
Optimizer User Guide
Version N-2017.09, September 2017

Copyright and Proprietary Information Notice
© 2017 Synopsys, Inc. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc. and may only be
used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use, reproduction,
modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse
and is not responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc.
690 E. Middlefield Road
Mountain View, CA 94043
www.synopsys.com

ii Optimizer User Guide
N-2017.09

https://www.synopsys.com/company/legal/trademarks-brands.html
https://www.synopsys.com

Contents

About This Guide ix

Related Publications . ix
Conventions . ix
Customer Support . ix

Accessing SolvNet . x
Contacting Synopsys Support . x
Contacting Your Local TCAD Support Team Directly. x

Chapter 1 Using Optimizer 1

Functionality of Optimizer . 1
Starting Optimizer. 3

Chapter 2 Operations Guide 5

Basic Concepts . 5
Optimizer Structures . 6

Sequencing Tasks . 6
Task Interdependency . 7
Reference Example . 7

Input Command File . 8
Main Blocks. 9

Start. 9
Global Options . 9
Task . 10

Inner Blocks . 11
Parameter . 11
Response. 13

Sequencing Tasks . 14
Determining Order of Tasks . 14
Using Previous Parameter Values . 14

Evaluating Tasks . 15
Using Simulation Processes . 15
Using Formulas and Functions . 16

Importing Partial Results From Previous Tasks . 17
Design-of-Experiments . 18

Deterministic Design-of-Experiments . 19
Stochastic Design-of-Experiments . 23
Optimizer User Guide iii
N-2017.09

Contents
Response Surface Models (RSMs) . 25
Model Definition . 26

Model . 26
Transformation . 26
Degree. 27

Model Information. 27
Model Accuracy . 27
Model Coefficients . 28
Model Variance . 28
ANOVA Table . 29
Histogram . 29
Moments . 29
Model Expressions . 29

Specific Tasks . 29
Parameters and Responses . 30
Iterations . 30
Final Analysis Tool . 30

Screening Task . 31
Overview . 31
Command Description . 31
Output . 33

Optimization Task. 33
Optimization Criteria . 34
Optimization Method. 35
Command Description . 36
Output . 37

Iterative Optimization Task . 38
Search Heuristic . 38

Definitions . 39
Algorithm . 39

Stopping Criteria . 42
Computational Resources . 43
Quality of the Solution . 43
Closeness to a Local Optimum. 43
Evaluation Sequence. 43
Response Value Range Termination . 44

Command Description . 45
Declaration Examples for Range Termination . 47

Output . 48
Generic Optimization Task . 49

Quasi-Newton Method Applied to Bound-Constrained Optimization Problems 49
iv Optimizer User Guide
N-2017.09

Contents
Nonlinear Simplex Method . 50
Stopping Criteria . 50
Command Description . 50
Output . 52

Genetic Algorithm Task . 52
Main Steps of the Algorithm . 53

Stopping Criteria. 54
Command Description . 54

Mandatory Attributes . 54
Optional Attributes . 54

Files Generated by Genetic Algorithm . 56
Sensitivity Analysis Task . 57

Command Description . 58
Output . 59

Uncertainty Analysis Task . 59
Mathematical Background. 60
Example . 61
Command Description . 64
Output . 66

Design-of-Experiments Task . 68
Command Description . 68
Output . 69

Stochastic Design-of-Experiments Task . 69
Command Description . 69
Output . 71

Custom Task . 71
Command Description . 71
Output . 73

Integration of Sentaurus Workbench . 73
Sentaurus Workbench Scenarios . 73
Reusing All Simulation Results . 74

Advanced Features . 74
Restarting . 74
Sequencing of Tasks . 75

Example: Screening and Iterative Optimization. 75
Task Interdependency . 76

Exportable Information. 77
Convergence Plot . 78

References . 80
Optimizer User Guide v
N-2017.09

Contents
Chapter 3 Reference Guide 81

Optimizer Commands Reference . 81
Names and Symbols. 81
Global Options. 82
Inner Blocks for Parameters . 83
Inner Blocks for Responses . 84
Inner Blocks for Stopping Criteria. 85
Specific Task Parameters for Screening . 86
Specific Task Parameters for Iterative Optimization. 86
Specific Task Parameter for Generic Optimization . 87
Specific Task Parameters for Genetic Algorithm Optimization 87
Specific Task Parameters for Sensitivity Analysis . 88
Specific Task Parameters for Uncertainty Analysis . 89
Specific Task Parameters for Design-of-Experiments. 89
Specific Task Parameters for Stochastic Design-of-Experiments 90
Custom Task Parameters . 91

Output Files. 91
Uncertainty Analysis Task. 91
Sensitivity Analysis Task. 92
Screening Task. 92
Generic Optimization Task . 93
Optimization Task . 93
Iterative Optimization Task . 93
Design-of-Experiments Task . 94
Stochastic Design-of-Experiments Task . 94

Mathematical Expressions . 94
Gradient Vector . 94
Hessian Matrix . 95

Equations for Response Surface Models . 95
Model Accuracy . 95

ANOVA Table . 96
Moments . 98

Optimization Problem . 100
Optimization . 101
Gradient-Based Optimization Methods . 102

Step Direction . 102
Steepest Descent Direction. 103
Newton Direction . 103
Step-Length Method . 103
Trust-Region Method . 104
vi Optimizer User Guide
N-2017.09

Contents
Comparison. 104
Derivative Approximations and Optimization Methods . 105

Finite-Difference Approximations . 106
Quasi-Newton Methods . 107
Nongradient-Based Methods . 108
Bound-Constrained Optimization Methods . 109

References . 111
Optimizer User Guide vii
N-2017.09

Contents
viii Optimizer User Guide
N-2017.09

About This Guide

The Optimizer tool is part of Synopsys Sentaurus™ Workbench Advanced. It is an analysis
tool designed for parametric studies in large-scale projects with hundreds of individual
simulations, such as automatic iterative optimization, sensitivity analysis, and uncertainty
analysis. This user guide describes the model tasks and experiments that can be performed
using Optimizer. The scripting language, equations, optimization methods, and mathematical
expressions used with Optimizer are described in detail.

Related Publications

For additional information, see:

■ The TCAD Sentaurus release notes, available on the Synopsys SolvNet® support site (see
Accessing SolvNet on page x).

■ Documentation available on SolvNet at https://solvnet.synopsys.com/DocsOnWeb.

Conventions

The following conventions are used in Synopsys documentation.

Customer Support

Customer support is available through the Synopsys SolvNet customer support website and by
contacting the Synopsys support center.

Convention Description

Blue text Identifies a cross-reference (only on the screen).

Bold text Identifies a selectable icon, button, menu, or tab. It also indicates the name of a field or an
option.

Courier font Identifies text that is displayed on the screen or that the user must type. It identifies the
names of files, directories, paths, parameters, keywords, and variables.

Italicized text Used for emphasis, the titles of books and journals, and non-English words. It also
identifies components of an equation or a formula, a placeholder, or an identifier.

Menu > Command Indicates a menu command, for example, File > New (from the File menu, select New).
Optimizer User Guide ix
N-2017.09

https://solvnet.synopsys.com/DocsOnWeb

About This Guide
Customer Support
Accessing SolvNet

The SolvNet support site includes an electronic knowledge base of technical articles and
answers to frequently asked questions about Synopsys tools. The site also gives you access to
a wide range of Synopsys online services, which include downloading software, viewing
documentation, and entering a call to the Support Center.

To access the SolvNet site:

1. Go to the web page at https://solvnet.synopsys.com.

2. If prompted, enter your user name and password. (If you do not have a Synopsys user name
and password, follow the instructions to register.)

If you need help using the site, click Help on the menu bar.

Contacting Synopsys Support

If you have problems, questions, or suggestions, you can contact Synopsys support in the
following ways:

■ Go to the Synopsys Global Support Centers site on synopsys.com. There you can find e-
mail addresses and telephone numbers for Synopsys support centers throughout the world.

■ Go to either the Synopsys SolvNet site or the Synopsys Global Support Centers site and
open a case online (Synopsys user name and password required).

Contacting Your Local TCAD Support Team Directly

Send an e-mail message to:

■ support-tcad-us@synopsys.com from within North America and South America.

■ support-tcad-eu@synopsys.com from within Europe.

■ support-tcad-ap@synopsys.com from within Asia Pacific (China, Taiwan, Singapore,
Malaysia, India, Australia).

■ support-tcad-kr@synopsys.com from Korea.

■ support-tcad-jp@synopsys.com from Japan.
x Optimizer User Guide
N-2017.09

https://solvnet.synopsys.com
https://www.synopsys.com/support/global-support-centers.html
https://solvnet.synopsys.com/support/open_case.action

CHAPTER 1 Using Optimizer

This chapter provides an overview of the Optimizer tool.

Functionality of Optimizer

Optimizer is a batch mode tool that is used to perform the efficient extraction of general
information about TCAD simulations. For example, it is used to determine parameter settings
that satisfy design specifications and to analyze how parameter variations affect the device
behavior. It provides the following set of tools:

■ Design-of-experiments (DoE)

Comprehensive selection of experimental designs, including full and fractional factorial,
Box–Behnken, Plackett–Burmann, and Taguchi, as well as random and stochastic designs.
These techniques allow models to be built with a minimal number of simulations.

■ Response surface models (RSMs)

Interactive building and evaluation of empirical models. These models are polynomial
approximations or interpolations of multidimensional responses to different parameter
values. The accuracy is determined automatically. Parameter and response domains of
different orders of magnitude are handled transparently.

■ Screening

Model coefficients are displayed to illustrate the impact of different parameters on the
simulation responses.

■ Optimization

Maximize or minimize a certain response or find a parameter setting such that a response
is close to a given value. Multiple optimization goals for different responses can be
combined; weights specify their relative importance. A nonlinear optimizer based on
sequential quadratic programming (SQP) is used to solve optimization problems.

■ Iterative optimization

Iterative heuristic search process of a parameter setting that optimizes the device behavior.
At each iteration, a new region of the parameter domain is explored with the aim of finding
a globally satisfactory set of parameter values.
Optimizer User Guide 1
N-2017.09

1: Using Optimizer
Functionality of Optimizer
■ Generic optimization

Search for a parameter setting that optimizes the device behavior using generic
optimization strategies. Both quasi-Newton and nonlinear simplex methods have been
adapted for this purpose.

■ Genetic algorithm

The genetic algorithm optimization strategy is classified among the evolutionary
approaches. The optimum is achieved after several iterations (called generations) in which
a set of possible solutions is evaluated and, for each generation, a better set of experiments
is examined.

■ Sensitivity analysis

Determine how small changes to a given parameter affect simulation responses.

■ Uncertainty analysis

Comprehensive analysis of how the variability of parameters affects the device behavior.
Multidimensional stochastic RSMs are used to determine correlations between parameters
and simulation responses and, ultimately, to extract an approximation of the probability
density function of the simulation responses using the Monte Carlo method.

■ Custom algorithm

Optimizer allows the definition and use of custom algorithms that can address specific
tasks that may not be available through the standard task types. The definition of the
algorithm can use all of the structures and procedures of Optimizer, for example, building
a DoE or an RSM.

These tools can be combined sequentially in a single Optimizer run. For example, a screening
task can be combined with an iterative optimization task. The screening task would first
identify which parameters have the strongest impact on the simulation responses and, then, the
iterative optimization task would find values for the selected parameters that optimize the
device behavior.

Optimizer interacts with batch tools of Sentaurus Workbench for setting up and running
simulations in the context of TCAD simulation projects. It is possible to take advantage of the
job scheduler of Sentaurus Workbench to speed up simulations using distributed,
heterogeneous, corporate computing resources. The open architecture and tool interface of
Sentaurus Workbench allow Optimizer to be used for a wide range of purposes.
2 Optimizer User Guide
N-2017.09

1: Using Optimizer
Starting Optimizer
Starting Optimizer

Optimizer can be started from the graphical user interface of Sentaurus Workbench by
choosing Optimization > Run or from the command line using:

swbopt <options> <project_dir>

where <project_dir> is the name of the project to be executed. Usually, it is a project
directory of Sentaurus Workbench. By default, Optimizer reads a command file called
gopt.cmd from the directory <project_dir>. This file contains the tasks that Optimizer
must perform; its syntax and definitions are discussed in Input Command File on page 8.

The following command-line options are available:

-h[elp] : Displays this help message
-v[ersion] : Displays the version number
-verbose : Displays all messages
-silent : Deactivates standard output display
-q[ueue] : Allows to select a queue for running simulations
-expr : Shows the polynomial representation of all models

created
-export : Exports created model to a PCM XML file
-patch FILE: Allows an external Tcl patch file to be loaded
Optimizer User Guide 3
N-2017.09

1: Using Optimizer
Starting Optimizer
4 Optimizer User Guide
N-2017.09

CHAPTER 2 Operations Guide

Optimizer is a batch tool designed to facilitate the analysis of
simulations. This tool uses batch tools of Sentaurus Workbench for
automatically running simulations in the context of TCAD
simulation projects.

Basic Concepts

This section lists some common terms relevant to understanding Optimizer:

■ Parameter

A parameter is a scalar variable that modifies the simulation flow, which allows users to
define families of similar simulations. It is a finite value that is defined inside a certain
domain. Parameter definition is taken automatically from the project of Sentaurus
Workbench. Therefore, only parameters of Sentaurus Workbench can be used by
Optimizer.

The three parameter categories are:

■ Response

A response is a scalar variable or simulation output that describes, for example, the device
behavior.

■ Experiment

An experiment or parameter setting is a tuple that contains one value for each parameter of
the project of Sentaurus Workbench. A family of simulations is defined as a set of
simulations that have the same parameter values for all ‘doe’ and ‘sdoe’ parameters, but
can have different values for ‘user-defined’ parameters. An evaluation is defined as all the
simulations required to compute a given family of simulations.

user-defined Parameters with values that are specified by the user.

doe Parameters with values that are set using a deterministic design-of-
experiments.

sdoe Parameters with values that are set using a stochastic design-of-
experiments.
Optimizer User Guide 5
N-2017.09

2: Operations Guide
Optimizer Structures
■ Scenario

A scenario is a subtree of a simulation tree of Sentaurus Workbench that defines a
particular subset of experiments. Scenarios can overlap, that is, a particular node or path
can be part of more than one scenario. When Optimizer submits a new set of experiments
to batch tools of Sentaurus Workbench, a new scenario is added to the simulation tree so as
to add all new experiments. In Sentaurus Workbench, scenarios can be run and edited
independently.

■ Tasks

A task is a sequence of actions used to obtain information about the relationship between
the parameters and responses under consideration.

Optimizer Structures

The main object that links all relevant elements in Optimizer is the task. A task usually requires
the evaluation of how several combinations of different parameter settings produce different
response values. These evaluations can be performed through an external simulation process,
mainly invoked and coordinated by the batch tools of Sentaurus Workbench, but they can also
be performed by evaluating a tool command language (Tcl) function or a formula.

Figure 1 Tasks require the evaluation of multiple parameter settings

Sequencing Tasks

More than one task can be performed in a single execution. Tasks can use the evaluations and
information obtained in previous tasks. For example, if a task requires the evaluation of a
family of simulations that has already been evaluated by a previous task, that family is not re-
evaluated and the values are recovered by the next task. That is, if a screening task selects only
some parameters, only those are considered in subsequent tasks.

EVALUATION:
- Simulations
- Tcl Functions
- Formulas

TASK

Parameter A Response R1

Response R2
Parameter B

Parameter C

Evaluation
(R1=0.49, R2=12.83)

Parameter Setting
(A=8, B=1e5, C=0.2)
6 Optimizer User Guide
N-2017.09

2: Operations Guide
Optimizer Structures
Task Interdependency

A task can use values obtained as results of other executed tasks. This scheme identifies
‘parents’ and ‘children’ tasks. Data is shared from parents to children tasks using an export-
and-import mechanism, which allows for the declaration of which values of one task can be
exported and which name is used to import them from another task.

For example, it is possible to combine an iterative optimization task with an uncertainty
analysis task, allowing the goal of the optimization to be the minimization of the variance of
the responses. This concept is also known as robust design.

A single run of Optimizer can be related to multiple projects because a different response can
be obtained from different tasks that are related to different projects.

Several values can be imported and exported from one task to another (see Task
Interdependency on page 76).

Reference Example

The examples in this user guide correspond to an NMOSFET project where device behavior is
studied by analyzing the following simulation responses: threshold voltage (VT1_WL) and
breakdown voltage (VBR). The analysis considers different values of the following parameters:

■ p-well implantation dose (PW_DOSE)

■ Gate oxide thickness (TH_OX)

■ Channel dose (CH_DOSE)

■ LDD implantation dose (LDD_DOSE)

■ Spacer length (SP_LENGTH)

An example of the definition of the input command file is:

Start {
nextTask = SCR1

}
Task {

name = SCR1
type = SCREENING
Parameter {

{ name = PW_DOSE
type = doe min = 1e12 max = 1e13 scale = logarithmic }
{ name = TH_OX
type = doe min = 15 max = 20 }
{ name = CH_DOSE
Optimizer User Guide 7
N-2017.09

2: Operations Guide
Input Command File
type = doe min = 4e11 max = 4e12 scale = logarithmic }
{ name = LDD_DOSE
type = doe min = 5e12 max 5e13 scale = logarithmic }
{ name = SP_LENGTH
type = doe min = 0 max = 300 }

}
Response {

{ name = VT1_WL
model = standard degree = 1 }
{ name = Vbr
model = standard degree = 1 }

}
doe = plackettBurmann
screenRange = 2.0
screenCriteria = average
nextTask = end

}

The specified code in this example input file shows the following main aspects:

■ Only one task is defined. The task is called SCR1 and corresponds to a screening task. It is
the first one to be executed according to the definition in the Start block.

■ Five parameters are analyzed inside a given range (linearly or logarithmically scaled).
Their values are generated using a Plackett–Burmann design-of-experiments.

■ Two responses are considered.

■ The main tool to be used is SCREENING that will analyze which parameters are relevant for
the responses, considering how changes to the parameter values affect the response values.
Those parameters that have an average effect (on both responses) greater than 2% are
selected.

Input Command File

The command file gopt.cmd defines a set of Optimizer tasks. This file consists of a sequence
of blocks that can be in any order and contain inner blocks. A block has always the following
structure: block_name { body }. The body of a block is a sequence of either other blocks
or data values.

A data value is an attribute and its corresponding value or an array of data values. An array of
data values is a set of related data values.

Main blocks are separated into different lines. Inside the body of a block, data is separated by
line feeds or multiple spaces. Keywords of Optimizer are case sensitive and syntax sensitive,
for example, parentheses must be consistent. All lines starting with the symbol ‘#’ are ignored.
8 Optimizer User Guide
N-2017.09

2: Operations Guide
Input Command File
This section describes and provides an example of each block. Optimizer Commands
Reference on page 81 provides users with reference tables specifying the elements that can be
used in each block.

Main Blocks

Start

The Start block allows users to define initial characteristics of parameters and responses, and
to set global options. The Start block can be specified anywhere in the input command file,
at the beginning or end, or in between task specifications.

Define initial conditions and start first task
Start {

Parameter {
{ name = VARIABLE type = ud values = {0 1} }

}
nextTask = 1

}

In this example, the Start block specifies a user-defined parameter VARIABLE, which is not
used by any task and takes the values 0 and 1. The initial task is set to 1.

Global Options

Optimizer stops if one of the following global stopping criteria is reached:

Other stopping criteria are task dependent and must be specified in the corresponding task
definition. The following global options are also available:

maxGlbNumEvaluations Global maximum number of evaluations.

maxGlbTime Maximum wallclock time that Optimizer is allowed to run.

maxGlbTimeUnit (seconds, minutes, hours, or days) Global time unit. The default
unit is second [s].

nextTask Alphanumeric identifier of the first task that Optimizer runs.

exportTable This option is used to export a table containing the different
parameter settings and all response values to a file (in tab-delimited
format). The argument of this option is the file name.
Optimizer User Guide 9
N-2017.09

2: Operations Guide
Input Command File
Global options can be modified in any task. nextTask must be set in all tasks to indicate which
task is executed next. exportTable can be set differently to export the results of each task to
different files.

Task

The Task block allows users to define Optimizer tasks. These tasks are executed according to
a user-specified order. Each task definition contains a block that states the selected parameters
and responses. Additionally, some task-specific options can be set. The following sections
describe the different tasks and their specific options that are available in Optimizer.

The main attributes of a task are:

A simple example of a task declaration is:

Task {
name = SCR1
type = SCREENING
Parameter {

{ name = PW_DOSE
type = doe min = 1e12 max = 1e13 scale = logarithmic }
{ name = TH_OX
type = doe min = 15 max = 20 }
{ name = CH_DOSE
type = doe min = 4e11 max = 4e12 scale = logarithmic }
{ name = LDD_DOSE
type = doe min = 5e12 max 5e13 scale = logarithmic }
{ name = SP_LENGTH
type = doe min = 0 max = 300 }

}
Response {

name Alphanumeric identifier of the task.

type Type of task to be performed, including DOE, SDOE, SCREENING,
OPTIMIZATION, GEN_OPTIMIZATION, ITER_OPTIMIZATION,
SEN_ANALYSIS, UNC_ANALYSIS, GENETIC_OPTIMIZATION.

project Name of Sentaurus Workbench project. Each task can be linked to a
different Sentaurus Workbench project. Parameter names must match the
parameters of the corresponding project. The task attribute ‘project’ is
optional and its default value is " ", which references the directory where
the input command file is located.

Parameter See Parameter on page 11 for their corresponding declarations.

Response See Response on page 13 for their corresponding declarations.
10 Optimizer User Guide
N-2017.09

2: Operations Guide
Input Command File
{ name = VT1_WL
model = standard degree = 1 }
{ name = Vbr
model = standard degree = 1 }

}
doe = plackettBurmann
screenRange = 2.0
screenCriteria = average
nextTask = end

}

Inner Blocks

This section describes and provides examples of some inner blocks that are common to all
tasks.

Parameter

A parameter is characterized by the attributes:

The remaining parameter attributes are type dependent.

User-Defined Parameters

Design-of-Experiments (DoE) Parameters

name Unique identifier.

type (ud, doe, sdoe, or scen) Parameter type. The default is user-defined
(ud).

values If the parameter is user defined, these values are used to create the
different family of simulations.

max Highest possible value for DoE generation.

min Lowest possible value for DoE generation.

scale (linear or logarithmic) Interpolation method for creating
intermediate values between the lower and upper bounds. A logarithmic
scale can be used only when all possible parameter values are positive or
negative. The default is linear.
Optimizer User Guide 11
N-2017.09

2: Operations Guide
Input Command File
Stochastic Design-of-Experiments (SDoE) Parameters

Scenario-Originated Parameters

It is also possible to use a previously defined scenario to set the values of some parameters. In
that case, the required parameter is defined as a scenario type, which means that this parameter
inherits all values defined in the specified scenario.

doeArgs Some DoEs require certain parameter-dependent attributes to be specified
(see the DoE used in the task example in Design-of-Experiments Task on
page 68).

selValue Selected value. It can be used as the nominal value of a sensitivity analysis
task or the starting point of an optimization task. If its value is set to
autoValue, it takes the value from the previous executed task. In
addition, the import capacity between tasks can be used for parameters to
obtain a value from another parameter. When selValue is set to
import.X1, this means that the value of X1, defined in another task, will
be inherited by this task.

SDoEModel Probability distribution. This is a block compound of two attributes:
type: (normal, uniform, expon, beta, or gamma) Probability
distribution type. Default distribution is normal.
args: Arguments of the probability distribution.

For example, if a given parameter has a normal distribution, two
arguments must be provided – mean and variance. The default is {0 1},
which corresponds to the mean and variance of the standard normal
distribution.

sdoeArgs Closely analogous to the deterministic case. Some stochastic DoEs require
certain parameter-dependent attributes to be specified (see the DoE used in
the uncertainty analysis task example in Example on page 61).

values This attribute specifies the scenario to be used to set these parameter
values. The declaration has two parts: the path to the referenced project
and the scenario name in that project:
{ [path-to-example] [scenario-name] }
12 Optimizer User Guide
N-2017.09

2: Operations Guide
Input Command File
Response

A response is characterized by the following attributes:

name Unique identifier.

model (standard, kriging, or stochastic) Type of RSM.

transformation (exp, log, sqrt, or sqr) Transformation of the RSM.

degree (1, 2, or 3) If a polynomial model is used, this attribute represents the
degree of the RSM.

crit (minimal, maximal, or closeto) Optimization goal.

target If the optimization criterion closeto is used, this argument represents the
target value.

lowerBound Minimum limit related to the algorithm stopping range (used for
optimizations).

upperBound Maximum limit related to the algorithm stopping range (used for
optimizations).

perc_range Percentage related to the target value for which the stopping range is
defined.

weight Relative importance assigned to the simulation response.

modelArgs Stochastic RSM specification. Although, there is always the possibility of
declaring each term of the stochastic specification, some keywords help
their automatic internal generation.

These keywords are linear, interaction, quadratic, and cubic.
By specifying one or more of these keywords, they are replaced by the
requested parameter combinations.

source Task responses can be computed by calling other tasks (particularly
simulation tasks that perform actual simulations), evaluating a formula, or
calling a function. This attribute allows for specifying how to compute the
response values. This attribute is optional, but when declared, it must be
the name of an existing task, a previously defined formula, or a function.
Optimizer User Guide 13
N-2017.09

2: Operations Guide
Input Command File
Sequencing Tasks

For a specific run of Optimizer, the order in which tasks are executed can be determined and
controlled by the user using a specific command file definition. The sequence in which tasks
are executed can be useful, for example, to perform a screening task before an optimization
task, which will use only those parameters selected by the screening process to be optimized.

This concept involves two considerations: declaring the order in which tasks are executed and
declaring how the results of the first task affect the start and evaluation of the second task.

Determining Order of Tasks

The starting task is defined by using its identifier on the nextTask attribute of the Start
block:

Define initial conditions and start first task
Start {

...
nextTask = SCR1

}

In this example, the task identified by SCR1 is executed first. Then, each following task to be
executed is defined in the nextTask attribute of the previous task:

Task {
...
nextTask = OPT

}

The final task sets the nextTask attribute to end.

Using Previous Parameter Values

To use values of parameters from a previously executed task, the selValue attribute in the
Parameter statement must be set to autoValue:

Task {
...
Parameter {

{ name = A selValue = autoValue }
{ name = B selValue = autoValue }

}
...

}

14 Optimizer User Guide
N-2017.09

2: Operations Guide
Input Command File
Evaluating Tasks

To obtain values for each of the responses declared in a task, their source attribute defines how
the task will be evaluated. Response values can be set as the result of a simulation process, a
mathematical formula, or a tool command language (Tcl) function.

Using Simulation Processes

To use a simulation process, the source attribute of a response can be set to a specific task.
Simulation tasks perform the actual interaction with the proper simulation tools. A simulation
task can be declared as:

Task {
name = "Simulation"
type = SIMULATION
project = "MOS"
Parameter {

{ name = project_PA type = doe selValue = import.A }
{ name = project_PB type = doe selValue = import.B }

}
Response {

{ name = delta }
}
Export {

{ name = delta_1 value = delta }
}

}

Here, the project name explicitly references a project of Sentaurus Workbench where a
simulation process is defined. The response delta will be obtained from the simulation.

A second task defined to recover the values generated by this simulation task can be declared
as:

Task {
name = SCR1
type = SCREENING
Parameter {

{ name = A type = doe min = -1000 max = 1000 }
{ name = B type = doe min = -1000 max = 1000 }

}
Response {

{ name = delta_1 model = standard degree = 1 source = Simulation }
}

Optimizer User Guide 15
N-2017.09

2: Operations Guide
Input Command File
doe = plackettBurmann
nextTask = end

}

In the task SCR1 declaration, the values of the response delta_1 are obtained from the task
named Simulation.

NOTE If not declared, a simulation task is always created internally by default.
If no simulation task is defined as the source for responses defined in a
task, then internally, these responses are obtained by executing the
default simulation task, which is related to the Sentaurus Workbench
project of the directory where the input command file is located.

Using Formulas and Functions

In some cases, the evaluation of a specific response can be obtained by simply applying a
mathematical formula or some calculation function that can use all or some of the declared
parameters. In this case, no simulation is performed, thereby obtaining response values almost
immediately.

For example, a task can compute R1 and R2 using simulation and calculate RTotal as R1+R2.
This feature is also useful when the simulation can be replaced by a previously researched
formula and a complete Optimizer run can finish in a fraction of the time involved in simulation
runs.

To use a function, it must be declared in the command file. Usually, the definition of the
function is declared at the beginning of the command file, using standard syntax for a Tcl code
function declaration. An example of this type of declaration is:

proc RosenFunction { x1 x2 } {
set rosen [expr 10 + 100 * pow($x2-$x1*$x1,2) + pow(1-$x1,2)]
return $rosen

}

The task response that is evaluated using this function can be declared as the following, using
the keyword function in the source value specification:

Task {
...
Response {

{ name = Rosen source = "function RosenFunction X1 X2" }
}

}

Moreover, a second response can be obtained as a mathematical formula involving the other
response, thereby making both responses dependent on the function evaluation.
16 Optimizer User Guide
N-2017.09

2: Operations Guide
Input Command File
This declaration must use the keyword formula in the source value specification:

Task {
...
Response {

{ name = Rosen source = "function RosenFunction X1 X2" }
{ name = Rosen2 source = "formula Rosen*X1+X2" }

}
}

Response or parameter names can be used directly in a formula.

Importing Partial Results From Previous Tasks

Occasionally, it may be useful to retrieve partial values from either parameter or response
values obtained in tasks already performed. They can be used, for example, to define new
boundaries for an optimization task based on the results of previous optimization tasks.

The syntax to gain access to these values is:

<task_name>:<par|res>:<item_name>

where:

■ <task_name> is the valid name for a task in the project. The indicated task should have
been performed before the one in which the user needs to use it.

■ <par|res> defines whether a parameter (par) or a response (res) is to be imported.

■ <item_name> is the name of the parameter or response to be imported.

A valid name for this syntax can be, for example, Iter1:par:A (which can be thought of as
‘the resulting value for parameter A in the task Iter1’). There must be no spaces between the
composing elements.

This simple syntax can be embedded between more complex expressions by enclosing the
entire expression with the @ character, for example:

Parameter {
{ name = A type = doe min = @Iter1:par:A - Iter1:res:Z@

max = @(Iter1:par:B * 0.05) + 1@ }
...

}

The value that will be imported into and be replaced in these expressions is the optimum value
found for the required parameter or response in the indicated task.
Optimizer User Guide 17
N-2017.09

2: Operations Guide
Design-of-Experiments
The following example illustrates how to import the results of task Iter1 for defining the
parameter domain in task Iter2:

Task {
name = Iter1
type = ITER_OPTIMIZATION
project = ""
Parameter {

{ name = A type = doe min = -5 max = 5 }
{ name = B type = doe min = -20 max = 20 }
{ name = C type = doe min = -100 max = 100 }

}
...
nextTask = Iter2

}
Task {

name = Iter2
type = ITER_OPTIMIZATION
project = ""
Parameter {

{ name = A type = doe min = @0.8*Iter1:par:A@ max = @Iter1:par:A*1.2@ }
{ name = B type = doe min = -20 max = 20 }
{ name = C type = doe min = -100 max = 100 }

}
...

}

In task Iter2, the values for both the min and max boundaries for parameter A are imported
as the optimum values obtained for the same parameter (A), multiplied by 0.8 and 1.2,
respectively.

Design-of-Experiments

The main concept for all tasks is the generation of satisfactory scenarios to run the required
tools. This generation is called design-of-experiments (DoE). DoE techniques are methods to
create a well-defined subset of the parameter domain according to the simulation goal. When
multiple parameters () exist, the parameter domain is defined as the set of all possible
combinations of parameter values. If is the set of possible values for parameter , the
parameter domain can be described as the set of possible tuples:

(1)

A DoE is a small set of special values that are used to explore relevant subsets of the parameter
domain to achieve a simulation goal with the least number of experiments.

p1 ... pn, ,
V pi() pi

PS v1, …, vn() vi V pi()∈{ }=
18 Optimizer User Guide
N-2017.09

2: Operations Guide
Design-of-Experiments
Deterministic Design-of-Experiments

Deterministic designs-of-experiments (DoEs) usually consider a subset of the parameter
domain where each parameter is inside a given range. The user must define only a minimum
and maximum value. Parameter values are then automatically computed according to the
selected DoE:

(2)

where and are the minimum and maximum values for the parameter .

Optimizer provides some of the most common DoEs [1][2]:

■ Full factorial

For each parameter, a subset of values is selected. The values can be selected either
equidistantly or randomly. Simulations run for all combinations formed from these values.
A special case is the full factorial design at two levels, where each parameter accepts its
minimum and maximum values.

■ Half factorial at two levels (+), Half factorial at two levels (–)

These are two halves of a full factorial design at two levels.

Figure 2 shows full-factorial and half-factorial designs for three parameters.

Figure 2 Factorial design-of-experiments

■ Fractional factorial at two levels

These are fractions of a full-factorial design at two levels and are used to reduce the number
of simulations. Three criteria are used to select a given fractional factorial design:

• Number of times the full-factorial design is divided

• Resolution, which is the type of interaction that must be estimated

• Number of experiments

DOE v1, …, vn() vi mini maxi,[]∈{ } PS⊆=

mini maxi pi

pj

pk

pi

half +
half -

Full Factorial Half Factorial

pj

pk

pi
Optimizer User Guide 19
N-2017.09

2: Operations Guide
Design-of-Experiments
Figure 3 shows a fractional-factorial design of resolution III for three parameters.

Figure 3 First-order design-of-experiments

Table 1 shows the different combinations of two-level fractional-factorial designs-of-
experiments that Sentaurus Workbench supports.

Table 1 Two-level fractional-factorial designs

Parameters Fraction Resolution Experiments

3 1 III 4

4 1 IV 8

5 1 V 16

5 2 III 8

6 1 VI 32

6 2 IV 16

6 3 III 8

7 1 VII 64

7 2 IV 32

7 3 IV 16

pj

pk

pi

pj

pk

pi

Fractional Factorial
of Resolution III

Plackett–Burmann
20 Optimizer User Guide
N-2017.09

2: Operations Guide
Design-of-Experiments
■ Plackett–Burmann

These designs are special cases of two-level fractional factorial designs for studying
 parameters in simulations, where is a multiple of four. Figure 3 on

page 20 shows a Plackett–Burmann design for three parameters.

■ Face-centered central composite, small central composite, Box–Behnken

These designs are special cases of three-level (minimum-center-maximum values)
fractional factorial designs, used to fit response surfaces of second-order, running a small
number of simulations. Figure 4 on page 23 shows a Box–Behnken and a face-centered
central composite design for three parameters.

■ Central composite inscribed, central composite circumscribed, orthogonal central
composite, custom central composite

These are special cases of composite designs that construct a design with five levels for
each parameter. The custom central composite design allows users to enter the distance of
the star point from the center of the design.

■ Taguchi

These designs are based on orthogonal arrays, which are a set of standard fractional
factorial experiments.

7 4 III 8

8 1 VIII 128

8 2 V 64

8 3 IV 32

8 4 IV 16

9 2 VI 128

9 3 IV 64

9 4 IV 32

9 5 III 16

10 3 V 128

10 4 IV 64

10 5 IV 32

10 6 III 16

Table 1 Two-level fractional-factorial designs

Parameters Fraction Resolution Experiments

K N 1–= N N
Optimizer User Guide 21
N-2017.09

2: Operations Guide
Design-of-Experiments
■ Latin square

For three parameters, a family of simulations is generated, so that all levels of a given
parameter are combined in one simulation with all levels of the other parameters.

■ Greco-Latin square

This is analogous to the Latin square, but for four parameters.

■ Diagonal

A number of experiments is selected along the diagonal, across the parameter domain.

■ Center points

Only one experiment is selected. Each parameter takes the middle value between its
minimum and maximum values.

■ Random

A number of experiments is selected randomly.

When a DoE is selected, it is generally important to consider the simulation goal. The most
common goals are:

■ Screening

Many parameters are usually considered in order to identify the parameters (if any) that
have a strong impact on the simulation responses. Fractional factorial designs of resolution
III and Plackett–Burmann designs can be used for this purpose. Figure 3 on page 20 shows
two screening designs-of-experiments for three parameters: fractional factorial of
resolution III and Plackett–Burmann. In this case, both designs are symmetric and equal to
a half factorial at two levels (+) design and a half factorial at two levels (–) design,
respectively.

■ Optimization

Usually, first-order or second-order approximations of simulation responses are used for
optimization. Fractional factorial designs of resolution III are used to estimate first-order
models. Face-centered central composite, small central composite, or Box–Behnken
designs are used to estimate second-order models. Figure 4 on page 23 shows two DoEs
suitable to create second-order RSMs: Box–Behnken and face-centered central composite.
22 Optimizer User Guide
N-2017.09

2: Operations Guide
Design-of-Experiments
Figure 4 Second-order design-of-experiments

Table 2 lists DoEs used to create second-order polynomial models.

Stochastic Design-of-Experiments

Stochastic RSMs are used to understand how the variability of parameters affects device
behavior. These models are built using a family of simulations that sample those regions of the
parameter domain that correspond to events that are more likely to happen. Parameter values
are automatically computed when a stochastic design-of-experiments (SDoE) is selected. Only
the probability distribution of the parameters must be specified.

Table 2 Second-order designs

Parameters Face-centered
central composite

Small central
composite

Box–Behnken

1 3 3 3

2 9 9 6

3 15 15 13

4 25 17 25

5 43 23 41

6 77 33 49

7 143 43 56

8 273 49 –

9 531 – –

10 1045 – –

Box–Behnken Face-centered Central Composite

pj

pk

pi

pj

pk

pi
Optimizer User Guide 23
N-2017.09

2: Operations Guide
Design-of-Experiments
The following designs are implemented:

■ Monte Carlo

Experiments are based on a sequence of independent random values for each parameter.
The sequences are combined so that the first experiment uses the first value of each
independent sequence, the second experiment uses the second value of each independent
sequence, and so on. The sequences of random values must be uncorrelated.

■ Corner

Experiments are the full combination of the boundary values of each parameter. The
number of simulations is , where is the number of parameters.

■ Boundary

This design is based on the mean and boundary values of each parameter. In each
simulation, all but one of the parameters are equal to their corresponding mean. The
remaining parameter takes one of its boundary values. The number of experiments is ,
where is the number of parameters.

The mean and boundary values required by corner and boundary designs are arbitrary and
depend on the probability distribution associated with each parameter. These values are defined
for the two most common distributions: normal and uniform.

Normal distribution is defined by specifying two attributes: mean () and variance ().
Uniform distribution is characterized by the lower bound () and upper bound () of the
considered domain. Table 3 defines the mean and boundary values for these distributions.

■ Probabilistic collocation

To build stochastic RSMs that approximate the simulation responses on the highest
probability region of the parameter domain (see Response Surface Models (RSMs) on
page 25), it is necessary to have a DoE that samples that specific region. For each parameter

, a subset of values is selected. These values are the roots of the orthogonal
polynomial of order associated with the probability density function of the
parameter. Simulations are run for all combinations of these values. The simulation results
are used to build stochastic RSMs for all simulation responses. These models can contain
any terms that combine orthogonal polynomial of order up to on the parameter .

Table 3 Mean and boundary values

Probability distribution Lower bound Mean Upper bound

Normal

Uniform

2n n

2*n
n

μ σ2

a b

μ σ– μ μ σ+

a a b+() 2÷ b

pi ni 1+
ni 1+

ni pi
24 Optimizer User Guide
N-2017.09

2: Operations Guide
Response Surface Models (RSMs)
Figure 5 shows a probabilistic design for two parameters. One (X1) has a uniform
probability distribution; the other (X2) has a normal (Gaussian) probability distribution.

Figure 5 Stochastic design-of-experiments

Response Surface Models (RSMs)

Response surface modeling [3][4] is a technique for creating approximated mathematical
models (RSMs) of the simulation responses. These models are used to:

■ Determine which parameters have a significant effect on simulation responses (see
Screening Task on page 31).

■ Determine how parameters affect the behavior of simulation responses.

■ Evaluate different parameter settings.

■ Find a parameter setting that optimizes a weighted function of the simulation responses
(see Optimization Task on page 33, Iterative Optimization Task on page 38, and Generic
Optimization Task on page 49).

■ Perform sensitivity or uncertainty analysis (see Sensitivity Analysis Task on page 57 and
Uncertainty Analysis Task on page 59, respectively).

x1 U a b,()∼

x2 N μ σ,()∼

μ

a b+
2

H3 x1() 0=

μ 3– σ

: Evaluated points

μ 3σ+

H3 x2() 0=
Optimizer User Guide 25
N-2017.09

2: Operations Guide
Response Surface Models (RSMs)
Model Definition

The options used to customize RSM formation are model, transformation, and degree.

Model

Both deterministic and stochastic models can be defined. Deterministic models are used mainly
for optimization and to determine how parameter values affect the simulation responses. Two
kinds of deterministic models are provided: standard polynomial models and Kriging models.

Standard polynomial models are computed using the least square method. A Kriging model is
a standard polynomial model with an extra function that ensures the RSM passes exactly
through all simulated response values. If the RSM is evaluated for a parameter setting that was
used to create the model, the result is exactly the same as the simulated response value for that
particular parameter setting.

Stochastic RSMs are used for uncertainty analysis. A probability density function must be
provided for each parameter that is used to create the stochastic RSM. The terms of the
stochastic polynomial model must be specified. These terms are not based on the parameters,
as in the deterministic case, but on the orthogonal polynomial associated with the probability
density function of the parameters (see Uncertainty Analysis Task on page 59).

Transformation

NOTE This option is considered only for deterministic models.

Usually, the metrics in which data is recorded are chosen for convenient measurement;
however, they are not those in which the system is most simply modeled. To achieve the most
appropriate scaling, a transformation can be applied to the simulation response. Nonlinear
transformations, such as the square root, logarithm, and reciprocal of some (necessarily
positive) response , expand the scale at one part of the range and contract it at another.
Transformations , in which is less than one, contract the range at high values
and can be called contractive transformations. Power transformations with greater than
one have the reverse effect and can be called expansive. The supported transformations are
log, exp, sqrt, and sqr. By default, no transformation is used.

Y
y Yalpha= alpha

alpha
26 Optimizer User Guide
N-2017.09

2: Operations Guide
Response Surface Models (RSMs)
Degree

NOTE This option is considered only for deterministic models.

In practice, it is often assumed that a polynomial of first or second degree adequately
approximates the true function over a limited region of the parameter domain. First-order,
second-order, and third-order polynomial models are supported.

A model cannot be created if there are less than linear-independent simulation
experiments for a first-degree polynomial model or linear-independent
simulation experiments for a second-degree polynomial model.

A general rule is that at least or different experiments are required,
respectively; this is the only necessary condition. It is strongly recommended to use a family
of simulations created by DoE techniques because they consider this condition (see
Deterministic Design-of-Experiments on page 19).

Model Information

If an RSM is built, the following information can be computed for each response.

Model Accuracy

Three statistics measure the model accuracy:

■ The coefficient of determination () measures the predictive capacity of the model. It
represents the proportion of the variation in the simulation response that can be predicted
by changes in the values of the parameters. It ranges from 0 to 1. Expressed as a percentage,
it represents the proportion of the real values that can be predicted by the model. It is often
used as an overall measure of the fit obtained. The value of must be as close to 1 as
possible.

■ A large value of does not necessarily imply that the regression model is satisfactory.
Reducing the number of simulations always increases . To deal with this problem, it is
recommended to use an adjusted version of the statistic (). When and
differ dramatically, there is a high risk that the model is not sufficiently accurate.

■ The estimated variance of the error () is a measure of the model variability. Clearly, a
low value is preferred.

Model Accuracy on page 95 describes the computation of these statistics.

n 1+()
n 1+() n 2+() 2⁄

n 1+() n 1+() n 2+() 2⁄

R2

R2

R2

R2

R2 Radj
2 R2 Radj

2

S2
Optimizer User Guide 27
N-2017.09

2: Operations Guide
Response Surface Models (RSMs)
Model Coefficients

The coefficients can be interpreted as either the coefficients of the polynomial function or a
measure of the effect of the parameters on the simulation response. In the model information
section, the following data is displayed:

Coefficients

The values of the coefficients indicate how much the simulation response differs if a
parameter is varied in one unit. These coefficients are also used to measure the effect of
each parameter on the simulation responses.

Normalized coefficients

As each parameter has a different domain, it is not possible to compare the previous
coefficients directly. It is more effective to work with a normalized range, in which the
lower bound and upper bound of the parameter domain are normalized to –1 and 1,
respectively. The normalized coefficients are used to determine, by direct inspection, which
parameter or parameter interaction has the most influence on the simulation response.

Rank

To simplify the identification of the most significant normalized coefficients, the influences
of the different parameters are ranked on a percentage scale.

Model Variance

It is possible to compute which fraction of the total variance is due to each term of the model:

Variance

These values reflect how much of the simulation response variance is associated with each
polynomial term.

Standard deviation

The square root of the variance.

Rank

To simplify the identification of the most significant terms, the influences of each
polynomial term over the total variance are ranked on a percentage scale.
28 Optimizer User Guide
N-2017.09

2: Operations Guide
Specific Tasks
ANOVA Table

The analysis of variance (ANOVA) table shows standard information on the quality of the
model and levels of variability. It also forms a basis for tests of significance. ANOVA Table on
page 96 provides a full description of this table.

Histogram

NOTE This information is available for stochastic models only.

A histogram is a discrete description of the estimated probability density function of the
simulation response.

Moments

NOTE This information is available for stochastic models only.

Four factors that are based on the first four moments of the estimated probability density
function of the simulation response are computed. Moments on page 98 presents formal
definitions of these factors.

Model Expressions

Response surface models are polynomial approximations of the simulated function. When the
-expr option is used, Optimizer shows the polynomial expression in different formats: Tcl
expression, Tcl procedure, and Visual Basic function.

Specific Tasks

A task is a sequence of actions used to obtain information about the relationship between the
parameters and responses under consideration. More than one task can be performed in a single
execution. Each task uses the information obtained in previous tasks. For example, if a task
requires the evaluation of a family of simulations that has already been evaluated by a previous
task, that family is not re-evaluated.

Different tasks can be defined by describing the following aspects:

■ Parameters and responses

■ Iterations

■ Final analysis tool
Optimizer User Guide 29
N-2017.09

2: Operations Guide
Specific Tasks
Parameters and Responses

The first step is to determine which parameters and responses will be considered. The attributes
of parameters and responses can be modified at the beginning of each task. For example, before
starting an optimization task, the parameter domain can be modified by redefining the lower
and upper bounds of the parameters.

Iterations

A task can consist of one or more iterations. An iteration is defined by the application of one
or more of the following consecutive steps:

■ Design-of-experiments (DoE)

At the beginning of any iteration and depending on the task goal, it may be necessary to
explore new subregions of the parameter domain by adding new families of simulations.
Multiple DoEs can be used to generate the set of parameter settings. After new parameter
settings are created, Optimizer automatically calls the batch tools of Sentaurus Workbench
to run the simulations and obtain the corresponding simulation responses. If no DoE is
selected, Optimizer proceeds directly to the analysis using pre-existing results.

■ Response surface models (RSMs)

Most analyses are performed using RSMs that approximate the real function in a small
region of the parameter domain. There are different kinds of RSMs for different tasks.

■ Analysis

Using the RSMs created for each simulation response, the analysis tool obtains information
about the relationship between parameters and responses.

■ Update

At the end of each iteration, it may be necessary to update the task information, for
example, the region of interest (subset of the parameter domain) or to store the best
parameter values that are found.

Final Analysis Tool

Some analyses are performed after all iterations have finished. Usually, such analyses require
information collected from all iterations.
30 Optimizer User Guide
N-2017.09

2: Operations Guide
Screening Task
Screening Task

Overview

Parameter screening determines how much the different parameters affect the simulation
responses. Parameters are ranked according to their influence on each response. Usually, this
method is applied in the early stages of analysis. Many parameters are considered in order to
identify which ones have the strongest impact or negligible impact on the simulation responses.

This is a single iteration task:

Command Description

To specify a screening task, parameters and responses are chosen as previously outlined.
Specific regions of interest are set for each parameter. The screening method is mainly valid
inside the selected region of interest. Linear or logarithmic scale can be specified for each
parameter. RSMs are usually set to standard first-order polynomial models.

The screening task has three properties: screenCrit, screenRange, and screenBest.

■ screenCrit

The screening criterion indicates how the ranking of parameters is computed. If
screenCrit is set to average, parameters are ranked according to the average impact
they have on all responses under consideration. This is the default criterion.

The influence of a parameter on a response is computed using the normalized coefficient
of the corresponding RSM (see Response Surface Models (RSMs) on page 25).

DoE The designs that are used most often for screening are fractional factorial
of resolution III and Plackett–Burmann (see Figure 3 on page 20). These
designs create RSMs that are used to obtain the first-order effect of each
parameter on the simulation responses.

RSM First-order polynomial models.

Analysis When all simulations have been performed, an RSM is built for each
response. The normalized coefficients of the RSMs are used to rank
parameters according to their effect on the responses.
Optimizer User Guide 31
N-2017.09

2: Operations Guide
Screening Task
The average screening criterion ranks parameters according to the expression:

(3)

where is the parameter ranking and is the influence of parameter on the
simulation response .

If screenCrit is set to local_strong, a high importance is assigned to parameters that
have a strong impact on, at least, one response, even if they do not have a strong impact on
the remaining parameters.

This criterion ranks parameters according to the expression:

(4)

where is the parameter ranking and is the influence of parameter on the
simulation response .

■ screenRange

Screening range is the threshold level that defines whether a parameter is relevant enough
to be selected. Parameters whose impact is less than this threshold level are redefined as
user-defined parameters and set to their nominal values. This option is given as a
percentage of the parameter domain and its default value is 10%.

■ screenBest

The screening best criterion is useful for selecting a certain number of parameters after the
screening task is performed. Therefore, the number of parameters with the highest impact
set for this option are selected for the subsequent tasks, and the remaining ones are
redefined as user-defined parameters and are set to their nominal values.

An example of the definition of a screening task is:

Screening task
Task {

name = 1
type = SCREENING
Parameter {

{ name = PW_DOSE
type = doe min = 1e12 max = 1e13 scale = logarithmic }
{ name = TH_OX
type = doe min = 15 max = 20 }
{ name = CH_DOSE
type = doe min = 4e11 max = 4e12 scale = logarithmic }
{ name = LDD_DOSE
type = doe min = 5e12 max 5e13 scale = logarithmic }
{ name = SP_LENGTH
type = doe min = 0 max = 300 }

ranki Iik

k Responses∈
= i Parameters∈∀

ranki pi Iik pi

Rk

ranki max Iik()= i Parameters∈∀ k Responses∈∀,

ranki pi Iik pi

Rk
32 Optimizer User Guide
N-2017.09

2: Operations Guide
Optimization Task
}
Response {

{ name = VT1_WL
model = standard degree = 1 }
{ name = Vbr
model = standard degree = 1 }

}
doe = plackettBurmann
screenRange = 2.0
nextTask = 2

}

Output

Screening parameters are ranked using a percentage scale according to their influence on all
responses.

The following is an excerpt of output from Optimizer that illustrates how parameters are
ranked:

--
Screening result:
--
Name Value Selected
PW_DOSE 1.685 0
TH_OX 0.481 0
CH_DOSE 12.341 1
LDD_DOSE 73.601 1
SP_LENGTH 11.892 1
--

Optimization Task

The key values of a semiconductor device (simulation responses) are influenced by parameters
that can be varied within given ranges. The goal of a simulation is often to determine how to
set parameters to create a device that meets certain design requirements. This task determines
a parameter setting that optimizes a weighted function of the simulation responses. Each task
defines an independent optimization problem. Different optimization goals and different
parameter domains can be specified in different tasks. If the parameter domain is not modified
between the different tasks, no further simulations are required.
Optimizer User Guide 33
N-2017.09

2: Operations Guide
Optimization Task
This is a single iteration task:

Optimization Criteria

Multiple optimization criteria can be set, even if they are antagonistic. In such cases, a sensible
compromise must be found. Optimization literature describes many approaches to the analysis
of multiple responses. The approach of Optimizer gives users control over the importance of
all criteria and allows a mathematical optimization using nonlinear optimization solvers. The
method uses a global desirability function in which:

■ A normalization is applied to each simulation response.

■ Different desirability functions are used depending on whether the simulation response is
to be minimized, maximized, or has an assigned target value.

■ A user-defined weight is assigned to each simulation response.

Each function is normalized using the expression:

(5)

where:

■ is the simulation response .

■ is the normalized simulation response .

■ is the minimum of the simulation response .

■ is the maximum of the simulation response .

DoE For optimization purposes, second-order polynomial models are usually
used. They require at least three levels for each parameter. The most often
employed DoEs are small central composite, face-centered central
composite, and Box–Behnken.

RSM Second-order polynomial models.

Analysis After all simulations have been performed, a second-order polynomial
model is built for each response. Then, an optimization tool is used to
obtain parameter values that optimize a weighted function of the response
targets.

R'k

Rk

mk Mk+

2
--------------------– 

 

Mk mk–

2
------------------- 
 

-------------------------------------- k Results∈()∀,=

Rk k

R'k k

mk k

Mk k
34 Optimizer User Guide
N-2017.09

2: Operations Guide
Optimization Task
Using this normalization function, all simulation responses range from –1 to 1 and are
considered equally important in the global desirability function. In this way, the global
desirability function to be minimized can be expressed as:

(6)

where:

■ is the weight of the simulation response .

■ is the set of simulation responses to be minimized.

■ is the set of simulation responses to be maximized.

■ is the set of simulation responses that are required to be as close as possible to a
given target.

■ is the normalized target for the simulation response .

■ is the target constant.

The adjust constant corrects the anomaly produced by the square in the third sum expression
of the desirability function. The range of the terms of the desirability function, corresponding
to each response, varies depending on the optimization goal. For minimization and
maximization, terms range from –1 to 1. For approximation of a given target, they range from
0 to .

Additionally, these last terms approach zero quadratically, while the other terms decrease
linearly. In order that all terms have a similar impact on the global desirability function, the
adjust constant is introduced. is set to 100 in this implementation.

Optimization Method

The optimization method implemented to solve the general constrained nonlinear problems is
based on the sequential quadratic programming (SQP) approach [5][6]. SQP is also known as
the projected Lagrangian method or successive (or recursive) quadratic programming. It solves
the nonlinear problem using an iterative approach. At each iteration, the problem is
approximated by a quadratic problem, which is solved more easily.

This problem is solved by employing the Newton (or quasi-Newton) method to directly find a
solution to the Karush–Kuhn–Tucker (KKT) conditions of the original problem. The
subproblem solved at each iteration is a minimization of a quadratic approximation to the
Lagrangian function, optimized over a linear approximation of the constraints.

These SQP methods work by moving from one feasible point of the parameter domain to
another; the second one is a better solution of the optimization problem. The typical strategy is

F wk R'k⋅
k minR∈
 1– w⋅ k R'k⋅

k maxR∈
 T w⋅ k R'k T'k–()2⋅

k targR∈
+ +=

wk k

minR

maxR

t Rarg

T'k k

T

T

max 1– T'k–()2
, 1 T'k–()2{ }

T T
Optimizer User Guide 35
N-2017.09

2: Operations Guide
Optimization Task
that at a feasible point , a direction is determined such that for a sufficiently small ,
the following two conditions are true:

■ is feasible.

■ The objective function value at is better than the objective function value at .

After such a direction is found, a one-dimensional optimization is solved to determine how far
to proceed along . This leads to a new point and the process is repeated.

At each iteration, the method generates a feasible improving direction and, then, optimizes
along that direction. Therefore, the main problem is how to determine this direction. The SQP
method creates a quadratic problem to determine this feasible direction by adopting the
Newton or quasi-Newton method to solve the KKT optimality conditions. The quadratic
problem is solved using the KKT method or the active set method. Whenever possible, the
former is used because it is faster and non-iterative.

Nonlinear programming is the general case of optimization problems, in which both the
objective function and constraint functions can be nonlinear. This type of problem is the most
difficult of the smooth optimization problems. There is no consensus on the best approach;
however, the SQP methods have been reported to be among the best [6].

Command Description

An optimization task is defined by selecting which parameters and responses are considered.
Regions of interest are set for each parameter. Linear or logarithmic scale can be specified for
each parameter. For each response, the polynomial degree of the RSM is selected. Second-
order polynomial models are usually used.

The target function is defined according to the following response properties:

crit The three possible criteria are to attain a given target (closeto), to
minimize the simulation response (minimal), or to maximize the
simulation response (maximal). For the criterion closeto, the
optimization process tries to find a value for this response that is as close
as possible to the required target.

target If the closeto criterion is used, this is the optimization goal.

weight It controls the relative importance of a given response.

xk dk λ 0>

xk λdk+

xk λdk+ xk

dk xk
36 Optimizer User Guide
N-2017.09

2: Operations Guide
Optimization Task
An example of the definition of an optimization task is:

Optimization task

Task {
name = 1
type = OPTIMIZATION
Parameter {

{ name = PW_DOSE
type = doe min = 1e12 max = 1e13 scale = logarithmic }
{ name = TH_OX
type = doe min = 15 max = 20 }
{ name = CH_DOSE
type = doe min = 4e11 max = 4e12 scale = logarithmic }
{ name = LDD_DOSE
type = doe min = 5e12 max 5e13 scale = logarithmic }
{ name = SP_LENGTH
type = doe min = 0 max = 300 }

}
Response {

{ name = VT1_WL
model = standard degree = 2
crit = closeto target = 0.5 weight = 10

}
{ name = Vbr

model = standard degree = 2
crit = maximal weight = 1

}
}
doe = facedCentralComposite
nextTask = end

}

Output

An excerpt of output from Optimizer that shows the best parameter setting and the estimated
value for each simulation response is:

--
Best parameter setting:

Evaluation: 4.5405e+2
--
1:

Parameter values:
PW_DOSE : 1.00e+12
Optimizer User Guide 37
N-2017.09

2: Operations Guide
Iterative Optimization Task
TH_OX : 15.00
CH_DOSE : 7.82e11
LDD_DOSE : 1.67e+13
SP_LENGTH : 300.00

Response values:
VT1_WL : 0.4983
VBR : 8.5721

Nodes: 24
--

Iterative Optimization Task

The optimization approach described in Optimization Task on page 33 is satisfactory whenever
the parameter domain is relatively small or it is correctly approximated by a second-order
polynomial model. In practice, however, the parameter domain is often not small enough, either
because of insufficient knowledge of the parameter domain or because the geometry of the
parameter domain is not well suited to first-order polynomial models.

A multiple iteration approach can be used in this case. A heuristic search process controls this
iterative approach. At each iteration, a new region of the parameter domain is explored to guide
the search to the most adequate parameter setting. The heuristic process converges to a local
optimum. As in any heuristic process, finding the global optimum is not guaranteed. The
optimizer is used to determine a parameter setting that satisfies the constraints on the
parameters and optimizes the responses under consideration.

To stop the iterative process, a set of stopping criteria is defined. The criteria consider the
quality of the solution, the use of computational resources, and the closeness to a local
optimum.

Search Heuristic

The iterative heuristic algorithm for optimization is an approach to cover the parameter domain
in search of the optimum. In each step or iteration as described in Basic Concepts on page 5, a
section of the whole domain is analyzed and an optimum is searched for. This search consists
of a full optimization task, as described in Optimization Task on page 33. The process is based
on the response surface methodology. It aims to obtain in each iteration step the most
information about the mathematical model presented by the response surface model (RSM).
The heuristic component is how the ‘region of interest,’ a subset of the domain for building the
RSM, is updated for the next iteration.
38 Optimizer User Guide
N-2017.09

2: Operations Guide
Iterative Optimization Task
Definitions

Algorithm

Initial Setting

The algorithm uses two elements before starting any iteration. They must be initialized for the
first iteration:

■ Current optimum

To start, a DoE for the full search domain is created, and it is evaluated to find the best
parameter combination. This combination is set as the first current optimum.

If a previous optimization task already produced simulation results, the starting point is
taken from the optimum of those results.

■ Range

It is initialized to 10, representing 10% of the search domain. The value of range is
currently fixed to 10 (that is, 10%) in the algorithm and cannot be changed.

Current optimum The best, most current parameter setting. Each iteration that
produces a better solution also updates the current optimum.

Search domain All possible parameter combinations considered for the analysis. It
is also known as the parameter domain.

Range A percentage of the whole search domain.

Region of interest (RoI) A subset of the search domain used for one iteration. A new RSM
is generated for each new RoI, based on the current optimum and
range.

Subregion of interest An expansion of the RoI used to compare new possible local
optimum and to determine if the RoI was useful. No new RSM is
generated for each subregion.

An adjusted version of the coefficient of determination (),
which measures the predictive capacity or accuracy of the model
(RSM).

Radj
2 R2
Optimizer User Guide 39
N-2017.09

2: Operations Guide
Iterative Optimization Task
Iteration

The following steps are necessary for an iteration:

1. Set region of interest (RoI).

The current optimum and range are used to build a new RoI with the current optimum as
the center and range as the size. If the RoI crosses the search domain border, it is clipped.
This means that the DoE and RSM creation consider only valid points within the search
domain and the RoI.

2. Select DoE.

For the RoI, use one of the following DoEs (that is, the first DoE that is feasible as decided
by the algorithm and that is currently not being used):

• Face-centered central composite

• Box–Behnken

• Small central composite

3. Select the RSM.

A second-order polynomial model, built for each simulation response, approximates the
simulation responses inside the RoI. The quality of the RSM is indicated by the average of

.

If the quality of the model is satisfactory (> 0.9), proceed to Step 4 and try to use it to
find a new optimum. Otherwise, go to Step 5.

4. Search for a better current optimum.

This process searches progressively for the best solution inside the defined RoI for the
iteration:

a) Define a subregion of interest (initially, it is equal to the RoI of the iteration).

b) Optimize within this subregion using the original RSM, in the same way as the single
optimization task also available in Optimizer.

c) Evaluate the optimal parameter setting obtained and compare it to the current optimum:

If the new solution is better, update the current optimum and increase the range to 5 (to
create a new subregion enlarged by 5%), using the same RSM, then return to Step 4b.

If the solution is not better, the current optimum is not updated. Go to Step 5.

Radj
2

Radj
2

40 Optimizer User Guide
N-2017.09

2: Operations Guide
Iterative Optimization Task
5. Update the range at the end of the iteration.

The range can be increased or decreased depending on the following conditions. This can
result in enlarging or shrinking the region in the next iteration. If range is increased beyond
the search domain, it is automatically corrected to fit it.

• If no optimization was performed (Step 4 was omitted) due to the insufficient accuracy
of the model (), then:

If model is not that inaccurate (), decrease the range to 10 (in order to
try a new subregion with 10% less surface than previously used).

Otherwise, if , decrease the range to 20.

• Otherwise, if the iteration did include at least one optimization, then:

If the best found solution in the iteration is better than the previous best, then:
– If the model accuracy is high (), increase the range to 3.
– Otherwise, increase the range to 1.5.

Otherwise (if the best solution of the iteration was not better than the current optimum),
then:
– If the RSM model is extremely accurate (), it is assumed that no better
solution will be achieved for this region. Therefore, increase the range to 2.
– Otherwise, if , decrease the range to 10.

6. Check the stopping criteria.

If any stopping criterion has been reached, stop the iterative optimization; otherwise, go to
Step 1.

Radj
2 0.9≤

0.7 Radj
2 0.9≤<

Radj
2 0.7<

Radj
2 0.95>

Radj
2 0.98>

0.9 Radj
2 0.98≤<
Optimizer User Guide 41
N-2017.09

2: Operations Guide
Iterative Optimization Task
This algorithm is shown in Figure 6.

Figure 6 Unified Modeling Language (UML) activity diagram

Stopping Criteria

Stopping criteria include several conditions that stop the heuristic optimizer when any criterion
is met. The concept behind these conditions is to avoid iterations that are too long when
attempting to find a better solution. In other words, some criteria relate to computational
resources and others focus on the quality of the solution found so far.

Initial Optimum and Range Setting

Create Range of Interest

Optimize Subregion of Interest

Update Range

Show Results
Yes

Yes

No

RSM accurate
enough?

Stopping
criteria met?

No

No

Yes

Optimum = best full DoE solution
Range = 10 (RoI = 10% domain)

SubRoI = RoI (first time)

Create DoE and RSM

Enlarge SubRoI 5%

Better
optimum found?
42 Optimizer User Guide
N-2017.09

2: Operations Guide
Iterative Optimization Task
Computational Resources

Quality of the Solution

Closeness to a Local Optimum

Another stopping condition that is not explicitly declared is finding a solution equal to zero,
which means finding a global optimum.

Evaluation Sequence

Currently, the heuristic algorithm executes the evaluation of stopping criteria in the following
order. The algorithm stops when it finds the first of these conditions to be true:

1. Is the current number of evaluations equal to or greater than maxNumEvaluations?

2. Is the current number of iterations equal to or greater than maxNumIterations?

3. Is the current number of iterations without finding a better solution equal to or greater than
maxWoImprove?

maxTime Maximum running time (in seconds) in which to search for an optimum.
Default is 3600 = 1 hour.

maxNumEvaluations Maximum number of evaluations before stopping.

maxNumIterations Maximum number of iterations before stopping.

maxWoImprove Maximum number of iterations without improvement before stopping.

LocalOpt This block defines conditions assumed to be related to a local optimum.
A local optimum is defined as an optimum found inside a region of
interest that is greater than a particular percentage of the global domain
(for example, 10%) and where the average accuracy of the model
(measured by the adjusted coefficient of determination) exceeds a given
value (for example, 0.98).

Response value
range termination

Definition of a range of possible values for any response, which will
stop the iterative algorithm if all those responses reach a value within
the declared range. For this range declaration, specific keywords are
needed: lowerBound, upperBound, and (alternatively) perc_range.
A more precise and complete declaration of the range termination
feature is in Response Value Range Termination on page 44.
Optimizer User Guide 43
N-2017.09

2: Operations Guide
Iterative Optimization Task
4. Was the maximum process time reached?

5. Is the current solution a local optimum, that is, is greater than the maximum defined
and is the range greater than defined?

6. Is the best value equal to 0.0 (global optimum)?

7. After checking all of the responses, are they all within the value termination range?

Response Value Range Termination

Optimizer allows users to define a range of possible values for any response, which will stop
the iterative algorithm if all those responses reach a value within the declared range. For this
declaration, three new keywords have been added to the Response syntax: lowerBound,
upperBound, and perc_range.

lowerBound and upperBound represent, respectively, the lower limit and upper limit for the
values of the response for stopping the algorithm. Both keywords can replace target if it is
not declared.

perc_range can replace lowerBound and upperBound, thereby defining a range related to
the target value for the optimization.

An example of a response value declaration is:

Response {
{ name = delta crit = closeto

target = 10 lowerBound = 5 upperBound = 10
weight = 1 }

}

This stopping condition takes into consideration the following issues:

■ The stopping condition relies on all of the range-defined responses to have values within
their respective ranges. Otherwise, the algorithm does not stop.

■ The declaration for a range termination depends on the following concepts:

• target: If target is specified, two other optional attributes can be used:
lowerBound and upperBound. These represent the lower limit and upper limit for the
values of the response for stopping the algorithm. target is related to the closeto
optimization goal.

• A percentage can also be used for a range (perc_range). For example, when defining
target as 10, and a percentage range as 50%, the actual range is 5 (lower) and 15
(upper). This attribute is declared instead of upper and lower bounds because
perc_range and its values are expressed in normal percentage values. For example,
perc_range = 70 means a 70% variation from the absolute value of the target.

Radj
2

44 Optimizer User Guide
N-2017.09

2: Operations Guide
Iterative Optimization Task
• target can be omitted. However, if lower and upper bounds are defined, then target
is set as the average value of both:

target = (lowerBound + upperBound) / 2

• The range concept can also be used for minimization and maximization. If a response
is maximized, lowerBound can define the minimal value of that response for which
the algorithm can stop. This is analogous for minimization and upperBound.

■ Validations on declaration:

• If target is omitted when defining a closeto optimization goal, upperBound and
lowerBound must be declared.

• lowerBound target upperBound.

• If lowerBound = upperBound, the declaration is still valid but a warning will be
sent to the output.

• If crit = minimal, only upperBound can be declared for that response. In addition,
if crit = maximal, only lowerBound can be declared for that response.

■ If none of lowerBound, upperBound, and perc_range is declared, the standard
searching approach will be used and no stopping criterion will be related to the values of
those responses.

■ The weight attribute for each response will still be valid for the optimization approach,
but it will have no effect on the evaluation of the stopping criteria.

Command Description

An iterative optimization task is defined by selecting the parameters and responses to be
considered. Regions of interest are set for each parameter. Linear or logarithmic scale can be
specified for each parameter. For each response, an optimization criterion, a target (when it is
required), and a weight are defined (see Command Description on page 36). Specific options
of this task are the stopping criteria (see Iterations on page 30).

Additional options are available to store the status of the optimization process before starting
an iteration and, if Optimizer is interrupted, to reload that status and continue the optimization
process:

dumpFile Name of the file where the status is dumped.

loadFile Name of the file from where the status is reloaded.

≤ ≤
Optimizer User Guide 45
N-2017.09

2: Operations Guide
Iterative Optimization Task
The load and dump files can be the same. An example definition of an iterative optimization
task is:

Iterative Optimization task
Task {

name = 1
type = ITER_OPTIMIZATION
Parameter {

{ name = PW_DOSE
type = doe min = 1e12 max = 1e13 scale = logarithmic }
{ name = TH_OX
type = doe min = 15 max = 20 }
{ name = CH_DOSE
type = doe min = 4e11 max = 4e12 scale = logarithmic }
{ name = LDD_DOSE
type = doe min = 5e12 max 5e13 scale = logarithmic }
{ name = SP_LENGTH
type = doe min = 0 max = 300 }

}
Response {

{ name = VT1_WL
crit = closeto target = 0.5 weight = 10
}
{ name = Vbr
crit = maximal weight = 1
}

}
Stop {

maxTime = 3600
maxNumEvaluations = 100
maxNumIterations = 20
maxWoImprove = 5
LocalOpt { r2Adj = 0.99 range = 20 }

}
loadFile = 1.dump
dumpFile = 2.dump
nextTask = end

}

46 Optimizer User Guide
N-2017.09

2: Operations Guide
Iterative Optimization Task
Declaration Examples for Range Termination

Target and Bounds Declaration

Response {
{ name = VT1_WL crit = closeto
lowerBound = 0.1 target = 0.35 upperBound = 0.6
weight = 3 }

{ name = Vbr lowerBound = 10 crit = maximal weight = 1 }
}

Target and Percentage Declaration

Response {
{ name = VT1_WL crit = closeto
target = 0.35 perc_range = 71
weight = 3 }

{ name = Vbr lowerBound = 10 crit = maximal weight = 1 }
}

Target Is Omitted, but Both Bounds Are Declared (target = (upper – lower) / 2)

Response {
{ name = VT1_WL crit = closeto
lowerBound = 0.1 upperBound = 0.6
weight = 3 }

{ name = Vbr lowerBound = 10 crit = maximal weight = 1 }
}

Maximization of a Response With a Minimum Limit Declared as Stopping Criterion

Response {
{ name = VT1_WL crit = maximal
lowerBound = 10.0
weight = 3 }

{ name = Vbr lowerBound = 10 crit = maximal weight = 1 }
}

Minimization of a Response With a Maximum Limit Declared as Stopping Criterion

Response {
{ name = VT1_WL crit = minimal
upperBound = 10.0
weight = 3 }

{ name = Vbr lowerBound = 10 crit = maximal weight = 1 }
}

Optimizer User Guide 47
N-2017.09

2: Operations Guide
Iterative Optimization Task
Output

The best parameter setting and the value of each simulation response are returned at the end of
this task. Additional information is displayed during the whole optimization process,
describing which simulations are performed and how the heuristic moves through the
parameter domain.

An excerpt of output is:

--
Automatic optimization finished
--
Local optimum found
Model statistics:

Name r2 r2Adj Variance MSE
VT1_WL 1 1 2.5012 0.869983
VBR 1 1 3.5631 0.754212
--
Best parameter setting:

Evaluation: 9.83216e-09
--
1:

Parameter values:
PW_DOSE : 1.5e+12
TH_OX : 15.00
CH_DOSE : 7.82e11
LDD_DOSE : 1.63e+13
SP_LENGTH : 298.75

Response values:
VT1_WL : 0.5002
VBR : 8.9621

Nodes: 113
--
48 Optimizer User Guide
N-2017.09

2: Operations Guide
Generic Optimization Task
Generic Optimization Task

Optimization is the search of an optimal value for the objective function within given ranges of
the parameters. There are several methods for solving optimization problems. In general, the
best-performing method depends on the behavior of the target function. The range of available
methods spans from iterative methods based on the derivatives of the target function to local
search heuristics (for example, genetic algorithms or random search algorithms). Optimization
Problem on page 100 briefly describes optimization problems and the different mathematical
methods that have been developed to solve them.

The approaches described in Optimization Task on page 33 and Iterative Optimization Task on
page 38 are based on RSMs, which approximate the simulation responses. Since these models
are usually first-order or second-order polynomial models whose first and second derivatives
can be easily computed, it is possible to use well-known methods for solving general
constrained optimization problems that require the computation of the gradient of the target
function.

However, Optimizer provides generic methods without using RSMs. To select an adequate
method, two facts are considered:

■ The problem described in Optimization Task on page 33 can be classified as a bound-
constrained optimization problem (see Bound-Constrained Optimization Methods on
page 109).

■ It is not possible to find analytic expressions or compute the first derivatives of the target
function.

The general optimization methods available in Optimizer are:

■ Quasi-Newton method applied to the bound-constrained optimization problem

■ Nonlinear simplex method

Quasi-Newton Method Applied to Bound-Constrained
Optimization Problems

The Newton method has generated a diverse and important class of algorithms that requires the
computation of the gradient vector and Hessian matrix (see Mathematical Expressions on
page 94) for different parameter settings. If the target function is given by an analytic formula,
the first and second derivatives can be calculated directly. However, for a model function
formed by results of several simulations, it is impossible to find analytic expressions for the
derivatives.
Optimizer User Guide 49
N-2017.09

2: Operations Guide
Generic Optimization Task
Quasi-Newton methods (see Quasi-Newton Methods on page 107) are based on the Newton
method, but approximate the Hessian matrix by recording the gradient differences along each
step taken by the algorithm. Optimizer uses finite-difference approximations for computing the
gradient.

Nonlinear Simplex Method

The nonlinear simplex method (see Nongradient-Based Methods on page 108) does not require
gradient or Hessian evaluations. It performs a pattern search based only on function values. As
it makes little use of information about the target function, it typically requires many iterations
to find a reasonable solution.

Stopping Criteria

To control these generic optimization processes, the following stopping criteria are set:

Command Description

A generic optimization task is defined by selecting the parameters and responses to be
considered. Regions of interest are set for each parameter. Linear or logarithmic scale can be
specified for each parameter. For each response, an optimization criterion, a target (when it is
required), and a weight are defined (see Command Description on page 36).

tolerance This defines when a local optimum is found. For the quasi-Newton
method, if each element of the gradient vector is smaller than the
tolerance, it means a local optimum has been found. For the nonlinear
simplex method, it represents the fractional convergence tolerance to be
achieved by the function value, that is, the smallest difference allowed
between the best and worst solutions that integrate the simplex.

maxNumIterations Maximum number of iterations. Several simulations are performed at
each iteration of the quasi-Newton method, while only one simulation is
run at each iteration of the nonlinear simplex method. Therefore, a
larger number of iterations must be allowed for the latter method.
50 Optimizer User Guide
N-2017.09

2: Operations Guide
Generic Optimization Task
Specific options of this task are the stopping criteria (see Stopping Criteria on page 50). The
options for storing and retrieving the status of the optimization process are available (see
Command Description on page 45). Additionally, the next option is used to select a particular
generic optimization method:

An example of the definition of a generic optimization task is:

Generic optimization task
Task {

name = 1
type = GEN_OPTIMIZATION
Parameter {

{ name = PW_DOSE
type = doe min = 1e12 max = 1e13 scale = logarithmic }
{ name = TH_OX
type = doe min = 15 max = 20 }
{ name = CH_DOSE
type = doe min = 4e11 max = 4e12 scale = logarithmic }
{ name = LDD_DOSE
type = doe min = 5e12 max = 5e13 scale = logarithmic }
{ name = SP_LENGTH
type = doe min = 0 max = 300 }

}
Response {

{ name = VT1_WL
crit = closeto target = 0.5 weight = 10 }
{ name = Vbr
crit = maximal weight = 1}

}
Stop {

tolerance = 1e-5
maxNumIterations = 100

}
solver = bcopt
nextTask = end

}

solver Generic optimization method. The available methods are:
bcopt – Quasi-Newton method for bound-constrained optimization
problems.
simplex – Nonlinear simplex method.
Optimizer User Guide 51
N-2017.09

2: Operations Guide
Genetic Algorithm Task
Output

The best parameter setting and the value of each simulation response are returned. Additional
information is displayed during the whole optimization process, describing which simulations
are performed and how the heuristic moves through the parameter domain.

--
Optimization completed unsuccessfully : Maximum iterations exceeded
--
Best parameter setting:

Evaluation: 7.2634e-07
--
1:

Parameter values:
PW_DOSE : 1.45e+12
TH_OX : 15.00
CH_DOSE : 6.72e11
LDD_DOSE : 3.32e+13
SP_LENGTH : 275.14

Response values:
VT1_WL : 0.484
VBR : 8.641

Nodes: 672
--

Genetic Algorithm Task

This particular version of the genetic algorithm or genetic optimization is based on the standard
definition of this algorithm, enhancing a few elements so that you can parameterize the
behavior of the searching process according to the specific conditions of the model being
optimized.

Some definitions for this context and problem are considered.

■ Chromosome: In this context, a chromosome represents an experiment, a tuple with one
value for each parameter.

■ Fitness function: This is a particular type of objective function that quantifies the optimality
of a solution. The fitness function evaluates the goal (originating from a TCAD simulation)
to obtain a normalized range.
52 Optimizer User Guide
N-2017.09

2: Operations Guide
Genetic Algorithm Task
■ Mutation: This is the process of producing a new chromosome from a previous experiment
by changing one of the parameters.

■ Crossover: This is the process of producing a new chromosome by computing a weighted
average of each parameter value from two chromosomes, using the fitness function results
as its weights.

■ Population: A population is a set of chromosomes that belong to the same generation,
which also is defined as a scenario. Each new generation generates a full population.
During the optimization process, the population size is fixed and is defined by the initial
scenario.

Main Steps of the Algorithm

The main steps of the algorithm are:

1. Initialization of population (first generation). This is performed using the DoE indicated by
the user. Alternatively, this implementation offers a random initialization.

2. Evaluation of each chromosome as a TCAD simulation to determine its fitting quality. This
fitting value is the result of a TCAD simulation for a parameter combination and the values
of the responses evaluated with the goal function.

3. Application of the selection method on the population related to mating rights. Candidates
are chosen whose genetic mix leads to improved candidate solutions in the next generation.
In this case, the result is an elite population (by default, only the best experiment is found,
but there may be more).

4. Breed the next generation. Randomly select chromosomes from this generation to produce
a single child for each pair mated. In this implementation, the child will be more influenced
by the parent whose fitting is better. In other words, the child has a closer resemblance to
the parent whose fitness is higher.

5. If the "use mutants" option is enabled, produce a percentage of the total population
(next generation) by mutation. In other words, change the value of a random parameter of
a random parent chromosome (selecting an option, the pool of selection for mutation may
be of either the elite chromosomes or the total population).

6. In addition, if the next generation has not filled up to complete the defined population size
and if the "use mutants" option is enabled, produce more chromosomes until the
required population is completed.

7. Repeat from Step 2 until finished (see Stopping Criteria on page 54).
Optimizer User Guide 53
N-2017.09

2: Operations Guide
Genetic Algorithm Task
Stopping Criteria

The algorithm stops for either of these conditions:

■ A maximum number of defined generations is reached.

■ A satisfactory response value for all responses with a range definition is reached. This
feature is inherited from the iterative optimization method available in Optimizer.

Command Description

To use a genetic algorithm optimization task, the command input file must be defined using the
standard command file syntax of Optimizer, as shown in the example at the end of this section,
with some mandatory and optional attributes of the task.

Mandatory Attributes

The mandatory attributes are:

■ doe: Design-of-experiments (DoE) used to generate the first population.

■ iterationsFile: Output file in CSV format (compatible with Sentaurus PCM Studio)
that contains all the experiments for all iterations.

■ nextTask: The next task to be executed by Optimizer. Declared as in any other Optimizer
task.

Optional Attributes

The optional attributes (default values in parentheses) are:

■ maxNumberOfGenerations (15): Maximum number of generations to produce.

■ fitnessFunction (sigma): Fitness function used to evaluate the goal results of the
optimization process. The possibilities are:

simple: f(X) = 1 - X
sigma : f(X) = 1 / (1 + exp(K*X))
lineal: f(X) = 1 / (1 + K*X)
stair : f(X) = 1 % ((1/PopulationSize)*index)

where:

• X is the normalized goal value, with (or without) the minimal goal difference
(setFitnessBase).

• K is a constant of convergence.

• index is the row of the sorted table.
54 Optimizer User Guide
N-2017.09

2: Operations Guide
Genetic Algorithm Task
■ elitism (1): The number of chromosomes to be considered elite (0 for no elitism).

■ constantK (5): Constant of convergence (used by sigma and lineal fitness functions).

■ setFitnessBase (1): If set to 1, it normalizes the goal only with the difference between
goals (0 is the best). If set to 0, it normalizes the goal values as they are.

■ nMutants (20): Percentage of the total population to be generated by mutation (not
crossover).

■ percMutation (10): Percentage of mutation of the values.

■ eliteMutants (1): If set to 1, it generates mutated chromosomes only from elite
members. If set to 0, it generates mutated chromosomes from any chromosome of the
population.

■ maxFalseChildAttempts (100): The maximum number of attempts to generate a new
chromosome (child) by crossover. This condition is used because the algorithm always
attempts to generate new chromosomes and, by limiting the number of attempts to produce
new children, it is possible to avoid infinite loops.

■ velocity (1): This parameter is used to make different combinations between the fitness
function evaluation and the selection crossover method. This parameter controls how
quickly (in how many generations) the population converges to an optimum. If set too fast,
some potentially good areas (but incidentally, with poor experiments) may be omitted too
early. The options are:

• 1:

Fitness function: Smallest goal value biggest fitness value.

Crossover: Change more those that have the biggest fitness value.

• 2:

Fitness function: Smallest goal value biggest fitness value.

Crossover: Change more those that have the smallest fitness value.

• 3:

Fitness function: Biggest goal value smallest fitness value.

Crossover: Change more those that have the smallest fitness value.

• 4:

Fitness function: Biggest goal value smallest fitness value.

Crossover: Change more those that have the biggest fitness value.

→

→

→

→

Optimizer User Guide 55
N-2017.09

2: Operations Guide
Genetic Algorithm Task
An example definition of a genetic optimization task is:

Task {
name = Task1
type = GENETIC_OPTIMIZATION
project = ""
Parameter {

{ name = A type = doe min = -100 max = 100 }
{ name = B type = doe min = -100 max = 100 }
{ name = C type = doe min = -100 max = 100 }
{ name = D type = doe min = -100 max = 100 }

}
Response {

{ name = delta model = standard degree = 1 crit = minimal }
}

doe = facedCentralComposite
iterationsFile = generations.csv
maxNumberOfGenerations = 10
nextTask = end

}

Files Generated by Genetic Algorithm

Two major output files are generated.

First, there is the standard output file of Optimizer: gopt.log. This file includes a description
(including numeric data) that explains the iterative optimization process that the genetic
algorithm performs and how a generation evolves to the next, finishing with an absolute best
solution found.

NOTE Due to the nature of the genetic algorithm and the types of problem it
addresses, it is not possible to guarantee that the best solution found is
the absolute optimum.

The second and more interesting output file is generations.csv. This data file contains all
the experiments analyzed (and simulated) during the optimization process. For each
experiment, an iteration number references the generation in which the experiment was used.
The format of this file makes it easy to view the results using CSV-compatible data software
(such as Microsoft® Excel) or Sentaurus PCM Studio.
56 Optimizer User Guide
N-2017.09

2: Operations Guide
Sensitivity Analysis Task
Sensitivity Analysis Task

Two main types of uncertainty affect confidence in the results of a simulation tool: structural
uncertainty (inaccurate models) and parametric uncertainty. Parametric uncertainty arises from
incomplete knowledge of model parameters such as empirical quantities, defined constants,
and stochastic parameters (for example, due to manufacturing variations). Refining
measurements of input parameters reduce parametric uncertainty. Both sensitivity analysis and
uncertainty analysis are used to understand how the variability of parameters affects device
behavior.

Sensitivity analysis aims at analyzing the model outputs as a function of very small changes of
a single parameter, with all of the other parameters fixed. Therefore, sensitivity analysis only
reveals the local gradient of the response surface of the model with regard to a given parameter.

This is a multiple iteration task. One iteration is required for each parameter of interest. At each
iteration, these actions are performed:

The influence of a certain parameter on a particular response is computed using the
expression:

(7)

where:

■ is the number of levels.

■ is the value of the simulation response when parameter is set to the level .

■ is the value of the simulation response when parameter is set to the nominal
value.

DoE All but one of the parameters are fixed to a given nominal value. For the
remaining parameter, a simple DoE is used. This design selects some
values inside a small range around its nominal value. It corresponds to a
diagonal design of levels. For three levels, the design is formed by the
lower bound, upper bound, and nominal value.

RSM RSMs are not required.

Analysis On completion of all simulations, the influence of the parameter on
each simulation response (response variation) is computed.

n

pi Rk

Vik

RVikj RCik–
ci mi–

ci vij–
----------------×

 
 
 

j 1=

n



RCik
ci mi–

ci vij–

j 1=

n

×

-- 100×= i Parameters∈∀ k Responses∈∀,

n

RVikj Rk pi j

RCik Rk pi
Optimizer User Guide 57
N-2017.09

2: Operations Guide
Sensitivity Analysis Task
■ is the nominal value of parameter .

■ is the lower bound of parameter .

■ is the value of parameter for the level .

For the simple case of only two levels (lower bound and upper bound), the expression becomes
the well-known expression:

(8)

where:

■ is the value of the simulation response when parameter is set to its lower
bound.

■ is the value of the simulation response when parameter is set to its upper
bound.

Command Description

A sensitivity analysis task is defined by selecting which parameters and responses are
considered. The nominal set of parameter values and the range of variation around that
particular parameter setting are specified. Linear or logarithmic scale can be specified for each
parameter. The following specific options are available:

An example of the definition of a sensitivity analysis task is:

Sensitivity Analysis task
Task {

name = 1
type = SENS_ANALYSIS
Parameter {

{ name = PW_DOSE
selValue = 5e12 type = doe min = 1e12 max = 1e13 scale = logarithmic }
{ name = TH_OX
selValue = 17.5 type = doe min = 15 max = 20 }
{ name = CH_DOSE
selValue = 9e11 type = doe min = 4e11 max = 4e12 scale = logarithmic }
{ name = LDD_DOSE
selValue = 1e13 type = doe min = 5e12 max = 5e13 scale = logarithmic }

nPoints Number of considered points inside the sensitivity range. Default is 3.

range Percentage range of the whole domain used for sensitivity analysis.
Default is 10%.

ci pi

mi pi

vij pi j

Vik

Rmik RCik– RMik RCik–+

2 RCik
--- 100×= i Parameters∈∀ k Responses∈∀,

Rmik Rk pi

RMik Rk pi
58 Optimizer User Guide
N-2017.09

2: Operations Guide
Uncertainty Analysis Task
{ name = SP_LENGTH
selValue = 150 type = doe min = 0 max = 300 }

}
Response {

{ name = VT1_WL weight = 10 }
{ name = Vbr weight = 1 }

}
nPoints = 3
range = 1.0
nextTask = end

}

Output

An excerpt of the final output of the sensitivity analysis task for the response VT1_WL is:

--
Sensitivity Analysis - range (1.0%)

sensitivity parameter : PW_DOSE
response VT1_WL: 0.096 : 2.73 %

sensitive parameter : TH_OX
response VT1_WL: 0.061 : 1.75 %

sensitive parameter : CH_DOSE
response VT1_WL: 0.053 : 1.50 %

sensitive parameter : LDD_DOSE
response VT1_WL: 0.075 : 2.14 %

sensitive parameter : SP_LENGTH
response VT1_WL: 0.124 : 3.53 %

Uncertainty Analysis Task

Uncertainty analysis [7][8] is used to understand how the variability of parameters affects
device behavior. It employs a multidimensional RSM, called stochastic RSM, which reflects
the collective uncertainty of all parameters under consideration. Therefore, uncertainty
analysis yields a more complete picture of the uncertainty propagation in a model. Further,
sensitivity analysis is regarded as a special case of uncertainty analysis.

Given the uncertainty descriptions of the parameters (their probability density functions), any
simulation response can be approximated by a polynomial function that is mathematically
Optimizer User Guide 59
N-2017.09

2: Operations Guide
Uncertainty Analysis Task
tractable. To determine this function, a sequence of polynomials is associated with each
parameter. These polynomials are mutually orthogonal when integrated using the probability
density function as weight function. The model function is constructed as a selected sum of the
products of orthogonal polynomials, where each product is multiplied by an undetermined
coefficient. The coefficients are estimated by least squares, using the results of a family of
simulations. The corresponding set of parameter values is given by the zeros of selected
orthogonal polynomials.

After the model function is computed, it is used to determine correlations between parameters
and simulation responses, to perform variance analysis and sensitivity analysis, to extract
statistical moments, and, ultimately, to extract the probability density functions of the
simulation responses.

Some empirical benchmarks [7] have shown that this approach is potentially a factor of 25 to
60 times faster than the pure Monte Carlo method. A more computationally demanding
simulation process results in a larger factor. This method converges exponentially with
increasing orders of polynomial expansions.

Mathematical Background

Each parameter has an associated probability density function defined over the
interval () that can be used as a weight function to generate an associated sequence:

(9)

of polynomials of degree that are mutually orthogonal when integrated over the domain
. That is, the polynomials satisfy the orthogonality condition:

(10)

where is a positive constant and is the Kronecker delta defined as:

(11)

The sequence of orthogonal polynomials depends on the domain () and the weight
function . In this case, the domain depends on the probability density function used as
weight function.

pi fi pi()
ai xi≤ bi≤

Hi
r1 pi() … Hi

rk pi(), ,
 
 
 

ri 0≥
ai xi≤ bi≤

fi xi()Hi
rj pi()Hi

rk pi() pid
ai

bi

 Ciδrj rk,= rj rk∀∀

Ci δrj rk,

δri rj,
0

1



=
ri rj≠if

ri rj=if

ai xi≤ bi≤
fi xi()
60 Optimizer User Guide
N-2017.09

2: Operations Guide
Uncertainty Analysis Task
For a given simulation response , a stochastic RSM is constructed
as a sum of polynomial products:

 where (12)

each multiplied by a coefficient, which is to be computed:

(13)

The coefficients are estimated by least squares, using the results of a family of simulations in
which the parameter values are determined by the zeros of the orthogonal polynomials of order

.

If the built stochastic RSM is satisfactorily accurate, according to the model statistics described
in Response Surface Models (RSMs) on page 25, an approximation of the probability density
function of the simulation response can be obtained using the Monte Carlo method. Optimizer
computes a histogram of the probability density function and some coefficients that depend on
the first four moments of the probability density function (see Model Information on page 27).

Example

Consider an example with two parameters, and , and one simulation response .
 has a uniform probability density function over the domain and has a normal

(Gaussian) probability density function with mean and standard deviation (see
Figure 7).

Figure 7 Stochastic parameters

Y p1 … p, , n() Ŷ p1 … p, , n()

Hi
rn p1() … Hi

rn pn()⋅ ⋅ 0 ri≤ Di≤ i 1 … n,,=∀,

Ŷ p1 … p, ,
n

() Ar1 … rn, ,
r1 … rn, ,() 0 ri Di≤ ≤ i 1 … n, ,=∀,()∀

 Hi
ri pi()

i 1=

n

∏=

Di 1+

pa pb Y pa pb,()
pa la ua,() pb

μb σb

pa U la ua,()∼

σb

μb

pb N μb σb,()∼

la ua
Optimizer User Guide 61
N-2017.09

2: Operations Guide
Uncertainty Analysis Task
If a stochastic RSM with only first-order and second-order orthogonal polynomials (
and) is created for the response , a family of simulations is defined by selecting the
zeros of the third-order orthogonal polynomials for each parameter and computing all the
possible combination of those parameter values:

(14)

After running the corresponding simulations, the stochastic RSM can be constructed as:

(15)

where are the still undetermined coefficients.

D1 2=
D2 2= Y

Ha
3

pa() 0= pa
1

pa
2, pa

3,{ }→

Hb
3

pb() 0= pb
1

pb
2, pb

3,{ }→

pa
1

pb
1,() pa

1
pb

2,() pa
1

pb
3,(),,

pa
2

pb
1,() pa

2
pb

2,() pa
2

pb
3,(),,

pa
3

pb
1,() pa

3
pb

2,() pa
3

pb
3,(),,

Family of Simulations

A2 0, Ha
2

pa() A1 1, Ha
1

pa()Hb
1

pb() A0 2, Hb
2

pb() …+ ++

Ŷ pa p,
b

() A0 0, …+=

A1 0, Ha
1

pa() A0 1, Hb
1

pb() …+ +

A2 1, Ha
2

pa()Hb
1

p2() A1 2, Ha
1
Hb

2
pb() …+ +

A2 2, Ha
2

pa()Hb
2

pb()

A0 0, A1 0, A0 1, A2 0, A, 1 1, A0 2, A2 1, A, 1 2, A2 2,, , , , , ,
62 Optimizer User Guide
N-2017.09

2: Operations Guide
Uncertainty Analysis Task
The coefficients result from a least square fit. Figure 8 shows the family of simulations and
some isolines of the stochastic RSM.

Figure 8 Stochastic response surface model

This is a single iteration task:

DoE A stochastic DoE is a full factorial design at a given number of levels
for each parameter. The number of levels used for each parameter is
equal to the maximum orthogonal polynomial degree that is required for
use with this parameter plus one. For example, if orthogonal
polynomials of first-order and second-order are used for a given
parameter, the stochastic DoE considers three levels for such a
parameter.

RSM When all simulations have been performed, a stochastic RSM is built
for each response.

Analysis Using the Monte Carlo method for each stochastic RSM, a histogram
and the first four moments of the estimated probability density function
are computed.

pa U la ua,()∼

μ

la ua+() 2⁄

Ha
3 pa() 0=

μ 3– σ

E Ŷ pa pb,()

: Evaluated points

μ 3σ+

E Ŷ pa pb,() 3σ Ŷ pa pb,()+pb N μ σ,()∼
Optimizer User Guide 63
N-2017.09

2: Operations Guide
Uncertainty Analysis Task
Command Description

Uncertainty analysis requires parameters and responses. For each parameter, a probability
density function is provided. The arguments of this function must be set. For example, if the
normal (Gaussian) probability density function is selected, two arguments are required: mean
and variance. An additional argument specifies the number of considered split points.

For each response, a stochastic RSM, which is a sum of terms, is created. Each term contains
one orthogonal polynomial per parameter. The orthogonal polynomial of order zero is always
equal to 1. Therefore, the constant term is a special case where the orthogonal polynomial of
order zero is used for all parameters.

Although, all stochastic designs-of-experiments can be used, only the probabilistic stochastic
DoE is actually satisfactory for uncertainty analysis. This design is a full factorial DoE where
the parameter values are determined by the roots of the orthogonal polynomial, whose order is
equal to the number of required levels for each parameter. It is also possible to import a
stochastic design from a comma-separated value (CSV) file (see Stochastic Design-of-
Experiments Task on page 69).

The following options are specific for this task:

The option save, which is available for stochastic DoE tasks (see Stochastic Design-of-
Experiments Task on page 69), is also available for this task. An example of the definition of
an uncertainty analysis task is:

Uncertainty Analysis task
Task {

name = 1
type = UNC_ANALYSIS
Parameter {

{ name = PW_DOSE
type = sdoe sdoeArgs = 2
SDoEModel { type = normal args = {5.5e+12 3.025e+23} }
}
{ name = TH_OX

sampleSize Monte Carlo sample size.

exportStat This option is used to export information about the stochastic RSMs to
a file (in tab-delimited format). The argument of this option is the file
name. For each simulation response, the following data is exported: all
values generated using the Monte Carlo method, coefficients of the
stochastic model, some statistics that measure its accuracy, the
histogram, and the first moments of the estimated response probability
distribution.
64 Optimizer User Guide
N-2017.09

2: Operations Guide
Uncertainty Analysis Task
type = sdoe sdoeArgs = 2
SDoEModel { type = normal args = {17.5 3.0625} }
}
{ name = CH_DOSE
type = sdoe sdoeArgs = 2
SDoEModel { type = normal args = {2.2e+12 4.84e+22} }
}
{ name = LDD_DOSE
type = sdoe sdoeArgs = 2
SDoEModel { type = normal args = {2.75e+13 7.5625e+24} }
}
{ name = SP_LENGTH
type = sdoe sdoeArgs = 2
SDoEModel { type = normal args = {150 225} }
}

}
Response {

{ name = VT1_WL
model = stochastic
modelArgs = { {} {PW_DOSE} {TH_OX} {CH_DOSE} {LDD_DOSE} {SP_LENGTH}

{PW_DOSE TH_OX} {PW_DOSE CH_DOSE} {PW_DOSE LDD_DOSE}
{PW_DOSE SP_LENGTH} {TH_OX CH_DOSE} {TH_OX LDD_DOSE} {TH_OX

SP_LENGTH}
{CH_DOSE LDD_DOSE} {CH_DOSE SP_LENGTH} {LDD_DOSE

SP_LENGTH} }
}
{ name = Vbr

model = stochastic
modelArgs = { {} {PW_DOSE} {TH_OX} {CH_DOSE} {LDD_DOSE} {SP_LENGTH}

{PW_DOSE TH_OX} {PW_DOSE CH_DOSE} {PW_DOSE LDD_DOSE}
{PW_DOSE SP_LENGTH} {TH_OX CH_DOSE} {TH_OX LDD_DOSE} {TH_OX

SP_LENGTH}
{CH_DOSE LDD_DOSE} {CH_DOSE SP_LENGTH} {LDD_DOSE

SP_LENGTH} }
}

}
sdoe = probabilisticDesign
sampleSize = 10000
Save {

 file = uaDOE.tab
 elems = {values experiments moments corr_matrix}
 }
exportStat = uaStTable.tab
exportTable = uaTable.tab
nextTask = end

}

Optimizer User Guide 65
N-2017.09

2: Operations Guide
Uncertainty Analysis Task
Output

An excerpt of the final output of an uncertainty analysis task for the response VT1_WL is:

--
Response : VT1_WL
--
Model Coefficients:

--
Model statistics:

Coeff. of determination: 0.995487
Adjusted coeff. of deter.:0.994842
Variance of error: 3.38875e+009
MSE: 2.92855e+009
--
Model Variance:

Term Coefficient Norm. Coeff. Rank

constant +3105140.000000 +3105140.000000 90.766

H1(PW_DOSE) -12531.100000 -12531.100000 0.366

H1(SP_LENGTH) -289157.000000 -289157.000000 8.452

H1(TH_OX) -345.420000 -345.420000 0.010

H1(LDD_DOSE) -10841.000000 -10841.000000 0.317

H1(PW_DOSE)*H1(SP_LENGTH) +11.758300 +11.758300 0.000

H1(PW_DOSE)*H1(TH_OX) +2526.110000 +2526.110000 0.074

H1(PW_DOSE)*H1(LDD_DOSE) +0.166421 +0.166421 0.000

H1(SP_LENGTH)*H1(TH_OX) +0.497907 +0.497907 0.000

H1(SP_LENGTH)*H1(LDD_DOSE) +502.516000 +502.516000 0.015

H1(TH_OX)*H1(LDD_DOSE) +0.007071 +0.007071 0.000

Term Variance Standard Deviation Rank

constant +41836500.000000 +6468.114099 44.354

H1(PW_DOSE) +20918300.000000 +4573.652807 22.177

H1(SP_LENGTH) +20918100.000000 +4573.630943 22.177

H1(TH_OX) +85380.400000 +292.199247 0.091

H1(LDD_DOSE) +10459.100000 +102.269741 0.011

H1(PW_DOSE)*H1 (SP_LENGTH) +10459000.000000 +3234.037724 11.088

H1(PW_DOSE)*H1(TH_OX) +42690.300000 +206.616311 0.045

H1(PW_DOSE)*H1 (LDD_DOSE) +5229.560000 +72.315697 0.006

H1(SP_LENGTH)*H1 (TH_OX) +42689.900000 +206.615343 0.045

H1(SP_LENGTH)*H1 (LDD_DOSE) +5229.510000 +72.315351 0.006

H1(TH_OX)*H1 (LDD_DOSE) +21.345100 +4.620076 0.000
66 Optimizer User Guide
N-2017.09

2: Operations Guide
Uncertainty Analysis Task
--
ANOVA table:

Source Deg. Freedom Sum of Squares Mean Square F
Model 10 +5.23e+013 +5.23e+012 +1544.060000
Error 70 +2.37e+011 +3.39e+009
Total 80 +5.26e+013 +6.57e+011
--

Model Histogram:

--
Model moments:

Moment Value
Mean +0.5210321
Variance +4.80e+011
Skewness +0.100766
Kurtosis -0.783261

Min Max Frequency

 +1298080.000000 +1668442.727273 37

 +1668442.727273 +2038805.454546 499

 +2038805.454546 +2409168.181819 1346

 +2409168.181819 +2779530.909092 1719

 +2779530.909092 +3149893.636365 1696

 +3149893.636365 +3520256.363638 1680

 +3520256.363638 +3890619.090911 1556

 +3890619.090911 +4260981.818184 1027

 +4260981.818184 +4631344.545457 371

 +4631344.545457 +5001707.272730 62

 +5001707.272730 +5372070.000003 7
Optimizer User Guide 67
N-2017.09

2: Operations Guide
Design-of-Experiments Task
Design-of-Experiments Task

Command Description

To specify a DoE task, parameters must be chosen, and a DoE type and its corresponding
arguments must be set. DoE arguments can be set for either each parameter (as in the following
example) or the whole task.

The following option must be set:

The following option is also available:

The default behavior is to add the new experiments to the experiment table and leave the
simulation tree unchanged. An example of the definition of a DoE task is:

DoE task: full factorial
#
doe arguments for each parameter:
first argument: selection mode (equidistant or random)
second argument: whether include interval boundaries
third argument: whether include interval center point
fourth argument: number of levels
Task {

name = 1
type = DOE

doe This argument is used to select a particular DoE. The available designs
are fullFacNLev, halfFactorialMinus, halfFactorialPlus,
fractFactorial2, plackettBurmann, boxBehnken,
facedCentralComposite, smallCentralComposite, taguchi,
latinSquare, grecoLatinSquare, diagonalDesign,
midPointDesign, randomDesign.
See Deterministic Design-of-Experiments on page 19.

tree This option is used to specify whether the simulation tree is modified.
The following keywords are added to the list if any of these actions are
required:
none – Do not add the parameter settings to either the experimental
table or simulation tree.
add – Add the parameter settings to the simulation tree.
eval – Run simulations to evaluate the new branches. This keyword is
redundant if the keyword add is not included in the list of arguments.
68 Optimizer User Guide
N-2017.09

2: Operations Guide
Stochastic Design-of-Experiments Task
Parameter {
{ name = A type = doe doeArgs = {random 1 0 5} }
{ name = B type = doe doeArgs = {random 0 1 3} }
{ name = C type = doe doeArgs = {random 0 0 4} }
{ name = D type = doe doeArgs = {random 0 1 2} }

}
doe = fullFacNLev
nextTask = 101

}

Output

Optimizer outputs a list of all the different parameter settings that belong to the families of
simulations that were created using the specified DoE technique.

Stochastic Design-of-Experiments Task

Command Description

To specify an SDoE task, parameters are selected and their probability distribution functions
are set in terms of the corresponding arguments. Additionally, the following argument is
available for each parameter:

The following option must be set:

sdoeArgs The SDoE argument must be set for the design:

montecarloDesign – A value that specifies the number of split points
to be generated for each parameter.

sdoe This argument is used to select a particular stochastic DoE. The
available designs are montecarloDesign, cornerDesign,
boundaryDesign, probabilisticDesign (see Stochastic Design-
of-Experiments on page 23). It is also possible to import the design
from a CSV file using the keyword fromTable.
Optimizer User Guide 69
N-2017.09

2: Operations Guide
Stochastic Design-of-Experiments Task
The following options are also available:

NOTE The CSV file must have column names in the first row, but the names
can be empty. Each parameter or response name in the project must
match the name of only one column in the CSV file.

The option tree, which is available for the DoE task, is also available for this task (see Design-
of-Experiments Task on page 68). An example of the definition of an SDoE task is:

SDoE task: Monte Carlo
#
arguments:
number of experiments
Task {

name = 1
type = SDOE
Parameter {

sdoeArgs This argument is used to specify some design-specific information for
the following design:

montecarloDesign – A value that indicates the sample size of the
sequence of random values that are generated for each parameter.

fromTable – A value that indicates the sample size of the sequence of
random values that are generated for each parameter. A list contains the
file name and the character used in the file to separate values. For
example, the list {"mydoe.csv" ","} indicates the design will be
imported from the CSV file mydoe.csv.

save This option is used to export SDoE information to a file (in tab-
delimited format). The first argument of this option is the file name; the
second one is a list of keywords that select the output data:

values – List of parameter values.

experiments – List of parameter settings created using the DoE.

moments – First moments (mean, variance, skewness, and kurtosis) of
the sequence of values created for each parameter.

corr_matrix – Both the correlation matrix and a normalized version
of the correlation matrix are exported to the file. The normalized
correlation matrix is created by transforming all sequences of values as
if all parameters have standard normal distributions.
70 Optimizer User Guide
N-2017.09

2: Operations Guide
Custom Task
{ name = A type = sdoe }
{ name = B type = sdoe }
{ name = C type = sdoe }
{ name = D type = sdoe }

}
sdoe = montecarloDesign
sdoeArgs = 1000
tree = {none}
Save {

file = sdoeMC.tab
elems = {values experiments moments corr_matrix}

}
nextTask = 2

}

Output

Optimizer outputs a list with all the different parameter settings that belong to the families of
simulations that were created using the specified SDoE technique.

Custom Task

The custom task is a simple task type that allows the specification of a particular algorithm,
which can rely on the internal structures and procedures of Optimizer to perform a particular
type of optimization or other data analysis.

This task is useful when it is necessary to explore and implement a different optimization or
analysis process, which is not available in the standard task types.

Command Description

To specify a custom task, standard parameter and response declarations are valid, and a few
other arguments are available for the task declaration:

doe This argument defines the design to be used if necessary.

Algorithm This is the most important section. Within the Algorithm block, any
standard Tcl script is allowed. Usually, to take advantage of the internal
structures and procedures of Optimizer, a few namespaces are available.
Optimizer User Guide 71
N-2017.09

2: Operations Guide
Custom Task
An example of a custom task declaration is:

Task {
name = 1
type = CUSTOM
project = ""
Parameter {

{ name = A type = doe min = -100 max = 100 }
{ name = B type = doe min = -100 max = 100 }
{ name = C type = doe min = -100 max = 100 }
{ name = D type = doe min = -100 max = 100 }

}
Response {

{ name = delta model = standard degree = 1 }
}

Algorithm {
upvar $TABLE Table

set taskId $id
set parId [Cget $taskId parId]
set doeType [Cget $taskId doe]
set doeArgs [Cget $taskId doeArgs]
set parNames [parData::Cget $parId names]

OPT:WriteLog "=="
OPT:WriteLog " DoE creation, using $doeType:"

set doeId [doe::New $parNames]
Task::CallDoE $parId $doeId "DOE" $doeType $doeArgs
set experimentList [doe::Cget $doeId Expers]

OPT:WriteLog " $experimentList"
OPT:WriteLog "=="

foreach pname $parNames {
foreach pvalue $experimentList {

parData::Config $parId autoValue $pname $pvalue
}

}
}
doe = facedCentralComposite
nextTask = end

}

72 Optimizer User Guide
N-2017.09

2: Operations Guide
Integration of Sentaurus Workbench
Output

Output and behavior depend on the specific instructions included in the Algorithm section.

Integration of Sentaurus Workbench

Sentaurus Workbench and Optimizer are closely related. Assuming Optimizer is the main
analysis tool, Sentaurus Workbench provides some features that allow users to edit and view
command files and output files, and to run Optimizer directly using explicit menu options.
These features are accessible through the Optimization menu of Sentaurus Workbench.

Sentaurus Workbench Scenarios

Some naming conventions have been adopted for the generation of scenarios, which allow
users to control the execution of the different tasks by dynamically editing scenarios while
Optimizer is running.

Optimizer creates scenarios using the naming scheme <task_id>_<sc_counter> where
<task_id> is a task-dependent identifier as shown in Table 4 and <sc_counter> is a
nonnegative integer that is increased dynamically so as not to overwrite previously created
scenarios.

In addition, Optimizer creates the scenario optimum that stores all experiments that reached
the same optimal value. For iterative optimizations, Optimizer also creates the scenario roi
that retains those solutions that are inside the last-visited region of interest.

Optimizer creates the genopt_<task>_optimum_family_<family_number> scenario
for generic optimizations. This scenario stores the family with the minimum error (the average
error between all the experiments belonging to the family).

Table 4 Task-dependent identifiers for scenario naming

Task Task identifier Task Task identifier

Design-of-experiments doe Uncertainty analysis unc

Stochastic design-of-experiments sdoe Optimization opt

Screening screen Iterative optimization itropt

Sensitivity analysis sen Generic optimization genopt
Optimizer User Guide 73
N-2017.09

2: Operations Guide
Advanced Features
Reusing All Simulation Results

Optimizer uses all of the simulation results that already exist in the Sentaurus Workbench
project before Optimizer is run.

Most tasks provided by Optimizer require several simulations. To take advantage of
simulations previously run (either by the user using Sentaurus Workbench or automatically by
Optimizer):

■ All previously computed simulation results are loaded before starting to execute any new
task.

■ All optimization methods start from the best-existing solution.

■ The tasks based on RSMs reuse all existing results to build the models, improving the
representation of the region of interest.

Advanced Features

Restarting

All iterative optimization methods can store their status after each iteration. If Optimizer is
interrupted, the last status can be restored. The following information is stored:

■ Iterative heuristic method

Current best solution, region of interest, number of simulations, number of iterations,
number of iterations without improvements, and execution time.

■ Quasi-Newton method

Current best solution, gradient of the current best solution and current Hessian, number of
simulations, number of iterations, and execution time.

■ Nonlinear simplex method

Current best solution, simplex composition, number of simulations, number of iterations,
and execution time.
74 Optimizer User Guide
N-2017.09

2: Operations Guide
Advanced Features
Sequencing of Tasks

Optimizer allows the execution of two or more tasks in a sequence and it automatically uses
the information computed in previous tasks. For example, this feature can be used to reduce the
number of parameters used in an optimization task by performing a screening task before
optimization.

The parameter attribute selValue allows users to control whether the values computed for a
given parameter in previous tasks are used in a different task. This attribute can be used as the
nominal value of a sensitivity analysis task or the starting point of an optimization task (see
Parameter on page 11).

If this value is set to autoValue, its value is taken automatically from previous tasks, using
the following criteria:

■ If any optimization task has been performed before the task, where selValue has been set
to autoValue, selValue is set to the optimal value found for the corresponding
parameter in the previous task.

■ If a screening task has been performed before the task, where selValue has been set to
autoValue, if the parameter is not considered relevant in the screening task, it is discarded
and not used in the current task.

Example: Screening and Iterative Optimization

In a project with five parameters and a given response, the following input file will perform a
screening task before an iterative optimization task, so as to discard all irrelevant parameters
before starting the optimization process:

#
Define a screening task
Task {

name = 1
type = SCREENING
Parameter {

{ name = A doeArgs = {equidist 1 0 2} }
{ name = B doeArgs = {equidist 1 0 2} }
{ name = C doeArgs = {equidist 1 0 2} }
{ name = D doeArgs = {equidist 1 0 2} }
{ name = E doeArgs = {equidist 1 0 2} }

}
Response {

{ name = delta model = standard degree = 1 }
}
doe = fullFacNLev
screenRange = 0.2
Optimizer User Guide 75
N-2017.09

2: Operations Guide
Advanced Features
nextTask = 2
}
#
Define an iterative optimization task
Task {

name = 2
type = ITER_OPTIMIZATION
Parameter {

{ name = A selValue = autoValue}
{ name = B selValue = autoValue}
{ name = C selValue = autoValue}
{ name = D selValue = autoValue}
{ name = E selValue = autoValue}

}
Response {

{ name = delta crit = minimal weight = 1 }
}
Stop {
maxTime = 3600
}
nextTask = end

}
#
Define initial conditions and start first task
#
Start { nextTask = 1 }

Task Interdependency

A task can use values obtained as results of other executed tasks. This scheme identifies
‘parents’ and ‘children’ tasks. Data is shared from parents to children tasks using an export-
and-import mechanism, which allows for the declaration of which values of one task can be
exported and which name is used to import them from another task.

Any numeric attribute of a parameter can be replaced by import followed by a dot and a
parameter name of the parent task.

...
Parameter {

{ name = X1 type = sdoe sdoeArgs = 3
SDoEModel { type = normal args = {import.mediaX1 import.varX1} } }
{ name = X2 type = sdoe sdoeArgs = 3
SDoEModel { type = normal args = {import.mediaX2 import.varX2} } }

}
...
76 Optimizer User Guide
N-2017.09

2: Operations Guide
Advanced Features
Another section allows for setting explicitly which responses or attribute responses should be
exported to the calling task. This section can be specified using the Export block within the
task definition:

Task {
...
Export {

{ name = mediaRos value = Rosen.media }
{ name = varRos value = Rosen.variance }
{ name = skewRos value = Rosen.skewness }
{ name = kurtRos value = Rosen.kurtosis }

}
...

Exportable Information

Besides the general attributes of each response, additional information – according to the task
– can also be exported.

Screening Task

It is possible to export the screening result corresponding to any parameter. Usage possibilities
are:

■ value = parname

■ value = result.parname

where parname is the parameter name.

Sensitivity Analysis Task

It is possible to export the sensibility result for a response with regard to any parameter. For the
export, use:

value = resname.parname

or:

value = result.resname.parname

where resname is the name of the response.
Optimizer User Guide 77
N-2017.09

2: Operations Guide
Advanced Features
Uncertainty Analysis Task

It is possible to export any of the first four moments of the distribution. To export these values,
use:

value = resname.media
value = resname.variance
value = resname.skewness
value = resname.kurtosis

or:

value = result.resname.media
value = result.resname.variance
value = result.resname.skewness
value = result.resname.kurtosis

Optimization, Iterative Optimization, and Generic Optimization Tasks

It is possible to export the value of any parameter for the best parameter setting or the value of
any response at the optimum found. To export these values, use:

value = parname
value = resname

or:

value = result.parname
value = result.resname

Simulation Task

It is possible to export all the results of the simulations (standard behavior). To export these
values, use:

value = resname

or:

value = result.resname

Convergence Plot

When Optimizer executes some optimization tasks, the goal is achieved by an iterative process
that may be relevant for the user to analyze. The iteration evolution is available in the
gopt.log file and some of the output files are available in the form of alphanumeric
information. In addition, a convergence plot file is generated.
78 Optimizer User Guide
N-2017.09

2: Operations Guide
Advanced Features
You can monitor the progress of the execution of Optimizer by viewing this plot file with
Inspect. Using the Inspect auto-reload feature, this plot can be viewed dynamically adding
more iterations to the chart, displaying a convergence curve.

The file name of the convergence plot varies depending on the task being executed, for
example, an iterative optimization task produces an itropt.plt file and a generic
optimization task produces a genopt.plt file.

Figure 9 Inspect window showing a convergence plot

To open the convergence plot in Inspect:

1. File > Load Datasets.

2. Select the itropt.plt or genopt.plt file, depending on the type of task executed or
being executed.

3. Select the dataset iteration for the x-axis and the dataset global>cur for the left
y-axis.
Optimizer User Guide 79
N-2017.09

2: Operations Guide
References
To update the plot during an Optimizer run:

1. File > Automatically Update Datasets.

2. Select the option.

3. Set the time between updates.

4. Click OK.

References

[1] D. C. Montgomery, Design and Analysis of Experiments, New York: John Wiley &
Sons, 1997.

[2] G. E. P. Box and N. R. Draper, Empirical Model-Building and Response Surfaces, New
York: John Wiley & Sons, 1987.

[3] R. Myers and D. Montgomery, Response Surface Methodology: Process and Product
Optimization Using Designed Experiments, New York: John Wiley & Sons, 1995.

[4] A. I. Khuri and J. A. Cornell, Response Surfaces: Designs and Analyses, STATISTICS:
Textbooks and Monographs, vol. 81, New York: Marcel Dekker, 1987.

[5] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming: Theory and
Algorithms, New York: John Wiley & Sons, 1993.

[6] R. Fletcher, Practical Methods of Optimization, New York: John Wiley & Sons, 1987.

[7] M. A. Tatang et al., “An efficient method for parametric uncertainty analysis of
numerical geophysical models,” Journal of Geophysical Research - Atmospheres,
vol. 102, no. D18, pp. 21925–21932, 1997.

[8] M. A. Tatang, Direct Incorporation of Uncertainty in Chemical and Environmental
Engineering Systems, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge,
MA, USA, February 1995.
80 Optimizer User Guide
N-2017.09

CHAPTER 3 Reference Guide

This chapter describes all of the commands and file formats, the
methodology, and the mathematics pertinent to Optimizer.

Optimizer Commands Reference

Names and Symbols

Every task described here has a two-letter designator as set out in Table 5.

Attributes are either mandatory in the input file specification or optional, depending on which
tasks are being referenced. The syntax checker verifies that the attributes used in each block
correspond to the ones allowed for such a block. An error message is displayed when a
particular mandatory attribute is not defined for a given task. In the following tables, the
symbols used to designate each type of attribute are:

■ ! – Mandatory attribute

■ x – Optional attribute

Table 5 Designators

Designator Definition Designator Definition

SC Screening UA Uncertainty analysis

OP Optimization DO Design-of-experiments

IO Iterative optimization SD Stochastic design-of-experiments

GA Genetic algorithm task ST Start block

GO Generic optimization CU Custom task

SA Sensitivity analysis
Optimizer User Guide 81
N-2017.09

3: Reference Guide
Optimizer Commands Reference
Global Options

Table 6 lists the global options. For more information about global options, see Global Options
on page 9.

Table 6 Global options

Parameter name Value Default S
C

O
P

IO G
A

G
O

S
A

U
A

D
O

S
D

S
T

C
U Description

magGlbNumEvaluations <number> x x x x x x Global
maximum
number of
evaluations

maxGlbTime <number> x x x x x x Maximum
wallclock time
that Optimizer
is allowed to
run

maxGlbTimeUnit sec | min | hrs |
days

sec x x x x x x Global time
unit

nextTask <alphanum> | end end x x x x x x x x x x Name of next
task

name <alphanum> ! ! ! ! ! ! ! ! ! ! Task name,
required

type SCREENING |
UNC_ANALYSIS
OPTIMIZATION |
SDOE |
ITER_OPTIMIZATION |
GEN_OPTIMIZATION |
GENETIC_OPTIMIZATION
| SENS_ANALYSIS |
DOE

! ! ! ! ! ! ! ! ! ! Task type,
required

exportTable <filename> x x x x x x x x x x Export a table
containing all
parameter
settings and all
responses in
tab-delimited
format
82 Optimizer User Guide
N-2017.09

3: Reference Guide
Optimizer Commands Reference
Inner Blocks for Parameters

Table 7 lists the inner blocks for parameters. For more information about parameters, see
Parameter on page 11.

Table 7 Inner blocks for parameters

Parameter
name

Subname Value Default

S
C

O
P

IO G
A

G
O

S
A

U
A

D
O

S
D

S
T

C
U

Description

parameters ! ! ! ! ! ! ! ! ! x ! Block start for
parameters

name <alphanum> ! ! ! ! ! ! ! ! ! x ! Sentaurus Workbench
parameter name

type ud | doe |
sdoe | scen

! ! ! ! ! ! ! ! ! x ! Type of parameter

deflection <number> x Amount of step
increment

ud parameters only:

values <number> |
{<number>}

x x x x x x x x x x x Values for user-
defined parameters

doe parameters only:

min <number> x x x x x x x x x Minimum range value

max <number> x x x x x x x x x Maximum range
value

scale linear |
logarithmic

linear x x x x x x x x x Parameter
interpolation

doeArgs <alphanum> |
{<alphanum>}

x x x x x x x x x Arguments of DoE
that are specific for
each parameter

selValue <number> x x x x x x x x x Nominal value for
sensitivity analysis or
starting point for
optimization

sdoe parameters only:

SDoEModel x x x Block starts for SdoE
models

type normal |
beta |
uniform |
expon | gamma

normal x x x Probability density
function (PDF)
Optimizer User Guide 83
N-2017.09

3: Reference Guide
Optimizer Commands Reference
Inner Blocks for Responses

Table 8 lists the inner blocks for responses. For more information about responses, see
Response on page 13.

args <number>
<number>

0 1 x x x Probability density
function arguments

sdoeArgs <alphanum> |
{<alphanum>}

x x x Arguments of
stochastic DoE that
are specific for each
parameter

scen parameters only:

values { [path-to-
example]
[scenario-
name] }

x x x x x x x x x x Scenario reference as
source for the
parameter values

Table 8 Inner blocks for responses

Parameter name Value Default S
C

O
P

IO G
A

G
O

S
A

U
A

D
O

S
D

S
T

C
U Description

responses ! ! ! ! ! ! ! ! ! x ! Block start for
responses

name <alphanum> ! ! ! ! ! ! ! ! ! x ! Sentaurus
Workbench variable
name

model standard |
kriging |
stochastic

standard x x x x x x x x x x RSM type

transformation exp | log |
sqrt | sqr

x x x x x x x x x x x RSM transformation

degree 1 | 2 | 3 2 x x x x x x x x RSM degree

crit minimal |
maximal | closeto

x x x x x x Optimization
criterion

target <number> " " x x x x x x Optimization target
when the criterion
closeto is used,
required

Table 7 Inner blocks for parameters

Parameter
name

Subname Value Default

S
C

O
P

IO G
A

G
O

S
A

U
A

D
O

S
D

S
T

C
U

Description
84 Optimizer User Guide
N-2017.09

3: Reference Guide
Optimizer Commands Reference
Inner Blocks for Stopping Criteria

Table 9 lists the inner blocks for stopping criteria. For more information about stopping
criteria, see Stopping Criteria on page 50.

lowerBound <number> " " x x x Lower limit of the
range valid for
optimization
termination

upperBound <number> x x x Upper limit of the
range valid for
optimization
termination

perc_range <number> x x x Percentage relative
to the target value
used for defining the
termination range

weight <number> 1 x x x x x x x Relative importance
assigned to the
response

modelArgs {<alphanum>} {} x x Stochastic RSM
specification

Table 9 Inner blocks for stopping criteria

Parameter
name

Subname Value Default

S
C

O
P

IO G
A

G
O

S
A

U
A

D
O

S
D

S
T

C
U

Description

Stop Block start for local
(single task) stopping
criteria

maxTime <number>
(sec | min |
hrs | days)

3600
sec

x Time

maxNumEvaluations <number> 100 x Number of evaluations

maxNumIterations <number> 1 x x Number of iterations

maxWoImprove <number> 5 x Iterations without
improvements

Table 8 Inner blocks for responses

Parameter name Value Default S
C

O
P

IO G
A

G
O

S
A

U
A

D
O

S
D

S
T

C
U Description
Optimizer User Guide 85
N-2017.09

3: Reference Guide
Optimizer Commands Reference
Specific Task Parameters for Screening

Table 10 lists the specific task parameters for screening. For more information about screening,
see Screening Task on page 31. For detailed information on screening-specific options, see
Command Description on page 31.

Specific Task Parameters for Iterative Optimization

Table 11 lists the specific task parameters for iterative optimization. For more information
about iterative optimization, see Iterative Optimization Task on page 38. For detailed
information on iterative optimization–specific options, see Command Description on page 45.

LocalOpt { x Block start for local
optimum arguments

r2Adj <number> 0, 99 x Local optimum: r2Adj

range <number> 30 x Local optimum: range

}

tolerance <number> 1e-05 x Termination tolerance

Table 10 Specific task parameters for screening

Parameter name Value Default SC Description

screenCrit average |
local_strong

average x Screening criterion

screenRange <number> 10.0 x Threshold level for parameter selection

screenBest <number> 3 x Number of parameters to be selected

Table 11 Specific task parameters for iterative optimization

Parameter name Value Default IO Description

dumpFile <filename> " " x Dump file for iterative optimization

loadFile <filename> " " x Load file to restart iterative optimization

lowerRoI <number> 1 x Granularity parameter: minimum RoI allowed

Table 9 Inner blocks for stopping criteria

Parameter
name

Subname Value Default

S
C

O
P

IO G
A

G
O

S
A

U
A

D
O

S
D

S
T

C
U

Description
86 Optimizer User Guide
N-2017.09

3: Reference Guide
Optimizer Commands Reference
Specific Task Parameter for Generic Optimization

Table 12 lists the specific task parameter for generic optimization. For more information about
generic optimization, see Generic Optimization Task on page 49. For detailed information on
generic optimization–specific commands, see Command Description on page 50.

Specific Task Parameters for Genetic Algorithm
Optimization

Table 13 lists the specific task parameters for genetic algorithm optimization. For more
information about the genetic algorithm, see Genetic Algorithm Task on page 52. For detailed
information on genetic algorithm–specific commands, see Command Description on page 54.

Table 12 Specific task parameter for generic optimization

Parameter name Value Default GO Description

solver bcopt | simplex " " ! Solver for generic optimization, required

Table 13 Specific task parameters for genetic algorithm optimization

Parameter name Value Default GA Description

constantK <number> 5 x Constant of convergence (used by sigma and
lineal fitness functions).

eliteMutants 0|1 1 x If set to 1, it generates mutated chromosomes
only from elite members. If set to 0, it generates
mutated chromosomes from any chromosome of
the population.

elitism 0|1 1 x Number of chromosomes to be considered elite
(0 for no elitism).

fitnessFunction simple |
sigma |
lineal | stair

sigma x For a description of fitnessFunction,
see Optional Attributes on page 54.

iterationsFile <filename> " " ! Required. Valid file name, for example,
iterations.csv.

maxFalseChildAttempts <integer> 100 x The maximum number of attempts to generate a
new chromosome (child) by crossover. This
condition is used because the algorithm always
attempts to generate new chromosomes and, by
limiting the number of attempts to produce new
children, it is possible to avoid infinite loops.

maxNumberOfGenerations <integer> 15 x Maximum number of generations to produce.
Optimizer User Guide 87
N-2017.09

3: Reference Guide
Optimizer Commands Reference
Specific Task Parameters for Sensitivity Analysis

Table 14 lists the specific task parameters for sensitivity analysis. For more information about
sensitivity analysis, see Sensitivity Analysis Task on page 57. For detailed information on
sensitivity analysis–specific commands, see Command Description on page 58.

nMutants <number> 20 x Percentage of the total population to be
generated by mutation (not crossover).

percMutation <number> 10 x Percentage of mutation of the values for the next
generation.

setFitnessBase 0|1 1 x If set to 1, it normalizes the goal only with the
difference between goals (0 is the best). If set to
0, it normalizes the goal values as they are.

velocity 1|2|3|4 1 x This parameter is used to make different
combinations between the fitness function
evaluation and the selection crossover method.
This parameter controls how quickly (in how
many generations) the population converges to
an optimum. If set too fast, some potentially
good areas (but incidentally, with poor
experiments) may be omitted too early. The
options are described in Optional Attributes on
page 54.

Table 14 Specific task parameters for sensitivity analysis

Parameter name Value Default SA Description

nPoints <integer> 3 x Number of points inside sensitivity range

range <number> 10 x Percentage range of the whole domain used for
sensitivity analysis

Table 13 Specific task parameters for genetic algorithm optimization

Parameter name Value Default GA Description
88 Optimizer User Guide
N-2017.09

3: Reference Guide
Optimizer Commands Reference
Specific Task Parameters for Uncertainty Analysis

Table 15 lists the specific task parameters for uncertainty analysis. For more information about
uncertainty analysis, see Uncertainty Analysis Task on page 59. For detailed information on
uncertainty analysis–specific commands, see Command Description on page 64.

Specific Task Parameters for Design-of-Experiments

Table 16 lists the specific task parameters for design-of-experiments. For detailed information
on design-of-experiments–specific commands, see Design-of-Experiments Task on page 68.

Table 15 Specific task parameters for uncertainty analysis

Parameter name Value Default UA Description

exportStat <filename> " " x Export statistical data to tab-delimited file

sampleSize <integer> 10000 x Monte Carlo sample size

uaSeed <integer> x Seed for the generation of random numbers

Table 16 Specific task parameters for design-of-experiments

Parameter
name

Subname Value Default SC OP UA DO SD CU Description

doe fullFacNLev |
halfFactorialMinus |
halfFactorialPlus |
fractFactorial2 |
plackettBurmann |
facedCentralComposite |
smallCentralComposite |
boxBehnken | taguchi |
latinSquare |
grecoLatinSquare |
diagonalDesign |
midPointDesign |
randomDesign

" " ! ! ! x DoE design

doeSeed <integer> x x x Seed for generation
of random numbers
used in the DoE
Optimizer User Guide 89
N-2017.09

3: Reference Guide
Optimizer Commands Reference
Specific Task Parameters for Stochastic Design-of-
Experiments

Table 17 lists the specific task parameters for stochastic design-of-experiments. For detailed
information on stochastic design-of-experiments–specific commands, see Stochastic Design-
of-Experiments Task on page 69.

tree none | add |
{add eval}

none x x Whether the DoE is
mapped to the
family tree: add –
Experiments are
added to tree.
{add eval} –
Experiments are
added to family tree
and evaluated.

Save x x x Block start for
saving DoE
information

file <filename> File name for saving
DoE information

elems [values] [experiments]
[moments] [corr_matrix]

DoE information
that can be saved

Table 17 Specific task parameters for stochastic design-of-experiments

Parameter
name

Value Default UA SD Description

sdoe probabilisticDesign |
montecarloDesign |
boundaryDesign |
cornerDesign |
fromTable

" " ! ! Stochastic design

sdoeArgs <number> |
{ filename separator }

x x Block start for stochastic DoE arguments. This option
must be set only for montecarloDesign or
fromTable. In the first case, it specifies the
number of split points to be generated for each
parameter. In the second case, it specifies the file
name of the CSV file to be read and the character that
separates the values in it.

sdoeSeed <integer> x x Seed for generation of random numbers used in SDoE.

Table 16 Specific task parameters for design-of-experiments

Parameter
name

Subname Value Default SC OP UA DO SD CU Description
90 Optimizer User Guide
N-2017.09

3: Reference Guide
Output Files
Custom Task Parameters

Table 18 lists the specific parameters for a custom task. For detailed information on custom
tasks, see Custom Task on page 71.

Output Files

Optimizer generates several different files when running a task. Each file includes specific
output information that may be useful to the user. Part of this output information is also sent to
the standard output.

The notation used for the file names depends on the names given to the parameters and
responses, which are enclosed in a pair of angle brackets. For example, assume that a
simulation yields a <response_name>_anova.dat file. If there is a response named
delta1, there will be a delta1_anova.dat file after running Optimizer for that particular
task. The output files for various tasks are described.

Uncertainty Analysis Task

For each response, the following files are generated (see Output on page 66), containing data
in a tab-delimited format (TDF) plain text format, which can be imported to other tools such
as Microsoft® Excel:

Table 18 Specific task parameters for custom tasks

Parameter
name

Value Default CU Description

Algorithm { } Valid Tcl script. " " ! It is a block enclosed by braces and contains a Tcl
script that sequences the instructions that perform the
intended optimization process. Optimizer does not
validate this script.

<response_name>_coeff.dat Model coefficients for the response.

<response_name>_stat.dat Model statistics for the response.

<response_name>_var.dat Model variance for the response.

<response_name>_anova.dat ANOVA table for the response.

<response_name>_histo.dat Model histogram for the response.
Optimizer User Guide 91
N-2017.09

3: Reference Guide
Output Files
Sensitivity Analysis Task

Screening Task

<response_name>_mom.dat Model moments for the response.

values.dat Details of all the values generated to perform the experiment.

uaTable.tab Structurally, it is equal to the unc_<n>.tab file showing
values for all scenarios.

unc_<n>.tab This file holds the values of the experiments inside the whole
domain where n stands for the evaluated scenario. Its columns
show all parameters, all responses, a node number from the
simulation tree and, finally, a goal column.

uaStTable.tab This contains the same data as in the .dat files previously
described, that is, correlatively and for each response: the
model coefficients, model statistics, model variance, ANOVA
table, model histogram, and model moment files. This
information is followed by a list of values generated to run the
experiment, as stored in the values .dat file.

sen_<n>.tab Values of the experiments inside the whole domain where n
stands for the evaluated scenario. Its columns show all
parameters, all responses, a node number from the simulation
tree and, finally, a goal column.

screen_<n>.tab Values of the experiments inside the whole domain where n
stands for the evaluated scenario. Its columns show all
parameters, all responses, a node number from the simulation
tree and, finally, a goal column.
92 Optimizer User Guide
N-2017.09

3: Reference Guide
Output Files
Generic Optimization Task

Optimization Task

Iterative Optimization Task

genopt_<n>.tab Optimum parameter and response values obtained with the
optimization process where n is the evaluated scenario. Its
columns show all parameters, all responses, a node number
from the simulation tree and, finally, a goal column.

genopt.plt This contains the data of a convergence plot for a simulation.
For tools such as Inspect, iteration is put on the x-axis and the
behavior of any particular parameter (minimum, current, best,
or maximum) or response (current or best, for any response or
a global one) is put on the y-axis.

opt_<n>.tab Values of the experiments inside the whole domain where n
stands for the evaluated scenario. Its columns show all
parameters, all responses, a node number from the simulation
tree and, finally, a goal column.

itropt_<n>.tab Optimum parameter and response values obtained with the
optimization process where n stands for the evaluated
scenario. Its columns show all parameters, all responses, a
node number from the simulation tree and, finally, a goal
column.

itropt.plt This contains the data of a convergence plot for a simulation.
For tools such as Inspect, iteration is put on the x-axis and the
behavior of any particular parameter (minimum, current, best,
or maximum) or response (current or best, for any response or
a global one) is put on the y-axis.
Optimizer User Guide 93
N-2017.09

3: Reference Guide
Mathematical Expressions
Design-of-Experiments Task

Stochastic Design-of-Experiments Task

Mathematical Expressions

Gradient Vector

The gradient vector of a scalar function () is defined by the vector
that is built from the first partial derivatives:

(16)

doe_<n>.tab Values of the experiments inside the whole domain where n
stands for the evaluated scenario. Its columns show all
parameters, all responses, a node number from the simulation
tree and, finally, a goal column.

sdoe_<n>.tab Values of the experiments inside the whole domain where n
stands for the evaluated scenario. Its columns show all
parameters, all responses, a node number from the simulation
tree and, finally, a goal column.

f x()∇ f x() x Rn∈ n 1×

f x()∇
x1∂
∂

f x()

…

xn∂
∂

f x()

=

94 Optimizer User Guide
N-2017.09

3: Reference Guide
Equations for Response Surface Models
Hessian Matrix

The Hessian matrix of a scalar function () is defined by the matrix
that is built out of the second partial derivatives:

(17)

Equations for Response Surface Models

For all of the equations here, the notation is:

■ : Number of experiments

■ : Number of unknown coefficients (or terms) in the model

■ : Actual value of the experiment

■ : Estimated value of the experiment

■ : Actual mean value

Model Accuracy

Three statistics that measure the model accuracy are provided:

■ : The coefficient of determination is a statistic that measures the predictive capacity of
the model (see Model Information on page 27). The relevant equations are:

(18)

f x()∇2 f x() x Rn∈ n n×

f x()∇2

x1
2

2

∂
∂

f x() …
x1xn

2

∂
∂

f x()

… … …

xnx1

2

∂
∂

f x() …
xn

2

2

∂

∂
f x()

=

n

h

Yi i

Ŷi i

Y

Yi

i 1=

n


n

------------------=

R2

R
2

1

Yi Yi
ˆ–()

2

i 1=

n



Yi Y–()
2

i 1=

n



-------------------------------------–=
Optimizer User Guide 95
N-2017.09

3: Reference Guide
Model Accuracy
(19)

■ : Model Information on page 27 discusses the adjusted statistic (). The
relevant equation is:

(20)

■ : The estimated variance of the error is a measure of the model variability. It is discussed
in Model Information on page 27. The relevant equation is:

(21)

ANOVA Table

The analysis of variance (ANOVA) consists of calculations that provide information about
levels of variability within a regression model and form a basis for tests of significance. The
basic regression concept, DATA = FIT + RESIDUAL, can be rewritten as:

(22)

The first term is the total variation in the simulation response , the second term is the variation
of the mean result, and the third term is the residual value. Squaring each of these terms and
adding over all of the observations gives:

(23)

This equation can also be written as SST = SSM + SSE, where SS is notation for sum of squares,
and T, M, and E are notations for total, model, and error, respectively.

R
2

Ŷi Y–()
2

i 1=

n



Yi Y–()
2

i 1=

n



-----------------------------------=

Radj
2 R2 Radj

2

R
2

-adj 1
n 1–
n h–
------------ 
  1 R

2
–()–=

S2

S
2

Yi Yi
ˆ–()

2

i 1=

n


n h–

-------------------------------------=

Yi Y–() Ŷi Y–() Yi Yi
ˆ–()+=

Y

n

Yi Y–()
2

i 1=

n

 Ŷi Y–()
2

i 1=

n

 Yi Yi
ˆ–()

2

i 1=

n

+=
96 Optimizer User Guide
N-2017.09

3: Reference Guide
Model Accuracy
The coefficient of determination () is equal to the ratio of the model sum of squares to the
total sum of squares:

(24)

This formalizes the interpretation of as explaining the fraction of variability in the data
described by the RSM.

For an RSM with terms, the model degrees of freedom (DFM) are equal to ; the error
degrees of freedom (DFE) are equal to ; and the total degrees of freedom (DFT) are equal
to , which is the sum of DFM and DFE.

The sample variance (or MST) is equal to:

(25)

The mean square model (MSM) is equal to:

(26)

The mean square error (MSE), which is an estimate of the variance with respect to the
population regression line, is equal to:

(27)

R2

R
2 SSM

SST

Ŷi Y–()
2

i 1=

n



Yi Y–()
2

i 1=

n



-----------------------------------= =

R2

h h 1–
n h–

n 1–

SY
2

SY
2

MST
SST
DFT

Yi Y–()
2

i 1=

n


n 1–

-----------------------------------= = =

MSM
SSM
DFM

Ŷi Y–()
2

i 1=

n


h 1–

-----------------------------------= =

MSE
SSE
DFE

Yi Ŷi–()
2

i 1=

n


n h–

-------------------------------------= =
Optimizer User Guide 97
N-2017.09

3: Reference Guide
Model Accuracy
Table 19 displays analysis of variance calculations.

The column provides a statistic for testing the hypothesis that some coefficients are not null
against the null hypothesis, which is that all the coefficients of the model equal zero. The test
statistic is the ratio MSM/MSE, the mean square model divided by the mean square error. When
MSM is large relative to MSE, the ratio is large and there is evidence against the null hypothesis.
The F test does not indicate which coefficients are not equal to zero. It only indicates that at
least one of them is linearly related to the response variable.

The test statistic MSM/MSE has a probability density function .

Moments

A real-valued random variable is a function that maps the probability space into the
real line, such that [1]:

1. The set is an event for any real number .

2. The probabilities of the events and equal zero.

(28)

(29)

(30)

(31)

The -th moment of a continuous real-valued random variable , with probability density
function , is defined by:

(32)

Table 19 ANOVA table definitions

Source Degrees of freedom Sum of squares Mean square F

Model SSM SSM/DFM MSM/MSE

Error SSE SSE/DFE

Total SST SST/DFT

h 1–

n h–

n 1–

F

F p n p– 1–,()

x ω() Ω

ω Ω∈ x ω() X≤{ } X

x ω() ∞–={ } x ω() ∞={ }

Pr x ω() ∞–=() 0=

Pr x ω() ∞=() 0=

Fx x() Pr x ω() x≤() fx u() ud∞–
x= = x ℜ∈∀

Pr x ω() ω A∈() fx x() xd

A
=

i x ω()
fx x()

mi x ω()() x
i
fx x() xd∞–

∞
=
98 Optimizer User Guide
N-2017.09

3: Reference Guide
Model Accuracy
Moments define some properties of the random variable (see ‘Mean’ in this section). Similar
to the concept of ‘moment’ in mechanic engineering, it is also possible to have moments of a
random variable based on a nonzero point of reference:

(33)

where is a nonzero real number. If the point is the mean value, there are central moments:

(34)

Several measures of a random variable that are based on its second, third, and fourth central
moments are known to be important (see ‘Variance,’ ‘Skewness,’ and ‘Kurtosis’ in this
section).

■ Mean

The first moment , which is also known as the mean or expected value , defines
the central mass of the probability density function or the average of the random variable.

■ Variance

The second central moment defines the degree of dispersion of the corresponding
random variable from its mean value. It is also called variance, denoted by . Its
square root is known as the standard deviation.

■ Skewness

The third central moment affects the degree of asymmetry of the corresponding probability
density function around its mean value. The skewness factor is a coefficient used to
measure this degree of asymmetry. It is defined by:

(35)

A positive value of the skewness factor relates to a probability density function with a
greater tail area towards more positive values. A negative value indicates a probability
density function with a greater tail area towards more negative values. A zero value
indicates a symmetric probability density function.

mi x p–() x p–()ifx x() xd∞–
∞=

p p

ci x() mi x μ x()–()=

m1 x() μ x()

c2 x()
σ2 x()

γ1 x()
c3 x()

σ3
x()

--------------=
Optimizer User Guide 99
N-2017.09

3: Reference Guide
Optimization Problem
■ Kurtosis

The kurtosis factor measures the relative peakedness or flatness of a probability density
function with respect to the Gaussian probability density function. It is derived from the
fourth central moment:

(36)

The kurtosis factor for a Gaussian probability density function is equal to three. Therefore,
a kurtosis factor that is less than three defines a less peaked or flatter probability density
function than the Gaussian. A kurtosis factor that is more than three means a more peaked
or less flat probability density function than the Gaussian. Platykurtic and leptokurtic are
synonyms for probability density functions with less than three and more than three
kurtosis factors, respectively.

Optimization Problem

An optimization problem [2] can be expressed as a maximization or minimization task, for
example, maximizing profits or minimizing costs. The objective function reflects
whether a particular set of input parameters (a vector) produces a good or bad result for the
analyzed model function.

The optimization problem is usually formulated as a minimization of the objective function
 that depends on :

(37)

 is also called the target function or cost function. If the dimension of is one (it is a
scalar), it is a univariate optimization problem. Otherwise, it is a multivariate optimization
problem.

When no additional conditions are supplied for the input parameter vector, it is an
unconstrained optimization problem, where any value of is a feasible point.

γ2 x()
c4 x()

σ4
x()

--------------=

f x()
xi

f x() x

min
x R

n∈
f x()

f x() x

x Rn∈
100 Optimizer User Guide
N-2017.09

3: Reference Guide
Optimization Problem
In constrained optimization problems, equality or inequality constraints reduce the input
parameter space. These can be expressed as:

(38)

where is the number of equality constraints and is the number of inequality constraints.

A particular constrained problem is bound-constrained, which can be expressed as:

(39)

where and are the respective lower and upper bounds for the vector .

An extreme is a global optimum that is definitely the highest or lowest function value, as
opposed to a local optimum, which is the highest or lowest function value within a finite
neighborhood.

Optimizer solves a bound-constrained problem, determines a parameter setting that optimizes
a weighted function of the simulation responses, and satisfies bound constraints to the
parameter domain.

Optimization

Optimization is the search for an optimal value of the objective function within given ranges of
the input variables or parameters.

There are several methods for solving optimization problems. In general, the method used
depends on the behavior of the target function. The range of available methods spans from
iterative methods (based on the derivatives of the target function) to local search heuristics (for
example, genetic algorithms or random search algorithms).

The unconstrained optimization problem is central to the development of optimization
software. Constrained optimization algorithms are often extensions of unconstrained
algorithms, while nonlinear least square and nonlinear equation algorithms tend to be
specializations.

min
x R

n∈
f x()

hi x() 0= i 1 … m, ,=

gj x() 0≤ j 1 … p, ,=

m p

min
x R

n∈
f x()

l x u≤ ≤

l u x
Optimizer User Guide 101
N-2017.09

3: Reference Guide
Optimization Problem
Global optimization algorithms try to find a vector that minimizes over all possible
vectors . This is a more difficult problem to solve. There is no efficient algorithm to perform
this task. For many applications, local minima are adequate, particularly when users utilize
their own experiences to provide a good starting point for the algorithm.

The Newton method generates a varied and important class of algorithms that require the
computation of the gradient vector and Hessian matrix (see Mathematical Expressions on
page 94).

Although the computation or approximation of the Hessian matrix is time consuming, it is
invaluable for many problems. The following sections describe algorithms in which users
explicitly supply the Hessian before discussing algorithms that do not require the Hessian.

Gradient-Based Optimization Methods

The majority of optimization algorithms are based on methods that use the gradient and higher
derivatives of the target function. These methods approximate the target function by a
Taylor series around :

(40)

Step Direction

Many optimization algorithms iteratively improve the solution. Each iteration consists of four
basic steps:

1. If the convergence conditions are satisfied, stop the algorithm with the actual point as
the solution.

2. Compute a direction .

3. Compute a step length .

4. Set the new actual point and return to Step 1.

For multidimensional optimization problems, selecting the step direction for the next iteration
in order to decrease the scalar function is a major consideration. Usually, the directions
used for the next iteration are the steepest descent direction, the Newton direction, or a
combination of both.

x* f x()
x

f x()
x0

f x0 p+() f x0() f x0()∇()
T

p⋅ 1
2
--- p

T
f x0()∇2⋅ p⋅ ⋅+ +≈

xk

pk

αk

xk 1+ xk αk pk⋅+=

f x()
102 Optimizer User Guide
N-2017.09

3: Reference Guide
Optimization Problem
Steepest Descent Direction

The modeling of the target function is performed by a linear approximation of based on
a Taylor series expansion of first order:

(41)

where denotes a small step away from the current point . A reduction of the function
is achieved by a step where is a negative number with a large absolute value.
The direction is found by solving the following minimization problem:

(42)

that gives direction :

(43)

along the negative gradient of the target function .

Newton Direction

For the Newton direction, a quadratic approximation of the target function is used. For existing
second derivatives of , the minimum of the target function is found by:

(44)

Therefore, the Newton search direction is given by:

(45)

using the gradient and Hessian of the target function.

Step-Length Method

Step-length or line-search methods are iterative methods, where the parameter vector of the
next iteration is calculated by:

(46)

where is the parameter vector of the current iteration, is the step direction, and is the
step length.

f x0()

f x0 p+() f x0() f x0()∇()
T

p⋅+≈

p x f x()
p f x0()∇()T

p⋅

min
p R

n∈
f x0()∇()

T
p⋅

p 2

p

p f x0()∇–=

f x()

f x()

f x0()∇ f x0()∇2 p⋅+ 0=

f x0()∇2 p⋅ f x0()∇–=

xk 1+ xk αk pk⋅+=

xk pk αk
Optimizer User Guide 103
N-2017.09

3: Reference Guide
Optimization Problem
The step direction is calculated by the steepest descent direction or Newton direction
previously described. Finding the step length is a univariate minimization problem:

(47)

Eq. 13 is used to find the minimum of the objective function along the search direction. For this
type of optimization method, the selection of the direction does not depend on the step length.

Trust-Region Method

Trust-region methods approach the selection of the next iteration step differently than the step
length–based methods. The next point is calculated by first selecting some tentative step length,
and then applying the quadratic model to determine a direction and an actual step.

The trust region step is calculated by:

(48)

where is a nonnegative scalar and is the identity matrix.

The value of and, consequently, the size of the trust region are adapted by the quality of the
previous evaluations.

Having solved the trust region problem, the next stage is to decide whether to accept the step
or change the trust region radius and calculate a new solution.

In general, an improvement of the target function is reflected in a decrease of and vice versa.
Therefore, if the new step does not reduce the value of the target function, the value of is
modified and a new step is calculated from Eq. 48.

For , the solution of Eq. 48 is simply the Newton direction and, for , the step
becomes parallel to the steepest descent direction.

The Levenberg–Marquardt algorithm is a specialized trust-region method that is used to solve
nonlinear least square problems by exploiting the specific structure of these particular
problems.

Comparison

Steepest Descent and Newton Directions

These two strategies for the search direction, steepest descent direction and Newton direction,
have different convergence properties and are chosen with regard to the target function.

minαk

f xk αk pk⋅+()

f x() λI+∇2() p⋅ f x()∇+ 0=

λ I

λ

λ
λ

λ 0= λ ∞→ p
104 Optimizer User Guide
N-2017.09

3: Reference Guide
Optimization Problem
If the quadratic model of the target function is accurate, the Newton direction converges
quadratically to the optimum value. If the Hessian matrix is positive definite, the start value is
sufficiently close to the optimum, and the step length converges to 1.

Using the steepest descent algorithm, the step of the next iteration is always a descent direction
for a nonvanishing gradient. In practice, the steepest descent typically requires a large number
of iterations to make progress toward the solution.

Trust-region methods, however, enable a smooth transition from the steepest descent direction
to the Newton direction in a way that gives the global convergence properties of steepest
descent and the fast local convergence of the Newton direction. The Levenberg–Marquardt
algorithm uses these properties to solve least square problems.

Step-Length and Trust-Region Methods

For both step-length and trust-region algorithms, the next iteration point is selected according
to a scalar value. In step-length algorithms, this scalar is the step length ; in trust-region
methods, this scalar is the size of the trust region. The major difference is how the second-order
information influences the search direction. Step-length algorithms leave the Hessian
unchanged; trust-region methods use a so-called modified Hessian.

Derivative Approximations and Optimization Methods

The previous algorithms require the derivatives of the model function . If this model
function is given by an analytic formula, the first and second derivatives can be calculated
directly. For a model function formed by results of several simulations, it is impossible to find
analytic expressions for the derivatives. For this reason, approximation methods must be used.

So far, the availability of the Hessian matrix has been assumed, but the algorithms are
unchanged if the Hessian matrix is replaced by a reasonable approximation.

Two different methods use approximate Hessians in place of the real one:

■ The first possibility is to use difference approximations to the exact Hessian by exploiting
the fact that each column of the Hessian can be approximated by the difference between
two instances of the gradient vector evaluated at two nearby points. For sparse Hessians,
many columns of the Hessian can often be approximated with a single gradient evaluation
by choosing the evaluation points judiciously.

■ Quasi-Newton methods build up an approximation to the Hessian by recording the gradient
differences along each step taken by the algorithm. Various conditions are imposed on the
approximate Hessian. For example, its behavior along a step just taken is forced to mimic
the behavior of the exact Hessian and it is usually kept positive definite.

αk

f x()
Optimizer User Guide 105
N-2017.09

3: Reference Guide
Optimization Problem
Finite-Difference Approximations

The most common method for obtaining an approximation of the Hessian matrix is to use
differences of gradient values.

Hessian Approximation

If forward differences are used, the -th column of the Hessian matrix is replaced by:

(49)

for some suitable choice of the difference parameter . Here, is the vector with 1 in the -th
position and zeros elsewhere. Similarly, if backward differences are used, the i-th column of
the Hessian matrix is replaced by:

(50)

If central differences are used, the -th column is replaced by:

(51)

An appropriate choice of the difference parameter is difficult. Rounding errors hide the
calculation if is too small, while truncation errors dominate if is too large. Newton codes
rely on forward differences because they often yield sufficient accuracy for reasonable values
of . Central differences are more accurate but they require twice the work (gradient
evaluations against evaluations).

Variants of the Newton method for problems with a large number of variables cannot use the
above techniques to approximate the Hessian matrix because the cost of gradient evaluations
is prohibitive. For problems with a sparse Hessian matrix, it is possible to use specialized
techniques based on graph coloring that allow difference approximations to the Hessian matrix
to be computed efficiently. For example, if the Hessian matrix has the bandwidth , only

 gradient evaluations are required.

Gradient Approximation

For the approximation of the first derivatives, finite-difference approximations can also be
used. Finite differences are calculated from a number of function evaluations of particular
values.

i

f∇ x hiei+() f∇ x()–

hi

hi ei i

f∇ x() f∇ x hiei–()–

hi
--

i

f∇ x hiεi+() f∇ x hiεi–()–

2hi
--

hi

hi hi

hi 2 n⋅
n

n

2b 1+
b 1+

x

106 Optimizer User Guide
N-2017.09

3: Reference Guide
Optimization Problem
If forward differences are used, the -th element of the gradient vector is replaced by:

(52)

Similarly, the backward-difference approximation of the -th element of the gradient vector
 can be calculated by:

(53)

For higher accuracy, the central-difference approximation is used:

(54)

When the target function has independent parameters, function evaluations are
required using a central-difference approximation. If a single evaluation takes from several
minutes to several hours, the forward-difference formula is preferable to reduce the overall
calculation time. To keep the ‘approximation error’ in an acceptable range, the step size is
adapted for each input parameter, depending on the values of the previous iteration.

Quasi-Newton Methods

Quasi-Newton or variable metric methods can be used when the Hessian matrix is difficult or
time-consuming to evaluate. The use of a finite-difference approximation of the first
derivatives is not suitable for this purpose. This would require a large amount of function
evaluations.

Instead of obtaining an estimate of the Hessian matrix at a single point, these methods
gradually build up an approximate Hessian matrix by using gradient information from some or
all of the previous iterates visited by the algorithm.

A good approximation of the curvature of the nonlinear function, without additional function
evaluations, can be computed by an iterative scheme, where the gradient of the current and last
step, and the Hessian of the last step are used.

In the Broyden–Fletcher–Goldfarb–Shanno (BFGS) update, the approximative Hessian matrix
 (the index of the matrix is the approximative Hessian matrix in the iteration) is

calculated from the approximation of the last step with:

(55)

i f∇ x()

f x hiei+() f x()–

hi
--

i
f∇ x()

f x() f x hiei–()–

hi
--

f x hiei+() f x hiei–()–

2hi

n 2 n⋅

xk

βk 1+ βk k
βk

βk 1+ βk

βk sk βk sk⋅()
T

⋅ ⋅

sk
T

βk sk⋅ ⋅
---–

yk yk
T

⋅

yk
T

sk⋅
--------------+=
Optimizer User Guide 107
N-2017.09

3: Reference Guide
Optimization Problem
where the vectors denote the last step and denote the
difference of the gradient vectors. The search direction is assumed to be the Newton
direction.

The algorithm starts with the identity matrix as an initial value of the approximated Hessian
matrix. Therefore, the first iteration of the Newton step is equivalent to an iteration of a steepest
descent method.

Although, there are other iterative update formulas, for example, the
Powell–symmetric–Broyden (PSB) and Davidon–Fletcher–Powell (DFP) updates, it is
generally agreed that the most effective update is the BFGS update.

The availability of quasi-Newton methods renders steepest descent methods obsolete. Both
types of algorithm require only first derivatives; both require a line search. The quasi-Newton
algorithms require slightly more operations to calculate an iterate and more storage. However,
in almost all cases, the advantage of superior convergence outweighs these additional costs.

Nongradient-Based Methods

There are two other approaches for unconstrained problems that are not so closely related to
the Newton method:

■ Nonlinear conjugate gradient methods

Nonlinear conjugate gradient methods are motivated by the success of the linear conjugate
gradient method in minimizing quadratic functions with positive definite Hessians. They
use search directions that combine the negative gradient direction with another direction,
which is chosen so that the search occurs along a direction not previously explored by the
algorithm. At least, this property holds for the quadratic case, for which the minimizer is
found exactly within iterations. For nonlinear problems, performance is problematic, but
these methods have the advantage that they require only gradient evaluations and do not
use much storage.

■ Nonlinear simplex method

The nonlinear simplex method (not to be confused with the simplex method for linear
programming) does not require gradient or Hessian evaluations. It performs a pattern
search based only on function values. As it makes little use of information about , it
typically requires many iterations to find a reasonable solution. It is useful when is
nonsmooth or contains noise, or when the gradient of is hard or impossible to
calculate. For an -dimensional problem, this method maintains a simplex of points
(a triangle in two dimensions or a pyramid in three dimensions). The simplex moves,
expands, contracts, and distorts its shape as it attempts to find a minimizer. This method is
slow and can be applied only to problems in which is small.

sk xk 1– xk–= yk f xk 1+()∇ f xk()∇–=
pk

n

f x()
f x()

f x()
n n 1+

n

108 Optimizer User Guide
N-2017.09

3: Reference Guide
Optimization Problem
Bound-Constrained Optimization Methods

Newton-based methods for bound-constrained optimization use step-length and trust-region
versions of unconstrained minimization algorithms. This discussion emphasizes the
differences between the unconstrained and bound-constrained cases.

A step-length method for bound-constrained problems generates a sequence of iterates by
setting:

(56)

where is a feasible approximation to the solution, is a search direction, and is the
step length.

The direction is obtained as an approximate minimizer of the subproblem:

(57)

where is the working set and is an approximation to the Hessian matrix at .
All variables in the working set are fixed during this iteration; all other variables are in the
free set . This subproblem is expressed in terms of the free variables by noting that it is
equivalent to the unconstrained problem:

(58)

where is the number of free variables, is the matrix obtained from by taking the rows
and columns whose indices correspond to the free variables, and is obtained from
by taking the components whose indices correspond to the free variables.

The main requirement of is that be a feasible direction, that is, satisfies the
constraints for all sufficiently small. This is certainly the case if , where:

(59)

is the set of active constraints at . As long as progress is made with the current , the next
working set is obtained by merging with . This updating process is
continued until the function cannot be reduced further with the current working set.

xk 1+ xk αk pk⋅+=

xk pk αk 0>

pk

min
p R

n∈ f x()∇
T
p

1
2
--- p

T
βk p⋅ ⋅ ⋅+ : pi 0= i Wk∈,

 
 
 

Wk βk f xk()∇2 xk

Wk

Fk

min
p R

n∈ gk
T
w

1
2
--- w

T
Ak w⋅ ⋅ ⋅+ : w R

mk∈
 
 
 

mk Ak βk

gk f xk()∇

Wk pk xk α pk⋅+
α 0> Wk A xk()=

A x() i : xi li={ } i : xi ui={ }∪=

x Wk

Wk 1+ A xk 1+() Wk
Optimizer User Guide 109
N-2017.09

3: Reference Guide
Optimization Problem
At this point, the classical strategy is to drop a constraint in for which has the
wrong sign, that is, but , where the binding set:

(60)

is defined as before. In general, it is advantageous to drop more than one constraint, in the
anticipation that the algorithm makes more rapid progress toward the optimal binding set.
However, all dropping strategies are constrained by the requirement that the solution of the
subproblem be a feasible direction.

An implementation of a step-length method based on subproblem Eq. 57 must cater to the
situation in which the reduced Hessian matrix is indefinite, because in this case the
subproblem does not have a solution. This situation can arise, for example, if is the Hessian
matrix or an approximation obtained by differences of the gradient. Here, it is necessary to
specify by other means. For example, the modified Cholesky factorization can be used.

Quasi-Newton methods for bound-constrained problems update an approximation to the
reduced Hessian matrix since, as already noted, only the reduced Hessian matrix is likely to be
positive definite. The updating process is not entirely satisfactory because there are situations
in which a positive definite update that satisfies the quasi-Newton condition does not exist.
Moreover, complications arise because the dimension of the reduced matrix changes when the
working set changes. Quasi-Newton methods are usually beneficial when the working set
remains fixed during consecutive iterations.

The choice of the step-length parameter is similar to the unconstrained case. If subproblem
Eq. 57 has a solution and violates one of the constraints, the largest is
computed, such that:

(61)

is feasible. A standard strategy for choosing is to seek an that satisfies the
sufficient decrease and curvature conditions.

The existence of such an is guaranteed, unless satisfies the sufficient decrease condition,
and:

(62)

This situation is likely to happen if, for example, is strictly decreasing on the line segment
. In this case, can be set.

Wk xi∂
∂

f xk()
i W∈ k i W∈ k

B x() i : xi li=
xi∂
∂

f xk() 0≥,
 
 
 

i : xi ui=
xi∂
∂

f xk() 0≤,
 
 
 

∪=

pk

Ak

βk

pk

Wk

αk

pk xk pk+ μk 0 1,()∈

xk μk pk⋅+

αk αk 0(μk],∈

αk μk

f xk μk pk⋅+()∇
T

pk⋅ 0<

f x()
xk x, k μk pk⋅+[] αk μk=
110 Optimizer User Guide
N-2017.09

3: Reference Guide
References
References

[1] M. H. DeGroot, Probability and Statistics, Massachusetts: Addison-Wesley, 2nd ed.,
1986.

[2] J. J. Moré and S. J. Wright, Optimization Software Guide, Frontiers in Applied
Mathematics, vol. 14, Philadelphia: SIAM, 1993.
Optimizer User Guide 111
N-2017.09

3: Reference Guide
References
112 Optimizer User Guide
N-2017.09

	Return to Front Page
	Optimizer User Guide
	Contents
	About This Guide
	Related Publications
	Conventions
	Customer Support
	Accessing SolvNet
	Contacting Synopsys Support
	Contacting Your Local TCAD Support Team Directly

	Chapter 1 Using Optimizer
	Functionality of Optimizer
	Starting Optimizer

	Chapter 2 Operations Guide
	Basic Concepts
	Optimizer Structures
	Sequencing Tasks
	Task Interdependency
	Reference Example

	Input Command File
	Main Blocks
	Start
	Global Options
	Task

	Inner Blocks
	Parameter
	Response

	Sequencing Tasks
	Determining Order of Tasks
	Using Previous Parameter Values

	Evaluating Tasks
	Using Simulation Processes
	Using Formulas and Functions

	Importing Partial Results From Previous Tasks

	Design-of-Experiments
	Deterministic Design-of-Experiments
	Stochastic Design-of-Experiments

	Response Surface Models (RSMs)
	Model Definition
	Model
	Transformation
	Degree

	Model Information
	Model Accuracy
	Model Coefficients
	Model Variance
	ANOVA Table
	Histogram
	Moments
	Model Expressions

	Specific Tasks
	Parameters and Responses
	Iterations
	Final Analysis Tool

	Screening Task
	Overview
	Command Description
	Output

	Optimization Task
	Optimization Criteria
	Optimization Method
	Command Description
	Output

	Iterative Optimization Task
	Search Heuristic
	Definitions
	Algorithm

	Stopping Criteria
	Computational Resources
	Quality of the Solution
	Closeness to a Local Optimum
	Evaluation Sequence
	Response Value Range Termination

	Command Description
	Declaration Examples for Range Termination

	Output

	Generic Optimization Task
	Quasi-Newton Method Applied to Bound-Constrained Optimization Problems
	Nonlinear Simplex Method
	Stopping Criteria
	Command Description
	Output

	Genetic Algorithm Task
	Main Steps of the Algorithm
	Stopping Criteria

	Command Description
	Mandatory Attributes
	Optional Attributes

	Files Generated by Genetic Algorithm

	Sensitivity Analysis Task
	Command Description
	Output

	Uncertainty Analysis Task
	Mathematical Background
	Example
	Command Description
	Output

	Design-of-Experiments Task
	Command Description
	Output

	Stochastic Design-of-Experiments Task
	Command Description
	Output

	Custom Task
	Command Description
	Output

	Integration of Sentaurus Workbench
	Sentaurus Workbench Scenarios
	Reusing All Simulation Results

	Advanced Features
	Restarting
	Sequencing of Tasks
	Example: Screening and Iterative Optimization

	Task Interdependency
	Exportable Information

	Convergence Plot

	References

	Chapter 3 Reference Guide
	Optimizer Commands Reference
	Names and Symbols
	Global Options
	Inner Blocks for Parameters
	Inner Blocks for Responses
	Inner Blocks for Stopping Criteria
	Specific Task Parameters for Screening
	Specific Task Parameters for Iterative Optimization
	Specific Task Parameter for Generic Optimization
	Specific Task Parameters for Genetic Algorithm Optimization
	Specific Task Parameters for Sensitivity Analysis
	Specific Task Parameters for Uncertainty Analysis
	Specific Task Parameters for Design-of-Experiments
	Specific Task Parameters for Stochastic Design-of- Experiments
	Custom Task Parameters

	Output Files
	Uncertainty Analysis Task
	Sensitivity Analysis Task
	Screening Task
	Generic Optimization Task
	Optimization Task
	Iterative Optimization Task
	Design-of-Experiments Task
	Stochastic Design-of-Experiments Task

	Mathematical Expressions
	Gradient Vector
	Hessian Matrix

	Equations for Response Surface Models
	Model Accuracy
	ANOVA Table
	Moments

	Optimization Problem
	Optimization
	Gradient-Based Optimization Methods
	Step Direction
	Steepest Descent Direction
	Newton Direction
	Step-Length Method
	Trust-Region Method
	Comparison

	Derivative Approximations and Optimization Methods
	Finite-Difference Approximations

	Quasi-Newton Methods
	Nongradient-Based Methods
	Bound-Constrained Optimization Methods

	References

