1'

2'
Sentaurus™ Device User Guide 1207
N-2017.09



38: Physical Model Interface
eNMP Transition Rates
With these definitions, the transition rates that must be calculated by the PMI model are shown
in Figure 84. 

Figure 84 State diagram for the eNMP transition rates PMI

Distinction Between Electron and Hole Transitions

For transitions involving a change in charge (  and ), the PMI requires a
distinction between transitions that involve holes (hole capture and hole emission) and
electrons (electron capture and electron emission). This distinction is necessary so that
Sentaurus Device correctly accounts for changes in carrier recombination when the eNMP
model is used. The component of a transition rate involving holes is designated with an “h”
suffix, and an “e” suffix designates the electron component:

(1269)

(1270)

(1271)

(1272)

The transition rate components have the meanings shown in Table 175 depending on
StateCharge. 

Table 175 Definition of eNMP transition rate depending on StateCharge

Rates StateCharge > 0 StateCharge < 0

, Hole capture Hole emission

, Electron emission Electron capture

, Hole emission Hole capture

, Electron capture Electron emission

k14

k41

k32

k23

k31 k42k24k13

1

3 2

4
Stable

neutral

Metastable

neutral

Metastable

positive (if StateCharge > 0)

negative (if StateCharge < 0)

Stable

positive (if StateCharge > 0)

negative (if StateCharge < 0)

1 4↔ 2 3↔

k14 k14h k14e+=

k41 k41h k41e+=

k23 k23h k23e+=

k32 k32h k32e+=

k14h k32h

k14e k32e

k41h k23h

k41e k23e
1208 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
eNMP Transition Rates
It is not required to compute both electron and hole transition components in the PMI. For
example, the built-in eNMP model includes only hole transitions, and electron transitions are
ignored.

Transition Rates for All Sample Defects

Since the eNMP model uses a random sampling technique to obtain the average behavior of
multiple defects, the eNMP transition rates PMI model must calculate transition rates for all of
the sample defects at each vertex. For this purpose, the following parameters are passed
automatically to the eNMP transition rates PMI and can be accessed using the runtime support
function InitParameter():

NumberOfSamples = InitParameter("NumberOfSamples", 1000);
NumberOfVertices = InitParameter("NumberOfVertices", 1);

The NumberOfSamples keyword represents the value specified in the eNMP section of the
command file. The NumberOfVertices keyword represents the number of interface vertices
at the interface where the eNMP model is being used.

Parameter Randomization

Since transition rates must be obtained for all of the sample defects, it is likely that some model
parameters will need to be randomized (either using a uniform distribution or a Gaussian
distribution). In this case, the randomized parameter values should be obtained and stored in
the constructor of the eNMP transition rates PMI for all NumberOfSamples defects and for
all NumberOfVertices interface vertices. Therefore, a total of NumberOfSamples ×
NumberOfVertices values should be obtained for each parameter to be randomized. The
requirement to obtain randomized parameter values for all interface vertices in the PMI
constructor is to ensure that each vertex uses different NumberOfSamples values for each
randomized parameter.

The eNMP transition rates PMI includes two member functions to assist in randomizing
parameter values:

■ double UnifRanNum(int &idum) – returns a random number between 0 and 1,
exclusive of the endpoints.

■ double GausRanNum(int &idum) – returns a random number that follows a normal
distribution with zero mean and unit variance.
Sentaurus™ Device User Guide 1209
N-2017.09



38: Physical Model Interface
eNMP Transition Rates
These functions must be initialized with idum < 0 and, thereafter, idum must not be changed
during the sequence. For example, the following code fragment shows how two parameters can
be randomized and stored for later use:

std::vector<double> Eti;
std::vector<double> xti;
...
NumberOfSamples = InitParameter("NumberOfSamples", 1000);
NumberOfVertices = InitParameter("NumberOfVertices", 1);
double Et0   = InitParameter("Et", -0.5);
double Etsig = InitParameter("Etsig", 0.1);
double xtmin = InitParameter("xtmin", 0.0);
double xtmax = InitParameter("xtmax", 0.0);
...
int idum = -1;
for (int i = 0; i < NumberOfSamples*NumberOfVertices; ++i) {

double Et = Et0 + Etsig*GausRanNum(idum);
double xt = xtmin + (xtmax – xtmin)*UnifRanNum(idum);
...
Eti.push_back(Et);
xti.push_back(xt);
...

}

Dependencies

The eNMP transition rates PMI may depend on the interface values of the following variables:

The PMI model must compute the following results:

n Electron density [ ]

p Hole density [ ]

Nc Conduction band density-of-states [ ]

Nv Valence band density-of-states [ ]

Eg Band gap [eV]

T Lattice temperature [K]

F Magnitude of insulator electric field [ ]

k[0]i = i Hole component of transition rates from state 1 to state 4 [ ]

k[1]i = i Electron component of transition rates from state 1 to state 4 [ ]

cm 3–

cm 3–

cm 3–

cm 3–

V cm 1–

k14h( ) s 1–

k14e( ) s 1–
1210 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
eNMP Transition Rates
NOTE The subscript  in the above transition rates is shorthand that indicates
that the transition rate must be computed for all NumberOfSamples
sample defects at the interface vertex, for example:

(1273)

In the case of the standard PMI interface, the following derivatives must also be computed:

NOTE Similar to the transition rates, the subscript  in the above derivatives is
shorthand that indicates that the derivatives must be computed for all
NumberOfSamples sample defects at the interface vertex, for example:

(1274)

k[2]i = i Hole component of transition rates from state 4 to state 1 [ ]

k[3]i = i Electron component of transition rates from state 4 to state 1 [ ]

k[4]i = i Hole component of transition rates from state 2 to state 3 [ ]

k[5]i = i Electron component of transition rates from state 2 to state 3 [ ]

k[6]i = i Hole component of transition rates from state 3 to state 2 [ ]

k[7]i = i Electron component of transition rates from state 3 to state 2 [ ]

k[8]i = i Transition rates from state 1 to state 3 [ ]

k[9]i = i Transition rates from state 3 to state 1 [ ]

k[10]i = i Transition rates from state 2 to state 4 [ ]

k[11]i = i Transition rates from state 4 to state 2 [ ]

dkdn[0]i, dkdn[1]i, ..., dkdn[11]i Derivatives of all transition rates with respect to n [ ]

dkdp[0]i, dkdp[1]i, ..., dkdp[11]i Derivatives of all transition rates with respect to p [ ]

dkdNc[0]i, dkdNc[1]i, ..., dkdNc[11]i Derivatives of all transition rates with respect to Nc [ ]

dkdNv[0]i, dkdNv[1]i, ..., dkdNv[11]i Derivatives of all transition rates with respect to Nv [ ]

dkdEg[0]i, dkdEg[1]i, ..., dkdEg[11]i Derivatives of all transition rates with respect to Eg [ ]

dkdT[0]i, dkdT[1]i, ..., dkdT[11]i Derivatives of all transition rates with respect to T [ ]

dkdF[0]i, dkdF[1]i, ..., dkdF[11]i Derivatives of all transition rates with respect to F [ ]

k41h( ) s 1–

k41e( ) s 1–

k23h( ) s 1–

k23e( ) s 1–

k32h( ) s 1–

k32e( ) s 1–

k13( ) s 1–

k31( ) s 1–

k24( ) s 1–

k42( ) s 1–

i

k 0[ ]i k 0[ ]0, k 0[ ]1, k 0[ ]2, ..., k 0[ ]NumberOfSamples - 1→

cm3 s 1–

cm3 s 1–

cm3 s 1–

cm3 s 1–

eV 1– s 1–

K 1– s 1–

cmV 1– s 1–

i

dkdn 0[ ]i dkdn 0[ ]0, dkdn 0[ ]1, dkdn 0[ ]2, ..., dkdn 0[ ]NumberOfSamples - 1→
Sentaurus™ Device User Guide 1211
N-2017.09



38: Physical Model Interface
eNMP Transition Rates
The derivative array indices correspond to the array indices for the transition rates, for example:

(1275)

Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_eNMPTransitionRates : public PMI_Vertex_Interface {

public:
class Input {
public:

double n;   // electron density
double p;   // hole density
double Nc;  // conduction-band effective density-of-states
double Nv;  // valence-band effective density-of-states
double Eg;  // bandgap
double T;   // lattice temperature
double F;   // insulator electric field
int vindex; // vertex index ( )

};

class Output {
public:

std::vector<double> k[12];     // transition rates
std::vector<double> dkdn[12];  // derivatives wrt electron density
std::vector<double> dkdp[12];  // derivatives wrt hole density
std::vector<double> dkdNc[12]; // derivatives wrt to conduction band DOS
std::vector<double> dkdNv[12]; // derivatives wrt to valence band DOS
std::vector<double> dkdEg[12]; // derivatives wrt bandgap
std::vector<double> dkdT[12];  // derivatives wrt lattice temperature
std::vector<double> dkdF[12];  // derivatives wrt insulator electric 
field

};

PMI_eNMPTransitionRates (const PMI_Environment& env);

virtual ~PMI_eNMPTransitionRates ();

// method to be implemented by user
virtual void compute(const Input& input, Output& output) = 0;

dkdn 0[ ]i
d k14h( )

i

dn
-------------------, dkdn 1[ ]i

d k14e( )
i

dn
-------------------, …==

0 vindex NumberOfVertices 1–≤ ≤
1212 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
eNMP Transition Rates
// random number generators
double UnifRanNum (int &idum);
double GausRanNum (int &idum);

};

The following virtual constructor must be implemented:

typedef PMI_eNMPTransitionRates*
new_PMI_eNMPTransitionRates_func (const PMI_Environment& env);

extern “C” new_PMI_eNMPTransitionRates_func new_PMI_eNMPTransitionRates;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_eNMPTransitionRates_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

Input (const PMI_eNMPTransitionRates_Base* enmprates_base, const int 
vertex);
pmi_float n;  // electron density
pmi_float p;  // hole density
pmi_float Nc; // conduction-band effective density-of-states
pmi_float Nv; // valence-band effective density-of-states
pmi_float Eg; // bandgap
pmi_float T;  // lattice temperature
pmi_float F;  // insulator electric field
int vindex;   // vertex index ( )

};

class Output {
public:

std::vector<pmi_float> k[12]; // transition rates
};

PMI_eNMPTransitionRates_Base (const PMI_Environment& env);

virtual ~PMI_eNMPTransitionRates_Base ();

virtual void compute(const Input& input, Output& output) = 0;

// random number generators
double UnifRanNum (int &idum);
double GausRanNum (int &idum);

};

0 vindex NumberOfVertices 1–≤ ≤
Sentaurus™ Device User Guide 1213
N-2017.09



38: Physical Model Interface
eNMP Transition Rates
The prototype for the virtual constructor is given as:

typedef PMI_eNMPTransitionRates_Base*
new_PMI_eNMPTransitionRates_Base_func

(const PMI_Environment& env);
extern "C" new_PMI_eNMPTransitionRates_Base_func

new_PMI_eNMPTransitionRates_Base;

Example: eNMP Model Transition Rates

This example illustrates the implementation of the eNMP model transition rates using the
standard C++ interface:

#include "PMI.h"
#include <cmath>
#include <vector>

// Implementation of transitions rates for the eNMP model.

class eNMPRates : public PMI_eNMPTransitionRates {

protected:
int NumberOfSamples, NumberOfVertices;
double Xsec, Vth, x0, nu0;
std::vector<double> Eti;
std::vector<double> Etpi;
std::vector<double> Ri;
std::vector<double> Rpi;
std::vector<double> ESi; Model 
std::vector<double> ESpi;
std::vector<double> ET2pi;
std::vector<double> E1p1i;
std::vector<double> E2p2i;
std::vector<double> xti;

public:
eNMPRates (const PMI_Environment& env);
~eNMPRates ();
void compute (const Input& input, Output& output);

};

eNMPRates::
eNMPRates (const PMI_Environment& env) : PMI_eNMPTransitionRates (env)
{

NumberOfSamples = InitParameter ("NumberOfSamples", 1000); // 1
NumberOfVertices = InitParameter ("NumberOfVertices", 1);  // 1
Xsec = InitParameter ("Xsec", 1.0e-15);  // cm^2
1214 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
eNMP Transition Rates
Vth  = InitParameter ("Vth" , 1.2e+07);  // cm/s
x0   = InitParameter ("x0"  ,     0.5);  // A
nu0  = InitParameter ("nu0" , 1.0e+13);  // s^-1

double Et0   = InitParameter ("Et"   , -0.5);  // eV
double Etp0  = InitParameter ("Etp"  ,  0.5);  // eV
double R0    = InitParameter ("R"    ,  0.6);  // 1
double Rp0   = InitParameter ("Rp"   ,  0.6);  // 1
double ES0   = InitParameter ("ES"   ,  1.0);  // eV
double ESp0  = InitParameter ("ESp"  ,  1.0);  // eV
double ET2p0 = InitParameter ("ET2p" ,  0.5);  // eV
double E1p10 = InitParameter ("E1p1" ,  1.0);  // eV
double E2p20 = InitParameter ("E2p2" ,  0.5);  // eV
double xtmin = InitParameter ("xtmin",  0.0);  // A

double Etsig   = InitParameter ("Etsig"  , 0.1);  // eV
double Etpsig  = InitParameter ("Etpsig" , 0.1);  // eV
double Rsig    = InitParameter ("Rsig"   , 0.1);  // 1
double Rpsig   = InitParameter ("Rpsig"  , 0.1);  // 1
double ESsig   = InitParameter ("ESsig"  , 0.1);  // eV
double ESpsig  = InitParameter ("ESpsig" , 0.1);  // eV
double ET2psig = InitParameter ("ET2psig", 0.1);  // eV
double E1p1sig = InitParameter ("E1p1sig", 0.1);  // eV
double E2p2sig = InitParameter ("E2p2sig", 0.1);  // eV
double xtmax   = InitParameter ("xtmax"  , 0.0);  // A

int idum = -1;
for (int i = 0; i < NumberOfSamples*NumberOfVertices; ++i) {

double Et   = Et0   + Etsig  *GausRanNum(idum);
double Etp  = Etp0  + Etpsig *GausRanNum(idum);
double R    = R0    + Rsig   *GausRanNum(idum);
double Rp   = Rp0   + Rpsig  *GausRanNum(idum);
double ES   = ES0   + ESsig  *GausRanNum(idum);
double ESp  = ESp0  + ESpsig *GausRanNum(idum);
double ET2p = ET2p0 + ET2psig*GausRanNum(idum);
double E1p1 = E1p10 + E1p1sig*GausRanNum(idum);
double E2p2 = E2p20 + E2p2sig*GausRanNum(idum);
double xt = xtmin + (xtmax - xtmin)*UnifRanNum(idum);
if (R   < 1.0e-10) R   = 1.0e-10;
if (Rp  < 1.0e-10) Rp  = 1.0e-10;
if (ES  < 1.0e-10) ES  = 1.0e-10;
if (ESp < 1.0e-10) ESp = 1.0e-10;
Eti.push_back(Et);
Etpi.push_back(Etp);
Ri.push_back(R);
Rpi.push_back(Rp);
ESi.push_back(ES);
ESpi.push_back(ESp);
Sentaurus™ Device User Guide 1215
N-2017.09



38: Physical Model Interface
eNMP Transition Rates
ET2pi.push_back(ET2p);
E1p1i.push_back(E1p1);
E2p2i.push_back(E2p2);
xti.push_back(xt);

}
}

eNMPRates::
~eNMPRates ()
{
}

void eNMPRates::
compute (const Input& input, Output& output) 
{

// Compute NBTI transition rates .
// The order of transition rates and derivatives are:
// k14h, k14e, k41h, k41e (k14 = k14h + k14e; k41 = k41h + k41e)
// k23h, k23e, k32h, k32e (k23 = k23h + k23e; k32 = k32h + k32e)
// k13, k31, k24, k42

// Get the input variables.
const double n  = input.n;   // cm^-3 
const double p  = input.p;   // cm^-3 
const double Nc = input.Nc;  // cm^-3 
const double Nv = input.Nv;  // cm^-3 
const double Eg = input.Eg;  // eV
const double T  = input.T;   // K
const double F  = input.F;   // V/cm (this is always |F|)
const double kT = 8.617331e-5*T;  // kT in eV
const int vindex = input.vindex;

// Initialize the output variables.
for (int i = 0; i < 12; ++i) {

output.k[i].resize(NumberOfSamples, 0.0);
output.dkdn[i].resize(NumberOfSamples, 0.0);
output.dkdp[i].resize(NumberOfSamples, 0.0);
output.dkdNc[i].resize(NumberOfSamples, 0.0);
output.dkdNv[i].resize(NumberOfSamples, 0.0);
output.dkdEg[i].resize(NumberOfSamples, 0.0);
output.dkdT[i].resize(NumberOfSamples, 0.0);
output.dkdF[i].resize(NumberOfSamples, 0.0);

}

// Calculate the rates for each sample.
for (int is = 0; is < NumberOfSamples; ++is) {

int ii = is + vindex*NumberOfSamples;
const double Et = Eti[ii];
1216 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
eNMP Transition Rates
const double Etp = Etpi[ii];
const double R = Ri[ii];
const double Rp = Rpi[ii];
const double ES = ESi[ii];
const double ESp = ESpi[ii];
const double ET2p = ET2pi[ii];
const double E1p1 = E1p1i[ii];
const double E2p2 = E2p2i[ii];
const double xt = xti[ii];
const double sigma = Xsec * exp(-xt/x0);
const double xtcm = xt*1.0e-8;
const double R1p1 = R  + 1.0;
const double R3p1 = Rp + 1.0;
const double R1fac = R1p1*sqrt(R1p1)*sigma*Vth;
const double R3fac = R3p1*sqrt(R3p1)*sigma*Vth;

// Trap energies relative to valence band.
const double Etv  = Et  + xtcm * F;
const double Etpv = Etp + xtcm * F;

// Get transition energies and derivatives.
const double E14 = (ES/R1p1 - R*(Etv - ET2p))/R1p1;
const double E41 = E14 + Etv - ET2p;
const double E32 = (ESp/R3p1 - Rp*Etpv)/R3p1;
const double E23 = E32 + Etpv;
const double dE14dF = -R/R1p1*xtcm;
const double dE41dF = dE14dF + xtcm;
const double dE32dF = -Rp/R3p1*xtcm;
const double dE23dF = dE32dF + xtcm;
const double E13 = E1p1 + Etp - Et;
const double E31 = E1p1;
const double E24 = E2p2 + ET2p;
const double E42 = E2p2;

// Get transition rates and derivatives.
const double k14 = R1fac*p*exp(-E14/kT);
const double dk14dp = k14/p;
const double dk14dT = k14*(E14/kT)/T;
const double dk14dF = k14*(-dE14dF/kT);
const double k41 = R1fac*Nv*exp(-E41/kT);
const double dk41dNv = k41/Nv;
const double dk41dT  = k41*(E41/kT)/T;
const double dk41dF  = k41*(-dE41dF/kT);
const double k23 = R3fac*Nv*exp(-E23/kT);
const double dk23dNv = k23/Nv;
const double dk23dT  = k23*(E23/kT)/T;
const double dk23dF  = k23*(-dE23dF/kT);
const double k32 = R3fac*p*exp(-E32/kT);
Sentaurus™ Device User Guide 1217
N-2017.09



38: Physical Model Interface
eNMP Transition Rates
const double dk32dp = k32/p;
const double dk32dT = k32*(E32/kT)/T;
const double dk32dF = k32*(-dE32dF/kT);
const double k13 = nu0*exp(-E13/kT);
const double dk13dT = k13*(E13/kT)/T;
const double k31 = nu0*exp(-E31/kT);
const double dk31dT = k31*(E31/kT)/T;
const double k24 = nu0*exp(-E24/kT);
const double dk24dT = k24*(E24/kT)/T;
const double k42 = nu0*exp(-E42/kT);
const double dk42dT = k42*(E42/kT)/T;

// Fill the output variables.
output.k[0][is]=k14;
output.dkdp[0][is]=dk14dp;
output.dkdT[0][is]=dk14dT;
output.dkdF[0][is]=dk14dF;
output.k[2][is]=k41;
output.dkdNv[2][is]=dk41dNv;
output.dkdT[2][is]=dk41dT;
output.dkdF[2][is]=dk41dF;
output.k[4][is]=k23;
output.dkdNv[4][is]=dk23dNv;
output.dkdT[4][is]=dk23dT;
output.dkdF[4][is]=dk23dF;
output.k[6][is]=k32;
output.dkdp[6][is]=dk32dp;
output.dkdT[6][is]=dk32dT;
output.dkdF[6][is]=dk32dF;
output.k[8][is]=k13;
output.dkdT[8][is]=dk13dT;
output.k[9][is]=k31;
output.dkdT[9][is]=dk31dT;
output.k[10][is]=k24;
output.dkdT[10][is]=dk24dT;
output.k[11][is]=k42;
output.dkdT[11][is]=dk42dT;

}
}

extern "C"
PMI_eNMPTransitionRates*

new_PMI_eNMPTransitionRates (const PMI_Environment& env)
{ return new eNMPRates (env);
}

1218 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Piezoelectric Polarization
Piezoelectric Polarization

The effects of piezoelectric polarization can be modeled by adding the divergence of the
piezoelectric polarization vector as an additional charge term:

(1276)

to the right-hand side of the Poisson equation (see Eq. 37, p. 173):

(1277)

The quantity  denotes the piezoelectric polarization vector, which may defined by a PMI.
The built-in models for piezoelectric polarization are discussed in Dependency of Saturation
Velocity on Stress on page 879.

The name of the PMI is specified in the Physics section of the command file as follows:

Physics {
Piezoelectric_Polarization (pmi_polarization)

}

The piezoelectric polarization vector and the piezoelectric charge may be plotted by:

Plot {
PE_Polarization/vector
PE_Charge

}

Sentaurus Device assumes that the piezoelectric polarization vector  is zero outside of the
device. This boundary condition may lead to an unexpectedly large charge density if  has
a nonzero component orthogonal to the boundary (discontinuity in ).

Dependencies

The piezoelectric polarization model does not have explicit dependencies. However, it can use
the runtime support. In particular, it has access to the stress fields.

The model must compute: 

The resulting vector pol has the dimension 3. However, only the first dim components need to
be defined, where dim is equal to the dimension of the problem.

pol Piezoelectric polarization vector [ ]

qPE PPE∇–=

ε∇ φ∇⋅ q p n– ND NA– qPE+ +( )–=

PPE

PPE

PPE

PPE∇

Ccm 2–
Sentaurus™ Device User Guide 1219
N-2017.09



38: Physical Model Interface
Piezoelectric Polarization
Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_Polarization : public PMI_Vertex_Interface {

public:
PMI_Polarization (const PMI_Environment& env);
virtual ~PMI_Polarization ();

virtual void Compute_pol
(double pol [3]) = 0;

};

The prototype for the virtual constructor is given as:

typedef PMI_Polarization* new_PMI_Polarization_func
(const PMI_Environment& env);

extern "C" new_PMI_Polarization_func new_PMI_Polarization;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_Polarization_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:
};

class Output {
public:

pmi_float pol [3]; // piezoelectric polarization
};

PMI_Polarization_Base (const PMI_Environment& env);
virtual ~PMI_Polarization_Base ();

virtual void compute (const Input& input, Output& output) = 0;
};
1220 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Piezoelectric Polarization
The prototype for the virtual constructor is given as:

typedef PMI_Polarization_Base* new_PMI_Polarization_Base_func
(const PMI_Environment& env);

extern "C" new_PMI_Polarization_Base_func new_PMI_Polarization_Base;

Example: Gaussian Polarization Model

In this example, the piezoelectric polarization vector  has a simple Gaussian shape in the
x-direction:

#include "PMIModels.h"

class Gauss_Polarization : public PMI_Polarization {
private:
  double x0, c, a;

public:
  Gauss_Polarization (const PMI_Environment& env);
  ~Gauss_Polarization ();

  void Compute_pol (double pol [3]);
};

Gauss_Polarization::
Gauss_Polarization (const PMI_Environment& env) :
  PMI_Polarization (env)
{ x0 = InitParameter ("x0", 0.0);
  c = InitParameter ("c", 1.0);
  a = InitParameter ("a", 1e-5);
}

Gauss_Polarization::
~Gauss_Polarization ()
{
}

void Gauss_Polarization::
Compute_pol (double pol [3])
{ double x, y, z;
  ReadCoordinate (x, y, z);
  pol [0] = a * exp (-c * (x-x0) * (x-x0));
  pol [1] = 0.0;
  pol [2] = 0.0;
}

extern "C"

PPE
Sentaurus™ Device User Guide 1221
N-2017.09



38: Physical Model Interface
Incomplete Ionization
PMI_Polarization* new_PMI_Polarization
  (const PMI_Environment& env)
{ return new Gauss_Polarization (env);
}

Incomplete Ionization

The ionization factors  and  (see Incomplete Ionization Model on page 279) can
be defined by a PMI.

The name of the PMI should be specified in the Physics section of the command file as
follows:

Physics {
IncompleteIonization( Model( PMI_model_name("Species_name1

Species_name2 ...") ) )
}

In addition, it is possible to have a PMI for each species separately:

Physics {
IncompleteIonization(

Model(
PMI_model_name1("Species_name1")
PMI_model_name2("Species_name2")

)
)

}

The species PMI parameters should be defined in the parameter file (see Parameter File of
Sentaurus Device on page 1088).

Dependencies

The ionization factors  and  may depend on the variable: 

The PMI model must compute the following results: 

t Lattice temperature [K]

g Ionization factor 

GD T( ) GA T( )

GD T( ) GA T( )

G T( )
1222 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Incomplete Ionization
In the case of the standard interface, the following derivative must be computed as well: 

Standard C++ Interface

The following base class is declared in the file PMIModels.h:

enum PMI_SpeciesType {
  PMI_acceptor,
  PMI_donor 
};

class PMI_DistributionFunction : public PMI_Vertex_Interface {

private:
  const PMI_SpeciesType speciesType;
  const char* speciesName;

public:
  PMI_DistributionFunction (const PMI_Environment& env,

const char* name
const PMI_SpeciesType type = PMI_acceptor);

  virtual ~PMI_DistributionFunction ();

  PMI_SpeciesType SpeciesType () const { return speciesType; }
  const char* SpeciesName () const { return speciesName; }

// read parameter from Sentaurus Device parameter file 
// (override for PMI_Vertex_Interface::ReadParameter)

  const PMIBaseParam* ReadParameter (const char* name) const;

// initialize parameter from Sentaurus Device parameter file or from default
// value (override for PMI_Vertex_Interface::InitParameter)

  double InitParameter (const char* name, double defaultvalue) const;

virtual void Compute_g
    (const double T,        // lattice temperature
     double& g) = 0;        // g = G(T)

  virtual void Compute_dgdt
    (const double T,        // lattice temperature
     double& dgdt) = 0;     // dgdt = G’(T)

};

dgdt Derivative of  with respect to T G T( )
Sentaurus™ Device User Guide 1223
N-2017.09



38: Physical Model Interface
Incomplete Ionization
The prototype for the virtual constructor is given as:

typedef PMI_DistributionFunction* new_PMI_DistributionFunction_func
(const PMI_Environment& env);

extern "C" new_PMI_DistributionFunction_func new_PMI_DistributionFunction;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_DistributionFunction_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float t; // lattice temperature
};

class Output {
public:

pmi_float g; // ionization factor
};

PMI_DistributionFunction_Base (const PMI_Environment& env,
const char* name,
const PMI_SpeciesType type = PMI_acceptor);

virtual ~PMI_DistributionFunction_Base ();

PMI_SpeciesType SpeciesType () const;
const char* SpeciesName () const;

const PMIBaseParam* ReadParameter (const char* name) const;
double InitParameter (const char* name, double defaultvalue) const;

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_DistributionFunction_Base* new_PMI_DistributionFunction_Base_func
(const PMI_Environment& env, const char* name, const PMI_SpeciesType type);

extern "C" new_PMI_DistributionFunction_Base_func
new_PMI_DistributionFunction_Base;
1224 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Incomplete Ionization
Example: Matsuura Incomplete Ionization Model

The following C++ code implements the Matsuura model [1] for dopant Al in SiC material:

(1278)

where  is the ground-state degeneracy factor,  is the -th excited state degeneracy
factor, and  is the difference in energy between the -th excited state level and .

 is given by the hydrogenic dopant model [2]:

(1279)

where  is the hole effective mass in SiC, and  is the dielectric constant of SiC. 

The acceptor level is described as [2]:

(1280)

where  is the energy induced due to central cell corrections.

The ensemble average  of the ground and excited state levels of the acceptor is given by [3]:

(1281)

The Matsuura model can be implemented as follows:

class Matsuura_DistributionFunction : public PMI_DistributionFunction {

protected:
  const double kB_300; // Boltzmann constant * 300   [eV]
  int   nb_item; // number of item in sum 
  double *gr, *dEr; 
  double Eex, dEA, Eccc;

public:
  Matsuura_DistributionFunction (const PMI_Environment& env,
                                 const char* name,
                                 const PMI_SpeciesType type = PMI_acceptor);

  ~Matsuura_DistributionFunction ();

GA T( ) 4
ΔEA Eex–

kT
------------------------- 

 exp g1 gr

ΔEr ΔEA–

kT
--------------------------- 

 exp

r 2=
+

 
 
 

⋅=

g1 gr r 1–( )
ΔEr r 1–( ) EV

ΔEr

ΔEr 13.6
m∗

m0 εs
2⋅

----------------
1
r2
----⋅ ⋅= [eV]

m∗ εs

ΔEA ΔE1 ECCC+=

ECCC

Eex

Eex

ΔEA ΔEr–( )g
r

ΔEA ΔEr–

kT
---------------------------– 

 exp

r 2=


g1 gr

ΔEA ΔEr–

kT
---------------------------– 

 exp

r 2=
+

-----------------------------------------------------------------------------------------------=
Sentaurus™ Device User Guide 1225
N-2017.09



38: Physical Model Interface
Incomplete Ionization
  void Compute_g
    (const double T,        // lattice temperature
     double& g);            // g = G(T)

  void Compute_dgdt
    (const double T,        // lattice temperature
     double& dgdt);         // dgdt = G’(T)

   double Compute_Eex(double T);// compute Eex(T) Eq. 1281, p. 1225
   double Compute_dEexdT(double T);// compute dEex/dT

};

Matsuura_DistributionFunction::
Matsuura_DistributionFunction (const PMI_Environment& env,
                               const char* name,
                               const PMI_SpeciesType type) :
  PMI_DistributionFunction (env, name, type),
  kB_300(1.380662e-23*300./1.602192e-19), // kB*T0/e0 = 0.02585199527 [eV]
  Eex(0.)
{
  nb_item = InitParameter ("NumberOfItem", 1);
  Eccc     = InitParameter ("Eccc", 0);

  if(nb_item < 1) {
    printf("ERROR; PMI model Matsuura_DistributionFunction: parameter 
NumberOfItem < 1 \n");

exit(1);
  }
  gr = new double[nb_item];
  dEr = new double[nb_item];

  char str_r[6], name_gr[6]; 

  int r;
  for(r=0; r<nb_item; ++r) {
    name_gr[0] = 'g'; name_gr[1] = '\0';
    sprintf(str_r, "%d\0", r+1);
    strcat(name_gr, str_r);
    const PMIBaseParam* par = ReadParameter(name_gr);
    if(!par) {
      printf("ERROR; PMI model Matsuura_DistributionFunction: cannot read 
parameter %s \n", name_gr);

 gr[r] = 2;
} else 
      gr[r] = *par;
1226 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Incomplete Ionization
  }

  const PMIBaseParam* par = ReadParameter("dE1");
  if(!par) {

// dE[r] = 13.6 * m_eff/m0/eps/eps/r/r
    Compute_dEr(nb_item, dEr); 
  } else {
    char name_dEr[6]; 
    for(r=0; r<nb_item; ++r) {
      strcpy(name_dEr, "dE");
      sprintf(str_r, "%d\0", r+1);
      strcat(name_dEr, str_r);
      const PMIBaseParam* par = ReadParameter(name_dEr);
      if(!par) {
        printf("ERROR; PMI model Matsuura_DistributionFunction: cannot read 
parameter %s \n", name_dEr);
        exit(1);
      }
      dEr[r] = *par; 
    }          
  }
  dEA = dEr[0] + Eccc;
}

 Matsuura_DistributionFunction::
~Matsuura_DistributionFunction ()
{
  delete[] gr;
  delete[] dEr;
}

void Matsuura_DistributionFunction::Compute_g
    (const double T,                  // lattice temperature
     double& g)                       // g = G(T)
{
  const double kT = kB_300*T/300;

  Eex = Compute_Eex(T); 
  g = gr[0];

  for(int r=1; r<nb_item; ++r) {
    double delta = dEA - dEr[r];
    g += gr[r]*exp( -delta/kT );
  }
  g *= 4.*exp( (dEA-Eex)/kT );
}

void Matsuura_DistributionFunction::Compute_dgdt
Sentaurus™ Device User Guide 1227
N-2017.09



38: Physical Model Interface
Incomplete Ionization
    (const double T,       // lattice temperature
     double& dgdt)         // dgdt = G’(T)
{
  const double kT = kB_300*T/300;
  
  Eex = Compute_Eex(T); 
  double s1, s2 = gr[0], s3, s4 = 0., delta, tmp;

  for(int r=1; r<nb_item; ++r) {
    delta = dEA - dEr[r];
    tmp   = gr[r]*exp( -delta/kT );
    s2   += tmp;
    s4   += tmp*delta/kT/T;               // s4 = ds2/dT
  }

  delta = dEA - Eex;
  s1 = 4.*exp( delta/kT );
  double dEex_dT = Compute_dEexdT(T);
  s3 = s1*( -dEex_dT/kT - delta/kT/T );   // s3 = ds1/dT

  dgdt = s3*s2 + s1*s4; // dgdt = d(s1*s2)/dT

  return;
}

// Eex is given by Eq. 1281, p. 1225
double Matsuura_DistributionFunction::Compute_Eex(double T)
{
  const double kT = kB_300*T/300;

  double s1 = 0., s2 = gr[0];

  for(int r=1; r<nb_item; ++r) {
    double delta = dEA - dEr[r];
    double tmp   = gr[r]*exp( -delta/kT );
    s1 += delta*tmp;
    s2 += tmp;
  }

  return s1/s2;

}

double Matsuura_DistributionFunction::Compute_dEexdT(double T)
{
  const double kT = kB_300*T/300;

  double s1 = 0., s2 = gr[0], s3 = 0., s4 = 0.;
1228 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Incomplete Ionization
  for(int r=1; r<nb_item; ++r) {
    double delta = dEA - dEr[r];
    double tmp   = gr[r]*exp( -delta/kT );
    s1 += delta*tmp;
    s2 += tmp;
    s3 += delta*tmp*delta/kT/T; // s3 = ds1/dT
    s4 += tmp*delta/kT/T;        // s4 = ds2/dT
  }

  return (s3*s2 - s1*s4)/s2/s2;

}

extern "C"
PMI_DistributionFunction* new_PMI_DistributionFunction
  (const PMI_Environment& env,
   const char* name,
   const PMI_SpeciesType type)
{
  return new Matsuura_DistributionFunction (env, name, type);
}

void Compute_dEr(int nb_item, double* dEr) 
{
  // dEr is given by Eq. 1279, p. 1225

  // data from file: 6H-SiC.par
  const double epsilon = 9.66;                     // dielectric constant 
  const double mh      = 1;                        // hole effective mass in SiC 

  const double E0 = 13.6*mh/epsilon/epsilon;

  for(int r=1; r<=nb_item; ++r) {
    dEr[r-1] = E0/r/r;
  }
}

Sentaurus™ Device User Guide 1229
N-2017.09



38: Physical Model Interface
Hot-Carrier Injection
Hot-Carrier Injection

Sentaurus Device provides a PMI for implementing hot-carrier injection models and
computing the injection currents defined by the model. It is activated in the Physics interface
section of the command file, GateCurrent subsection:

Physics(MaterialInterface="Silicon/Oxide"){
GateCurrent( PMI_model(electron) )

}

The model can be used for both carrier types with either PMI_model(electron hole) or
PMI_model(). The interface has access to the device mesh and device data (see Vertex-Based
Runtime Support for Multistate Configuration–Dependent Models on page 1075).

Dependencies

A hot-carrier PMI model has no explicit dependencies. However, it can depend on any field at
runtime using the access to device data. The model must compute: 

Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_HotCarrierInjection : public PMI_Device_Interface {

protected:
const PMI_CarrierType cType;

public:
PMI_HotCarrierInjection (const PMI_Device_Environment& env,

const PMI_CarrierType cType);
virtual ~PMI_HotCarrierInjection ();

virtual void Compute_gCurr
(const des_regioninterface_vector& regioninterfaces,

// region interfaces associated with the model

gCurr Vector of region/interface arrays with hot-carrier injection current densities; each
region/interface array consists of the current density in each vertex of a region
interface.
1230 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Hot-Carrier Injection
des_array_vector& gCurr) = 0; // gate injection current in each vertex
// of specified region interfaces

};

Two virtual constructors are required for electron and hole hot injection:

typedef PMI_HotCarrierInjection* new_PMI_HotCarrierInjection_func
(const PMI_Device_Environment& env, const PMI_CarrierType carType);

extern "C" new_PMI_HotCarrierInjection_func new_PMI_e_HotCarrierInjection;
extern "C" new_PMI_HotCarrierInjection_func new_PMI_h_HotCarrierInjection;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_HotCarrierInjection_Base : public PMI_Device_Base {

public:
class Input : public PMI_Device_Input_Base {
public:

des_regioninterface_vector regioninterfaces; // region interfaces
// associated with model
// name

};

class Output {
public:

sdevice_array_vector gCurr; // gate injection current in each vertex
// of specified region interfaces

};

PMI_HotCarrierInjection_Base (const PMI_Device_Environment& env);
virtual ~PMI_HotCarrierInjection_Base ();

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_HotCarrierInjection_Base* new_PMI_HotCarrierInjection_Base_func
(const PMI_Device_Environment& env);

extern "C" new_PMI_HotCarrierInjection_Base_func
new_PMI_e_HotCarrierInjection_Base;

extern "C" new_PMI_HotCarrierInjection_Base_func
new_PMI_h_HotCarrierInjection_Base;
Sentaurus™ Device User Guide 1231
N-2017.09



38: Physical Model Interface
Hot-Carrier Injection
Example: Lucky Model

The following example reimplements the built-in lucky injection model for electrons using the
hot-carrier injection PMI:

#include <math.h>
#include "PMIModels.h"

class PMI_LuckyModel : public PMI_HotCarrierInjection {
private:
  const des_mesh* mesh;  //device mesh
  des_data* data;  //device data
  const double*const* measure;
  const double*const* surface_measure;
public:
  PMI_LuckyModel(const PMI_Device_Environment& env, 

const PMI_CarrierType carType);
  ~PMI_LuckyModel();
  void Compute_gCurr(const des_regioninterface_vector& regioninterfaces,
                     des_array_vector& gCurr);
};

PMI_LuckyModel::
PMI_LuckyModel(const PMI_Device_Environment& env,

const PMI_CarrierType carType) :
  PMI_HotCarrierInjection(env, carType)
{
  mesh = Mesh();
  data = Data();
  measure = data->ReadMeasure();
  surface_measure = data->ReadSurfaceMeasure();
}

PMI_LuckyModel::
~PMI_LuckyModel()
{
}

void PMI_LuckyModel::
Compute_gCurr(const des_regioninterface_vector& regioninterfaces,

des_array_vector& gCurr)
{
  //compute current for each des_regioninterface associated with model
  for(int inter=0; inter < regioninterfaces.size(); inter++) {
    for(int k=0; k < regioninterfaces.at(inter)->size_vertex(); k++)
      gCurr[inter][k] = 0.0;
1232 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Hot-Carrier Injection
    des_regioninterface* ri = regioninterfaces.at(inter);
    des_bulk* b1 = ri->bulk1();
    des_bulk* b2 = ri->bulk2();

    //recognize regioninterface or regioninterface category
    if(((b1->material() == "Silicon") && (b2->material() == "Oxide")) ||
       ((b1->material() == "Oxide") && (b2->material() == "Silicon"))) {

      des_bulk* semReg;
      des_bulk* insReg;
      if((b1->material() == "Silicon") && (b2->material() == "Oxide")) {
        semReg = b1;
        insReg = b2;
      }
      if((b2->material() == "Silicon") && (b1->material() == "Oxide")) {
        semReg = b2;
        insReg = b1;
      }

//read region interface constants
      double eLambd = 8.9000e-07;//eLsem
      double eLambdR = 6.2000e-06;//eLsemR
      double eOxLambd = 3.2000e-07;//eLins
      double eBarrierHeight = 3.1;//eBar0
      double eAlfa = 2.6000e-04;//eBL12
      double eBeta = 3.0000e-05;//eBL23

//read DataEntries used in computation
      const double* pot =
        data->ReadScalar(des_data::vertex, "ElectrostaticPotential");
      const double* OxField =
        data->ReadScalar(des_data::vertex,"InsulatorElectricField");
      const double* Epsilon =
        data->ReadScalar(des_data::element, "DielectricConstant");
      const double* eCurrent = NULL;
      const double* eField = NULL;

if(cType == PMI_Electron) {
        eCurrent = data->ReadScalar(des_data::vertex, "eCurrentDensity");
        eField = data->ReadScalar(des_data::vertex,"eEparallel");
      }

      //integrate over the corresponding semiconductor region
      for(size_t vi = 0; vi < semReg->size_vertex(); vi++) {
        des_vertex* rv = semReg->vertex(vi);

        //find the nearest interface vertex
        //(distance to interface)
        des_vertex* NearestInterVertex;
Sentaurus™ Device User Guide 1233
N-2017.09



38: Physical Model Interface
Hot-Carrier Injection
        int NearestInterVertexRIind;
        double NearestDistance = 1.0e50;
        for(size_t k=0; k < ri->size_vertex(); k++) {
          des_vertex* interVert = ri->vertex(k);
          bool isSemiconductor = false;
          for(size_t i = 0; i < interVert->size_region(); i++) {
            des_bulk* b = dynamic_cast<des_bulk*>(interVert->region(i));
            if(b->material() == "Silicon") {
              isSemiconductor = true;
            }
          }
          if(isSemiconductor) {
            double dist = 0.0;
            for(int kk=0; kk < mesh->dim(); kk++)
              dist += (interVert->coord()[kk] - rv->coord()[kk])*
                (interVert->coord()[kk] - rv->coord()[kk]);
            dist = sqrt(dist);
            if(dist < NearestDistance) {
              NearestDistance = dist;
              NearestInterVertex = interVert;
              NearestInterVertexRIind = k;
            }
          }
        }//nearest interface vertex

        //find the nearest gate contact vertex
        //(distance from NearestIntVertex to gate contact)
        des_vertex* NearestContVertex;
        double NearestContDistance = 1.0e50;
        for(size_t k=0; k < insReg->size_vertex(); k++) {
          des_vertex* vins = insReg->vertex(k);
          if(vins->size_region() > 1) {
            for(size_t vvr = 0; vvr < vins->size_region(); vvr++) {
              des_region* rr = vins->region(vvr);
              if(rr->type() == des_region::contact) {
                //contact vertex
                double dist = 0.0;
                for(int kk=0; kk < mesh->dim(); kk++)
                  dist += (vins->coord()[kk] - NearestInterVertex->coord()[kk])*
                    (vins->coord()[kk] - NearestInterVertex->coord()[kk]);
                dist = sqrt(dist);
                if(dist < NearestContDistance) {
                  NearestContDistance = dist;
                  NearestContVertex = vins;
                }
              }//contact vertex
            }
          }
1234 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Hot-Carrier Injection
        }//nearest gate contact vertex

        //coordinates and distances are in um
        //transform to cm
        double OxThickn = NearestContDistance*1.0e-4;
        double DistToSurf = NearestDistance*1.0e-4;

        double xEps[3] = {0.0, 0.0, 0.0};
        for(int k = 0; k < mesh->dim(); k++)
          xEps[k] = 0.5*(NearestInterVertex->coord()[k]
                         + NearestContVertex->coord()[k]);
        des_element* xEl;
        //find the oxide element
        for(size_t ei = 0; ei < insReg->size_element(); ei++) {
          des_element* e = insReg->element(ei);
          for(size_t evi = 0; evi < e->size_vertex(); evi++) {
            double minCoord[3] = {1.0e50, 1.0e50, 1.0e50};
            double maxCoord[3] = {-1.0e50, -1.0e50, -1.0e50};
            des_vertex* ev = e->vertex(evi);
            for(int i = 0; i < mesh->dim(); i++) {
              if(ev->coord()[i] < minCoord[i])
                minCoord[i] = ev->coord()[i];
              if(ev->coord()[i] > maxCoord[i])
                maxCoord[i] = ev->coord()[i];
            }
            for(int i = 0; i < mesh->dim(); i++) {
              if( (xEps[i] >= minCoord[i]) && (xEps[i] >= minCoord[i]) ) {
                xEl = e;
              }
            }
          }
        }
        double OxConst = Epsilon[xEl->index()];
        double OxImage0 = 1.6e-19/16/3.1452/8.85e-14/OxConst;

        //for electrons
        if(cType == PMI_Electron) {
          double eCur = 0.0;
          double eOxField = pot[NearestContVertex->index()]
            -pot[NearestInterVertex->index()];
          eOxField = eOxField > 0
            ? OxField[NearestInterVertex->index()]
            : -OxField[NearestInterVertex->index()];
          double barrier;
          if(pot[NearestInterVertex->index()]

< pot[NearestContVertex->index()])
            barrier = eBarrierHeight
              - eAlfa*sqrt(fabs(eOxField))
Sentaurus™ Device User Guide 1235
N-2017.09



38: Physical Model Interface
Hot-Carrier Injection
              - eBeta*pow(fabs(eOxField),2.0/3.0);
          else
            barrier = eBarrierHeight
              + (pot[NearestInterVertex->index()] -
                 pot[NearestContVertex->index()])
              - eAlfa*sqrt(fabs(eOxField))
              - eBeta*pow(fabs(eOxField),2.0/3.0);
          if(barrier < 0) barrier = 0.0;
          double eBarrierLoc = barrier;
          double p1 = 0.0;
          double eEnergy = eField[rv->index()]*eLambd;
          if(eEnergy > 1.0e-30) {
            p1 = 0.25;
            if (eBarrierLoc > 1.0e-30)
              p1 = 0.25*eEnergy/eBarrierLoc*exp(-eBarrierLoc/eEnergy);
          }
          double p2 = exp(-DistToSurf/eLambd);
          double eDistFromSurf = 1.0e30;
          if (eOxField > 1.0e-30) eDistFromSurf = sqrt(OxImage0/eOxField);
          double p3 = exp(-eDistFromSurf/eOxLambd);

          //find the node measure
          double node_measure = 0.0;
          for(size_t ei = 0; ei < rv->size_element(); ei++) {
            des_element* e = rv->element(ei);
            des_bulk* bulk = e->bulk();
            if(bulk->material() == "Silicon") {
              for(size_t evi = 0; evi < e->size_vertex(); evi++) {
                des_vertex* ev = e->vertex(evi);
                if(ev->index() == rv->index()) {
                  node_measure += measure[e->index()][evi];
                }
              }
            }//semiconductor element
          }//node measure

          //convert measure in cm^dim
          node_measure = node_measure*pow(1.0e-4,mesh->dim());

          eCur = eCurrent[rv->index()]*p1*p2*p3*node_measure/eLambdR;
          double risurface =

surface_measure[ri->index()][NearestInterVertexRIind];
          //convert to cm^(dim-1)
          risurface = risurface*pow(1.0e-4,(mesh->dim()-1));
          gCurr[inter][NearestInterVertexRIind] += eCur/risurface;
        }

        //for holes
1236 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Piezoresistive Coefficients
        if(cType == PMI_Hole) {
        }
      }//end integration on semiconductor region

}//end model implementation
  }//end loop over "PMI_HotCarrierInjection" model regioninterfaces
}

extern "C" {
  PMI_HotCarrierInjection* new_PMI_e_HotCarrierInjection
            (const PMI_Device_Environment& env, const PMI_CarrierType carType)
  {
    return new PMI_LuckyModel(env, carType);
  }
}

extern "C" {
  PMI_HotCarrierInjection* new_PMI_h_HotCarrierInjection
            (const PMI_Device_Environment& env, const PMI_CarrierType carType)
  {
    return new PMI_LuckyModel(env, carType);
  }
}

Piezoresistive Coefficients

Sentaurus Device provides a PMI for implementing the dependencies of the piezoresistive
prefactors over the normal electric field (see Enormal- and MoleFraction-Dependent Piezo
Coefficients on page 863). It is activated in the Piezo section of the command file, in the
Tensor subsection:

Physics {
...
Piezo(

Model(Mobility(Tensor("pmi_model")))
)

}

Dependencies

The piezoresistive prefactors ePij and hPij may depend on the following variable: 

Enormal Normal to interface semiconductor–dielectric electric field [ ]Vcm 1–
Sentaurus™ Device User Guide 1237
N-2017.09



38: Physical Model Interface
Piezoresistive Coefficients
The PMI model must compute the following results: 

In the case of the standard interface, the following derivatives must be computed as well: 

Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_PiezoresistanceFactor : public PMI_Vertex_Interface {

public:
PMI_PiezoresistanceFactor (const PMI_Environment& env);
virtual ~PMI_PiezoresistanceFactor ();

virtual void Compute_Pij(const double Enormal, 
double& p11, double& p12, double& p44) = 0;

virtual void Compute_DerPij(const double Enormal,
double& dp11, double& dp12, double& dp44) = 0;

};

Two virtual constructors are required for the calculation of the piezoresistive prefactors.

typedef PMI_PiezoresistanceFactor* new_PMI_PiezoresistanceFactor_func
(const PMI_Environment& env);

extern "C" new_PMI_PiezoresistanceFactor_func new_PMI_ePiezoresistanceFactor;
extern "C" new_PMI_PiezoresistanceFactor_func new_PMI_hPiezoresistanceFactor;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_PiezoresistanceFactor_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float Enormal; // normal to interface electric field
};

p11, p12, p44 Piezoresistive prefactors [1]

dp11, dp12, dp44 Derivatives of pij with respect to Enormal [ ]V 1– cm
1238 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Current Plot File of Sentaurus Device
class Output {
public:

pmi_float p11; // piezoresistive prefactor
pmi_float p12; // piezoresistive prefactor
pmi_float p44;  // piezoresistive prefactor

};

PMI_PiezoresistanceFactor_Base (const PMI_Environment& env);
virtual ~PMI_PiezoresistanceFactor_Base ();

virtual bool IsPrefactor () = 0;

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_PiezoresistanceFactor_Base*
new_PMI_PiezoresistanceFactor_Base_func (const PMI_Environment& env);

extern "C" new_PMI_PiezoresistanceFactor_Base_func
new_PMI_ePiezoresistanceFactor_Base;

extern "C" new_PMI_PiezoresistanceFactor_Base_func
new_PMI_hPiezoresistanceFactor_Base;

Current Plot File of Sentaurus Device

The current plot PMI allows user-computed entries to be added to the current plot file. It is
specified in the CurrentPlot section of the command file, for example:

CurrentPlot {
pmi_CurrentPlot

}

The interface has access to the device mesh and device data (see Mesh-Based Runtime Support
on page 1076).

See Current Plot File on page 1317 for a Tcl-based alternative to the current plot PMI.
Sentaurus™ Device User Guide 1239
N-2017.09



38: Physical Model Interface
Current Plot File of Sentaurus Device
Structure of Current Plot File

A current plot file consists of a header section and a data section. For each function, the
structure can be described as follows:

dataset name
function name
value0 
value1 
...

A dataset name denotes a dataset, for example:

time
Tmin

If a dataset corresponds to a region or contact, it is customary to add the region or contact name:

gate Charge

The function name describes the function, for example:

ElectrostaticPotential
Temperature

Afterwards, a function value is added to the current plot file for each plot time point.

Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_CurrentPlot : public PMI_Device_Interface {

public:
PMI_CurrentPlot (const PMI_Device_Environment& env);
virtual ~PMI_CurrentPlot ();

virtual void Compute_Dataset_Names
(des_string_vector& dataset) = 0;

virtual void Compute_Function_Names
(des_string_vector& function) = 0;

virtual void Compute_Plot_Values
(des_double_vector& value) = 0;

};
1240 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Current Plot File of Sentaurus Device
The methods Compute_Dataset_Names() and Compute_Function_Names() are used to
generate the header in the current plot file (see Structure of Current Plot File on page 1240).
Compute_Plot_Values() is called for each plot time point to compute the plot values. Use
the push_back() function to add values to the arrays dataset, function, or value.

NOTE All three methods Compute_Dataset_Names(),
Compute_Function_Names(), and Compute_Plot_Values()
must always compute the same number of values. Otherwise, an
inconsistent current plot file will be generated.

The prototype for the virtual constructor is given as:

typedef PMI_CurrentPlot* new_PMI_CurrentPlot_func
(const PMI_Device_Environment& env);

extern "C" new_PMI_CurrentPlot_func new_PMI_CurrentPlot;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_CurrentPlot_Base : public PMI_Device_Base {

public:
class Input : public PMI_Device_Input_Base {
public:
};

class Output_Header {
public:

des_string_vector dataset;   // array of dataset names
des_string_vector function; // array of function names

};

class Output_Body {
public:

sdevice_pmi_float_vector value; // array of plot values
};

PMI_CurrentPlot_Base (const PMI_Device_Environment& env);
virtual ~PMI_CurrentPlot_Base ();

virtual void compute_header (Output_Header& output) = 0;
virtual void compute_body (const Input& input, Output_Body& output) = 0;

};
Sentaurus™ Device User Guide 1241
N-2017.09



38: Physical Model Interface
Current Plot File of Sentaurus Device
The prototype for the virtual constructor is given as:

typedef PMI_CurrentPlot_Base* new_PMI_CurrentPlot_Base_func
(const PMI_Device_Environment& env);

extern "C" new_PMI_CurrentPlot_Base_func new_PMI_CurrentPlot_Base;

Example: Average Electrostatic Potential

The following example computes regionwise averages for the electrostatic potential. This is the
same functionality as provided by the built-in current plot command (see Tracking Additional
Data in the Current File on page 110):

class CurrentPlot : public PMI_CurrentPlot {
private:
  typedef std::vector<des_bulk*> des_bulk_vector;

  const des_mesh* mesh;     // device mesh
  des_bulk_vector regions; // list of semiconductor bulk regions
  double scale;             // scaling factor

public:
  CurrentPlot (const PMI_Device_Environment& env);
  ~CurrentPlot ();

  void Compute_Dataset_Names (des_string_vector& dataset);
  void Compute_Function_Names (des_string_vector& function);
  void Compute_Plot_Values (des_double_vector& value);
};

CurrentPlot::
CurrentPlot (const PMI_Device_Environment& env) :
  PMI_CurrentPlot (env)
{ mesh = Mesh ();
  // determine regions to process
  for (size_t ri = 0; ri < mesh->size_region (); ri++) {
    des_region* r = mesh->region (ri);
    if (r->type () == des_region::bulk) {
      des_bulk* b = dynamic_cast <des_bulk*> (r);
      if (b->material () != "Oxide") {
        // we found a semiconductor bulk region
        regions.push_back (b);
      }
    }
  }

  // read parameters
1242 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Current Plot File of Sentaurus Device
  scale = InitParameter ("scale", 0.0);
}

CurrentPlot::
~CurrentPlot ()
{
}

void CurrentPlot::
Compute_Dataset_Names (des_string_vector& dataset)
{ for (size_t ri = 0; ri < regions.size (); ri++) {
    des_bulk* b = regions [ri];
    std::string name = "Average_";
    name += b->name ();
    name += "ElectrostaticPotential";
    dataset.push_back (name);
  }
}

void CurrentPlot::
Compute_Function_Names (des_string_vector& function)
{ for (size_t ri = 0; ri < regions.size (); ri++) {
    function.push_back ("ElectrostaticPotential");
  }
}

void CurrentPlot::
Compute_Plot_Values (des_double_vector& value)
{ des_data* data = Data ();
  const double*const* measure = data->ReadMeasure ();
  const double* pot = data->ReadScalar (des_data::vertex,

"ElectrostaticPotential");
  for (size_t ri = 0; ri < regions.size (); ri++) {
    des_bulk* b = regions [ri];

    double sum_pot = 0.0;
    double sum_measure = 0.0;

    for (size_t ei = 0; ei < b->size_element (); ei++) {
      des_element* e = b->element (ei);
      for (size_t vi = 0; vi < e->size_vertex (); vi++) {
        des_vertex* v = e->vertex (vi);
        const double m = measure [e->index ()][vi];
        const double p = pot [v->index ()];
        sum_pot += m * p;
        sum_measure += m;
      }
    }
Sentaurus™ Device User Guide 1243
N-2017.09



38: Physical Model Interface
Postprocess for Transient Simulation
    value.push_back (scale * (sum_pot / sum_measure));
  }
}

extern "C" {
PMI_CurrentPlot* new_PMI_CurrentPlot (const PMI_Device_Environment& env)
{ return new CurrentPlot (env);
}
}

Postprocess for Transient Simulation

The postprocess PMI allows you to post-compute data during a transient simulation. The PMI
is called after a transient time step has succeeded. It is specified in the Math section of the
command file, for example:

Math {
PostProcess (

Transient = "pmi_postprocess"
)

}

The interface provides access to the device mesh and device data (see Mesh-Based Runtime
Support on page 1076).

Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_PostProcess : public PMI_Device_Interface {

public:
PMI_PostProcess (const PMI_Device_Environment& env);
virtual ~PMI_PostProcess ();

virtual void Compute_PostProcess () = 0;
}

The method Compute_PostProcess() is called after the transient time step has successfully
completed.
1244 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Postprocess for Transient Simulation
Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_PostProcess_Base : public PMI_Device_Base {

public:
class Input : public PMI_Device_Input_Base {
public:
};

class Output {
public:
};

PMI_PostProcess_Base (const PMI_Device_Environment& env);
virtual ~PMI_PostProcess_Base ();

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_PostProcess_Base* new_PMI_PostProcess_Base_func
(const PMI_Device_Environment& env);

extern "C" new_PMI_PostProcess_Base_func new_PMI_PostProcess_Base;

The method compute() is called after the transient time step has successfully completed.

Example: Postprocess User-Field

The following code modifies the user-field depending on the current temperature change and
transient step size after the transient time step has succeeded:

#include "PMIModels.h"

class PostProcess : public PMI_PostProcess {

private:
const des_mesh* mesh;

public:
PostProcess (const PMI_Device_Environment& env);
~PostProcess ();
void Compute_PostProcess ();

};
Sentaurus™ Device User Guide 1245
N-2017.09



38: Physical Model Interface
Preprocessing for Newton Iterations and Newton Step Control
PostProcess::
PostProcess (const PMI_Device_Environment& env) :

PMI_PostProcess (env)
{

mesh = Mesh();
}

PostProcess::
~PostProcess ()
{
}

void PostProcess::
Compute_PostProcess ()
{

des_data* data = Data();

const double* T = data->ReadScalar(des_data::vertex,
"LatticeTemperature");

const double* T0 = data->ReadScalar(des_data::vertex, "PMIUserField0");

double* delta_T = new double [mesh->size_vertex ()];
for (int vi=0; vi<mesh->size_vertex (); vi++) {

delta_T[vi] = (T[vi]-T0[vi])/ReadTransientStepSize();
}
data->WriteScalar(des_data::vertex, "PMIUserField0", T);
data->WriteScalar(des_data::vertex, "PMIUserField1", delta_T);
if (delta_T!=NULL) { delete [] delta_T; }

}

Preprocessing for Newton Iterations and Newton Step 
Control

The Newton step PMI allows you to precompute data during Newton iterations (using a
nonlinear solver). This PMI is called after each Newton iteration. The interface provides access
to the device mesh and device data (see Mesh-Based Runtime Support on page 1076). This
PMI is specified in the Coupled section (subsection PMI_NewtonStep) of the command file,
for example:

Coupled( PMI_NewtonStep( pmiNewtonStep(<parameter_list>) ) )
{ Poisson Electron Hole }

Here, pmiNewtonStep is the name of the PMI model. Different Coupled sections can use
different PMI models.
1246 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Preprocessing for Newton Iterations and Newton Step Control
For example:

Solve {
# "pmi_Newton1" is name the first PMI function
Coupled( PMI_NewtonStep(pmi_Newton1) )
{ Poisson electron hole }

Transient (
InitialTime = 0.0 Finaltime = 1.0
InitialStep = 0.01 MaxStep = 0.1 MinStep = 1.0e-06

) {# "pmi_Newton2" is name the second PMI function
Coupled( PMI_NewtonStep( PMI_NewtonStep(pmi_Newton2(parameter_list)) ) )
{ Poisson Electron Hole Temperature }

}

Quasistationary (
InitialStep=0.1 MaxStep=0.5 MinStep=0.001
Increment=1.3
Goal {name="drain" Voltage=0.6}

)
{# same PMI function

Coupled( PMI_NewtonStep(pmi_Newton2(parameter_list)...) )
{ poisson electron hole }

}
}

Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_NewtonStep : public PMI_Device_Interface
{

protected:
PMI_Newton::Info *info;

public:
PMI_NewtonStep (const PMI_Device_Environment& env, PMI_Newton::Info *i=0); 

virtual ~PMI_NewtonStep ();
PMI_Newton::Info* getNewtonInfo() {

return info;
}

// methods to be implemented by user
virtual PMI_Result Compute (char* err_msg) = 0;

};
Sentaurus™ Device User Guide 1247
N-2017.09



38: Physical Model Interface
Preprocessing for Newton Iterations and Newton Step Control
The method Compute() is called after each Newton iteration. The enumerator PMI_Result
is defined in the file PMIModels.h:

enum PMI_Result {
PMI_NextStep  = 0,
PMI_Converged = 1,
PMI_Diverged  = 2,
PMI_Undefined

};

Function PMI_Newton::GetLogFile() and Class PMI_Newton::Info

The PMIModels.h file contains the function FILE* PMI_Newton::GetLogFile(). It
returns a pointer to the log file and, therefore, the PMI function can print messages to the log
file. See the relevant files of the following example:

$STROOT/tcad/$STRELEASE/lib/sdevice/src/pmi_NewtonStep

The PMI_Newton::Info class is an interface class between Sentaurus Device and
PMI_NewtonStep, and it contains information about the Newton process. The function
getNewtonInfo() returns the corresponding pointer. The important functions of this class
are as follows (see Standard C++ Interface on page 1247):

■ IsTrans(), IsQstat(), and IsContin() return a value equal to true if the Coupled
statement is a subsection of the corresponding section: Transient, Quasistationary,
or Continuation.

■ InitialStep(), MaxStep(), MinStep(), Decrement(), Increment(),
InitialTime(), FinalTime(), and MaxIters() return the corresponding values as in
the command file.

■ UsedIters(), RHS(), NewtonStep(), Error(), TimeFrom(), and TimeTo() return
the corresponding values as in the log file.

■ std::vector<std::string> pdeName contains the PDE name as in the log file.

■ ChangeTimeTo(double t) performs PMI time-step control (see PMI_NewtonStep
Iterations: Flowchart of Computation on page 1249).

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_NewtonStep_Base : public PMI_Device_Base
{
protected:

PMI_Newton::Info *info;
1248 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Preprocessing for Newton Iterations and Newton Step Control
public:
class Input : public PMI_Device_Input_Base {
public:

Input (const PMI_NewtonStep_Base* newtonstep_base);
};

class Output {
public:

char err_msg[256];
};

PMI_NewtonStep_Base(
const PMI_Device_Environment& env, PMI_Newton::Info *i=0);
virtual ~PMI_NewtonStep_Base ();

PMI_Newton::Info* getNewtonInfo() { 
return info; 

}

virtual PMI_Result compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_NewtonStep_Base* new_PMI_NewtonStep_Base_func
(const PMI_Device_Environment& env, PMI_Newton::Info *i);

extern "C" new_PMI_NewtonStep_Base_func new_PMI_NewtonStep_Base;

The method compute() is called after each Newton iteration.

PMI_NewtonStep Iterations: Flowchart of Computation

The following example shows the Quasistationary command (see previous example):

Starting solve of next problem:
Quasistationary (

Initial step in t: 0.1, Minimum step in t: 0.001, Maximum step in t: 0.5,
...

) { Coupled ( PMI_NewtonStep(pmi_Newton2(parameter_list)) )
{ Poisson Electron Hole }

}
// call constructor PMI_NewtonStep
PMI_NewtonStep *pmi_Newton = new PMI_NewtonStep (. . .)
bool Is_pmiConverged = false, Is_pmiDiverged = false;

Computing step from t=0.4 to t=0.5
// for this case PMI_Newton::Info functions return the following values:
Sentaurus™ Device User Guide 1249
N-2017.09



38: Physical Model Interface
Special Contact PMI for Raytracing
// TimeFrom()==0.4 and TimeTo()==0.5
Iteration   |Rhs|       |step|       error
---------------------------------------------------------------
0          3.89e+08 
1          1.21e+07     1.25e-03    3.12e+02

...
m         6.62e+06     3.36e-05     5.85e+00
     int pmiResult = pmi_Newton->Compute();
     if( pmiResult != pmiNextStep){
       if(pmiResult == PMI_Converged) Is_pmiConverged = true;
       if(pmiResult == PMI_Diverged) Is_pmiDinverged = true;
     }
     if(Is_sdeviceDiverged || Is_pmiDiverged) {

// If pmiResult==PMI_Diverged, then user have to use
// function ChangeTimeTo(new_t) (new_t <= TimeTo())
// In this case sdevice reduces the time step.
// It is PMI time step control

        goto Iteration#0;  // sdevice decrease step
     } else if(Is_sdeviceConverged && Is_pmiConverged)
        goto Finish;
     } else { 
        goto NextNewtonStep 
     }

...
Finished, because...
Error smaller than 1 ( 7.3461E-02 ) and  Is_pmiConverged == true

// call destructor ~PMI_NewtonStep

Special Contact PMI for Raytracing

The PMI for raytracing allows you to access and change the parameters of a ray at special
contacts. These contacts are drawn in the same manner as electrodes and thermodes (see
Boundary Condition for Raytracing on page 605). The raytrace PMI is specified in the
RayTraceBC section of the command file:

RayTraceBC {...
{ Name = "pmi_contact"
PMIModel = "pmi_modelname"

}
}

The name of "pmi_contact" must match the contact name in the device. Any ray that hits
this special contact invokes a call to this PMI. This raytrace PMI works only with the raytracer
(see Raytracer on page 593) and the complex refractive index model (see Complex Refractive
Index Model on page 578).
1250 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Special Contact PMI for Raytracing
NOTE When using multithreading of the raytracer, you must carefully design
the PMI code to be thread safe. This means that global variables should
not be used since multiple threads may change the global variables at the
same time, leading to confusion in the user PMI code at runtime.

Dependencies

The raytrace PMI depends on the following variables: 

wavelength Wavelength [cm]

incident_angle Incident angle [radian]

*incident_dirvec Direction vector of incident ray

*polarvec Polarization vector of incident ray

*normalvec Normal vector to surface of impingement from region 1 to
region 2

*intersectpoint Intersection position vector [ ]

*region1_name Name of region 1 (string)

*region2_name Name of region 2 (string)

n1_real Real part of refractive index 1

n1_imag Imaginary part of refractive index 1

n2_real Real part of refractive index 2

n2_imag Imaginary part of refractive index 2

reflected_angle Reflected angle [radian]

transmitted_angle Transmitted angle [radian]

*reflected_dirvec Direction vector of reflected ray

*transmitted_dirvec Direction vector of transmitted ray

*reflected_startposition Starting position vector of reflected ray [ ]

*transmitted_startposition Starting position vector of transmitted ray [ ]

R_TE Power TE reflection coefficient

T_TE Power TE transmission coefficient

cm

cm

cm
Sentaurus™ Device User Guide 1251
N-2017.09



38: Physical Model Interface
Special Contact PMI for Raytracing
To obtain the rate intensity (units of ) carried by the ray, you need to compute the square of
the length of *polarvec. This rate intensity includes all previous absorptions sustained by the
ray when it traversed absorptive regions of the device, and it can be used directly to compute
the amount of optical generation (with units of ). However, for raytracing used in LED
simulations, the square of the length of *polarvec gives only a relative intensity value
because the polarization vector of the head ray of the raytree is initialized to a length of 1.0.

If the reflection or transmission coefficients are equal to zero, no reflected or transmitted rays
are created in the raytracing process.

With this PMI model, you can change the following variables: 

If you want to change the direction vector, angle, or position vector of the reflected or
transmitted ray, the respective flags must be set to TRUE:

■ is_reflectedangle_changed 

■ is_reflecteddirvec_changed 

■ is_transmittedangle_changed 

■ is_transmitteddirvec_changed 

■ is_reflected_new_startposition 

■ is_transmitted_new_startposition 

R_TM Power TM reflection coefficient

T_TM Power TM transmission coefficient

reflected_angle Reflected angle [radian]

transmitted_angle Transmitted angle [radian]

*reflected_dirvec Direction vector of reflected ray

*transmitted_dirvec Direction vector of transmitted ray

*reflected_startposition Starting position vector of reflected ray [ ]

*transmitted_startposition Starting position vector of transmitted ray [ ]

R_TE Power TE reflection coefficient

T_TE Power TE transmission coefficient

R_TM Power TM reflection coefficient

T_TM Power TM transmission coefficient

s 1–

s 1–

cm

cm
1252 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Special Contact PMI for Raytracing
However, no flags are needed if you want to change the power reflection or transmission
coefficients.

Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_RayTraceBoundary : public PMI_Vertex_Interface {
public:

PMI_RayTraceBoundary (const PMI_Environment& env);
virtual ~PMI_RayTraceBoundary(); 

// methods to be implemented by user
virtual void Compute_BoundaryParameters

(// Non-changeable quantities
const double wavelength,                // wavelength [cm]
const double incident_angle,            // incident angle
const double* incident_dirvec,          // dir vector of incident ray
const double* polarvec,                 // polar vec of incident ray
const double* normalvec,                // normal to impingement
const double* intersectpoint,           // intersection point
const char* region1_name,               // name of region 1
const char* region2_name,               // name of region 2
const double n1_real,                   // real part of refr index 1
const double n1_imag,                   // imag part of refr index 1
const double n2_real,                   // real part of refr index 2
const double n2_imag,                   // imag part of refr index 2
// User changeable quantities
bool& is_reflectedangle_changed,        // is refl angle changed?
bool& is_reflecteddirvec_changed,       // is reflected dir changed?
bool& is_transmittedangle_changed,      // is transm angle changed?
bool& is_transmitteddirvec_changed,     // is transm dir changed?
bool& is_reflected_new_startposition,   // is refl pos changed?
bool& is_transmitted_new_startposition, // is transm pos changed?
double& reflected_angle,                // reflected angle
double& transmitted_angle,              // transmitted angle 
double* reflected_dirvec,               // dir vec of reflected ray
double* transmitted_dirvec,             // dir vec of transmitted ray
double* reflected_startposition,        // start pos of reflected ray
double* transmitted_startposition,      // start pos of transm ray
double& R_TE,                           // power TE reflection coeff.
double& T_TE,                           // power TE transmission coeff.
double& R_TM,                           // power TM reflection coeff.
double& T_TM                            // power TM transmission coeff.
) = 0;

// Auxiliary functions for users
Sentaurus™ Device User Guide 1253
N-2017.09



38: Physical Model Interface
Special Contact PMI for Raytracing
void ReadComplexRefractiveIndex(std::string location_name,
double wavelength,    // in microns
double& n,
double& k,
PMI_RayTraceBoundary::LocationType location_type =
PMI_RayTraceBoundary::Material);

private:
const PMI_Environment* thisenv;

};

An internal auxiliary function called ReadComplexRefractiveIndex(...) has been
implemented to allow you to compute the complex refractive index of any material or region
at a particular wavelength. The constraint is that, if a requested material does not exist in the
device structure, it must at least be defined in the parameter file. The complex refractive index
specification (for example, wavelength dependency for the real part or imaginary part or both)
is taken from the command file. For materials that do not exist in the device structure, the
specification from the default Physics section is used unless it is explicitly given in a
corresponding separate material Physics section.

Example: Assessing and Modifying a Ray

The following example shows how to access the information about a ray that intersects the
special raytrace PMI contact, and how you can change the information of the ray:

class Dummy_RayTraceBoundary : public PMI_RayTraceBoundary {
private:

// short ind_field; // field index for optical generation
//      double shape; // transient curve shape
//      double G1, G2, G3, T1, T2, T3, T4; // const for shapes
int count;
double d1;

public:
Dummy_RayTraceBoundary (const PMI_Environment& env);
~Dummy_RayTraceBoundary ();

void Compute_BoundaryParameters 
(const double wavelength,               // wavelength [cm]
const double incident_angle,           // incident angle
const double* incident_dirvec,         // dir vec of incident ray
const double* polarvec,                // polar vec of incident ray
const double* normalvec,               // normal to impingement
const double* intersectpoint,          // intersection point
const char* region1_name,              // name of region 1
const char* region2_name,              // name of region 2 
const double n1_real,                  // real part of refr index 1
const double n1_imag,                  // imag part of refr index 1
1254 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Special Contact PMI for Raytracing
const double n2_real,                  // real part of refr index 2
const double n2_imag,                  // imag part of refr index 2
// User changeable quantities
bool& is_reflectedangle_changed,       // is refl angle changed?
bool& is_reflecteddirvec_changed,      // is refl dir changed?
bool& is_transmittedangle_changed,     // is transm angle changed?
bool& is_transmitteddirvec_changed,    // is transm dir changed?
bool& is_reflected_new_startposition, // is refl pos changed?
bool& is_transmitted_new_startposition, // is transm pos changed?
double& reflected_angle,               // reflected angle
double& transmitted_angle,             // transmitted angle
double* reflected_dirvec,              // dir vec of reflected ray
double* transmitted_dirvec,            // dir vec of transmitted ray
double* reflected_startposition,       // start pos of reflected ray
double* transmitted_startposition,     // start pos of transm ray
double& R_TE,                          // power TE reflection coeff.
double& T_TE,                          // power TE transmission coeff.
double& R_TM,                          // power TM reflection coeff.
double& T_TM                           // power TM transmission coeff.
);

};

Dummy_RayTraceBoundary::
Dummy_RayTraceBoundary (const PMI_Environment& env) :

PMI_RayTraceBoundary (env)
{

printf("PMI: initializing ray trace PMI\n");
}

Dummy_RayTraceBoundary::
~Dummy_RayTraceBoundary ()
{
}

void Dummy_RayTraceBoundary::
Compute_BoundaryParameters (

const double wavelength,
const double incident_angle,
const double* incident_dirvec,
const double* polarvec,
const double* normalvec,
const double* intersectpoint,
const char* region1_name,
const char* region2_name,
const double n1_real,
const double n1_imag,
const double n2_real,
const double n2_imag,
Sentaurus™ Device User Guide 1255
N-2017.09



38: Physical Model Interface
Special Contact PMI for Raytracing
// User changeable quantities
bool& is_reflectedangle_changed,
bool& is_reflecteddirvec_changed,
bool& is_transmittedangle_changed,
bool& is_transmitteddirvec_changed,
bool& is_reflected_new_startposition,
bool& is_transmitted_new_startposition,
double& reflected_angle,
double& transmitted_angle,
double* reflected_dirvec,
double* transmitted_dirvec,
double* reflected_startposition,
double* transmitted_startposition,
double& R_TE,
double& T_TE,
double& R_TM,
double& T_TM

)
{

// Ray goes from region 1 to region 2.
// PMI contact is the interface between regions 1 and 2.
printf("Region 1: Name=%s, Refractive Index = %e + i%e\n",

region1_name, n1_real, n1_imag);
printf("Angles: Incident=%lf, Reflected=%lf, Transmitted=%lf\n",

incident_angle, reflected_angle, transmitted_angle);
printf("Wavelength = %e [cm]\n", wavelength);
printf("Incident Ray Direction=(%e,%e,%e)\n",

incident_dirvec[0], incident_dirvec[1], incident_dirvec[2]);
printf("Power Coefficients: R_TE=%e, T_TE=%e, R_TM=%e, T_TM=%e\n",

R_TE, T_TE, R_TM, T_TM);

// For example, change reflected direction to (1,2,3)
is_reflecteddirvec_changed = TRUE;
reflected_dirvec[0] = 1.0;
reflected_dirvec[1] = 2.0;
reflected_dirvec[2] = 3.0;

}
extern "C" {

PMI_RayTraceBoundary* new_PMI_RayTraceBoundary (const PMI_Environment& env)
{ return new Dummy_RayTraceBoundary (env);
}

}
}

1256 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Spatial Distribution Function
Spatial Distribution Function

The spatial distribution function  can be defined by a PMI (see Heavy Ions on
page 668).

The name of the PMI must be specified in the Physics section of the command file as follows:

Physics {
HeavyIon(

SpatialShape = PMI_shape_name
)

}

or:

Physics {
HeavyIon(

SpatialShape = PMI_shape_name(Energy = value) # [eV]
)

}

Dependencies

The spatial distribution function  depends on the following variables: 

The PMI model must compute the following result: 

w Radius defined as the perpendicular distance from the track [cm]

l Coordinate along the track [cm]

E Energy of heavy ion [eV]

R The value of the spatial distribution  [1]

R w l E, ,( )

R w l E, ,( )

R w l E, ,( )
Sentaurus™ Device User Guide 1257
N-2017.09



38: Physical Model Interface
Spatial Distribution Function
Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_SpatialDistributionFunction: public PMI_Vertex_Interface {
//  * The spatial distribution function:
//  * 
//  *   R(w,l,E)
//  *
//  * where
//  *   - l is the coordinate along the particle path [um]; 
//  *   - w is radial coordinate orthogonal to l [um];
//  *   - E is energy of heavy ion [eV];

public:
  PMI_SpatialDistributionFunction (const PMI_Environment& env,

const char* IonType);

  virtual ~PMI_SpatialDistributionFunction ();

// user-defined name of heavy ion (see Using Alpha Particle Model on page 666)
const char* GetHeavyIonType () const;

// methods to be implemented by user
  virtual void Compute_R (double& R, const double w, const double l = -1.,

const double E = -1.) = 0;

};

The prototype for the virtual constructor is given as:

typedef PMI_SpatialDistributionFunction*
new_PMI_SpatialDistributionFunction_func

(const PMI_Environment& env, const char* HeavyIonName);
new_PMI_SpatialDistributionFunction_func new_PMI_SpatialDistributionFunction;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_SpatialDistributionFunction_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float w; // radius (perpendicular distance from track)
1258 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Spatial Distribution Function
pmi_float l; // coordinate along track
pmi_float E;  // energy of heavy ion

};

class Output {
public:

pmi_float R; // spatial distribution
};

PMI_SpatialDistributionFunction_Base (const PMI_Environment& env,
const char* name);

virtual ~PMI_SpatialDistributionFunction_Base ();

const char* GetHeavyIonType () const;

virtual void compute (const Input& input, Output& output) = 0;
};

The prototype for the virtual constructor is given as:

typedef PMI_SpatialDistributionFunction_Base*
new_PMI_SpatialDistributionFunction_Base_func

(const PMI_Environment& env, const char* HeavyIonName);
extern "C" new_PMI_SpatialDistributionFunction_Base_func

new_PMI_SpatialDistributionFunction_Base;

Example: Gaussian Spatial Distribution Function

The built-in Gaussian spatial distribution function (see Heavy Ions on page 668) can also be
implemented as a PMI model:

#include "PMIModels.h"

class Gaussian_SpatialDistributionFunction : public 
PMI_SpatialDistributionFunction {

public:
Gaussian_SpatialDistributionFunction (const PMI_Environment& env, 

const char* HeavyIonName);
~Gaussian_SpatialDistributionFunction ();

void Compute_R
(double& R, const double w, const double l, const double E);

};

Gaussian_SpatialDistributionFunction::
Gaussian_SpatialDistributionFunction (const PMI_Environment& env, const char* 
Sentaurus™ Device User Guide 1259
N-2017.09



38: Physical Model Interface
Metal Resistivity
HeavyIonName) :
PMI_SpatialDistributionFunction (env, HeavyIonName)

{}

Gaussian_SpatialDistributionFunction::
~Gaussian_SpatialDistributionFunction ()
{}

void Gaussian_SpatialDistributionFunction::
Compute_R(double& R, const double w, const double l, const double E)
{

// the unit w,l is [cm]
// the unit E is [eV] (in this implementation not used)
// R(w,l,E) = exp( -(w/wt(l))^2 )

double wt = 1.e-4; // scaling factor 1um = 1.e-4cm
double x = w/wt;

R = exp(-x*x);

}

extern "C"
PMI_SpatialDistributionFunction* new_PMI_SpatialDistributionFunction
  (const PMI_Environment& env, const char* HeavyIonName)
{
  return new Gaussian_SpatialDistributionFunction (env, HeavyIonName);
}

Metal Resistivity

The metal resistivity  can be defined by a PMI (see Transport in Metals on page 239).

The name of the PMI must be specified in the Physics section of the command file as follows:

Physics {
MetalResistivity (pmi_model)

}

The simplified interface PMI_MetalResistivity_Base supports the diffusion-reaction species
interface (see Reaction–Diffusion Species Interface (Compute Scope) on page 1074).

ρ 1 σ⁄=
1260 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Metal Resistivity
Dependencies

The metal resistivity depends on the variables: 

The PMI model must compute the following result: 

In the case of the standard interface, the following derivatives must be computed as well: 

Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class MetalResistivity : public PMI_MetalResistivity {

public:
MetalResistivity (const PMI_Environment& env);
virtual ~MetalResistivity ();

virtual void Compute_Resist
(const double t, // lattice temperature
const double f, // absolute value of electric field

double& Resist); // metal resistivity

virtual void Compute_dResistdt
(const double t, // lattice temperature
const double f, // absolute value of electric field

double& dResistdt); // derivative of metal resistivity
// with respect to lattice temperature

virtual void Compute_dResistdf
(const double t, // lattice temperature
const double f, // absolute value of electric field

double& dResistdf); // derivative of metal resistivity

t Lattice temperature [K]

f Absolute value of the electric field [ ]

Resist Metal resistivity [ ]

dResistdt Derivative of Resist with respect to t [ ]

dResistdf Derivative of Resist with respect to f [ ]

Vcm 1–

Ωcm

ΩK 1– cm

ΩV 1– cm2
Sentaurus™ Device User Guide 1261
N-2017.09



38: Physical Model Interface
Metal Resistivity
// with respect to electric field
};

The following virtual constructor must be implemented:

typedef PMI_MetalResistivity* new_PMI_MetalResistivity_func
(const PMI_Environment& env);

extern "C" new_PMI_MetalResistivity_func new_PMI_MetalResistivity;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_MetalResistivity_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float t; // lattice temperature
pmi_float f; // absolute value of the electric field

};

class Output {
public:

pmi_float Resist; // metal resistivity
};

PMI_MetalResistivity_Base (const PMI_Environment& env);
virtual ~PMI_MetalResistivity_Base ();

virtual void compute (const Input& input, Output& output) = 0;
};

The following virtual constructor must be implemented:

extern "C"
PMI_MetalResistivity_Base* new_PMI_MetalResistivity_Base

(const PMI_Environment& env);
1262 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Metal Resistivity
Example: Linear Metal Resistivity

The following C++ code implements linear metal resistivity:

#include "PMIModels.h"

class MetalResistivity : public PMI_MetalResistivity 
{

private:
double R0, AlphaT;

public:
MetalResistivity (const PMI_Environment& env);
~MetalResistivity ();

void Compute_Resist
(const double t, // lattice temperature
 const double f, // absolute value of electric field
double& Resist); // metal resistivity

void Compute_dResistdt
(const double t, // lattice temperature
const double f, // absolute value of electric field
double& dResistdt); // derivative of metal resistivity

// with respect to lattice temperature

void Compute_dResistdf
(const double t, // lattice temperature
const double f, // absolute value of electric field
double& dResistdf); // derivative of metal resistivity

// with respect to electric field
};

MetalResistivity::
MetalResistivity (const PMI_Environment& env) :

PMI_MetalResistivity (env)
{ // Gold values

R0     = InitParameter ("R0",     2.0400e-06); // [ohm*cm]
AlphaT = InitParameter ("AlphaT", 4.0000e-03); // [1/K]

}

MetalResistivity::
~MetalResistivity ()
{}

void MetalResistivity::
Compute_Resist (const double t, const double f, double& Resist)
Sentaurus™ Device User Guide 1263
N-2017.09



38: Physical Model Interface
Heat Generation Rate
{
Resist = R0*( 1 + AlphaT*( t - 273 ) );

}

void MetalResistivity::
Compute_dResistdt (const double t, const double f, double& dResistdt)
{

dResistdt = R0*AlphaT;
}

void MetalResistivity::
Compute_dResistdf (const double t, const double f, double& dResistdf)
{

dResistdf = 0;
}

extern "C"
PMI_MetalResistivity* new_PMI_MetalResistivity

(const PMI_Environment& env)
{

return new MetalResistivity(env);
}

Heat Generation Rate

The total heat generation rate is the term on the right-hand side of Eq. 69, p. 193. You can
specify an additional term pmi_Heat for a given material or region:

Total_Heat = existing_Heat + pmi_Heat

The name of the PMI must be specified in the new subsection HeatSource(pmi_model) in
the Physics section of the command file as follows:

Physics (Material = "Silicon") {
HeatSource (pmi_Heat_Si)

}

To plot the pmi_Heat values, specify the keyword pmiHeat in the Plot section of the
command file.
1264 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Heat Generation Rate
Dependencies

The heat generation depends on the variables: 

The PMI model must compute the following results: 

In the case of the standard interface, the following derivatives must be computed as well: 

Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_Heat_Generation : public PMI_Vertex_Interface {

public:
PMI_Heat_Generation (const PMI_Environment& env);
virtual ~PMI_Heat_Generation ();

// methods to be implemented by user
virtual void Compute_Heat

    (const double n,             // electron density
     const double p,             // hole density
     const double t,             // lattice temperature

n Electron density [ ]

p Hole density [ ]

t Lattice temperature [K]

f Electric field vector [ ]

g Gradient temperature [ ]

Heat Heat generation rate [ ]

dHeat_dn Derivative of Heat with respect to n [ ]

dHeat_dp Derivative of Heat with respect to p [ ]

dHeat_dt Derivative of Heat with respect to t [ ]

dHeat_df Derivative of Heat with respect to each component f [ ]

dHeat_dg Derivative of Heat with respect to each component g [ ]

cm 3–

cm 3–

Vcm 1–

Kcm 1–

Wcm 3–

W

W

Wcm 3– K 1–

Wcm 2– V 1–

Wcm 2– K 1–
Sentaurus™ Device User Guide 1265
N-2017.09



38: Physical Model Interface
Heat Generation Rate
     const double f[3],          // electric field vector
     const double g[3],          // gradient of temperature
     double& heat) = 0;          // heat generation rate

virtual void Compute_dHeat_dn
    (const double n,             // electron density
     const double p,             // hole density
     const double t,             // lattice temperature
     const double f[3],          // electric field vector
     const double g[3],          // gradient of temperature
     double& dHeat_dn) = 0;      // derivative of heat with respect to n

virtual void Compute_dHeat_dp
    (const double n,             // electron density
     const double p,             // hole density
     const double t,             // lattice temperature
     const double f[3],          // electric field vector
     const double g[3],          // gradient of temperature
     double& dHeat_dp) = 0;      // derivative of heat with respect to p

virtual void Compute_dHeat_dt
    (const double n,             // electron density
     const double p,             // hole density
     const double t,             // lattice temperature
     const double f[3],          // electric field vector
     const double g[3],          // gradient of temperature
     double& dHeat_dt) = 0;      // derivative of heat with respect to t

virtual void Compute_dHeat_df
    (const double n,             // electron density
     const double p,             // hole density
     const double t,             // lattice temperature
     const double f[3],          // electric field vector
     const double g[3],          // gradient of temperature
     double dHeat_df[3]) = 0;    // derivative of heat with respect to f

virtual void Compute_dHeat_dg
    (const double n,             // electron density
     const double p,             // hole density
     const double t,             // lattice temperature
     const double f[3],          // electric field vector
     const double g[3],          // gradient of temperature
     double dHeat_dg[3]) = 0;    // derivative of heat with respect to g
};
1266 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Heat Generation Rate
The following virtual constructor must be implemented:

typedef PMI_Heat_Generation* new_PMI_Heat_Generation_func
(const PMI_Environment& env);

extern "C" new_PMI_Heat_Generation_func new_PMI_HeatGeneration;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_HeatGeneration_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

    pmi_float n;      // electron density
    pmi_float p;      // hole density
    pmi_float t;      // lattice temperature
    pmi_float f[3];   // electric field vector
    pmi_float g[3];   // gradient of temperature

};

class Output {
public:

    pmi_float heat; // heat generation rate
};

PMI_HeatGeneration_Base (const PMI_Environment& env);
virtual ~PMI_HeatGeneration_Base ();

virtual void compute (const Input& input, Output& output) = 0;

};

The prototype for the virtual constructor is given as:

typedef PMI_HeatGenerationFunction_Base*
new_PMI_HeatGenerationFunction_Base_func

(const PMI_Environment& env);
extern "C" new_PMI_HeatGenerationFunction_Base_func

new_PMI_HeatGenerationFunction_Base;
Sentaurus™ Device User Guide 1267
N-2017.09



38: Physical Model Interface
Heat Generation Rate
Example: Dependency on Electric Field and Gradient of 
Temperature

In the following example, heat generation has a linear dependency on the electric field and the
gradient of temperature:

// Heat = kappa*(E,gratT)*1[1/V]
//    where 
//    E - electric field vector,
//    gradT - gradient of temperature.
//
// The 1D equation
//     -div(kappa*grad(T(x))) = Heat, 0 <= x <= L
//      T(0) = T0,
//      T(L) = T1,
// has the exact solution:
//      T(x) = (T1-T0)*(exp(-E*x)-1)/(exp(-E*L)-1) + T0

class HeatGeneration : public PMI_HeatGeneration_Base
{
private:

double kappa;

public:
HeatGeneration (const PMI_Environment& env);
~HeatGeneration ();
void compute (const Input& input, Output& output);

};

HeatGeneration::HeatGeneration (const PMI_Environment& env) :
PMI_HeatGeneration_Base (env)

{
kappa = InitParameter("kappa", 0.01); // [W/(K*cm)]

}

HeatGeneration::~HeatGeneration () {}

void HeatGeneration::compute (const Input& input, Output& output)
{

const pmi_float (&f)[3] = input.f;
const pmi_float (&g)[3] = input.g;

output.heat = kappa*(f[0]*g[0] + f[1]*g[1] + f[2]*g[2]);
}

1268 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Thermoelectric Power
extern "C"
PMI_HeatGeneration_Base* new_PMI_HeatGeneration_Base

(const PMI_Environment& env)
{ return new HeatGeneration (env);}

Thermoelectric Power

The thermoelectric powers  and  in semiconductors can be defined by a PMI (see
Thermoelectric Power (TEP) on page 913).

The name of the PMI can be specified regionwise, materialwise, or globally in the Physics
section of the command file as follows:

Physics(Material="Silicon") {
TEPower(pmi_model)

}

Dependencies

The semiconductor TEPs may depend on the following variables: 

The PMI model must compute the following results: 

In the case of the standard interface, the following derivatives must be computed as well: 

t Lattice temperature [K]

dens Carrier density [ ]

power Thermoelectric power [ ]

dpowerdt Derivative of power with respect to t [ ]

dpowerddens Derivative of power with respect to dens [ ]

Pn Pp

cm 3–

VK 1–

VK 2–

VK 1– cm 3–
Sentaurus™ Device User Guide 1269
N-2017.09



38: Physical Model Interface
Thermoelectric Power
Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_ThermoElectricPower : public PMI_Vertex_Interface {

public:
PMI_ThermoElectricPower(const PMI_Environment& env);
virtual ~PMI_ThermoElectricPower ();

virtual void Compute_power(
const double t, // lattice temperature
const double dens, // carrier density
double& power); // thermoelectric power

virtual void Compute_dpowerdt(
const double t, // lattice temperature
const double dens, // carrier density
double& dpowerdt); // derivative of thermoelectric power

// with respect to lattice temperature

virtual void Compute_dpowerddens(
const double t, // lattice temperature
const double dens, // carrier density
double& dpowerddens); // derivative of thermoelectric power

// with respect to carrier density
};

The following virtual constructor must be implemented:

typedef PMI_ThermoElectricPower* new_PMI_ThermoElectricPower_func
(const PMI_Environment& env);

extern "C" new_PMI_ThermoElectricPower_func new_PMI_e_ThermoElectricPower;
extern "C" new_PMI_ThermoElectricPower_func new_PMI_h_ThermoElectricPower;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_ThermoElectricPower_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float t; // lattice temperature
pmi_float dens; // carrier density
1270 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Thermoelectric Power
};

class Output {
public:

pmi_float power; // thermoelectric power
};

PMI_ThermoElectricPower_Base (const PMI_Environment& env);
virtual ~PMI_ThermoElectricPower_Base ();

virtual void compute (const Input& input, Output& output) = 0;
};

The following virtual constructor must be implemented:

extern "C"
PMI_ThermoElectricPower_Base* new_PMI_ThermoElectricPower_Base

(const PMI_Environment& env);

Example: Analytic TEP

The following C++ code implements an analytic TEP model (see Thermoelectric Power (TEP)
on page 913):

#include "PMIModels.h"

namespace {
// pi
double pi = 3.141592654;
// electron mass in kg
double m0 = 9.109534e-31;
// Planck’s constant in J*s
double h_planck = 6.626176e-34;
// Boltzmann constant in J/K
double kB = 1.380662e-23;
// electron charge in C
double e0 = 1.602192e-19;

double pow_1_5 (double x) {
return (x==1) ? 1 : x * sqrt (x);

}

double Compute_NB_By3_2 (double m_r) {
double val = 2 * pow_1_5(2 * pi * (kB/h_planck) * (m0/h_planck)) / 1e6;
val *= pow_1_5(m_r);
return val;

}

Sentaurus™ Device User Guide 1271
N-2017.09



38: Physical Model Interface
Thermoelectric Power
}

class AnalyticalTEP_ThermoElectricPower : public PMI_ThermoElectricPower 
{

protected:
double k_c, s_c;
// relative effective mass
double m_r;
int sign;

public:
AnalyticalTEP_ThermoElectricPower(const PMI_Environment& env);
~AnalyticalTEP_ThermoElectricPower ();

void Compute_power
(const double t, // lattice temperature
 const double dens, // carrier density
double& power); // thermoelectric power

void Compute_dpowerdt
(const double t, // lattice temperature
const double dens, // carrier density
double& dpowerdt); // derivative of thermoelectric power

 // with respect to lattice temperature

void Compute_dpowerddens
(const double t, // lattice temperature
const double dens, // carrier density
double& dpowerddens); // derivative of thermoelectric power

// with respect to carrier density
};

AnalyticalTEP_ThermoElectricPower::
AnalyticalTEP_ThermoElectricPower (const PMI_Environment& env) :

PMI_ThermoElectricPower (env)
{
}

AnalyticalTEP_ThermoElectricPower::
~AnalyticalTEP_ThermoElectricPower ()
{
}

void AnalyticalTEP_ThermoElectricPower::
Compute_power (const double t, const double dens, double& power)
{

double NB = Compute_NB_By3_2(m_r) * pow_1_5(t);
if(sign < 0)
1272 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Thermoelectric Power
power = k_c * (log(dens/NB) + s_c - 2.5);
else

power = k_c * (log(NB/dens) - s_c + 2.5);
power *= (kB/e0);

}

void AnalyticalTEP_ThermoElectricPower::
Compute_dpowerdt (const double t, const double dens, double& dpowerdt)
{

dpowerdt = sign * (kB/e0) * k_c * 1.5 / t;
}

void AnalyticalTEP_ThermoElectricPower::
Compute_dpowerddens (const double t, const double dens, double& dpowerddens)
{

dpowerddens = -sign * (kB/e0) * k_c / dens;
}

class AnalyticalTEP_e_ThermoElectricPower :
public AnalyticalTEP_ThermoElectricPower 
{
public:
AnalyticalTEP_e_ThermoElectricPower(const PMI_Environment& env);
~AnalyticalTEP_e_ThermoElectricPower () {}

};

AnalyticalTEP_e_ThermoElectricPower::
AnalyticalTEP_e_ThermoElectricPower(const PMI_Environment& env) :
AnalyticalTEP_ThermoElectricPower(env) {

// default values
k_c = InitParameter("k_c_e", 1);
s_c = InitParameter("s_c_e", 1);
m_r = InitParameter("m_r_e", 1);
sign = -1;

}

class AnalyticalTEP_h_ThermoElectricPower :
public AnalyticalTEP_ThermoElectricPower 
{
public:
AnalyticalTEP_h_ThermoElectricPower(const PMI_Environment& env);
~AnalyticalTEP_h_ThermoElectricPower () {}

};

AnalyticalTEP_h_ThermoElectricPower::
AnalyticalTEP_h_ThermoElectricPower(const PMI_Environment& env) :
AnalyticalTEP_ThermoElectricPower(env) {

// default values
Sentaurus™ Device User Guide 1273
N-2017.09



38: Physical Model Interface
Metal Thermoelectric Power
k_c = InitParameter("k_c_h", 1);
s_c = InitParameter("s_c_h", 1);
m_r = InitParameter("m_r_h", 1);
sign = 1;

}

extern "C"
PMI_ThermoElectricPower* new_PMI_e_ThermoElectricPower

(const PMI_Environment& env)
{

return new AnalyticalTEP_e_ThermoElectricPower(env);
}

extern "C"
PMI_ThermoElectricPower* new_PMI_h_ThermoElectricPower

(const PMI_Environment& env)
{

return new AnalyticalTEP_h_ThermoElectricPower(env);
}

Metal Thermoelectric Power

The metal thermoelectric power  in metals can be defined by a PMI (see Thermoelectric
Power (TEP) on page 913).

The name of the PMI can be specified regionwise, materialwise, or globally in the Physics
section of the command file as follows:

Physics(Material="Copper") {
MetalTEPower(pmi_model)

}

Dependencies

The metal thermoelectric power may depend on the following variables: 

t Lattice temperature [K]

qf Quasi-Fermi potential [V]

f Electric field vector [ ]

P

Vcm 1–
1274 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Metal Thermoelectric Power
The PMI model must compute the following result: 

In the case of the standard interface, the following derivatives must be computed as well: 

Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_MetalThermoElectricPower : public PMI_Vertex_Interface {

public:
PMI_MetalThermoElectricPower(const PMI_Environment& env);
virtual ~MetalPMI_ThermoElectricPower ();

virtual void Compute_power(
const double t, // lattice temperature
const double qf, // quasi-Fermi potential
const double f[3] // electric field vector
double& power); // thermoelectric power

virtual void Compute_dpowerdt(
const double t, // lattice temperature
const double qf, // quasi-Fermi potential
const double f[3] // electric field vector
double& dpowerdt); // derivative of thermoelectric power

// with respect to lattice temperature

virtual void Compute_dpowerdqf(
const double t, // lattice temperature
const double qf, // quasi-Fermi potential
const double f[3] // electric field vector
double& dpowerdqf); // derivative of thermoelectric power

// with respect to quasi-Fermi potential
virtual void Compute_dpowerdf(

const double t, // lattice temperature
const double qf, // quasi-Fermi potential

power Thermoelectric power [ ]

dpowerdt Derivative of power with respect to t [ ]

dpowerdqf Derivative of power with respect to qf [ ]

dpowerdf Derivative of power with respect to each component of f [ ],
a vector with up to three entries

VK 1–

VK 2–

K 1–

cmK 1–
Sentaurus™ Device User Guide 1275
N-2017.09



38: Physical Model Interface
Metal Thermoelectric Power
const double f[3] // electric field vector
double& dpowerdf[3]); // derivative of thermoelectric power

// with respect to electric field
};

The following virtual constructor must be implemented:

typedef PMI_MetalThermoElectricPower* new_PMI_MetalThermoElectricPower_func
(const PMI_Environment& env);

extern "C" new_PMI_MetalThermoElectricPower_func 
new_PMI_MetalThermoElectricPower;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_MetalThermoElectricPower_Base : public PMI_Vertex_Base {

public:
class Input : public PMI_Vertex_Input_Base {
public:

pmi_float t; // lattice temperature
pmi_float qf; // quasi-Fermi potential
pmi_float f[3]; // electric field vector

};

class Output {
public:

pmi_float power; // thermoelectric power
};

PMI_MetalThermoElectricPower_Base (const PMI_Environment& env);
virtual ~PMI_MetalThermoElectricPower_Base ();

virtual void compute (const Input& input, Output& output) = 0;
};

The following virtual constructor must be implemented:

extern "C"
PMI_MetalThermoElectricPower_Base* new_PMI_MetalThermoElectricPower_Base

(const PMI_Environment& env);
1276 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Metal Thermoelectric Power
Example: Linear Field Dependency of Metal TEP

The following C++ code implements a metal TEP PMI depending linearly on two of the
electric field components:

#include "PMIModels.h"

namespace {
// Boltzmann constant in J/K
double kB = 1.380662e-23;
// electron charge in C
double e0 = 1.602192e-19;

}

class MetalThermoElectricPower : public PMI_MetalThermoElectricPower
{

private:
double alpha, beta;

public:
MetalThermoElectricPower(const PMI_Environment& env);
~MetalThermoElectricPower ();

void Compute_power
(const double t, // lattice temperature
const double qf, // quasi-Fermi potential
const double f[3], // electric field vector
double& power); // thermoelectric power

void Compute_dpowerdt
(const double t, // lattice temperature
const double qf, // quasi-Fermi potential
const double f[3], // electric field vector
double& dpowerdt); // derivative of thermoelectric power

 // with respect to lattice temperature

void Compute_dpowerdqf
(const double t, // lattice temperature
const double qf, // quasi-Fermi potential
const double f[3], // electric field vector
double& dpowerdqf);  // derivative of thermoelectric power

// with respect to quasi-Fermi potential

void Compute_dpowerdf
(const double t, // lattice temperature
const double qf, // quasi-Fermi potential
const double f[3], // electric field vector
Sentaurus™ Device User Guide 1277
N-2017.09



38: Physical Model Interface
Metal Thermoelectric Power
double dpowerdf[3]);  // derivative of thermoelectric power
// with respect to electric field

};

MetalThermoElectricPower::
MetalThermoElectricPower (const PMI_Environment& env) :

PMI_MetalThermoElectricPower (env)
{

// default values
alpha = InitParameter("alpha",1);
beta = InitParameter("beta",1e-2);

}

MetalThermoElectricPower::
~MetalThermoElectricPower ()
{
}

void MetalThermoElectricPower::
Compute_power (const double t, const double qf, const double f[3],

double& power)
{

power = 1e-6 * 1e-2 * (f[0] + f[1]); 
}

void MetalThermoElectricPower::
Compute_dpowerdt (const double t, const double qf, const double f[3],

double& dpowerdt)
{

dpowerdt = 0;
}

void MetalThermoElectricPower::
Compute_dpowerdqf (const double t, const double qf, const double f[3],

double& dpowerdqf)
{

dpowerdqf = 0;
}

void MetalThermoElectricPower::
Compute_dpowerdf (const double t, const double qf, const double f[3],

double dpowerdf[3])
{

dpowerdf[0] = 1e-6 * 1e-2;
dpowerdf[1] = 1e-6 * 1e-2;
dpowerdf[2] = 0;

}

1278 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Diffusivity
extern "C"
PMI_MetalThermoElectricPower* new_PMI_MetalThermoElectricPower

(const PMI_Environment& env)
{

return new MetalThermoElectricPower(env);
}

Diffusivity

The diffusivity  and the prefactor of the thermal diffusion term  can be
defined by a PMI (see Hydrogen Transport on page 500).

The name of the PMI can be specified regionwise, materialwise, or globally in the Physics
section of the command file as follows:

Physics ( Material = "Oxide" ) {
HydrogenDiffusion(

HydrogenAtom (
Diffusivity = pmi_model
Alpha = pmi_otherModel

)
...

)
}

Dependencies

The diffusivity and the prefactor of the thermal diffusion term may depend on the following
variables: 

The PMI model must compute the following result: 

f Modulus of electric field [ ]

h Density of hydrogen species (atom, molecule, ion) [ ]

t Lattice temperature [K]

d Diffusivity  [ ] (PMI model for Diffusivity)
or prefactor of thermal diffusion term  [1] (PMI model for Alpha)

Di Edi kT( )⁄–( )exp αtd

Vcm 1–

cm 3–

Di Edi kT( )⁄–( )exp cm2 s 1–

αtd
Sentaurus™ Device User Guide 1279
N-2017.09



38: Physical Model Interface
Diffusivity
Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_HydrogenDiffusivity_Base : public PMI_Vertex_Base {

public:
const PMI_HydrogenType hydrogen_type;
class Input : public PMI_Vertex_Input_Base {
public:

Input (const PMI_HydrogenDiffusivity_Base* hydrogendiffusivity_base,
const int vertex);

pmi_float h; // density of hydrogen atoms, molecules, or ions
(depending on type) [/cm^3]

pmi_float t; // lattice temperature [K]
pmi_float f; // absolute value of electric field [V/cm]

};

class Output {
public:

pmi_float d; // diffusivity [cm^2*s^-1] or prefactor of the thermal
diffusion term [1]

};

PMI_HydrogenDiffusivity_Base (const PMI_Environment& env, const 
PMI_HydrogenType type);

virtual ~PMI_HydrogenDiffusivity_Base ();

virtual void compute (const Input& input, Output& output) = 0;
}

The following virtual constructor must be implemented:

extern "C"
PMI_HydrogenDiffusivity_Base* new_PMI_HydrogenDiffusivity_Base

(const PMI_Environment& env, const PMI_HydrogenType type);

Example: Field-Dependent Hydrogen Diffusivity

The following C++ code implements a field-dependent hydrogen diffusivity:

#include "PMIModels.h"

class pmi_HydrogenDiffusivity : public PMI_HydrogenDiffusivity_Base {
private:

double d0; // [cm^2*s^-1]
double f0; // [eV]
1280 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Diffusivity
double fe; // [1]
double ed; // [eV]

public:
pmi_HydrogenDiffusivity (const PMI_Environment& env, 

const PMI_HydrogenType type);
~pmi_HydrogenDiffusivity ();

void compute (const Input& input, Output& output);
};

pmi_HydrogenDiffusivity::
pmi_HydrogenDiffusivity (const PMI_Environment& env, 

const PMI_HydrogenType type) :
PMI_HydrogenDiffusivity_Base (env, type)
{

// for hydrogen atom
double d0_a = InitParameter ("d0_a", 1.0e-5);
double f0_a = InitParameter ("f0_a", 1.0e-5);
double fe_a = InitParameter ("fe_a", 0.5);
double ed_a = InitParameter ("ed_a", 0.5);

// for hydrogen molecule
double d0_m = InitParameter ("d0_m", 1.0e-5);
double f0_m = InitParameter ("f0_m", 1.0e-5);
double fe_m = InitParameter ("fe_m", 0.5);
double ed_m = InitParameter ("ed_m", 0.5);

// for hydrogen ion
double d0_i = InitParameter ("d0_i", 1.0e-5);
double f0_i = InitParameter ("f0_i", 1.0e-5);
double fe_i = InitParameter ("fe_i", 0.5);
double ed_i = InitParameter ("ed_i", 0.5);

if (hydrogen_type == PMI_HydrogenAtom)
{

d0 = d0_a;
f0 = f0_a;
fe = fe_a;
ed = ed_a;

}
else if(hydrogen_type == PMI_HydrogenMolecule)
{

d0 = d0_m;
f0 = f0_m;
fe = fe_m;
ed = ed_m;

}

Sentaurus™ Device User Guide 1281
N-2017.09



38: Physical Model Interface
Diffusivity
else if(hydrogen_type == PMI_HydrogenIon)
{

d0 = d0_i;
f0 = f0_i;
fe = fe_i;
ed = ed_i;

} 
else
{

std::cout << "unexpected hydrogen type!\n";
exit(-1);

}
}
pmi_HydrogenDiffusivity::
~pmi_HydrogenDiffusivity ()
{
}

void pmi_HydrogenDiffusivity::
compute (const Input& input, Output& output)
{

pmi_float kt = 0.0258519952664849131 * (input.t/300.0); // [eV]
// field-induced activation energy lowering 
pmi_float ea = ed - f0*pow(input.f, fe); // ed - f0*(f/(1[V/cm])^fe

// set activation energy equal to zero if it is negative
if(ea<0.0) ea = 0.0;
ea /= kt;

output.d = d0*exp(-ea);
}

extern "C"
PMI_HydrogenDiffusivity_Base* new_PMI_HydrogenDiffusivity_Base
(const PMI_Environment& env, const PMI_HydrogenType type)
{ 

return new pmi_HydrogenDiffusivity (env, type);
}

1282 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Gamma Factor for Density Gradient Model
Gamma Factor for Density Gradient Model

The density-gradient quantization model (see Density Gradient Model on page 294) contains
the fit factor:

(1282)

where  is the solution-independent value, and  is dependent on the solution [4].

The name of the PMI can be specified regionwise, materialwise, or globally in the Physics
section of the command file as follows:

Physics ( Material = "Silicon" ) {
eQuantumPotential( Gamma(name=pmi_eGamma -EffectiveMass)
hQuantumPotential( Gamma(name=pmi_hGamma)

}

This model has the optional flag EffectiveMass (default) or -EffectiveMass. If the
option -EffectiveMass is activated, the DOS mass that is used as the prefactor of the density
gradient equation is replaced with the free electron mass (only in the quantum potential model).

Dependencies

The  may depend on the following variables:

(1283)

where: 

The PMI model must compute the following result: 

c=n,p Carrier density [ ] for eQuantumPotential, hQuantumPotential
models

Carrier temperature [K]

Electric field perpendicular to interface [ ]

h Layer thickness [ ]

Gamma  [unitless]

γ γ0 γpmi⋅=

γ0 γpmi

γpmi

γpmi γpmi c Tc Enormal h, , ,( )=

cm 3–

Tc

Enormal Vcm 1–

μm
Sentaurus™ Device User Guide 1283
N-2017.09



38: Physical Model Interface
Gamma Factor for Density Gradient Model
In the case of the standard interface, the following derivatives must be computed as well: 

Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_QDDGamma : public PMI_Vertex_Interface {

public:
PMI_QDDGamma(const PMI_Environment& env);
virtual ~PMI_QDDGamma ();

virtual void Compute_gamma(
const double c,            // carrier density
const double t,            // carrier temperature
const double f,            // Enormal to interface
const double h,            // layer thickness
double& gamma) = 0;        // gamma

virtual void Compute_dgamma_dc
    (const double c,            // carrier density
     const double t,            // carrier temperature
     const double f,            // Enormal to interface
     const double h,            // layer thickness
     double& dgammadc) = 0;  // derivative of gamma with respect to 

// carrier density

virtual void Compute_dgamma_dt
    (const double c,            // carrier density
     const double t,            // carrier temperature
     const double f,            // Enormal to interface
     const double h,            // layer thickness
     double& dgammadt) = 0;     // derivative with respect to carrier 

// temperature

virtual void Compute_dgamma_df
    (const double c,            // carrier density
     const double t,            // carrier temperature
     const double f,            // Enormal to interface

dGamma_dc Derivative of Gamma with respect to n,p [ ]

dGamma_dt Derivative of Gamma with respect to  [ ]

dGamma_df Derivative of Gamma with respect to  [ ]

dGamma_dh Derivative of Gamma with respect to h [ ]

cm3

Tc K 1–

Eper cmV 1–

cmV 1–
1284 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Gamma Factor for Density Gradient Model
     const double h,            // layer thickness
     double& dgammadf) = 0;     // derivative with respect to Enormal to 

 // interface

  virtual void Compute_dgamma_dh
    (const double c,            // carrier density
     const double t,            // carrier temperature
     const double f,            // Enormal to interface
     const double h,            // layer thickness
     double& dgammadh) = 0; // derivative with respect to layer thickness
};

The following virtual constructor must be implemented:

typedef PMI_QDDGamma* new_PMI_QDDGamma_func
(const PMI_Environment& env);

extern "C" new_PMI_QDDGamma_func new_PMI_QDDGamma;

Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_MSC_QDDGamma_Base : public PMI_MSC_Vertex_Base {
public:
  class Input : public PMI_Vertex_Input_Base {
  public:
    Input (const PMI_MSC_QDDGamma_Base* msc_qddgamma_base,
           const int vertex);

    pmi_float n;   // electron density
    pmi_float p;   // hole density
    pmi_float T;   // lattice temperature
    pmi_float eT;  // electron temperature
    pmi_float hT;  // hole temperature
    std::vector<pmi_float> s;  // phase fraction
  };
class Output {
  public:
    pmi_float val;  // solution-dependent gamma value
  };

  PMI_MSC_QDDGamma_Base (const PMI_Environment& env,
                                      const std::string& msconfig_name,
                                      const int model_index);

  virtual ~PMI_MSC_QDDGamma_Base ();
Sentaurus™ Device User Guide 1285
N-2017.09



38: Physical Model Interface
Gamma Factor for Density Gradient Model
  virtual void compute (const Input& input, Output& output) = 0;

};

The following virtual constructor must be implemented:

extern "C"
PMI_QDDGamma_Base* new_PMI_QDDGamma_Base (const PMI_Environment& env);

Example: Solution-Dependent Gamma Factor

The following C++ code implements a solution-dependent Gamma factor (simplified C++
interface):

#include <math.h>
#include "PMI.h"

//  gamma = gxy*gc*gt*gf*gh
//    where:
//    gxy = g0 + ax*x/x0 + ay*y/y0;
//    gc = exp(xc/(1+xc));   xc = Sqr(log(c/c0)) 
//    gt = exp(xt);          xt = (t-300)/cT0
//    gf = 1 + af*xf*xf;     xf = (f-f1)/f0
//    gh = 1 + ah*(xh - 1);  xh = h/h0

class eQDDGamma : public PMI_QDDGamma_Base{
private:
  //  see above
  double g0, x0, y0, ax, ay;
  double c0, cT0;
  double h0, ah;
  double f0, f1, af;

  int formula;
  enum {is_c=1, is_t=2, is_f=4, is_h=8};

public:
  eQDDGamma (const PMI_Environment& env);
  ~eQDDGamma ();
void compute (const Input& input, Output& output);
};

eQDDGamma::
eQDDGamma (const PMI_Environment& env) :
  PMI_QDDGamma_Base (env)
{ 
  g0 = InitParameter("g0",  1.);      //  [1]
1286 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Gamma Factor for Density Gradient Model
  c0 = InitParameter("c0",  1e10);    //  [cm-3]
 cT0 = InitParameter("cT0", 300.);    //  [K]
  x0 = InitParameter("x0", 1.);       //  [um]
  ax = InitParameter("ax", 0.);       //  [1]
  y0 = InitParameter("y0", 1.);       //  [um]
  ay = InitParameter("ay", 0.);       //  [1]
  h0 = InitParameter("h0", 1.);       //  [um]
  ah = InitParameter("ah", 0.);       //  [1]
  f0 = InitParameter("f0", 1e7);      //  [V/cm]
  f1 = InitParameter("f1", 1e7);      //  [V/cm]
  af = InitParameter("af", 0.);       //  [1]

 formula = InitParameter("formula", 0);  //  [1]
 if(formula < 0)  formula = 0; 
 if(formula > 15) formula = 15; 

}
eQDDGamma::~eQDDGamma (){}

void eQDDGamma::
compute (const Input& input, Output& output)
{ 
  const pmi_float& c = input.c;  // carrier density
  const pmi_float& t = input.t;  // carrier temperature
  const pmi_float& f = input.f;  // Enormal to interface
  const pmi_float& h = input.h;  // layer thickness

  double x, y, z;
  input.ReadCoordinate (x, y, z);
  pmi_float gxy = g0 + ax*x/x0 + ay*y/y0;
 
  pmi_float gc = 1.;
  pmi_float gt = 1.;
  pmi_float gf = 1.;
  pmi_float gh = 1.;

  if(formula & is_c) {
    const pmi_float n  = (c < 1e-4 ? 1e-4 : c);
    const pmi_float xc = log(n/c0)*log(n/c0);
    gc = exp(xc/(1.+xc));
  }
  if(formula & is_t) {
    const pmi_float xt = (t-300)/cT0;
    gt = exp(xt);
  }
  if(formula & is_f) {
    const pmi_float xf = (f - f1)/f0;
    gf = 1. + af*xf*xf;
Sentaurus™ Device User Guide 1287
N-2017.09



38: Physical Model Interface
Schottky Resistance Model
  }
  if(formula & is_h) {
    const pmi_float xh = h/h0;
    gh = 1. + ah*(xh - 1.);
  }

  output.gamma = gxy*gc*gt*gf*gh;
}

extern "C"
PMI_QDDGamma_Base* new_PMI_QDDGamma_Base
  (const PMI_Environment& env)
{ 
  return new eQDDGamma(env);}

Schottky Resistance Model

The Schottky resistance model (see Resistive Contacts on page 213 and Resistive Interfaces on
page 219) emulates the behavior of a Schottky contact or interface. The Schottky resistance
PMI allows users to define the contact- or interface-distributed Schottky resistance as an
arbitrary function of lattice temperature, electron temperature, hole temperature, electron
affinity, band gap, bandgap narrowing, conduction-band effective density-of-states, valence-
band effective density-of-states, and effective intrinsic density.

The name of the PMI can be specified interface-wise or electrode-wise in the Physics section
of the command file as follows:

Physics ( Electrode = "top2" ) {
DistResist=SchottkyResist(pmi_schottkyresist1)

}

Physics(RegionInterface="r1/r5") {
DistResist=SchottkyResist(pmi_schottkyresist2)

}

1288 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Schottky Resistance Model
Dependencies

The Schottky resistance  may depend on the following variables:

(1284)

where: 

The PMI model must compute the following result: 

In the case of the standard interface, the following derivatives must be computed as well: 

Lattice temperatures [K]

Carrier temperatures [K]

Electron affinity [eV]

Band gap [eV]

Bandgap narrowing [eV]

Conduction and valence band density-of-states [ ]

Effective intrinsic density ]

Rd  [ ]

dRd_dT Derivative of Rd with respect to  [ ]

dRd_dTn Derivative of Rd with respect to  [ ]

dRd_dTp Derivative of Rd with respect to  [ ]

dRd_dChi Derivative of Rd with respect to  [ ]

dRd_dEg Derivative of Rd with respect to  [ ]

dRd_dEbgn Derivative of Rd with respect to  [ ]

dRd_dNc Derivative of Rd with respect to  [ ]

dRd_dNv Derivative of Rd with respect to  [ ]

dRd_dnieff Derivative of Rd with respect to  [ ]

Rd

Rd Rd T Tn Tp χ Eg Ebgn NC NV ni eff,, , , , , , , ,( )=

T

Tn Tp,
χ

Eg

Ebgn

NC NV, cm 3–

ni eff, cm 3–

Ωcm2

T Ωcm2K 1–

Tn Ωcm2K 1–

Tp Ωcm2K 1–

χ Ωcm2eV 1–

Eg Ωcm2eV 1–

Ebgn Ωcm2eV 1–

NC Ωcm 1– eV 1–

NV Ωcm 1– eV 1–

ni eff, Ωcm 1– eV 1–
Sentaurus™ Device User Guide 1289
N-2017.09



38: Physical Model Interface
Schottky Resistance Model
Standard C++ Interface

The following base class is declared in the file PMIModels.h:

class PMI_SchottkyResistanc : public PMI_Vertex_Interface {
public:

class Input {
  public:
    double t; // lattice temperature
    double tn; // electron temperature
    double tp; // hole temperature
    double affin; // electron affinity
    double Eg; // bandgap
    double Ebgn; // bandgap narrowing
    double nc; // conduction-band effective density of states
    double nv; // valence-band effective density of states
    double nie;  // effective intrinsic density
  };

  class Output {
  public:
    double resist; // Schottky resistance
    double dresistdt; // temperature derivative
    double dresistdtn; // electron temperature derivative
    double dresistdtp; // hole temperature derivative
    double dresistdaffin; // electron affinity derivative
    double dresistdEg; // bandgap derivative
    double dresistdEbgn; // bandgap narrowing derivative
    double dresistdnc; // conduction-band effective state dens derivative
    double dresistdnv; // valence-band effective state dens derivative
    double dresistdnie; // intrinsic carrier density derivative

};

PMI_SchottkyResistance (const PMI_Environment& env);
virtual ~PMI_SchottkyResistance ();

virtual void compute(const Input& input, Output& output) = 0;
};

The following virtual constructor must be implemented:

virtual extern "C"
PMI_SchottkyResistance* new_PMI_SchottkyResistance(const PMI_Environment& env)
1290 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Schottky Resistance Model
Simplified C++ Interface

The following base class is declared in the file PMI.h:

class PMI_SchottkyResistance_Base : public PMI_Vertex_Base {
public:
  class Input : public PMI_Vertex_Input_Base {
  public:
    Input (const PMI_SchottkyResistance_Base* schottkyresist_base, 

const int vertex);
 pmi_float t;  // lattice temperature
 pmi_float tn; // electron temperature

     pmi_float tp; // hole temperature
  pmi_float affin; // electron affinity

      pmi_float Eg; // bandgap
      pmi_float Ebgn; // bandgap narrowing
      pmi_float nc; // conduction-band effective density of states
      pmi_float nv; // valence-band effective density of states

 pmi_float nie;  // effective intrinsic density
};
class Output {
  public:

 pmi_float resist;  // Schottky resistance
};

PMI_SchottkyResistance_Base (const PMI_Environment& env);

virtual ~PMI_SchottkyResistance_Base ();

virtual void compute (const Input& input, Output& output) = 0;
};

The following virtual constructor must be implemented:
extern "C"
PMI_SchottkyResistance_Base* new_PMI_SchottkyResistance_Base(const 
PMI_Environment& env);
Sentaurus™ Device User Guide 1291
N-2017.09



38: Physical Model Interface
Schottky Resistance Model
Example: Built-in Schottky Resistance Model

The following C++ code reimplements the built-in Schottky resistance model (simplified C++
interface):

#include <math.h>
#include "PMI.h"

class Builtin_SchottkyResistance: public PMI_SchottkyResistance_Base {
private:

pmi_float ComputeSchottkyResistance(const Input& input);

public:
Builtin_SchottkyResistance(const PMI_Environment& env);

  ~Builtin_SchottkyResistance();
   void compute(const Input& input, Output& output);

};

Builtin_SchottkyResistance::
Builtin_SchottkyResistance(const PMI_Environment& env) :
 PMI_SchottkyResistance_Base (env) {}

Builtin_SchottkyResistance::
~Builtin_SchottkyResistance() {}

pmi_float Builtin_SchottkyResistance::
ComputeSchottkyResistance(const Input& input) {

// Planck's constant divided by 2pi in J*s
const double h_bar = 1.05458866419688266838371913965e-34;
// Epsilon 0 in As/Vcm
const double eps0 = 8.8542e-14;
// electron charge in C
const double e0 = 1.602192e-19;
// electron mass in kg
const double m0 = 9.109534e-31;
// Boltzmann constant in J/K
const double kB = 1.380662e-23;

pmi_float tempDEV = 300; // K
pmi_float kT = kB*tempDEV/e0; // energy in eV

pmi_float dop = input.ReadDoping(PMI_Donor) - 
 input.ReadDoping(PMI_Acceptor);

pmi_float epsSEM = input.InitModelParameter("epsilon", "Epsilon", 1);
pmi_float N = (dop > 0) ? dop : -dop;

double rinf = 0;
1292 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Schottky Resistance Model
double PhiB = 0;
double M = 0;

  
if(dop > 0) { // q = -1 

rinf = input.InitModelParameter("Rinf_e","SchottkyResistance",
 2.4000e-09);

    PhiB = input.InitModelParameter("PhiB_e", "SchottkyResistance", 0.6);
    M = input.InitModelParameter("mt_e", "SchottkyResistance", 0.19);

} else { // q = 1
rinf = input.InitModelParameter("Rinf_h", "SchottkyResistance", 

 5.2000e-09);
PhiB = input.InitModelParameter("PhiB_h", "SchottkyResistance", 0.51);
M = input.InitModelParameter("mt_h", "SchottkyResistance", 0.16);

}

pmi_float Rinf = rinf*300/tempDEV;
pmi_float E00 = h_bar/2.0*100.0*sqrt(N/eps0/epsSEM/M/m0); // eV

pmi_float E0 = 0;
if(E00 < kT/100) 

E0 = kT;
else if(E00 > kT*100) 

E0 = E00;
else 

E0 = E00*cosh(E00/kT)/sinh(E00/kT);

return Rinf*exp(PhiB/E0);
}

void Builtin_SchottkyResistance::
compute(const Input& input, Output& output) {

output.resist = ComputeSchottkyResistance(input);
}

extern "C"
PMI_SchottkyResistance_Base* new_PMI_SchottkyResistance_Base(

 const PMI_Environment& env) { 
  return new Builtin_SchottkyResistance(env);
}

Sentaurus™ Device User Guide 1293
N-2017.09



38: Physical Model Interface
Ferromagnetism and Spin Transport
Ferromagnetism and Spin Transport

The following PMI models for ferromagnetism and spin transport are supported:

■ User-Defined Interlayer Exchange Coupling

■ User-Defined Bulk or Interface Contributions to the Effective Magnetic Field on page 1298

■ User-Defined Magnetostatic Potential Calculation on page 1307

All PMI models for ferromagnetism and spin transport are based on the simplified C++
interface.

User-Defined Interlayer Exchange Coupling

Interfaces of ferromagnetic regions separated by thin paramagnetic layers lead to an interlayer
coupling energy density  [5]. As usual, the derivative of this energy density with
respect to the local magnetization contributes to the effective magnetic field of the LLG
equation. In contrast to Eq. 920, p. 810,  in this case is a surface energy density, not a
volume energy density. The resulting effective magnetic field contribution has units of A rather
than A/m; with the observation that (J/T)/m2 = A, this is seen to correspond simply to a surface
density of magnetic dipoles.

The theory of interlayer exchange is well developed (for example, [6]). It explains why
interlayer exchange oscillates between ferromagnetic and anti-ferromagnetic behavior as a
function of the paramagnetic spacer thickness, and it establishes a clear link between
oscillation periods present in this thickness dependency and critical spanning vectors of the
Fermi surface of the spacer material. Despite this, the quantitative prediction of the interaction
remains difficult even in ideal thin film stacks. Structural non-idealities (such as surface
roughness) can cause additional complexity such as the emergence of bi-quadratic terms in the
coupling energy, which favor orthogonal alignment of the magnetization directions in the
ferromagnetic regions. Therefore, the most appropriate functional form for describing the
coupling strength may depend on the particular use case. For this reason, it was decided to
provide a generic infrastructure for assembling interlayer exchange contributions into the LLG
equation, but to leave the choice of the particular expression to assemble on the interlayer
exchange edges to users.

Syntax of Command File and Parameter File

An interlayer exchange PMI is activated for a particular interface by adding the following line
to the corresponding interface Physics section of the command file:

Magnetism(InterlayerExchange(PMImodel=<name>))

Uinterlayer

Uinterlayer
1294 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Ferromagnetism and Spin Transport
If the PMI model uses named model parameters (for example, by calling InitParameter()),
the parameters are read from the interface-specific section of the parameter file.

Base Class for Interlayer Exchange PMIs

PMI models for the interlayer exchange terms of the LLG equation are derived from the base
class PMI_LLGInterlayerExchange_Base, which has the following definition:

//! Base-class for interlayer exchange terms the LLG equation
class PMI_LLGInterlayerExchange_Base : public PMI_Device_Base {
public:

class Input : public PMI_Device_Input_Base {
public:

//! Constructor
Input(const PMI_Device_Base*);
pmi_float m_loc[3]; ///< magnetization dir. at the local end of the edge
pmi_float m_rem[3]; ///< magnetization dir. at the remote end of the edge
pmi_float length;   ///< the length of the interlayer exchange edge [m]

};
class Output {
public:

Output(const PMI_Device_Base *base);

//! Derivative of surface energy density w.r.t. to local magnetization
pmi_float dU_by_dmloc[3];

};

PMI_LLGInterlayerExchange_Base (const PMI_Device_Environment& env);
virtual ~PMI_LLGInterlayerExchange_Base ();
virtual void compute (const Input& input, Output& output) = 0;

};

The PMI implementer must provide the function:

compute(const Input& input, Output& output)

Here, compute() is called once for each interlayer exchange edge, and the input object
contains the magnetization directions at the local and remote ends of the edge (as Cartesian unit
vectors) as well as the layer thickness (in meter).

The function writes the gradient of the interlayer-exchange energy density with respect to the
local magnetization direction into the dU_by_dmloc field of the output object (unit: J/m2).
Sentaurus™ Device User Guide 1295
N-2017.09



38: Physical Model Interface
Ferromagnetism and Spin Transport
Example: ILE Model With a Simple Oscillatory Thickness Dependency

This model implements an interlayer exchange (ILE) surface energy density of the form
.

For the thickness-dependent coupling strength , a phase-shifted sine function with a 
envelope is assumed:

(1285)

Here,  (in Å) is the spacer thickness, and  (in Å) is the oscillation period. Instead of the
rather inconvenient parameters  and , users are expected to supply the coupling strength

 (in mJ/m2) at the first anti-ferromagnetic peak of  and the thickness  (in Å) at
which this maximum occurs.

Implementation of the Simple Interlayer Exchange PMI

To implement the simple interlayer exchange PMI model, you must declare a derived class:

#include "PMI.h"
#include <cmath>

class InterlayerExchange_sinD_over_D2 : public PMI_LLGInterlayerExchange_Base
{
public:

InterlayerExchange_sinD_over_D2(const PMI_Device_Environment &env);
void compute(const Input &input, Output &output);

// Auxiliary function for thickness dependence of coupling strength
inline pmi_float func(const pmi_float &x, const pmi_float &shift) {

return sin(x + shift) / (x * x);
}

private:
double Jmax; ///< Coupling strength at first AF peak [mJ/m^2]
double tmax; ///< Position of first peak [Aangstroem]
double Lambda; ///< Period of oscillation [Aangstroem]
pmi_float delta; ///< Phase shift to move first AF peak to tmax
pmi_float scale; ///< Scaling factor to scale first AF peak to Jmax

};

The constructor of the derived class reads the model parameters from the .par file and
determines the phase shift and the prefactor in  from  and .

InterlayerExchange_sinD_over_D2::
InterlayerExchange_sinD_over_D2(const PMI_Device_Environment &env)
: PMI_LLGInterlayerExchange_Base(env)
{

Uinterlayer J1 t( )mloc mrem⋅=

J1 t( ) t 2–

J1 t( ) J0
2πt
Λ

-------- δ+ 
  t

2⁄sin=

t Λ
J0 δ

Jmax J1 t( ) tmax

J1 t( ) Jmax tmax
1296 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Ferromagnetism and Spin Transport
Jmax   = InitParameter("Jmax", 0.0);   // unit: [mJ/m^2]
Lambda = InitParameter("Lambda", 0.0); // unit: [Aangstroem]
tmax   = InitParameter("tmax", 0.0);   // unit: [Aangstroem]

// adjust delta and scale to position the first peak at (tmax, Jmax)
pmi_float tmax_scaled = tmax * 2 * M_PI / Lambda;
delta = M_PI - tmax_scaled + atan(0.5 * tmax_scaled);
scale = 1.0 / func(tmax_scaled, delta);

}

The compute() function computes  for a single interlayer
exchange edge (note the unit conversion factors):

compute(const Input &input, Output &output) {
pmi_float scaled_distance = 1e10 * input.length * 2*M_PI / Lambda;
pmi_float f = -1e-3 * scale * Jmax * func(scaled_distance, delta);
output.dU_by_dmloc[0] = f * input.m_rem[0];
output.dU_by_dmloc[1] = f * input.m_rem[1];
output.dU_by_dmloc[2] = f * input.m_rem[2];

}

Finally, you must provide a so-called virtual constructor function that allocates a variable of
the new class:

extern "C"
PMI_LLGInterlayerExchange_Base*
new_PMI_LLGInterlayerExchange_Base(const PMI_Device_Environment& env) {

return new InterlayerExchange_sinD_over_D2(env);
}

NOTE This function must have C linkage and exactly the same name as
declared in the PMI.h header file.

NOTE If Magnetism(InterlayerExchange) is specified in the .cmd file
without providing a PMI model name, Sentaurus Device loads an
implementation of the above model as the default ILE model. For the
purpose of reading parameters from the .par file, the model name
InterlayerExchange is used.

∇mloc
Uinterlayer J1 t( )mrem=
Sentaurus™ Device User Guide 1297
N-2017.09



38: Physical Model Interface
Ferromagnetism and Spin Transport
User-Defined Bulk or Interface Contributions to the 
Effective Magnetic Field

The base class PMI_LLGHeff_Base has been provided for assembling extra generic
contributions to the effective magnetic field in bulk regions (unit: A/m) or on interfaces
(unit: A).

Syntax of Command File and Parameter File

PMIs for generic bulk or interface  contributions are activated by adding the following line
to the corresponding region or interface Physics sections of the command file:

LLG(HEff("<name1>" ["<name2>" ...]))

Contributions from all selected models are added during assembly.

Model parameters (if any) are taken from the appropriate region-specific or interface-specific
sections of the .par file.

Base Class for Generic Bulk or Interface for Effective Magnetic Field 
PMIs

PMI models for generic bulk or interface  contributions are derived from the base class
PMI_LLGHeff_Base:

//! Base-class for local contributions to H_eff in the LLG equation
class PMI_LLGHeff_Base : public PMI_Device_Base {
public:

class Input : public PMI_Device_Input_Base {
public:

//! Constructor
Input(const PMI_Device_Base*);
//! Location types for PMI_LLGHeff_Base
enum locT {

UNDEFINED_LOCATION, ///< Nothing (only used as initial value)
DOMAIN_INTERFACE,   ///< Subset of a mesh interface (METIS domain)
MESH_INTERFACE,     ///< Full mesh interface
DOMAIN_BULK,        ///< Subset of a mesh bulk region (METIS domain)
BULK                ///< Full mesh bulk region

};
locT locationType; ///< Specifies how to interpret the vertex list
int interfaceIndex; ///< Mesh interface index (or -1 if called for bulk)

H eff

H eff
1298 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Ferromagnetism and Spin Transport
//! Bulk region index; valid both during bulk and interface assembly.
/**
* For interface terms, this can be used to distinguish between
* interior and exterior normal vectors: if \a regionIndex is equal to
* region1 of the mesh interface, the vector returned by
* ReadAveragedNormalVectorAtInterfaceVertex points away from region
* \a regionIndex; otherwise it points into region \a regionIndex.
*/

int regionIndex;

//! \a vertexList is only used for DOMAIN_INTERFACE and DOMAIN_BULK
/**
* \a locationType determines how bulk vertex indices for assembly are
* obtained:
*
* DOMAIN_INTERFACE:
*   Mesh()->regioninterface((interfaceIndex)
*         ->vertex([vertexList[i])->index()
*   i = 0, ..., vertexList->size())-1
* MESH_INTERFACE:   
*   Mesh()->regioninterface(interfaceIndex)->vertex(i)->index()
*   i = 0, ..., Mesh()->regioninterface(locationIndex)->size_vertex()-1
* DOMAIN_BULK:
*   Mesh()->region(locationIndex)->vertex(vertexList[i])->index()
*   i = 0, ..., vertexList->size())-1
* BULK:             
*   Mesh()->region(locationIndex)->vertex(i)->index()
*   i = 0, ..., Mesh()->region(locationIndex)->size_vertex()-1
*/

const std::vector<int> *vertexList;
}; //end of class PMI_LLGHeffBase::Input

class Output {
public:

Output(const PMI_Device_Base *base);
sdevice_pmi_float_vector Hx; // x-component of Heff at each vertex
sdevice_pmi_float_vector Hy; // y-component of Heff at each vertex
sdevice_pmi_float_vector Hz; // z-component of Heff at each vertex

};

PMI_LLGHeff_Base (const PMI_Device_Environment& env);
virtual ~PMI_LLGHeff_Base ();
virtual void compute (const Input& input, Output& output) = 0;
Sentaurus™ Device User Guide 1299
N-2017.09



38: Physical Model Interface
Ferromagnetism and Spin Transport
//! Get averaged normal vector for interface vertex
/**
* @param[in] i - interface index
* @param[in] v - interface vertex index on \a i
* @returns pointer to the coordinates of the normal vector
*/

const double *
ReadAveragedNormalVectorAtInterfaceVertex(int i, int v);

//! Read SaturationMagnetization for region ri
double ReadSaturationMagnetization(int ri);

};

The PMI implementer must provide the function:

compute(const Input& input, Output& output)

This function is called once per parallel (bulk or interface) domain of the device, and the
compute() function is expected to provide values for the Hx, Hy, and Hz fields of the output
object at each global vertex in the current domain.

Example: Exchange Bias

Typical anisotropy models do not distinguish between  and . Interfaces between
ferromagnetic and anti-ferromagnetic layers, however, may break the symmetry between
parallel and anti-parallel alignment of the magnetization directions on either side of the
interface. This effect is known as exchange bias, which can be described by an interface
contribution to  of the form , where:

■  (I_bias in the .par file) describes the strength of the exchange bias (unit: A,
corresponding to an interface density of magnetic dipoles as discussed above).

■  (biasDir in the .par file) is the bias direction. 

Positive values of  correspond to the case that favors alignment of the magnetization at the
surface of the ferromagnetic layer parallel to .

Implementation of the Exchange Bias PMI

To implement the exchange bias model, you must declare a derived class:

#include <PMI.h>
#include <cmath>
class PMI_ExchangeBias : public PMI_LLGHeff_Base {
public:

PMI_ExchangeBias(const PMI_Device_Environment& env);
void computeForInterfaceVertex(int ii, int ivi,

                                 PMI_LLGHeff_Base::Output &out);

m m–

H eff Ibiasdbias

Ibias

dbias

Ibias

dbias
1300 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Ferromagnetism and Spin Transport
void compute(const PMI_LLGHeff_Base::Input &in,
               PMI_LLGHeff_Base::Output &out);
private:

std::vector<double> biasDir; ///< direction of the bias field (normalized)
double Ibias; ///< J/T / m^2 = A (surface density of magnetic dipoles)

};

The constructor of the derived class reads the model parameters from the .par file:

PMI_ExchangeBias::PMI_ExchangeBias(const PMI_Device_Environment& env)
: PMI_LLGHeff_Base(env), biasDir(3)
{

Ibias = InitParameter("I_bias", 0.0);
InitParameter("biasDir", biasDir);
if (biasDir.size() != 3) {

printf("PMI model ExchangeBias --- biasDir must be a 3D vector!\n");
exit(1);

}
// convert biasDir to unit vector
double length = std::sqrt(biasDir[0] * biasDir[0] +

biasDir[1] * biasDir[1] +
biasDir[2] * biasDir[2]);

if (length == 0) {
printf("PMI model ExchangeBias --- "

"biasDir must be a non-zero 3D vector!\n");
exit(1);

}
biasDir[0] /= length;
biasDir[1] /= length;
biasDir[2] /= length;

}

During model evaluation, Sentaurus Device calls the compute() function. Exchange bias is
an interface effect. Therefore, in.locationType must refer to an interface; other location
types are rejected:

void PMI_ExchangeBias::compute(const PMI_LLGHeff_Base::Input &in,
                               PMI_LLGHeff_Base::Output &out)
{
switch(in.locationType) {
case PMI_LLGHeff_Base::Input::DOMAIN_INTERFACE:
if (!in.vertexList) {
printf("PMI_ExchangeBias on DOMAIN_INTERFACE needs a vertexList!\n");
exit(1);

}
for (int i = 0; i < in.vertexList->size(); i++) {
computeForInterfaceVertex(in.interfaceIndex,(*in.vertexList)[i], out);

}
break;
Sentaurus™ Device User Guide 1301
N-2017.09



38: Physical Model Interface
Ferromagnetism and Spin Transport
case PMI_LLGHeff_Base::Input::MESH_INTERFACE:
{
size_t n = Mesh()->regioninterface(in.interfaceIndex)->size_vertex();
for (size_t i = 0; i < n; i++) {

computeForInterfaceVertex(in.interfaceIndex, i, out);
}

}
break;

default:
printf("PMI_ExchangeBias does not support locationType=%d\n", 

in.locationType);
exit(1);

}
}

The calculation for each selected interface vertex is performed by the function
computeForInterfaceVertex(ii, vi, &out), where ii denotes the index of the
current mesh interface, and vi is the vertex index relative to this interface. The out object
provides storage for the resulting effective magnetic field:

void PMI_ExchangeBias::computeForInterfaceVertex(int ii, int ivi,
                                                 PMI_LLGHeff_Base::Output &out)
{

const des_mesh *mesh = Mesh();
const des_regioninterface* interface = Mesh()->regioninterface(ii);
size_t bulk_vi = interface->vertex(ivi)->index();
// Unit of surface effective magnetic field: A (not A/m as in bulk)
out.Hx[bulk_vi] = Ibias * biasDir[0];
out.Hy[bulk_vi] = Ibias * biasDir[1];
out.Hz[bulk_vi] = Ibias * biasDir[2];

}

Finally, you must provide a so-called virtual constructor function, which allocates a variable of
the new class:

extern "C"
PMI_LLGHeff_Base* new_PMI_LLGHeff_Base(const PMI_Device_Environment& env) {

return new PMI_ExchangeBias(env);
}

NOTE This function must have C linkage and exactly the same name as
declared in the PMI.h header file.

NOTE This model is included in the installation of Sentaurus Device under the
PMI model name ExchangeBias, which corresponds to the C++ file
name ExchangeBias.C.
1302 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Ferromagnetism and Spin Transport
Example: Interface Anisotropy

Frequently, an interface between a ferromagnetic material and adjacent materials gives rise to
a contribution to the energy density of the magnetic system that favors perpendicular alignment
of the magnetization over in-plane alignment. The interface anisotropy model describes this
effect in terms of a surface energy density proportional to the square of the scalar product of
the magnetization direction  and the surface normal direction . The resulting effective
magnetic field contribution takes the form  (unit: A, corresponding to an
interface density of magnetic dipoles as discussed above). Positive values of  favor an out-
of-plane magnetization direction; negative values favor in-plane magnetization.

The interface anisotropy model can describe the transition from in-plane magnetic alignment
in magnetic thin films of moderate thickness to perpendicular magnetic alignment in very thin
films. For positive  (I_aniso in the .par file, unit: A). there is competition between an
effective bulk anisotropy term due to the geometry, which favors in-plane magnetic alignment,
and the interface anisotropy, which favors out-of-plane alignment. With decreasing film
thickness, the relative importance of the interface term grows. For very thin films, the interface
term dominates, resulting in perpendicular magnetic alignment.

Implementation of the Interface Anisotropy PMI

Like the exchange bias model, the interface anisotropy model is derived from
PMI_LLGHeff_Base:

#include <PMI.h>
#include <cmath>

class PMI_InterfaceAnisotropy : public PMI_LLGHeff_Base {
public:

PMI_InterfaceAnisotropy(const PMI_Device_Environment& env);
void computeForInterfaceVertex(int ii, int ivi,

                                 PMI_LLGHeff_Base::Output &out);
void compute(const PMI_LLGHeff_Base::Input &in,

               PMI_LLGHeff_Base::Output &out);
private:

double I_aniso; ///< J/T/m^2 = A (surface density of magnetic dipoles)
const pmi_float* mx; ///< x-component of magnetization direction
const pmi_float* my; ///< y-component of magnetization direction
const pmi_float* mz; ///< z-component of magnetization direction

};

Again, the constructor reads the model parameter:

PMI_InterfaceAnisotropy::
PMI_InterfaceAnisotropy(const PMI_Device_Environment& env)
: PMI_LLGHeff_Base(env)
{ I_aniso = InitParameter("I_aniso", 0.0); }

m n
I– anison n m⋅( )

Ianiso

Ianiso
Sentaurus™ Device User Guide 1303
N-2017.09



38: Physical Model Interface
Ferromagnetism and Spin Transport
For the most part, the compute() function of the interface anisotropy model is identical to that
of the exchange bias model. However, there is one important difference: The effective field of
the interface anisotropy model depends on the magnetization density.

Therefore, the compute() function of PMI_InterfaceAnisotropy must read the
magnetization data:

void PMI_InterfaceAnisotropy::compute(const PMI_LLGHeff_Base::Input &in,
                                      PMI_LLGHeff_Base::Output &out)
{

sdevice_data *data = Data();
mx = data->ReadScalar(sdevice_data::vertex, "MagnetizationDir_x");
my = data->ReadScalar(sdevice_data::vertex, "MagnetizationDir_y");
mz = data->ReadScalar(sdevice_data::vertex, "MagnetizationDir_z");
switch(in.locationType) {

... THE REST OF THE FUNCTION AS IN PMI_ExchangeBias ... 
}

}

The computeForInterfaceVertex() function handles the calculation of the scalar product
between the surface normal vector and the magnetization direction. Note how the components
of the magnetization vector m[] are set from the mx, my, and mz components. This provides the
correct (local) derivatives of the effective field contribution to the LLG equation:

void
PMI_InterfaceAnisotropy::
computeForInterfaceVertex(int ii, int ivi, PMI_LLGHeff_Base::Output &out)
{

const des_mesh *mesh = Mesh();
const des_regioninterface* interface = Mesh()->regioninterface(ii);
size_t bulk_vi = interface->vertex(ivi)->index();
const double *n = ReadAveragedNormalVectorAtInterfaceVertex(ii, ivi);

pmi_float m[3];
m[0] = pmi_float(mx[bulk_vi].get_value<double>(), 3, 0);
m[1] = pmi_float(my[bulk_vi].get_value<double>(), 3, 1);
m[2] = pmi_float(mz[bulk_vi].get_value<double>(), 3, 2);

pmi_float dot_prod = n[0] * m[0] + n[1] * m[1] + n[2] * m[2];

// Unit of surface effective magnetic field: A (not A/m as in bulk)
out.Hx[bulk_vi] = -I_aniso * dot_prod * n[0];
out.Hy[bulk_vi] = -I_aniso * dot_prod * n[1];
out.Hz[bulk_vi] = -I_aniso * dot_prod * n[2];

}

1304 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Ferromagnetism and Spin Transport
The implementation is completed by the definition of the virtual constructor:

extern "C"
PMI_LLGHeff_Base* new_PMI_LLGHeff_Base(const PMI_Device_Environment& env) {

return new PMI_InterfaceAnisotropy(env);
}

NOTE This model is included in the installation of Sentaurus Device under the
PMI model name InterfaceAnisotropy.

Example: Local Demagnetizing Field

This model implements a local expression for the demagnetizing field in terms of a diagonal
demagnetizing tensor : .

Implementation of the Local Demagnetizing Field PMI

The model is derived from the base class PMI_LLGHeff_Base:

#include <PMI.h>
class LocalDemagnetizingField : public PMI_LLGHeff_Base {
public:

LocalDemagnetizingField(const PMI_Device_Environment& env);
void computeForBulkVertex(int ri, int vi, PMI_LLGHeff_Base::Output &out);
void compute(const PMI_LLGHeff_Base::Input &in,

               PMI_LLGHeff_Base::Output &out);
private:

const pmi_float* mx; ///< x-component of magnetization direction
const pmi_float* my; ///< y-component of magnetization direction
const pmi_float* mz; ///< z-component of magnetization direction
double Nx; /// demagnetizing factor along x-axis
double Ny; /// demagnetizing factor along y-axis
double Nz; /// demagnetizing factor along z-axis

};

As usual, the constructor of the derived class reads the model parameters from the .par file:

LocalDemagnetizingField::
LocalDemagnetizingField(const PMI_Device_Environment& env)
: PMI_LLGHeff_Base(env)
{

Nx = InitParameter("Nx", 0.0);
Ny = InitParameter("Ny", 0.0);
Nz = InitParameter("Nz", 0.0);

}

N diag Nx Ny Nz, ,( )= H eff, demag N– M MsatN– m= =
Sentaurus™ Device User Guide 1305
N-2017.09



38: Physical Model Interface
Ferromagnetism and Spin Transport
In contrast to the exchange bias model and the interface anisotropy model, the local
demagnetizing field model implements a bulk contribution to the effective magnetic field.
Consequently, the compute() function now requires in.locationType to refer to a bulk
region or domain:

void LocalDemagnetizingField::compute(const PMI_LLGHeff_Base::Input &in,
                                 PMI_LLGHeff_Base::Output &out)
{

// Get magnetization direction
sdevice_data *data = Data();
mx = data->ReadScalar(sdevice_data::vertex, "MagnetizationDir_x");
my = data->ReadScalar(sdevice_data::vertex, "MagnetizationDir_y");
mz = data->ReadScalar(sdevice_data::vertex, "MagnetizationDir_z");

switch(in.locationType) {
case PMI_LLGHeff_Base::Input::DOMAIN_BULK:

if (!in.vertexList) {
printf("LocalDemagnetizingField on DOMAIN_BULK needs a vertexList!\n");
exit(1);

}
for (size_t i = 0; i < (*in.vertexList).size(); i++) {

computeForBulkVertex(in.regionIndex, (*in.vertexList)[i], out);
}
break;

default:
printf("LocalDemagnetizingField does not support locationType=%d\n",

in.locationType);
exit(1);

}
}

The evaluation of the effective magnetic field contribution at each bulk node is handled by the
computeForBulkVertex(ri, vi, &out) function. The argument ri is the region index,
and the argument vi is the global vertex index of the evaluation point. The region index is
needed to query the saturation magnetization:

void
LocalDemagnetizingField::computeForBulkVertex(int ri, int vi,
                                              PMI_LLGHeff_Base::Output &out)
{

pmi_float m[3];
m[0] = pmi_float(mx[vi].get_value<double>(), 3, 0);
m[1] = pmi_float(my[vi].get_value<double>(), 3, 1);
m[2] = pmi_float(mz[vi].get_value<double>(), 3, 2);

double Msat = ReadSaturationMagnetization(ri);
1306 Sentaurus™ Device User Guide
N-2017.09



38: Physical Model Interface
Ferromagnetism and Spin Transport
// Effective magnetic field A/m
out.Hx[vi] = -Nx * Msat * m[0];
out.Hy[vi] = -Ny * Msat * m[1];
out.Hz[vi] = -Nz * Msat * m[2];

}

Finally, the virtual constructor must be defined:

extern "C"
PMI_LLGHeff_Base* new_PMI_LLGHeff_Base(const PMI_Device_Environment& env) {

return new LocalDemagnetizingField(env);
}

NOTE This model is included in the installation of Sentaurus Device under the
PMI model name LocalDemagnetizingField.

User-Defined Magnetostatic Potential Calculation

For the special case of an effective magnetic field contribution that can be written as the
gradient of a magnetostatic potential, , you can reuse the base class
PMI_LLGHeff_Base to calculate a magnetostatic potential instead of a magnetic field (see
Base Class for Generic Bulk or Interface for Effective Magnetic Field PMIs on page 1298).

In this mode of operation, the compute() function does not populate the fields of the output
object with magnetic field values. Instead, it prepares an array containing the magnetostatic
potential for each vertex (unit: ) and uses this to set the value of the
MagnetostaticPotential field by calling the sdevice_data::WriteScalar()
function.

The resulting magnetostatic potential and the corresponding magnetic field can be plotted like
other fields in Sentaurus Device:

Plot {
MagnetostaticPotential
LongitudinalMagneticField/Element/Vector

}

Syntax of Command File and Parameter File

This special mode is activated by adding the following statement to the global Physics section
of the command file:

Magnetism(MagnetostaticPotentialPMI=<name>)

H longitudinal ∇ϕmax–=

μm A/m⋅
Sentaurus™ Device User Guide 1307
N-2017.09



38: Physical Model Interface
References
Parameters (if any) are read from the global section of the .par file, and the locationType
in the input object is set to zero. Instead of being called in parallel for each parallel domain
of the device, for the magnetostatic potential calculation, there is only one global call for the
entire device. User-defined parallelization, for example, using OpenMP, can be used to
accelerate this call.

References

[1] H. Matsuura, “Influence of Excited States of Deep Acceptors on Hole Concentration in
SiC,” in International Conference on Silicon Carbide and Related Materials (ICSCRM),
Tsukuba, Japan, pp. 679–682, October 2001.

[2] P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials
Properties, Berlin: Springer, 2nd ed., 1999.

[3] K. F. Brennan, The Physics of Semiconductors: With applications to optoelectronic
devices, Cambridge: Cambridge University Press, 1999.

[4] M. G. Ancona, “Density-gradient theory: a macroscopic approach to quantum
confinement and tunneling in semiconductor devices,” Journal of Computational
Electronics, vol. 10, no. 1–2, pp. 65–97, 2011.

[5] P. Bruno, “Interlayer Exchange Interactions in Magnetic Multilayers,” Magnetism:
Molecules to Materials III, J. S. Miller and M. Drillon (eds.), Wiley-VCH: Weinheim,
pp. 329–353, 2002.

[6] M. D. Stiles, “Interlayer Exchange Coupling,” Ultrathin Magnetic Structures III:
Fundamentals of Nanomagnetism, J. A. C. Bland and B. Heinrich (eds.), Springer:
Berlin, pp. 99–142, 2005.
1308 Sentaurus™ Device User Guide
N-2017.09



CHAPTER 39 Tcl Interfaces

This chapter discusses the Tcl interfaces that can be used to
customize device simulations in Sentaurus Device.

Overview

You can use Tcl scripts to control various aspects of a Sentaurus Device simulation. Tcl scripts
can be used in the following circumstances:

■ You can use the Tcl interpreter to execute a command file (see Tcl Command File on
page 159).

■ Tcl expressions are recognized in the context of enhanced spectrum control to compute
optical generation (see Enhanced Spectrum Control on page 538).

■ A Tcl formula can be used to add data to the current plot file (see Tcl Formulas on
page 115).

■ The Tcl current plot interface (see Current Plot File on page 1317) represents an alternative
to the current plot PMI described in Current Plot File of Sentaurus Device on page 1239.

Mesh-based Tcl interfaces, such as the current plot interface, need access to Sentaurus Device
mesh and data. This runtime support is described in Mesh-Based Runtime Support on
page 1309.

Mesh-Based Runtime Support

The Tcl runtime environment is accessed through a Tcl pointer tcl_cp_adr:

upvar #1 tcl_cp_adr tcl_cp_adr

When the Tcl pointer tcl_cp_adr to the runtime environment has been obtained, you can
perform the following operations:

■ Read a parameter from the command file:

$tcl_cp_adr InitParameter $name $defaultvalue

■ Read a string parameter from the command file:

$tcl_cp_adr InitStringParameter $name $defaultvalue
Sentaurus™ Device User Guide 1309
N-2017.09



39: Tcl Interfaces
Mesh-Based Runtime Support
■ Read the time in seconds during transient simulations:

$tcl_cp_adr ReadTime

■ Read the step size in seconds during transient simulations:

$tcl_cp_adr ReadTransientStepSize

■ Read the step type during transient simulations:

$tcl_cp_adr ReadTransientStepType

Returns either $::PMI_UndefStepType, $::PMI_TR, $::PMI_BDF, or $::PMI_BE.

■ Read pointer to the Sentaurus Device mesh (see Device Mesh on page 1310):

set mesh [$tcl_cp_adr Mesh]

■ Read pointer to the Sentaurus Device data (see Device Data on page 1315):

set data [$tcl_cp_adr Data]

Device Mesh

Use a pointer to the Sentaurus Device mesh for the following operations:

■ Dimension of mesh:

$mesh dim

■ Read element ( ) of reference coordinate system, where :

$mesh ref_coordinates $i $j

■ Number of vertices:

$mesh size_vertex

■ Number of element vertices:

$mesh size_element_vertex

■ Read pointer to vertex :

set vertex [$mesh vertex $i]

■ Number of edges:

$mesh size_edge

■ Read pointer to edge :

set edge [$mesh edge $i]

■ Number of elements:

$mesh size_element

i j, 0 i j dim<,≤

i

i

1310 Sentaurus™ Device User Guide
N-2017.09



39: Tcl Interfaces
Mesh-Based Runtime Support
■ Read pointer to element :

set element [$mesh element $i]

■ Number of regions:

$mesh size_region

■ Read pointer to region :

set region [$mesh region $i]

■ Number of region interfaces:

$mesh size_regioninterface

■ Read pointer to region interface :

set regioninterface [$mesh regioninterface $i]

Vertex

Use a pointer to a vertex for the following operations:

■ Read index to access vertex data:

$vertex index

■ Read index to access element–vertex data:

$vertex element_vertex_index $element

■ Read coordinates:

$vertex coord $d

The value of  determines the component, .

■ Determine whether this vertex has the same coordinates as vertex :

$vertex equal_coord $v

■ Number of edges connected to this vertex:

$vertex size_edge

■ Read pointer to edge :

set edge [$vertex edge $i]

■ Number of elements connected to this vertex:

$vertex size_element

■ Read pointer to element :

set element [$vertex element $i]

■ Number of regions connected to this vertex:

$vertex size_region

i

i

i

d 0 d dim<≤
v

i

i

Sentaurus™ Device User Guide 1311
N-2017.09



39: Tcl Interfaces
Mesh-Based Runtime Support
■ Read pointer to region :

set region [$vertex region $i]

■ Number of region interfaces connected to this vertex:

$vertex size_regioninterface

■ Read pointer to region interface :

set regioninterface [$vertex regioninterface $i]

Edge

Use a pointer to an edge for the following operations:

■ Read index to access edge data:

$edge index

■ Read pointer to first vertex of edge:

set vertex [$edge start]

■ Read pointer to second vertex of edge:

set vertex [$edge end]

■ Number of elements connected to this edge:

$edge size_element

■ Read pointer to element :

set element [$edge element $i]

■ Number of regions containing edge:

$edge size_region

■ Read pointer to region :

set region [$edge region $i]

Element

Use a pointer to an element for the following operations:

■ Read index to access element data:

$element index

i

i

i

i

1312 Sentaurus™ Device User Guide
N-2017.09



39: Tcl Interfaces
Mesh-Based Runtime Support
■ Read type of element:

$element type

Returns one of the following values:

$::des_element_point
$::des_element_line
$::des_element_triangle
$::des_element_rectangle
$::des_element_tetrahedron
$::des_element_pyramid
$::des_element_prism
$::des_element_cuboid
$::des_element_tetrabrick

■ Number of vertices in element:

$element size_vertex

■ Read pointer to vertex :

set vertex [$element vertex $i]

■ Number of edges connected to this element:

$element size_edge

■ Read pointer to edge :

set edge [$element edge $i]

■ Read pointer to bulk region containing element:

set bulk [$element bulk]

■ Start index for element–vertex data in element:

$element element_vertex_offset

Region

Use a pointer to a region for the following operations:

■ Read index:

$region index

■ Read type of region:

$region type

Returns either $::des_region_bulk or $::des_region_contact.

■ Read name of region:

$region name

i

i

Sentaurus™ Device User Guide 1313
N-2017.09



39: Tcl Interfaces
Mesh-Based Runtime Support
■ Number of vertices in region:

$region size_vertex

■ Read pointer to vertex :

set vertex [$region vertex $i]

■ Number of edges in region:

$region size_edge

■ Read pointer to edge :

set edge [$region edge $i]

Use the following functions to convert a pointer to a region into a pointer to a bulk region or a
contact:

set bulk [tcl_cp_region2bulk $region]
set contact [tcl_cp_region2contact $region]

A pointer to a bulk region supports the following additional operations:

■ Read material of region:

$bulk material

■ Number of elements in region:

$bulk size_element

■ Read pointer to element :

set element [$bulk element $i]

■ Number of region interfaces in region:

$bulk size_regioninterface

■ Read pointer to region interface :

set regioninterface [$bulk regioninterface $i]

Region Interface

Use a pointer to a region interface for the following operations:

■ Read index:

$regioninterface index

■ Read pointer to first bulk region connected to region interface:

set bulk [$regioninterface bulk1]

■ Read pointer to second bulk region connected to region interface:

set bulk [$regioninterface bulk2]

i

i

i

i

1314 Sentaurus™ Device User Guide
N-2017.09



39: Tcl Interfaces
Mesh-Based Runtime Support
■ Determine whether this region interface is a heterointerface:

$regioninterface is_heterointerface

■ Number of vertices in region interface:

$regioninterface size_vertex

■ Read pointer to vertex :

set vertex [$regioninterface vertex $i]

■ Read index to access data stored on region interface vertex :

$regioninterface index $i

Device Data

Use a pointer to the Sentaurus Device data for the following operations:

■ Dimension of mesh:

$data dim

■ Read pointer to box method coefficients (2D array, C++ data type double**):

set coefficient [$data ReadCoefficient]

■ Read pointer to box method measures (2D array, C++ data type double**):

set measure [$data ReadMeasure]

■ Read pointer to box method surface measures (2D array, C++ data type double**):

set surfacemeasure [$data ReadSurfaceMeasure]

■ Read pointer to scalar data (1D array, C++ data type double*):

set scalar [$data ReadScalar $location $name]

■ Read pointer to vector data (2D array, C++ data type double**):

set vector [$data ReadVector $location $name]

■ Write scalar data (1D array, C++ data type double*):

$data WriteScalar $location $name $newvalue

■ Read pointer to gradient (2D array, C++ data type double**):

set gradient [$data ReadGradient $location $name]

■ Read pointer to flux (1D array, C++ data type double*):

set flux [$data ReadFlux $location $name]

■ Electron distribution from SHE method:

$data ReadeSHEDistribution $bulk $vertex $energy

i

i

Sentaurus™ Device User Guide 1315
N-2017.09



39: Tcl Interfaces
Mesh-Based Runtime Support
■ Hole distribution from SHE method:

$data ReadhSHEDistribution $bulk $vertex $energy

■ Electron density-of-states from SHE method:

$data ReadeSHETotalDOS $bulk $energy

■ Hole density-of-states from SHE method:

$data ReadhSHETotalDOS $bulk $energy

■ Electron group velocity from SHE method:

$data ReadeSHETotalGSV $bulk $energy

■ Hole group velocity from SHE method:

$data ReadhSHETotalGSV $bulk $energy

The following values are recognized for $location:

$::des_data_vertex
$::des_data_edge
$::des_data_element
$::des_data_rivertex
$::des_data_element_vertex

See Appendix F on page 1339 for the names of scalar and vector data.

One-Dimensional Arrays

Use the following function to allocate a one-dimensional array (C++ data type double*):

set v1 [tcl_cp_new_double $size]

Use the following function to read an element of a one-dimensional array (C++ data type
double*):

set value [tcl_cp_get_double $v1 $index]

Use the following function to write an element of a one-dimensional array (C++ data type
double*):

tcl_cp_set_double $v1 $index $value

Use the following function to deallocate a one-dimensional array (C++ data type double*):

tcl_cp_delete_double $v1
1316 Sentaurus™ Device User Guide
N-2017.09



39: Tcl Interfaces
Current Plot File
Two-Dimensional Arrays

Use the following function to read an element of a two-dimensional array (C++ data type
double**):

set value [tcl_cp_get_double2 $v2 $index1 $index2]

Current Plot File

The current plot Tcl interface can be used to add new entries to the current plot file. It is
functionally equivalent to the current plot PMI described in Current Plot File of Sentaurus
Device on page 1239. The required Tcl code must be specified through a tcl statement in the
CurrentPlot section:

CurrentPlot {
Tcl (tcl = "source CurrentPlot.tcl" par1 = <value> par2 = <value>)

}

In this example, the Tcl code is stored in the file CurrentPlot.tcl. If necessary, the model
parameters (par1 and par2 in this example) can be specified as well.

Tcl Functions

Users must define Tcl functions for the following purposes:

■ tcl_cp_constructor: Constructor

■ tcl_cp_destructor: Destructor (optional)

■ tcl_cp_Compute_Dataset_Names: Compute a list of dataset names for the header of
the current plot file

■ tcl_cp_Compute_Function_Names: Compute a list of function names for the header
of the current plot file

■ tcl_cp_Compute_Plot_Values: Evaluate the current plot values

These Tcl procedures must implement the same functionality as the corresponding methods of
the C++ class PMI_CurrentPlot (see Current Plot File of Sentaurus Device on page 1239).
The Tcl interpreter also has access to runtime support functions and the entire Sentaurus
Device mesh and data fields (see Mesh-Based Runtime Support on page 1309).
Sentaurus™ Device User Guide 1317
N-2017.09



39: Tcl Interfaces
Current Plot File
tcl_cp_constructor

The constructor is invoked once at the beginning of each Tcl current plot statement:

proc tcl_cp_constructor {} {
upvar #1 tcl_cp_adr tcl_cp_adr
...

}

Note that all the current plot Tcl procedures are executed in their own Tcl namespace. This
ensures that multiple Tcl current plot statements can be active simultaneously, and they all
operate in their own private namespace. Use the Tcl upvar command to access variables in
this namespace.

As explained in Mesh-Based Runtime Support on page 1309, the Tcl pointer tcl_cp_adr
provides access to the Sentaurus Device mesh and data:

set mesh [$tcl_cp_adr Mesh]
set data [$tcl_cp_adr Data]

The constructor also can be used to precompute data that will be needed later to evaluate the
current plot values.

tcl_cp_destructor

This optional procedure can be used to deallocate data structures, or to print statistical output:

proc tcl_cp_destructor {} {
}

tcl_cp_Compute_Dataset_Names

This procedure must return a Tcl list of dataset names, for example:

proc tcl_cp_Compute_Dataset_Names {} {
lappend result "channel eConductivity"
return $result

}

Multiple dataset names are supported.
1318 Sentaurus™ Device User Guide
N-2017.09



39: Tcl Interfaces
Current Plot File
tcl_cp_Compute_Function_Names

This procedure must return a Tcl list of function names, for example:

proc tcl_cp_Compute_Function_Names {} {
lappend result "Conductivity"
return $result

}

The number of function names must be identical to the number of dataset names created by
tcl_cp_Compute_Dataset_Names.

tcl_cp_Compute_Plot_Values

This procedure must return a Tcl list of current plot values. Use the access functions to the
Sentaurus Device mesh and data (see Mesh-Based Runtime Support on page 1309) to compute
these values:

proc tcl_cp_Compute_Plot_Values {} {
...
lappend result 0.0
return $result

}

The number of result values must be identical to the number of dataset names created by
tcl_cp_Compute_Dataset_Names.

Example

The following example computes the average of the electron conductivity  in a
region. This example also can be found in the directory $STROOT/tcad/$STRELEASE/lib/
sdevice/src/tcl_currentplot:

proc tcl_cp_constructor {} {
# link to variables in enclosing namespace
upvar #1 tcl_cp_adr tcl_cp_adr
upvar #1 Conductivity_Region Conductivity_Region

set Conductivity_Region \
[$tcl_cp_adr InitStringParameter "Conductivity_Region" ""]

}

proc tcl_cp_destructor {} {
}

σn qnμn=
Sentaurus™ Device User Guide 1319
N-2017.09



39: Tcl Interfaces
Current Plot File
proc tcl_cp_Compute_Dataset_Names {} {
upvar #1 Conductivity_Region Conductivity_Region
lappend result "Tcl_Ave_$Conductivity_Region eConductivity"
return $result

}

proc tcl_cp_Compute_Function_Names {} {
lappend result "Conductivity"
return $result

}

proc tcl_cp_Compute_Plot_Values {} {
# link to variables in enclosing namespace
upvar #1 tcl_cp_adr tcl_cp_adr
upvar #1 Conductivity_Region Conductivity_Region

set mesh [$tcl_cp_adr Mesh]
set data [$tcl_cp_adr Data]
set measure [$data ReadMeasure]

set q 1.602e-19
set eDensity [$data ReadScalar $::des_data_vertex "eDensity"]
set eMobility [$data ReadScalar $::des_data_vertex "eMobility"]

set sum 0.0
set sum_m 0.0

set size_region [$mesh size_region]
for {set ri 0} {$ri < $size_region} {incr ri} {

set region [$mesh region $ri]
if {[$region type] == $::des_region_bulk && \

[$region name] == $Conductivity_Region} {
set bulk [tcl_cp_region2bulk $region]
set size_element [$bulk size_element]
for {set ei 0} {$ei < $size_element} {incr ei} {

set element [$bulk element $ei]
set element_index [$element index]
set size_vertex [$element size_vertex]
for {set vi 0} {$vi < $size_vertex} {incr vi} {

set vertex [$element vertex $vi]
set vertex_index [$vertex index]

set n [tcl_cp_get_double $eDensity $vertex_index]
set mu [tcl_cp_get_double $eMobility $vertex_index]
set value [expr "$q * $n * $mu"]
1320 Sentaurus™ Device User Guide
N-2017.09



39: Tcl Interfaces
Current Plot File
set m [tcl_cp_get_double2 $measure $element_index $vi]
set sum [expr "$sum + $m * $value"]
set sum_m [expr "$sum_m + $m"]

}
}

}
}

if {$sum_m == 0} {
set average 0

} else {
set average [expr "$sum / $sum_m"]

}

lappend result $average
}

Sentaurus™ Device User Guide 1321
N-2017.09



39: Tcl Interfaces
Current Plot File
1322 Sentaurus™ Device User Guide
N-2017.09



Part VI Appendices

This part of the Sentaurus™ Device User Guide contains the following appendices:

Appendix A Mathematical Symbols on page 1325

Appendix B Syntax on page 1329

Appendix C File-Naming Conventions on page 1331

Appendix D Command-Line Options on page 1333

Appendix E Runtime Statistics on page 1337

Appendix F Data and Plot Names on page 1339

Appendix G Command File Overview on page 1377





APPENDIX A Mathematical Symbols

This appendix contains notational conventions and a list of symbols
used in the Sentaurus™ Device User Guide.

They are listed alphabetically. Non-Latin characters are sorted according to their English
translation. 

Division, right binding: 

Unit (3D) vector

(3D) vector

Absolute value of a scalar

Absolute value of a vector 

Transpose of a vector or a matrix

Inverse of function or matrix, reciprocal of a scalar

Inner (dot) product

Vector (cross) product

Dyadic product: 

Miller indices. , , and  are digits; a bar over a digit indicates
negation applied to that particular digit.

Electron affinity or thermal resistivity

Lattice heat capacity

Base of natural logarithm

Electric field

Bandgap narrowing

Conduction band energy

⁄ a bc⁄ a bc( )⁄=

â

a

a

a a a=

aT

a 1–

a b⋅

a b×

ab ab( )i j aibj=

abc  a b c

χ

cL

e

E

Ebgn

EC
Sentaurus™ Device User Guide 1325
N-2017.09



A: Mathematical Symbols 
Electron quasi-Fermi energy

Hole quasi-Fermi energy

Intrinsic band gap

Effective band gap, 

Valence band energy

Absolute dielectric constant of a material

Dielectric constant of vacuum

Electric field

Integral of distribution function; for Fermi statistics, Fermi integral of
order 

Generation rate (does not include recombination)

Degeneracy factor for electrons

Degeneracy factor for holes

Planck’s constant divided by 

Imaginary unit, 

Imaginary part

Displacement current density

Current density in metals

Electron current density

Hole current density

Boltzmann constant

Lattice thermal conductivity

Electron thermal conductivity

Hole thermal conductivity

EF,n

EF,p

Eg

Eg,eff Eg,eff Eg Ebgn–=

EV

ε

ε0

F

Fα α

G

γn

γp

h 2π

i i2 1–=

Im

JD

JM

Jn

Jp

k

κL

κn

κp
1326 Sentaurus™ Device User Guide
N-2017.09



A: Mathematical Symbols
Electron quantum potential

Hole quantum potential

Natural logarithm

Free electron mass

Electron density-of-states mass

Hole density-of-states mass

Electron mobility

Hole mobility

Electron density

Unit normal vector

Chemically active acceptor concentration

Ionized acceptor concentration

Conduction band density-of-states

Chemically active donor concentration

Ionized donor concentration

Intrinsic density (not accounting for bandgap narrowing)

Effective intrinsic density (accounting for bandgap narrowing)

Ionized dopant concentration, 

Single exciton density

Total doping concentration, 

Valence band density-of-states

Hole density

Polarization

Electron thermoelectric power

Λn

Λp

ln

m0

mn

mp

μn

μp

n

n̂

NA 0,

NA

NC

ND 0,

ND

ni

ni,eff

Ni Ni NA ND+=

nse

Ntot Ntot NA 0, ND 0,+=

NV

p

P

Pn
Sentaurus™ Device User Guide 1327
N-2017.09



A: Mathematical Symbols 
Hole thermoelectric power

Metal Fermi potential

Electron quasi-Fermi potential

Hole quasi-Fermi potential

Electrostatic potential

Elementary charge

Anisotropy factor

Recombination rate (does not include generation)

Net recombination rate, 

Real part

Lattice heat flux density

Electron heat flux density

Hole heat flux density

Lattice temperature

Electron temperature

Hole temperature

Electron lifetime

Hole lifetime

Unit step function (0 for negative arguments, 1 for positive
arguments)

Electron drift velocity

Hole drift velocity

Electron saturation velocity

Hole saturation velocity

Pp

ΦM

Φn

Φp

φ

q

r

R

Rnet Rnet R G–=

Re

SL

Sn

Sp

T

Tn

Tp

τn

τp

Θ

vn

vp

vsat,n

vsat,p
1328 Sentaurus™ Device User Guide
N-2017.09



APPENDIX B Syntax

The syntax of the command file of Sentaurus Device, and the basic
syntactical and lexical conventions are described here.

Sentaurus Device has a hierarchical input syntax. At the lowest level, device, system, and
solve information is specified as well as the default and global parameters. Inside each
Device section, the parameters specific to one device type can be specified.

Inside the System section, the real devices are specified or ‘instantiated.’ Here, parameters can
be given that are specific to one instantiation of a device. The command file is a collection of
specifications used to establish the simulation environment with actions describing which
equations must be solved and how they must be solved. The syntax of the command file
contains several entry types. All basic command file entries adhere to the syntactical and
lexical rules described in Table 176. 

Table 176 Entry types in Sentaurus Device

Entry type Description

Keyword These are the known names of the command file. They are case insensitive. Therefore, the 
following keywords are all equivalent: Quasistationary, QuasiStationary, and 
quasistationary. Most keywords can be abbreviated. The above example can also be 
written as QuasiStat.

Integer These are (possibly) signed decimal numbers. The following integers are valid: 
123, -73492, 0.

Float Floating point numbers are compatible with the C language format for floating point numbers. 
The following floating point numbers are valid: 123, 123.0, 1.23e2, -1.23E2.

Vector Vectors in real space are defined depending on the actual dimension. In 3D, a vector is specified 
by three floating point numbers; in 2D, by two floating point numbers enclosed in parentheses. 
The floats are separated by commas or spaces. In 1D, one floating point number without 
parentheses is sufficient. Valid vectors are (1,0,2), (1e-4,-1e-3), and 1.

String Strings are delimited by quotation marks. They are compatible with the C language format for 
strings. The following strings are valid: "Vdd", "output/diode".

Identifier These are used to name objects such as nodes, devices, or attributes. They are compatible with 
the C language format for identifiers. The following identifiers are valid: 
Vdd, diode, bjt_345.

Assignment These are used to set values to keywords. Therefore, the following are valid assignments: 
Digits=4, Save="output/diode".
Sentaurus™ Device User Guide 1329
N-2017.09



B: Syntax 
Signal Signals are time dependent, piecewise, linear functions (not to be confused with UNIX signals) 
that are defined as inputs on the contacts of a device. They are specified as follows: (value0 at 
time0, value1 at time1, …value_n at time_n). The following signal is valid: 
(0 at 0, 1 at 10.0e-9, 1 at 20.0e-9).

List Lists are collections of keywords, assignments, and complex entries. They are delimited by 
"(...)" or "{...}". The following lists are valid: 
{ Number=0 Voltage=0
Voltage=( 0 at 0, 0 at 2e-8 ) }

{ Method=Super Digits=6 Numerically }
( MinStep=1e-15 InitialStep=1e-10 Digits=3 ) 

Structured 
entries

These are parameterized definitions or commands that can have the forms: 
<keyword> {<keywords>}, <keyword> (<keywords>), or 
<keyword> (<list>) {<list>}. 

Table 176 Entry types in Sentaurus Device (Continued)

Entry type Description
1330 Sentaurus™ Device User Guide
N-2017.09



APPENDIX C File-Naming Conventions

This appendix describes the file-naming conventions for TCAD tools
relevant to Sentaurus Device.

File Extensions

All strings that represent file names containing a dot (.) within their base name are taken
literally. Otherwise, Sentaurus Device extends the given strings with the appropriate extension.

Sentaurus Device expands the extensions for output files by its tool extension _des, for
example, the extension of a saved file is _des.sav.

During transient, quasistationary, and continuation simulations, the plot and save files are
numbered by a global index. 

Table 177 Summary of file extensions used in Sentaurus Device

File I/O Extension

Command I _des.cmd, .cmd

Log O _des.log

Parameter I .par

Geometry/Doping I .tdr

Lifetime I .tdr

Save O _des.sav

Load I _des.sav

Device Plot (grid-based) O _des.tdr

Current Plot O _des.plt

AC Extraction O _ac_des.plt

Montecarlo I/O Refer to the Sentaurus™ Device Monte Carlo User Guide 
for more information.
Sentaurus™ Device User Guide 1331
N-2017.09



C: File-Naming Conventions 
File Extensions
1332 Sentaurus™ Device User Guide
N-2017.09



APPENDIX D Command-Line Options

This appendix lists the most useful command-line options available
in Sentaurus Device.

Starting Sentaurus Device

To start Sentaurus Device, enter:

sdevice [<options>] [<commandfile>]

Sentaurus Device appends automatically the corresponding extension to the given command
file if necessary. If no command file is specified, Sentaurus Device reads from standard input.

Command-Line Options

Sentaurus Device interprets the following options: 

-d Prints debug information into the debug file. The information
printed includes the numeric values of the Jacobian and RHS
for each equation at each solution step.

-h Lists these options and exits.

-i Prints the initial solution in the save file, and print files
specified in the File section of the command file, and exits
without performing further computations.

-L Writes the silicon model parameters into the file
Silicon.par and exits.

-L <commandfile> Writes model parameter files for all the materials, material
interfaces, and electrodes used in <commandfile> and exits.

-L:<Material> Writes a model parameter file <Material>.par for the
specified material and exits.
Sentaurus™ Device User Guide 1333
N-2017.09



D: Command-Line Options 
Command-Line Options
-L:<Material>:<x> Writes the model parameters for the given material and mole
fraction into a file <Material>.par and exits.

-L:<Material>:<x>:<y> Writes the model parameters for the given material and mole
fractions into a file <Material>.par and exits.

-L:<Material>/<Material> Writes a model parameter file
<Material>%<Material>.par for the specified material
interface and exits.

-L:All Writes a separate model parameter file for all materials and
exits.

-M <commandfile> Writes a parameter file models-M.par for regions with
computed mole fraction dependencies.

-n Does not include Newton information in the log file.

-P Writes the silicon model parameters into a file models.par
and exits. This file can be modified and reloaded into Sentaurus
Device to make customized changes to physical models and
parameters.

-P <commandfile> Writes the model parameters for the materials and interfaces
used in <commandfile> into a file models.par and exits.

-P:<Material> Writes the model parameters for the given material into a file
models.par and exits.

-P:<Material>:<x> Writes the model parameters for the given material and mole
fraction into a file models.par and exits.

-P:<Material>:<x>:<y> Writes the model parameters for the given material and mole
fractions into a file models.par and exits.

-P:<Material>/<Material> Writes the model parameters for the given material interface
into a file models.par and exits.

-P:All Writes the model parameters for all materials into a file
models.par and exits.

-q Quiet mode for output.

-r When used with -L or -P, reads parameters from the material
library to generate output.
1334 Sentaurus™ Device User Guide
N-2017.09



D: Command-Line Options
Command-Line Options
-S Writes the SiC model parameters into a models_SiC.par file
and exits. This file can be modified and reloaded into Sentaurus
Device to make customized changes to physical models and
parameters.

-v Prints header with version number of Sentaurus Device.

--compiler-version Prints the version of the C++ compiler that was used to compile
Sentaurus Device.

--exit-on-failure Terminates immediately after a failed solve command.

--field-names Prints fields and their numeric indices for use in the PMI.

--parameter-names Prints the names of the parameters from the parameter file that
can be ramped. If a command file is also supplied, Sentaurus
Device prints the parameters from the command file that can be
ramped.

--tcl Invokes the Tcl interpreter to evaluate the command file.

--verbose Prints additional diagnostic messages (alternatively, set the
environment variable SDEVICE_VERBOSITY to high).

--xml Creates an additional log file with XML tags. The file uses the
extension .xml.
Sentaurus™ Device User Guide 1335
N-2017.09



D: Command-Line Options 
Command-Line Options
1336 Sentaurus™ Device User Guide
N-2017.09



APPENDIX E Runtime Statistics

This appendix presents information about obtaining runtime
statistics from Sentaurus Device.

The sdevicestat Command

The command sdevicestat displays some statistics of a previous run of Sentaurus Device
based on the information found in its log file. For example, the command:

sdevicestat test_des.log

generates the following statistics:

Total number of Newton iterations : 8
Number of restarts : 0
Rhs-time : 9.19 % ( 38.80 s )
Jacobian-time : 1.43 % ( 6.05 s )
Solve-time : 88.76 % ( 374.70 s )
Overhead : 0.62 % ( 2.61 s )
Total CPU time (sum of above times) : 422.16 s

The sdevicestat command recognizes whether the WallClock keyword has been specified
in the Math section of the Sentaurus Device command file (see Parallelization on page 166).
In this case, the same simulation on a dual processor machine may produce the following
output:

Total number of Newton iterations : 8
Number of restarts : 0
Rhs-time : 8.57 % ( 20.68 s )
Jacobian-time : 1.96 % ( 4.73 s )
Solve-time : 88.33 % ( 213.07 s )
Overhead : 1.14 % ( 2.74 s )
Total wallclock time (sum of above times): 241.22 s
Sentaurus™ Device User Guide 1337
N-2017.09



E: Runtime Statistics 
The sdevicestat Command
1338 Sentaurus™ Device User Guide
N-2017.09



APPENDIX F Data and Plot Names

This appendix provides information about data and plot names.

Overview

Table 178 on page 1340, Table 179 on page 1372, Table 180 on page 1376, and Table 181 on
page 1376 list the plot names that are recognized in a Plot section of Sentaurus Device (see
Device Plots on page 122) and the data names that are available in the current plot PMI (see
Current Plot File of Sentaurus Device on page 1239). If the plot name is empty, the data name
in quotation marks can be used, for example:

Plot {
"eTemperatureRelaxationTime"

}

Vector data can be plotted by appending /Vector to the corresponding keyword, for example:

Plot {
ElectricField/Vector

}

Element-based scalar data can be plotted by appending /Element to the corresponding
keyword, for example:

Plot {
eMobility/Element

}

Special vector data can be plotted by appending /SpecialVector to the corresponding
keyword, for example:

Plot {
eSHEDistribution/SpecialVector

}

Tensor data can be plotted by appending /Tensor to the corresponding keyword, for example:

Plot {
Stress/Tensor

}

NOTE The location rivertex refers to region-interface vertices.
Sentaurus™ Device User Guide 1339
N-2017.09



F: Data and Plot Names 
Scalar Data
Scalar Data

Table 178 Scalar data

Data name Plot name Location Description Unit

AbsorbedPhotonDensity AbsorbedPhotonDensity vertex Quantum Yield 
Models on 
page 544

AbsorbedPhotonDensityCoherent AbsorbedPhotonDensity vertex Transfer Matrix 
Method on 
page 625

AbsorbedPhotonDensityFromMonochrom
aticSource

AbsorbedPhotonDensity vertex Quantum Yield 
Models on 
page 544

AbsorbedPhotonDensityFromSpectrum AbsorbedPhotonDensity vertex Quantum Yield 
Models on 
page 544

AbsorbedPhotonDensityIncoherent AbsorbedPhotonDensity vertex Transfer Matrix 
Method on 
page 625

AccepMinusConcentration AccepMinusConcentration vertex Doping 
Specification on 
page 11AcceptorConcentration AcceptorConcentration vertex

AlphaChargeDensity AlphaCharge vertex Alpha Particles on 
page 666

AlphaGeneration AlphaGeneration vertex , Eq. 731, 
p. 667

AntimonyActiveConcentration AntimonyActiveConcentration vertex Doping 
Specification on 
page 11

AntimonyConcentration AntimonyConcentration vertex Sb, Doping 
Specification on 
page 11

AntimonyPlusConcentration sbPlus vertex Sb+, Chapter 13

ArsenicActiveConcentration ArsenicActiveConcentration vertex Doping 
Specification on 
page 11

ArsenicConcentration ArsenicConcentration vertex As, Doping 
Specification on 
page 11

ArsenicPlusConcentration AsPlus vertex As+, Chapter 13

cm
3–
s

1–

cm
3–
s

1–

cm
3–
s

1–

cm
3–
s

1–

cm
3–
s

1–

cm
3–

cm
3–

cm
3–

G
Alpha

cm
3–
s

1–

cm
3–

cm
3–

cm
3–

cm
3–

cm
3–

cm
3–
1340 Sentaurus™ Device User Guide
N-2017.09



F: Data and Plot Names
Scalar Data
AugerRecombination AugerRecombination vertex , Eq. 425, 
p. 408

AutoOrientationSmoothing AutoOrientationSmoothing vertex Auto-Orientation 
Framework on 
page 37

1

AvalancheGeneration AvalancheGeneration vertex , Eq. 437, 
p. 413

AvalFlatElementMax AvalFlatElementMax element Using Avalanche 
Generation on 
page 413

degree

AvalFlatElementMin AvalFlatElementMin element Using Avalanche 
Generation on 
page 413

degree

Band2BandGeneration Band2Band vertex , Band-to-
Band Tunneling 
Models on 
page 431

BandGap BandGap vertex , Bandgap and 
Electron-Affinity 
Models on 
page 250

eV

BandgapNarrowing BandGapNarrowing vertex , Bandgap 
and Electron-
Affinity Models 
on page 250

eV

BM_AngleVertex BM_AngleVertex vertex Statistics About 
Non-Delaunay 
Elements on 
page 1022

degree

BM_EdgesPerVertex BM_EdgesPerVertex vertex 1

BM_ElementsPerVertex BM_ElementsPerVertex vertex 1

BM_ShortestEdge BM_ShortestEdge vertex

BM_AngleElements BM_AngleElements element degree

BM_CoeffIntersectionNon
DelaunayElements

BM_CoeffIntersectionNon
DelaunayElements

element 1

BM_ElementsWithCommonObtuseFace BM_ElementsWithCommonObtuse
Face

element 1

BM_ElementsWithObtuseFaceOn
BoundaryDevice

BM_ElementsWithObtuseFaceOn
BoundaryDevice

element 1

BM_ElementVolume BM_ElementVolume element

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

R
A

cm
3–
s

1–

G
||

cm
3–
s

1–

Gnet
bb

cm
3–
s

1–

Eg

Ebgn

μm

μm
3

Sentaurus™ Device User Guide 1341
N-2017.09



F: Data and Plot Names 
Scalar Data
BM_IntersectionNonDelaunayElements BM_IntersectionNonDelaunay
Elements

element Statistics About 
Non-Delaunay 
Elements on 
page 1022BM_VolumeIntersectionNon

DelaunayElements
BM_VolumeIntersectionNon
DelaunayElements

element

BM_wCoeffIntersectionNon
DelaunayElements

BM_wCoeffIntersectionNon
DelaunayElements

element 1

BM_wElementsWithCommonObtuseFace BM_wElementsWithCommonObtuse
Face

element 1

BM_wElementsWithObtuseFaceOn
BoundaryDevice

BM_wElementsWithObtuseFaceOn
BoundaryDevice

element 1

BM_wIntersectionNonDelaunay
Elements

BM_wIntersectionNonDelaunay
Elements

element

BM_wVolumeIntersectionNon
DelaunayElements

BM_wVolumeIntersectionNon
DelaunayElements

element

BoronActiveConcentration BoronActiveConcentration vertex Doping 
Specification on 
page 11

BoronConcentration BoronConcentration vertex B, Doping 
Specification on 
page 11

BoronMinusConcentration bMinus vertex B-, Chapter 13

BuiltinPotential BuiltinPotential vertex , Eq. 98, p. 201

CDL1Recombination CDL1 vertex , Coupled 
Defect Level 
(CDL) 
Recombination on 
page 405

CDL2Recombination CDL2 vertex , Coupled 
Defect Level 
(CDL) 
Recombination on 
page 405

CDLcRecombination CDL3 vertex , 
Coupled Defect 
Level (CDL) 
Recombination on 
page 405

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

μm

μm
3

μm

μm
3

cm
3–

cm
3–

cm
3–

φ0 V

R1 cm
3–
s

1–

R2 cm
3–
s

1–

R R– 1 R2– cm
3–
s

1–
1342 Sentaurus™ Device User Guide
N-2017.09



F: Data and Plot Names
Scalar Data
CDLRecombination CDL vertex , Coupled 
Defect Level 
(CDL) 
Recombination on 
page 405

cplxRefIndex, cplxExtCoeff, n_0, 
k_0, d_n_lambda, d_k_lambda, 
d_n_temp, d_n_carr, d_k_carr, 
d_n_gain

ComplexRefractiveIndex vertex Complex 
Refractive Index 
Model on 
page 578

ConductionBandEnergy ConductionBandEnergy element-
vertex

, Eq. 41, 
p. 176

eV

vertex

ConductionCurrentDensity ConductionCurrent vertex , Eq. 53, 
p. 181 or 

 in metals, 
Eq. 148, p. 239

ConversePiezoelectricFieldXX, 
ConversePiezoelectricFieldXY, 
ConversePiezoelectricFieldXZ, 
ConversePiezoelectricFieldYY, 
ConversePiezoelectricFieldYZ, 
ConversePiezoelectricFieldZZ

ConversePiezoelectricField vertex Chapter 31 1

ConversePiezoelectricFieldXX ConversePiezoelectricFieldXX vertex Components of 
converse 
piezoelectric field 
tensor

1

ConversePiezoelectricFieldXY ConversePiezoelectricFieldXY

ConversePiezoelectricFieldXZ ConversePiezoelectricFieldXZ

ConversePiezoelectricFieldYY ConversePiezoelectricFieldYY

ConversePiezoelectricFieldYZ ConversePiezoelectricFieldYZ

ConversePiezoelectricFieldZZ ConversePiezoelectricFieldZZ

CurECImACGreenFunction CurECImACGreenFunction vertex Table 128 on 
page 710

CurECReACGreenFunction CurECReACGreenFunction vertex Table 128 on 
page 710

CurETImACGreenFunction CurETImACGreenFunction vertex Table 128 on 
page 710

CurETReACGreenFunction CurETReACGreenFunction vertex Table 128 on 
page 710

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

R cm
3–
s

1–

1

EC

Jn Jp+

JM

Acm
2–

1

1

V
1–

V
1–
Sentaurus™ Device User Guide 1343
N-2017.09



F: Data and Plot Names 
Scalar Data
CurGeoGreenFunction CurGeoGreenFunction vertex Table 128 on 
page 710

CurHCImACGreenFunction CurHCImACGreenFunction vertex Table 128 on 
page 710

CurHCReACGreenFunction CurHCReACGreenFunction vertex Table 128 on 
page 710

CurHTImACGreenFunction CurHTImACGreenFunction vertex Table 128 on 
page 710

CurHTReACGreenFunction CurHTReACGreenFunction vertex Table 128 on 
page 710

CurLTImACGreenFunction CurLTImACGreenFunction vertex Table 128 on 
page 710

CurLTReACGreenFunction CurLTReACGreenFunction vertex Table 128 on 
page 710

CurPotImACGreenFunction CurPotImACGreenFunction vertex Table 128 on 
page 710

CurPotReACGreenFunction CurPotReACGreenFunction vertex Table 128 on 
page 710

CurrentPotential CurrentPotential vertex , Current 
Potential on 
page 185

DelVorWeight DelVorWeight vertex Weighted Voronoï 
Diagram on 
page 1020

DeepLevels DeepLevels vertex Energetic and 
Spatial 
Distribution of 
Traps on page 450

DielectricConstant DielectricConstant element , Eq. 37, p. 173 1

DielectricConstant DielectricConstant vertex , Eq. 37, p. 173 1

DielectricConstantAniso DielectricConstantAniso element , 
Anisotropic 
Electrical 
Permittivity on 
page 793

1

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

Acm 3–

1

1

V
1–

V
1–

V
1–

V
1–

s
1–

s
1–

W Acm
1–

μm
2

cm
3–

ε

ε

εaniso
1344 Sentaurus™ Device User Guide
N-2017.09



F: Data and Plot Names
Scalar Data
DielectricConstantAniso DielectricConstantAniso vertex , 
Anisotropic 
Electrical 
Permittivity on 
page 793

1

DisplacementCurrentDensity DisplacementCurrent vertex

DonorConcentration DonorConcentration vertex Doping 
Specification on 
page 11DonorPlusConcentration DonorPlusConcentration vertex

DopingConcentration Doping vertex

DopingWells DopingWells vertex Indices of doping 
wells, Initial 
Guess for 
Electrostatic 
Potential and 
Quasi-Fermi 
Potentials in 
Doping Wells on 
page 178

1

eAlphaAvalanche eAlphaAvalanche vertex , Eq. 437, 
p. 413

eAmorphousRecombination eGapStatesRecombination vertex Chapter 17

eAmorphousTrappedCharge eTrappedCharge vertex Chapter 17

eAugerRecombination eAugerRecombination vertex , Eq. 425, 
p. 408

eAvalancheGeneration eAvalanche vertex , Eq. 437, 
p. 413

eBand2BandGeneration eBand2BandGeneration vertex Dynamic 
Nonlocal Path 
Band-to-Band 
Tunneling Model 
on page 436

eCDL1Lifetime eCDL1lifetime vertex , Coupled 
Defect Level 
(CDL) 
Recombination on 
page 405

s

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

εaniso

JD Acm
2–

cm
3–

cm
3–

cm
3–

αn cm
1–

cm
3–
s

1–

cm
3–

Rn
A

cm
3–
s

1–

Gn cm
3–
s

1–

cm
3–
s

1–

τn1
Sentaurus™ Device User Guide 1345
N-2017.09



F: Data and Plot Names 
Scalar Data
eCDL2Lifetime eCDL2lifetime vertex , Coupled 
Defect Level 
(CDL) 
Recombination on 
page 405

s

eCurrentDensity eCurrent vertex , Eq. 53, 
p. 181

eDeformationPotential eDeformationPotential vertex Using 
Deformation 
Potential Model 
on page 829

eV

eDensity eDensity vertex , Eq. 53, p. 181

eDifferentialGain eDifferentialGain vertex Stimulated and 
Spontaneous 
Emission 
Coefficients on 
page 962

eDiffusivityMobility eDiffusivityMobility vertex  Non-
Einstein 
Diffusivity on 
page 376

eDirectTunnelCurrent eSchenkTunnel vertex Direct Tunneling 
on page 718

eDriftVelocity eDriftVelocity vertex Electron drift 
velocity

eeDiffusionLNS eeDiffusionLNS vertex Table 128 on 
page 710

eEffectiveField eEffectiveField vertex , Eq. 469, 
p. 427

eEffectiveStateDensity eEffectiveStateDensity vertex , Effective 
Masses and 
Effective Density-
of-States on 
page 261

eEffectiveStress eEffectiveStress vertex Effective Stress on 
page 873

eeFlickerGRLNS eeFlickerGRLNS vertex Table 128 on 
page 710

eeMonopolarGRLNS eeMonopolarGRLNS vertex Table 128 on 
page 710

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

τn2

Jn Acm
2–

n cm
3–

cm
2

μn diff, cm
2
V

1–
s

1–

Acm
2–

cm s
1–

C
2
s

1–
cm

1–

En
eff

Vcm
1–

NC cm
3–

MPa

C
2
s

1–
cm

1–

C
2
s

1–
cm

1–
1346 Sentaurus™ Device User Guide
N-2017.09



F: Data and Plot Names
Scalar Data
eEnormal eEnormal vertex , Eq. 327, 
p. 355 or

, Eq. 328, 
p. 355

eEparallel eEparallel vertex , Eq. 350, 
p. 370

eEquilibriumDensity eEquilibriumDensity vertex , Eq. 53, p. 181 
at zero applied 
voltages (zero 
currents)

EffectiveBandGap EffectiveBandGap vertex , 
Bandgap and 
Electron-Affinity 
Models on 
page 250

eV

EffectiveIntrinsicDensity EffectiveIntrinsicDensity vertex , Eq. 158, 
p. 249

eGradQuasiFermi eGradQuasiFermi vertex , 
Eq. 352, p. 370

eHeatFlux eHeatFlux vertex , Eq. 76, 
p. 196

eInterfaceTrappedCharge eInterfaceTrappedCharge vertex Chapter 17

eIonIntegral eIonIntegral vertex Approximate 
Breakdown 
Analysis on 
page 428

1

eJouleHeat eJouleHeat vertex Table 28 on 
page 195

ElectricField ElectricField element

vertex

ElectronAffinity ElectronAffinity vertex , Bandgap and 
Electron-Affinity 
Models on 
page 250

eV

ElectrostaticPotential Potential vertex , Eq. 37, p. 173 V

eLifetime eLifeTime vertex , Eq. 381, 
p. 392

s

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

F⊥

Fn ⊥,

Vcm
1–

Fn Vcm
1–

n cm
3–

Eg Ebgn–

ni eff, cm
3–

Φn∇ Vcm
1–

Sn Wcm
2–

cm
2–

Wcm
3–

F Vcm
1–

χ

φ

τn
Sentaurus™ Device User Guide 1347
N-2017.09



F: Data and Plot Names 
Scalar Data
eMLDAQuantumPotential eMLDAQuantumPotential vertex MLDA Model on 
page 300

eV

eMobility eMobility element , Chapter 15

eMobility eMobility vertex , Chapter 15

eMobilityAniso eMobilityAniso element , 
Anisotropic 
Mobility on 
page 786

eMobilityAniso eMobilityAniso vertex , 
Anisotropic 
Mobility on 
page 786

eMobilityAnisoFactor eMobilityAnisoFactor vertex , Eq. 874, 
p. 786

1

eMobilityStressFactorXX eMobilityStressFactorXX vertex Using 
Piezoresistance 
Mobility Model 
on page 861

1

eMobilityStressFactorXY eMobilityStressFactorXY vertex 1

eMobilityStressFactorXZ eMobilityStressFactorXZ vertex 1

eMobilityStressFactorYY eMobilityStressFactorYY vertex 1

eMobilityStressFactorYZ eMobilityStressFactorYZ vertex 1

eMobilityStressFactorZZ eMobilityStressFactorZZ vertex 1

eMVQMBandgapShift eMVQMBandgapShiftl vertex MLDA Model on 
page 300

eV

eNLLTunnelingGeneration eBarrierTunneling vertex Nonlocal 
Tunneling at 
Interfaces, 
Contacts, and 
Junctions on 
page 722

eNLLTunnelingPeltierHeat eNLLTunnelingPeltierHeat vertex Nonlocal 
Tunneling at 
Interfaces, 
Contacts, and 
Junctions on 
page 722

eQuantumPotential eQuantumPotential vertex , Eq. 220, 
p. 283

eV

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

μn cm
2
V

1–
s

1–

μn cm
2
V

1–
s

1–

μn
aniso

cm
2
V

1–
s

1–

μn
aniso

cm
2
V

1–
s

1–

re

cm
3–
s

1–

Wcm 3–

Λn
1348 Sentaurus™ Device User Guide
N-2017.09



F: Data and Plot Names
Scalar Data
eQuasiFermiEnergy eQuasiFermiEnergy vertex Quasi-Fermi 
Energy on 
page 201

eV

eQuasiFermiPotential eQuasiFermi vertex , Quasi-Fermi 
Potential With 
Boltzmann 
Statistics on 
page 175

V

EquilibriumPotential EquilibriumPotential vertex , Eq. 37, p. 173 
at zero applied 
voltages (zero 
currents)

V

eRelativeEffectiveMass eRelativeEffectiveMass vertex , Effective 
Masses and 
Effective Density-
of-States on 
page 261

1

eSaturationVelocity eSaturationVelocity vertex , Velocity 
Saturation Models 
on page 369

eSaturationVelocityAniso eSaturationVelocityAniso vertex , 
Anisotropic 
Mobility on 
page 786

eSchenkBGN eSchenkBGN vertex , Eq. 220, 
p. 283

eV

eSHEAvalancheGeneration eSHEAvalancheGeneration vertex , 
Spherical 
Harmonics 
Expansion 
Method on 
page 746

eSHECurrentDensity eSHECurrentDensity vertex , 
Spherical 
Harmonics 
Expansion 
Method on 
page 746

eSHEDensity eSHEDensity vertex , Spherical 
Harmonics 
Expansion 
Method on 
page 746

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

EF n,

Φn

φ

mn

vsat,n cm s
1–

vsat,n
aniso

cm s
1–

Λn–

Gn SHE,
ii

cm
3–
s

1–

Jn SHE, Acm
2–

nSHE cm
3–
Sentaurus™ Device User Guide 1349
N-2017.09



F: Data and Plot Names 
Scalar Data
eSHEEnergy eSHEEnergy vertex , 
Spherical 
Harmonics 
Expansion 
Method on 
page 746

K

eSHEVelocity eSHEVelocity vertex , 
Spherical 
Harmonics 
Expansion 
Method on 
page 746

eSRHRecombination eSRHRecombination vertex Dynamic 
Nonlocal Path 
Trap-Assisted 
Tunneling on 
page 400

eTemperature eTemperature vertex , 
Hydrodynamic 
Model for 
Temperatures on 
page 195

K

eTemperatureRelaxationTime eTemperatureRelaxationTime vertex , Eq. 84, 
p. 197

s

eTensorMobilityFactorXX eTensorMobilityFactorXX vertex Chapter 31

eTensorMobilityFactorYY eTensorMobilityFactorYY vertex Chapter 31

eTensorMobilityFactorZZ eTensorMobilityFactorZZ vertex Chapter 31

eTensorMobilityXX eTensorMobilityXX vertex Chapter 31

eTensorMobilityYY eTensorMobilityYY vertex Chapter 31

eTensorMobilityZZ eTensorMobilityZZ vertex Chapter 31

eThermoElectricPower eThermoelectricPower vertex , Eq. 1078, 
p. 914

eVelocity eVelocity vertex

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

Tn SHE,

vn SHE, cm s
1–

cm
3–
s

1–

Tn

τen

1

1

1

cm
2
/(Vs)

cm
2
/(Vs)

cm
2
/(Vs)

Pn V K
1–

vn Jn nq⁄= cm s
1–
1350 Sentaurus™ Device User Guide
N-2017.09



F: Data and Plot Names
Scalar Data
f1BandOccupancy001 f1BandOccupancy001 vertex Using Intel 
Mobility Model 
on page 858

1

f1BandOccupancy010 f1BandOccupancy010 vertex 1

f1BandOccupancy100 f1BandOccupancy100 vertex 1

f2BandOccupancy001 f2BandOccupancy001 vertex 1

f2BandOccupancy010 f2BandOccupancy010 vertex 1

f2BandOccupancy100 f2BandOccupancy100 vertex 1

FowlerNordheim FowlerNordheim vertex , Eq. 760, 
p. 717

Grad2PoECACGreenFunction Grad2PoECACGreenFunction vertex Table 128 on 
page 710

Grad2PoHCACGreenFunction Grad2PoHCACGreenFunction vertex Table 128 on 
page 710

hAlphaAvalanche hAlphaAvalanche vertex , Eq. 437, 
p. 413

hAmorphousRecombination hGapStatesRecombination vertex Chapter 17

hAmorphousTrappedCharge hTrappedCharge vertex Chapter 17

hAugerRecombination hAugerRecombination vertex , Eq. 425, 
p. 408

hAvalancheGeneration hAvalanche vertex , Eq. 437, 
p. 413

hBand2BandGeneration hBand2BandGeneration vertex Dynamic 
Nonlocal Path 
Band-to-Band 
Tunneling Model 
on page 436

hCDL1Lifetime hCDL1lifetime vertex , Coupled 
Defect Level 
(CDL) 
Recombination on 
page 405

s

hCDL2Lifetime hCDL2lifetime vertex , Coupled 
Defect Level 
(CDL) 
Recombination on 
page 405

s

hCurrentDensity hCurrent vertex , Eq. 53, 
p. 181

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

jFN Acm
2–

V
2
s

2
C

2–
cm

2–

V
2
s

2
C

2–
cm

2–

αp cm
1–

cm
3–
s

1–

cm
3–

Rp
A

cm
3–
s

1–

Gp cm
3–
s

1–

cm
3–
s

1–

τp1

τp2

Jp Acm
2–
Sentaurus™ Device User Guide 1351
N-2017.09



F: Data and Plot Names 
Scalar Data
hDeformationPotential hDeformationPotential vertex Using 
Deformation 
Potential Model 
on page 829

eV

hDensity hDensity vertex , Eq. 53, p. 181

hDifferentialGain hDifferentialGain vertex Stimulated and 
Spontaneous 
Emission 
Coefficients on 
page 962

hDiffusivityMobility hDiffusivityMobility vertex
Non-Einstein 
Diffusivity on 
page 376

hDirectTunnelCurrent hSchenkTunnel vertex Direct Tunneling 
on page 718

hDriftVelocity hDriftVelocity vertex Hole drift velocity

HeavyIonChargeDensity HeavyIonChargeDensity vertex Heavy Ions on 
page 668

HeavyIonGeneration HeavyIonGeneration vertex , 
Eq. 736, p. 669

hEffectiveField hEffectiveField vertex , Eq. 470, 
p. 427

hEffectiveStateDensity hEffectiveStateDensity vertex , Effective 
Masses and 
Effective Density-
of-States on 
page 261

hEffectiveStress hEffectiveStress vertex Effective Stress on 
page 873

heiTemperature HEItemperature vertex , hot-electron 
temperature, 
computed as 
postprocessing 
approach 
(Carrier 
TempPost), 
Chapter 25

K

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

p cm
3–

cm
2

μp diff, cm
2
V

1–
s

1–

Acm
2–

cm s
1–

cm
3–

G
HeavyIon

cm
3–
s

1–

Ep
eff

Vcm
1–

NV cm
3–

MPa

Thei
1352 Sentaurus™ Device User Guide
N-2017.09



F: Data and Plot Names
Scalar Data
hEnormal hEnormal vertex , Eq. 327, 
p. 355 or 

, Eq. 328, 
p. 355

hEparallel hEparallel vertex , Eq. 350, 
p. 370

hEquilibriumDensity hEquilibriumDensity vertex , Eq. 53, p. 181 
at zero applied 
voltages (zero 
currents)

hGradQuasiFermi hGradQuasiFermi vertex , 
Eq. 352, p. 370

hhDiffusionLNS hhDiffusionLNS vertex Table 128 on 
page 710

hHeatFlux hHeatFlux vertex , Eq. 77, 
p. 196

hhFlickerGRLNS hhFlickerGRLNS vertex Table 128 on 
page 710

hhMonopolarGRLNS hhMonopolarGRLNS vertex Table 128 on 
page 710

hInterfaceTrappedCharge hInterfaceTrappedCharge vertex Chapter 17

hIonIntegral hIonIntegral vertex Approximate 
Breakdown 
Analysis on 
page 428

1

hJouleHeat hJouleHeat vertex Table 28 on 
page 195

hLifetime hLifeTime vertex , Eq. 381, 
p. 392

s

hMLDAQuantumPotential hMLDAQuantumPotential vertex MLDA Model on 
page 300

eV

hMobility hMobility element , Chapter 15

hMobility hMobility vertex , Chapter 15

hMobilityAniso hMobilityAniso element , 
Anisotropic 
Mobility on 
page 786

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

F⊥

Fp ⊥,

Vcm
1–

Fp Vcm
1–

p cm
3–

Φp∇ Vcm
1–

C
2
s

1–
cm

1–

Sp Wcm
2–

C
2
s

1–
cm

1–

C
2
s

1–
cm

1–

cm
2–

Wcm
3–

τp

μp cm
2
V

1–
s

1–

μp cm
2
V

1–
s

1–

μp
aniso

cm
2
V

1–
s

1–
Sentaurus™ Device User Guide 1353
N-2017.09



F: Data and Plot Names 
Scalar Data
hMobilityAniso hMobilityAniso vertex , 
Anisotropic 
Mobility on 
page 786

hMobilityAnisoFactor hMobilityAnisoFactor vertex , Eq. 874, 
p. 786

1

hMobilityStressFactorXX hMobilityStressFactorXX vertex Using 
Piezoresistance 
Mobility Model 
on page 861

1

hMobilityStressFactorXY hMobilityStressFactorXY vertex 1

hMobilityStressFactorXZ hMobilityStressFactorXZ vertex 1

hMobilityStressFactorYY hMobilityStressFactorYY vertex 1

hMobilityStressFactorYZ hMobilityStressFactorYZ vertex 1

hMobilityStressFactorZZ hMobilityStressFactorZZ vertex 1

hMVQMBandgapShift hMVQMBandgapShift vertex MLDA Model on 
page 300

eV

hNLLTunnelingGeneration hBarrierTunneling vertex Nonlocal 
Tunneling at 
Interfaces, 
Contacts, and 
Junctions on 
page 722

hNLLTunnelingPeltierHeat hNLLTunnelingPeltierHeat vertex Nonlocal 
Tunneling at 
Interfaces, 
Contacts, and 
Junctions on 
page 722

HotElectronInj HotElectronInjection rivertex Hot-electron 
current density 

 at interface,
Eq. 794, p. 742, 
Eq. 800, p. 744

vertex

HotHoleInj HotHoleInjection rivertex Hot-hole current 
density  at 
interface, 
Eq. 794, p. 742, 
Eq. 800, p. 744

vertex

hQuantumPotential hQuantumPotential vertex , Eq. 220, 
p. 283

eV

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

μp
aniso

cm
2
V

1–
s

1–

rh

cm
3–
s

1–

Wcm 3–

jhe

Acm
2–

jhh

Acm
2–

Λp
1354 Sentaurus™ Device User Guide
N-2017.09



F: Data and Plot Names
Scalar Data
hQuasiFermiEnergy hQuasiFermiEnergy vertex Quasi-Fermi 
Energy on 
page 201

eV

hQuasiFermiPotential hQuasiFermi vertex , Quasi-Fermi 
Potential With 
Boltzmann 
Statistics on 
page 175

V

hRelativeEffectiveMass hRelativeEffectiveMass vertex , Effective 
Masses and 
Effective Density-
of-States on 
page 261

1

hSaturationVelocity hSaturationVelocity vertex , Velocity 
Saturation Models 
on page 369

hSaturationVelocityAniso hSaturationVelocityAniso vertex , 
Anisotropic 
Mobility on 
page 786

hSchenkBGN hSchenkBGN vertex , Eq. 220, 
p. 283

eV

hSHEAvalancheGeneration hSHEAvalancheGeneration vertex , 
Spherical 
Harmonics 
Expansion 
Method on 
page 746

hSHECurrentDensity hSHECurrentDensity vertex , 
Spherical 
Harmonics 
Expansion 
Method on 
page 746

hSHEDensity hSHEDensity vertex , Spherical 
Harmonics 
Expansion 
Method on 
page 746

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

EF p,

Φp

mp

vsat,p cm s
1–

vsat,p
aniso

cm s
1–

Λ– p

Gp SHE,
ii

cm
3–
s

1–

Jp SHE, Acm
2–

pSHE cm
3–
Sentaurus™ Device User Guide 1355
N-2017.09



F: Data and Plot Names 
Scalar Data
hSHEEnergy hSHEEnergy vertex , 
Spherical 
Harmonics 
Expansion 
Method on 
page 746

K

hSHEVelocity hSHEVelocity vertex , 
Spherical 
Harmonics 
Expansion 
Method on 
page 746

hSRHRecombination hSRHRecombination vertex Dynamic 
Nonlocal Path 
Trap-Assisted 
Tunneling on 
page 400

hTemperature hTemperature vertex , 
Hydrodynamic 
Model for 
Temperatures on 
page 195

K

hTemperatureRelaxationTime hTemperatureRelaxationTime vertex , Eq. 85, 
p. 197

s

hTensorMobilityFactorXX hTensorMobilityFactorXX vertex Chapter 31

hTensorMobilityFactorYY hTensorMobilityFactorYY vertex Chapter 31

hTensorMobilityFactorZZ hTensorMobilityFactorZZ vertex Chapter 31

hTensorMobilityXX hTensorMobilityXX vertex Chapter 31

hTensorMobilityYY hTensorMobilityYY vertex Chapter 31

hTensorMobilityZZ hTensorMobilityZZ vertex Chapter 31

hThermoElectricPower hThermoelectricPower vertex , Eq. 1079, 
p. 914

hVelocity hVelocity vertex

HydrogenAtom HydrogenAtom vertex MSC–Hydrogen 
Transport 
Degradation 
Model on 
page 500

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

Tp SHE,

vp SHE, cm s
1–

cm
3–
s

1–

Tp

τep

1

1

1

cm
2
/(Vs)

cm
2
/(Vs)

cm
2
/(Vs)

Pp V K
1–

vp Jp pq⁄=
cm s

1–

cm
3–
1356 Sentaurus™ Device User Guide
N-2017.09



F: Data and Plot Names
Scalar Data
HydrogenIon HydrogenIon vertex MSC–Hydrogen 
Transport 
Degradation 
Model on 
page 500

HydrogenMolecule HydrogenMolecule vertex MSC–Hydrogen 
Transport 
Degradation 
Model on 
page 500

ImeDensityResponse ImeDensityResponse vertex  
AC Response on 
page 1025

ImeeDiffusionLNVXVSD ImeeDiffusionLNVXVSD vertex Table 128 on 
page 710

ImeeFlickerGRLNVXVSD ImeeFlickerGRLNVXVSD vertex Table 128 on 
page 710

ImeeLNVXVSD ImeeLNVXVSD vertex Table 128 on 
page 710

ImeeMonopolarGRLNVXVSD ImeeMonopolarGRLNVXVSD vertex Table 128 on 
page 710

ImElectrostaticPotentialResponse ImElectrostaticPotential
Response

vertex  
AC Response on 
page 1025

ImeTemperatureResponse ImeTemperatureResponse vertex  
AC Response on 
page 1025

ImhDensityResponse ImhDensityResponse vertex  
AC Response on 
page 1025

ImhhDiffusionLNVXVSD ImhhDiffusionLNVXVSD vertex Table 128 on 
page 710

ImhhFlickerGRLNVXVSD ImhhFlickerGRLNVXVSD vertex Table 128 on 
page 710

ImhhLNVXVSD ImhhLNVXVSD vertex Table 128 on 
page 710

ImhhMonopolarGRLNVXVSD ImhhMonopolarGRLNVXVSD vertex Table 128 on 
page 710

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

cm
3–

cm
3–

Im ñ( ) cm 3– V
1–

V
2
scm

3–

V
2
scm

3–

V
2
scm

3–

V
2
scm

3–

Im φ̃( ) 1

Im T̃n( ) KV
1–

Im p̃( ) cm 3– V
1–

V
2
scm

3–

V
2
scm

3–

V
2
scm

3–

V
2
scm

3–
Sentaurus™ Device User Guide 1357
N-2017.09



F: Data and Plot Names 
Scalar Data
ImhTemperatureResponse ImhTemperatureResponse vertex  
AC Response on 
page 1025

ImLatticeTemperatureResponse ImLatticeTemperatureResponse vertex

AC Response on 
page 1025

ImLNISD ImLNISD vertex Table 128 on 
page 710

ImLNVXVSD ImLNVXVSD vertex Table 128 on 
page 710

ImTrapLNISD ImTrapLNISD vertex Table 128 on 
page 710

ImTrapLNVSD ImTrapLNVSD vertex Table 128 on 
page 710

IndiumActiveConcentration IndiumActiveConcentration vertex Doping 
Specification on 
page 11

IndiumConcentration IndiumConcentration vertex In, Doping 
Specification on 
page 11

IndiumMinusConcentration inMinus vertex , Chapter 13

InsulatorElectricField InsulatorElectricField vertex Electric field  
on insulator.

InterfaceNBTICharge InterfaceNBTICharge vertex Two-Stage NBTI 
Degradation 
Model on 
page 509

InterfaceNBTIState1 InterfaceNBTIState1 vertex Two-Stage NBTI 
Degradation 
Model on 
page 509

InterfaceNBTIState2 InterfaceNBTIState2 vertex Two-Stage NBTI 
Degradation 
Model on 
page 509

InterfaceNBTIState3 InterfaceNBTIState3 vertex Two-Stage NBTI 
Degradation 
Model on 
page 509

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

Im T̃p( ) KV
1–

Im T̃( ) KV
1–

A
2
scm

3–

V
2
scm

3–

A
2
scm

3–

V
2
scm

3–

cm
3–

cm
3–

In
–

cm
3–

F Vcm
1–

cm
2–

cm
2–

cm
2–

cm
2–
1358 Sentaurus™ Device User Guide
N-2017.09



F: Data and Plot Names
Scalar Data
InterfaceNBTIState4 InterfaceNBTIState4 vertex Two-Stage NBTI 
Degradation 
Model on 
page 509

InterfaceOrientation InterfaceOrientation vertex Auto-Orientation 
Framework on 
page 37

1

IntrinsicDensity IntrinsicDensity vertex , Eq. 157, 
p. 249

JouleHeat JouleHeat vertex Table 28 on 
page 195

LatticeHeatCapacity LatticeHeatCapacity vertex , Heat Capacity 
on page 899

LatticeTemperature LatticeTemperature,
Temperature

vertex , Chapter 9, 
p. 189

K

LayerThickness LayerThickness vertex LayerThickness 
Command on 
page 310

LayerThicknessField LayerThicknessField vertex LayerThickness 
Command on 
page 310

lHeatFlux lHeatFlux vertex , Eq. 78, 
p. 196

MeanIonIntegral MeanIonIntegral vertex Approximate 
Breakdown 
Analysis on 
page 428

1

MetalConductivity MetalConductivity vertex , Transport in 
Metals on 
page 239

MetalWorkfunction MetalWorkfunction vertex Metal 
Workfunction on 
page 242

eV

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

cm
2–

ni cm
3–

Wcm
3–

cL JK
1–
cm

3–

T

μm

μm

SL Wcm
2–

σ Acm 1– V 1–
Sentaurus™ Device User Guide 1359
N-2017.09



F: Data and Plot Names 
Scalar Data
MobilityAcceptorConcentration MobilityAcceptorConcentration vertex Mobility Doping 
File on page 384 
or 
Add2TotalDoping
(ChargedTraps), 
Doping 
Specification on 
page 11

MobilityDonorConcentration MobilityDonorConcentration vertex Mobility Doping 
File on page 384 
or 
Add2TotalDoping
(ChargedTraps), 
Doping 
Specification on 
page 11

Mod_eGradQuasiFermi_ElectricField Mod_eGradQuasiFermi_
ElectricField

vertex , 
Interpolation of 
Driving Forces to 
Zero Field on 
page 373

Mod_eQuasiFermi_ElectricField_
Potential

Mod_eQuasiFermi_ElectricField
_Potential

vertex , Interpolation 
of Driving Forces 
to Zero Field on 
page 373

V

Mod_hGradQuasiFermi_ElectricField Mod_hGradQuasiFermi_
ElectricField

vertex , 
Interpolation of 
Driving Forces to 
Zero Field on 
page 373

Mod_hQuasiFermi_ElectricField_
Potential

Mod_hQuasiFermi_ElectricField
_Potential

vertex , Interpolation 
of Driving Forces 
to Zero Field on 
page 373

V

NDopantActiveConcentration NDopantActiveConcentration vertex Doping 
Specification on 
page 11

NDopantConcentration NdopantConcentration vertex NDopant, Doping 
Specification on 
page 11

NDopantPlusConcentration NdopantPlus vertex NDopant+, 
Chapter 13

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

cm
3–

cm
3–

∇Φ̃n Vcm
1–

Φ̃n

∇Φ̃p Vcm
1–

Φ̃p

cm
3–

cm
3–

cm
3–
1360 Sentaurus™ Device User Guide
N-2017.09



F: Data and Plot Names
Scalar Data
NearestInterfaceOrientation NearestInterfaceOrientation vertex Auto-Orientation 
Framework on 
page 37

1

NegInterfaceCharge NegInterfaceCharge vertex Mobility 
Degradation 
Components due 
to Coulomb 
Scattering on 
page 347

NitrogenActiveConcentration NitrogenActiveConcentration vertex Doping 
Specification on 
page 11

NitrogenConcentration NitrogenConcentration vertex N, Doping 
Specification on 
page 11

NitrogenPlusConcentration NitrogenPlus vertex N+, Chapter 13

OneOverDegradationTime OneOverDegradationTime vertex Chapter 19

OpticalAbsorption OpticalAbsorptionHeat vertex Optical 
Absorption Heat 
on page 545

OpticalAbsorption(Bandgap) OpticalAbsorptionHeat vertex Optical 
Absorption Heat 
on page 545

OpticalAbsorption(Vacuum) OpticalAbsorptionHeat vertex Optical 
Absorption Heat 
on page 545

OpticalField OpticalField vertex Plot optical 
intensity as well as 
real and imaginary 
parts of optical 
field.

OpticalGeneration OpticalGeneration vertex , 
Eq. 707, p. 627

OpticalGenerationFromConstant OpticalGeneration vertex Specifying the 
Type of Optical 
Generation 
Computation on 
page 534

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

cm
2–

cm
3–

cm
3–

cm
3–

s
1–

Wcm
3–

Wcm
3–

Wcm
3–

W m
3–⁄

V m⁄

G0
opt

cm
3–
s

1–

cm
3–
s

1–
Sentaurus™ Device User Guide 1361
N-2017.09



F: Data and Plot Names 
Scalar Data
OpticalGenerationFromFile OpticalGeneration vertex Specifying the 
Type of Optical 
Generation 
Computation on 
page 534

OpticalGenerationFromMonochromatic
Source

OpticalGeneration vertex Specifying the 
Type of Optical 
Generation 
Computation on 
page 534

OpticalGenerationFromSpectrum OpticalGeneration vertex Specifying the 
Type of Optical 
Generation 
Computation on 
page 534

OpticalIntensity OpticalIntensity vertex Solving the 
Optical Problem 
on page 553

OpticalIntensityCoherent OpticalIntensity vertex Transfer Matrix 
Method on 
page 625

OpticalIntensityIncoherent OpticalIntensity vertex Transfer Matrix 
Method on 
page 625

ParallelToInterfaceInBoundaryLayer
Active

ParallelToInterfaceInBoundary
LayerActive

element Field Correction 
Close to Interfaces 
on page 375

1

PDopantActiveConcentration PDopantActiveConcentration vertex Doping 
Specification on 
page 11

PDopantConcentration pDopantConcentration vertex PDopant, Doping 
Specification on 
page 11

PDopantMinusConcentration pDopantMinus vertex PDopant–, 
Chapter 13

PE_Charge PE_Charge vertex , Piezoelectric 
Datasets on 
page 888

PeltierHeat PeltierHeat vertex Table 28 on 
page 195

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

cm
3–
s

1–

cm
3–
s

1–

cm
3–
s

1–

Wcm
2–

Wcm
2–

Wcm
2–

cm
3–

cm
3–

cm
3–

qPE cm
3–

Wcm
3–
1362 Sentaurus™ Device User Guide
N-2017.09



F: Data and Plot Names
Scalar Data
PhosphorusActiveConcentration PhosphorusActiveConcentration vertex Doping 
Specification on 
page 11

PhosphorusConcentration PhosphorusConcentration vertex P, Doping 
Specification on 
page 11

PhosphorusPlusConcentration phPlus vertex P+, Chapter 13

PiezoCharge PiezoCharge vertex , Piezoelectric 
Datasets on 
page 888

PMIeNonLocalRecombination PMIeNonLocalRecombination vertex , Nonlocal 
Generation–Reco
mbination Model 
on page 1097

PMIHeat PMIHeat vertex Heat Generation 
Rate on page 1264

PMIhNonLocalRecombination PMIhNonLocalRecombination vertex , Nonlocal 
Generation–Reco
mbination Model 
on page 1097

PMIRecombination PMIRecombination vertex , 
Generation–Reco
mbination Model 
on page 1094

PMIUserField0 PMIUserField0 vertex Command File of 
Sentaurus Device 
on page 1065

1

PMIUserField1 PMIUserField1 vertex 1

… … vertex 1

PMIUserField299 PMIUserField299 vertex 1

PoECImACGreenFunction PoECImACGreenFunction vertex Table 128 on 
page 710

PoECReACGreenFunction PoECReACGreenFunction vertex Table 128 on 
page 710

PoETImACGreenFunction PoETImACGreenFunction vertex Table 128 on 
page 710

PoETReACGreenFunction PoETReACGreenFunction vertex Table 128 on 
page 710

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

cm
3–

cm
3–

cm
3–

qPE cm
3–

Rn
PMI

cm
3–
s

1–

Wcm
3–

Rp
PMI

cm
3–
s

1–

R
PMI

cm
3–
s

1–

VsC
1–

VsC
1–

A
1–

A
1–
Sentaurus™ Device User Guide 1363
N-2017.09



F: Data and Plot Names 
Scalar Data
PoGeoGreenFunction PoGeoGreenFunction vertex Table 128 on 
page 710

PoHCImACGreenFunction PoHCImACGreenFunction vertex Table 128 on 
page 710

PoHCReACGreenFunction PoHCReACGreenFunction vertex Table 128 on 
page 710

PoHTImACGreenFunction PoHTImACGreenFunction vertex Table 128 on 
page 710

PoHTReACGreenFunction PoHTReACGreenFunction vertex Table 128 on 
page 710

PoLTImACGreenFunction PoLTImACGreenFunction vertex Table 128 on 
page 710

PoLTReACGreenFunction PoLTReACGreenFunction vertex Table 128 on 
page 710

PoPotImACGreenFunction PoPotImACGreenFunction vertex Table 128 on 
page 710

PoPotReACGreenFunction PoPotReACGreenFunction vertex Table 128 on 
page 710

Polarization Polarization vertex , Chapter 29

PosInterfaceCharge PosInterfaceCharge vertex Mobility 
Degradation 
Components due 
to Coulomb 
Scattering on 
page 347

QCEffectiveBandGap QCEffectiveBandGap vertex eV

QCEffectiveIntrinsicDensity QCEffectiveIntrinsicDensity vertex  with 
corrections due to 
Fermi statistics 
and quantization 
effects

QuantumYield QuantumYield vertex Quantum Yield 
Models on 
page 544

1

QuasiFermiPotential QuasiFermiPotential vertex , Eq. 136, 
p. 225

V

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

Vcm 3–

VsC
1–

VsC
1–

A
1–

A
1–

A
1–

A
1–

VC
1–

VC
1–

P Ccm
2–

cm
2–

Eg Ebgn–

q Λn Λn+( )–

ni eff, cm
3–

Φ

1364 Sentaurus™ Device User Guide
N-2017.09



F: Data and Plot Names
Scalar Data
QW_chEigenEnergy QW_chEigenEnergy vertex Eigenenergies of 
the crystal-field 
split-hole bound 
states, Localized 
Quantum-Well 
Model on 
page 978

eV

QW_chNumberOfBoundStates QW_chNumberOfBoundStates vertex Actual number of 
QW bound states 
for crystal-field 
split-holes, 
Localized 
Quantum-Well 
Model on 
page 978

1

QW_chRelativeEffectiveMass QW_chRelativeEffectiveMass vertex Relative effective 
mass of crystal-
field split-holes, 
Localized 
Quantum-Well 
Model on 
page 978

1

QW_chStrainBandShift QW_chStrainBandShift vertex Shift in crystal-
field split-hole 
band due to strain 
effects, Localized 
Quantum-Well 
Model on 
page 978

eV

QW_eEigenEnergy QW_eEigenEnergy vertex Eigenenergies of 
the electron bound 
states, Localized 
Quantum-Well 
Model on 
page 978

eV

QW_ElectricFieldProjection QW_ElectricFieldProjection vertex Electric field in 
the QW, Localized 
Quantum-Well 
Model on 
page 978

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

Vcm
1–
Sentaurus™ Device User Guide 1365
N-2017.09



F: Data and Plot Names 
Scalar Data
QW_eNumberOfBoundStates QW_eNumberOfBoundStates vertex Actual number of 
QW bound states 
for electrons, 
Localized 
Quantum-Well 
Model on 
page 978

1

QW_eRelativeEffectiveMass QW_eRelativeEffectiveMass vertex Relative effective 
mass of electrons, 
Localized 
Quantum-Well 
Model on 
page 978

1

QW_eStrainBandShift QW_eStrainBandShift vertex Shift in 
conduction band 
due to strain 
effects, Localized 
Quantum-Well 
Model on 
page 978

eV

QW_hhEigenEnergy QW_hhEigenEnergy vertex Eigenenergies of 
the heavy-hole 
bound states, 
Localized 
Quantum-Well 
Model on 
page 978

eV

QW_hhNumberOfBoundStates QW_hhNumberOfBoundStates vertex Actual number of 
QW bound states 
for heavy holes, 
Localized 
Quantum-Well 
Model on 
page 978

1

QW_hhRelativeEffectiveMass QW_hhRelativeEffectiveMass vertex Relative effective 
mass of heavy 
holes, Localized 
Quantum-Well 
Model on 
page 978

1

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit
1366 Sentaurus™ Device User Guide
N-2017.09



F: Data and Plot Names
Scalar Data
QW_hhStrainBandShift QW_hhStrainBandShift vertex Shift in heavy-
hole band due to 
strain effects, 
Localized 
Quantum-Well 
Model on 
page 978

eV

QW_lhEigenEnergy QW_lhEigenEnergy vertex Eigenenergies for 
the light-hole 
bound states, 
Localized 
Quantum-Well 
Model on 
page 978

eV

QW_lhNumberOfBoundStates QW_lhNumberOfBoundStates vertex Actual number of 
QW bound states 
for light holes, 
Localized 
Quantum-Well 
Model on 
page 978

1

QW_lhRelativeEffectiveMass QW_lhRelativeEffectiveMass vertex Relative effective 
mass of light 
holes, Localized 
Quantum-Well 
Model on 
page 978

1

QW_lhStrainBandShift QW_lhStrainBandShift vertex Shift in light-hole 
band due to strain 
effects, Localized 
Quantum-Well 
Model on 
page 978

eV

QW_OverlapIntegral QW_OverlapIntegral vertex Overlap integrals 
between electron 
and hole 
wavefunctions, 
Localized 
Quantum-Well 
Model on 
page 978

1

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit
Sentaurus™ Device User Guide 1367
N-2017.09



F: Data and Plot Names 
Scalar Data
QW_QuantizationDirection QW_QuantizationDirection vertex Quantization 
direction of the 
QW, Localized 
Quantum-Well 
Model on 
page 978

1

QW_Width QW_Width vertex Extracted width of 
the QW, Localized 
Quantum-Well 
Model on 
page 978

QWeDensity QWeDensity vertex , Eq. 1163, 
p. 974

QWeQuasiFermi QWeQuasiFermi vertex , Quasi-Fermi 
Potential With 
Boltzmann 
Statistics on 
page 175

V

QWhDensity QWhDensity vertex , Eq. 1164, 
p. 974

QWhQuasiFermi QWhQuasiFermi vertex , Quasi-Fermi 
Potential With 
Boltzmann 
Statistics on 
page 175

V

RadiationGeneration RadiationGeneration vertex , Eq. 720, 
p. 645

RadiativeRecombination RadiativeRecombination vertex , Eq. 424, p. 408

RandomizedDoping RandomizedDoping vertex Statistical 
Impedance Field 
Method

RayTrees RayTrees Using the 
Raytracer on 
page 596

RecombinationHeat RecombinationHeat vertex Table 28 on 
page 195

ReeDensityResponse ReeDensityResponse vertex  
AC Response on 
page 1025

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

μm

n cm
3–

Φn

p cm
3–

Φp

Gr cm
3–
s

1–

R cm
3–
s

1–

cm
3–

Wcm
3–

Re ñ( ) cm 3– V
1–
1368 Sentaurus™ Device User Guide
N-2017.09



F: Data and Plot Names
Scalar Data
ReeeDiffusionLNVXVSD ReeeDiffusionLNVXVSD vertex Table 128 on 
page 710

ReeeFlickerGRLNVXVSD ReeeFlickerGRLNVXVSD vertex Table 128 on 
page 710

ReeeLNVXVSD ReeeLNVXVSD vertex Table 128 on 
page 710

ReeeMonopolarGRLNVXVSD ReeeMonopolarGRLNVXVSD vertex Table 128 on 
page 710

ReElectrostaticPotentialResponse ReElectrostaticPotential
Response

vertex  
AC Response on 
page 1025

ReeTemperatureResponse ReeTemperatureResponse vertex  
AC Response on 
page 1025

RefractiveIndex RefractiveIndex element , Complex 
Refractive Index 
Model on 
page 578

1

RefractiveIndex RefractiveIndex vertex , Complex 
Refractive Index 
Model on 
page 578

1

RehDensityResponse RehDensityResponse vertex  
AC Response on 
page 1025

RehhDiffusionLNVXVSD RehhDiffusionLNVXVSD vertex Table 128 on 
page 710

RehhFlickerGRLNVXVSD RehhFlickerGRLNVXVSD vertex Table 128 on 
page 710

RehhLNVXVSD RehhLNVXVSD vertex Table 128 on 
page 710

RehhMonopolarGRLNVXVSD RehhMonopolarGRLNVXVSD vertex Table 128 on 
page 710

RehTemperatureResponse RehTemperatureResponse vertex  
AC Response on 
page 1025

ReLatticeTemperatureResponse ReLatticeTemperatureResponse vertex  
AC Response on 
page 1025

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

V
2
scm

3–

V
2
scm

3–

V
2
scm

3–

V
2
scm

3–

Re φ̃( ) 1

Re T̃n( ) KV
1–

n

n

Re p̃( ) cm 3– V
1–

V
2
scm

3–

V
2
scm

3–

V
2
scm

3–

V
2
scm

3–

Re T̃p( ) KV
1–

Re T̃( ) KV
1–
Sentaurus™ Device User Guide 1369
N-2017.09



F: Data and Plot Names 
Scalar Data
ReLNISD ReLNISD vertex Table 128 on 
page 710

ReLNVXVSD ReLNVXVSD vertex Table 128 on 
page 710

ReTrapLNISD ReTrapLNISD vertex Table 128 on 
page 710

ReTrapLNVSD ReTrapLNVSD vertex Table 128 on 
page 710

SemiconductorElectricField SemiconductorElectricField vertex Electric field  
on semiconductor.

SpaceCharge SpaceCharge vertex Eq. 37, p. 173

SpontaneousRecombination SpontaneousRecombination vertex Spontaneous 
Recombination 
Rate on page 965

SRHRecombination SRHRecombination vertex , 
Shockley–Read–H
all Recombination 
on page 391

StimulatedRecombination StimulatedRecombination vertex Stimulated 
Recombination 
Rate on page 964

StressXX, StressXY, StressXZ, 
StressYY, StressYZ, StressZZ

Stress vertex Stress tensor, 
Chapter 31

Pa

StressXX StressXX vertex Components of 
stress tensor, 
Chapter 31

Pa

StressXY StressXY

StressXZ StressXZ

StressYY StressYY

StressYZ StressYZ

StressZZ StressZZ

SurfaceRecombination SurfaceRecombination rivertex Surface SRH 
Recombination on 
page 404vertex

ThermalConductivity ThermalConductivity vertex , Eq. 1042, 
p. 901

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

A
2
scm

3–

V
2
scm

3–

A
2
scm

3–

V
2
scm

3–

F Vcm
1–

cm
3–

cm
3–
s

1–

Rnet
SRH

cm
3–
s

1–

cm
3–
s

1–

cm
2–
s

1–

κ Wcm
1–
K

1–
1370 Sentaurus™ Device User Guide
N-2017.09



F: Data and Plot Names
Scalar Data
ThermalConductivityAniso ThermalConductivityAniso vertex , 
Anisotropic 
Thermal 
Conductivity on 
page 794

ThermalizationYield(Bandgap) ThermalizationYield vertex Optical 
Absorption Heat 
on page 545

1

ThermalizationYield(Vacuum) ThermalizationYield vertex Optical 
Absorption Heat 
on page 545

1

ThomsonHeat ThomsonHeat vertex Table 28 on 
page 195

TotalConcentration TotalConcentration vertex Doping 
Specification on 
page 11

TotalCurrentDensity Current vertex

TotalHeat TotalHeat vertex Sum of all heat 
generation terms, 
Chapter 9, 
Temperature in 
Metals on 
page 244

TotalInterfaceTrapConcentration TotalInterfaceTrap
Concentration

vertex Chapter 17

TotalRecombination TotalRecombination vertex Sum of all 
generation– 
recombination 
terms, Chapter 16

TotalTrapConcentration TotalTrapConcentration vertex Chapter 17

tSRHRecombination tSRHRecombination vertex Dynamic 
Nonlocal Path 
Trap-Assisted 
Tunneling on 
page 400

ValenceBandEnergy ValenceBandEnergy element-
vertex

, Eq. 42, 
p. 176

eV

vertex

VertexIndex VertexIndex vertex Vertex numbers 1

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

κaniso Wcm
1–
K

1–

Wcm
3–

cm
3–

Jn Jp JD+ + Acm
2–

Wcm
3–

cm
2–

cm
3–
s

1–

cm
3–

cm
3–
s

1–

EV
Sentaurus™ Device User Guide 1371
N-2017.09



F: Data and Plot Names 
Vector Data
Vector Data

xMoleFraction xMoleFraction vertex Abrupt and 
Graded 
Heterojunctions 
on page 10

1

yMoleFraction yMoleFraction vertex 1

Table 179 Vector data

Data name Plot name Location Description Unit

ConductionCurrentDensity ConductionCurrent vertex , Eq. 53, p. 181 or
 in metals, Eq. 148, p. 239

ContactSurfaceNormal ContactSurfaceNormal vertex Contact surface normal 1

DisplacementCurrentDensity DisplacementCurrent vertex

eCurrentDensity eCurrent vertex , Eq. 53, p. 181

eDriftVelocity eDriftVelocity vertex Electron drift velocity.

eGradQuasiFermi eGradQuasiFermi vertex , Eq. 39, p. 175

eHeatFlux eHeatFlux vertex , Eq. 76, p. 196

ElectricField ElectricField element

vertex

EquilibriumElectricField EquilibriumElectric
Field

vertex , Eq. 111, p. 209

eSHECurrentDensity eSHECurrentDensity vertex , Spherical Harmonics 
Expansion Method on page 746

eSHEVelocity eSHEVelocity vertex , Spherical Harmonics 
Expansion Method on page 746

eVelocity eVelocity vertex

GradPoECImACGreenFunction GradPoECImACGreen
Function

vertex Table 128 on page 710

GradPoECReACGreenFunction GradPoECReACGreen
Function

vertex Table 128 on page 710

GradPoETImACGreenFunction GradPoETImACGreen
Function

vertex Table 128 on page 710

Table 178 Scalar data (Continued)

Data name Plot name Location Description Unit

Jn Jp+
JM

Acm
2–

JD Acm
2–

Jn Acm
2–

cm s
1–

Φn∇– Vcm
1–

Sn Wcm
2–

F Vcm
1–

Feq Vcm
1–

Jn SHE, Acm
2–

vn SHE, cm s
1–

vn Jn qn⁄–=
cm s

1–

VsC
1–
cm

1–

VsC
1–
cm

1–

A
1–
cm

1–
1372 Sentaurus™ Device User Guide
N-2017.09



F: Data and Plot Names
Vector Data
GradPoETReACGreenFunction GradPoETReACGreen
Function

vertex Table 128 on page 710

GradPoHCImACGreenFunction GradPoHCImACGreen
Function

vertex Table 128 on page 710

GradPoHCReACGreenFunction GradPoHCReACGreen
Function

vertex Table 128 on page 710

GradPoHTImACGreenFunction GradPoHTImACGreen
Function

vertex Table 128 on page 710

GradPoHTReACGreenFunction GradPoHTReACGreen
Function

vertex Table 128 on page 710

hCurrentDensity hCurrent vertex , Eq. 53, p. 181

hDriftVelocity hDriftVelocity vertex Hole drift velocity

hGradQuasiFermi hGradQuasiFermi vertex , Eq. 352, p. 370

hHeatFlux hHeatFlux vertex , Eq. 77, p. 196

hSHECurrentDensity hSHECurrentDensity vertex , Spherical Harmonics 
Expansion Method on page 746

hSHEVelocity hSHEVelocity vertex , Spherical Harmonics 

Expansion Method on page 746

hVelocity hVelocity vertex

ImConductionCurrentResponse ImConductionCurrent
Response

vertex
 

AC Current Density Responses 
on page 1026

ImDisplacementCurrentResponse ImDisplacementCurrent
Response

vertex
 

AC Current Density Responses 
on page 1026

ImeCurrentResponse ImeCurrentResponse vertex
 

AC Current Density Responses 
on page 1026

Table 179 Vector data (Continued)

Data name Plot name Location Description Unit

A
1–
cm

1–

VsC
1–
cm

1–

VsC
1–
cm

1–

A
1–
cm

1–

A
1–
cm

1–

Jp Acm
2–

cm s
1–

Φp∇– Vcm
1–

Sp Wcm
2–

Jp SHE, Acm
2–

vp SHE, cm s
1–

vp Jp qp⁄=
cm s

1–

Im J̃n J̃p+ 
 

Acm 2– V
1–

Im J̃D 
 

Acm 2– V
1–

Im J̃n 
 

Acm 2– V
1–
Sentaurus™ Device User Guide 1373
N-2017.09



F: Data and Plot Names 
Vector Data
ImeEnFluxResponse ImeEnFluxResponse vertex
 

AC Current Density Responses 
on page 1026

ImhCurrentResponse ImhCurrentResponse vertex
 

AC Current Density Responses 
on page 1026

ImhEnFluxResponse ImhEnFluxResponse vertex
 

AC Current Density Responses 
on page 1026

ImlEnFluxResponse ImlEnFluxResponse vertex
 

AC Current Density Responses 
on page 1026

ImTotalCurrentResponse ImTotalCurrentResponse vertex
 AC Current 

Density Responses on page 1026

InsulatorElectricField InsulatorElectricField vertex Electric field  on insulator.

lHeatFlux lHeatFlux vertex , Eq. 78, p. 196

Mod_eGradQuasiFermi_
ElectricField

Mod_eGradQuasiFermi_
ElectricField

vertex , Interpolation of Driving 
Forces to Zero Field on page 373

Mod_hGradQuasiFermi_
ElectricField

Mod_hGradQuasiFermi_
ElectricField

vertex , Interpolation of Driving 
Forces to Zero Field on page 373

NonLocalBackDirection NonLocal vertex Visualizing Nonlocal Meshes on 
page 148

NonLocalDirection NonLocal vertex

OpticalField OpticalField vertex Plot optical intensity as well as 
real and imaginary parts of 
optical field.

PE_Polarization PE_Polarization vertex , Piezoelectric Datasets on 
page 888

Polarization Polarization element , Chapter 29

Polarization Polarization vertex , Chapter 29

Table 179 Vector data (Continued)

Data name Plot name Location Description Unit

Im S̃n 
 

Wcm 2– V
1–

Im J̃p 
 

Acm 2– V
1–

Im S̃p 
 

Wcm 2– V
1–

Im S̃L 
 

Wcm 2– V
1–

Im J̃n J̃p J̃D+ + 
 

Acm 2– V
1–

F Vcm
1–

SL Wcm
2–

∇Φ̃n Vcm
1–

∇Φ̃p Vcm
1–

μm

μm

W m
3–⁄

V m⁄

PPE Ccm
2–

P Ccm
2–

P Ccm
2–
1374 Sentaurus™ Device User Guide
N-2017.09



F: Data and Plot Names
Vector Data
ReConductionCurrentResponse ReConductionCurrent
Response

vertex
 

AC Current Density Responses 
on page 1026

ReDisplacementCurrentResponse ReDisplacementCurrent
Response

vertex
 

AC Current Density Responses 
on page 1026

ReeCurrentResponse ReeCurrentResponse vertex
 

AC Current Density Responses 
on page 1026

ReeEnFluxResponse ReeEnFluxResponse vertex
 

AC Current Density Responses 
on page 1026

RehCurrentResponse RehCurrentResponse vertex

AC Current Density Responses 
on page 1026

RehEnFluxResponse RehEnFluxResponse vertex
 

AC Current Density Responses 
on page 1026

RelEnFluxResponse RelEnFluxResponse vertex
 

AC Current Density Responses 
on page 1026

ReTotalCurrentResponse ReTotalCurrentResponse vertex
 

AC Current Density Responses 
on page 1026

SemiconductorElectricField SemiconductorElectric
Field

vertex Electric field  on 
semiconductor.

TotalCurrentDensity Current vertex

Table 179 Vector data (Continued)

Data name Plot name Location Description Unit

Re J̃n J̃p+ 
 

Acm 2– V
1–

Re J̃D 
 

Acm 2– V
1–

Re J̃n 
 

Acm 2– V
1–

Re S̃n 
 

Wcm 2– V
1–

Re J̃p 
 

Acm 2– V
1–

Re S̃n 
 

Wcm 2– V
1–

Re S̃L 
 

Wcm 2– V
1–

Re J̃n J̃p J̃D+ + 
 

Acm 2– V
1–

F Vcm
1–

Jn Jp JD+ + Acm
2–
Sentaurus™ Device User Guide 1375
N-2017.09



F: Data and Plot Names 
Special Vector Data
Special Vector Data

Tensor Data

Table 180 Special vector data

Data name Plot name Location Description Unit

eSHEDistribution eSHEDistribution vertex Electron energy distribution, 
SHE Distribution Hot-Carrier 
Injection on page 744

hSHEDistribution hSHEDistribution vertex Hole energy distribution, 
SHE Distribution Hot-Carrier 
Injection on page 744

Table 181 Tensor data

Data name Plot name Location Description Unit

ElasticStrain ElasticStrain vertex Strain tensor from TDR file 
(Sentaurus Process or Sentaurus 
Interconnect), 
Strain Tensor on page 824

Strain Strain vertex Strain tensor , Stress and Strain 
in Semiconductors on page 821

Stress Stress vertex Stress tensor , Stress and Strain 
in Semiconductors on page 821

Pa

1

1

1

ε 1

σ

1376 Sentaurus™ Device User Guide
N-2017.09



APPENDIX G Command File Overview

This appendix presents an overview of the command file of Sentaurus
Device.

Top Levels of Command File on page 1379 presents the topmost levels of the command file.
Use this table to obtain a top-down overview of the command file. The remaining sections are
ordered with respect to topics. The headings of the tables, therein, mostly start with a keyword.
Use these tables to find details about keywords.

Organization of Command File Overview

The tables in this appendix have two or three columns, and their rows are ordered
alphabetically with respect to the first (and, as far as applicable, the middle) column.
Placeholders (cross references, user-supplied values in angle brackets (<>)) precede explicit
keywords, irrespective of alphabetic order.

The left column contains keywords that can appear in the command file. In the topmost rows
of some tables, the left column references another table. This means that all keywords in the
referenced table can appear in the referring table as well. Some keywords are followed by an
opening parenthesis or an opening brace to indicate that the keyword expects a selection of
options listed in the middle column of the current and the following rows.

The middle column contains options or values to the keyword in the left column, one per row.
For a selection of options, the last row indicates the closing parenthesis or the closing brace.
For some tables, the middle column would be empty and is omitted.

The right column contains the description of keywords, options, and values of the row. As far
as applicable, the right column also provides the following additional information:

■ The default value, which can be:

• An explicit value. Those values are written in Courier font, as you would type them.

• + or – to indicate the default (true or false, respectively) for keywords that support the
– prefix.

• on or off for keywords that set and reset flags, but do not support the – prefix.

• An asterisk (*) to indicate the default among mutually exclusive alternatives.

• An exclamation mark (!) if no default exists and you must specify a value.
Sentaurus™ Device User Guide 1377
N-2017.09



G: Command File Overview 
Organization of Command File Overview
■ The unit assumed for the given quantity. In unit specifications,  denotes the dimension of
the mesh. For dimensionless quantities, no unit is specified.

■ The location for which keywords should be specified, given as characters in parentheses:

• (g) stands for global parameters that must not appear in region-specific, interface-
specific, or contact-specific sections.

• (r) stands for region-specific (or material-specific) parameters that usually do not make
sense when specified for interfaces or contacts.

• (c) and (i) stand for contact-specific or interface-specific parameters.

Furthermore, the tables use the following conventions:

■ An ellipsis (…) denotes that the preceding item can be repeated an arbitrary number of
times.

■ An asterisk (*) followed by an integer, both typeset in Times font, denotes that the
preceding item must appear the given number of times.

■ Optional components of specifications are enclosed in brackets, and the brackets are not
part of the syntax.

■ Angle brackets (<>) indicate user-supplied values. Table 182 summarizes the common
types of specification. More specific notation is explained in the last column of the table
where it is used.

Some tables use additional conventions as necessary. They are explained in the text that
precedes the respective table. 

Table 182 Notation for user-supplied values

Specification Description

<(x,y)> <[x,y]>
<(x,y]> <[x,y)>

Range of floating-point numbers from x to y. Parentheses are used when the limits are 
excluded from the range; brackets are used when they are included. To denote ranges 
unbound on one side, the corresponding limit is omitted.

<carrier> A carrier type, Electron or Hole.

<float> A floating-point number (integers are special cases thereof).

<ident> An identifier. This is like a string, but is not enclosed in double quotation marks.

<int> An integer.

<n..m> A range of integers, from n to m, inclusively. Either n or m can be omitted, to denote 
ranges that are unbound on one side.

<string> A sequence of characters (including digits and special characters) included in double 
quotation marks. Unlike most Sentaurus Device input, strings are case sensitive.

d

1378 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Top Levels of Command File
Top Levels of Command File

Table 183 lists the top levels in the command file of Sentaurus Device. 

Device

<vector> A sequence of up to three floating-point numbers, enclosed in parentheses, and separated 
by spaces, for example: (1.0 3 0).

<System_Coord> CrystalSystem or SimulationSystem.

Table 183 Top levels of command file

Table 184 Specification for single devices.

Device <string>
{Table 184}

Device name and device specifications (mixed mode). 
Device Section on page 54

OpticalDevice <string>
{Table 184}

Optical device name and device specification (mixed mode and 
Composite Method on page 656). Device Section on page 54

Solve{ Table 186} The problem to be solved.

System{ Table 204} The circuit (mixed mode). System Section on page 55

Table 184 Device{} or single-device specification Chapter 2, p. 9

CurrentPlot{ <ident> Use current plot PMI. Current Plot File of Sentaurus Device 
on page 1239

PMIModel (Table 318) Use current plot PMI with parameters. Current Plot File of 
Sentaurus Device on page 1239

Table 178(Table 330) Plot scalar data to current file. Tracking Additional Data in the 
Current File on page 110

Table 179/Vector(Table 330)} Plot vectorial data to current file. Tracking Additional Data in 
the Current File on page 110

Electrode{ Table 206} Electrode specification. Specifying Electrical Boundary 
Conditions on page 67

eSHEDistributionPlot{ <vector>...} Electron-energy distribution plot. Visualizing Spherical 
Harmonics Expansion Method on page 757

Table 182 Notation for user-supplied values (Continued)

Specification Description
Sentaurus™ Device User Guide 1379
N-2017.09



G: Command File Overview 
Top Levels of Command File
Extraction{ <ident> [=] <ident>...} Process parameters. Extraction File on page 126

File{ Table 185} Input and output files. 

GainPlot{ Table 331} Parameters for gain plot (LED).

GridAdaptation( Table 222) Perform grid adaptation. 
Adaptive Device Instances on page 994

hSHEDistributionPlot{ <vector>...} Hole-energy distribution plot. Visualizing Spherical 
Harmonics Expansion Method on page 757

HydrogenBoundary{ Table 207} Degradation model. Boundary Conditions on page 502

IFM{ Table 210} Variations, noise models. IFM Section on page 707

Math [(Table 336)] Math specification, potentially restricted to a location.

{ Table 211}

MonteCarlo{ <options>} See the Sentaurus™ Device Monte Carlo User Guide.

NoisePlot{ Table 333} Noise output data. Noise Output Data on page 710

(<vector>...) {Table 334} Nonlocal plot. Visualizing Data Defined on Nonlocal Meshes 
on page 148

Physics [(Table 336)] Physical models, potentially restricted to a location.

{ Table 233}

Plot{ Table 328} Plot data. Device Plots on page 122

RayTraceBC{ Table 208} Raytrace boundary conditions.

TensorPlot( Table 335) Tensor plot for beam propagation method. Visualizing Results 
on Native Tensor Grid on page 655

{ ComplexRefractiveIndex

OpticalField

OpticalIntensity}

Thermode{ Table 209} Thermode specification.
Specifying Thermal Boundary Conditions on page 70

TrappedCarDistrPlot{ <vector> Trapped carrier charge plot at position <vector>.
Visualizing Traps on page 466

Table 339={<vector>...}} Trapped carrier charge plot restricted to location.

Table 184 Device{} or single-device specification Chapter 2, p. 9 (Continued)
1380 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Top Levels of Command File
File

In the description of Table 185, it is indicated whether a file is input or output, as well as the
extensions (in Courier font) that Sentaurus Device appends to the user-supplied name to obtain
the full name. The tags enclosed in at-signs (@) denote the default Sentaurus Workbench
variables for the particular file name. (These defaults can be changed in tooldb.tcl, see
Sentaurus™ Workbench User Guide, Global Configuration Files on page 286). (g) denotes
keywords that must be used in global File sections only, while (d) denotes keywords that must
be used in device-specific File sections only. 

Table 185 File{}

ACExtract =<string> (g) Small-signal and noise analysis (output, _ac_des.plt, @acplot@). 
Small-Signal AC Analysis on page 96

Bandstructure =<string> (d) Base name for plotting local band structure data in an LED simulation 
(output, _kpbandstruc_vertexX_des.plt, 
_kpeigenfunc_vertexX_des.plt). 

CMIPath =<string> (g) Search path for compact circuit files (extension .ccf) and the 
corresponding shared object files (extension .so.arch). The files are 
parsed and added to the System section of the command file. If the 
environment variable STROOT_ARCH_OS_LIB is defined, the directory 
$STROOT_ARCH_OS_LIB/sdevice is automatically added to CMIPath. 
System Section on page 55

Current =<string> Device currents, voltages, charges, temperatures, and times (output, 
_des.plt, @plot@). Current File on page 107

DephasingRates =<string> Directory for saving dephasing rates using the second Born 
approximation.

DevFields =<string> (d) Space distribution for trapped carrier charge density. Must match grid 
file (input .tdr). Energetic and Spatial Distribution of Traps on page 450

DevicePath =<string> (g) Load all files with the extension .device in the directory path 
<string>. The directory path has the format dir1:dir2:dir3. The 
devices found can be used in the System section. They are not 
overwritten by a definition with the same name in the command file. 
System Section on page 55

EmissionTable =<string> Tabulated emission data (output). 

eSHEDistribution =<string> Electron distribution versus kinetic energy (output, _des.plt). 
Visualizing Spherical Harmonics Expansion Method on page 757

Extraction =<string> (d) Extraction file (output, extraction_des.xtr).
Extraction File on page 126

Gain =<string> (d) Modal stimulated and spontaneous emission spectra 
(output, _gain_des.plt).
Sentaurus™ Device User Guide 1381
N-2017.09



G: Command File Overview 
Top Levels of Command File
Grid =<string> (d) Device geometry and mesh (input, .tdr, or @tdr@). Exception for 
grid adaptation: base name for output grid files.
Specifying Grid Adaptations on page 993

hSHEDistribution =<string> Hole distribution versus kinetic energy (output, _des.plt).
Visualizing Spherical Harmonics Expansion Method on page 757

IlluminationSpectrum =<string> Illumination spectrum. Illumination Spectrum on page 536

LifeTime =<string> (d) Lifetime profiles (input, .tdr). 
Lifetime Profiles From Files on page 393

Load =<string> Old simulation results (input, .sav). Save and Load on page 157

MesherInput =<string> Base name of boundary and command file to be used for calling 
Sentaurus Mesh. Specifying the Optical Solver on page 554

MobilityDoping =<string> (d) File from which donor and acceptor concentrations for mobility 
calculations are read. Mobility Doping File on page 384

NewtonPlot =<string> Convergence monitoring (output). NewtonPlot on page 154

NonLocalPlot =<string> Data defined on nonlocal line meshes (output).
Visualizing Data Defined on Nonlocal Meshes on page 148

OpticalGenerationFile =<string> Load optical generation from a file. 
Optical AC Analysis on page 661

OpticalGenerationInput =<string> File from which optical generation rate is loaded.
Loading and Saving Optical Generation From and to File on page 542

OpticalGenerationOutput =<string> File to which optical generation rate is written.
Loading and Saving Optical Generation From and to File on page 542

OpticalGenerationOutput
(collected)

=<string> File to which optical generation rate is written. Consecutive plots are 
written into one file instead of several enumerated files.
Loading and Saving Optical Generation From and to File on page 542

OpticalSolverInput =<string> Command file of optical solver.
Specifying the Optical Solver on page 554

OpticsOutput =<string> (g) Runtime log for optical solvers (output, _des.log, @optlog@).

Output =<string> "output" (g) Runtime log (output, _des.log, @log@).

ParameterPath =<string> (d) List of subdirectories in the $STROOT/tcad/$STRELEASE/lib/
sdevice/MaterialDB directory that are added to the search path for 
parameter files. Physical Model Parameters on page 21

Parameters =<string> (d) Device parameters (input, .par, @parameter@).
Physical Model Parameters on page 21

Piezo =<string> (d) Stress data for piezoelectric model (input). Chapter 31, p. 821

Plot =<string> Spatially distributed simulation results (output, _des.tdr, @tdrdat@). 
Device Plots on page 122

Table 185 File{} (Continued)
1382 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Top Levels of Command File
Plot(collected) =<string> Spatially distributed simulation results (output, _des.tdr, @tdrdat@). 
Consecutive plots are written into one file instead of several enumerated 
files. Device Plots on page 122

PMIPath =<string> (g) Search path to load shared object files (extension .so.arch) for PMI 
models. Command File of Sentaurus Device on page 1065

PMIUserFields =<string> (d) File containing any of the fields PMIUserField0 to 
PMIUserField299.

SpectralPlot =<string> Spatially distributed simulation results (output, _des.tdr, 
@spectralplot@) for each entry of the illumination spectrum as well as 
spectral curves (_des.plt) for the results of the optical solver. 
Consecutive plots are written into one file instead of several enumerated 
files, that is, SpectralPlot(collected) is the default. Illumination 
Spectrum on page 536

SpectralPlot
(-collected)

=<string> Spatially distributed simulation results (output, _des.tdr, 
@spectralplot@) for each entry of the illumination spectrum as well as 
spectral curves (_des.plt) for the results of the optical solver. 
Consecutive plots are written into several enumerated files.
Illumination Spectrum on page 536

TensorPlot =<string> Base name for saving tensor plot files when using beam propagation 
method. Visualizing Results on Native Tensor Grid on page 655

Save =<string> Simulation results for retrieval with Load (output, _des.sav). 
Save and Load on page 157

SaveOptField =<string> Base name for saving optical field data in an LED simulation.

SPICEPath =<string> Search path for SPICE circuit files (extension .scf). The files are parsed 
and added to the System section of the command file. If the environment 
variable STROOT_LIB is defined, the directory $STROOT_LIB/
sdevice/spice is automatically added to SPICEPath.
SPICE Circuit Models on page 63

TrappedCarPlotFile =<string> Trapped carrier charge density, trap occupancy probability, and trap 
density versus energy (output, _des.plt). 
Visualizing Traps on page 466

Table 185 File{} (Continued)
Sentaurus™ Device User Guide 1383
N-2017.09



G: Command File Overview 
Top Levels of Command File
Solve

Table 186 Solve{}

Table 199 Solve selected standalone problem.

[<ident>.] 
Table 191

Solve selected equation [for instance <ident>].

ACCoupled( Table 187) Perform small-signal and noise analysis. 
Small-Signal AC Analysis on page 96

{ [<ident>.] Table 191...} Equations to be solved consistently.

Continuation( Table 188) Continuation options.

{ Table 186} Problem to be solved.

Coupled( Table 189) Solve coupled equations consistently by Newton iteration.

{ [<ident>.] Table 191...} Equations to be solved.

CurrentPlot as Load Control current output. When to Write to the Current File on page 107

HBCoupled( Table 193) Perform harmonic balance analysis. Harmonic Balance on page 101

{ [<ident>.] Table 191...} Equations to be solved.

Load( Table 194) Load and continue with solution stored by Save.
Save and Load on page 157

Circuit Load circuit.

[{<ident>...}] Devices to be loaded.

NewCurrentPrefix =<string> Use prefix <string> for current file.
NewCurrentPrefix Statement on page 110

Plot( Table 194) Plot current solution. When to Plot on page 123

[{<ident>...}] Devices to be plotted.

Plugin( Table 196) Solve equations consistently by Gummel iteration.

{ Table 199 Solve selected standalone problem.

[<ident>.] Table 191... Solve selected equation (for example, <ident>).

Coupled(Table 189){
[<ident>.] Table 191...}
...}

Solve coupled equations.

Quasistationary( Table 197) Quasistationary simulation options.

{ Table 186} Problem to be solved.
1384 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Top Levels of Command File
Save as Load Save current solution for retrieval with Load.
Save and Load on page 157

Set( Table 198) Set status according to Table 198.

SpectralPlot( Table 194) Plot spectral simulation results of current solution.
When to Plot on page 123 and Illumination Spectrum on page 536

[{<ident>...}] Devices to be plotted.

System (<string>) Execute UNIX command <string> (ignore return status).
System Command on page 170

+System (<string>) Execute UNIX command <string>; use its return status to decide 
whether it was successful. System Command on page 170

Transient( Table 201) Transient simulation options.

{ Table 186} Problem to be solved.

Unset (<ident>...) Unset nodes. Mixed-Mode Electrical Boundary Conditions on page 69

(TrapFilling) Use the standard trap equations. Explicit Trap Occupation on page 468

Table 187 ACCoupled() Small-Signal AC Analysis on page 96

Table 189 Coupled() parameters.

ACCompute( Table 194) Restrict AC or noise analysis to selected points in a 
Quasistationary command.

ACExtract =<string> Prefix for the name of the file to which the results of AC analysis are 
written (overrides the specification from the File section).

ACMethod =Blocked Use Blocked solver.

ACPlot =<string> Plot the responses of the solution variables to the AC signals. 
<string> is a prefix for the names of the files to which the responses 
are written.

ACSubMethod (<ident>)=Table 224 Super (1D and 2D), ILS (3D)
Inner solver for device <ident>.

CircuitNoise Compute noise from circuit elements.
Noise From SPICE Circuit Elements on page 690

Decade Use logarithmic intervals between the frequencies.

EndFrequency =<(0,)> !  Upper frequency.

Exclude (<ident>...) Devices that will be removed from the circuit for AC analysis.

Extraction{ Table 20} List of frequency-dependent extraction curves.
Extraction File on page 126

Table 186 Solve{} (Continued)

Hz
Sentaurus™ Device User Guide 1385
N-2017.09



G: Command File Overview 
Top Levels of Command File
Linear Use linear intervals between the frequencies.

Node (<ident>...) Nodes for which to perform AC analysis.

NoisePlot =<string> Prefix for a file name. Chapter 23, p. 675

NumberOfPoints =<0..> ! Number of frequencies for which to perform the analysis.

ObservationNode (<ident>...) Nodes for which to perform noise analysis; subset of those in Node. 
Chapter 23, p. 675

Optical Perform optical AC analysis. Optical AC Analysis on page 100

StartFrequency =<(0,)> !  Lower frequency.

VoltageGreenFunctions – Compute voltage responses for frequency zero. 
Analysis at Frequency Zero on page 677

Table 188 Continuation() Continuation Command on page 83

AcceptNewtonParameter Apply relaxed Newton parameters. 
Relaxed Newton Method on page 143

BreakCriteria{ Table 214} Break criteria.
Break Criteria: Conditionally Stopping the Simulation on page 71

Decrement =<float> 1.5 Divisor for step size on failure to solve.

DecrementAngle =<float> 5 deg Angle for which step starts decreasing.

Digits =<float> 3 Number of digits for relative error.

Error =<float> 0.05 Absolute error target.

Iadapt =<float> ! Lower current limit for adaptive algorithm.

Increment =<float> 2 Multiplier for step size on successful solve.

IncrementAngle =<float> 2.5 deg Angle up to which step increases.

InitialVstep =<float> ! Initial voltage step.

MaxCurrent =<float> ! Upper current limit.

MaxIfactor =<float> ! Maximum-allowed current relative to previous point as a multiplication 
factor.

MaxIstep =<float> ! Maximum-allowed current step.

MaxLogIfactor ! Maximum-allowed current relative to previous point as a multiplication 
factor, in orders of magnitude.

MaxStep =<float> Maximum step for the internal arc length variable.

MaxVoltage =<float> ! Upper voltage limit.

Table 187 ACCoupled() Small-Signal AC Analysis on page 96 (Continued)

Hz
1386 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Top Levels of Command File
MaxVstep =<float> ! Maximum-allowed voltage step.

MinCurrent =<float> ! Lower current limit.

MinStep =<float> 1e-5 Minimum step for the internal arc length variable.

MinVoltage =<float> ! Lower voltage limit.

MinVoltageStep =<float> 1e-2 Minimum voltage step controlling arc length step increase.

Name =<ident> Electrode to bias in continuation. It must be specified.

Normalized Compute angles in a local scaled I–V coordinate system.

Rfixed =<float> 0.001 Fixed resistor value.

Table 189 Coupled() Coupled Command on page 136

CheckRhsAfterUpdate Check whether the RHS can be reduced further after the update error 
has converged. If CheckRhsAfterUpdate is specified in the Math 
section, -CheckRhsAfterUpdate can be used to disable it for this 
Coupled command.

Digits =<float> Relative error target.

GridAdaptation Perform grid adaptation. Adaptive Solve Statements on page 1003

( CurrentPlot – Plot data obtained on intermediate grids to current file.

MaxCLoops=<int> 1e5 Maximum number of adaptation iterations.

Plot) – Plot device data on intermediate grids.

IncompleteNewton Incomplete Newton. Incomplete Newton Algorithm on page 140

( RhsFactor=<float> Maximum change in RHS to allow old Jacobian to be reused.

UpdateFactor=<float>
)

Maximum change in update to allow old Jacobian to be reused.

Iterations =<0..> Maximum number of iterations of the Newton algorithm.

LineSearchDamping =<(0,1]> Minimal coefficient for line search damping. 1 disables damping. 
Damped Newton Iterations on page 139

Method =Table 224 Linear solver.

=Blocked Block decomposition solver.

NotDamped =<0..> Number of Newton iterations before Bank–Rose damping is applied. 
Damped Newton Iterations on page 139

RhsAndUpdateConvergence Require both RHS and update error convergence.

Table 188 Continuation() Continuation Command on page 83 (Continued)
Sentaurus™ Device User Guide 1387
N-2017.09



G: Command File Overview 
Top Levels of Command File
In the description column of Table 191, the default for ErrRef (first number; see Table 211 on
page 1403) and its unit, and the default for Error (second number, see Table 211) are given.

RhsMin =<float> Upper bound for RHS norm convergence.

SubMethod [(<ident>)]=Table 224 Super (1D and 2D), ILS (3D)
Inner solver (for device <ident>).

UpdateIncrease =<float> Maximum-allowed increase of update error per Newton step.

UpdateMax =<float> Maximum-allowed update error in Newton algorithm.

Table 190 Cyclic() Large-Signal Cyclic Analysis on page 93

Accuracy =<float> Tolerance .

Extrapolate( Average + Use averaged factor  for each object. Factor  is defined separately 
for each vertex.

Factor=<float> 1 Coefficient  for  estimation.

Forward – Proceed as in a standard transient, without cyclic extrapolation.

MaxVal=<float> 25 Value of .

MinVal=<float> 1 Value of .

Print + Print averaged factors  for each object.

QFtraps) – Apply extrapolation to ‘trap quasi-Fermi level’  instead of trap 
occupation probabilities .

Period =<float>  Period of the cycle.

RelFactor =<float> Relaxation factor .

StartingPeriod =<2..> 2 Period from which the extrapolation procedure starts.

Table 191 Equations

Charge 1.602192e-19  1e-3 Floating gate charge, available for TransientErrRef and 
TransientError only. Floating Gates on page 1035

Circuit 0.0258  1e-3 Circuit equations.

CondInsulator 0.0258  1e-3 Conductive insulator equations.

Contact 0.0258  1e-3 Contact equations.

Electron 1e10  1e-5 Electron continuity equation. Chapter 8, p. 181

eQuantumPotential 0.0258  1e-3 Electron quantum-potential equation.
Density Gradient Quantization Model on page 294

Table 189 Coupled() Coupled Command on page 136 (Continued)

εcyc

rav
o r

f rav
o

rmax

rmin

rav
o

ΦT
fT

s

ϒ

C

V

V

V

cm 3–

V

1388 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Top Levels of Command File
eSHEDistribution 1  1e-3 Electron SHE distribution equation.
Using Spherical Harmonics Expansion Method on page 750

eTemperature 300  1e-4 Electron temperature equation. Hydrodynamic Model for Temperatures on page 195

Hole 1e10  1e-5 Hole continuity equation. Chapter 8, p. 181

hQuantumPotential 0.0258  1e-3 Hole quantum potential equation.
Density Gradient Quantization Model on page 294

hSHEDistribution 1  1e-3 Hole SHE distribution equation.
Using Spherical Harmonics Expansion Method on page 750

hTemperature 300  1e-4 Hole temperature equation. Hydrodynamic Model for Temperatures on page 195

HydrogenAtom 1e10  1e-3 Hydrogen atom transport equation. Hydrogen Transport on page 500

HydrogenIon 1e10  1e-3 Hydrogen ion transport equation. Hydrogen Transport on page 500

HydrogenMolecule 1e10  1e-3 Hydrogen molecule transport equation. Hydrogen Transport on page 500

LLG Landau–Lifshitz–Gilbert equation. Chapter 30, p. 805

Mechanics Mechanical stress equation. Mechanics Solver on page 890

Poisson 0.0258  1e-3 Poisson equation. Electrostatic Potential on page 173

SingletExciton Singlet exciton equation. Singlet Exciton Equation on page 235

TCircuit Thermal circuit equations.

TContact Thermal contact equations.

Temperature 300  1e-3 Temperature equation. Chapter 9, p. 189

Traps 1e-5  1e-3 Explicit trap equation. Trap-to-Trap Tunneling on page 461

Table 192 Goal{} Quasistationary Ramps on page 74

Charge =<float>  Target charge for contact.

Contact =<string1>.<string2> Name of instance and contact to be ramped.

Current =<float>  Target current for contact.

Device =<string> Name of the device where the parameter will be ramped.

DopingWell (<vector>) Semiconductor well defined by point <vector> where quasi-Fermi 
potential will be ramped.

Table 191 Equations (Continued)

V

K

cm 3–

V

V

K

cm 3–

cm 3–

cm 3–

V

K

1

C

A μmd 3–
Sentaurus™ Device User Guide 1389
N-2017.09



G: Command File Overview 
Top Levels of Command File
DopingWells (Material=<string>) Semiconductor wells in material <string> where quasi-Fermi potential 
will be ramped.

(Region=<string>) Semiconductor wells in the region <string> where quasi-Fermi 
potential will be ramped.

(Semiconductor) All device semiconductor wells where Fermi potential will be ramped.

eQuasiFermi =<float>  Target electron quasi-Fermi potential for semiconductor wells. 
Ramping Quasi-Fermi Potentials in Doping Wells on page 76

hQuasiFermi =<float>  Target hole quasi-Fermi potential for semiconductor wells.
Ramping Quasi-Fermi Potentials in Doping Wells on page 76

Material =<string> Name of material where the parameter will be ramped.

MaterialInterface =<string> Name of material interface where parameter will be ramped.

Model =<string> Name of model for which the parameter will be ramped.

ModelParameter =<string> Parameter path or name of parameter that is ramped when using 
Parameter Ramping on page 573.

Name =<string> Name of contact to be ramped.

=Regexp(<string>) Regular expression for matching contacts.

Node =<string> Name of node for which the voltage will be ramped.

Parameter =<string> Name of parameter that will be ramped.

=<string1>.<string2> Name of instance and parameter that will be ramped. This syntax only 
applies to circuit parameters, but not device parameters.

Power =<float> Target heat for contact.

Region =<string> Name of region where the parameter will be ramped.

RegionInterface =<string> Name of region interface where parameter will be ramped.

Temperature =<float>  Target temperature for contact.

Value =<float> Target value for parameter.

Voltage =<float>  Target voltage for node or contact.

WellContactName =<string> Name of contact defining the well where quasi-Fermi potential will be 
ramped.

Table 192 Goal{} Quasistationary Ramps on page 74 (Continued)

V

V

K

V

1390 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Top Levels of Command File
Table 193 HBCoupled() Harmonic Balance on page 101

Table 189 Coupled() parameters.

CNormPrint + Print instance equation errors per Newton step (MDFT mode only).

Derivative – Use complete Jacobian for HB Newton.

GMRES Use GMRES linear solver; requires Method=ILS.

( MaxIterations=<int> 200 Maximal number of iterations.

Restart=<int> 20 Size of minimization subspace.

Tolerance=<float>) 1e-4 Required residuum reduction.

Initialize =DCMode 0-th harmonic from DC solution; others, zero.

=HBMode All harmonics from previous harmonic balance (HB) solution.

=MixedMode 0-th harmonic from DC; others, from previous HB solution.

Method =ILS Required for GMRES.

=Pardiso Use PARDISO to solve linear system (SDFT mode only).

Name =<string> Name component of plot files. Default is Coupled_<number>, where 
<number> is the global index of all Coupled, ACCoupled, and 
HBCoupled solve entries.

RhsScale (Table 191)=<float> Scaling of RHS in Newton (MDFT mode only).

SolveSpectrum =<string> Referenced solve spectrum (MDFT mode only).

Tone Multiple specification for multitone (MDFT mode only).

( Frequency=<freqspec> !  Base frequency. 
Performing Harmonic Balance Analysis on page 102

NumberOfHarmonics=<int>
)

! Number of harmonics . Eq. 25, p. 101

UpdateScale (Table 191)=<float> Scaling of update in Newton (MDFT mode only).

ValueMin (Table 191)=<float> Lower bound for quantity in time domain (MDFT mode only).

ValueVariation (Table 191)=<float> Allowed variation of quantity in time domain (MDFT mode only).

Hz

H

Sentaurus™ Device User Guide 1391
N-2017.09



G: Command File Overview 
Top Levels of Command File
Table 194 Load(), Plot(), Save(), SpectralPlot() in Solve{} When to Plot on page 123

Current (Difference=<float>)  Only for Continuation simulations. Write save or plot files when 
the difference between the actual and previous plotting current values on 
the continuation contact is greater than the specified Difference.

(Intervals=<int>)  Only for Continuation simulations. Divide the range specified with 
MinCurrent and MaxCurrent of Continuation into <int> intervals, 
and write save or plot files every time the current enters one of these 
intervals.
When LogCurrent is specified in Continuation section, logarithmic 
( ) current range is used. Write save or plot file when 
the current enters a new logarithmic interval.

(LogDifference=<(0,)>)  Only for Continuation simulations. LogCurrent must be specified 
in Continuation section. Write save or plot files when the difference 
between the actual and previous logarithmic plotting current values is 
greater than the specified Difference.

Explicit – Write datasets specified in Plot section only. Explicit is ignored by 
SpectralPlot.

FilePrefix =<string> Prefix of file name. File names consist of the prefix, the instance name, an 
optional local number (depending on Overwrite and noOverwrite), 
and an extension. The default file prefix is save<globalsaveindex> 
for Save and plot<globalplotindex> for Plot.

Iterations =(<int>;...) (0;1;...) Save or plot at certain Plugin iterations.

IterationStep =<int> Save or plot all <int> steps of plugins, quasistationaries, continuations, 
or transients.

Loadable + Write additional information required to load a simulation from a .tdr 
file. Loadable is not supported for SpectralPlot.

noOverwrite off Give each new save or plot file a new name by numbering.

Number =<int> Number of the solution to be retrieved by Load.

Overwrite on Rewrite the same file name at each loop.

Time=( <float> Time point for plot. When to Plot on page 123

decade Use logarithmic range subdivision. When to Plot on page 123

intervals=<int> Number of subdivisions. When to Plot on page 123

range=(<float>*2);...) Plotting range. When to Plot on page 123

A

A

10
100

current( )asinh

A

1392 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Top Levels of Command File
Voltage (Difference=<float>)  Only for Continuation simulations. Write save or plot files when 
the difference between current and previous plotting voltages is greater 
than the specified Difference.

(Intervals=<int>) Only for Continuation simulations. Divide the range specified with 
MinVoltage and MaxVoltage of Continuation into <int> intervals, 
and write save or plot files every time the voltage enters one of these 
intervals.

When Generate output whenever the target was crossed the between the 
previous and the current iteration ,  or . 
Available for Plot, SpectralPlot, Save, and CurrentPlot inside a 
Quasistationary, Transient, or Continuation.

( Contact=
[<string>.]<string>

[Instance and] contact name for target. The instance name defaults to " ", 
appropriate for single-device simulation.

Current=<float>  Target current .

Node=<string> Node name for target.

Voltage=<float>)  Target voltage .

Table 195 MSConfigs() in Set() in Solve{} Manipulating MSCs During Solve on page 486

Frozen + Freeze MSCs.

MSConfig Set occupations for the specified MSC.

( Device=<string> Device instance name to where the MSC belongs.

Name=<string> Name of MSC.

State(Name=<string> 
Value=<float>)...)

Set occupation of MSC state <string> to given value.

Table 196 Plugin() Plugin Command on page 145

BreakOnFailure Stop when an inner Coupled fails.

Digits =<float> Relative precision target.

Iterations =<int> Maximum number of iterations.
0 is used to perform one loop without error testing.

Table 194 Load(), Plot(), Save(), SpectralPlot() in Solve{} When to Plot on page 123
 (Continued)

V

i Xi 1– XT Xi≤< Xi 1– XT Xi≥>

A XT

V XT
Sentaurus™ Device User Guide 1393
N-2017.09



G: Command File Overview 
Top Levels of Command File
Table 197 Quasistationary() Quasistationary Ramps on page 74

AcceptNewtonParameter Apply relaxed Newton parameters.
Relaxed Newton Method on page 143

( ReferenceStep=<float>) 1.e-9 Apply relaxed Newton parameters for step size < 
ReferenceStep.

BreakCriteria{ Table 214} Break criteria. Break Criteria: Conditionally Stopping the 
Simulation on page 71

Decrement =<float> 2 Divisor for the step size when last step failed.

DoZero +| – The equations are solved for .

Extraction{ Table 20} List of voltage-dependent extraction curves.
Extraction File on page 126

Extrapolate Use extrapolation. Extrapolation on page 81

( Order=<int>) 1 Order of extrapolation.

Goal{ Table 192} Goal for ramping.

GridAdaptation Perform grid adaptation. Adaptive Solve Statements on 
page 1003

( CurrentPlot – Write currents obtained on intermediate grids.

Iterations=(<int>;...) Adapt grid at given iterations.

IterationStep=<int> 1 Adapt grid any <int> steps.

MaxCLoops=<int> 1e5 Maximum number of adaptation iterations.

Plot – Plot device data on intermediate grids.

Time=(Range=
(<float>*2);...))

Adapt grid when time falls into a given range.

Increment =<float> 2 Multiplier for the step size when last step was successful.

InitialStep =<float> 0.1 Initial step size.

MaxStep =<float> 1 Maximum step size.

MinStep =<float> 0.001 Minimum step size.

NewtonPlotStep =<float> Upper limit for step size for which to write Newton plot files. 
NewtonPlot on page 154

NonlocalPath (Table 229) Dynamic Nonlocal Path Band-to-Band Tunneling Model on 
page 436, Handling of Derivatives on page 442

t 0=
1394 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Top Levels of Command File
NOTE Multiple entries from Table 198 must be specified in multiple Set()
definitions, because Set() only takes a single option. 

Plot{ Intervals=<int> ! Number of intervals in Range. Saving and Plotting During a 
Quasistationary on page 81

Range=(<float>*2)} ! Range of  for which to generate plots.

PlotBandstructure as Plot Plot band structure data in an LED simulation.

PlotLEDRadiation as Plot Optical far field of LED. 

PlotGain as Plot Plot stimulated and spontaneous emission data in LED 
simulation.

ReadExtrapolation + Try to use the extrapolation information from a previous 
Quasistationary if it is available and compatible.
Extrapolation on page 81

SaveOptField as Plot Save optical field data in an LED simulation.

SpectralPlot as Plot Plot spectral simulation results.
Illumination Spectrum on page 536

StoreExtrapolation + Store the extrapolation information internally at the end of the 
Quasistationary. Extrapolation on page 81

Table 198 Set() in Solve{}

<ident> =<float> Set node. Mixed-Mode Electrical Boundary Conditions on page 69

<ident>.<string> =<float> Set parameter <string> of compact circuit instance <ident>.
Mixed-Mode Electrical Boundary Conditions on page 69

<ident> mode Charge Use charge boundary condition for contact <ident>.
Changing Boundary Condition Type During Simulation on page 68

<ident> mode Current Use current boundary condition for contact <ident>.
Changing Boundary Condition Type During Simulation on page 68

<ident> mode Voltage Use voltage boundary condition for contact <ident>.
Changing Boundary Condition Type During Simulation on page 68

MSConfigs( Table 195) Set MSCs. Manipulating MSCs During Solve on page 486

(PreFactor =<float>
[Device=<string>] 
[MSConfig=<string>] 
[Transition=<string>])

Set MSC transition prefactors for emission, capture, or both using 
EPreFactor, CPreFactor, or PreFactor, respectively. 
Manipulating Transition Dynamics on page 487

eSHEDistributions( Frozen) Freeze or unfreeze (-Frozen) the electron distribution function. 
Using Spherical Harmonics Expansion Method on page 750

hSHEDistribution( Frozen) Freeze or unfreeze (-Frozen) the hole distribution function.
Using Spherical Harmonics Expansion Method on page 750

Table 197 Quasistationary() Quasistationary Ramps on page 74 (Continued)

t

Sentaurus™ Device User Guide 1395
N-2017.09



G: Command File Overview 
Top Levels of Command File
HydrogenAtom =<string> Set the concentration of hydrogen atom.
Hydrogen Transport on page 500

HydrogenIon =<string> Set the concentration of hydrogen ion.
Hydrogen Transport on page 500

HydrogenMolecule =<string> Set the concentration of hydrogen molecule.
Hydrogen Transport on page 500

TrapFilling =Table 203 Set trap filling. Explicit Trap Occupation on page 468

Traps( Table 203) Set traps. Explicit Trap Occupation on page 468

Table 199 Standalone

Optics Optical problem.

Wavelength Update wavelength according to optical problem.

Table 200 Time conditions Time-Stepping on page 89, When to Write to the Current File on 
page 107, When to Plot on page 123

<float>  A time point.

Range=(<float>*2) Interval on time axis.

Range=(<float>*2) Intervals=<int> [Decade | Linear*] Subdivided interval on time axis. Subdivision on 
logarithmic or linear scale.

Table 201 Transient() Transient Command on page 87

Table 232 Time step control.

AcceptNewtonParameter Apply relaxed Newton parameters.
Relaxed Newton Method on page 143

( ReferenceStep=<float>) 1.e-9  Apply relaxed Newton parameters for step size < 
ReferenceStep.

BreakCriteria{ Table 214} Break criteria. Break Criteria: Conditionally Stopping the 
Simulation on page 71

Cyclic( Table 190) Cyclic analysis. Large-Signal Cyclic Analysis on page 93

Decrement =<float> 2 Divisor for the step size when last step failed.

FinalTime =<float>  Final time.

Table 198 Set() in Solve{} (Continued)

s

s

s

1396 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Top Levels of Command File
Increment =<float> 2 Multiplier for the step size when last step was successful.

InitialStep =<float> 0.1  Initial step size.

InitialTime =<float> 0  Start time.

MaxStep =<float> 1  Maximum step size.

MinStep =<float> 0.001  Minimum step size.

NewtonPlotStep =<float> Upper limit for step size for which to write Newton plot files.
NewtonPlot on page 154

NonlocalPath (Table 229) Dynamic Nonlocal Path Band-to-Band Tunneling Model on 
page 436, Handling of Derivatives on page 442

Plot{ Intervals=<int> Number of intervals in Range.

Range=(<float>*2)}  Range of  for which to generate plots. Saving and Plotting 
During a Quasistationary on page 81

ReadExtrapolation + Try to use the extrapolation information from a previous 
Transient if it is available and compatible.
Extrapolation on page 81

SpectralPlot as Plot Plot spectral simulation results.
Illumination Spectrum on page 536

StoreExtrapolation + Store the extrapolation information internally at the end of 
the Transient. Extrapolation on page 81

TurningPoints( (<float1> <float2>)... Time point <float1> and associated advancing time-step 
limit <float2>.

(Condition(Time(Table 200 
[; Table 200]...))
Value=<float> )... )

Time point conditions and associated advancing time-step limit 
Value.

Table 202 TrapFilling= in Set() in Solve {} Explicit Trap Occupation on page 468

0 Set trap occupation to be in equilibrium with zero electron and hole concentration.

-Degradation Return trap concentrations to initial values. Device Lifetime and Simulation on page 496

Empty (deprecated) Set all traps to empty.

Frozen Keep the current trap occupation unchanged until the next Set or UnSet.

Full (deprecated) Set all traps to fully occupied.

Table 201 Transient() Transient Command on page 87 (Continued)

s

s

s

s

s t
Sentaurus™ Device User Guide 1397
N-2017.09



G: Command File Overview 
Top Levels of Command File
System

n (deprecated) Set trap occupation to be in equilibrium with a very high electron and zero hole 
concentration.

p (deprecated) Set trap occupation to be in equilibrium with a very high hole and zero electron 
concentration.

Table 203 Traps() in Set() in Solve {} Explicit Trap Occupation on page 468

[<string1>.]<string2>=<float>... Set occupation of trap <string2> of device <string1> to specified value.

[<string1>.]value=<float>... Set occupation of traps of device <string1> to specified value.

Frozen + Freeze traps.

Table 204 System{} System Section on page 55

<ident1> <ident2>
(<string>=<ident3>...)

Create device instance <ident2> from device <ident1> and 
connect electrode <string> to node <ident3>.

<ident1> <ident2>(<ident3>...){
<ident4>=<pvalue>...}

Create instance <ident2> from parameter set <ident1>, connect 
terminals to nodes <ident3>, and override parameter <ident4> by 
<pvalue>, the type of which depends on the parameter.

<ident1> <ident2>(OpticalDevice 
= ["<optdev1" ...])
{<ident3>=<pvalue>...}

Create instance <ident2> from parameter set <ident1>, connect 
instance to optical device instances <optdev1>, and override 
parameter <ident4> by <pvalue>, the type of which depends on 
the parameter.

ACPlot( Table 205) Define circuit quantities for AC analysis output.
AC System Plot on page 61

Electrical (<ident>...) List of electrical nodes. System Section on page 55

HBPlot [<string>](Table 205) Define circuit quantities for HB analysis output.
Harmonic Balance on page 101

Hint( <ident>=<float>) Set node only for the first solve. 
Set, Unset, Initialize, and Hint on page 60

Initialize( <ident>=<float>) Set node until first transient. 
Set, Unset, Initialize, and Hint on page 60.

Netlist =<string> HSPICE netlist file. Netlist Files on page 45

Plot [<string>] (Table 205) Plot circuit quantities to file named <string>.

Table 202 TrapFilling= in Set() in Solve {} Explicit Trap Occupation on page 468 (Continued)
1398 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Boundary Conditions
Boundary Conditions

Set( <ident>=<float> Set node. Set, Unset, Initialize, and Hint on page 60

<ident>.<string>=
<float>)

Set parameter <string> of compact circuit instance <ident>.

Thermal (<ident>...) List of thermal nodes. System Section on page 55

Unset( <ident>) Unset node. Set, Unset, Initialize, and Hint on page 60

Table 205 Plot(), ACPlot(), and HBPlot() in System{} System Plot on page 61, AC System 
Plot on page 61, Harmonic Balance on page 101

<ident> Print the voltage at node <ident>.

freq () Print the current AC analysis frequency.

h (<ident1> <ident2>) Print the heat that exits device <ident1> through node <ident2>.

i (<ident1> <ident2>) Print the current that exits device <ident1> through node <ident2>.

p (<ident1> <ident2>) Print attribute <ident2> of circuit element <ident1>.

t (<ident>) Print the temperature at node <ident>.

(<ident1> <ident2>) Print the temperature difference between two given nodes.

time () Print the current time in transient analysis, or quasistationary t parameter 
for frequency-domain analysis.

v (<ident>) Print the voltage at node <ident>.

(<ident1> <ident2>) Print the voltage difference between two given nodes.

Table 206 Electrode{} Specifying Electrical Boundary Conditions on page 67

AreaFactor =<float> 1 Multiplier for electrode current. Reading a Structure on page 9

Barrier =<float>  Barrier voltage.

Charge =<float>  Charge for floating electrode. Voltage must not be specified. 
Floating Contacts on page 223

=(<float1> At 
<float2>[,] ...)

 Transient charge behavior. A list of pairs of charges <float1> at 
time <float2>, piecewise linearly interpolated.

Table 204 System{} System Section on page 55 (Continued)

V

C

C s,
Sentaurus™ Device User Guide 1399
N-2017.09



G: Command File Overview 
Boundary Conditions
Current =<float>  Current boundary condition. Voltage is used as initial guess 
only.

=(<float1> At 
<float2>[,] ...)

 Transient current behavior. A list of pairs of currents 
<float1> at time <float2>, piecewise linearly interpolated.

DistResist =<float>  Distributed resistance. Resistive Contacts on page 213

=SchottkyResist Use Schottky contact resistance model. Resistive Contacts on page 213

eRecVelocity =<[0,)> 2.573e6  Electron recombination velocity.
Schottky Contacts on page 204

Extraction{ bulk Specify electrode as bulk for extraction purposes.
Extraction File on page 126

drain Specify electrode as drain for extraction purposes.
Extraction File on page 126

gate Specify electrode as gate for extraction purposes.
Extraction File on page 126

source} Specify electrode as source for extraction purposes.
Extraction File on page 126

FGcap=( value=<float>  Additional capacitance for floating electrode.
Floating Metal Contacts on page 223

name=<string>) Coupling to electrode <string>. Floating Metal Contacts on page 223

hRecVelocity =<[0,)> 1.93e6  Hole recombination velocity. 
Schottky Contacts on page 204

Material =<string> Electrode material. Contacts on Insulators on page 203

=<string> (N=<(0,)>)  Electrode material with n-doping. 
Contacts on Insulators on page 203

=<string> (P=<(0,)>)  Electrode material with p-doping. 
Contacts on Insulators on page 203

Name =<string> Name of electrode.

=Regexp(<string>) Regular expression for matching structure contacts.

Poisson =Dirichlet * Use Dirichlet-like boundary condition for Poisson equation.

=Neumann Use homogeneous Neumann boundary condition for Poisson equation at 
Ohmic contacts.

Resist =<float>  Contact resistance. Resistive Contacts on page 213

Schottky off Contact is a Schottky contact. Schottky Contacts on page 204

SRDoping Include the image force lowering of the potential energy barrier at 
Schottky contact. Resistive Contacts on page 213

Table 206 Electrode{} Specifying Electrical Boundary Conditions on page 67 (Continued)

Aμm
d 3–

Aμm
d 3–

, s

Ωcm
2

cms
1–

Fμm
d 3–

cms
1–

cm
3–

cm
3–

Ωμm
3 d–
1400 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Boundary Conditions
Voltage =<float>  Contact voltage.

=(<float1> At 
<float2>[,] ...)

 Transient voltage behavior. A list of pairs of voltages <float1> at 
time <float2>, piecewise linearly interpolated.

Workfunction =<float>  Electrode workfunction. Contacts on Insulators on page 203

Table 207 HydrogenBoundary{} Boundary Conditions on page 502

HydrogenAtom =<float>  Boundary concentration.

=reflective Homogeneous Neumann boundary condition

HydrogenIon =<float>  Boundary concentration.

=reflective Homogeneous Neumann boundary condition.

HydrogenMolecule =<float>  Boundary concentration.

=reflective Homogeneous Neumann boundary condition.

Name =<string> Name of the hydrogen contact.

Table 208 RayTraceBC{} Boundary Condition for Raytracing on page 605

Fresnel Fresnel boundary condition.

Name =<string> Name of the reflectivity contact or photon-recycling contact.

LayerStructure{ <float> <string>
[; <float> <string>]
...}

Definition of multilayer structure used for TMM calculation. First 
column contains thickness of layer in . Second column contains 
material name of layer.

MapOptGenToRegions( <string> <string>
...)

Specify list of regions to map the lumped TMM BC optical generation to.

PMIModel =<ident> 
[(Table 341)]

Name of the PMI model associated with this BC contact.

QuantumEfficiency =<float> Define the quantum efficiency of the TMM BC optical generation.

ReferenceMaterial =<string> Definition of LayerStructure orientation. The topmost layer in the 
LayerStructure specification is connected to the region with material 
ReferenceMaterial.

ReferenceRegion =<string> Definition of LayerStructure orientation. The topmost layer in the 
LayerStructure specification is connected to the region with name 
ReferenceRegion.

Reflectivity =<[0,1]> 0 Reflectivity.

Table 206 Electrode{} Specifying Electrical Boundary Conditions on page 67 (Continued)

V

V,s

eV

cm
3–

cm
3–

cm
3–

μm
Sentaurus™ Device User Guide 1401
N-2017.09



G: Command File Overview 
IFM
IFM

{Side ="X" Periodic} Define periodic BC at opposing x-surfaces.
Periodic Boundary Condition on page 614

="Y" Periodic} Define periodic BC at opposing y-surfaces.

="Z" Periodic} Define periodic BC at opposing z-surfaces.

Transmittivity =<[0,1]> 0 Transmittivity.

Table 209 Thermode{} Boundary Conditions for Lattice Temperature on page 226

AreaFactor =<float> 1 Multiplier for heat fluxes. Reading a Structure on page 9

Name =<string> Name of thermode.

=Regexp(<string>) Regular expression for matching structure contacts.

Power =<float>  Heat flux boundary condition.

SurfaceConductance =<float>  Contact thermal conductance.

SurfaceResistance =<float>  Contact thermal resistivity.

Temperature =<float>  Contact temperature.

Table 210 IFM{} IFM Section on page 707

DeterministicVariation( Table 285) (g) Deterministic variations. 
Deterministic Doping Variations on page 703

Noise [<string>] (Table 313) (r) Noise sources. Noise Sources on page 680

RandomizedVariation <string> (Table 319) (g) Set sIFM models.
Statistical Impedance Field Method on page 691

Table 208 RayTraceBC{} Boundary Condition for Raytracing on page 605 (Continued)

Wcm
2–

cm
2–
K

1–
W

cm
2
KW

1–

K

1402 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Math
Math

Table 211 Math{}

Table 232 Transient time-step control.

AcceptNewtonParameter ( Table 212) (g) Relaxed Newton method.
Relaxed Newton Method on page 143

ACMethod =Blocked * Use block decomposition solver for ACCoupled.

ACSubMethod =Table 224 Inner linear solver for Blocked method for 
ACCoupled.

AllowLayerThickness =Everywhere (g) Account for LayerThickness in all materials. 
LayerThickness Command on page 310

=Insulator (g) Account for LayerThickness in insulators only.

=Metal (g) Account for LayerThickness in metals only.

=Semiconductor * (g) Account for LayerThickness in 
semiconductors only.

AnisoSG off (g) Use anisotropic Scharfetter–Gummel 
approximation for anisotropic models.
Chapter 28, p. 779

AutoCNPMinStepFactor 2.0 (g) Multiplier of MinStep for the automatic 
activation of CNormPrint. Automatic Activation of 
CNormPrint and NewtonPlot on page 155

AutomaticCircuitContact on Poisson covers the circuit. Additional Equations 
Available in Mixed Mode on page 141

AutoNPMinStepFactor 2.0 (g) Multiplier of MinStep for the automatic 
activation of NewtonPlot. Automatic Activation of 
CNormPrint and NewtonPlot on page 155

AutoOrientation =(<int>...) Miller indices for surface orientations supported by 
AutoOrientation. Changing Orientations Used 
With Auto-Orientation on page 38

AutoOrientationSmoothing
Distance

=<float> 0.0  (r) Auto-orientation smoothing distance. 
Auto-Orientation Smoothing on page 38

AvalFlatElementExclusion =<float> 0.0 degree (g) Exclude elements from contributing to 
avalanche generation.
Using Avalanche Generation on page 413

AvalDerivatives + Compute analytic derivatives of avalanche 
generation. Derivatives on page 140

μm
Sentaurus™ Device User Guide 1403
N-2017.09



G: Command File Overview 
Math
AvalPostProcessing off Impact ionization–generated carriers are not 
included self-consistently in the solution. 
Approximate Breakdown Analysis With Carriers on 
page 430

AverageAniso + (g) Use average-aniso approximation for 
anisotropic models. Chapter 28, p. 779

AverageBoxMethod + Use element-oriented element intersection box 
method algorithm. If disabled, use quadrilateral box 
method algorithm. Box Method Coefficients in 3D 
Case on page 1013

BM_ExtendedPrecision + Use “long double” precision to compute box 
method coefficients and control volumes.
Extended Precision on page 1012

BoxCoefficientsFromFile [(GrdNumbering)] Try to read sections of the geometry file. Saving and 
Restoring Box Method Coefficients on page 1021

BoxMeasureFromFile [(GrdNumbering)] Try to read sections of the geometry file. Saving and 
Restoring Box Method Coefficients on page 1021

BoxMethodFromFile + Read Voronoï surface from this file if the grid file 
has a VoronoiFaces section.
Box Method Coefficients in 3D Case on page 1013

BreakAtIonIntegral (<int> <float>) 1 1 Terminate the quasistationary simulation when 
the <int> largest ionization integrals are greater than 
<float>. Approximate Breakdown Analysis on 
page 428

BreakCriteria{ Table 214} Break criteria. Break Criteria: Conditionally Stopping 
the Simulation on page 71

BroadeningIntegration(
GaussianQuadrature(Order

=<int>)) Use Gaussian quadrature to integrate the broadening 
spectrum of an LED simulation. Accelerating Gain 
Calculations and LED Simulations on page 930

CDensityMin 3e-8  (r) Current limit for parallel electric-
field computation. Electric Field Parallel to the 
Interface on page 371

CheckRhsAfterUpdate – Check whether the RHS can be reduced further 
after the update error has converged.
Convergence and Error Control on page 137

CheckUndefinedModels + (g) Check for undefined physical parameters. 
Undefined Physical Models on page 33

CNormPrint (g) Convergence monitoring. 
CNormPrint on page 154

ComputeDopingConcentration – (g) Recompute net doping based on individual 
doping species. Doping Specification on page 11

Table 211 Math{} (Continued)

Acm2
1404 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Math
ComputeGradQuasiFermiAt
Contacts

=UseElectrostaticPotential * Use the electrostatic potential to compute the 
GradQuasiFermi driving force within elements 
touching a contact. Eq. 353, p. 370

=UseQuasiFermi Use the quasi-Fermi potential to compute the 
GradQuasiFermi driving force within elements 
touching a contact. Eq. 352, p. 370

ComputeIonizationIntegrals off Compute ionization integrals for paths that cross 
local field maxima in a semiconductor. 
Approximate Breakdown Analysis on page 428

(WriteAll) off Output information for all computed paths.

ConstRefPot =<float>  Value for . Quasi-Fermi Potential With 
Boltzmann Statistics on page 175

CoordinateSystem{ Table 1} (g) Coordinate system of explicit coordinates in 
command file. Reading a Structure on page 9

cT_Range =(<float*2) 10 80000  (g) Lower and upper limit for carrier 
temperature. Numeric Parameters for Temperature 
Equations on page 199

CurrentPlot( Digits=<float> 6 Number of digits in the names of quantities in the 
current plot file. CurrentPlot Options on page 114

IntegrationUnit=<string>) um Length unit for current plot integration.
CurrentPlot Options on page 114

CurrentWeighting off Compute contact currents using an optimal 
weighting scheme. Numeric Approaches for Contact 
Current Computation on page 185

Cylindrical (<float>) off Use the 2D mesh to simulate a 3D cylindrical 
device. The device is assumed to be rotationally 
symmetric around the vertical axis given by 

. <float> must be less than or 
equal to the smallest horizontal device coordinate, 
and defaults to 0. Reading a Structure on page 9

(xAxis=<float>) This is same as (<float>).

(yAxis=<float>) The device is assumed to be rotationally symmetric 
around the horizontal axis given by 

. <float> must be less than or 
equal to the smallest vertical device coordinate.

DensityIntegral (<int>) 30 (g) Defines a number of Gauss–Laguerre 
quadrature integration points.
Using Multivalley Band Structure on page 270

DensLowLimit =<float> 1e-100  (g) Lower limit for carrier densities. 
Numeric Parameters for Continuity Equation on 
page 184

Table 211 Math{} (Continued)

eV φref

K

x <float>μm=

y <float>μm=

cm 3–
Sentaurus™ Device User Guide 1405
N-2017.09



G: Command File Overview 
Math
Derivatives + Compute analytic derivatives of mobility and 
avalanche generation. Derivatives on page 140

Digits =<float> 5 Approximate number of digits to which equations 
must be solved to be considered as converged. 
Convergence and Error Control on page 137

DirectCurrent off Compute contact currents directly, using only 
contact nodes and their neighbors. 
Numeric Approaches for Contact Current 
Computation on page 185

DualGridInterpolation (Method=Conservative) Use conservative element-based interpolation for 
dual-grid simulations. Dual-Grid Setup for 
Raytracing on page 623, Single-Grid Versus Dual-
Grid LED Simulation on page 922

(Method=Simple) Use bilinear vertex-based interpolation for dual-grid 
simulations. Dual-Grid Setup for Raytracing on 
page 623, Single-Grid Versus Dual-Grid LED 
Simulation on page 922

eB2BGenWithinSelectedRegions + (g) Restrict nonlocal path band-to-band electron 
generation to regions where model is active. Dynamic 
Nonlocal Path Band-to-Band Tunneling Model on 
page 436

eDrForceRefDens =<[0,)> 0  (r) Damping parameter for high-field 
mobility driving force, alias for 
RefDens_eGradQuasiFermi_Zero.
Interpolation of Driving Forces to Zero Field on 
page 373

ElementEdgeCurrent – (g) Use an alternative element-edge approximation 
of the current density compared to the default edge 
approximation.

ElementVolumeAvalanche – (g) Use truncated element-vertex volumes for 
avalanche generation.
Using Avalanche Generation on page 413

eMobilityAveraging =Element * (r) Use element averaged electron mobility. 
Mobility Averaging on page 384

=ElementEdge (r) Use element-edge averaged electron mobility. 
Mobility Averaging on page 384

EnormalInterface( MaterialInterface=
[<string>...]

Material interfaces for normal electric field 
computation. Normal to Interface on page 355

RegionInterface=
[<string>...])

Region interfaces for normal electric field 
computation. Normal to Interface on page 355

Table 211 Math{} (Continued)

cm
3–
1406 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Math
EparallelToInterface( Options for EparallelToInterface driving force. 
Electric Field Parallel to the Interface on page 371

Direction=<vector> ! Direction of the current.

Box=(<vector> <vector>)) Restrict Direction vector to vertices contained in 
box.

EquilibriumSolution( Table 220) (g) Parameters for equilibrium solution used with 
conductive insulators. 
Conductive Insulators on page 244

Error (Table 191)=<float> Value of . Convergence and Error Control on 
page 137

ErrRef (Table 191)=<float> Value of . Convergence and Error Control on 
page 137

ExitOnFailure (g) off Terminate the simulation as soon as a Solve 
command fails.

ExitOnUnknownParameterRegion + (g) Exit when unknown region, region interface, or 
electrode appears in parameter file.

-ExitOnUnknownParameterRegion off (g) Print warning message when unknown region, 
region interface, or electrode appears in parameter 
file.

ExtendedPrecision [(Table 26)] (g) off Use extended precision floating-point 
arithmetic. Extended Precision on page 168

Extrapolate( off Use extrapolation to obtain an initial guess for the 
next solution based on the previous solutions. 
Extrapolation on page 81, Extrapolation on page 91

Order=<int>) 1 Order of extrapolation in quasistationary command.

GeometricDistances + (g) Use enhanced distance and normal to interface 
computation for mobility and MLDA. Normal to 
Interface on page 355

HB {Table 223} Harmonic Balance on page 101; not device specific.

hDrForceRefDens =<[0,)> 0  (r) Damping parameter for high-field 
mobility driving force, alias for 
RefDens_hGradQuasiFermi_Zero.
Interpolation of Driving Forces to Zero Field on 
page 373

hMobilityAveraging =Element (r) Use element averaged hole mobility.
Mobility Averaging on page 384

=ElementEdge * (r) Use element-edge averaged hole mobility.
Mobility Averaging on page 384

Table 211 Math{} (Continued)

εA

xref

cm
3–
Sentaurus™ Device User Guide 1407
N-2017.09



G: Command File Overview 
Math
IgnoreTdrUnits off (g) Ignore TDR units when loading data from 
a .tdr file. Reading a Structure on page 9

ILSrc =<string> ILS options. Linear Solvers on page 145

ImplicitACSystem - (g) Construct implicit AC system.
AC Analysis in Single-Device Mode on page 99

IncompleteNewton – (g) Incomplete Newton. 
Incomplete Newton Algorithm on page 140

( RhsFactor=<float> 10 Maximum change in RHS to allow old Jacobian to 
be reused.

UpdateFactor=<float>) 0.1 Maximum change in update to allow old 
Jacobian to be reused.

Interrupt =BreakRequest Write .tdr or .sav file and abort actual solve 
statement after signal INT occurs.
Snapshots on page 124

=PlotRequest Write .tdr or .sav file and continue simulation after 
signal INT occurs. Snapshots on page 124

Iterations =<0..> 50 Maximum number of Newton iterations.
Convergence and Error Control on page 137

LineSearchDamping =<(0,1]> 1 Smallest allowed damping coefficient for line 
search damping. 
Damped Newton Iterations on page 139

lT_Range =(<float*2) 50 5000  (g) Lower and upper limit for lattice 
temperature. Numeric Parameters for Temperature 
Equations on page 199

MeshDomain <string> (Table 225...) Define a named mesh domain.
Mesh Domains on page 1002

MetalConductivity + Conductivity of metals. The thermal conductivity is 
simulated in any case.
Transport in Metals on page 239

Method =Table 224 Linear solver for Coupled.

=Blocked * Use block decomposition solver for Coupled. 
Linear Solvers on page 145

MixAverageBoxMethod – Use mix average box method algorithm.
Box Method Coefficients in 3D Case on page 1013

MLDAbox({ Table 226}...) A box within which the interface is confined for the 
calculation of the MLDA distance function.
Modified Local-Density Approximation on page 300

Table 211 Math{} (Continued)

K

1408 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Math
MLDAMinDistanceToContact =<float> 75e-8  (g) Minimum distance to contact where 
MLDA model is switched off.
MLDA Model on page 300

MVMLDAcontrols( Table 227) Multivalley MLDA controlling options.
Using MLDA on page 304

NaturalBoxMethod – Use edge-oriented element intersection BM 
algorithm. Box Method Coefficients in 3D Case on 
page 1013

NewtonPlot (g) Convergence monitoring. 
NewtonPlot on page 154

( Error Write the error of all solution variables.

MinError Write file only if error decreases.

NewtonPlotStep=
<float>

Upper limit for step size for which to write files.

Plot Write everything specified in the Plot section.
Device Plots on page 122

Residual Write the residuals (right-hand sides) of all equations.

Update) Write the updates of all solution variables from the 
previous step.

NoAutomaticCircuitContact off (g) Poisson excludes the circuit. Additional 
Equations Available in Mixed Mode on page 141

NonLocal (Table 228) (cir) Nonlocal mesh. Nonlocal Meshes on page 146

<string> (Table 228) (g) Named nonlocal mesh. 

NonLocalLengthLimit =<float> 1e-4  (g) Limit for nonlocal line length.
Nonlocal Meshes on page 146

NonLocalPath (Table 229) Dynamic Nonlocal Path Band-to-Band Tunneling 
Model on page 436, Handling of Derivatives on 
page 442

NormalFieldCorrection =<float> (r) Normal field correction factor for mobility on 
interface points. 
Field Correction on Interface on page 356

NoSRHperPotential off Omit potential derivatives of SRH recombination 
rate. Using Field Enhancement on page 396

NoSRHperT off Omit temperature derivatives of SRH 
recombination rate. 
Using Field Enhancement on page 396

Table 211 Math{} (Continued)

μm

cm
Sentaurus™ Device User Guide 1409
N-2017.09



G: Command File Overview 
Math
NotDamped =<0..> 1000 (g) Number of iterations in each Newton 
iteration before Bank–Rose damping is activated. 
Damped Newton Iterations on page 139

NumberOfAssemblyThreads =<int> 1 (g) Number of threads for linear solver. 
Parallelization on page 166

NumberOfSolverThreads =<int> 1 (g) Number of threads for assembly.
Parallelization on page 166

NumberOfThreads =<int> 1 (g) Number of threads for linear solver and 
assembly. Parallelization on page 166

Numerically [(Table 191...)] off (g) Use numeric derivatives. The optional list 
restricts the numeric computation to specific Jacobian 
blocks. Derivatives on page 140

ParallelLicense (Table 25) (g) Determine the behavior if insufficient parallel 
licenses are available.

ParallelToInterfaceInBoundary
Layer

+ (r) Controls the computation of driving forces for 
mobility and avalanche models along interfaces.
Field Correction Close to Interfaces on page 375

( ExternalBoundary + Include the external boundary in the interface for 
which this feature applies.

ExternalXPlane + Include external x-planes in the interface for which 
this feature implies.

ExternalYPlane + Include external y-planes in the interface for which 
this feature implies.

ExternalZPlane + Include external z-planes in the interface for which 
this feature implies.

FullLayer off Apply switch to all elements that touch an 
interface either by a face, an edge, or a vertex.

Interface + Include semiconductor–insulator region interfaces 
in the interface for which this feature applies.

PartialLayer) on Apply switch only to elements that touch an 
interface by an edge (2D) or a face (in 3D).

ParameterInheritance =Flatten * Region parameters inherit materialwise parameter 
settings. Combining Parameter Specifications on 
page 30

=None Region parameter settings cause materialwise settings 
to be ignored.

Table 211 Math{} (Continued)
1410 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Math
PeriodicBC (g) Periodic boundary conditions (PBCs).
Periodic Boundary Conditions on page 227

(( Table 191 Equation for which to apply PBCs. If omitted, apply 
to all equations (RPBC only).

Coordinates=(<float>*2)  Coordinate of Direction axis where the PBCs 
will be applied. Sentaurus Device replaces 
coordinates outside the device with coordinates at the 
outer boundary (RPBC only).

Direction=<0..2> Direction of periodicity: 0 for x-axis, 1 for y-axis, and 
2 for z-axis.

Factor=<float> 1e8 Tuning parameter  (RPBC only).

MortarSide=<side> XMin | YMin | ZMin Mortar side with <side> one of 
XMin, XMax, YMin, YMax, ZMin, or ZMax (MPBC 
only).

Type=<type>)...) RPBC Select PBC mode where <type> is one of 
RPBC or MPBC.

PlotExplicit – (g) All Plot statements write datasets specified in 
Plot section only.

PlotLoadable + (g) All Plot statements write additional 
information required to load a simulation from a .tdr 
file.

PostProcess (Transient=<ident> 
[(Table 341)])

(g) Use PMI <ident> to postprocess data. 
Postprocess for Transient Simulation on page 1244

PrintLinearSolver (g) Print additional information regarding the linear 
solver being used. Linear Solvers on page 145

RandomizedVariation <string> (Table 231) (g) Use statistical impedance field method.
Statistical Impedance Field Method on page 691

RecBoxIntegr (<float> <int> <int>) (1e-2 10 1000)Maximum relative deviation of 
covered volume, maximum number of levels, 
maximum number of total rectangles per box.

RecomputeQFP Keep density variables constant, and recompute 
quasi-Fermi potentials when the electrostatic 
potential changes and carrier equations are not 
solved. Introduction to Carrier Transport Models on 
page 181

RefDens_eEparallel_
ElectricField

=<float> 0  (r) Damping parameter for electron high-
field mobility and avalanche driving forces.
Interpolation of the Eparallel Driving Force on 
page 374 and Interpolation of Avalanche Driving 
Forces on page 426

Table 211 Math{} (Continued)

μm

α

cm
3–
Sentaurus™ Device User Guide 1411
N-2017.09



G: Command File Overview 
Math
RefDens_eEparallel_
ElectricField_Aval

=<float> 0  (r) Damping parameter for electron 
avalanche driving force. Interpolation of Avalanche 
Driving Forces on page 426

RefDens_eEparallel_
ElectricField_HFS

=<float> 0  (r) Damping parameter for the electron high-
field mobility driving force. Interpolation of the 
Eparallel Driving Force on page 374

RefDens_eGradQuasiFermi_
ElectricField

=<float> 0  (r) Damping parameter for electron high-
field mobility and avalanche driving forces.
Interpolation of the GradQuasiFermi Driving Force 
on page 373

RefDens_eGradQuasiFermi_
ElectricField_HFS

=<float> 0  (r) Damping parameter for electron high-
field mobility driving force. Interpolation of the 
GradQuasiFermi Driving Force on page 373

RefDens_eGradQuasiFermi_
EparallelToInterface_HFS

=<float> 0  (r) Damping parameter for electron high-
field mobility driving force. Interpolation of the 
GradQuasiFermi Driving Force on page 373

RefDens_eGradQuasiFermi_Zero =<float> 0  (r) Damping parameter for electron high-
field mobility driving force, alias for 
eDrForceRefDens. Interpolation of Driving Forces 
to Zero Field on page 373

RefDens_Eparallel_
ElectricField

=<float> 0  (r) Damping parameter for electron and hole 
high-field mobility and avalanche driving forces.
Interpolation of the Eparallel Driving Force on 
page 374 and Interpolation of Avalanche Driving 
Forces on page 426

RefDens_Eparallel_
ElectricField_Aval

=<float> 0  (r) Damping parameter for electron and hole 
avalanche driving forces. Interpolation of Avalanche 
Driving Forces on page 426

RefDens_Eparallel_
ElectricField_HFS

=<float> 0  (r) Damping parameter for the electron and 
hole high-field mobility driving forces. Interpolation 
of the Eparallel Driving Force on page 374

RefDens_GradQuasiFermi_
ElectricField

=<float> 0  (r) Damping parameter for electron and hole 
high-field mobility and avalanche driving forces.
Interpolation of the GradQuasiFermi Driving Force 
on page 373

RefDens_GradQuasiFermi_
ElectricField_HFS

=<float> 0  (r) Damping parameter for electron and hole 
high-field mobility driving forces. Interpolation of the 
GradQuasiFermi Driving Force on page 373

RefDens_GradQuasiFermi_
EparallelToInterface_HFS

=<float> 0  (r) Damping parameter for electron and hole 
high-field mobility driving forces. Interpolation of the 
GradQuasiFermi Driving Force on page 373

Table 211 Math{} (Continued)

cm
3–

cm
3–

cm
3–

cm
3–

cm
3–

cm
3–

cm
3–

cm
3–

cm
3–

cm
3–

cm
3–

cm
3–
1412 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Math
RefDens_GradQuasiFermi_Zero =<float> 0  (r) Damping parameter for electron and hole 
high-field mobility driving forces, alias for 
DrForceRefDens. Interpolation of Driving Forces to 
Zero Field on page 373

RefDens_hEparallel_
ElectricField

=<float> 0  (r) Damping parameter for hole high-field 
mobility and avalanche driving forces.
Interpolation of the Eparallel Driving Force on 
page 374 and Interpolation of Avalanche Driving 
Forces on page 426

RefDens_hEparallel_
ElectricField_Aval

=<float> 0  (r) Damping parameter for hole avalanche 
driving force. Interpolation of Avalanche Driving 
Forces on page 426

RefDens_hEparallel_
ElectricField_HFS

=<float> 0  (r) Damping parameter for the hole high-field 
mobility driving force. Interpolation of the Eparallel 
Driving Force on page 374

RefDens_hGradQuasiFermi_
ElectricField

=<float> 0  (r) Damping parameter for hole high-field 
mobility and avalanche driving forces. Interpolation 
of the GradQuasiFermi Driving Force on page 373

RefDens_hGradQuasiFermi_
ElectricField_HFS

=<float> 0  (r) Damping parameter for hole high-field 
mobility driving force. Interpolation of the 
GradQuasiFermi Driving Force on page 373

RefDens_hGradQuasiFermi_
EparallelToInterface_HFS

=<float> 0  (r) Damping parameter for hole high-field 
mobility driving force. Interpolation of the 
GradQuasiFermi Driving Force on page 373

RefDens_hGradQuasiFermi_Zero =<float> 0  (r) Damping parameter for hole high-field 
mobility driving force, alias for hDrForceRefDens.
Interpolation of Driving Forces to Zero Field on 
page 373

RelErrControl + Use relative error control.
Convergence and Error Control on page 137

RelTermMinDensity =<(0,)> 1e3  (g) Stabilization parameter for 
temperature relaxation term.
Hydrodynamic Model Parameters on page 198

RelTermMinZeroDensity =<(0,)> 2e8  (g) Stabilization parameter for 
temperature relaxation term. 
Hydrodynamic Model Parameters on page 198

RhsAndUpdateConvergence – Newton converged if both RHS and update are 
converged.
Convergence and Error Control on page 137

RhsFactor =<float> 1e10 Maximum increase of the -norm of the RHS 
between Newton iterations.
Convergence and Error Control on page 137

Table 211 Math{} (Continued)

cm
3–

cm
3–

cm
3–

cm
3–

cm
3–

cm
3–

cm
3–

cm
3–

cm
3–

cm
3–

L2
Sentaurus™ Device User Guide 1413
N-2017.09



G: Command File Overview 
Math
RhsMax =<float> 1e15 Maximum of -norm of the RHS in each 
Newton iteration. Used only during transient 
simulations.
Convergence and Error Control on page 137

RhsMin =<float> 1e-5 Minimum of -norm of the RHS in each 
Newton iteration.
Convergence and Error Control on page 137

SHECutoff =<[0,)> 5.0 (g) Maximum kinetic energy to be plotted in the 
SHE distribution model. Using Spherical Harmonics 
Expansion Method on page 750

SHEIterations =<0..> 20 (g) Number of iterations in the SHE distribution 
model. Using Spherical Harmonics Expansion 
Method on page 750

SHEMethod =Table 224 super (g) Linear solver for the SHE distribution 
model. Using Spherical Harmonics Expansion 
Method on page 750

SHERefinement =<1..> 1 (g) Number of energy grid intervals inside the 
phonon energy spacing in the SHE distribution 
model. Using Spherical Harmonics Expansion 
Method on page 750

SHESOR + Use the successive over-relaxation method in the 
SHE distribution model. Using Spherical Harmonics 
Expansion Method on page 750

SHESORParameter =<[1,2)> 1.1 (g) Successive over-relaxation parameter in the 
SHE distribution model. Using Spherical Harmonics 
Expansion Method on page 750

SHETopMargin =<[0,)> 1.0 (g) Top energy margin in the SHE distribution 
model. Using Spherical Harmonics Expansion 
Method on page 750

SimStats off (g) Write simulation statistics to current plot file. 
Simulation Statistics for Plotting and Output on 
page 156

(WriteDOE Write simulation statistics as DOE variables.

DOE_prefix=<string>) Use the specified prefix for DOE variables.

Smooth off Keep mobility and recombination rates from the 
previous step to obtain better initial conditions for 
extreme nonlinear iterations.

Spice_gmin =<float> 1e-12  (g) SPICE minimum conductance. 
Mixed-Mode Math Section on page 64

Spice_Temperature =<float> 300.15  (g) Temperature of SPICE circuit. 
Mixed-Mode Math Section on page 64

Table 211 Math{} (Continued)

L2

L2

S

K

1414 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Math
SponEmissionIntegration(
GaussianQuadrature(Order

=<int>)) Use Gaussian quadrature to integrate the spontaneous 
emission spectrum of an LED simulation. 
Accelerating Gain Calculations and LED Simulations 
on page 930

StackSize =<int> 1000000 byte (g) Stack size per thread.
Parallelization on page 166

StressLimit =<float> 1e100  (g) Upper limit on stress values read from 
files or specified. Values exceeding the limit will be 
truncated to the limit. Stress Limits on page 825

StressMobilityDependence =TensorFactor Stress Tensor Applied to Low-Field Mobility on 
page 882

StressSG off (g) Use anisotropic Scharfetter–Gummel 
approximation for piezo mobility models.
Chapter 28, p. 779

SubMethod =Table 224 (g) Inner linear solver for Blocked method. 
Linear Solvers on page 145

Surface <string> (Table 338...) (g) Define a surface. Mobility Degradation 
Components due to Coulomb Scattering on page 347, 
Random Geometric Fluctuations on page 684

TensorGridAniso off (g) Use tensor-grid approximation for anisotropic 
piezo mobility. Tensor Grid Option on page 881

TensorGridAniso( Piezo off (g) Same as TensorGridAniso.

Aniso) off (g) Use tensor-grid approximation for anisotropic 
models. Chapter 28, p. 779

ThinLayer( Mirror=(<mirror>*3)) (g) Mirror planes for simulation system axes. 
<mirror> is Min, Max, None, or Both. Geometric 
Parameters of LayerThickness Command on 
page 312

TransferredElectronEffect2_
eMinDerivativePerField

=<float> -1e100  (r) Lower bound for velocity 
derivative  (electrons only).
Transferred Electron Model 2 on page 365

TransferredElectronEffect2_
hMinDerivativePerField

=<float> -1e100  (r) Lower bound for velocity 
derivative  (holes only).
Transferred Electron Model 2 on page 365

TransferredElectronEffect2_
MinDerivativePerField

=<float> -1e100  (r) Lower bound for velocity 
derivative  (electrons and holes).
Transferred Electron Model 2 on page 365

Table 211 Math{} (Continued)

Pa

cm
2
V

1–
s

1–

v∂ Fhfs∂⁄

cm
2
V

1–
s

1–

v∂ Fhfs∂⁄

cm
2
V

1–
s

1–

v∂ Fhfs∂⁄
Sentaurus™ Device User Guide 1415
N-2017.09



G: Command File Overview 
Math
Transient =BE (g) Backward Euler method.
Backward Euler Method on page 1032

=TRBDF * (g) TRBDF method.
TRBDF Composite Method on page 1033

TrapDLN =<int> 13 (g) Levels to approximate trap energy distribution. 
Energetic and Spatial Distribution of Traps on 
page 450

Traps( Damping=<[0,)> 10 Damping for traps for the nonlinear Poisson 
equation. A value of 0 disables damping.
Chapter 17, p. 449

RegionWiseAssembly) – Apply regionwise assembly for traps.

UpdateIncrease =<float> 1.e100 (g) Maximum-allowed update error increase 
factor per Newton step.

UpdateMax =<float> 1.e100 (g) Maximum-allowed update error in 
Newton algorithm.

UseSchurSolver – (g) Replace Blocked by specialized MPBC solver. 
Specialized Linear Solver for MPBC on page 230

Volume <string> (Table 337...) (g) Define a volume.
Random Band Edge Fluctuations on page 688

Wallclock – (g) Report wallclock times rather than CPU times 
after each step in the simulation.

WeightedVoronoiBox off (g) Compute-weighted coefficients and measure. 
Weighted Box Method Coefficients on page 1019

Table 211 Math{} (Continued)
1416 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Math
Table 212 AcceptNewtonParameter() Relaxed Newton Method on page 143

Digits =<integer> Number of relative error digits.

Error ( Electron=<float> Absolute error parameter for electrons.

eQuantumPotential=<float> Absolute error parameter for electron quantum 
potential.

eTemperature=<float> Absolute error parameter for electron 
temperature.

Hole=<float> Absolute error parameter for holes.

hQuantumPotential=<float> Absolute error parameter for hole quantum 
potential.

hTemperature=<float> Absolute error parameter for hole temperature.

Poisson=<float> Absolute error parameter for potential.

Temperature=<float>) Absolute error parameter for lattice temperature.

ErrRef ( Electron=<float>  Reference error parameter for electrons.

eQuantumPotential=<float> V Reference error parameter for electron 
quantum potential.

eTemperature=<float> K Reference error parameter for electron 
temperature.

Hole=<float>  Reference error parameter for holes.

hQuantumPotential=<float> V Reference error parameter for hole quantum 
potential.

hTemperature=<float>) K Reference error parameter for hole 
temperature.

InvokeAtDivergence – Allow relaxed convergence to be considered for 
diverged solutions.

RelErrControl Use relative error control.

RhsAndUpdateConvergence Require both RHS and update error convergence.

RhsMin =<float> Minimum of RHS norm.

UpdateScale =<float> Additional factor for the update error.

cm
3–

cm
3–
Sentaurus™ Device User Guide 1417
N-2017.09



G: Command File Overview 
Math
Table 213 AxisAligned2d(),AxisAligned3d() in Meshing() Parameters Affecting Meshing 
Engine on page 998

GeometricAccuracy =<float> 1.e-6 

MaxAngle =<float> 165 deg

MaxAspectRatio =<float> 1.e6 

MaxBoundaryCutRatio =<float> 0.01 

MaxNeighborRatio =<float> 4. 

MinEdgeLength =<float> 1.e-7 

Smoothing off (in AxisAligned2d)
on (in AxisAligned3d)

Table 214 BreakCriteria{} Break Criteria: Conditionally Stopping the Simulation on page 71

Current( absval=<float>  Upper limit for absolute current value.

contact=<string> ! Name of contact with break criterion.

DevName=<ident> Identifier of circuit device name (mixed mode only).

maxval=<float>  Upper limit for current.

minval=<float>  Lower limit for current.

Node=<ident>) Identifier of circuit node name (mixed mode only).

CurrentDensity( DevName=<ident> Identifier of device (mixed mode only).

maxval=<float>)  (r) Maximum current density.

DevicePower | 
OuterDevicePower(

absval=<float>  Upper limit for absolute power value.

DevName=<ident> Identifier of circuit device name (mixed mode only).

maxval=<float>  Upper limit for power value.

minval=<float>)  Lower limit for power value.

ElectricField( DevName=<ident> Identifier of circuit device name (mixed mode only).

maxval=<float>)  (r) Maximum electric field.

InnerDevicePower as DevicePower  Break criteria based on inner device power.

LatticeTemperature( DevName=<ident> Identifier of circuit device name (mixed mode only).

maxval=<float>)  (r) Maximum lattice temperature.

Voltage as Current  Voltage break criteria.

μm

μm

A μmd 3–

A μmd 3–

A μmd 3–

Acm 2–

W μmd 3–

W μmd 3–

W μmd 3–

Vcm 1–

W μmd 3–

K

V

1418 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Math
Table 215 Criterion() Parameters Common to All Refinement Criteria on page 999

Criterion <string> Parameter for AGM criterion with name <string>.

( MaxElementSize=(<float>*d)  Maximal element size in axis directions.

MeshDomain=<string> Name of definition domain.

MinElementSize=(<float>*d)  Minimal element size in axis directions.

RefinementScale=<float> 8. Refinement scale per coupled adaptation iteration.

Type= – Select type of criterion.

Element Element-specific parameters in Table 216.

| Integral0 Integral0-specific parameters in Table 217.

| Residual Residual-specific parameters in Table 218.

Table 216 Criterion() of Type Element Criterion Type: Element on page 1000

Criterion <string> (Type=Element Criterion of type Element.

Table 215 Common criterion parameters.

AbsError=<float> Absolute error target.

DataName="Table 178") Dataset for criterion (must be defined on vertices).

Logarithmic – Use logarithmic formula.

RelError=<float>) Relative error target.

Table 217 Criterion() of Type Integral0 Criterion Type: Integral0 on page 1001

Criterion <string> ( Type=Integral0 Criterion of type Integral0.

Table 215 Common criterion parameters.

DataName="Table 178") Dataset for criterion (must be defined on vertices).

IsotropicRefinement Choose isotropic refinement.

QuantityPower=<float> 1. Power exponent of quantity.

ReferenceElementSize=
(<float>*d)

Extension of reference volume.

ReferenceQuantityRange=
(<float1> <float2>)

Range for reference value.

μm

μm
Sentaurus™ Device User Guide 1419
N-2017.09



G: Command File Overview 
Math
Table 218 Criterion() of Type Residual Criterion Type: Residual on page 1002

Criterion <string> (Type=Residual Criterion of type Residual.

Table 215 Common criterion parameters.

AbsError=<float> Absolute error target.

RelError=<float>) Relative error target.

Table 219 Delaunizer2d()/Delaunizer3d() in Meshing() Parameters Affecting Meshing 
Engine on page 998

CoplanarityAngle =<float> 179. deg 

CoplanarityDistance =<float> 1.e-5 

DelaunayTolerance =<float> 1.e-4 

EdgeProximity =<float> 0.05 

FaceProximity =<float> 0.05 

MaxAngle =<float> 180. deg (only for two dimensions)

MaxConnectivity =<float> 1.e30 

MaxNeighborRatio =<float> 1.e30 

MaxSolidAngle =<float> 360. deg (only for three dimensions)

MinAngle =<float> 0. deg

MinEdgeLength =<float> 1.e-8 

SliverAngle =<float> 175. deg

SliverDistance =<float> 0.01 

μm

μm
1420 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Math
Table 220 EquilibriumSolution() Equilibrium Solution on page 175

Digits =<float> Relative error target.

Iterations =<0..> 50 Maximum number of Newton iterations. Convergence and Error 
Control on page 137

LineSearchDamping =<(0,1]> 1 Smallest allowed damping coefficient for line search damping.
Damped Newton Iterations on page 139

NotDamped =<0..> 1000 (g) Number of iterations in each Newton iteration before 
Bank–Rose damping is activated. Damped Newton Iterations on page 139

RelErrControl + Use relative error control. Convergence and Error Control on page 137

Table 221 FromElementGrid() in Meshing() Initialization From Element Grid File on 
page 995

ElementSize( Resolution=<vector>) 0.  Stop refinement at given size.

Gaussian( Alpha=<float>) 3. Tuning parameter.

Method =ElementSize | Gaussian | Laplacian ElementSize Select method.

Table 222 GridAdaptation() in Device{} Adaptive Device Instances on page 994

AvaHomotopy( Extrapolate + Use extrapolation during avalanche homotopy.

Iterations=<int> 5 Number of Newton iterations in avalanche homotopy.

LinearParametrization + Use linear parameterization of avalanche generation.

Off) – Disable avalanche homotopy.

Criterion <string> (Table 215) Specify a criterion with name <string>.

ElementLimit ( Control adaptation based on element numbers.

Fraction=<float> Fraction of number of marked leaf elements.

Ignore=<float> Absolute limit of leaf elements.

Maximum=<float> Ignore adaptation for number of leaf elements larger than 
<float>.

Minimum=<float>) Perform adaptation for number of leaf elements smaller 
than <float>.

MaxCLoops =<int> 1e5 Maximal number of iterations per adaptive coupled 
system.

μm
Sentaurus™ Device User Guide 1421
N-2017.09



G: Command File Overview 
Math
Meshing( AxisAligned2d(Table 213) Parameters for quadtree approach in two dimensions.

AxisAligned3d(Table 213) Parameters for octree approach in three dimensions.

Delaunizer2d(Table 219) Parameters for delaunizer in two dimensions.

Delaunizer3d(Table 219) Parameters for delaunizer in three dimensions.

FromElementGrid (Table 221) Parameters for initialization method FromElementGrid.

InitializationMethod=
FromBoundaryAndCommand | 
FromElementGrid

FromBoundaryAndCommand Select the initialization 
method.

UseMeshCommandFileRefinement) + Use refinement specifications in mesh command file for 
initial grid.

Poisson + Perform EPC smoothing step.

Smooth + Perform NBJI smoothing step.

Weights( Avalanche=<float> 1 Avalanche weight in AGM dissipation rate.

eCurrent=<float> 1 Electron current weight in AGM dissipation rate.

hCurrent=<float> 1 Hole current weight in AGM dissipation rate.

Recombination=<float>) 1 Recombination weight in AGM dissipation rate.

Table 223 HB{} Harmonic Balance on page 101

MDFT – Use MDFT mode.

RhsScale (Table 191)=<float> Scaling of RHS in Newton (MDFT mode only).

SolveSpectrum( Name=<string>) Solve spectrum with (mandatory) name.

{ (<int>* )...} List of spectrum multi-indices.  is the number of tones.
Solve Spectrum on page 103

UpdateScale (Table 191)=<float> Scaling of update in Newton (MDFT mode only).

ValueMin (Table 191)=<float> Lower bound for quantity in time domain (MDFT mode only).

ValueVariation (Table 191)=<float> Allowed variation of quantity in time domain (MDFT mode only).

Table 222 GridAdaptation() in Device{} Adaptive Device Instances on page 994 (Continued)

n n
1422 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Math
Table 224 Linear solvers (Solvers User Guide)

ILS Parallel, iterative linear solver. Customizable, high accuracy, and 
parallel performance for all problems.

( MultipleRHS – Solve linear systems with multiple right-hand sides (only for 
AC analysis).

Set=<int>) Use ILS options from set <int>.

ParDiSo Parallel, supernodal direct solver. High accuracy and parallel 
performance for small and medium problems.

( IterativeRefinement – Perform up to two iterative refinement steps to improve the 
accuracy of the solution.

MultipleRHS – Solve linear systems with multiple right-hand sides (only for 
AC analysis).

NonsymmetricPermutation + Compute an initial nonsymmetric matrix permutation and 
scaling, which places large matrix entries on the diagonal.

RecomputeNonsymmetricPermutation
)

– Compute a nonsymmetric matrix permutation and scaling 
before each factorization.

Super Supernodal direct solver. Best accuracy for small problems, not 
parallelized.

Table 225 MeshDomain() in Math {} Mesh Domains on page 1002

Box ( (<float1>*d) (<float2>*d) ) Domain covered by box given by minimum <float1> and 
maximum <float2> values in axis directions.

MeshDomain =<string> Domain covered by referenced mesh domain.

Region =<string> Domain covered by referenced region.

Type = Cap | Cup Cup Build intersection (Cap) or union (Cup).

Table 226 MLDAbox({}...) Modified Local-Density Approximation on page 300

MaxX =<float>  Upper -coordinate of the box.

MaxY =<float>  Upper -coordinate of the box.

MaxZ =<float>  Upper -coordinate of the box.

MinX =<float>  Lower -coordinate of the box.

MinY =<float>  Lower -coordinate of the box.

MinZ =<float>  Lower -coordinate of the box.

μm x

μm y

μm z

μm x

μm y

μm z
Sentaurus™ Device User Guide 1423
N-2017.09



G: Command File Overview 
Math
Table 227 MVMLDAcontrols() Using MLDA on page 304

AveDistanceFactor =<float> 0.05 Factor that controls computation of an averaged distance from a 
vertex to the interface for the multivalley MLDA model.

Load =<string> Name of file from which to load energy-dependent data.

LoadWithInterpolation =<string> Name of file from which to load energy-dependent data, possibly 
obtained for different mesh.

MaxDoping4Majority =<float> 1e22  Maximum doping concentration where the multivalley 
MLDA model is applied to majority carriers.

MaxIntDistance =<float> 1e-6  Distance from the interface up to which the multivalley MLDA 
model is applied.

Save =<string> Name of file where to save energy-dependent data.

Table 228 Nonlocal() Nonlocal Meshes on page 146

Table 338 (g) Interface that is part of the reference surface.

Barrier (Table 337...) – (g) Regions that form the tunneling barrier.

Digits =<float> 2 (cgi) Accuracy for nonlocal tunneling currents.
Nonlocal Tunneling Parameters on page 726

Direction =<vector> (0 0 0) (cgi) If nonzero, suppress the construction of nonlocal mesh 
lines with a direction more than MaxAngle degrees different from 
<vector>.

Discretization =<float> 1e100  (cgi) Maximum distance between nonlocal mesh points on a 
nonlocal line.

Electrode =<string> (g) Electrode that is part of the reference surface.

Endpoint (r) Allow nonlocal lines that end in the region. Default is Endpoint for 
semiconductors; otherwise, -Endpoint.

(Table 337...) (g) Regions where nonlocal lines can or cannot end.

EnergyResolution =<(0,)> 0.005  (cgi) Minimum energy resolution for integrals in computation 
of nonlocal tunneling current. 
Nonlocal Tunneling Parameters on page 726

Length =<float>  (cgi) Distance from the interface or contact up to which nonlocal 
mesh lines are constructed.

MaxAngle =<float> 180 deg (cgi) Suppress construction of nonlocal mesh lines that enclose 
an angle of more than <float> degrees with the vector specified by 
Direction.

Outside + (cgi) Allow nonlocal mesh lines to leave the device.

cm 3–

cm

cm

eV

cm
1424 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Math
Permeable + (r) Allow extension of nonlocal lines (as specified by the Permeation 
parameter) into or across the region.

(Table 337...) + (g) Regions into or across which nonlocal lines can or cannot be 
extended.

Permeation =<float> 0  (cgi) Length by which nonlocal mesh lines are extended across the 
interface or contact.

Refined + (r) Autorefine nonlocal lines inside the region.

(Table 337...) + (g) Regions in which nonlocal lines are or are not autorefined.

Transparent + (r) Allow nonlocal lines crossing the region.

(Table 337...) + (g) Regions that nonlocal lines can or cannot cross.

Table 229 NonlocalPath() in Math{}, Quasistationary(), and Transient() Handling of 
Derivatives on page 442

Derivative =<int> 0: Without derivative computation (default)
1: With derivative computation
Handling of Derivatives on page 442

Direction =<vector> Frozen tunneling direction.

MaxStep <float> (1.0) Higher boundary for step-size control.

MinStep <float> (1.0e-6) Lower boundary for step-size control.

N =<int> (3) Number of Newton iterations where Jacobian entries are collected.

Postprocessing – Switch on and off postprocessing mode.

Strategy =<int> Strategy for filling of system Jacobian:
1: Collect all
2: Collect last N (default)
3: Collect last N with step size control

Table 228 Nonlocal() Nonlocal Meshes on page 146 (Continued)

cm
Sentaurus™ Device User Guide 1425
N-2017.09



G: Command File Overview 
Math
Table 230 RandomField() Spatial Correlations and Random Fields on page 693

AverageGrainSize =<vector>  Average grain size along main axes.

CorrelationFunction =Exponential Use exponential correlations.

=Gaussian Use Gaussian correlations.

=Grain * Use grain-based correlations.

Lambda =<vector>  Correlation length for main axes

MaxInternalPoints =<int> 2147483647 Maximum-allowed number of points for Fourier transform.

Resolution =<vector> (0.25 0.25 0.25) Spatial resolution of exponential and Gaussian 
randomization.

Table 231 RandomizedVariation() in Math{} Statistical Impedance Field Method on 
page 691

ExtrudeTo3D – For correlated variations, internally extrude 2D structures to three 
dimensions.

NumberOfSamples =<0..> ! Number of samples.

RandomField( Table 230) (g) Declare random field.
Spatial Correlations and Random Fields on page 693

Randomize =<int> 0 Seed for random number generator.

Table 232 Transient time-step control Numeric Control of Transient Analysis on page 88

CheckTransientError off Error control of transient integration method.

NoCheckTransientError on No error control of transient integration method.

TransientDigits =<float> 3 Relative accuracy for time-step control.

TransientError (Table 191)=<float> Absolute error for time-step control.

TransientErrRef (Table 191)=<float> Error reference for time-step control.

TrStepRejectionFactor =<float> Factor . Controlling Transient Simulations on page 1034

μm

μm

frej
1426 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
Physics

Table 233 Physics{} Part II on page 171

Active( Type=QuantumWell) Activate the localized QW model or the nonlocal QW model 
to use in conjunction with QWLocal or Schroedinger, 
respectively.

Affinity (<ident> [(Table 341)]) (r) Use PMI model <ident> for electron affinity. 
Electron Affinity on page 1151

AlphaParticle( Table 276) (g) Generation by alpha particles. 
Alpha Particles on page 666

AnalyticTEP (g) Analytic expression for thermoelectric power. 
Thermoelectric Power (TEP) on page 913

Aniso( Table 279) Anisotropic properties. Chapter 28, p. 779

AreaFactor =<float> 1 (g) Multiplier for current and heat flux densities at 
electrodes and thermodes. Reading a Structure on page 9

BarrierLowering off (c) Use barrier lowering for Schottky contact. 
Barrier Lowering at Schottky Contacts on page 208

Charge(( Table 282)...) Oxide and insulator interface charges.
Insulator Fixed Charges on page 471

ComplexRefractiveIndex( Table 283) off (g) Use complex refractive index model.
Complex Refractive Index Model on page 578

CondInsulator (r) Turn an insulator into a conductive insulator.
Conductive Insulators on page 244

DefaultParametersFromFile Initialize default parameters from parameter files instead of 
using built-in values. Default Parameters on page 35

DeterministicVariation( Table 285) (g) Deterministic variations. 
Deterministic Variations on page 703

Dipole( (i) Use dipole interface model. Dipole Layer on page 174

Reference=<string>) ! Reference side <string> (either region or material name).

Discontinuity Create discontinuous interface(s). Discontinuous Interfaces 
on page 231

DistResist =<float>  (i) Distributed resistance at metal–semiconductor 
interface. Transport in Metals on page 239

=SchottkyResist Emulate a Schottky interface. 
Transport in Metals on page 239

Ωcm
2

Sentaurus™ Device User Guide 1427
N-2017.09



G: Command File Overview 
Physics
eBarrierTunneling <string> [(Table 238)] off (g) Nonlocal tunneling from and to conduction band. 
Nonlocal Tunneling at Interfaces, Contacts, and Junctions on 
page 722

EffectiveIntrinsicDensity (Table 290) (r) Band gap and bandgap narrowing.
Band Gap and Electron Affinity on page 249

EffectiveMass (GaussianDOS) (r) Use simplified Gaussian density-of-states model for 
organic semiconductors. Gaussian Density-of-States for 
Organic Semiconductors on page 264

(<ident> [(Table 341)]) (r) Use PMI model <ident> for effective mass. 
Effective Mass on page 1154

eMLDA [()] – (r) MLDA model for electrons.
Modified Local-Density Approximation on page 300

( LambdaTemp) + (r) Use temperature-dependent  for both electrons and 
holes.

eMobility( Table 272) (r) Electron mobility model. Chapter 15, p. 317

eMultiValley off (r) Multivalley statistics. Multivalley Band Structure on 
page 267, Multivalley Band Structure on page 835

eMultiValley( DensityIntegral off (r) Numeric density computation.
Using Multivalley Band Structure on page 270

kpDOS off (r) Two-band  models for electron  valleys.
Using Multivalley Band Structure on page 270

mcDOS off (r) Monte Carlo DOS. Using Multivalley Band Structure 
on page 270, Using MLDA on page 304

MLDA off (r) Multivalley MLDA quantization model.
Modified Local-Density Approximation on page 300, Using 
Multivalley Band Structure on page 837, Inversion Layer on 
page 844

MLDA(-Nonparabolicity) off (r) Exclude band nonparabolicity in MLDA model.
Using MLDA on page 304

Nonparabolicity off (r) Band nonparabolicity.
Nonparabolic Band Structure on page 268

parfile on (r) With kpDOS, it adds the parameter file valleys.
Using Multivalley Band Structure on page 270

RelativeToDOSMass off (r) Multivalley effective DOS.
Using Multivalley Band Structure on page 270

ThinLayer) off (r) Geometric quantization model. Using Multivalley 
Band Structure on page 270, Using MLDA on page 304

Table 233 Physics{} Part II on page 171 (Continued)

λ

k p⋅ Δ2
1428 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
EnergyRelaxationTimes (<ident> [(Table 341)]) Use PMI model <ident> to compute energy relaxation 
times. Energy Relaxation Times on page 1158

(constant) Use constant energy relaxation times.

(formula) Use the value of formula in the parameter file.

(irrational) Use the ratio of two irrational polynomials.
Energy-Dependent Energy Relaxation Time on page 769

eNMP( Table 292) (i) Extended nonradiative multiphonon (eNMP) model.
Extended Nonradiative Multiphonon Model on page 513

eQCvanDort off (r) van Dort model for electrons.
van Dort Quantization Model on page 284

eQuantumPotential [(Table 294)] – (r) Activate electron density gradient quantum correction. 
Density Gradient Quantization Model on page 294

eQuasiFermi =<float>  (r) Initial quasi-Fermi potential specification for electrons. 
Regionwise Specification of Initial Quasi-Fermi Potentials on 
page 179

eRecVelocity =<[0,)> 2.573e6  (i) Electron recombination velocity.
Electric Boundary Conditions for Metals on page 240

eSHEDistribution off (r) Specify the region where the electron SHE distribution 
is calculated. Using Spherical Harmonics Expansion Method 
on page 750(Table 295)

eThermionic (i) Thermionic emission model for electrons. 
Conductive Insulators on page 244, Thermionic Emission 
Current on page 763

(HCI) (i) Inject hot electrons locally. Destination of Injected Current 
on page 738

(Organic_Gaussian) (i) Thermionic-like Gaussian emission model at organic 
heterointerfaces for electrons. Gaussian Transport Across 
Organic Heterointerfaces on page 766

ExternalSchroedinger <string> (Table 296) (g) Connection to external 2D Schrödinger solver.
External 2D Schrödinger Solver on page 292

Fermi off (g) Fermi statistics. Fermi Statistics on page 176

(-WithJoyceDixon) (g) Fermi statistics with old Wuensche approximation for 
Fermi integrals. Fermi Statistics on page 176

FloatCoef =<float> 0 (g) Interpolation coefficient for initial guess in floating 
wells. Initial Guess for Electrostatic Potential and Quasi-
Fermi Potentials in Doping Wells on page 178

GateCurrent( Table 297) (i) Gate currents (hot-carrier injection, some of the tunneling 
models).

Table 233 Physics{} Part II on page 171 (Continued)

V

cms
1–
Sentaurus™ Device User Guide 1429
N-2017.09



G: Command File Overview 
Physics
GaussianDOS_full (r) Use Gaussian density-of-states model for organic 
semiconductors. Gaussian Density-of-States for Organic 
Semiconductors on page 264

hBarrierTunneling <string> [(Table 238)] off (g) Nonlocal tunneling from and to valence band.
Nonlocal Tunneling at Interfaces, Contacts, and Junctions on 
page 722

HeatCapacity( Table 302) (r) Heat capacity.

HeatPreFactor =<float> 1. (r) Scaling factor for lattice heat generation. Scaling of 
Lattice Heat Generation on page 200

HeatSource( <ident>) Name of the PMI model.

HeavyIon( Table 277) off (g) Generation by heavy ions. Heavy Ions on page 668

HeteroInterface (i) Double points at interfaces.
Abrupt and Graded Heterojunctions on page 10

hMLDA( [()] – (r) MLDA model for holes.
Modified Local-Density Approximation on page 300

LambdaTemp) + (r) Use temperature-dependent  for both electrons and 
holes.

hMobility( Table 272) (r) Hole mobility model. Chapter 15, p. 317

hMultiValley off (r) Multivalley statistics. Multivalley Band Structure on 
page 267, Multivalley Band Structure on page 835

Table 233 Physics{} Part II on page 171 (Continued)

λ

1430 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
hMultiValley( DensityIntegral off (r) Numeric density computation.
Using Multivalley Band Structure on page 270

kpDOS off (r) Six-band  model for hole bands.
Multivalley Band Structure on page 267

mcDOS off (r) Monte carlo DOS. Using Multivalley Band Structure 
on page 270, Using MLDA on page 304

MLDA off (r) Multivalley MLDA quantization model.
Modified Local-Density Approximation on page 300, Using 
Multivalley Band Structure on page 837

MLDA(-Nonparabolicity) off (r) Exclude band nonparabolicity in MLDA.
Using MLDA on page 304

Nonparabolicity off (r) Band nonparabolicity.
Nonparabolic Band Structure on page 268

parfile on (r) With kpDOS, it adds the parameter file valleys.
Using Multivalley Band Structure on page 270

RelativeToDOSMass off (r) Multivalley effective DOS.
Using Multivalley Band Structure on page 270

ThinLayer) off (r) Geometric quantization model. Using Multivalley 
Band Structure on page 270, Using MLDA on page 304

hQCvanDort off (r) van Dort model for holes.
van Dort Quantization Model on page 284

hQuantumPotential [(Table 294)] – (r) Activate hole density gradient quantum correction. 
Density Gradient Quantization Model on page 294 

hQuasiFermi =<float>  (r) Initial quasi-Fermi potential specification for holes. 
Regionwise Specification of Initial Quasi-Fermi Potentials on 
page 179

hRecVelocity =<[0,)> 1.93e6  (i) Hole recombination velocity.
Electric Boundary Conditions for Metals on page 240

hSHEDistribution off (r) Specify the region where the hole SHE distribution is 
calculated. Using Spherical Harmonics Expansion Method on 
page 750(Table 295)

hThermionic (i) Thermionic emission model for holes.
Conductive Insulators on page 244, 
Thermionic Emission Current on page 763

(HCI) (i) Inject hot holes locally.
Destination of Injected Current on page 738

(Organic_Gaussian) (i) Thermionic-like Gaussian emission model at organic 
heterointerfaces for holes. Gaussian Transport Across 
Organic Heterointerfaces on page 766

Table 233 Physics{} Part II on page 171 (Continued)

k p⋅

V

cms
1–
Sentaurus™ Device User Guide 1431
N-2017.09



G: Command File Overview 
Physics
Hydrodynamic [()] (g) Hydrodynamic model for electrons and holes. 
Hydrodynamic Model for Current Densities on page 184, 
Hydrodynamic Model for Temperatures on page 195

(eTemperature) (g) Hydrodynamic model for electrons only.
Hydrodynamic Model for Current Densities on page 184, 
Hydrodynamic Model for Temperatures on page 195

(hTemperature) (g) Hydrodynamic model for holes only.
Hydrodynamic Model for Current Densities on page 184, 
Hydrodynamic Model for Temperatures on page 195

HydrogenDiffusion off (ri) Hydrogen transport model without reaction or 
hydrogen type specification. Using MSC–Hydrogen 
Transport Degradation Model on page 507

(Table 304) off (ri) Hydrogen transport model with reaction or hydrogen 
type specification. Using MSC–Hydrogen Transport 
Degradation Model on page 507

IncompleteIonization( Table 306) Incomplete ionization. Chapter 13, p. 277

LatticeTemperatureLimit =<float>  Maximum lattice temperature. Break Criteria: 
Conditionally Stopping the Simulation on page 71

LayerThickness off Thickness extraction command.
LayerThickness Command on page 310

( ChordWeight=<float> 0 Weight of chord length. Thickness Extraction on page 313

MaxFitWeight=<float> 0 Thickness Extraction on page 313

MinAngle=(<float>*2) 0 0 Angle constraints. Thickness Extraction on page 313

Thickness=<float>)  Explicit thickness value.

LED( Table 268) Activate LED framework.

MagneticField =<vector>  (g) Magnetic field. Chapter 32, p. 897

Mechanics( Table 307) (g) Mechanical stress solver. Mechanics Solver on page 890

MetalResistivity( <ident> [(Table 341)]) PMI for metal resistivity. Metal Resistivity on page 1260

MetalWorkfunction( Table 308) (r) Metal workfunction. Metal Workfunction on page 242

Mobility( Table 272) (r) Mobility model. Chapter 15, p. 317

MoleFraction( Table 310) Mole fractions. Mole-Fraction Specification on page 17

MSConfigs( MSConfig (Table 311...)...) (r) Multistate configurations.
Specifying Multistate Configurations on page 475

Table 233 Physics{} Part II on page 171 (Continued)

K

μm

T

1432 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
MSPeltierHeat (i) Peltier heat at metal–semiconductor interfaces or 
semiconductor contacts. Heating at Contacts, 
Metal–Semiconductor and Conductive 
Insulator–Semiconductor Interfaces on page 916

MultiValley off (r) Multivalley statistics. Multivalley Band Structure on 
page 267, Multivalley Band Structure on page 835

MultiValley( DensityIntegral off (r) Numeric density computation.
Using Multivalley Band Structure on page 270

kpDOS off (r)  model for electrons and holes.
Using Multivalley Band Structure on page 270

MLDA off (r) Multivalley MLDA quantization model. 
Modified Local-Density Approximation on page 300, Using 
Multivalley Band Structure on page 837, Inversion Layer on 
page 844

MLDA(-Nonparabolicity) off (r) Exclude band nonparabolicity in MLDA.
Using MLDA on page 304

Nonparabolicity off (r) Band nonparabolicity.
Nonparabolic Band Structure on page 268

parfile on (r) With kpDOS, it adds the parameter file valleys.
Using Multivalley Band Structure on page 270

RelativeToDOSMass) off (r) Multivalley effective DOS.
Using Multivalley Band Structure on page 270

NBTI( Table 312) (i) NBTI degradation model.
Two-Stage NBTI Degradation Model on page 509

Noise [<string>] (Table 313) (r) Noise sources. Noise Sources on page 680

OpticalAbsorptionHeat( ScalingFactor=<float> 1 Optical Absorption Heat on page 928

Table 259) Optical Absorption Heat on page 928

Optics( Table 315) Specifying the Type of Optical Generation Computation on 
page 534

Piezo( Table 317) (r) Stress and strain models.
Using Stress and Strain on page 823

Piezoelectric_Polarization (<ident> [(Table 341)]) Use PMI model <ident> to compute piezoelectric 
polarization. Piezoelectric Polarization on page 1219

(strain) Use strain model to compute piezoelectric polarization.
Strain Model on page 883

(stress) Use stress model to compute piezoelectric polarization.
Stress Model on page 885

Table 233 Physics{} Part II on page 171 (Continued)

k p⋅
Sentaurus™ Device User Guide 1433
N-2017.09



G: Command File Overview 
Physics
Polarization off (r) Use ferroelectric model. Chapter 29, p. 797

(Memory=<2..>) 10 Maximum nesting of minor loops.
Using Ferroelectrics on page 797

PostTemperature (g) Use simplified self-heating model.
Uniform Self-Heating on page 190

* Compute dissipated power as integral of Joule heat over 
entire device.

(IV_diss) (g) Compute dissipated power as  over all electrodes.

(IV_diss(<string>...)) (g) Compute dissipated power as  over user-selected 
electrodes.

QWLocal( Table 250) Localized QW model parameters.
Localized Quantum-Well Model on page 978

Radiation( Table 278) Radiation model. Chapter 22, p. 665

RandomizedVariation <string> (Table 319) (g) Set sIFM models. Statistical Impedance Field Method on 
page 691

RayTraceBC( Table 252) Physics material or region interface–based definition of 
boundary conditions. Boundary Condition for Raytracing on 
page 605

RecGenHeat (g) Generation–recombination processes act as heat sources. 
Hydrodynamic Model for Temperatures on page 195

( OptGenOffset=<float> 0.5 Divide contribution of optical generation rate into energy 
gain/loss terms  and . 
Hydrodynamic Model for Temperatures on page 195

OptGenWavelength=
<float>)

 Wavelength if optical generation is loaded from file. 
Hydrodynamic Model for Temperatures on page 195

Recombination( Table 234) Generation–recombination model. Chapter 16, p. 391

Schottky off (i) Use Schottky boundary conditions.
Electric Boundary Conditions for Metals on page 240

Schroedinger (Table 320) (i) Schrödinger solver. 1D Schrödinger Solver on page 285

<string> (Table 320) (g) Schrödinger solver on named nonlocal mesh.

Table 233 Physics{} Part II on page 171 (Continued)

IV
IV

Hn Hp

μm
1434 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
SingletExciton off (ri) Activate region or interface for singlet exciton 
equation.

( FluxBC off (i) Impose a zero flux boundary condition on specified 
interface. Using the Singlet Exciton Equation on page 237

BarrierType(Table 281) (i) Set the barrier type at organic heterointerface.
Using the Singlet Exciton Equation on page 237

Recombination(Table 254)
)

off (r) Switch on generation and recombination terms in 
singlet exciton equation.
Using the Singlet Exciton Equation on page 237

TATNonlocalPathNC =<float>  (i) Room temperature effective density-of-states  
for electron trap-assisted tunneling from Schottky contacts or 
Schottky metal–semiconductor interfaces.
Using Dynamic Nonlocal Path TAT Model on page 402

Temperature =<float> 300  (g) Device (lattice) temperature.

TEPower (<string>) (gr) Use PMI to compute thermoelectric power.
Using Thermoelectric Power on page 915

(Analytic) (gr) Use analytic thermoelectric power.
Using Thermoelectric Power on page 915

ThermalConductivity( Table 323) (r) Thermal conductivity.

Thermionic (i) Thermionic emission model for electrons and holes.
Conductive Insulators on page 244, 
Thermionic Emission Current on page 763

(HCI) (i) Inject hot carriers locally.
Destination of Injected Current on page 738

(Organic_Gaussian) (i) Thermionic-like Gaussian emission model at organic 
heterointerfaces. Gaussian Transport Across Organic 
Heterointerfaces on page 766

Thermodynamic off (g) Thermodynamic transport model.
Thermodynamic Model for Current Densities on page 183, 
Thermodynamic Model for Lattice Temperature on page 193

Traps(( Table 325)...) Traps. Chapter 17, p. 449

Table 233 Physics{} Part II on page 171 (Continued)

cm
3–

NC

K

Sentaurus™ Device User Guide 1435
N-2017.09



G: Command File Overview 
Physics
Generation and Recombination

Table 234 Recombination() Chapter 16, p. 391

<ident> [(Table 341)] Use PMI model <ident>.
Generation–Recombination Model on page 1094

Auger off (r) Auger recombination. Auger Recombination on page 408

(WithGeneration) off (r) Auger recombination and generation.

Avalanche( Table 235) off (r) Impact ionization. Avalanche Generation on page 413

Band2Band( Table 236) off (r) Band-to-Band Tunneling Models on page 431

CDL( Table 258) off (r) Coupled defect level recombination.
Coupled Defect Level (CDL) Recombination on page 405

ConstantCarrierGeneration (value=<float>) off (r) Constant carrier generation.
Constant Carrier Generation on page 412

eAvalanche( Table 235) off (r) Electron impact ionization. 
Avalanche Generation on page 413

hAvalanche( Table 235) off (r) Hole impact ionization. 
Avalanche Generation on page 413

intrinsicRichter off (r) Extended recombination model for silicon, covering Auger 
and radiative recombination.
Intrinsic Recombination Model for Silicon on page 409

Radiative – (r) Radiative recombination.
Radiative Recombination on page 407

SRH( Table 258) off (r) Shockley–Read–Hall recombination.
Shockley–Read–Hall Recombination on page 391

SurfaceSRH off (i) Interface Shockley–Read–Hall recombination.
Surface SRH Recombination on page 404

TrapAssistedAuger off (r) Trap-assisted Auger recombination.
Trap-Assisted Auger Recombination on page 403
1436 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
Table 235 Avalanche() Avalanche Generation on page 413

<ident> [(Table 341)] Use PMI model <ident>. Avalanche Generation Model on page 1100

BandgapDependence – Include a dependency on the energy bandgap in the avalanche generation models.
Using Avalanche Generation on page 413

CarrierTempDrive Use temperature driving force (default for hydrodynamic simulation). 
Avalanche Generation With Hydrodynamic Transport on page 427

ElectricField Use plain electric field driving force. 
Approximate Breakdown Analysis on page 428

Eparallel Use current-parallel electric field driving force. Driving Force on page 426

GradQuasiFermi * Use gradient quasi-Fermi potential driving force. For hydrodynamic simulation, default is 
CarrierTempDrive. Driving Force on page 426

Hatakeyama Use Hatakeyama model. Hatakeyama Avalanche Model on page 423

Lackner Use Lackner model. Lackner Model on page 418

Okuto Use Okuto–Crowell model. Okuto–Crowell Model on page 417

UniBo Use University of Bologna model. University of Bologna Impact Ionization Model on page 419

UniBo2 Use new University of Bologna impact ionization model. 
New University of Bologna Impact Ionization Model on page 421

vanOverstraeten * Use van Overstraeten model. van Overstraeten – de Man Model on page 416

Table 236 Band2Band() Band-to-Band Tunneling Models on page 431

DensityCorrection =Local Use density correction. Schenk Density Correction on page 434

=None * Use plain densities. Schenk Density Correction on page 434

FranzDispersion – Use Franz dispersion in the direct nonlocal path model.
Using Nonlocal Path Band-to-Band Model on page 440

InterfaceReflection + Consider interface reflection in the nonlocal path model.
Using Band-to-Band Tunneling on page 431
Sentaurus™ Device User Guide 1437
N-2017.09



G: Command File Overview 
Physics
Model =E1 Use simple model with .
Simple Band-to-Band Models on page 434

=E1_5 Use simple model with . 
Simple Band-to-Band Models on page 434

=E2 Use simple model with . 
Simple Band-to-Band Models on page 434

=Hurkx Use Hurkx model. Hurkx Band-to-Band Model on page 435

=NonlocalPath Use nonlocal path model. 
Dynamic Nonlocal Path Band-to-Band Tunneling Model on page 436

=Schenk Use Schenk model. Schenk Model on page 433

ParameterSetName =(<string>...) Named parameter sets to be used. 
Using Band-to-Band Tunneling on page 431

Table 237 BPM() Beam Propagation Method on page 647

Bidirectional( Error=<float> ! Relative error used as a break criterion for iterative 
algorithm in bidirectional beam propagation method.

Iterations=<int>) ! Maximum number of iterations used as a break 
criterion for iterative algorithm in bidirectional beam 
propagation method.

Boundary( GridNodes=<float>*2 ! Number of PML boundary grid nodes to be inserted at 
left and right sides.

Order=<1..2> ! Order of spatial variation of complex stretching 
parameter.

Side=<string> ! "X", "Y", or "Z".

StretchingParameterImag=
(<float>*2)

! Minimum and maximum values of imaginary part of 
stretching parameter.

StretchingParameterReal=
(<float>*2)

! Minimum and maximum values of real part of 
stretching parameter.

Type="PML" ! Use PML boundary conditions.

VacuumGridNodes=
(<float>*2))

! Number of vacuum grid nodes to be inserted at left and 
right sides.

Table 236 Band2Band() Band-to-Band Tunneling Models on page 431 (Continued)

P 1=

P 1.5=

P 2=
1438 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
Excitation( CenterGauss=<vector>  Gaussian center. Size of vector is .

SigmaGauss=<vector>  Gaussian half width. Size of vector is .

TruncationPositionX=
(<float>*2)

Left and right truncation positions of plane wave for x-
axis.

TruncationPositionY=
(<float>*2)

Left and right truncation positions of plane wave for y-
axis.

TruncationSlope=<vector> Plane-wave truncation slope. Size of vector is .

Type="Gaussian" Use Gaussian excitation.

Type="PlaneWave") Use truncated plane wave excitation.

GridNodes =<vector> ! Number of grid nodes in each spatial dimension.

ReferenceRefractiveIndex =<float> ! Value for reference refractive index.
General on page 649

=average Use average refractive index in propagation plane as 
reference refractive index.

=fieldweighted Use field-weighted refractive index in propagation plane 
as reference refractive index.

=maximum Use maximum refractive index in propagation plane as 
reference refractive index.

ReferenceRefractiveIndexDelta =<float> ReferenceRefractiveIndexDelta is added to 
ReferenceRefractiveIndex in the calculation. To be 
used for fine-tuning the numerics. General on page 649

Table 238 eBarrierTunneling() and hBarrierTunneling() Nonlocal Tunneling at Interfaces, 
Contacts, and Junctions on page 722

Band2Band =None * No band-to-band tunneling.

=Full Include band-to-band tunneling with consistent parallel momentum 
integral with the direct nonlocal path band-to-band tunneling model.

=Simple Include band-to-band tunneling with simple parallel momentum integral.

=UpsideDown Include band-to-band tunneling with nonphysical parallel momentum 
integral.

BandGap – Allow tunneling into the band gap at the interface for which tunneling is 
specified. Use this option for backward compatibility only.

BarrierLowering – Apply a position-dependent barrier lowering for tunneling barrier.

Table 237 BPM() Beam Propagation Method on page 647 (Continued)

μm d 1–

μm d 1–

d 1–
Sentaurus™ Device User Guide 1439
N-2017.09



G: Command File Overview 
Physics
Multivalley – Use multivalley band structure.
Band-to-Band Contributions to Nonlocal Tunneling Current on page 734

PeltierHeat – Include Peltier heating terms for tunneling carriers. Eq. 788, p. 735

Schroedinger – Schrödinger equation–based model instead of WKB for tunneling 
probabilities. This option does not work with the TwoBand or 
Band2Band option. 
Schrödinger Equation–Based Tunneling Probability on page 731

Transmission – Use additional interface transmission coefficients. Eq. 778, p. 730

TwoBand – Use two-band dispersion relation. Eq. 777, p. 730

Table 239 ElectricField() in SRH() and CDL() SRH Field Enhancement on page 396

DensityCorrection =Local (r) Use density correction. Schenk TAT Density Correction on page 398

=None * (r) Use local densities.

Lifetime =Constant * (r) No field-enhanced lifetime.

=Hurkx (r) Use Hurkx model for lifetime enhancement. 
Hurkx TAT Model on page 399

=Schenk (r) Use Schenk model for lifetime enhancement. 
Schenk Trap-Assisted Tunneling (TAT) Model on page 397

Table 240 Farfield(...) in Physics{Optics(OpticalSolver(RayTracing(...)))} Far Field and 
Sensors for Raytracing on page 620

Origin =Auto Automatically compute origin as the center of the device. Auto is the 
default.

=<vector> User-specified origin as a vector in micrometers.

Discretization =<int> Default is 360 for two dimensions, and 36 for three dimensions.

ObservationRadius =<float> Radius in micrometers. Default is 1e6 , that is, 1 m.

Sensor( Table 256) Specify a sensor detector.

SensorSweep( Table 257) Specify sensor sweep.

Table 238 eBarrierTunneling() and hBarrierTunneling() Nonlocal Tunneling at Interfaces, 
Contacts, and Junctions on page 722 (Continued)

μm
1440 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
Table 241 FDTD() Specifying the Optical Solver on page 554

GenerateMesh Control of tensor mesh generation using Sentaurus Mesh.

( ForEachWavelength Generate tensor mesh whenever the wavelength changes 
compared with the previous FDTD solution.

Once Generate tensor mesh once at the beginning of the simulation.

Wavelength=(<float>*<0..m>)
)

Specify list of strictly monotonically increasing wavelengths 
between which the tensor mesh is generated only once.

Table 242 FromFile() Loading Solution of Optical Problem From File on page 640 and 
Controlling Interpolation When Loading Optical Generation Profiles on page 659

DatasetName =AbsorbedPhotonDensity | 
OpticalGeneration

AbsorbedPhotonDensity Name of dataset to be 
loaded from file.

GridInterpolation =Conservative | Simple Interpolation algorithm to be used if source and 
destination grid are different.

IdentifyingParameter =(<string>...) ! Name of identifying parameters or parameter paths.

ImportDomain( Table 243) Specify source and destination regions as well as 
domain truncation for interpolation.

ProfileIndex =<int> 0 ID of loaded profiles after sorting with respect to 
leading IdentifyingParameter.

ShiftVector =<vector> (0,0,0) Displacement of source grid.

SpectralInterpolation =Linear | Off | 
PiecewiseConstant

Off Type of interpolation between loaded profiles.

WeightedAPDintegrationlayers =<int> Default is the number of regions with a limit of 20. 
However, you can choose a higher number.
Accurate Absorbed Photon Density for 1D Optical 
Solvers on page 575

WeightedAPDIntegrationSet
Boundaries

=(<float>...) Specifies the boundaries of layers measured from the 
illumination window in propagation direction.
Sentaurus™ Device User Guide 1441
N-2017.09



G: Command File Overview 
Physics
Table 243 ImportDomain() Controlling Interpolation When Loading Optical Generation 
Profiles on page 659

DestinationBoxCorner1 =<vector> (-Inf, -Inf, -Inf) Lower-left corner of box in destination 
grid used to restrict interpolation domain.

DestinationBoxCorner2 =<vector> (Inf, Inf, Inf) Upper-right corner of box in destination grid 
used to restrict interpolation domain.

DestinationRegions =(<string>...) Regions in destination grid selected for interpolation.

SourceBoxCorner1 =<vector> (-Inf, -Inf, -Inf) Lower-left corner of box in source grid 
used to restrict interpolation domain.

SourceBoxCorner2 =<vector> (Inf, Inf, Inf) Upper-right corner of box in source grid used 
to restrict interpolation domain.

SourceRegions =(<string>...) Regions in source grid selected for interpolation.

Table 244 Medium() Transfer Matrix Method on page 625

ExtinctionCoefficient =<float> 1 

Location =top ! Position of medium with respect to extracted layer structure.

=bottom Position of medium with respect to extracted layer structure.

Material =<string> Name of material.

RefractiveIndex =<float> 1 

Table 245 NonlocalPath() in SRH() Dynamic Nonlocal Path Trap-Assisted Tunneling on 
page 400

Fermi – Use Fermi statistics.

Lifetime =Hurkx * Use Hurkx model for lifetime enhancement.

=Schenk Use Schenk model for lifetime enhancement.

TwoBand – Use Two-band dispersion for the transmission coefficient.
1442 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
Table 246 OptBeam(()...) Using Optical Beam Absorption Method on page 646

LayerStackExtraction( ComplexRefractiveIndexThreshold=
<float>

0 Choose threshold value for layer creation 
when using ElementWise extraction mode.

Mode=RegionWise | ElementWise RegionWise Specify whether layer stack is 
created on a per-element or per-region basis.

Position=(<float>*3) Specify starting point of extraction line.

WindowName=<string> Reference to illumination window in 
Excitation section.

WindowPosition=<ident>
)

Center Specify starting point of extraction line 
in terms of a cardinal direction (North, South, 
East, West, NorthEast, SouthEast, 
NorthWest, SouthWest).

Table 247 OpticalGeneration{} Specifying the Type of Optical Generation Computation on 
page 534 and Controlling Interpolation When Loading Optical Generation Profiles 
on page 659

AutomaticUpdate + Controls whether optical generation is 
recomputed if quantities on which it depends are not 
up-to-date.

ComputeFromMonochromaticSource Optical Generation From Monochromatic Source on 
page 536

( Scaling=<float> 1 

TimeDependence(Table 261)
)

Sentaurus™ Device User Guide 1443
N-2017.09



G: Command File Overview 
Physics
ComputeFromSpectrum Illumination Spectrum on page 536

( KeepSpectralData Keep spectral data (for example, for plotting or to 
avoid recomputation of optics) when computing the 
optical generation resulting from an illumination 
spectrum.

RefreshEveryTime Force recomputation of respective optical 
generation contribution at every occasion.

Scaling=<float> 1 

Select(Table 255) Active parameters of multidimensional spectrum 
file.

TimeDependence(Table 261)
)

QuantumYield =<float> 1 Quantum Yield Models on page 544

QuantumYield( EffectiveAbsorption Quantum Yield Models on page 544

Factor=<float> 1 Quantum Yield Models on page 544

StepFunction(Table 260) Quantum Yield Models on page 544

Unity) Quantum Yield Models on page 544

ReadFromFile Loading and Saving Optical Generation From and 
to File on page 542

( DatasetName=
AbsorbedPhotonDensity | 
OpticalGeneration

TimeDependence(Table 261)

Scaling=<float> 1 

RefreshEveryTime Force recomputation of respective optical 
generation contribution at every occasion.

GridInterpolation=
Simple | Conservative

Interpolation algorithm to be used if source and 
destination grid are different.

ShiftVector=<vector> (0,0,0) Displacement of source grid.

ImportDomain(Table 243)
)

Specify source and destination regions as well as 
domain truncation for interpolation.

Scaling =<float> 1 

Table 247 OpticalGeneration{} Specifying the Type of Optical Generation Computation on 
page 534 and Controlling Interpolation When Loading Optical Generation Profiles 
on page 659 (Continued)
1444 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
SetConstant Constant Optical Generation on page 543

( RefreshEveryTime Force recomputation of respective optical 
generation contribution at every occasion.

TimeDependence(Table 261)

Value=<float>)  Value for optical generation rate.

TimeDependence( Table 261) Specification of type of time dependency.

Table 248 OpticalTurningPoints() Optical Turning Points on page 552

Dt =<float> Limiting time step for range  for time-dependence FromFile only. 
The default value is given by the smallest time interval specified in the 
OptGenTransientScaling file defined in the File section.
For all other types of time dependence, use Dt to set DtRise, 
DtPlateau, and DtFall to the same value instead of setting each 
keyword separately. If any of these keywords is set, it overwrites the 
value of Dt.

DtFall =<float> 0 s Limiting time step for range . Does not apply to time-
dependence FromFile.

DtFallEnd =<float>  s Limiting time step at .

DtFallStart =<float>  s Limiting time step at . Does not apply to time-
dependence FromFile.

DtPlateau =<float> 0 s Limiting time step for range . Does not apply to time-
dependence FromFile.

DtRise =<float> 0 s Limiting time step for range . Does not apply to time-
dependence FromFile.

DtRiseEnd =<float>  s Limiting time step at . Does not apply to time-
dependence FromFile.

DtRiseStart =<float>  s Limiting time step at .

MinAmplitude =<float> 0.01 Signal amplitude used to define time points  and  for analytic 
signals with asymptotic tails.

Table 247 OpticalGeneration{} Specifying the Type of Optical Generation Computation on 
page 534 and Controlling Interpolation When Loading Optical Generation Profiles 
on page 659 (Continued)

s
1–

cm
3–

t0t3[ ]

t2t3[ ]

t1 t0–( ) 10⁄ t3

t1 t0–( ) 10⁄ t2

t1t2[ ]

t0t1[ ]

t1 t0–( ) 10⁄ t1

t1 t0–( ) 10⁄ t0

t0 t3
Sentaurus™ Device User Guide 1445
N-2017.09



G: Command File Overview 
Physics
Table 249 Physics(...){ RayTraceBC(TMM(...)) }

LayerStructure{ <float> <string>;
<float> <string>;
...
<float> <string>}

Definition of multilayer structure used for TMM calculation. First 
column contains thickness of layer in . Second column contains 
material name of layer.

MapOptGenToRegions( <string> <string>
...)

Set list of regions to which the lumped optical generation of the TMM BC 
is mapped.

QuantumEfficiency =<float> Specify the quantum efficiency of the TMM BC optical generation.

ReferenceMaterial =<string> Definition of LayerStructure orientation. The topmost layer in the 
LayerStructure specification is connected to the region with material 
ReferenceMaterial.

ReferenceRegion =<string> Definition of LayerStructure orientation. The topmost layer in the 
LayerStructure specification is connected to the region with name 
ReferenceRegion.

Table 250 QWLocal() Localized Quantum-Well Model on page 978

eDensityCorrection – Activate electron quantization model in the quantum well. 
Quantum-Well Quantization Model on page 309

ElectricFieldDep + Switch on electric field dependency for the localized QW 
model.

hDensityCorrection – Activate hole quantization model in the quantum well. 
Quantum-Well Quantization Model on page 309

MaxElectricField =<float> 1e6  Cutoff value for electric field.

NumberOfCrystalFieldSplit
HoleSubbands

=<int> Set the maximum number of crystal-field split-hole subbands.

NumberOfElectronSubbands =<int> Set the maximum number of electron subbands.

NumberOfHeavyHoleSubbands =<int> Set the maximum number of heavy-hole subbands.

NumberOfLightHoleSubbands =<int> Set the maximum number of light-hole subbands.

NumberOfValenceBands =<int> 2 Set the number of valence bands. 

Polarization = TE | TM | Mixed TE Set the polarization used for the computation of the optical 
transition matrix element. Optical Transition Matrix Element 
for Wurtzite Crystals on page 971

μm

V cm⁄
1446 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
PolarizationFactor =<[0,1]> 1 Set the polarization factor used for the computation of the 
optical transition matrix element in mixed polarization 
simulations. Optical Transition Matrix Element for Wurtzite 
Crystals on page 971

WidthExtraction( Table 264) Set QW width extraction parameters.

Table 251 RayDistribution() Distribution Window of Rays on page 602

Dx =<float> Specify discretized x-size for Mode=Equidistant.

Dy =<float> Specify discretized y-size for Mode=Equidistant.

Mode =AutoPopulate Automatically populate rays within the excitation shape.

=Equidistant Equidistant distribution of rays within the excitation shape.

=MonteCarlo Monte Carlo distribution of rays within the excitation shape.

NumberOfRays =<int> Set number of rays for Mode=MonteCarlo or Mode=AutoPopulate.

Scaling =<float> Multiply the rays in this window by a scaling factor.

WindowName =<string> Specify name of the ray distribution window. No name sets the 
RayDistribution section as global.

Table 252 RayTraceBC() in Physics material or region interface–based definition of 
boundary condition

Fresnel Fresnel boundary condition.

PMIModel =<ident> 
[(Table 341)]

Name of the PMI model associated with this BC contact.

Reflectivity =<[0,1]> 0 Reflectivity.

TMM( Table 249) Specification of TMM multilayer structure.

Transmittivity =<[0,1]> 0 Transmittivity.

Table 250 QWLocal() Localized Quantum-Well Model on page 978 (Continued)
Sentaurus™ Device User Guide 1447
N-2017.09



G: Command File Overview 
Physics
Table 253 RayTracing(()...) in Physics{Optics(OpticalSolver(...))}, unified raytracing interface 
Raytracing on page 556

CompactMemoryOption Activate the compact memory model of raytracing.

DepthLimit =<int> Stop tracing a ray after passing through more than <int> 
material boundaries.

ExternalMaterialCRIFile =<string> Include a CRI file to define the external media.
External Material in Raytracer on page 615

Farfield( Table 240) Activate the far field and sensor feature.
Far Field and Sensors for Raytracing on page 620

MinIntensity =<float> Stop tracing a ray when its intensity becomes less than 
<float> times the original intensity. 
RelativeMinIntensity is an equivalent keyword.

MonteCarlo Activate Monte Carlo raytracing.

NonSemiconductorAbsorption Include optical generation calculation in nonsemiconductor 
region or material.

OmitReflectedRays Discard all reflected rays from raytracing process.

OmitWeakerRays Discard the weaker ray at a material interface. This is chosen 
by comparing the reflectivity and transmittivity.

PlotInterfaceFlux Activate plotting of interface fluxes on all BCs.
Plotting Interface Flux on page 618

PolarizationVector =Random Default. Automatically choose a random polarization vector 
that is perpendicular to the starting ray direction.

=<vector> Set a fixed polarization vector for the starting ray.

Print Create the raytree in the output .tdr file.

Print(Skip( <int>)) Create a reduced raytree by omitting every user-defined subtree 
count.

RayDistribution( Table 251) Create a ray distribution to be used in conjunction with the 
excitation illumination window.

RedistributeStoppedRays Distribute the total power accumulated at terminated rays back 
into the raytree.

RetraceCRIchange =<float> Fractional change of the complex refractive index to force 
retracing of rays.

UserWindow( Table 263) Input a set of starting rays from a file that is specified by the 
user. User-Defined Window of Rays on page 600
1448 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
VirtualRegions{ <string> <string>
...}

Specify virtual regions whereby the raytracer will ignore their 
existence.

WeightedOpticalGeneration Switch on weighted method to distribute optical generation 
from element to vertices. Weighted Interpolation for Raytrace 
Optical Generation on page 617

Table 254 Recombination() in SingletExciton()

Bimolecular off (r) Switch on bimolecular recombination in continuity and singlet 
exciton equations. Singlet Exciton Equation on page 235, Bimolecular 
Recombination on page 444

Dissociation off (i) Switch on interface exciton dissociation in continuity and singlet 
exciton equations. Singlet Exciton Equation on page 235, Exciton 
Dissociation Model on page 445

eQuenching off (r) Switch on quenching of singlet exciton due to free electrons. 
Singlet Exciton Equation on page 235

hQuenching off (r) Switch on quenching of singlet exciton due to free holes. Singlet 
Exciton Equation on page 235

radiative off (r) Switch on directly radiative decay of singlet exciton associated 
with light emission.

trappedradiative off (r) Switch on trap-assisted radiative decay of singlet exciton 
associated with light emission.

Table 255 Select() Enhanced Spectrum Control on page 538

AllowDuplicates off (g) Control whether duplicate entries of the spectrum are ignored.

Condition =<string> "true" Define a Boolean Tcl expression to select a subset of a 
multidimensional spectrum.

Parameter =(<string>...) Active parameters of multidimensional spectrum file.

Var =<float> 0 Auxiliary parameter that is used to provide more flexibility when 
specifying a selection condition for the multidimensional spectrum.

Table 253 RayTracing(()...) in Physics{Optics(OpticalSolver(...))}, unified raytracing interface 
Raytracing on page 556 (Continued)
Sentaurus™ Device User Guide 1449
N-2017.09



G: Command File Overview 
Physics
Table 256 Sensor(...) in unified raytracing far field Far Field and Sensors for Raytracing on 
page 620

Angular( Phi=(<float>*2) Define the range of  for the angular sensor.

Theta=(<float>*2)) Define the range of  for the angular sensor.

Line( Corner1=<vector> Define first point of line sensor.

Corner2=<vector> Define second point of line sensor.

UseNormalFlux) Compute the projected-to-normal flux.

Name =<string> Name of the sensor.

Rectangle( AxisAligned Take Corner1 and Corner2 as opposing corners of the rectangle sensor.

Corner1=<vector> Define first corner of rectangle sensor.

Corner2=<vector> Define second corner of rectangle sensor.

Corner3=<vector> Define third corner of rectangle sensor.

UseNormalFlux) Compute the projected-to-normal flux.

Table 257 SensorSweep in unified raytracing far field Far Field and Sensors for Raytracing 
on page 620

Name =<string> Specify name of sensor sweep.

Ndivisions =<int> Set number of subdivisions for the collection ring.

Phi =(<float>*2) Specify range of  for the sensor ring.

Theta =(<float>*2) Specify range of  for the sensor ring.

VaryPhi Set the sensor sweep as a latitude ring.

VaryTheta Set the sensor sweep as a longitudinal ring.

Table 258 SRH() and CDL() Shockley–Read–Hall Recombination on page 391, Coupled 
Defect Level (CDL) Recombination on page 405

<ident> [(Table 341)] Use PMI model <ident> to compute lifetimes. Lifetimes on page 1162

DopingDependence Doping dependence. SRH Doping Dependence on page 393

ElectricField( Table 239) (r) Field enhancement. SRH Field Enhancement on page 396

ExpTempDependence Exponential temperature dependence.
SRH Temperature Dependence on page 394

φ

θ

φ

θ

1450 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
NonlocalPath( Table 245) (r) Nonlocal trap-assisted tunneling enhancement. Dynamic Nonlocal 
Path Trap-Assisted Tunneling on page 400

TempDependence Temperature dependence. SRH Temperature Dependence on page 394

Table 259 StepFunction() Optical Absorption Heat on page 928

Bandgap Use  as the cutoff energy for interband absorption.

EffectiveBandgap Use  as the cutoff energy for interband 
absorption.

Energy =<float>  Use specified value as the cutoff energy for interband absorption.

Wavelength =<float>  Use specified value as the cutoff energy for interband absorption.

Table 260 StepFunction() Quantum Yield Models on page 544

Bandgap Use  as the cutoff energy for interband absorption.

EffectiveBandgap Use  as the cutoff energy for interband absorption.

Energy =<float>  Use specified value as the cutoff energy for interband absorption.

Wavelength =<float>  Use specified value as the cutoff energy for interband absorption.

Table 261 TimeDependence() Specifying Time Dependency for Transient Simulations on 
page 547

FromFile off Reads the time dependency as a table from file.

OpticalTurningPoints( Table 248) + (g) Specification of optical turning points.
Optical Turning Points on page 552.

Scaling =<float> 1 Scaling factor for optical generation.

WavePeriods =<int> Number of periods of the periodic signal.

WaveTime =(<float>*2)  Time interval  when the optical generation rate is 
constant.

WaveTPeriod =<float>  Period of periodic signal.

WaveTPeriodOffset =<float>  Offset of periodic signal (only applies to linear and Gaussian time 
dependency).

Table 258 SRH() and CDL() Shockley–Read–Hall Recombination on page 391, Coupled 
Defect Level (CDL) Recombination on page 405 (Continued)

Eg Ebgn–

Eg Ebgn– 2 3 2⁄( )kT⋅+( )

eV

μm

Eg

Eg Ebgn–

eV

μm

s tmin tmax,( )

s

s

Sentaurus™ Device User Guide 1451
N-2017.09



G: Command File Overview 
Physics
WaveTSigma =<float>  Standard deviation  of the temporal Gaussian distribution that 
describes the decay of the optical generation rate outside the time 
interval WaveTime.

WaveTSlope =<float>  Slope that characterizes the linear decay of the optical generation 
rate outside the time interval WaveTime.

Table 262 TMM() Transfer Matrix Method on page 625

IntensityPattern (r) Choose type of intensity pattern.

=Envelope Compute the envelope of the optical intensity instead of the 
regular optical intensity.

=StandingWave * Compute the regular optical intensity without applying any 
algorithm that filters out oscillations on the wavelength scale.

LayerStackExtraction( ComplexRefractiveIndex
Threshold=<float>

0 Choose threshold value for layer creation when using 
ElementWise extraction mode.

Medium(Table 244)) Specification of media surrounding the extracted layer structure.

Mode=RegionWise | 
ElementWise

RegionWise Specify whether layer stack is created on a per-
element or per-region basis.

Position=(<float>*3) Specify starting point of extraction line.

WindowName=<string> Reference to illumination window in Excitation section.

WindowPosition=<ident>) Center Specify starting point of extraction line in terms of a 
cardinal direction (North, South, East, West, NorthEast, 
SouthEast, NorthWest, SouthWest).

NodesPerWavelength =<float> Number of nodes per wavelength used for computation of optical 
field.

PropagationDirection =Perpendicular | 
Refractive

Refractive Choose interpolation mode for 1D TMM solution.

RoughInterface + Flag interfaces as rough, that is, physics of rough interface 
scattering is applied.

Scattering( AngularDiscretization=
<int>

91 Angular discretization of interval [ ] used in 
scattering solver.

MaxNumberOfIterations=
<int>

10 Break criterion for iterative scattering solver.

Tolerance=<float>) 1e-3 Break criterion for iterative scattering solver.

Table 261 TimeDependence() Specifying Time Dependency for Transient Simulations on 
page 547 (Continued)

s σt

s
1–

π 2⁄ π 2⁄,–
1452 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
LED

NOTE LED simulations present unique challenges that require problem-
specific model and numerics setups. Contact TCAD Support for advice
if you are interested in simulating LEDs (see Contacting Your Local
TCAD Support Team Directly on page xliii). 

Table 263 UserWindow in Physics{Optics(OpticalSolver(Raytracing(...)))}, User-Defined 
Window of Rays on page 600

NumberOfRays =<int> Set number of rays in file.

PolarizationVector =Random Generate random polarization for the user input rays.

=ReadFromExcitation Read the polarization from the Excitation section.

=ReadFromFile Read the polarization vectors from the user input ray file.

RaysFromFile =<string> Set file name of the user input rays.

Table 264 WidthExtraction() Accelerating Gain Calculations and LED Simulations on 
page 930

ChordWeight =<float> Specify chord weight for width extraction.
Thickness Extraction on page 313

MinAngle =(<float>, <float>) Specify minimum angles for width extraction.
Thickness Extraction on page 313

SideMaterial =("mat1", ..., "matn") Specify the materials adjoining the QW.

SideRegion =("reg1", ..., "regn") Specify the regions adjoining the QW.

Table 265  LED() Chapter 34, p. 921

Bandstructure( CrystalType=Zincblende |
Wurtzite)

Zincblende Crystal structure of active region. 
Electronic Band Structure for Wurtzite Crystals on page 967

Broadening( Table 266) Activate gain-broadening models or nonlinear gain 
saturation model. Gain-Broadening Models on page 965, 
Simple Quantum-Well Subband Model on page 973

Optics( Table 268) Optics.

QWExtension =AutoDetect Autodetect width of quantum wells. The quantum-well 
region must be specified by the keyword Active.
Radiative Recombination and Gain Coefficients on page 962

QWTransport Use ‘three-point’ QW model with thermionic emission. 
Radiative Recombination and Gain Coefficients on page 962
Sentaurus™ Device User Guide 1453
N-2017.09



G: Command File Overview 
Physics
SplitOff =<float>  Spin-orbit split-off energy. Strain Effects on page 976

SponEmissionCoeff (<ident> [(Table 341)]) Use PMI model <ident> for spontaneous emission. 
Importing Gain and Spontaneous Emission Data With PMI 
on page 982

SponIntegration (<float>,<int>)  Energy integration range and number of discretization 
intervals for numeric integration (for LED simulations only). 
Spontaneous Emission Rate and Power on page 923

SponScaling =<float> Scaling factor for matrix element of spontaneous emission. 
Radiative Recombination and Gain Coefficients on page 962

StimEmissionCoeff (<ident> [(Table 341)]) Use PMI model <ident> for stimulated emission. 
Importing Gain and Spontaneous Emission Data With PMI 
on page 982

StimScaling =<float> Scaling factor for matrix element of stimulated emission. 
Radiative Recombination and Gain Coefficients on page 962

Strain (RefLatticeConst=<float>)  Use strain model for quantum well with given reference 
lattice constant. Strain parameters are input in the parameter 
file. Strain Effects on page 976

Table 266 Broadening() Gain-Broadening Models on page 965

Gamma =<float>  Broadening coefficient .

Type =CosHyper Use hyperbolic-cosine broadening.
Hyperbolic-Cosine Broadening on page 966

=Landsberg Use Landsberg broadening. Landsberg Broadening on page 966

=Lorentzian Use Lorentzian broadening. Lorentzian Broadening on page 965

Table 267 ClusterActive() in LED(Optics(RayTrace())) Clustering Active Vertices on 
page 937

ClusterQuantity =Nodes Clustering by recursive grouping of active vertices.

=OpticalGridElement Clustering by grouping active vertices in each active optical element.

=PlaneArea Clustering by evenly dividing up QW plane area and grouping active 
vertices in each area element.

NumberOfClusters =<int> Specify number of clusters, only for Nodes or PlaneArea clustering.

Table 265  LED() Chapter 34, p. 921 (Continued)

eV

eV

m

eV Γ
1454 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
Table 268 Optics() in LED() LED Optics: Raytracing on page 931

RayTrace( Table 271) Raytracing.

Table 269 OutputLightToolsFarfieldRays() in LED(Optics(RayTrace())) Interfacing Far-Field 
Rays to LightTools on page 951

Filename =<string> Base file name of the LightTools® ray data file to be output.

SaveType =Ascii Choose ASCII format for LightTools ray data file.

=Binary Choose binary format for LightTools ray data file.

WavelengthDiscretization =<int> Number of discretization for the spectrum. The span of the spectrum is 
determined automatically.

Table 270 OutputLightToolsRays() in LED(Optics(RayTrace(Disable()))) Interfacing LED 
Starting Rays to LightTools® on page 941

IsotropyType =InBuilt Use the internal geodesic distribution of starting rays from each active 
emission vertex cluster.

=Random Use a random distribution of starting rays.

=UserRays Use the user input set of starting rays defined by the keyword 
SourceRaysFromFile (see Table 271).

RaysPerCluster =<int> Set number of starting rays in each active cluster.

SaveType =Ascii Choose ASCII format for LightTools ray data file.

=Binary Choose binary format for LightTools ray data file.

WavelengthDiscretization =<int> Number of discretization for the spectrum. The span of the spectrum is 
determined automatically.

Table 271 RayTrace() in LED(Optics()) LED Optics: Raytracing on page 931

ClusterActive( Table 267) Activate the clustering option.
Clustering Active Vertices on page 937

CompactMemoryOption Activate the compact memory model for LED raytracing. 
Will not work with the full photon-recycling model.

Coordinates =Cartesian *

=Cylindrical
Sentaurus™ Device User Guide 1455
N-2017.09



G: Command File Overview 
Physics
DebugLEDRadiation (<string> <float1>
<float2> <float3>)

off Trace the origin of the output rays that are within the 
angles [<float1>,<float2>] (in degrees) and of minimum 
intensity specified by the <float3> parameter. In two 
dimensions, the angle is defined in the regular polar 
coordinates. In three dimensions, the angles are defined from 
the -axis, as in in regular spherical coordinates. The 
results are output to the file specified by <string>.

DepthLimit =<int> 5 Stop tracing the ray after passing through more than <int> 
material boundaries.

Disable off Disable raytracing but still run LED simulation.

Disable(OutputLightToolsRays( Table 270)) Output starting rays from active vertices to a LightTools ray 
data file. Interfacing LED Starting Rays to LightTools® on 
page 941

EmissionType (Anisotropic(
Sine(<float>*3)
Cosine(<float>*3)))

(Isotropic) *

ExcludeHorizontalSource (<float>) off Omit the source rays that are emitted within the horizontal 
angular zone specified by the <float> parameter (in 
degrees).

LEDRadiationPara (<float>, <int>)  Observation radius and discretization of the observation 
circle or sphere.

LEDSpectrum (<float>*2 <int>)  Starting and ending energy range, and number of 
subdivisions in that energy range.

MinIntensity =<float> 1e-5 Stop tracing the ray when the intensity of a ray becomes 
less than <float> times the original intensity.

MonteCarlo Activate Monte Carlo raytracing.

MoveBoundaryStartRays =<float> 0 nm Shift the starting ray position at device boundary 
inwards. Recommended values are 1 to 5 nm.

NonActiveAbsorptionOff Do not add nonactive region absorption as generation rate to 
continuity equation. Nonactive Region Absorption (Photon 
Recycling) on page 953

ObservationCenter =<vector> Fixed observation center for LED radiation.
By default, center of device.

OmitReflectedRays Discard all reflected rays in raytracing process.

OmitWeakerRays Discard the weaker ray at a material interface. This is decided 
by comparing the reflectivity and transmittivity.

OptGenScaling =<float> Set a multiplication factor to the nonactive optical generation 
computed.

Table 271 RayTrace() in LED(Optics()) LED Optics: Raytracing on page 931 (Continued)

z θ

μm

eV
1456 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
OutputLightToolsFarfieldRays( Table 269) Output far-field rays with embedded spectrum information 
into a LightTools ray data file.
Interfacing Far-Field Rays to LightTools on page 951

PolarizationVector =Random Default. Automatically choose a random polarization vector 
that is perpendicular to the starting ray direction.

=<vector> Set a user-defined polarization vector.

Print off Output all rays to the output .tdr file.

(ActiveVertex(
<int>))

off Output only ray paths emitted from this active vertex.

(Skip(<int>)) 1 Output every other <int> ray to the output .tdr file.

PrintRayInfo (<string>) off Print all indices and positions of starting rays into the file 
specified by <string>.

PrintSourceVertices (<string>) off Print the index and coordinates of all active vertices into 
the file specified by <string>.

ProgressMarkers =<int> 5 Completion meter for raytracing.

RaysPerVertex =<int> 10 Number of rays starting from each active source vertex. 
For 3D, the number of starting rays are constrained by 6, 18, 
68, and so on. The number in the sequence is chosen such that 
RaysPerVertex is slightly larger or equal to it.

RaysRandomOffset Randomize the angular shift of the starting rays.

(RandomSeed=<int>) Set a fixed random seed so that repeated simulations will 
yield the exact pseudorandom results.

RedistributeStoppedRays Distribute the total accumulated power in terminated rays 
back into the raytree.

RetraceCRIchange =<float> Fractional change of the complex refractive index to force 
retracing of rays.

SourceRaysFromFile( <string>) Import a set of starting ray directions from the file name 
specified by <string>. The number of imported rays are 
specified by RaysPerVertex.

Staggered3DFarfieldGrid Use the staggered 3D far-field collection sphere.
Staggered 3D Grid LED Radiation Pattern on page 947

TraceSource () Retrace the source of the output rays to produce a map of the 
source regions that give the strongest ray output.

TurnOffTreeNodeCount Disable counting the total number of nodes in the raytree.

Table 271 RayTrace() in LED(Optics()) LED Optics: Raytracing on page 931 (Continued)
Sentaurus™ Device User Guide 1457
N-2017.09



G: Command File Overview 
Physics
Mobility

Wavelength =<float>  Wavelength.

=AutoPeak Take wavelength at the peak of the spontaneous emission rate 
spectrum. LED Wavelength on page 927

=AutoPeakPower Take wavelength at the peak of the spontaneous emission 
power spectrum.

=Effective Wavelength computed such that total power = total rate x 
effective photon energy.

Table 272 Mobility(), eMobility(), hMobility() Chapter 15, p. 317

BalMob

(

off Use ballistic mobility model.
Ballistic Mobility Model on page 377

Fermi off Use Fermi–Dirac correction in the ballistic mobility.
Using the Ballistic Mobility Model on page 379

Frensley off Use Frensley rule for final mobility.
Using the Ballistic Mobility Model on page 379

KineticEnergy off Use kinetic ballistic mobility model.
Using the Ballistic Mobility Model on page 379

Lch=<float>  nm Use explicit channel length in simple ballistic 
mobility. Using the Ballistic Mobility Model on page 379

TempDep) off Use temperature dependency in simple ballistic mobility. 
Using the Ballistic Mobility Model on page 379

CarrierCarrierScattering (BrooksHerring) off Use Brooks–Herring carrier–carrier scattering model. 
Carrier–Carrier Scattering on page 326

(ConwellWeisskopf) off Use Conwell–Weisskopf carrier–carrier scattering model. 
Carrier–Carrier Scattering on page 326

ConstantMobility + Use constant mobility if neither PhuMob nor 
DopingDependence is specified. 
Mobility due to Phonon Scattering on page 318

Diffusivity( Table 273) off Use non-Einstein diffusivity.
Non-Einstein Diffusivity on page 376

Table 271 RayTrace() in LED(Optics()) LED Optics: Raytracing on page 931 (Continued)

nm

10
7

1458 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
DopingDependence( <ident> [(Table 341)] off PMI model <ident>.
Doping-Dependent Mobility on page 1107

Arora off Use Arora doping-dependent mobility model.
Doping-Dependent Mobility Degradation on page 318

BalMob([Lch=<float>]) off Use low-field ballistic mobility model.
Low-Field Ballistic Mobility Model on page 325

Masetti off Use Masetti doping-dependent mobility model. 
Doping-Dependent Mobility Degradation on page 318

PhuMob [options on 
page 1461]

off Use Philips unified mobility model.
Philips Unified Mobility Model on page 328

PhuMob2 off Use an alternative Philips model.241
Using an Alternative Philips Model on page 329

PMIModel(Table 318) off Use PMI for MSC-dependent mobility. Multistate 
Configuration–Dependent Bulk Mobility on page 1113

UniBo) off Use University of Bologna doping-dependent mobility 
model. Doping-Dependent Mobility Degradation on page 318

eDiffusivity( Table 273) off Use non-Einstein electron diffusivity.
Non-Einstein Diffusivity on page 376

eHighFieldSaturation( Table 273) off Electron high-field saturation.
High-Field Saturation on page 361

Table 272 Mobility(), eMobility(), hMobility() Chapter 15, p. 317 (Continued)
Sentaurus™ Device User Guide 1459
N-2017.09



G: Command File Overview 
Physics
Enormal( <ident> [(Table 341)] off PMI model <ident>. 
Mobility Degradation at Interfaces on page 1116

Coulomb2D off ‘Two-dimensional’ ionized impurity mobility degradation. 
Mobility Degradation Components due to Coulomb Scattering 
on page 347

IALMob(Table 274) off Inversion and accumulation layer mobility model.
Mobility Degradation at Interfaces on page 332

InterfaceCharge[
(SurfaceName=<string>)]

off Negative and positive interface charge mobility 
degradation. Mobility Degradation Components due to 
Coulomb Scattering on page 347

Lombardi(Table 275) off Enhanced Lombardi model.
Mobility Degradation at Interfaces on page 332

Lombardi_highk off Enhanced Lombardi model with high-k degradation. 
Mobility Degradation at Interfaces on page 332

NegInterfaceCharge
[(SurfaceName=<string>)]

off Negative interface charge mobility degradation. Mobility 
Degradation Components due to Coulomb Scattering on 
page 347

PosInterfaceCharge
[(SurfaceName=<string>)]

off Positive interface charge mobility degradation. Mobility 
Degradation Components due to Coulomb Scattering on 
page 347

RCS off Remote Coulomb scattering mobility degradation.
Remote Coulomb Scattering Model on page 351

RPS off Remote phonon scattering mobility degradation.
Remote Phonon Scattering Model on page 353

UniBo) off University of Bologna surface mobility model.
Mobility Degradation at Interfaces on page 332

hDiffusivity( Table 273) off Use non-Einstein hole diffusivity.
Non-Einstein Diffusivity on page 376

hHighFieldSaturation( Table 273) off Hole high-field saturation. 
High-Field Saturation on page 361

HighFieldSaturation( Table 273) off High-field saturation. High-Field Saturation on page 361

IncompleteIonization off Incomplete ionization-dependent mobility. Incomplete 
Ionization–Dependent Mobility Models on page 382

Table 272 Mobility(), eMobility(), hMobility() Chapter 15, p. 317 (Continued)
1460 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
PhuMob off Philips unified mobility model.
Philips Unified Mobility Model on page 328

( Arsenic * Use arsenic parameters. Table 56 on page 332

Phosphorus) Use phosphorus parameters. Table 56 on page 332

ThinLayer off Thin-layer mobility model. 
Thin-Layer Mobility Model on page 356

( ChordWeight=<float> 0 Weight of chord length. Thickness Extraction on page 313

IALMob(Table 274) Use the inversion and accumulation layer mobility model with 
the thin-layer mobility model.
Thin-Layer Mobility Model on page 356

Lombardi(Table 275) * Use the enhanced Lombardi model with the thin-layer 
mobility model. Thin-Layer Mobility Model on page 356

MinAngle=(<float>*2) 0 0 Angle constraints. Thickness Extraction on page 313

Thickness=<float>)  Explicit thickness value.

ToCurrentEnormal as Enormal off Dependence on electric field normal to current. 
Mobility Degradation at Interfaces on page 332

Tunneling – Tunneling correction to mobility. Eq. 233, p. 295

Table 273 HighFieldSaturation(), Diffusivity() High-Field Saturation on page 361

<ident> [(Table 341)] PMI model <ident>. High-Field Saturation Model on page 1125

AutoOrientation – Use a parameter set based on the orientation of the nearest interface. 
Auto-Orientation for High-Field Saturation on page 363

CarrierTempDrive Temperature driving force (default for hydrodynamic simulation). 
Hydrodynamic Driving Force on page 372

CarrierTempDriveBasic Basic temperature driving force. Basic Model on page 367

CarrierTempDriveME Meinerzhagen–Engl temperature driving force. 
Meinerzhagen–Engl Model on page 367

CarrierTempDrivePolynomial Energy-dependent mobility model using an irrational polynomial. 
Energy-Dependent Mobility on page 772

CarrierTempDriveSpline Energy-dependent mobility model using spline interpolation. 
Spline Interpolation on page 774

CaugheyThomas * Use Canali–Hänsch model. Extended Canali Model on page 363

Eparallel Use electric field parallel to current as driving force.
Electric Field Parallel to the Current on page 370

Table 272 Mobility(), eMobility(), hMobility() Chapter 15, p. 317 (Continued)

μm
Sentaurus™ Device User Guide 1461
N-2017.09



G: Command File Overview 
Physics
EparallelToInterface Use electric field parallel to the closest semiconductor–insulator 
interface as driving force.
Electric Field Parallel to the Interface on page 371

GradQuasiFermi * Use gradient of quasi-Fermi potential as driving force. For 
hydrodynamic simulations, default is CarrierTempDrive.
Gradient of Quasi-Fermi Potential on page 370

ParameterSetName =<string> Name of parameter set to use. 
Named Parameter Sets for High-Field Saturation on page 362

PFMob Use Poole–Frenkel mobility model. 
Poole–Frenkel Mobility (Organic Material Mobility) on page 382

PMIModel( Table 318) PMI model dependent on two fields. 
High-Field Saturation With Two Driving Forces on page 1134

TransferredElectronEffect Use transferred electron model.
Transferred Electron Model on page 364

TransferredElectronEffect2 Use an alternative transferred electron model.
Transferred Electron Model 2 on page 365

Table 274 IALMob() Mobility Degradation at Interfaces on page 332

AutoOrientation – Use a parameter set based on the orientation of the nearest interface. 
Auto-Orientation for IALMob on page 345

ClusteringEverywhere – Use clustering formulas for all occurrences of  and . 
Inversion and Accumulation Layer Mobility Model on page 337

FullPhuMob + Use the full PhuMob mobility expressions.
Inversion and Accumulation Layer Mobility Model on page 337

ParameterSetName =<string> Name of IALMob parameter set.
Named Parameter Sets for IALMob on page 344

PhononCombination =<0..2> 1 Selects how 2D and 3D phonon mobility are combined.
Inversion and Accumulation Layer Mobility Model on page 337

Table 275 Lombardi() Mobility Degradation at Interfaces on page 332

AutoOrientation – Use a parameter set based on the orientation of the nearest interface. 
Auto-Orientation for Lombardi Model on page 337

ParameterSetName =<string> Name of EnormalDependence parameter set.
Named Parameter Sets for Lombardi Model on page 336

Table 273 HighFieldSaturation(), Diffusivity() High-Field Saturation on page 361 (Continued)

NA ND
1462 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
Radiation Models

Table 276 AlphaParticle() Alpha Particles on page 666

Direction =<vector> ! Direction of motion of the particle.

Energy =<float> !  Energy of the alpha particle.

Location =<vector> !  Point where the alpha particle enters the device (bidirectional 
track).

StartPoint =<vector> !  Point where the alpha particle enters the device (one-directional 
track).

Time =<float> !  Time at which the charge generation peaks.

Table 277 HeavyIon() Heavy Ions on page 668

Direction =<vector> Direction of motion of the ion.

Exponential * Use exponential shape for the spatial distribution .

Gaussian Use Gaussian shape for the spatial distribution .

Length =[<float>...] Length  where Wt_hi and Let_f are specified (in  by default or 
 if the PicoCoulomb option is selected).

LET_f =[<float>...] Linear energy transfer (LET) function (in  by default or 
 if the PicoCoulomb option is selected). Entries in the list 

match those in Length.

Location =<vector>  Point where the heavy ion enters the device (bidirectional track).

PicoCoulomb Switch units for LET_f, Wt_hi, and Length.

SpatialShape =<ident> 
[(Table 341)]

PMI for spatial distribution function.
Spatial Distribution Function on page 1257

StartPoint =<vector>  Point where the heavy ion enters the device (one-directional track).

Time =<float>  Time at which the ion penetrates the device.

Wt_hi =[<float>...] Characteristic distance,  (in  by default or  if the 
PicoCoulomb option is selected). Entries in the list match those in 
Length.

eV

μm

μm

s

R w( )

R w( )

l cm
μm

pairscm
3–

pC μm
1–

μm

μm

s

wt l( ) cm μm
Sentaurus™ Device User Guide 1463
N-2017.09



G: Command File Overview 
Physics
Various

Table 278 Radiation() Chapter 22, p. 665

Dose =<float>  Total dose over exposure time.

DoseRate =<float>  Dose rate.

DoseTime =(<float>*2) !  Exposure time.

DoseTSigma =<float> !  Standard deviation of rise and fall of dose rate over time.

Table 279 Aniso() Chapter 28, p. 779

Avalanche Use anisotropic avalanche generation.
Anisotropic Avalanche Generation on page 791

direction [(<System_Coord>)] Crystal or simulation system coordinate.

=(<float>*3) Anisotropic direction. Anisotropic Direction on page 783

=xAxis Equivalent to direction=(1 0 0).

=yAxis Equivalent to direction=(0 1 0).

=zAxis Equivalent to direction=(0 0 1).

eAvalanche Use anisotropic electron avalanche generation. 
Anisotropic Avalanche Generation on page 791

eMobility Use self-consistent anisotropic mobility for electrons. 
Self-Consistent Anisotropic Mobility on page 789

eMobilityFactor (Total)=<float> Total anisotropic mobility factor for electrons. 
Total Anisotropic Mobility on page 789

eQuantumPotential Use electron anisotropic density-gradient equation with tensor grid 
approximation. Using the Density Gradient Model on page 296

hAvalanche Use anisotropic hole avalanche generation. 
Anisotropic Avalanche Generation on page 791

hMobility Use self-consistent anisotropic mobility for holes. 
Self-Consistent Anisotropic Mobility on page 789

hMobilityFactor (Total)=<float> Total anisotropic mobility factor for holes.
Total Anisotropic Mobility on page 789

hQuantumPotential Use hole anisotropic density-gradient equation with tensor grid 
approximation. Using the Density Gradient Model on page 296

rad

rads 1–

s

s

1464 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
Mobility Use self-consistent anisotropic mobility.
Self-Consistent Anisotropic Mobility on page 789

Poisson Use anisotropic electrical permittivity.
Anisotropic Electrical Permittivity on page 793

Temperature Use anisotropic thermal conductivity.
Anisotropic Thermal Conductivity on page 794

Table 280 BandEdge() in RandomizedVariation() Band Edge Variations on page 699

Table 230 Statistical properties of the correlation.

Table 321 Spatial restriction of variation.

Amplitude_Chi =<float>  Amplitude of affinity variation for exponential and Gaussian 
correlation.

Amplitude_Eg =<float>  Amplitude of bandgap variation for exponential and Gaussian 
correlation.

Chi2Eg =<float> 0 Correlation between affinity and band gap.

ChiComponent =<0..1> 0 Named random field component for affinity randomization.

EgComponent =<0..1> 1 Named random field component for bandgap randomization.

GrainChi =(<float>...)  Grain affinity values.

GrainEg =(<float>...)  Grain bandgap values.

GrainProbability =(<float>...) Probability for grain types.

Volume =<string> Named volume in which to activate the variation.

Table 281 BarrierType() in SingletExciton() Singlet Exciton Equation on page 235

Bandgap * (i) Use bandgap difference as barrier.

CondBand (i) Use conduction band-edge difference as barrier.

ValBand (i) Use valence band-edge difference as barrier.

Table 279 Aniso() Chapter 28, p. 779 (Continued)

eV

eV

eV

eV
Sentaurus™ Device User Guide 1465
N-2017.09



G: Command File Overview 
Physics
Table 282 Charge(()...) in Physics{} Insulator Fixed Charges

Conc =<float>  (r)  (i) Oxide or interface charge density.

Gaussian (i) Gaussian distribution.

SpaceMid =<vector>  (i) Charge distribution center.

SpaceSig =<vector>  (i) Charge distribution width.

Uniform * (i) Uniform distribution.

Table 283 ComplexRefractiveIndex() Complex Refractive Index Model on page 578

CarrierDep( imag Use carrier dependency of extinction coefficient. 
Carrier Dependency on page 580

real) Use carrier dependency of refractive index. 
Carrier Dependency on page 580

CRIModel( Name=<string>) Activate user-defined complex refractive index model.
Complex Refractive Index Model Interface on page 586

GainDep (real(lin)) Use linear gain dependency of refractive index.
Gain Dependency on page 581

(real(log)) Use logarithmic gain dependency of refractive index. 
Gain Dependency on page 581

TemperatureDep( real) Use temperature dependency of refractive index. 
Temperature Dependency on page 579

WavelengthDep( imag Use wavelength dependency of extinction coefficient. 
Wavelength Dependency on page 579

real) Use wavelength dependency of refractive index. 
Wavelength Dependency on page 579

qcm 3– qcm 2–

μm

μm
1466 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
Table 284 Conductivity() in RandomizedVariation() Metal Conductivity Variations on 
page 700

Table 230 Statistical properties of the correlation.

Table 321 Spatial restriction of variation.

Amplitude =<float>  Amplitude of conductivity variation for exponential and 
Gaussian correlation.

GrainConductivity =(<float>...)  Grain conductivity values.

GrainProbability =(<float>...) Probability for grain types.

Volume =<string> Named volume in which to activate the variation.

Table 285 DeterministicVariation() Deterministic Variations on page 703

DopingVariation <string>(Table 288) Deterministic Doping Variations on page 703

GeometricVariation <string>(Table 301) Deterministic Geometric Variations on page 705

ParameterVariation <string>(Table 316) Parameter Variations on page 706

Table 286 Doping() in Noise() Random Dopant Fluctuations on page 683

Table 321 Spatial restriction of fluctuations.

BandgapNarrowing Include effect on bandgap narrowing.

Mobility Include effect on mobility.

Type =Acceptor Only acceptors fluctuate.

=Donor Only donors fluctuate.

=Doping * All dopants fluctuate.

A/cmV

A/cmV
Sentaurus™ Device User Guide 1467
N-2017.09



G: Command File Overview 
Physics
Table 287 Doping() in RandomizedVariation() Doping Variations on page 695

Table 321 Spatial restriction of variation.

BandgapNarrowing + Account for doping dependency of bandgap narrowing.

Mobility + Account for doping dependency of mobility.

Type =Acceptor Randomize acceptors only.

=Donor Randomize donors only.

=Doping * Randomize all dopants.

Table 288 DopingVariation() in DeterministicVariation() Deterministic Doping Variations on 
page 703

Table 321 Spatial restriction of variation.

Amplitude =<vector>  Vectorial amplitude for gradient specification.

Amplitude_Abs =<vector>  Vectorial amplitude for absolute gradient specification.

Amplitude_Iso =<float>  Isotropic amplitude for gradient specification.

BandgapNarrowing + Account for doping dependency of bandgap narrowing.

Conc =<float>  Normalization concentration.

Factor =<float> 1 Multiplier for variation.

Mobility + Account for doping dependency of mobility.

SFactor =<string> Dataset name for variation.

Type =Acceptor Apply variation to acceptor concentration.

=Donor Apply variation to donor concentration.

=Doping * Apply variation according to sign to acceptor or donors.

μm

μm

μm

cm 3–
1468 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
Table 289 DopingVariation() in RandomizedVariation() Doping Profile Variations on 
page 702

Table 230 Statistical properties of the correlation.

Table 321 Spatial restriction of variation.

Amplitude =<float> 0  Vectorial amplitude.

Amplitude_Iso =<float> 0  Isotropic amplitude.

BandgapNarrowing + Account for doping dependency of bandgap narrowing.

Conc =<float> 0  Normalization concentration.

Mobility + Account for doping dependency of mobility.

SFactor =<string> ! Dataset name for variation.

Type =Acceptor Apply variation to acceptor concentration.

=Donor Apply variation to donor concentration.

=Doping * Apply variation according to sign to acceptor or donors.

Table 290 EffectiveIntrinsicDensity() Band Gap and Electron Affinity on page 249

BandGap (<ident> 
[(Table 341)])

Use PMI model <ident> to compute band gap .
Band Gap on page 1138

BandGapNarrowing (<ident> 
[(Table 341)])

Use PMI model <ident> for bandgap narrowing.
Bandgap Narrowing on page 1141

(BennettWilson) * Bennett–Wilson model.

(delAlamo) del Alamo model.

(JainRoulston) Jain–Roulston model.

(oldSlotboom) Old Slotboom model.

(Slotboom) Slotboom model.

(TableBGN) Table-based model.

NoBandGapNarrowing No bandgap narrowing.

NoFermi off Omit correction Eq. 178, p. 259 even when using Fermi statistics. 
Bandgap Narrowing With Fermi Statistics on page 259

μm

μm

cm 3–

Eg
Sentaurus™ Device User Guide 1469
N-2017.09



G: Command File Overview 
Physics
Table 291 eLucky(), hLucky(), eFiegna(), hFiegna() Effective Field on page 742

CarrierTempDrive Use field derived from temperature.

CarrierTempPost Use field derived from postprocessed temperature.

Eparallel * Use field parallel to interface.

Table 292 eNMP() Extended Nonradiative Multiphonon Model on page 513

Conc =<float> 0  Precursor concentration for the eNMP model.

NumberOfSamples =<int> 0 Number of random samples.

SFactor =<ident> [(Table 341)] Name of the PMI model to compute the eNMP precursor 
concentration. Using the eNMP Model on page 516 and Space 
Factor on page 1190

=<string> Dataset for the spatial distribution of the eNMP precursor 
concentration. Using the eNMP Model on page 516

Table 293 Epsilon() in RandomizedVariation() Dielectric Constant Variations on page 701

Table 230 Statistical properties of the correlation.

Table 321 Spatial restriction of variation.

Amplitude =<float> 1 Amplitude of relative dielectric constant variation for exponential and 
Gaussian correlation.

GrainEpsilon =(<float>...) 1 Grain relative dielectric constant values.

GrainProbability =(<float>...) Probability for grain types.

Volume =<string> Named volume in which to activate the variation.

Table 294 eQuantumPotential() and hQuantumPotential() Density Gradient Quantization 
Model on page 294

AnisoAxes [(<System_Coord>)] Crystal or simulation system coordinate.

={<vector> <vector>} Two directions of anisotropy. Anisotropic Direction on page 783

AutoOrientation off Use parameter set based on orientation of nearest interface.
Auto-Orientation for Density Gradient on page 298

BoundaryCondition =Dirichlet (ci) Enforce homogeneous Dirichlet boundary conditions.

=Neumann (ci) Enforce homogeneous Neumann boundary conditions.

cm
2–
1470 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
Density – (r) Use Eq. 230, p. 294 instead of Eq. 231, p. 295.

direction [(<System_Coord>)] Crystal or simulation system coordinate.

=(<float>*3) Anisotropic direction. Anisotropic Direction on page 783

=xAxis Equivalent to direction=(1 0 0).

=yAxis Equivalent to direction=(0 1 0).

=zAxis Equivalent to direction=(0 0 1).

Gamma( EffectiveMass + Quantization mass is density of states mass.
Gamma Factor for Density Gradient Model on page 1283

name=<string> 
[(Table 341)]

PMI for . Gamma Factor for Density Gradient Model on page 1283

Ignore – (r) Compute, but do not apply quantum correction.

LocalModel =<ident> 
[(Table 341)]

(r) Name of PMI for apparent band-edge shift. 
Chapter 14, p. 283, Apparent Band-Edge Shift on page 1144

=SchenkBGN_elec (r) Schenk bandgap narrowing model for electrons. 
Schenk Bandgap Narrowing Model on page 255

=SchenkBGN_hole (r) Schenk bandgap narrowing model for holes. 
Schenk Bandgap Narrowing Model on page 255

ParameterSetName =<string> Name of QuantumPotentialParameters parameter set.
Named Parameter Sets for Density Gradient on page 298

Resolve – (r) Use more accurate discretization of non-heterointerfaces.

Table 295 eSHEDistributionl(), hSHEDistribution() Spherical Harmonics Expansion Method 
on page 746

AdjustImpurityScattering + Use an option to adjust impurity scattering to match the low-field 
mobility specified in the Physics section.

FullBand – Use the full band structure with the default band-structure file.

=<string> ! File name of the user-defined band-structure file.

RTA – Use relaxation time approximation.

Table 294 eQuantumPotential() and hQuantumPotential() Density Gradient Quantization 
Model on page 294 (Continued)

γ

Sentaurus™ Device User Guide 1471
N-2017.09



G: Command File Overview 
Physics
Table 296 ExternalSchroedinger() External 2D Schrödinger Solver on page 292

Carriers=( Electron Use quantum correction for electrons.

Hole) Use quantum correction for holes.

DampingLength =<float> 0.005  Distance from volume enclosed by slices beyond which 
quantum correction is disabled.

MaxMismatch =<float> 1e-4  Tolerance in matching of slice meshes and device mesh.

NumberOfSlices =<2,> * Number of slices.

SBandCommandFile =<string> Start Sentaurus Band Structure automatically, using this command file.

Volume =<string> Domain to which to restrict quantum corrections.

Table 297 GateCurrent() Chapter 24, p. 715, Chapter 25, p. 737

<ident>( <carrier>... 
[Table 341])

(i) Use PMI model <ident> to compute hot-carrier injection.
Hot-Carrier Injection on page 1230

DirectTunneling (i) Schenk direct tunneling model. Direct Tunneling on page 718

eFiegna [(Table 291)] (i) Fiegna model for electrons. Fiegna Hot-Carrier Injection on page 743

eLucky [(Table 291)] (i) Lucky electron model. Classical Lucky Electron Injection on page 742

eSHEDistribution (i) SHE distribution model for electrons.
SHE Distribution Hot-Carrier Injection on page 744

Fowler (i) Fowler–Nordheim tunneling. 
Fowler–Nordheim Tunneling on page 716

(EVB) (i) Fowler–Nordheim valence band tunneling of electrons. 
Fowler–Nordheim Tunneling on page 716

GateName =<string> (i) Electrode for monitoring gate current. Overview on page 737

hFiegna [(Table 291)] (i) Fiegna model for holes. Fiegna Hot-Carrier Injection on page 743

hLucky [(Table 291)] (i) Lucky hole model. Classical Lucky Electron Injection on page 742

hSHEDistribution (i) SHE distribution model for holes.
SHE Distribution Hot-Carrier Injection on page 744

InjectionRegion =<string> Regions to which hot carriers are injected.
Destination of Injected Current on page 738

Interface (i) Activate carrier injection with explicitly evaluated boundary 
conditions for continuity equations during a transient (Carrier Injection 
With Explicitly Evaluated Boundary Conditions for Continuity Equations 
on page 759) or if not in transient monitor interface current. 
Overview on page 737

μm

μm
1472 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
Table 298 Gaussian() in IntensityDistribution() Spatial Intensity Function Excitation on 
page 568

Length =(<float>,<float>) Length of Gaussian decay, cannot specify together with Sigma.

PeakPosition =(<float>,<float>) Peak position of the Gaussian profile, in local coordinate of the defined 
shape function.

PeakWidth =(<float>,<float>) Width of the plateau of the modified Gaussian profile.

Scaling =<float> Scaling factor for the Gaussian profile.

Sigma =(<float>,<float>) Sigma of Gaussian decay, cannot specify together with Length.

Table 299 Geometric() in RandomizedVariation() Geometric Variations on page 698

Table 230 Statistical properties of the correlation.

Table 321 Spatial restriction of variation.

Amplitude =<vector> 0  Vectorial amplitude for displacement.

Amplitude_Iso =<float> 0  Isotropic amplitude for displacement.

Options =<0..1> 0 Select approximation specific to insulator position variations.

Surface =<string> ! Name of varying surface.

WeightDielectic =<float> 0 Interpolation coefficient between two approximations of dielectric 
term.

WeightQuantumPotential =<float> 0.5 Interpolation coefficient between two approximations for 
density-gradient quantum-correction term.

Table 300 GeometricFluctuations in Noise() Random Geometric Fluctuations on page 684

Table 321 Spatial restriction of variation.

Options =<0..1> 0 Select approximation specific to insulator position variations.

WeightDielectic =<float> 0 Interpolation coefficient between two approximations of dielectric 
term.

WeightQuantumPotential =<float> 0.5 Interpolation coefficient between two approximations for 
density-gradient quantum-correction term.

μm

μm
Sentaurus™ Device User Guide 1473
N-2017.09



G: Command File Overview 
Physics
Table 301 GeometricVariation() in DeterministicVariation() Deterministic Geometric 
Variations on page 705

Table 321 Spatial restriction of variation.

Amplitude =<vector>  Vectorial amplitude for displacement.

Amplitude_Iso =<float>  Isotropic amplitude for displacement.

Options =<0..1> 0 Select approximation specific to insulator position variations.

Surface =<string> ! Name of varying surface.

WeightDielectic =<float> 0 Interpolation coefficient between two approximations of dielectric 
term.

WeightQuantumPotential =<float> 0.5 Interpolation coefficient between two approximations for 
density-gradient quantum-correction term.

Table 302 HeatCapacity() Heat Capacity on page 899

<ident> [(Table 341)] PMI model <ident> for lattice heat capacity. 
Heat Capacity on page 1177

Constant Constant lattice heat capacity.

PMIModel( Table 318) Use multistate configuration–dependent model.

TempDep * Temperature-dependent lattice heat capacity. 

Table 303 HydrogenAtom(), HydrogenIon(), HydrogenMolecule() in Hydrogen Transport on 
page 500

Alpha =<ident> Use PMI model for prefactor of the thermal diffusion term .

Diffusivity =<ident> Use PMI model for .

Table 304 HydrogenDiffusion() Hydrogen Transport on page 500

HydrogenAtom( Table 303) Hydrogen atom specification.

HydrogenIon( Table 303) Hydrogen ion specification.

HydrogenMolecule( Table 303) Hydrogen molecule specification.

HydrogenReaction( Table 305) Reactions Between Mobile Elements on page 502

μm

μm

αtd

Di Ed i kT( )⁄–( )exp
1474 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
NOTE In Table 305,  is  for bulk reactions and  for interface reactions. 

Table 305 HydrogenReaction() Reactions Between Mobile Elements on page 502

FieldFromMaterial =<string> (i) Material where the electric field is obtained.

FieldFromRegion =<string> (i) Region where the electric field is obtained. 

ForwardReactionCoef =<float> 0  Forward reaction coefficient.

ForwardReactionEnergy =<float> 0  Forward reaction activation energy. 

ForwardReactionFieldCoef =<float> 0  Forward reaction field coefficient. 

LHSCoef Define particle numbers to be removed.

( Electron=<int> 0 Number of electrons to be removed.

Hole=<int> 0 Number of holes to be removed.

HydrogenAtom=<int> 0 Number of hydrogen atoms to be removed.

HydrogenIon=<int> 0 Number of hydrogen ions to be removed.

HydrogenMolecule=<int>) 0 Number of hydrogen molecules to be removed.

Material =<string> (i) Material where the recombination rate enters.

Region =<string> (i) Region where the recombination rate enters.

ReverseReactionCoef =<float> 0  Reverse reaction coefficient.

ReverseReactionEnergy =<float> 0  Reverse reaction activation energy. 

ReverseReactionFieldCoef =<float> 0  Reverse reaction field coefficient. 

RHSCoef Define particle numbers to be created.

( Electron=<int> 0 Number of electrons to be created.

Hole=<int> 0 Number of holes to be created.

HydrogenAtom=<int> 0 Number of hydrogen atoms to be created.

HydrogenIon=<int> 0 Number of hydrogen ions to be created.

HydrogenMolecule=<int>) 0 Number of hydrogen molecules to be created.

d 3 2

/cm
d
s

eV

cm/V

/cm
d
s

eV

cm/V
Sentaurus™ Device User Guide 1475
N-2017.09



G: Command File Overview 
Physics
Table 306 IncompleteIonization() Chapter 13, p. 277

Dopants =<string> Restrict incomplete ionization to dopants named in <string>. Dopant 
names are separated by spaces.

Model( <ident>(<string> 
[Table 341]))

Use PMI model <ident> for species named in <string>.
Incomplete Ionization on page 1222

Split( Doping=<string> Dopant that is redistributed into multiple lattice sites.
Multiple Lattice Sites on page 278

Weights=(<float>...)
)

Occupation probabilities of the various lattice sites.
Multiple Lattice Sites on page 278

Table 307 Mechanics() Mechanics Solver on page 890

binary =<string> Name of the Sentaurus Interconnect binary.
Mechanics Solver on page 890

command =<string> Sentaurus Interconnect Tcl commands.
Mechanics Solver on page 890

initial_structure =<string> Initial structure for first call of Sentaurus Interconnect.
Mechanics Solver on page 890

parameter =<string> Sentaurus Interconnect parameters.
Mechanics Solver on page 890

Table 308 MetalWorkfunction() Metal Workfunction on page 242

Randomize( AtInsulatorInterface off (r) Randomize workfunction at metal–insulator vertices only. 
Metal Workfunction Randomization on page 243

AverageGrainSize=<float> ! (r) Average metal grain size.
Metal Workfunction Randomization on page 243

GrainProbability=
(<float>...)

! (r) Probabilities that grains will have a certain workfunction 
value. Metal Workfunction Randomization on page 243

GrainWorkfunction=
(<float>...)

!  (r) Workfunction values corresponding to the above 
probabilities. Metal Workfunction Randomization on page 243

RandomSeed=<int> Seed for the random number generator.
Metal Workfunction Randomization on page 243

UniformDistribution) off (r) Attempt to evenly distribute uniformly sized grains.
Metal Workfunction Randomization on page 243

eV
1476 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
SFactor =<string> Dataset for the spatial distribution of metal workfunction.
Metal Workfunction on page 242

=<ident> [(Table 341)] Name of model to be used by the PMI to compute the spatial 
distribution of metal workfunction. Space Factor on page 1190

[Factor=<float>] ! Scale factor for normalized SFactor values.
Metal Workfunction on page 242

[Offset=<float>] ! Offset for raw or normalized SFactor values.
Metal Workfunction on page 242

Workfunction =<float>  Metal workfunction. Metal Workfunction on page 242

=(<float> <float>*3)... , , ,  Metal workfunction–position quadruplets. 
Metal Workfunction on page 242

Table 309 Model(), options of stress-dependent models Chapter 31 on page 821

DeformationPotential Linear deformation potential model for computing band 
structure. Deformation of Band Structure on page 826

( ekp  method for electron bands to account for shear strain 
components. Deformation of Band Structure on page 826

hkp   method for hole bands.
Deformation of Band Structure on page 826

Minimum Compute conduction and valence band edges using minimum 
band energies. Deformation of Band Structure on page 826

multivalley) Compute conduction and valance band edges using 
Multivalley band structure.
Using Deformation Potential Model on page 829

DOS( eMass Strained electron effective mass and DOS model.
Strained Electron Effective Mass and DOS on page 831

hMass Strained hole effective mass and DOS model.
Strained Hole Effective Mass and DOS on page 833

hMass(AnalyticLTFit) Strained hole effective mass and DOS model with analytic 
lattice temperature fit.
Strained Hole Effective Mass and DOS on page 833

hMass(NumericalIntegration)
)

Strained hole effective mass and DOS model with numeric 
integrations.
Strained Hole Effective Mass and DOS on page 833

Table 308 MetalWorkfunction() Metal Workfunction on page 242 (Continued)

eV

eV μm μm μm

k p⋅

6 6× k p⋅
Sentaurus™ Device User Guide 1477
N-2017.09



G: Command File Overview 
Physics
Mobility( eFactor[(Table 322)] Piezoresistive factor for electrons. 
Isotropic Factor Models on page 870

eMinorityFactor=<float> 1.0 Factor to scale stress effect for minority electrons. 
Stress Mobility Model for Minority Carriers on page 877

eMinorityFactor(
DopingThreshold=<float>)=
<float>

1.0 Factor to scale stress effect for minority electrons with no 
doping dependency.
Stress Mobility Model for Minority Carriers on page 877

eSaturationFactor=<float> 1.0 Saturation factor for electrons.
Dependency of Saturation Velocity on Stress on page 879

eSubband(Doping) Strain-induced subband model for electrons with doping 
dependency.
Multivalley Electron Mobility Model on page 839

eSubband(EffectiveMass) Stress-induced change of the electron effective mass.
Effective Mass on page 842

eSubband(EffectiveMass(
-Transport))

Exclude 2D inverse transport mass tensor transformation.
Effective Mass on page 842

eSubband(EffectiveMass(
Transport<vector>))

Activate 1D inverse transport mass tensor transformation.
Effective Mass on page 842

eSubband(Fermi) Strain-induced subband model for electrons with carrier 
concentration (Fermi statistics) dependency.
Multivalley Electron Mobility Model on page 839

eSubband(Scattering) Strain-induced subband model for electrons with scattering.
Intervalley Scattering on page 840

eSubband(Scattering(MLDA)) Strain-induced subband model with interface scattering.
Intervalley Scattering on page 840

eSubband(-RelChDir110) Use <100> channel direction in reference mobility. Using 
Multivalley Electron Mobility Model on page 846

eSubband(-AutoOrientation) Use full tensor reference mobility. Using Multivalley 
Electron Mobility Model on page 846

eTensor[(Table 322)] Piezoresistive tensor for electrons. 
Piezoresistance Mobility Model on page 859

Factor[(Table 322)] Piezoresistive factor for electrons and holes.
Isotropic Factor Models on page 870

hFactor[(Table 322)] Piezoresistive factor for holes.
Isotropic Factor Models on page 870

hMinorityFactor=<float>
)

1.0 Factor to scale stress effect for minority holes. 
Stress Mobility Model for Minority Carriers on page 877

Table 309 Model(), options of stress-dependent models Chapter 31 on page 821
 (Continued)
1478 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
Mobility( hMinorityFactor(
DopingThreshold=<float>)=
<float>

1.0 Factor to scale stress effect for minority holes with no 
doping dependency.
Stress Mobility Model for Minority Carriers on page 877

hSaturationFactor=<float> 1.0 Saturation factor for holes.
Dependency of Saturation Velocity on Stress on page 879

hSixband Intel stress-induced model for holes.
Intel Stress-Induced Hole Mobility Model on page 854

hSixband(Doping) Intel stress-induced model for holes with doping dependency. 
Intel Stress-Induced Hole Mobility Model on page 854

hSixband(Fermi) Intel stress-induced model for holes with carrier 
concentration (Fermi statistics) dependency.
Intel Stress-Induced Hole Mobility Model on page 854

hSubband(Doping) Strain-induced subband model for holes with doping 
dependency.
Multivalley Hole Mobility Model on page 849

hSubband(EffectiveMass) Stress-induced change of the holes effective mass.
Effective Mass on page 849

hSubband(EffectiveMass(
Transport))

Activate 2D inverse transport mass tensor transformation.
Effective Mass on page 849

hSubband(EffectiveMass(
Transport<vector>))

Activate 1D inverse transport mass tensor transformation.
Effective Mass on page 849

hSubband(Fermi) Strain-induced subband model for holes with carrier 
concentration (Fermi statistics) dependency.
Multivalley Hole Mobility Model on page 849

hSubband(Scattering) Strain-induced subband model for holes with bulk scattering. 
Scattering on page 850

hSubband(Scattering(MLDA)) Strain-induced subband model for holes with interface 
scattering. Scattering on page 850

hSubband(-RelChDir110) Use <100> channel direction in reference mobility. Using 
Multivalley Hole Mobility Model on page 852

hSubband(-AutoOrientation) Use full tensor reference mobility. Using Multivalley Hole 
Mobility Model on page 852

hTensor[(Table 322)] Piezoresistive tensor for holes. 
Piezoresistance Mobility Model on page 859

SaturationFactor=<float> 1.0 Saturation factor for electrons and holes.
Dependency of Saturation Velocity on Stress on page 879

Tensor[(Table 322)]
)

Piezoresistive tensor for electrons and holes. 
Piezoresistance Mobility Model on page 859

Table 309 Model(), options of stress-dependent models Chapter 31 on page 821
 (Continued)
Sentaurus™ Device User Guide 1479
N-2017.09



G: Command File Overview 
Physics
Table 310 MoleFraction() Mole-Fraction Specification on page 17

Grading(( Alternative way to specify grading; allows a nonzero mole 
fraction and different distance of grading from different parts of 
the boundaries.

GrDistance=<float>  Distance in the direction normal to the specified interface, 
where linear interpolation of mole fractions from the constant 
value to the specified boundary mole fractions occurs.

RegionInterface=
(<string>*2)

Restrict this grading to the given interface (applied to all 
interfaces by default).

xFraction=<[0,1]> Boundary xMoleFraction.

yFraction=<[0,1]>)...) Boundary yMoleFraction.

GrDistance =<float>  Distance in the direction normal to the boundaries of the 
specified regions where linear interpolation of mole fractions 
from the specified constant value to 0 occurs.

RegionName =[<string>...] List of regions where the mole-fraction specification will take 
effect.

=<string> Regions where the mole-fraction specification will take effect.

xFraction =<[0,1]> Constant value of xMoleFraction.

yFraction =<[0,1]> Constant value of yMoleFraction.

Table 311 MSConfig() Chapter 18, p. 473

BandEdgeShift( <ident> [(Table 341)] 
[<int>])

Compute band-edge shifts for conduction and valence by PMI 
model <ident> with optional constructor argument <int>. 
Apparent Band-Edge Shift on page 483

Conc =<float> 0  Concentration of states (  for bulk;  for 
interface MSCs).

eBandEdgeShift( <ident> [(Table 341)] 
[<int>])

Compute band-edge shift for conduction band by PMI model 
<ident> with optional constructor argument <int>.
Apparent Band-Edge Shift on page 483

Elimination + Switch solving algorithm.

hBandEdgeShift( <ident> [(Table 341)] 
[<int>])

Compute band-edge shift for valence band by PMI model 
<ident> with optional constructor argument <int>.
Apparent Band-Edge Shift on page 483

Name =<string> ! Identifier of MSConfig.

μm

μm

cm
d–

d 3= d 2=
1480 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
State( ! Define a state (at least two required).

Charge=<int> 0 Number of positive elementary charges.

Hydrogen=<int> 0 Number of hydrogen atoms.

Name=<string>) ! Identifier of state.

Transition( Table 324) ! Define a transition.

Table 312 NBTI() Two-Stage NBTI Degradation Model on page 509

Conc =<float> 0  Concentration of NBTI traps.

NumberOfSamples =<int> 0 Number of random samples.

hSHEDistribution – Use hole-energy distribution function.

Table 313 Noise() Chapter 23, p. 675

BandEdgeFluctuations <string> (Table 321) Band edge fluctuations.
Random Band Edge Fluctuations on page 688

ConductivityFluctuations <string> (Table 321) Metal conductivity fluctuations.
Random Metal Conductivity Fluctuations on page 689

DiffusionNoise( Table 321 Diffusion noise, spatially restricted Diffusion Noise on 
page 681

e_h_Temperature Noise temperatures are the respective carrier 
temperatures.

eTemperature Noise temperature is electron temperature for electrons, 
lattice temperature for holes. 

hTemperature Noise temperature is lattice temperature for electrons, 
hole temperature for holes.

LatticeTemperature) * Noise temperature is lattice temperature.

Doping( Table 286) Random dopant fluctuations

EpsilonFluctuations <string> (Table 321) Dielectric constant fluctuations.
Random Dielectric Constant Fluctuations on page 690

FlickerGRNoise( Table 321) Bulk flicker noise. Bulk Flicker Noise on page 682 

GeometricFluctuations <string> (Table 300) Geometric fluctuations for surface <string>.
Random Geometric Fluctuations on page 684

Table 311 MSConfig() Chapter 18, p. 473 (Continued)

cm
2–
Sentaurus™ Device User Guide 1481
N-2017.09



G: Command File Overview 
Physics
MonopolarGRNoise( Table 321) Equivalent monopolar noise. Equivalent Monopolar 
Generation–Recombination Noise on page 682

TrapConcentration( Table 321) Trap concentration fluctuations. Random Trap 
Concentration Fluctuations on page 687

Traps( Table 321) Trapping noise. Trapping Noise on page 682

WorkfunctionFluctuations <string> (Table 321) Workfunction fluctuations for surface <string>. 
Random Workfunction Fluctuations on page 687

Table 314 Optics() Transfer Matrix Method on page 625 and Beam Propagation Method on 
page 647

Table 268 Optics standalone.

BPMScalar( Table 237) Scalar beam propagation method (BPM) solver. 
Beam Propagation Method on page 647

TMM( Table 262) Transfer matrix method (TMM) solver. 
Transfer Matrix Method on page 625

Table 315 Optics() Specifying the Type of Optical Generation Computation on page 534

ComplexRefractiveIndex( Table 283) Complex refractive index models.
Complex Refractive Index Model on page 578

Excitation Specification of excitation parameters.
Setting the Excitation Parameters on page 560

( Intensity=<float>

Phi=<float> 0 deg Angle between projection of propagation direction 
on xy plane and x-axis.

Polarization=<float> 0 [0,1] Definition of polarization as in Using Transfer 
Matrix Method on page 630.

Polarization=<ident> TM Transverse electric (TE) or transverse magnetic (TM) 
polarized light.

PolarizationAngle=<float> 0 deg Angle between H-field and  used for vectorial 
solvers only.

Theta=<float> 0 deg Angle between propagation direction and z-axis.

Wavelength=<float>)

Window(Table 326)

Table 313 Noise() Chapter 23, p. 675 (Continued)

Wcm
2–

z k̂×

μm
1482 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
OpticalGeneration( Table 247) Optical generation models. Specifying the Type of 
Optical Generation Computation on page 534

OpticalSolver Specification of optical solver method.
Specifying the Optical Solver on page 554

( BPM(Table 237)

Composite Composite Method on page 656

FDTD(Table 241)

FromFile(Table 242)

OptBeam(Table 246)

RayTracing(Table 253) Raytracer on page 593

TMM(Table 262)
)

Note that Excitation section must not be defined in 
TMM section. Using Transfer Matrix Method on page 630

Verbosity =<int> 1 Verbosity level for optical solver output. A verbosity 
level of 0 suppresses all optical solver output.

Table 316 ParameterVariation() in DeterministicVariation() Parameter Variations on 
page 706

Factor =<float> 1 1 Multiplier for original parameter value.

Material =<string> Material location of varied parameter.

MaterialInterface =<string> Material interface location of varied parameter.

Model =<string> ! Model to which varied parameter belongs.

Parameter =<string> ! Name of the varied parameter.

Region =<string> Region location of varied parameter.

RegionInterface =<string> Region interface location of varied parameter.

Summand= =<float> 0 Summand to original parameter value.

Value= =<float> Modified parameter value.

Table 315 Optics() Specifying the Type of Optical Generation Computation on page 534
 (Continued)
Sentaurus™ Device User Guide 1483
N-2017.09



G: Command File Overview 
Physics
Table 317 Piezo() Chapter 31, p. 821

Model( Table 309) Stress-dependent models. Deformation of Band Structure on page 826 to 
Mobility Modeling on page 838

OriKddX =<vector> (1 0 0) Miller indices of the stress system relative to the simulation 
system.

OriKddY =<vector> (0 1 0) Miller indices of the stress system relative to the simulation 
system.

Strain =(<float>*6) Components , , , , ,  of strain tensor.

=Hooke Use Hooke’s law to compute strain tensor from stress tensor.
Eq. 937, p. 822

=LoadFromFile Load strain from Piezo file specified in File section.

Stress =(<float>*6)  Components , , , , ,  of stress tensor.

=<ident> [(Table 341)] Use PMI model <ident> to compute stress. Stress on page 1186

Table 318 PMIModel() Multistate Configuration–Dependent Bulk Mobility on page 1113, 
High-Field Saturation With Two Driving Forces on page 1134, Multistate 
Configuration–Dependent Thermal Conductivity on page 1173, Multistate 
Configuration–Dependent Heat Capacity on page 1180

Index =<int> 0 Number passed to and interpreted by PMI model.

MSConfig =<string> "" Name of multistate configuration on which PMI depends.

Name =<string> ! Name of PMI model.

String =<string> "" String passed to and interpreted by PMI model.

Table 341 PMI parameters.

Table 319 RandomizedVariation() in Physics{} Statistical Impedance Field Method on 
page 691

BandEdge <string> (Table 280) – Band Edge Variations on page 699

Conductivity <string> (Table 284) – Metal Conductivity Variations on page 700

Doping( Table 287) – Doping Variations on page 695

DopingVariation <string> (Table 289) – Doping Profile Variations on page 702

Epsilon <string> (Table 293) – Dielectric Constant Variations on page 701

Geometric <string> (Table 299) – Geometric Variations on page 698

xx yy zz yz xz xy

Pa xx yy zz yz xz xy
1484 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
TrapConcentration( Table 321) – Trap Concentration Variations on page 696

Workfunction <string> (Table 327) – Workfunction Variations on page 697

Table 320 Schroedinger() 1D Schrödinger Solver on page 285

DensityTail =Extrapolate * Use estimate for lowest noncomputed subband energy as 
. Eq. 228, p. 291

=MaxEnergy Use highest computed subband energy as . 
Eq. 228, p. 291

eDensityCorrection + Activate electron quantization model in the quantum well.
1D Schrödinger Solver on page 285

Electron – Solve Schrödinger equation for electrons.

EnergyInterval [(<carrier>)]=<float> 0  Highest energy to which eigensolutions are computed, 
measured from the lowest interior potential point on the nonlocal 
line on which the Schrödinger equation is solved. When 0, only 
bound solutions are computed.
Using 1D Schrödinger on page 287

Error [(<carrier>)]=<(0,)> 1e-5  Precision target for eigenenergies.
Using 1D Schrödinger on page 287

hDensityCorrection + Activate hole quantization model in the quantum well.
1D Schrödinger Solver on page 285

Hole – Solve Schrödinger equation for holes.

MaxSolutions [(<carrier>)]=<0..> 5 Maximum number of eigensolutions computed per ladder.
Using 1D Schrödinger on page 287

Polarization = TE | TM | Mixed TE Set the polarization used for the computation of the optical 
transition matrix element. Optical Transition Matrix Element for 
Wurtzite Crystals on page 971

PolarizationFactor =<[0,1]> 1 Set the polarization factor used for the computation of the 
optical transition matrix element in mixed polarization 
simulations. Optical Transition Matrix Element for Wurtzite 
Crystals on page 971

Smooth =<float> 0  Length (measured from end of nonlocal line) over which to 
blend from classical to quantum density.

Table 319 RandomizedVariation() in Physics{} Statistical Impedance Field Method on 
page 691 (Continued)

Emax ν,

Emax ν,

eV

eV

cm
Sentaurus™ Device User Guide 1485
N-2017.09



G: Command File Overview 
Physics
Table 321 Spatial restriction Energetic and Spatial Distribution of Traps on page 450, 
Options Common to sIFM Variations on page 692

SpaceMid =<vector> (0 0 0)  Center of spatial distribution.

SpaceSig =<vector> (1e100 1e100 1e100)  Width of spatial distribution.

SpatialShape =Gaussian Use Gaussian shape function.

=Uniform * Use Uniform shape function.

Table 322 Tensor(), eTensor(), hTensor() Piezoresistance Mobility Model on page 859, 
Factor(), eFactor(), hFactor() Isotropic Factor Models on page 870

<ident> [(Table 341)] Use PMI model <ident> to compute piezoresistive prefactors 
(first-order piezoresistance tensor model only).
Piezoresistive Coefficients on page 1237

Use PMI model <ident> to compute a mobility enhancement 
stress factor (isotropic factor model only).
Mobility Stress Factor on page 1193

ApplyToMobilityComponents – Apply the Factor model enhancement to individual mobility 
components. Factor Models Applied to Mobility Components on 
page 876

AutoOrientation off Use parameter set based on orientation of nearest interface. 
Auto-Orientation for Piezoresistance on page 863 and Isotropic 
Factor Model Options on page 876

ChannelDirection =<1..3> 1 Channel direction (Factor models only).
Isotropic Factor Models on page 870

EffectiveStressModel Use the effective stress Factor model.
Effective Stress Model on page 872

(AxisAlignedNormals) off Use axis-aligned normals for the effective stress calculation.
Effective Stress on page 873

Enormal off Use piezoresistive prefactors (first-order piezoresistance 
tensor model only). Enormal- and MoleFraction-Dependent Piezo 
Coefficients on page 863

FirstOrder * Use the first-order piezoresistance model.
Piezoresistance Mobility Model on page 859

Kanda off Include temperature and doping dependency. 
Doping and Temperature Dependency on page 860

ParameterSetName =<string> Name of Piezoresistance or EffectiveStressModel 
parameter set. Named Parameter Sets for Piezoresistance on 
page 863 and Isotropic Factor Model Options on page 876

μm

μm
1486 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
SecondOrder Use the second-order piezoresistance model.
Piezoresistance Mobility Model on page 859

SFactor =<string> Dataset for the spatial distribution of the mobility enhancement 
factor. SFactor Dataset or PMI Model on page 876

=<ident> [(Table 341)] Name of model to be used by the PMI to compute the spatial 
distribution of the mobility enhancement factor. SFactor Dataset 
or PMI Model on page 876 and Space Factor on page 1190

Table 323 ThermalConductivity() Thermal Conductivity on page 901

<ident> [(Table 341)] Use PMI model <ident> for thermal conductivity.
Thermal Conductivity on page 1167

Constant Conductivity Use constant conductivity.

Resistivity Use constant resistivity.

Formula Use the built-in strategy for thermal conductivity.
Thermal Conductivity on page 1167

PMIModel( Table 318) Use multistate configuration–dependent model.

TempDep Conductivity Use Eq. 1044, p. 901.

Resistivity Use Eq. 1043, p. 901.

Table 324 Transition() in MSConfig() Chapter 18, p. 473

CEModel( <ident> [(Table 341)] 
[<int>])

! Use PMI_TrapCaptureEmission model <ident> with optional 
constructor argument <int>.

FieldFromInsulator – Use the insulator electric field instead of the semiconductor electric 
field for the MSCs defined at the semiconductor–insulator interface.

From =<string> ! Interacting state.

Name =<string> ! Identifier of transitions.

Reservoirs( List of reservoirs for particle conservation.

<string>(Particles=
<int>)...)

Reservoir <string> and number of involved particles <int>.

To =<string> ! Reference state.

Table 322 Tensor(), eTensor(), hTensor() Piezoresistance Mobility Model on page 859, 
Factor(), eFactor(), hFactor() Isotropic Factor Models on page 870 (Continued)
Sentaurus™ Device User Guide 1487
N-2017.09



G: Command File Overview 
Physics
NOTE In Table 325,  for bulk traps and  for interface traps. 

Table 325 Traps(()...) Chapter 17, p. 449, Chapter 19, p. 489

Table 321 Spatial restriction of trap distribution.

Acceptor Acceptor trap type. Trap Types on page 450

ActEnergy =<float>  Equilibrium activation energy of hydrogen on Si-H bonds, 
. Chapter 19, p. 489

Add2TotalDoping( Include the trap concentration in the acceptor, donor, and total 
doping concentrations used to compute mobility, lifetimes, and so 
on. Doping Specification on page 11

ChargedTraps) Include the charged trap concentration in the acceptor or donor 
doping concentrations used to compute mobility.
Doping Specification on page 11

BarrierTunnelingEnhan =(<float>*4) (1 1 1 1) , , ,  Barrier tunneling enhancement 
parameters for the Degradation model depassivation constant, 

, , , and .
Reaction Enhancement Factors on page 493

BondConc =<float>  Total silicon dangling bond concentration .
Chapter 19, p. 489

BondConcSFactor =<ident> [(Table 341)] Name of model to be used by the PMI to compute the spatial 
distribution of bond concentration. Space Factor on page 1190

=<string> Dataset for the spatial distribution of bond concentration.
Using the Trap Degradation Model on page 495

CBRate =<ident> [(Table 341)] Use PMI <ident> to compute electron capture and emission rate 
for conduction band.

=(<ident> [(Table 341)] 
<int>)

Use PMI <ident> with constructor argument <int> to compute 
electron capture and emission rate for conduction band.
Trap Capture and Emission Rates on page 1200

Conc =<float>  or  Concentration or the peak density of the trap 
distribution. Energetic and Spatial Distribution of Traps on 
page 450

Coupled =Off * Disable trap coupling.

=Tunneling Couple traps by tunneling. Trap-to-Trap Tunneling on page 461

CritConc =<float>  Critical concentration , default .
Chapter 19, p. 489

CurrentEnhan =(<float>*4) (0 1 0 1) , , ,  Parameters of the tunneling and hot 
carrier–dependent terms of the depassivation constant, , 

, , and .
Reaction Enhancement Factors on page 493

d 3= d 2=

eV
εA

0

1 1 1 1

δBTe ρBTe δBTh ρBTh

cm d– N

cm d– eV
1–
cm d–

cm d– Ncrit 0.1N

1 1 1 1
δTun

ρTun δHC ρHC
1488 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
Cutoff =BandGap Truncate trap energy distribution to plain band gap at 300 K. 
Energetic and Spatial Distribution of Traps on page 450

=EffectiveBandgap * Truncate trap energy distribution to effective bandgap at 300 K.

=None Do not truncate trap energy distribution.

=Simple Use a legacy truncation of trap energy distribution.

Degradation Use degradation model based on kinetic equation.
Chapter 19, p. 489

(PowerLaw) Use degradation model based on power law. Chapter 19, p. 489

DePasCoef =<float>  Depassivation coefficient  at the passivation conditions 
(the equilibrium at the passivation temperature ).
Chapter 19, p. 489

DiffusionEnhan =(6*<float>)      
Parameters of hydrogen diffusion in oxide, , , , , 

, and  in Eq. 551, p. 492, Chapter 19, p. 489.

DirectTunnelingEnhan =(<float>*4) (1 1 1 1) , , ,  Direct tunneling enhancement 
parameters for the Degradation model depassivation constant, 

, , , and .
Reaction Enhancement Factors on page 493

Donor Donor trap type. Trap Types on page 450

eBarrierTunneling( NonLocal=<string> Use nonlocal tunneling from the conduction band at reference 
surface of all connected unnamed, and all listed, connected 
named nonlocal meshes. Tunneling and Traps on page 463

TwoBand) Use two-band dispersion.
WKB Tunneling Probability on page 729

eConstEmissionRate =<float>  Constant electron emission rate term to the conduction band 
. Local Trap Capture and Emission on page 457

eGfactor =<float> Electron degeneracy factor .
Trap Occupation Dynamics on page 455

eHCSDegradation Use the hot-carrier stress (HCS) degradation model for electrons.
Hot-Carrier Stress Degradation Model on page 519

( BondDispersion + Use bond dispersion. Bond Dispersion on page 523

SHE) - Use the carrier distribution function from SHE.
Spherical Harmonics Expansion Option on page 522

eJfactor =<float> Electron J-model factor .
Local Trap Capture and Emission on page 457

ElectricField [(<carrier>)] Field-dependent model for cross sections.
J-Model Cross Sections on page 458

Table 325 Traps(()...) Chapter 17, p. 449, Chapter 19, p. 489 (Continued)

s
1– ν0

T0

cm cm2s 1– eV cms 1– cm 3– 1
xP D0 εH kP

NH
0

Nox

1 1 1 1

δDTe ρDTe δDTh ρDTh

s
1–

econst
n

gn

gn
J

Sentaurus™ Device User Guide 1489
N-2017.09



G: Command File Overview 
Physics
EnergyMid =<float>  Central energy  of the trap distribution. Eq. 502, p. 450

EnergyShift =<ident> [(Table 341)] Use PMI <ident> to compute trap energy shift.

=(<ident> [(Table 341)] 
<int>)

Use PMI <ident> with constructor argument <int> to compute 
trap energy shift. Energetic and Spatial Distribution of Traps on 
page 450, Trap Energy Shift on page 1205

EnergySig =<(0,)>  Width  of the trap distribution. Eq. 502, p. 450

eNeutral Electron trap type. Trap Types on page 450

eSHEDistribution =(<float>*6) (0 0 0 0 1 1) , , , , , 
Parameters of the electron energy–dependent terms of the 
depassivation constant, , , , , , and .
Trap Degradation Model on page 490

Exponential Exponential energetic distribution. Energetic and Spatial 
Distribution of Traps on page 450, Eq. 502, p. 450

eXsection =<[0,)>  Electron capture cross section .
Local Trap Capture and Emission on page 457

FieldEnhan =(<float>*4) (0 1 0 1) , , , 
Parameters of the electric field–dependent terms of the Si-H bond 
energy and the activation energy, , , , and .
Chapter 19, p. 489

FixedCharge Fixed charge. Trap Types on page 450

FowlerNordheimEnhan =(<float>*4) (1 1) ,  Fowler–Nordheim tunneling enhancement 
parameters for the Degradation model depassivation constant, 

, and . Reaction Enhancement Factors on page 493

fromCondBand Zero point for  is conduction band. Eq. 503, p. 451

fromMidBandGap Zero point for  is intrinsic energy. Eq. 503, p. 451

fromValBand Zero point for  is valence band. Eq. 503, p. 451

Gaussian Gaussian energetic distribution. Energetic and Spatial 
Distribution of Traps on page 450, Eq. 502, p. 450

hBarrierTunneling( NonLocal=<string> Use nonlocal tunneling from the valence band at reference 
surface of all connected unnamed, and all listed, connected 
named nonlocal meshes. Tunneling and Traps on page 463

TwoBand) Use two-band dispersion.
WKB Tunneling Probability on page 729

hConstEmissionRate =<float>  Constant hole emission rate to the valence band .
Local Trap Capture and Emission on page 457

hGfactor =<float> Hole degeneracy factor . 
Trap Occupation Dynamics on page 455

Table 325 Traps(()...) Chapter 17, p. 449, Chapter 19, p. 489 (Continued)

eV E0

eV ES

cm
2
A

1–( )
ρSHE

eV eV eV 1 1

δSHE εth εa δ⊥ ρ⊥ ρSHE

cm
2 σn

0

eVcm
ρ//V

ρ//–
1 eVcm

ρ⊥V
ρ⊥–

1

δ// ρ// δ⊥ ρ⊥

1 1

δFN ρFN

E0

E0

E0

s
1–

econst
p

gp
1490 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
hHCSDegradation Use the HCS degradation model for holes.
Hot-Carrier Stress Degradation Model on page 519

( BondDispersion + Use bond dispersion. Bond Dispersion on page 523

SHE) - Use the carrier distribution function from SHE.
Spherical Harmonics Expansion Option on page 522

hJfactor =<float> Hole J-model factor . 
Local Trap Capture and Emission on page 457

hNeutral Hole trap type. Trap Types on page 450

hSHEDistribution =(<float>*6) (0 0 0 0 1 1) , , , , , 
Parameters of the hole energy–dependent terms of the 
depassivation constant, , , , , , and .
Trap Degradation Model on page 490

HuangRhys =<[0,)> Huang–Rhys factor. Tunneling and Traps on page 463

hXsection =<[0,)>  Hole capture cross section .
Local Trap Capture and Emission on page 457

Level Trap with single energy level. Energetic and Spatial Distribution 
of Traps on page 450, Eq. 502, p. 450

Location =(<vector>...)  Locations of traps coupled by tunneling.
Trap-to-Trap Tunneling on page 461

Makram-Ebeid [(<carrier> 
<simpleCapt>)]

Use Makram–Ebeid–Lannoo model. Local Capture and Emission 
Rates Based on Makram-Ebeid–Lannoo Phonon-Assisted Tunnel 
Ionization Model on page 459

Material =<string> (i) Material to which energy specification refers.
Energetic and Spatial Distribution of Traps on page 450

Name =<string> Identifier for trap.

PasCoef =<float>  Passivation coefficient . By default, computed 
automatically to provide the equilibrium, . 
Chapter 19, p. 489

PasTemp =<float> 300  Passivation temperature . Chapter 19, p. 489

PasVolume =<float> 0 |  Passivation volume . Chapter 19, p. 489

PhononEnergy =<[0,)>  Phonon energy for inelastic tunneling.
Tunneling and Traps on page 463

Table 325 Traps(()...) Chapter 17, p. 449, Chapter 19, p. 489 (Continued)

gp
J

cm
2
A

1–( )
ρSHE

eV eV eV 1 1

δSHE εth εa δ⊥ ρ⊥ ρSHE

cm
2 σp

0

μm

s
1– γ0

ν0Nhb
0

N Nhb
0

–( )⁄

K T0

cm
2

cm
3 Ω

eV
Sentaurus™ Device User Guide 1491
N-2017.09



G: Command File Overview 
Physics
PooleFrenkel Use Poole–Frenkel model for exchange with conduction or 
valence band, depending on trap type.
Poole–Frenkel Model for Cross Sections on page 458

(Electron) Use Poole–Frenkel model for exchange with conduction band, 
irrespective of trap type.

(Hole) Use Poole–Frenkel model for exchange with valence band, 
irrespective of trap type.

PowerEnhan =(<float>*3) (0 0 0) , , 
Parameters in the chemical potential for kinetic equation 
degradation and the power for degradation by power law, , , 
and . Chapter 19, p. 489

Randomize [=<int>] Randomize traps. Trap Randomization on page 454

Reference =BandGap Refer trap energies to band edges excluding bandgap narrowing. 
Energetic and Spatial Distribution of Traps on page 450

=EffectiveBandgap * Refer trap energies to effective band edges.

ReferencePoint =<vector> Coordinate where to take the data for EnergyShift.

Region =<string> (i) Region to which energy specification refers. 
Energetic and Spatial Distribution of Traps on page 450

SFactor =<string> Dataset for the spatial distribution of the traps.
Energetic and Spatial Distribution of Traps on page 450

=<ident> [(Table 341)] Name of model to be used by the PMI to compute the spatial trap 
distribution. Space Factor on page 1190

SimpleCapt – Restrict field enhancement of trapping to the emission rates. 
Local Trap Capture and Emission on page 457

SingleTrap Use a single trap. Specifying Single Traps on page 453

Table =(<float>*2...)   Pairs of energy and concentration of a tabular 
approximation to a trap distribution. Energetic and Spatial 
Distribution of Traps on page 450, Eq. 502

TrapVolume =<[0,)>  Interaction volume for nonlocal tunneling. 
Tunneling and Traps on page 463

Tunneling( Hurkx[(<carrier>)]) Use Hurkx trap-assisted tunneling model. 
Hurkx Model for Cross Sections on page 458

Uniform Uniform energetic distribution. Energetic and Spatial Distribution 
of Traps on page 450, Eq. 502, p. 450

Table 325 Traps(()...) Chapter 17, p. 449, Chapter 19, p. 489 (Continued)

1 V
1–
cm V

1–
cm

β0 β//
β⊥

eV eV
1–
cm d–

μm
3

1492 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Physics
VBRate =<ident> [(Table 341)] Use PMI <ident> to compute hole capture and emission rate for 
valence band.

=(<ident> [(Table 341)] 
<int>)

Use PMI <ident> with constructor argument <int> to compute 
hole capture and emission rate for valence band.
Trap Capture and Emission Rates on page 1200

Table 326 Window Illumination Window on page 562

Circle( Radius=<float>)

IntensityDistribution( Gaussian(Table 298)) Specify spatial intensity profile.
Spatial Intensity Function Excitation on page 568

Line( Dx=<float>

X1=<float>

X2=<float>)

Origin =(<float>*3) Global location of window origin.

OriginAnchor =<ident> Center Origin anchor of illumination window in terms of 
cardinal direction (North, South, East, West, NorthEast, 
SouthEast, NorthWest, SouthWest).

Polygon( (<float>*2)*n Specification of simple polygon using several vertices.

((<float>*2)*n)*m
)

Specification of complex polygon using several loops of vertices.

Rectangle( Dx=<float>

Dy=<float>

Corner1=(<float>*2)

Corner2=(<float>*2))

RotationAngles =(<float>*3) Angles specifying global orientation of window coordinate 
system.

Table 325 Traps(()...) Chapter 17, p. 449, Chapter 19, p. 489 (Continued)
Sentaurus™ Device User Guide 1493
N-2017.09



G: Command File Overview 
Physics
WeightedAPDintegration – Switch on weighted absorbed photon density (APD) 
integration. Accurate Absorbed Photon Density for 1D Optical 
Solvers on page 575

( Mode= Auto | Full | 
Simple

Auto Set integration mode of APD. 
Options are:
Auto: Mixed wireframe and 1D integration.
Full: Wireframe integration.
Simple: One-dimensional integration.

NumberOfCellsPerLayer=
<int>

100 Set the number of wireframe cells per layer.

NumberOfTransverseCells
PerDirection=<int>

200 Wireframe discretization parameter of the illumination 
window plane.

PrintInfo) Print detailed information about wireframe integration.

XDirection =(<float>*3) (1, 0, 0) Direction of x-axis.

YDirection =(<float>*3) (0, 1, 0) Direction of y-axis.

Table 327 Workfunction() in RandomizedVariation() Workfunction Variations on page 697

Table 230 Statistical properties of the correlation.

Table 321 Spatial restriction of variation.

Amplitude =<float>  Amplitude of workfunction variation for exponential and Gaussian 
correlation.

GrainProbability =(<(0,)>...) Probability for grain orientation.

GrainWorkfunction =(<float>...)  Grain workfunctions.

Surface =<string> ! Surface of variation. Workfunction Variations on page 697

Table 326 Window Illumination Window on page 562 (Continued)

eV

eV
1494 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Plotting
Plotting

Table 328 Plot{} Device Plots on page 122

Table 178 Scalar plot data. Device Plots on page 122

Table 178/Element Scalar plot datasets defined on elements.

Table 178/RegionInterface Scalar plot data on region interfaces; supported for just a few datasets. 
Interface Plots on page 125

Table 178/Tensor Tensorial plot data. Device Plots on page 122

Table 179/Vector Vectorial plot data. Device Plots on page 122

Table 180/SpecialVector Special vectorial plot data; supported for the SHE distribution data. 
SHE Distribution Hot-Carrier Injection on page 744

Table 332 Occupation rates of MSConfig states.
Specifying Multistate Configurations on page 475

DatasetsFromGrid Copy datasets from TDR grid file. What to Plot on page 122

(<ident>...) Datasets to be copied.

Table 329 Average(), Integrate(), Maximum(), and Minimum() Tracking Additional Data in the 
Current File on page 110

Table 339 Sample over location.

Coordinates Print coordinates where maximum, minimum, or average occurs.

DopingWell <vector> Sample over well, defined by point in the well.

Everywhere Sample over entire device.

Insulator Sample over all insulator regions of the device.

Name =<string> Name for sampled data to be used in output.

Semiconductor Sample over all semiconductor regions of the device.

Window[ <vector> <vector>] Sample over the window, defined by two specified corners.
Sentaurus™ Device User Guide 1495
N-2017.09



G: Command File Overview 
Plotting
Table 330 CurrentPlot{} Tracking Additional Data in the Current File on page 110

<vector>  Print data at coordinate <vertex>.

Average( Table 329) Print average over given domain.

Device =<string> Name of the device for which the parameter will be plotted.

Integrate( Table 329) Print integral over given domain.

Material =<string> Name of material for which the parameter will be plotted if it has been 
specified for a particular material.

MaterialInterface =<string> Name of material interface for which the parameter will be plotted if it 
has been specified for a particular material interface.

Maximum( Table 329) Print maximum in given domain.

Minimum( Table 329) Print minimum in given domain.

Model =<string> Select a model for printing of parameters.

ModelParameter =<string> Select model parameter for plotting when using unified interface for 
optical generation computation. Parameter Ramping on page 573

OpticalDevice =<string> Name of the optical device for which the parameter will be plotted.

Parameter =<string> Print parameter <string>.

Region =<string> Name of the region for which the parameter will be plotted if it has been 
specified for a particular region.

RegionInterface =<string> Name of the region interface for which the parameter will be plotted if it 
has been specified for a particular region interface.

Table 331 GainPlot{}

Intervals =<int> Number of points to plot for each gain curve.

Range =(<float>*2)  Energy range of the gain plot.

=Auto Automatically find the energy range.

Table 332 MSConfig in Plot{} Specifying Multistate Configurations on page 475

MSConfig All state occupations of all MSConfig.

(<string>) All state occupations of MSConfig <string>.

(<string1> <string2>) Occupation of state <string2> of MSConfig <string1>.

μm

eV
1496 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Plotting
Table 333 NoisePlot{} Noise Output Data on page 710

Table 178 Scalar plot data.

Table 179/Vector Vector plot data.

AllLNS All used local noise sources.

AllLNVSD All used local noise voltage spectral densities.

AllLNVXVSD All use local noise voltage cross-correlation spectral densities.

GreenFunctions All used Green’s functions and their gradients.

Table 334 NonLocalPlot{} Visualizing Data Defined on Nonlocal Meshes on page 148

Table 178 Scalar data.

EigenEnergy( Eigenenergies. 1D Schrödinger Solver on page 285

Electron[(Number=<int>)] Restrict output to [<int> lowest] electron eigensolutions.

Hole[(Number=<int>)]) Restrict output to [<int> lowest] hole eigensolutions.

OverlapIntegral Overlap integrals. 1D Schrödinger Solver on page 285

WaveFunction( Wavefunctions. 1D Schrödinger Solver on page 285

Electron[(Number=<int>)] Restrict output to [<int> lowest] electron eigensolutions.

Hole[(Number=<int>)]) Restrict output to [<int> lowest] hole eigensolutions.

Table 335 TensorPlot(){} Visualizing Results on Native Tensor Grid on page 655

Name =<string> ! Name of tensor plot. The file name for the TensorPlot given in the 
File section is appended by this name.

OutputLevel =maximum For bidirectional BPM, tensor plots are generated not only for the final 
solution, but also after every iteration if maximum is specified.

Xconst =<float>  X-coordinate.

Xmax =<float>  Maximum x-coordinate.

Xmin =<float>  Minimum x-coordinate.

Yconst =<float>  Y-coordinate.

Ymax =<float>  Maximum y-coordinate.

Ymin =<float>  Minimum y-coordinate.

Zconst =<float>  Z-coordinate.

μm

μm

μm

μm

μm

μm

μm
Sentaurus™ Device User Guide 1497
N-2017.09



G: Command File Overview 
Various
Various

Zmax =<float>  Maximum z-coordinate.

Zmin =<float>  Minimum z-coordinate.

Table 336 Locations, all

Table 337 Bulk location.

Table 338 Interface location.

Electrode =<string> Name of an electrode that must exist in the device.

Table 337 Locations, bulk (dimension is that of the device)

Material =<string> Name of a material.

Region =<string> Name of a region that must exist in the device.

Table 338 Locations, interface (dimension is one less than that of the device)

MaterialInterface =<string> Material interface of the form "<ident1>/<ident2>", with <ident1> 
and <ident2> as the names of materials.

RegionInterface =<string> Region interface of the form "<ident1>/<ident2>", with <ident1> 
and <ident2> as the names of regions that must exist in the device and 
must have a common interface.

Table 339 Locations, noncontact

Table 337 Bulk location.

Table 338 Interface location.

Table 340 Optics() in Physics{}

Table 268 Optics standalone.

Table 335 TensorPlot(){} Visualizing Results on Native Tensor Grid on page 655 (Continued)

μm

μm
1498 Sentaurus™ Device User Guide
N-2017.09



G: Command File Overview
Various
BPMScalar( Table 237) Scalar beam propagation method (BPM) solver.
Beam Propagation Method on page 647

TMM( Table 237) Transfer matrix method (TMM) solver. 
Transfer Matrix Method on page 625

Table 341 PMI parameters Command File of Sentaurus Device on page 1065

<ident> =<float> Scalar floating-point parameter.

=<string> Scalar string parameter.

=(<float>...) Vector of floating-point parameters.

=(<string>...) Vector of string parameters.

Table 340 Optics() in Physics{} (Continued)
Sentaurus™ Device User Guide 1499
N-2017.09



G: Command File Overview 
Various
1500 Sentaurus™ Device User Guide
N-2017.09


	Return to Front Page
	Sentaurus™ Device User Guide
	Contents
	About This Guide
	Related Publications
	Conventions
	Customer Support
	Accessing SolvNet
	Contacting Synopsys Support
	Contacting Your Local TCAD Support Team Directly

	Acknowledgments

	Part I Getting Started
	Chapter 1 Introduction to Sentaurus Device
	Functionality of Sentaurus Device
	Creating and Meshing Device Structures
	Tool Flow

	Starting Sentaurus Device
	From the Command Line
	From Sentaurus Workbench

	Simulation Projects

	Chapter 2 Specifying Physical Devices
	Reading a Structure
	Abrupt and Graded Heterojunctions

	Doping Specification
	Material Specification
	User-Defined Materials
	Mole-Fraction Materials

	Mole-Fraction Specification
	Physical Models and the Hierarchy of Their Specification
	Region-Specific and Material -Specific Models
	Interface-Specific Models
	Electrode-Specific Models

	Physical Model Parameters
	Search Strategy for Parameter Files
	Parameters for Composition-Dependent Materials
	Ternary Semiconductor Composition
	Quaternary Semiconductor Composition
	Default Model Parameters for Compound Semiconductors

	Combining Parameter Specifications
	Materialwise Parameters
	Regionwise Parameters
	Material Interface–Wise Parameters
	Region Interface–Wise Parameters
	Electrode-Wise Parameters

	Generating a Copy of Parameter File
	Undefined Physical Models
	Default Parameters
	Named Parameter Sets
	Auto-Orientation Framework
	Changing Orientations Used With Auto-Orientation
	Auto-Orientation Smoothing


	References

	Chapter 3 Mixed-Mode Sentaurus Device
	Overview
	Compact Models
	Hierarchical Description of Compact Models

	Netlist Files
	Structure of Netlist File
	Comments
	Continuation Lines
	The INCLUDE Statement
	Numeric Constants
	Parameters and Expressions
	Subcircuits
	Model Statements
	Elements
	Physical Devices
	Netlist Commands

	SPICE Circuit Files
	Example

	Device Section
	System Section
	Physical Devices
	Circuit Devices
	Electrical and Thermal Netlist
	Set, Unset, Initialize, and Hint
	System Plot
	AC System Plot

	File Section
	SPICE Circuit Models
	User-Defined Circuit Models
	Mixed-Mode Math Section
	Using Mixed-Mode Simulation
	From Single-Device File to Multidevice File
	File-Naming Convention: Mixed-Mode Extension


	Chapter 4 Performing Numeric Experiments
	Specifying Electrical Boundary Conditions
	Changing Boundary Condition Type During Simulation
	Mixed-Mode Electrical Boundary Conditions

	Specifying Thermal Boundary Conditions
	Break Criteria: Conditionally Stopping the Simulation
	Global Contact Break Criteria
	Global Device Break Criteria
	Sweep-Specific Break Criteria
	Mixed-Mode Break Criteria

	Quasistationary Ramps
	Ramping Boundary Conditions
	Ramping Quasi-Fermi Potentials in Doping Wells
	Ramping Physical Parameter Values
	Quasistationary in Mixed Mode
	Saving and Plotting During a Quasistationary
	Extrapolation

	Continuation Command
	Transient Command
	Numeric Control of Transient Analysis
	Time-Stepping
	Ramping Physical Parameter Values
	Extrapolation

	Transient Ramps
	Large-Signal Cyclic Analysis
	Description of Method
	Using Cyclic Analysis

	Small-Signal AC Analysis
	AC Analysis in Mixed-Mode Simulations
	Example

	AC Analysis in Single-Device Mode
	Example

	Optical AC Analysis

	Harmonic Balance
	Modes of Harmonic Balance Analysis
	MDFT Mode
	SDFT Mode

	Performing Harmonic Balance Analysis
	Solve Spectrum
	Convergence Parameters

	Harmonic Balance Analysis Output
	Device Instance Currents, Voltages, Temperatures, and Heat Components
	Circuit Currents and Voltages
	Solution Variables

	Application Notes

	References

	Chapter 5 Simulation Results
	Current File
	When to Write to the Current File
	Example: CurrentPlot Statements

	NewCurrentPrefix Statement
	Tracking Additional Data in the Current File
	CurrentPlot Section
	Example: Mixed Mode
	Example: Advanced Options
	Example: Plotting Parameter Values
	CurrentPlot Options

	Tcl Formulas
	Dataset
	Function
	Unit
	Init
	Formula
	Finish
	Operation
	Examples


	Device Plots
	What to Plot
	When to Plot
	Snapshots
	Interface Plots

	Log File
	Extraction File
	Extraction File Format
	Analysis Modes
	File Section
	Electrode Section
	Extraction Section
	Solve Section


	Chapter 6 Numeric and Software-Related Issues
	Structure of Command File
	Inserting Files

	Solve Section: How the Simulation Proceeds
	Nonlinear Iterations
	Coupled Command
	Convergence and Error Control
	Damped Newton Iterations
	Derivatives
	Incomplete Newton Algorithm
	Additional Equations Available in Mixed Mode
	Selecting Individual Devices in Mixed Mode
	Relaxed Newton Method

	Plugin Command

	Linear Solvers
	Nonlocal Meshes
	Specifying Nonlocal Meshes
	Visualizing Nonlocal Meshes
	Visualizing Data Defined on Nonlocal Meshes
	Constructing Nonlocal Meshes
	Specification Using Barrier
	Specification Using a Reference Surface

	Special Handling of 1D Schrödinger Equation
	Special Handling of Nonlocal Tunneling Model
	Unnamed Meshes
	Performance Suggestions

	Monitoring Convergence Behavior
	CNormPrint
	NewtonPlot
	Automatic Activation of CNormPrint and NewtonPlot
	Simulation Statistics for Plotting and Output
	Simulation Statistics in Current Plot Files
	Simulation Statistics in DOE Variables


	Save and Load
	Tcl Command File
	Overview
	sdevice Command
	sdevice_init Command
	sdevice_solve Command
	sdevice_finish Command
	sdevice_parameters Command
	Flowchart
	Extraction
	Available Inspect Tcl Commands

	Output Redirection
	Known Restrictions

	Parallelization
	Extended Precision
	System Command
	References


	Part II Physics in Sentaurus Device
	Chapter 7 Electrostatic Potential and Quasi- Fermi Potentials
	Electrostatic Potential
	Dipole Layer
	Equilibrium Solution

	Quasi-Fermi Potential With Boltzmann Statistics
	Fermi Statistics
	Using Fermi Statistics

	Initial Guess for Electrostatic Potential and Quasi-Fermi Potentials in Doping Wells
	Regionwise Specification of Initial Quasi-Fermi Potentials

	Electrode Charge Calculation

	Chapter 8 Carrier Transport in Semiconductors
	Introduction to Carrier Transport Models
	Drift-Diffusion Model
	Thermodynamic Model for Current Densities
	Hydrodynamic Model for Current Densities
	Numeric Parameters for Continuity Equation
	Numeric Approaches for Contact Current Computation
	Current Potential
	References

	Chapter 9 Temperature Equations
	Introduction to Temperature Equations
	Uniform Self-Heating
	Using Uniform Self-Heating

	Default Model for Lattice Temperature
	Thermodynamic Model for Lattice Temperature
	Total Heat and Its Contributions
	Using the Thermodynamic Model

	Hydrodynamic Model for Temperatures
	Hydrodynamic Model Parameters
	Using the Hydrodynamic Model

	Numeric Parameters for Temperature Equations
	Validity Ranges for Lattice and Carrier Temperatures
	Scaling of Lattice Heat Generation

	References

	Chapter 10 Boundary Conditions
	Electrical Boundary Conditions
	Ohmic Contacts
	Modified Ohmic Contacts
	Contacts on Insulators
	Schottky Contacts
	Fermi-Level Pinning at Schottky Contacts
	Barrier Lowering at Schottky Contacts

	Resistive Contacts
	Resistive Interfaces
	Boundaries Without Contacts

	Floating Contacts
	Floating Metal Contacts
	Floating Semiconductor Contacts

	Thermal Boundary Conditions
	Boundary Conditions for Lattice Temperature
	Boundary Conditions for Carrier Temperatures

	Periodic Boundary Conditions
	Robin PBC Approach
	Mortar PBC Approach
	Specifying Periodic Boundary Conditions
	Specifying Robin Periodic Boundary Conditions
	Specifying Mortar Periodic Boundary Conditions

	Application Notes
	Specialized Linear Solver for MPBC


	Discontinuous Interfaces
	Representation of Physical Quantities Across Interfaces
	Interface Conditions at Discontinuous Interfaces
	Critical Points

	References

	Chapter 11 Transport in Metals, Organic Materials, and Disordered Media
	Singlet Exciton Equation
	Boundary and Continuity Conditions for Singlet Exciton Equation
	Using the Singlet Exciton Equation

	Transport in Metals
	Electric Boundary Conditions for Metals
	Metal Workfunction
	Metal Workfunction Randomization

	Temperature in Metals

	Conductive Insulators

	Chapter 12 Semiconductor Band Structure
	Intrinsic Density
	Band Gap and Electron Affinity
	Selecting the Bandgap Model
	Bandgap and Electron-Affinity Models
	Bandgap Narrowing for Bennett–Wilson Model
	Bandgap Narrowing for Slotboom Model
	Bandgap Narrowing for del Alamo Model
	Bandgap Narrowing for Jain–Roulston Model
	Table Specification of Bandgap Narrowing
	Schenk Bandgap Narrowing Model
	Bandgap Narrowing With Fermi Statistics

	Bandgap Parameters

	Effective Masses and Effective Density-of-States
	Electron Effective Mass and DOS
	Formula 1
	Formula 2

	Electron Effective Mass and Conduction Band DOS Parameters
	Hole Effective Mass and DOS
	Formula 1
	Formula 2

	Hole Effective Mass and Valence Band DOS Parameters
	Gaussian Density-of-States for Organic Semiconductors

	Multivalley Band Structure
	Nonparabolic Band Structure
	Bandgap Widening
	Monte Carlo Density-of-States
	Using Multivalley Band Structure

	References

	Chapter 13 Incomplete Ionization
	Overview
	Using Incomplete Ionization
	Multiple Lattice Sites
	Incomplete Ionization Model
	Physical Model Parameters
	References

	Chapter 14 Quantization Models
	Overview
	van Dort Quantization Model
	van Dort Model
	Using the van Dort Model

	1D Schrödinger Solver
	Nonlocal Mesh for 1D Schrödinger
	Using 1D Schrödinger
	1D Schrödinger Parameters
	Explicit Ladder Specification
	Automatic Extraction of Ladder Parameters

	Visualizing Schrödinger Solutions
	1D Schrödinger Model
	1D Schrödinger Application Notes

	External 2D Schrödinger Solver
	Application Notes

	Density Gradient Quantization Model
	Density Gradient Model
	Using the Density Gradient Model
	Named Parameter Sets for Density Gradient
	Auto-Orientation for Density Gradient

	Density Gradient Application Notes

	Modified Local-Density Approximation
	MLDA Model
	Interface Orientation and Stress Dependencies
	Heterojunctions
	Nonparabolic Bands and Geometric Quantization

	Using MLDA
	MLDA Application Notes

	Quantum-Well Quantization Model
	LayerThickness Command
	Combining LayerThickness Command and ThinLayer Subcommand
	Geometric Parameters of LayerThickness Command
	Thickness Extraction


	References

	Chapter 15 Mobility Models
	How Mobility Models Combine
	Mobility due to Phonon Scattering
	Doping-Dependent Mobility Degradation
	Using Doping-Dependent Mobility
	Using More Than One Doping-Dependent Mobility Model

	Masetti Model
	Arora Model
	University of Bologna Bulk Mobility Model
	The pmi_msc_mobility Model
	PMIs for Bulk Mobility
	Low-Field Ballistic Mobility Model

	Carrier –Carrier Scattering
	Using Carrier–Carrier Scattering
	Conwell–Weisskopf Model
	Brooks–Herring Model
	Physical Model Parameters

	Philips Unified Mobility Model
	Using the Philips Model
	Using an Alternative Philips Model
	Philips Model Description
	Screening Parameter
	Philips Model Parameters

	Mobility Degradation at Interfaces
	Using Mobility Degradation at Interfaces
	Enhanced Lombardi Model
	Stress Factors for Mobility Components
	Named Parameter Sets for Lombardi Model
	Auto-Orientation for Lombardi Model

	Inversion and Accumulation Layer Mobility Model
	Coulomb Scattering
	Phonon Scattering
	Surface Roughness Scattering
	Parameters
	Stress Factors for Mobility Components
	Using Inversion and Accumulation Layer Mobility Model
	Named Parameter Sets for IALMob
	Auto-Orientation for IALMob

	University of Bologna Surface Mobility Model
	Mobility Degradation Components due to Coulomb Scattering
	Stress Factors for Mobility Components
	Using Mobility Degradation Components

	Remote Coulomb Scattering Model
	Stress Factors for Mobility Components

	Remote Phonon Scattering Model
	Stress Factors for Mobility Components

	Computing Transverse Field
	Normal to Interface
	Normal to Current Flow
	Field Correction on Interface


	Thin-Layer Mobility Model
	Using the Thin-Layer Mobility Model
	Physical Parameters
	Stress Factors for Mobility Components
	Auto-Orientation and Named Parameter Sets
	Geometric Parameters


	High-Field Saturation
	Using High-Field Saturation
	Named Parameter Sets for High-Field Saturation
	Auto-Orientation for High-Field Saturation

	Extended Canali Model
	Transferred Electron Model
	Transferred Electron Model 2
	Basic Model
	Meinerzhagen–Engl Model
	Physical Model Interface
	Lucent Model
	Velocity Saturation Models
	Selecting Velocity Saturation Models

	Driving Force Models
	Electric Field Parallel to the Current
	Gradient of Quasi-Fermi Potential
	Electric Field Parallel to the Interface
	Hydrodynamic Driving Force
	Electric Field
	Interpolation of Driving Forces to Zero Field
	Interpolation of the GradQuasiFermi Driving Force
	Interpolation of the Eparallel Driving Force
	Field Correction Close to Interfaces

	Non-Einstein Diffusivity
	High-Field Saturation Mobility Scaling

	Ballistic Mobility Model
	Channel Length–Dependent Model
	Kinetic Velocity Model
	Fermi–Dirac Statistics
	Frensley Rule
	Using the Ballistic Mobility Model

	Monte Carlo–Computed Mobility for Strained Silicon
	Monte Carlo–Computed Mobility for Strained SiGe in npn- SiGe HBTs
	Incomplete Ionization–Dependent Mobility Models
	Poole–Frenkel Mobility (Organic Material Mobility)
	Mobility Averaging
	Mobility Doping File
	Effective Mobility
	EffectiveMobility PMI Methods
	Using the EffectiveMobility PMI

	References

	Chapter 16 Generation–Recombination
	Shockley–Read–Hall Recombination
	Using SRH Recombination
	SRH Doping Dependence
	Lifetime Profiles From Files
	Improved Nakagawa Model
	SRH Temperature Dependence
	SRH Doping- and Temperature-Dependent Parameters
	SRH Field Enhancement
	Using Field Enhancement
	Schenk Trap-Assisted Tunneling (TAT) Model
	Schenk TAT Density Correction
	Hurkx TAT Model

	Dynamic Nonlocal Path Trap-Assisted Tunneling
	Recombination Rate
	Using Dynamic Nonlocal Path TAT Model

	Trap-Assisted Auger Recombination

	Surface SRH Recombination
	Coupled Defect Level (CDL) Recombination
	Using CDL
	CDL Model

	Radiative Recombination
	Using Radiative Recombination
	Radiative Model

	Auger Recombination
	Intrinsic Recombination Model for Silicon
	Constant Carrier Generation
	Avalanche Generation
	Using Avalanche Generation
	van Overstraeten – de Man Model
	Okuto–Crowell Model
	Lackner Model
	University of Bologna Impact Ionization Model
	New University of Bologna Impact Ionization Model
	Hatakeyama Avalanche Model
	Driving Force
	Anisotropic Coordinate System
	Usage

	Driving Force
	Interpolation of Avalanche Driving Forces

	Avalanche Generation With Hydrodynamic Transport

	Approximate Breakdown Analysis
	Using Breakdown Analysis
	Approximate Breakdown Analysis With Carriers

	Band-to-Band Tunneling Models
	Using Band-to-Band Tunneling
	Schenk Model
	Schenk Density Correction

	Simple Band-to-Band Models
	Hurkx Band-to-Band Model
	Tunneling Near Interfaces and Equilibrium Regions
	Dynamic Nonlocal Path Band-to-Band Tunneling Model
	Band-to-Band Generation Rate
	Using Nonlocal Path Band-to-Band Model
	Handling of Derivatives
	Postprocessing Mode
	Frozen Tunneling Direction
	Visualizing Nonlocal Band-to-Band Generation Rate


	Bimolecular Recombination
	Physical Model
	Using Bimolecular Recombination

	Exciton Dissociation Model
	Physical Model
	Using Exciton Dissociation

	References

	Chapter 17 Traps and Fixed Charges
	Basic Syntax for Traps
	Trap Types
	Energetic and Spatial Distribution of Traps
	Specifying Single Traps
	Trap Randomization

	Trap Models and Parameters
	Trap Occupation Dynamics
	Local Trap Capture and Emission
	J-Model Cross Sections
	Hurkx Model for Cross Sections
	Poole–Frenkel Model for Cross Sections
	Local Capture and Emission Rates Based on Makram-Ebeid–Lannoo Phonon-Assisted Tunnel Ionization Model
	Local Capture and Emission Rates From PMI

	Trap-to-Trap Tunneling
	Tunneling and Traps

	Trap Numeric Parameters
	Visualizing Traps
	Explicit Trap Occupation
	Options to Include Traps in Doping
	Trap Examples
	Insulator Fixed Charges
	References

	Chapter 18 Phase and State Transitions
	Multistate Configurations and Their Dynamic
	Specifying Multistate Configurations
	Multistate Configurations on Interfaces
	Additional Remarks

	Transition Models
	The pmi_ce_msc Model
	States
	Transitions
	Model Parameters


	Interaction of Multistate Configurations With Transport
	Apparent Band-Edge Shift
	The pmi_msc_abes Model

	Thermal Conductivity, Heat Capacity, and Mobility

	Manipulating MSCs During Solve
	Explicit State Occupations
	Manipulating Transition Dynamics

	Example: Two-State Phase-Change Memory Model
	References

	Chapter 19 Degradation Models
	Overview
	Trap Degradation Model
	Trap Formation Kinetics
	Power Law and Kinetic Equation
	Si-H Density–Dependent Activation Energy
	Diffusion of Hydrogen in Oxide

	Model Equations and Syntax
	Reaction Enhancement Factors
	Using the Trap Degradation Model

	Device Lifetime and Simulation
	Degradation in Insulators

	MSC–Hydrogen Transport Degradation Model
	Hydrogen Transport
	Boundary Conditions

	Reactions Between Mobile Elements
	Reactions With Multistate Configurations
	The CEModel_Depassivation Model
	Using MSC–Hydrogen Transport Degradation Model

	Two-Stage NBTI Degradation Model
	Formulation
	Using Two-Stage NBTI Model

	Extended Nonradiative Multiphonon Model
	eNMP Model Description
	Using the eNMP Model
	eNMP Quantities Available for Plotting
	eNMP Model Parameters
	eNMP Transition Rates PMI Model


	Hot-Carrier Stress Degradation Model
	Model Description
	Single-Particle and Multiple-Particle Interface-Trap Densities
	Field-Enhanced Thermal Degradation
	Carrier Distribution Function
	Bond Dispersion

	Using the HCS Degradation Model

	References

	Chapter 20 Organic Devices
	Introduction to Organic Device Simulation
	References

	Chapter 21 Optical Generation
	Overview
	Specifying the Type of Optical Generation Computation
	Optical Generation From Monochromatic Source
	Illumination Spectrum
	Multidimensional Illumination Spectra
	Enhanced Spectrum Control

	Loading and Saving Optical Generation From and to File
	Constant Optical Generation
	Quantum Yield Models
	Optical Absorption Heat

	Specifying Time Dependency for Transient Simulations
	Optical Turning Points


	Solving the Optical Problem
	Specifying the Optical Solver
	Transfer Matrix Method
	Finite-Difference Time-Domain Method
	Raytracing
	Beam Propagation Method
	Loading Solution of Optical Problem From File
	Optical Beam Absorption Method
	Composite Method

	Setting the Excitation Parameters
	Illumination Window
	Spatial Intensity Function Excitation

	Choosing Refractive Index Model
	Extracting the Layer Stack
	Controlling Computation of Optical Problem in Solve Section

	Parameter Ramping
	Accurate Absorbed Photon Density for 1D Optical Solvers
	Complex Refractive Index Model
	Physical Model
	Wavelength Dependency
	Temperature Dependency
	Carrier Dependency
	Gain Dependency

	Using Complex Refractive Index
	Complex Refractive Index Model Interface
	C++ Application Programming Interface (API)
	Shared Object Code
	Command File of Sentaurus Device


	Raytracing
	Raytracer
	Ray Photon Absorption and Optical Generation
	Using the Raytracer
	Terminating Raytracing
	Monte Carlo Raytracing
	Multithreading for Raytracer
	Compact Memory Model for Raytracer
	Window of Starting Rays
	User-Defined Window of Rays
	Distribution Window of Rays

	Cylindrical Coordinates for Raytracing
	Boundary Condition for Raytracing
	Fresnel Boundary Condition
	Constant Reflectivity and Transmittivity Boundary Condition
	Raytrace PMI Boundary Condition
	Thin-Layer-Stack Boundary Condition
	TMM Optical Generation in Raytracer
	Diffuse Surface Boundary Condition
	Periodic Boundary Condition

	Virtual Regions in Raytracer
	External Material in Raytracer
	Additional Options for Raytracing
	Redistributing Power of Stopped Rays
	Weighted Interpolation for Raytrace Optical Generation
	Visualizing Raytracing
	Reporting Various Powers in Raytracing
	Plotting Interface Flux
	Far Field and Sensors for Raytracing
	Dual-Grid Setup for Raytracing

	Transfer Matrix Method
	Physical Model
	Rough Surface Scattering

	Using Transfer Matrix Method
	Using Scattering Solver


	Loading Solution of Optical Problem From File
	Importing 1D Profiles Into Higher-Dimensional Grids
	Ramping Profile Index

	Optical Beam Absorption Method
	Physical Model
	Using Optical Beam Absorption Method

	Beam Propagation Method
	Physical Model
	Bidirectional BPM
	Boundary Conditions

	Using Beam Propagation Method
	General
	Bidirectional BPM
	Excitation
	Boundary
	Ramping Input Parameters
	Visualizing Results on Native Tensor Grid


	Composite Method
	Using the Composite Method

	Controlling Interpolation When Loading Optical Generation Profiles
	Optical AC Analysis
	References

	Chapter 22 Radiation Models
	Generation by Gamma Radiation
	Using Gamma Radiation Model
	Yield Function

	Alpha Particles
	Using Alpha Particle Model
	Alpha Particle Model

	Heavy Ions
	Using Heavy Ion Model
	Heavy Ion Model
	Examples: Heavy Ions
	Example 1
	Example 2
	Example 3


	References

	Chapter 23 Noise, Fluctuations, and Sensitivity
	Using the Impedance Field Method
	Specifying Variations
	Specifying the Solver
	Analysis at Frequency Zero
	Output of Results

	Noise Sources
	Common Options
	Diffusion Noise
	Equivalent Monopolar Generation–Recombination Noise
	Bulk Flicker Noise
	Trapping Noise
	Random Dopant Fluctuations
	Random Geometric Fluctuations
	Random Trap Concentration Fluctuations
	Random Workfunction Fluctuations
	Random Band Edge Fluctuations
	Random Metal Conductivity Fluctuations
	Random Dielectric Constant Fluctuations
	Noise From SPICE Circuit Elements

	Statistical Impedance Field Method
	Options Common to sIFM Variations
	Spatial Correlations and Random Fields
	Doping Variations
	Trap Concentration Variations
	Workfunction Variations
	Geometric Variations
	Band Edge Variations
	Metal Conductivity Variations
	Dielectric Constant Variations
	Doping Profile Variations

	Deterministic Variations
	Deterministic Doping Variations
	Deterministic Geometric Variations
	Parameter Variations

	IFM Section
	Impedance Field Method
	Noise Output Data
	References

	Chapter 24 Tunneling
	Tunneling Model Overview
	Fowler–Nordheim Tunneling
	Using Fowler–Nordheim
	Fowler–Nordheim Model
	Fowler–Nordheim Parameters

	Direct Tunneling
	Using Direct Tunneling
	Direct Tunneling Model
	Image Force Effect

	Direct Tunneling Parameters

	Nonlocal Tunneling at Interfaces, Contacts, and Junctions
	Defining Nonlocal Meshes
	Specifying Nonlocal Tunneling Model
	Nonlocal Tunneling Parameters
	Visualizing Nonlocal Tunneling
	Physics of Nonlocal Tunneling Model
	WKB Tunneling Probability
	Schrödinger Equation–Based Tunneling Probability
	Density Gradient Quantization Correction
	Multivalley Band Structure and Geometric Quantization
	Nonlocal Tunneling Current
	Band-to-Band Contributions to Nonlocal Tunneling Current
	Carrier Heating


	References

	Chapter 25 Hot-Carrier Injection Models
	Overview
	Destination of Injected Current
	Injection Barrier and Image Potential
	Effective Field

	Classical Lucky Electron Injection
	Fiegna Hot-Carrier Injection
	SHE Distribution Hot-Carrier Injection
	Spherical Harmonics Expansion Method
	Using Spherical Harmonics Expansion Method
	Visualizing Spherical Harmonics Expansion Method

	Carrier Injection With Explicitly Evaluated Boundary Conditions for Continuity Equations
	References

	Chapter 26 Heterostructure Device Simulation
	Thermionic Emission Current
	Using Thermionic Emission Current
	Thermionic Emission Model
	Thermionic Emission Model With Fermi Statistics

	Gaussian Transport Across Organic Heterointerfaces
	Using Gaussian Transport at Organic Heterointerfaces
	Gaussian Transport at Organic Heterointerface Model

	References

	Chapter 27 Energy-Dependent Parameters
	Overview
	Energy-Dependent Energy Relaxation Time
	Spline Interpolation

	Energy-Dependent Mobility
	Spline Interpolation

	Energy-Dependent Peltier Coefficient
	Spline Interpolation


	Chapter 28 Anisotropic Properties
	Overview
	Anisotropic Approximations
	AverageAniso
	TensorGridAniso
	AnisoSG
	StressSG

	Crystal and Simulation Coordinate Systems
	Cylindrical Symmetry
	Anisotropic Direction
	Anisotropic Directions for Density Gradient Model
	Orthogonal Matrix From Eigenvectors Q


	Anisotropic Mobility
	Anisotropy Factor
	Current Densities
	Driving Forces
	Total Anisotropic Mobility
	Self-Consistent Anisotropic Mobility
	Plot Section

	Anisotropic Avalanche Generation
	Anisotropic Electrical Permittivity
	Anisotropic Thermal Conductivity
	Anisotropic Density Gradient Model

	Chapter 29 Ferroelectric Materials
	Using Ferroelectrics
	Ferroelectrics Model
	Ginzburg–Landau Model
	Using the Ginzburg–Landau Model

	References

	Chapter 30 Ferromagnetism and Spin Transport
	A Brief Introduction to Spintronics
	Transport Through Magnetic Tunnel Junctions
	Magnetic Direct Tunneling Model
	Using the Magnetic Direct Tunneling Model
	Physics Parameters for Magnetic Direct Tunneling
	Math Parameters for Magnetic Direct Tunneling

	Magnetization Dynamics
	Spin Dynamics of a Free Electron in a Magnetic Field
	Magnetization Dynamics in a Ferromagnetic Layer
	Contributions of the Magnetic Energy Density
	Energy Density and Effective Field in Macrospin Approximation
	Using Magnetization Dynamics in Device Simulations
	Domain Selection and Initial Conditions
	Plotting of the Time-Dependent Magnetization

	Parameters for Magnetization Dynamics
	Time-Step Control for Magnetization Dynamics

	Thermal Fluctuations
	Using Thermal Fluctuations

	Parallel and Perpendicular Spin Transfer Torque
	Magnetization Dynamics Beyond Macrospin: Position- Dependent Exchange and Spin Waves
	Using Position-Dependent Exchange

	User-Defined Contributions to the Effective Magnetic Field of the LLG Equation
	References

	Chapter 31 Modeling Mechanical Stress Effect
	Overview
	Stress and Strain in Semiconductors
	Using Stress and Strain
	Stress Tensor
	Strain Tensor
	Stress Limits
	Crystallographic Orientation and Compliance Coefficients


	Deformation of Band Structure
	Using Deformation Potential Model
	Strained Effective Masses and Density-of-States
	Strained Electron Effective Mass and DOS
	Strained Hole Effective Mass and DOS
	Using Strained Effective Masses and DOS

	Multivalley Band Structure
	Using Multivalley Band Structure


	Mobility Modeling
	Multivalley Electron Mobility Model
	Intervalley Scattering
	Effective Mass
	Inversion Layer
	Using Multivalley Electron Mobility Model

	Multivalley Hole Mobility Model
	Effective Mass
	Scattering
	Using Multivalley Hole Mobility Model

	Intel Stress-Induced Hole Mobility Model
	Stress Dependencies
	Generalization of Model
	Using Intel Mobility Model

	Piezoresistance Mobility Model
	Doping and Temperature Dependency
	Using Piezoresistance Mobility Model
	Named Parameter Sets for Piezoresistance
	Auto-Orientation for Piezoresistance
	Enormal- and MoleFraction-Dependent Piezo Coefficients
	Using Piezoresistive Prefactors Model

	Isotropic Factor Models
	Using Isotropic Factor Models
	Piezoresistance Factor Models
	Effective Stress Model
	Mobility Stress Factor PMI Model
	SFactor Dataset or PMI Model
	Isotropic Factor Model Options
	Factor Models Applied to Mobility Components

	Stress Mobility Model for Minority Carriers
	Dependency of Saturation Velocity on Stress
	Mobility Enhancement Limits
	Plotting Mobility Enhancement Factors

	Numeric Approximations for Tensor Mobility
	Tensor Grid Option
	Stress Tensor Applied to Low-Field Mobility

	Piezoelectric Polarization
	Strain Model
	Simplified Strain Model

	Stress Model
	Poisson Equation
	Parameter File
	Coordinate Systems
	Converse Piezoelectric Field
	Piezoelectric Datasets
	Discontinuous Piezoelectric Charge at Heterointerfaces

	Gate-Dependent Polarization in GaN Devices
	Two-Dimensional Simulations


	Mechanics Solver
	References

	Chapter 32 Galvanic Transport Model
	Model Description
	Using Galvanic Transport Model
	Discretization Scheme for Continuity Equations
	References

	Chapter 33 Thermal Properties
	Heat Capacity
	The pmi_msc_heatcapacity Model

	Thermal Conductivity
	The AllDependent Thermal Conductivity Model
	Bulk Thermal Conductivity Computation
	Example of Parameter File Segment
	Bulk Relaxation Time With Doping
	Thin-Layer Relaxation Time
	Mole Fraction–Dependent Relaxation Time

	The ConnellyThermalConductivity Model
	Layer Thickness Computation
	Bulk Thermal Conductivity Computation
	Example of Parameter File Segment

	The pmi_msc_thermalconductivity Model

	Thermoelectric Power (TEP)
	Physical Models
	Table-Based TEPower Model
	Analytic TEPower Model
	PMI_ThermoElectricPower Model
	Thermoelectric Power in Metals

	Using Thermoelectric Power

	Heating at Contacts, Metal–Semiconductor and Conductive Insulator–Semiconductor Interfaces
	References


	Part III Physics of Light-Emitting Diodes
	Chapter 34 Light-Emitting Diodes
	Modeling Light-Emitting Diodes
	Coupling Electronics and Optics in LED Simulations
	Single-Grid Versus Dual-Grid LED Simulation

	Electrical Transport in LEDs
	Spontaneous Emission Rate and Power
	Spontaneous Emission Power Spectrum

	Current File and Plot Variables for LED Simulation
	LED Wavelength
	Optical Absorption Heat
	Quantum Well Physics
	Accelerating Gain Calculations and LED Simulations
	Discussion of LED Physics

	LED Optics: Raytracing
	Compact Memory Raytracing
	Isotropic Starting Rays From Spontaneous Emission Sources
	Anisotropic Starting Rays From Spontaneous Emission Sources
	Randomizing Starting Rays
	Pseudorandom Starting Rays

	Reading Starting Rays From File
	Moving Starting Rays on Boundaries
	Clustering Active Vertices
	Plane Area Cluster
	Nodal Clustering
	Optical Grid Element Clustering
	Using the Clustering Feature

	Debugging Raytracing
	Print Options in Raytracing
	Interfacing LED Starting Rays to LightTools®
	Example: n99_000000_des_lighttools.txt


	LED Radiation Pattern
	Two-Dimensional LED Radiation Pattern and Output Files
	Three-Dimensional LED Radiation Pattern and Output Files
	Staggered 3D Grid LED Radiation Pattern

	Spectrum-Dependent LED Radiation Pattern
	Tracing Source of Output Rays

	Interfacing Far-Field Rays to LightTools
	Example: farfield_lighttools.txt

	Nonactive Region Absorption (Photon Recycling)
	Device Physics and Tuning Parameters
	Example of 3D GaN LED Simulation

	References

	Chapter 35 Modeling Quantum Wells
	Overview
	Radiative Recombination and Gain Coefficients
	Stimulated and Spontaneous Emission Coefficients
	Active Bulk Material Gain
	Stimulated Recombination Rate
	Spontaneous Recombination Rate
	Fitting Stimulated and Spontaneous Emission Spectra

	Gain-Broadening Models
	Lorentzian Broadening
	Landsberg Broadening
	Hyperbolic-Cosine Broadening
	Syntax to Activate Broadening
	Electronic Band Structure for Wurtzite Crystals
	Optical Transition Matrix Element for Wurtzite Crystals


	Simple Quantum-Well Subband Model
	Syntax for Simple Quantum-Well Model

	Strain Effects
	Syntax for Quantum-Well Strain

	Localized Quantum-Well Model
	Nonlocal Quantum-Well Model Using 1D Schrödinger Solver
	Importing Gain and Spontaneous Emission Data With PMI
	Implementing Gain PMI

	References


	Part IV Mesh and Numeric Methods
	Chapter 36 Automatic Grid Generation and Adaptation Module AGM
	Overview
	General Adaptation Procedure
	Adaptation Scheme
	Adaptation Decision

	Adaptation Criteria
	Refinement on Local-Field Variation
	Refinement on Residual Error Estimation

	Solution Recomputation
	Device-Level Data Smoothing
	System-Level Data Smoothing


	Specifying Grid Adaptations
	Adaptive Device Instances
	Device Structure Initialization
	Initialization From Sentaurus Mesh Boundary and Command Files
	Initialization From Element Grid File
	Parameters Affecting Initialization From Element Grid

	Device Adaptation Parameters
	Parameters Affecting Grid Generation
	Parameters Affecting Smoothing
	Parameters Affecting Meshing Engine

	Adaptation Criteria
	Global Adaptation Constraints
	Parameters Common to All Refinement Criteria
	Criterion Type: Element
	Criterion Type: Integral0
	Criterion Type: Residual
	Mesh Domains


	Adaptive Solve Statements
	General Adaptive Solve Statements
	Adaptive Coupled Solve Statements
	Adaptive Quasistationary Solve Statements

	Performing Adaptive Simulations
	Rampable Adaptation Parameters
	Command File Example

	Limitations and Recommendations
	Limitations
	Recommendations
	Initial Grid Construction
	Accuracy of Terminal Currents as Adaptation Goal
	AGM Simulation Times
	Large Grid Sizes
	Convergence Problems After Adaptation
	AGM and Extrapolation
	3D Grid Adaptation


	References

	Chapter 37 Numeric Methods
	Discretization
	Extended Precision

	Box Method Coefficients in 3D Case
	Basic Definitions
	Element Intersection Box Method Algorithm
	Truncated Obtuse Elements
	Weighted Box Method Coefficients
	Weighted Points
	Weighted Voronoï Diagram

	Saving and Restoring Box Method Coefficients
	Statistics About Non-Delaunay Elements
	Region Non-Delaunay Elements
	Interface Non-Delaunay Elements
	Plot Section


	AC Simulation
	AC Response
	AC Current Density Responses

	Harmonic Balance Analysis
	Harmonic Balance Equation
	Multitone Harmonic Balance Analysis
	Multidimensional Fourier Transformation
	Quasi-Periodic Functions
	Multidimensional Frequency Domain Problem
	One-Tone Harmonic Balance Analysis

	Solving HB Equation
	Solving HB Newton Step Equation
	Restarted GMRES Method
	Direct Solver Method


	Transient Simulation
	Backward Euler Method
	TRBDF Composite Method
	Controlling Transient Simulations
	Floating Gates


	Nonlinear Solvers
	Fully Coupled Solution
	‘Plugin’ Iterations

	References


	Part V External Interfaces
	Chapter 38 Physical Model Interface
	Overview
	Standard C++ Interface
	Simplified C++ Interface
	Numeric Data Type pmi_float
	Pseudo-Implementation of a Simplified PMI Model

	Nonlocal Interface
	Jacobian Matrix
	Example: Point-to-Point Tunneling Model

	Shared Object Code
	Command File of Sentaurus Device
	Runtime Support for Vertex-Based PMI Models
	Runtime Support at Model Scope
	Reaction–Diffusion Species Interface (Model Scope)

	Runtime Support at Compute Scope
	Reaction–Diffusion Species Interface (Compute Scope)

	Experimental Runtime Support Functions
	Vertex-Based Runtime Support for Multistate Configuration–Dependent Models

	Mesh-Based Runtime Support
	Device Mesh
	Vertex
	Edge
	Element
	Region
	Region Interface
	Mesh

	Device Data

	Parameter File of Sentaurus Device
	Parallelization
	Thread-Local Storage

	Debugging
	Generation–Recombination Model
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Auger Recombination

	Nonlocal Generation–Recombination Model
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Point-to-Point Tunneling Model

	Avalanche Generation Model
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Okuto Model

	Mobility Models
	Doping-Dependent Mobility
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Masetti Model

	Multistate Configuration–Dependent Bulk Mobility
	Command File
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface

	Mobility Degradation at Interfaces
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Lombardi Model

	High-Field Saturation Model
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Canali Model

	High-Field Saturation With Two Driving Forces
	Command File
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface

	Band Gap
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Default Bandgap Model

	Bandgap Narrowing
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Default Model

	Apparent Band-Edge Shift
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface

	Multistate Configuration–Dependent Apparent Band-Edge Shift
	Dependencies
	Additional Functionality
	Using Dependencies
	Updating Actual Status

	Standard C++ Interface
	Simplified C++ Interface

	Electron Affinity
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Default Affinity Model

	Effective Mass
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Linear Effective Mass Model

	Energy Relaxation Times
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Constant Energy Relaxation Times

	Lifetimes
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Doping- and Temperature-Dependent Lifetimes

	Thermal Conductivity
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Temperature-Dependent Thermal Conductivity
	Example: Thin-Layer Thermal Conductivity

	Multistate Configuration–Dependent Thermal Conductivity
	Command File
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface

	Heat Capacity
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Constant Heat Capacity

	Multistate Configuration–Dependent Heat Capacity
	Command File
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface

	Optical Quantum Yield
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface

	Stress
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Constant Stress Model

	Space Factor
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: PMI User Field as Space Factor

	Mobility Stress Factor
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Effective Stress Model

	Trap Capture and Emission Rates
	Traps
	Multistate Configurations
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: CEModel_ArrheniusLaw

	Trap Energy Shift
	Command File
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface

	eNMP Transition Rates
	Distinction Between Electron and Hole Transitions
	Transition Rates for All Sample Defects
	Parameter Randomization
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: eNMP Model Transition Rates

	Piezoelectric Polarization
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Gaussian Polarization Model

	Incomplete Ionization
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Matsuura Incomplete Ionization Model

	Hot-Carrier Injection
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Lucky Model

	Piezoresistive Coefficients
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface

	Current Plot File of Sentaurus Device
	Structure of Current Plot File
	Standard C++ Interface
	Simplified C++ Interface
	Example: Average Electrostatic Potential

	Postprocess for Transient Simulation
	Standard C++ Interface
	Simplified C++ Interface
	Example: Postprocess User-Field

	Preprocessing for Newton Iterations and Newton Step Control
	Standard C++ Interface
	Function PMI_Newton::GetLogFile() and Class PMI_Newton::Info

	Simplified C++ Interface
	PMI_NewtonStep Iterations: Flowchart of Computation

	Special Contact PMI for Raytracing
	Dependencies
	Standard C++ Interface
	Example: Assessing and Modifying a Ray

	Spatial Distribution Function
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Gaussian Spatial Distribution Function

	Metal Resistivity
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Linear Metal Resistivity

	Heat Generation Rate
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Dependency on Electric Field and Gradient of Temperature

	Thermoelectric Power
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Analytic TEP

	Metal Thermoelectric Power
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Linear Field Dependency of Metal TEP

	Diffusivity
	Dependencies
	Simplified C++ Interface
	Example: Field-Dependent Hydrogen Diffusivity

	Gamma Factor for Density Gradient Model
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Solution-Dependent Gamma Factor

	Schottky Resistance Model
	Dependencies
	Standard C++ Interface
	Simplified C++ Interface
	Example: Built-in Schottky Resistance Model

	Ferromagnetism and Spin Transport
	User-Defined Interlayer Exchange Coupling
	Syntax of Command File and Parameter File
	Base Class for Interlayer Exchange PMIs
	Example: ILE Model With a Simple Oscillatory Thickness Dependency

	User-Defined Bulk or Interface Contributions to the Effective Magnetic Field
	Syntax of Command File and Parameter File
	Base Class for Generic Bulk or Interface for Effective Magnetic Field PMIs
	Example: Exchange Bias
	Example: Interface Anisotropy
	Example: Local Demagnetizing Field

	User-Defined Magnetostatic Potential Calculation
	Syntax of Command File and Parameter File


	References

	Chapter 39 Tcl Interfaces
	Overview
	Mesh-Based Runtime Support
	Device Mesh
	Vertex
	Edge
	Element
	Region
	Region Interface

	Device Data
	One-Dimensional Arrays
	Two-Dimensional Arrays


	Current Plot File
	Tcl Functions
	tcl_cp_constructor
	tcl_cp_destructor
	tcl_cp_Compute_Dataset_Names
	tcl_cp_Compute_Function_Names
	tcl_cp_Compute_Plot_Values

	Example



	Part VI Appendices
	Appendix A Mathematical Symbols
	Appendix B Syntax
	Appendix C File-Naming Conventions
	File Extensions

	Appendix D Command-Line Options
	Starting Sentaurus Device
	Command-Line Options

	Appendix E Runtime Statistics
	The sdevicestat Command

	Appendix F Data and Plot Names
	Overview
	Scalar Data
	Vector Data
	Special Vector Data
	Tensor Data

	Appendix G Command File Overview
	Organization of Command File Overview
	Top Levels of Command File
	Device
	File
	Solve
	System

	Boundary Conditions
	IFM
	Math
	Physics
	Generation and Recombination
	LED
	Mobility
	Radiation Models
	Various

	Plotting
	Various






