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About This Guide

The Sentaurus™ Device Monte Carlo User Guide consists of the module for Monte Carlo
simulation – single-particle device Monte Carlo – as well as the band-structure and mobility
calculator Sentaurus Band Structure.

In the single-particle device Monte Carlo simulator, one particle (electron or hole) after
another is simulated in the device as it travels from one contact to another until good statistics
for the charge density are obtained. Then, the nonlinear Poisson equation is solved. This
procedure is iterated until convergence. The result is a self-consistent steady-state solution of
the Boltzmann and Poisson equations. The tool can simulate process-simulated devices with
unstructured grids. It permits you to consider silicon, germanium, or SiGe band structures
under arbitrary stress conditions as well as arbitrary crystallographic surface and channel
orientations, as well as InGaAs for electrons. It also permits users to import externally
generated band structure tables. Alternatively, built-in analytic band models can be used for a
given strain tensor (see [1] in the case of holes). The simulation results have been found to be
in good agreement with measured on-currents in the nanoscale regime [2], and the tool has
been applied to advanced strained-silicon devices at the scaling limit of CMOS [3]. Arbitrary
lattice temperatures and mobility reduction in high-k gate stacks can be considered. The single-
particle device Monte Carlo simulator can be run in parallelized mode featuring a high speedup
with the number of cores used. One-dimensional, 2D, and 3D devices can be simulated.

Sentaurus Band Structure can be used to compute tables of full-band structure under arbitrary
strain for use by Monte Carlo simulation. In addition, the mobility calculator feature can be
used to compute the subband structure and inversion layer mobility of 1D device structures
under arbitrary strain and device orientation.

The Sentaurus™ Device Monte Carlo User Guide is divided into the following parts:

■ Part I discusses aspects of single-particle device Monte Carlo simulation.

■ Part II discusses aspects of Sentaurus Band Structure.

Related Publications

For additional information, see:

■ The TCAD Sentaurus release notes, available on the Synopsys SolvNet® support site (see
Accessing SolvNet on page xvi).

■ Documentation available on SolvNet at https://solvnet.synopsys.com/DocsOnWeb.
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Conventions

The following conventions are used in Synopsys documentation. 

Customer Support

Customer support is available through the Synopsys SolvNet customer support website and by
contacting the Synopsys support center.

Accessing SolvNet

The SolvNet support site includes an electronic knowledge base of technical articles and
answers to frequently asked questions about Synopsys tools. The site also gives you access to
a wide range of Synopsys online services, which include downloading software, viewing
documentation, and entering a call to the Support Center.

To access the SolvNet site:

1. Go to the web page at https://solvnet.synopsys.com.

2. If prompted, enter your user name and password. (If you do not have a Synopsys user name
and password, follow the instructions to register.)

If you need help using the site, click Help on the menu bar.

Convention Description

Blue text Identifies a cross-reference (only on the screen).

Bold text Identifies a selectable icon, button, menu, or tab. It also indicates the name of a field or an 
option.

Courier font Identifies text that is displayed on the screen or that you must type. It identifies the names 
of files, directories, paths, parameters, keywords, and variables.

Italicized text Used for emphasis, the titles of books and journals, and non-English words. It also 
identifies components of an equation or a formula, a placeholder, or an identifier.
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Contacting Synopsys Support

If you have problems, questions, or suggestions, you can contact Synopsys support in the
following ways:

■ Go to the Synopsys Global Support Centers site on synopsys.com. There you can find e-
mail addresses and telephone numbers for Synopsys support centers throughout the world.

■ Go to either the Synopsys SolvNet site or the Synopsys Global Support Centers site and
open a case online (Synopsys user name and password required).

Contacting Your Local TCAD Support Team Directly

Send an e-mail message to:

■ support-tcad-us@synopsys.com from within North America and South America.

■ support-tcad-eu@synopsys.com from within Europe.

■ support-tcad-ap@synopsys.com from within Asia Pacific (China, Taiwan, Singapore,
Malaysia, India, Australia).

■ support-tcad-kr@synopsys.com from Korea.

■ support-tcad-jp@synopsys.com from Japan.
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Part I Single-Particle Device Monte Carlo

This part of the Sentaurus™ Device Monte Carlo User Guide contains the following 
chapters:

Chapter 1 Simulation Procedure on page 3

Chapter 2 Input Specification on page 19

Chapter 3 Physical and Numeric Models on page 31

Chapter 4 Strained Silicon on page 55

Chapter 5 Surface and Channel Orientations on page 71

Chapter 6 Stress-Dependent Built-in Analytic Band Structures on page 75

Chapter 7 Transport in Strained SiGe on page 85

Chapter 8 Electron Transport in InGaAs on page 91

Chapter 9 Mobility Reduction in High-k Gate Stacks on page 93

Chapter 10 Parallelization on page 101

Chapter 11 Example: NMOS Transistor on page 105





CHAPTER 1 Simulation Procedure

This chapter explains how to perform a single-particle device Monte
Carlo simulation. For more details about Sentaurus Device
simulations and the input syntax, refer to the Sentaurus™ Device
User Guide.

A Monte Carlo simulation has two main steps. First, a drift-diffusion simulation is run. Second,
based on this, a Monte Carlo simulation is performed. Typically, the Monte Carlo method is
applied to a window that excludes the polysilicon region, but covers most of the device,
including almost all parts of the gate oxide.

The drift-diffusion simulation yields an electric field that is used in the initial frozen-field
simulation of the iteration between a Monte Carlo transport simulation and the Poisson
equation. The drift-diffusion simulation also predicts the density distribution of electrons and
holes. The tool integrates these density distributions over the entire Monte Carlo window and
simulates only the carrier type with the greater integral of the density. Furthermore, the tool
assumes that the integrated density of the predominant carrier type is predicted correctly by the
drift-diffusion simulation. Consequently, compared to a drift-diffusion simulation, a Monte
Carlo simulation changes only the shape of the density distribution, but not the total charge in
the Monte Carlo window.

Initial Sentaurus Device Simulation

The command file of the drift-diffusion simulation drift_new.cmd is:

File {
grid    = "n5_msh.tdr"
current = "drift_new"
output = "drift_new"
plot    = "drift_new"
save = "drift_new"
param   = "nmos"

}
Plot { eVelocity/Vector eCurrent/Vector hCurrent/Vector

ElectricField/Vector
eDensity hDensity potential
ConductionBandEnergy ValenceBandEnergy
GradConductionBand GradValenceBand

}

Sentaurus™ Device Monte Carlo User Guide 3
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1: Simulation Procedure 
Initial Sentaurus Device Simulation
Electrode {
{ name=gate voltage=1.2 barrier=0.06 }
{ name=bulk voltage=0 }
{ name=source voltage=0 }
{ name=drain voltage=0.0 }

}
Physics {

mobility (
highfieldsaturation
Enormal
PhuMob

)
EffectiveIntrinsicDensity ( Slotboom NoFermi )

}
Math {

method=blocked
submethod=pardiso
wallclock
Extrapolate
Derivatives
RelErrControl
Digits=5
ErRef(electron)=1.e10
ErRef(hole)=1.e10
Notdamped=50
Iterations=50

}
Solve {

#----- solution at initial conditions
Poisson
coupled {poisson electron hole}

#----- ramp 
Quasistationary ( InitialStep=0.001 MinStep=1.0e-5 MaxStep=0.1
goal { name=drain voltage=1.2 }
) {

coupled {poisson electron hole}
}

}
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1: Simulation Procedure
Initial Sentaurus Device Simulation
The  NMOS transistor of the example is simulated.

The File section contains all of the files needed for the simulation. Grid and doping
information are read from the file n5_msh.tdr. The results are written to the files:

■ drift_new_des.plt (terminal currents)

■ drift_new_des.tdr (plot file of all quantities defined in the Plot section for
visualization with Sentaurus Visual)

■ drift_new_des.sav (save file from which the Monte Carlo simulation is started)

■ drift_new_des.log (textual output)

File extensions, for example, .tdr, do not have to appear in the command file because the
program adds them automatically if they are missing. For more information about the
predefined extensions, refer to the Sentaurus™ Device User Guide.

The parameter file nmos.par contains the parameter values for the various physical models
specified in the Physics section and is given by:

Bandgap
{ * Eg = Eg0 + dEg0 + alpha Tpar^2 / (beta + Tpar) - alpha T^2 / (beta + T)

Chi0 = 4.05 # [eV]
Eg0 = 1.12 # [eV]
dEg0(Slotboom) = 0.0e+00# [eV]
alpha = 0.00e+00    # [eV K^-1]
beta = 0.00e+00    # [K]
Tpar = 300.0000e+00 # [K]

}
eDOSMass {

Formula = 2     # [1]
Nc300   = 2.97101e+19 # [cm-3]

}
hDOSMass {

Formula = 2     # [1]
Nv300   = 2.2400e+19 # [cm-3]

}
ConstantMobility:
{ * mu_const = mumax (T/T0)^(-Exponent)

mumax = 1.423e+03 , 476.070 # [cm^2/(Vs)]
}
HighFieldDependence:
{ * Caughey-Thomas model:
* mu_highfield = mu_lowfield / ( 1 + (mu_lowfield E / vsat)^beta )^1/beta
* beta = beta0 (T/T0)^betaexp.
beta0 = 1.13417 , 1.213   # [1]

 * Formula1 for saturation velocity:
 * vsat = vsat0 (T/T0)^(-Vsatexp)

0.1 μm
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Initial Sentaurus Device Simulation
 * (Parameter Vsat_Formula has to be not equal to 2):
vsat0 = 1.0200e+07 , 8.3700e+06      # [1]

}
PhuMob: 
{ * Philips Unified Mobility Model:

mumax_As = 1.423e+03 # [cm^2/Vs]
mumin_As = 55.9 # [cm^2/Vs]
mumax_P = 1.423e+03 # [cm^2/Vs]
mumax_B = 476.070 # [cm^2/Vs]

}NormalMob
{ * mu_Enorm^(-1) = mu_ac^(-1) + mu_sr^(-1) with:
* mu_ac = B / Enorm + C (T/T0)^(-1) (N/N0)^lambda / Enorm^(1/3) )
* mu_sr^-1 = Enorm^(A+alpha*n/N^nu) / delta + Enorm^3 / eta
* EnormalDependence is added with factor exp(-l/l_crit), where l is
* the distance to the nearest point of DES_c_Si/DES_c_SiO2 interface. Factor 
* is equal to 1 if l_crit > 100.

B       = 3.6100e+07 , 1.5100e+07 # [cm/s]
C       = 4.0e+08 , 4.1800e+03 # [cm^5/3/(sV^2/3)]
N0      = 1 , 1 # [cm^-3]
lambda = -0.2399 , 0.0119 # [1]
delta   = 3.5800e+18 , 4.1000e+15 # [V/s]
A       = 2.58 , 2.18 # [1]
alpha = 6.8500e-21 , 7.8200e-21 # [1]
nu      = 0.0767 , 0.123 # [1]
eta     = 5.8200e+30 , 2.0546e+30 # [V^2/cm*s]
l_crit = 1.0000e-06 , 1.0000e-06 # [cm]

} 

NOTE The single electron in the simulation carries the whole electron charge
as obtained by integrating the electron density of Sentaurus Device over
the whole device. Therefore, the physical models of the Sentaurus
Device simulation should be as consistent as possible with the Monte
Carlo model. For example, the effective densities-of-states  and 
must correspond to the values resulting from the full band structure, and
Boltzmann statistics should be used as in the Monte Carlo simulation.
The parameters of Sentaurus Device listed above ensure this
consistency for the simulation example.

In the Plot section, the quantities to be viewed in a visualization tool, as a function of position,
are defined.

In the Electrode section, the initial voltage at the gate contact is defined to be 1.2 V and 0.0 V
at all other contacts. When the polysilicon region is also included in the simulation, as in the
example, the value in the barrier variable only serves to take into account the threshold shift
due to quantum effects.

In the Physics section, all of the adjustable physical models can be defined.

Nc Nv
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Single-Particle Device Monte Carlo Simulation
NOTE For a meaningful comparison of the simulation results at high drain
voltages between Sentaurus Device and single-particle device Monte
Carlo, the drain currents should coincide at low drain voltages. Since the
surface mobility models for Sentaurus Device and single-particle device
Monte Carlo are different, the parameters of Sentaurus Device for this
model (keyword Enormal in the Physics section, and ENormalMob
in the parameter file nmos.par) should be adjusted at gate
voltage=supply voltage, and low drain voltage (for example, 0.05 V or
0.1 V), so that the drain currents of Sentaurus Device and single-particle
device Monte Carlo are approximately the same (see the previous note).

In the Math section, some parameters of the numeric methods used are specified. Extrapolation
is used in the quasistationary simulation. The variables for the initial condition for a given
quasistationary step are computed using an extrapolation from the previous step.

In the Solve section, the equations that Sentaurus Device must solve and how they are to be
solved are defined. In this example, first, there is an independent solution of the Poisson
equation. This is followed by a self-consistent solution of three equations: the Poisson
equation, electron continuity equation, and hole continuity equation. This gives the solution for
the specified initial conditions. Then, there is a quasistationary and simultaneous calculation of
the same three equations, which ramps the voltage of the drain contact from 0 V to 1.2 V. Only
at the end of the quasistationary calculation are the output files drift_new_des.XXX
generated.

The simulation is run by typing:

sdevice drift_new

Single-Particle Device Monte Carlo Simulation

When the program finishes, the save file drift_new_des.sav is created, which corresponds
to a voltage of 1.2 V at the drain contact. This solution is used to start a Monte Carlo simulation
using the command file mc_new.cmd.

File {
grid = "n5_msh.tdr"
current = "mc_new"
output = "mc_new"
plot = "mc_new"
load = "drift_new"
param = "nmos"
MonteCarloOut = "mc_new"

}

Sentaurus™ Device Monte Carlo User Guide 7
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Single-Particle Device Monte Carlo Simulation
MonteCarlo {
CurrentErrorBar = 2.5
MinCurrentComput = 19
DrainContact = 1 # No. of drain contact in .tdr (count from 0)
useTestFunction
SelfConsistent(FrozenQF)
SurfScattRatio = 0.85
Window = Rectangle [(-0.225,-0.00201) (0.225, 4.25)]
FinalTime = 4.0e-6 # Simulation time until stationary state
Plot { Range = (0,40.e-6) intervals = 100 } # Total simulation time

}
Plot {

MCField/Vector
eMCDensity hMCDensity
eMCEnergy hMCEnergy
eMCVelocity/Vector hMCVelocity/Vector
eMCAvalanche hMCAvalanche
eMCCurrent/Vector hMCCurrent/Vector

}
Electrode {

{ name=gate voltage=1.2 barrier=0.06 } # quantum threshold shift
{ name=bulk voltage=0 } # bulk
{ name=source voltage=0 } # source
{ name=drain voltage=1.2 } # drain

}
Thermode {

{ name=gate temperature=300 } # gate
{ name=bulk temperature=300 } # bulk
{ name=source temperature=300 } # source
{ name=drain temperature=300 } # drain

}
Physics {

mobility (
highfieldsaturation
Enormal
PhuMob

)
EffectiveIntrinsicDensity ( Slotboom NoFermi )

}
Math {

method=pardiso
wallclock
Extrapolate
Derivatives
RelErrControl
Digits=5
ErRef(electron)=1.e10
ErRef(hole)=1.e10
8 Sentaurus™ Device Monte Carlo User Guide
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Single-Particle Device Monte Carlo Simulation
Notdamped=50
Iterations=50
currentweighting

}
Solve {

coupled {poisson electron hole}
montecarlo

}

In the File section, the names of the output files are changed and three new entries are added.
The file drift_new_des.sav is specified to be loaded at the beginning of the simulation and
is used as initial condition for the simulation. The keyword MonteCarloOut determines the
prefix of the Monte Carlo output files with the results for the currents.

In the Electrode section, a voltage of 1.2 V at the drain contact is specified, which
corresponds to the voltage used in the save file drift_new_des.sav.

In the Math section, the keyword currentweighting is added. This keyword activates the
computation of the drain current by using the test function method, and the keyword
useTestFunction must be present in the Sentaurus Device Monte Carlo command file if the
drain current is to be estimated by the test function method. Otherwise, the drain current is
calculated by direct particle counting.

To take advantage of modern multicore machines, the tool supports parallelization of particles
through the keyword NumberOfSolverThreads in the Math section of the Sentaurus Device
command file (see Sentaurus™ Device User Guide, Table 211 on page 1403).

In the MonteCarlo section, the number of a contact in the file n5_msh.tdr can be given
following the keyword DrainContact. For this contact, the tool computes the current and its
statistical error. Despite the name DrainContact, any contact can be specified. In practice,
always select a contact with a comparatively high current; otherwise, the statistical error of the
computed current will be very high.

NOTE The numbering of the contact names in the grid file begins with zero. 

Then, a Monte Carlo Window must be defined. The window is a rectangle with edges parallel
to the axes and should consist of the entire MOSFET, excluding the polysilicon region, and
including the major part of the gate oxide. The gate oxide is included so that the change of the
oxide field is considered during self-consistent Monte Carlo simulations.

For self-consistent simulations, it is necessary to consider that a certain number of iterations
are required to reach self-consistency between the carrier distribution and electrostatic
potential. Only after this time does the simulation fluctuate around the stationary solution and
the gathering of statistics begins. The tool cannot determine the simulation time required to
Sentaurus™ Device Monte Carlo User Guide 9
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1: Simulation Procedure 
Single-Particle Device Monte Carlo Simulation
reach the steady state automatically; it must be specified explicitly by the keyword
FinalTime.

In contrast, the maximum total simulation time is given in the Plot keyword as the second
number in the Range interval. Finally, intervals specifies the number of intervals into
which the maximum total simulation time is divided. After each interval, an estimation for
drain and substrate currents is performed, and a plot file for visualization of the internal
variables is generated (for example, mc_new_000001_des.tdr after the first interval).
Before reaching the steady state, the estimates for the internal variables in the plot file
correspond to the last interval only. After that time, cumulative expectation values are
displayed.

In the example, FinalTime = , maximum total simulation time = , and
intervals = 100. This means that the interval for one iteration lasts  and cumulative
averaging begins after ten iterations. The estimates of the internal variables in the plot files
beginning with the eleventh interval correspond to averages over all but the initial ten intervals.
For example, the variables in mc_new_000024_des.tdr result from averaging over 14
intervals.

For solving the Poisson equation at the end of each simulation time interval, the tool always
uses the carrier density distribution computed in that particular interval, rather than the density
accumulated over multiple intervals. As a consequence of this approach, the number of Newton
iterations needed to solve the Poisson equation and the initial residual of the Poisson equation
do not systematically reduce further when the stationary state is reached.

If the keywords CurrentErrorBar and MinCurrentComput are assigned a value, the
simulation can stop before the end of the maximum total simulation time. In this case, the
simulation ends when the ‘relative error’ of the drain current is smaller than
CurrentErrorBar and, at least, MinCurrentComput iterations (and, therefore, current
computations) have been performed after the stationary state is reached. 

Self-consistent simulations are activated by the keyword SelfConsistent. For stability
reasons, the nonlinear Poisson equation must be used, which is specified by the option
FrozenQF in parentheses following SelfConsistent. 

Finally, surface roughness scattering is modeled in the tool by a combination of specular and
diffusive scattering. The ratio of specular scattering is given by the keyword
SurfScattRatio. The default is 85% specular scattering, that is, 15% diffusive scattering.
The parameter SurfScattRatio is used to adjust the drain current of the Monte Carlo
simulation to measurements (typically, if the gate voltage is equal to the supply voltage and, at
a low drain voltage of, for example, 0.05 V or 0.1 V).

4 μs 40 μs
0.4 μs
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1: Simulation Procedure
Screen Output of Single-Particle Device Monte Carlo Simulation
NOTE If the simulation interval for one iteration is too short to give a
reasonable estimation of the density, the accuracy of the simulation
result is jeopardized. For example, this is the case if there are ‘holes’
inside the inversion channel when viewing
mc_new_000001_des.tdr. In general, the simulation time for one
interval depends on the device, and the figure must be established
empirically. Several time intervals must be tested to ensure that the
chosen time interval is long enough. Of course, the aim is to select a
time interval as small as possible because this minimizes the time for
reaching the stationary state.

The number of iterations required to reach the stationary state is also a figure to be established
empirically. However, this is not critical since the average value of the current always
converges versus the true value for a long-enough simulation time.

For too few iterations, some ‘nonstationary’ values are considered in the averaging procedure,
therefore, increasing the simulation time for reaching a good current estimation. For too many
iterations, some ‘stationary’ values are omitted in the averaging procedure, which also
increases the simulation time for reaching a good current estimation. In addition, for a
‘reasonable error estimation,’ averaging must not begin before the stationary state is reached
(see Estimating Currents on page 42).

In the Solve section, the drift-diffusion solution is recomputed for reasons of consistency. The
save file that is loaded contains only the electrostatic potential, carrier densities, and lattice
temperature. Quantities such as the carrier velocities are computed from these basic variables
only.

In the Plot section, the quantities that are computed by the Monte Carlo simulation and can
be visualized with Sentaurus Visual are defined.

Screen Output of Single-Particle Device Monte Carlo 
Simulation

The Monte Carlo simulation is run by typing:

sdevice mc_new

Sentaurus Device produces detailed output during each simulation about the specifications
chosen and the convergence properties of the run. Some specifications from the MonteCarlo
section can be found at the beginning of the output file. 
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1: Simulation Procedure 
Screen Output of Single-Particle Device Monte Carlo Simulation
The number of window elements and boundary elements in which carriers are injected are
shown immediately before the Monte Carlo simulation begins:

==============================
Starting solve of next problem:
MonteCarlo
===============================
Number of window   elements : 8063
Number of boundary elements : 66

******************************************************************************

Then, the tool starts to read the input files, such as band-structure information. This can take
some time because the band structure table is large. After some calculations regarding, for
example, the scattering rates, some band structure data is printed that is needed, for example,
as input for Sentaurus Device simulations and that changes under stress and for modified
surface orientation:

Effective DOS: electron hole 2.872067300E+19 2.061158400E+19
Band-gap electronegativity (unstrained Si: 1.120 4.05) 1.120 4.050
electron: m_quant m_dos gamma 0.892 1.096 3.684
hole: m_quant m_dos gamma 0.266 0.878 9.897
eminx, eminy, eminz 0.000 0.000 0.000
emqx, emqy, emqz 0.196 0.196 0.892
hmin0, hmin1, hmin2 0.043 0.000 0.000
hmq0, hmq1, hmq2 0.233 0.212 0.266

Then, the main simulation parameters are printed:

Now: Number of electrons = 1
Now: Number of holes = 0
done.
Simulation time per frozen-field iteration = 4.000000000000000E-007
Simulation time until stationary state = 4.000000000000000E-006
Maximum total simulation time = 4.000000000000000E-005

The tool calculates whether to simulate an electron or a hole based on their total charge in the
Monte Carlo window. Since an NMOSFET is under consideration, electrons are more
numerous and, therefore, an electron is simulated.

After some checks, the main Monte Carlo routine is entered:

MC time: 0.0000e+00s: Writing plot 'mc_new_000000_des.tdr'... done.
done.
Entering propagation routine

Total simulation time (micro sec) = 7.177531000056912E-002
Number of particles propagated = 100000
Mean energy of injected particles (eV) = 5.2868258E-02
Mean propagation time per trajectory (ps) = 0.717753097065775
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Screen Output of Single-Particle Device Monte Carlo Simulation
Total simulation time (micro sec) = 0.144085571838629
Number of particles propagated = 200000 
Mean energy of injected particles (eV) = 5.2735962E-02
Mean propagation time per trajectory (ps) = 0.720427856242271

Total simulation time (micro sec) = 0.214427214289264
Number of particles propagated = 300000
Mean energy of injected particles (eV) = 5.2720539E-02
Mean propagation time per trajectory (ps) = 0.714757378036568

Total simulation time (micro sec) = 0.285396316309597
Number of particles propagated = 400000
Mean energy of injected particles (eV) = 5.2756481E-02
Mean propagation time per trajectory (ps) = 0.713490787851533

Total simulation time (micro sec) = 0.355100399215986
Number of particles propagated = 500000
Mean energy of injected particles (eV) = 5.2747753E-02
Mean propagation time per trajectory (ps) = 0.710200795522990
Cumulative simulation time: .4000000E+06 psec, Particle number: 1
Leaving propagation routine
Number of propagated particles = 561614
Simulation time (micro sec) = 0.400000000000000

After the first iteration is completed, as shown above, the nonlinear Poisson equation is solved:

Computing poisson-equation
using Bank/Rose nonlinear solver.

Iteration   |Rhs|      factor     |step|     error   #inner #iterative time
------------------------------------------------------------------------------

0      1.97e+01
1      2.69e+01   1.00e+00   2.28e-01   1.62e+02    0         1      0.25
2      5.68e+00   1.00e+00   4.69e-02   3.38e+01    0         1      0.40
3      4.36e-01   1.00e+00   1.04e-02   7.18e+00    0         1      0.57
4      3.04e-03   1.00e+00   6.62e-04   4.31e-01    0         1      0.73

Finished, because...
Error smaller than 1 ( 0.430914 ).

Accumulated (wallclock) times:
Rhs time:        0.07 s
Jacobian time:   0.08 s
Solve time:      0.53 s
Total time:      0.78 s

gamma (impurity scattering) = 1.0569807E+15
Completion status: 1.0000 %
Writing Monte Carlo output files.
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Single-Particle Device Monte Carlo Results
Preparing data sets for visualization.

Computing test functions ... done.
contact        voltage     electron current    hole current conduction current
source       0.000e+00      -3.574e-04         6.020e-89       -3.574e-04
drain        1.200e+00       3.603e-04         1.098e-89        3.603e-04
gate         1.200e+00       0.000e+00         0.000e+00        0.000e+00
bulk         0.000e+00      -2.882e-06        -7.118e-89       -2.882e-06

Integrated generation rates:   window    whole device
avalanche [A]      3.375e-10    0.000e+00
total G-R [A]      3.375e-10    0.000e+00

MC time: 4.0000e-07s: Writing plot 'mc_new_000001_des.tdr'... done.
done.
Entering propagation routine

Then, the first plot file mc_new_000001_des.tdr is generated and the propagation routine is
entered for the second iteration. This entire procedure is repeated until the end of the
simulation.

Single-Particle Device Monte Carlo Results

The plot files for the visualization of internal variables, such as density, electron temperature,
and velocity, are stored in the files mc_new_000024_des.tdr and so on, and can be viewed
using Sentaurus Visual.

The files with the simulation results for the currents have the suffixes _time.plt and
_average.plt. They contain estimates of the current at the contact that was specified by the
keyword DrainContact (called MCdrain in the .plt file) as well as the integral of the impact
ionization rate over the entire Monte Carlo window (called MCsubstrate) (see Eq. 20, p. 43).

In the file with the suffix _time.plt, the current estimates, which correspond only to one
iteration interval, are stored as a function of the simulation time. Here, it is possible to deduce
the time after which the simulation has reached the stationary state and the current begins to
fluctuate around its average value.

In contrast, the file with the suffix _average.plt contains the cumulative averages over the
current values stored in the file with the suffix _time.plt. They are plotted as a function of
the number of iterations after reaching the stationary state. From this construction, it follows
that the fluctuations of the cumulative averages diminish over the course of the simulation time.
These cumulative averages represent the final simulation result. In addition, the ‘relative
errors’ of these averages can be extracted from the file with the suffix _average.plt.
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Ramping of Boundary Conditions
For more details on the definition of these quantities, see Averages and Statistical Error of the
Currents on page 44.

However, these errors only represent a reasonable criterion for stopping the simulation when
the gathering of statistics begins after reaching the stationary state (see Estimating Currents on
page 42). The results contained in the files with the suffixes _time.plt and _average.plt
can be viewed by using the visualization tool Inspect.

Ramping of Boundary Conditions

Instead of running one Sentaurus Device Monte Carlo process per bias point, it is possible to
combine calculations for multiple bias points in a single Sentaurus Device Monte Carlo run. In
conjunction with parallelization (see Chapter 10 on page 101), this provides a simple way to
obtain Monte Carlo–based I–V curves with minimal effort. For illustration, you will add the
calculation of an Id–Vd curve to the MCpFinFET example in the Applications Library. This
example can be found in the directory:

$STROOT/tcad/$STRELEASE/Applications_Library/GettingStarted/sdevice/MCpFinFET

This project contains a number of Monte Carlo nodes, each of which calculates data for a single
bias point. Ramping the drain voltage can be switched on in the command file of the Sentaurus
Device instance called SPMC:

1. Change the Solve section to:

Solve {
Coupled {poisson hole}
NewCurrentPrefix="n@node@_MCRamping_" # start new plot file for MC ramp
QuasiStationary(Goal{name="Drain" voltage=-0.05} maxstep=0.077 doZero) {

Plugin(iterations=0 breakOnFailure) {
Coupled {poisson hole} # total charge for MC charge scaling
Save(filePrefix="n@node@_beforeMC") # write DD results to file
Montecarlo # perform Monte Carlo simulation at bias point
# Plot statements for plotting MC results should go here.
Load(filePrefix="n@node@_beforeMC") # restore DD results

}
}

}

2. Add the following line to the MonteCarlo section:

-InternalCurrentPlot

This disables writing of data points from the internal Boltzmann–Poisson iteration of the
self-consistent Monte Carlo solver. Without -InternalCurrentPlot, the current plot
file would contain a cloud of individual Monte Carlo current samples in addition to the
converged Monte Carlo results.
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Ramping of Boundary Conditions
The new Solve section uses a Quasistationary statement to ramp the gate bias. At each
bias point, a plug-in loop is evaluated. In the options section of the PlugIn statement,
iterations=0 means that each entry of the plug-in loop is evaluated exactly once (no
convergence checking), and breakOnFailure aborts the plug-in loop if one of its equations
fails to converge.

The first entry in the body of the plug-in loop requests a coupled solution of the Poisson
equation and the current continuity equation for holes. This prepares the initial solution for the
MonteCarlo simulation that forms the third entry of the plug-in loop. Before calling
MonteCarlo, the simulator status is written to a .sav file. At the end of the Plugin loop, this
file is reloaded into the simulator. This procedure serves to eliminate convergence issues that
otherwise could arise from the fact that a Monte Carlo simulation is not necessarily a good
starting point for a drift-diffusion simulation with the inherent assumption of local equilibrium.

The NewCurrentPrefix statement sets the name of the current plot output file for the Id–Vd

curve. For each electrode, the Monte Carlo current and its  absolute error are stored under
the names MCTotalCurrent and MCTotalCurrentError, respectively. In addition, there
are TotalCurrent values, which are the currents obtained from the drift-diffusion (Coupled
{poisson hole}) simulation at the end of the plug-in loop. The Id–Vd curve from the Monte
Carlo simulation (with error bars obtained by adding or subtracting MCTotalCurrent and
MCTotalCurrentError) is shown in Figure 1. 

Figure 1 Id–Vd curve from Monte Carlo simulation
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Ramping of Boundary Conditions
Note that no Monte Carlo simulation is performed at zero drain bias: At zero drain bias, the
current is zero, of course, but the Monte Carlo simulation is ill suited to produce this result. The
relative error criterion CurrentErrorBar becomes meaningless; the simulation runs all the
way to the maximum-allowed time (the upper bound of the Plot range in the MonteCarlo
section); and the final result is pure Monte Carlo noise.

NOTE Single-particle device Monte Carlo always takes the total number of
charge carriers from the previous simulation result. Therefore, the
Quasistationary ramping statement must include a statement for
calculating an appropriate starting solution. Putting only the
MonteCarlo section inside the ramping statement never updates the
total carrier number:

• Typically, the starting solution is produced using either
Coupled{poisson hole} or Coupled{poisson electron}.

• Monte Carlo results far from equilibrium may be an inadequate
starting solution for a drift-diffusion calculation (local equilibrium
assumed). To avoid possible convergence issues, it is recommended
to use Save/Load commands to restore solution variables to their
pre–Monte Carlo values before performing the next bias step.
Monte Carlo results can be plotted by inserting a Plot statement
between the MonteCarlo and Load statements in the Solve
section.

• For Id–Vg curves, it is recommended to ramp down the gate voltage
from the fully switched-on state towards the threshold voltage. In
deep subthreshold, the accuracy of the Monte Carlo results can be
improved using a fixed total sampling time by increasing the length
of the individual Monte Carlo sampling intervals (that is, by
reducing the number of intervals).

• Do not use the test function–based current evaluation
(useTestFunction) for Monte Carlo currents in the subthreshold.
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CHAPTER 2 Input Specification

In this chapter, the Monte Carlo–specific parts of the command file
of Sentaurus Device are explained. For more details about the
command file, refer to the Sentaurus™ Device User Guide.

A typical input file for a Monte Carlo simulation is shown in Chapter 1 on page 3.

Changes must be made in the File, Math, Solve, and Plot sections and the MonteCarlo
section itself. The following sections describe the possible modifications.

File Section

The file names for the simulation are specified in this section. Each keyword uses a predefined
file extension. If the extension is omitted, it is appended automatically. Two keywords can be
defined for Monte Carlo purposes:

MonteCarloOut 

This defines the prefix of the Monte Carlo output files for the current computations.

MonteCarloPath 

This is the path of the directory where Sentaurus Device Monte Carlo finds the data files
that describe input data such as the band structure. By default, MonteCarloPath points
to an installation-specific directory that contains the data files for silicon.

Math Section

In addition to the mathematical models described in the Sentaurus™ Device User Guide, the
keyword currentweighting, which is associated with terminal currents, is introduced in
this section. This keyword defines the domain integration technique to be used in the evaluation
of the drain current.

Parallelization of Monte Carlo simulations is controlled by the NumberOfSolverThreads
keyword (see Chapter 10 on page 101).
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Solve Section
Solve Section

In this section, the equations that Sentaurus Device must solve and how Sentaurus Device
solves them are defined. Users have great flexibility as to which equations are solved and the
methods used (refer to the Sentaurus™ Device User Guide for details).

Monte Carlo Post-Solve

To calculate a Monte Carlo post-solve, MonteCarlo can be specified at any point in the Solve
section like a partial differential equation. Of course, MonteCarlo cannot be coupled to any
of the partial differential equations. However, it can be used in quasistationary simulations.

Plot Section

In the Plot section, the variables that are to be saved in the plot file are selected. Table 1 lists
the Monte Carlo–specific keywords with the corresponding keywords in drift-diffusion
simulations. 

Table 1 Monte Carlo–specific keywords in Plot section

Keyword Corresponding keyword in drift-diffusion simulations

eMCAvalanche, hMCAvalanche The electron and hole parts of the averaged impact ionization rate that 
correspond to eAvalanche and hAvalanche.

eMCCurrent, hMCCurrent The conduction current densities that correspond to eCurrent and 
hCurrent.

eMCCurrentBackward, 
hMCCurrentBackward

The conduction current densities of backward-flying carriers, that is, 
having a negative scalar product between group velocity and 
InjectionDirection.

eMCCurrentForward, 
hMCCurrentForward

The conduction current densities of forward-flying carriers, that is, 
having a positive scalar product between group velocity and 
InjectionDirection.

eMCDensity, hMCDensity The carrier densities that correspond to eDensity and hDensity.

eMCDensityBackward, 
hMCDensityBackward

The carrier densities of backward-flying carriers, that is, having a 
negative scalar product between group velocity and 
InjectionDirection.

eMCDensityForward, 
hMCDensityForward

The carrier densities of forward-flying carriers, that is, having a positive 
scalar product between group velocity and 
InjectionDirection.
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eMCEnergy, hMCEnergy The average carrier energies that correspond, in the case of 
hydrodynamic simulations, to eTemperature and 
hTemperature.

eMCValleyDeltaX Occupation of the -valley along the -axis in the crystallographic 
coordinate system.

eMCValleyDeltaY Occupation of the -valley along the -axis in the crystallographic 
coordinate system.

eMCValleyDeltaZ Occupation of the -valley along the -axis in the crystallographic 
coordinate system.

eMCValleyGamma Occupation of the -valley.

eMCValleyLMinusMinus Occupation of the L-valley pair along the (–1,–1,1) direction in the 
Brillouin zone.

eMCValleyLMinusPlus Occupation of the L-valley pair along the (–1,1,1) direction in the 
Brillouin zone.

eMCValleyLPlusMinus Occupation of the L-valley pair along the (1,–1,1) direction in the 
Brillouin zone.

eMCValleyLPlusPlus Occupation of the L-valley pair along the (1,1,1) direction in the 
Brillouin zone.

eMCVelocity, hMCVelocity The carrier velocities that correspond to eVelocity and 
hVelocity.

eMCVelocityBackward, 
hMCVelocityBackward

The carrier velocities of backward-flying carriers, that is, having a 
negative scalar product between group velocity and 
InjectionDirection.

eMCVelocityForward, 
hMCVelocityForward

The carrier velocities of forward-flying carriers, that is, having a positive 
scalar product between group velocity and 
InjectionDirection.

hMCBandHeavyHole Occupation of the heavy-hole band.

hMCBandLightHole Occupation of the light-hole band.

hMCBandSplitOff Occupation of the split-off band.

MCField The driving field that corresponds to GradConductionBand 
(when electrons are simulated) or GradValenceBand (when holes 
are simulated).

Table 1 Monte Carlo–specific keywords in Plot section

Keyword Corresponding keyword in drift-diffusion simulations

Δ kx
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Δ kz
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MonteCarlo Section

The parameters for the interface to the Monte Carlo simulation are defined in this section.
Table 2 lists the possible keywords.

Table 2 Parameter keywords in MonteCarlo section

Keyword Explanation

WithStrainedMaterial This specifies that the material Strained Silicon is 
simulated with the tool. It is necessary to specify the strain level 
through the germanium content, yGe, in the virtual SiGe substrate, 
or to give the value (in MPa) for a uniaxial stress, or to specify the 
germanium content, xGe, in the active p-type SiGe layer, which is 
grown on a silicon substrate.

yGe = float Germanium content (in percent) in the virtual SiGe substrate that 
defines the strain level in the silicon layer grown on top of the SiGe 
substrate. For current technologies, the typical value is yGe = 
20.0. 
Other supported strain levels are yGe = 10.0, 30.0, and 40.0. 
The band structure tables of these three additionally supported strain 
levels can be obtained from Synopsys on request (send email to 
support-tcad-eu@synopsys.com) and must be placed 
in corresponding directories parallel to the existing directory 
strain20 for yGe = 20.0.

IsInGaAs This specifies that InGaAs is simulated instead of the default material 
SiGe.

xGe = float Germanium content (in percent) in the active SiGe layer that defines 
the contribution of Ge phonon scattering and alloy scattering. The 
pseudopotential band-structure tables for (100)-Si0.7Ge0.3 under 
biaxial compressive strain (specify xGe = 30.0 and 
WithStrainedMaterial) and relaxed Ge (specify xGe = 
100.0) are included. Alternatively, arbitrary analytic structures can 
be used with MCStrain.
If IsInGaAs is specified, xGe corresponds to the gallium content. 
The pseudopotential band-structure tables for relaxed InGaAs with 
gallium contents of 0%, 47%, and 100% are included.

MCStrain= (float,float,float,
float,float,float)

Components of the symmetric strain tensor, which determine the 
analytic band structures used in the simulation.
The values  must be given in the 
coordinate system where the three axes are aligned with the principal 
axes of the three pairs of ellipsoids in the first conduction band.

εxx εyy εzz εyz εxz εxy, , , , ,( )
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CrystDirection = integer This specifies the crystallographic orientation of the channel, that is, 
the crystallographic direction parallel to the interface between silicon 
and SiO2, which essentially corresponds to the direction of the 
current flow in the channel. The default is CrystDirection = 
110, which is the direction used in current technology. 
Alternatively, CrystDirection = 100 can be specified. In 
2D device simulation, the specified crystallographic direction is 
associated with the x-axis, which usually corresponds to the channel 
direction in a MOSFET. 
Note that this direction does not correspond to the substrate 
orientation, that is, the crystallographic direction perpendicular to the 
interface between silicon and SiO2, which is always in the (001) 
direction.

CrystAngle = float This specifies the crystallographic orientation of the channel by 
giving the angle (in degrees) by which the channel direction is rotated 
around the (001) substrate orientation with respect to 
CrystDirection = 100 (see the keyword above). For 
example, CrystAngle = 45 corresponds to 
CrystDirection = 110, but other values allow for different 
channel orientations around the (001) substrate direction.

ChannelDirection = 
(integer,integer,integer)

This specifies the crystallographic orientation of the channel using a 
three-dimensional vector for the crystallographic direction. 
The default is ChannelDirection = (1 1 0).

Normal2OxideDirection = 
(integer,integer,integer)

This specifies the crystallographic surface orientation, that is, the 
direction perpendicular to the interface between the gate oxide and 
channel, using a three-dimensional vector for the crystallographic 
direction. In bulk MOSFETs, this corresponds to the substrate 
orientation. 
The default is Normal2OxideDirection = (0 0 1). 
Normal2OxideDirection must be perpendicular to 
ChannelDirection.

InjectionDirection = 
(float,float,float)

This activates the gathering of separate statistics for forward- and 
backward-flying carriers. At the same time, this specifies a direction 
vector in device coordinates, which is used to determine whether a 
carrier is forward flying or backward flying. 
If the scalar product between InjectionDirection and the 
group velocity of the carrier is positive, the carrier is considered to be 
forward flying; in the opposite case, the carrier is considered to be 
backward flying.

KVecStart = (float,float,float) The start wavevector for visualization of the analytic band energies 
(activated using MCStrain) along a line until KVecEnd.

KVecEnd = (float,float,float) The end wavevector for visualization of the analytic band energies 
(activated using MCStrain) along a line from KVecStart.

Table 2 Parameter keywords in MonteCarlo section

Keyword Explanation
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IIFactor = float Prefactor of the scattering rate for impact ionization. It is used to 
switch off impact ionization by setting IIFactor = 0.0 or to 
adjust, for example, the substrate current. The default is 1.0.

ImpFactor = float Prefactor of the scattering rate for impurity scattering. It is used to 
switch off impurity scattering by setting ImpFactor = 0.0.
The default is 1.0.

AlloyFactor = float Prefactor of the scattering rate for alloy scattering. It is used to switch 
off alloy scattering by setting AlloyFactor=0.0 or to adjust 
the hole mobility in SiGe. The default is 1.0.

CarrierType = autodetect | 
electrons | holes

Selects the carrier type used for Monte Carlo propagation.
Supported values are:
■ autodetect (default): The carrier type is determined by 

integration of the electron and hole densities over the volume of 
the Monte Carlo window. Whichever carrier type is present in the 
Monte Carlo window in larger numbers is selected for 
propagation.

■ electrons: Propagate electrons.
■ holes: Propagate holes.

CurrentErrorBar = float This specifies the ‘relative error’ (in percent) of the drain current, 
below which the simulation is stopped (if the number of iterations 
after steady state is, at the same time, greater than 
MinCurrentComput). If absent, the simulation runs until the 
end of the specified, maximum simulation time.

WithSubstrateError This specifies that it is not the drain current, which is the default, but 
the substrate current that is used to stop the simulation with an error 
criterion. That is, the simulation will stop if the relative error of the 
substrate current is below the value specified by 
CurrentErrorBar. 
In the case of substrate currents, a typical value is 
CurrentErrorBar = 20.0.

MinCurrentComput = float This specifies the minimum number of iterations after steady state 
that are performed irrespective of whether the ‘relative error’ of the 
drain current is less than CurrentErrorBar.

DrainContact = string 
or:
DrainContact = integer 

This selects the contact for which current is computed and to which 
the CurrentErrorBar criterion is applied (unless 
WithSubstrateError is specified). It is recommended to 
specify the contact by name (for example, 
DrainContact="drain").
Alternatively, the contact can be specified by its integer contact 
number: Starting with zero, the contact number counts the contacts in 
the order of their regions in the (.tdr) file and can be queried using 
Sentaurus Data Explorer (tdx -info).

Table 2 Parameter keywords in MonteCarlo section

Keyword Explanation
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SubstrateContact = string The Monte Carlo simulator can estimate the substrate current by 
integrating the avalanche generation rate over the volume of the 
Monte Carlo window. If no SubstrateContact is specified, 
this current is not included in the standard Sentaurus Device current 
plot file. Specifying a contact name (for example, 
SubstrateContact="bulk") causes this current to be 
associated with the selected contact in the current plot file.

SelfConsistent (frozenParams) This defines the Monte Carlo simulation as self-consistent. If 
SelfConsistent is not defined, the frozen field of the initial 
Sentaurus Device simulation is used throughout the simulation. 
frozenParams defines which parameters are frozen during the 
Poisson solve. For stability reasons, this must be the quasi-Fermi 
potentials (frozenParams is equal to 
FrozenQuasiFermi) in the case of Sentaurus Device Monte 
Carlo. That is, the nonlinear Poisson equation is solved.

InternalCurrentPlot
-InternalCurrentPlot

This controls whether data points for the current plot file are added 
for each internal iteration of the self-consistency procedure. By 
default, the InternalCurrentPlot flag is enabled.
To include only the final results of the self-consistency iteration (for 
example, for bias ramping), the flag can be disabled by using 
-InternalCurrentPlot.

SurfScattRatio = float This defines the ratio between specular and diffusive scattering at 
SiO2 interfaces. A value of 1 corresponds to pure specular scattering. 
The default is 0.85.

useTestFunction
-useTestFunction

This controls whether terminal currents are evaluated by direct 
particle counting (-useTestFunction; this is the default) or 
by the test function method (useTestFunction). Direct 
particle counting is the more reliable approach in the subthreshold 
regime. Monte Carlo simulations with contact resistance must use the 
direct particle counting method (-useTestFunction).

WithFermiDiracScreening
-WithFermiDiracScreening

This specifies that not a Boltzmann distribution but a heated Fermi 
distribution is used for the screening of impurity scattering (this is the 
default). For deactivation, that is, using a Boltzmann distribution for 
screening, specify -WithFermiDiracScreening.

CreateDOSFile = integer This writes a file containing the density-of-states of the Monte Carlo 
band structure if CreateDOSFile=1 is specified. The default is 
CreateDOSFile=0, that is, no file is written.

PhosphorousCalibration
-PhosphorousCalibration

This activates a doping-dependent calibration to the Masetti mobility 
measurements for phosphorous instead of arsenic. The default is 
-PhosphorousCalibration.

Table 2 Parameter keywords in MonteCarlo section

Keyword Explanation
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WithLatticeTemperatureScreening
-WithLatticeTemperatureScreening

This specifies that impurity scattering is screened by the lattice 
temperature (this is the default) instead of the carrier temperature. For 
deactivation, that is, to use the carrier temperature for screening, 
specify -WithLatticeTemperatureScreening.

MasettiCalibration
-MasettiCalibration

This specifies that a doping-dependent calibration to the Masetti 
mobility measurements is used (this is the default). For deactivation, 
that is, to use uncalibrated impurity scattering, specify 
-MasettiCalibration.

WithMCBrooksHerring
-WithMCBrooksHerring

This specifies that the Brooks–Herring model (with calibration to the 
formula of Masetti) is used for ionized impurity scattering (this is the 
default). For deactivation, which means that the Ridley model (with 
calibration to the Caughey–Thomas formula) is used, specify 
-WithMCBrooksHerring.

WithMCConwellWeisskopf
-WithMCConwellWeisskopf

This specifies that the Conwell–Weisskopf model (with calibration to 
the formula of Masetti) is used for ionized impurity scattering instead 
of the Brooks–Herring model. The default is 
-WithMCConwellWeisskopf.

WithStressAlpha This specifies that the influence of stress on the nonparabolicity 
parameter in the analytic electron band model is considered (this is 
the default). For deactivation, specify -WithStressAlpha.

HighKModus = integer This activates soft-optical phonon scattering. 
Use HighKModus = 2 if an interfacial oxide is present between 
the high-k gate oxide and the semiconductor channel. 
Use HighKModus = 1 in the absence of an interfacial oxide; it 
considers two instead of one transverse-optical phonon modes of the 
high-k gate oxide. 
The default is HighKModus = 0, that is, soft-optical phonon 
scattering is switched off.

HOmegaTO1 = float Lowest-energy transverse-optical phonon energy (in meV) of the 
high-k gate oxide. The default is 12.40, which corresponds to 
HfO2.

HOmegaTO2 = float Second lowest-energy transverse-optical phonon energy (in meV) of 
the high-k gate oxide. The default is 48.35, which corresponds to 
HfO2.

OxideHOmegaTO1 = float Lowest-energy transverse-optical phonon energy (in meV) of the 
interfacial oxide. The default is 55.60, which corresponds to SiO2.

HighKEpsilonInf = float Optical dielectric constant (in ) of the high-k gate oxide. 
The default is 5.03, which corresponds to HfO2.

HighKEpsilonInt = float Intermediate dielectric constant (in ) of the high-k gate oxide. 
The default is 6.58, which corresponds to HfO2.

Table 2 Parameter keywords in MonteCarlo section

Keyword Explanation
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HighKEpsilonZero = float Static dielectric constant (in ) of the high-k gate oxide.
The default is 22.0, which corresponds to HfO2.

OxideEpsilonInf = float Optical dielectric constant (in ) of the interfacial oxide.
The default is 2.50, which corresponds to SiO2.

OxideEpsilonInt = float Intermediate dielectric constant (in ) of the interfacial oxide. 
The default is 3.05, which corresponds to SiO2.

OxideEpsilonZero = float Static dielectric constant (in ) of the interfacial oxide.
The default is 3.90, which corresponds to SiO2.

NintHighK = float Density of interface charges between the high-k dielectric and the 
interfacial oxide (in ), entering the expression for the inverse 
microscopic relaxation time of remote Coulomb scattering (RCS).
The default is 0.0.

RCSHighKEpsilon = float Dielectric constant (in ) of the high-k dielectric used in the 
expression for the inverse microscopic relaxation time of RCS. 
The default is 22.0, which corresponds to HfO2.

Window shape [vector vector] In Sentaurus Device Monte Carlo simulations, shape can be one of 
the following:
■ Line in one dimension
■ Rectangle in two dimensions
■ Cuboid in three dimensions
The two vectors define the corners of the window. The Monte Carlo 
simulation is performed in all elements that lie completely inside the 
defined window.

Windowa shape [vector vector] In Sentaurus Device Monte Carlo simulations, shape is 
Rectangle. The two vectors define the corners of the rectangle. 
Gathering of statistics is enhanced inside Windowa.

StatRatioa = float The ratio of the time that the particle spends inside Windowa with 
respect to the total simulated time. In the screen output, it is reported 
in terms of how many copies a particle is split into when entering 
Windowa to achieve the specified ratio. The default is 0.5.

WindowBallistic shape 
[vector vector]

In Sentaurus Device Monte Carlo simulations, shape is 
Rectangle. The two vectors define the corners of the rectangle. 
All scattering mechanisms are switched off, and the ratio of specular 
scattering upon surface scattering set to 1 (that is, the ratio of 
diffusive scattering is 0) in all elements that lie completely inside the 
defined rectangle.

SurfScattRatioBallistic = float This defines the ratio between specular and diffusive scattering at 
SiO2 interfaces inside WindowBallistic. A value of 1 
corresponds to pure specular scattering. The default is 1.

Table 2 Parameter keywords in MonteCarlo section

Keyword Explanation
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FinalTime = float This is the simulation time after which the steady state is assumed to 
be reached. The gathering of cumulative averages begins only after 
FinalTime.

Plot {range intervals} This specifies the times at which plot files are written and Poisson 
updates are triggered (in self-consistent mode).

Range = (start, end) This specifies Range, where start and end are float values that 
denote the start time and the maximum simulation time. In the tool, 
start must be zero.

Intervals = integer This specifies the number of intervals at which plot files are to be 
written within the given range. 
end divided by Intervals also determines the simulation time 
for each frozen-field iteration.

BetaExponentialSurfaceRoughness 
= float 

Exponential in the exponential power spectrum (unitless). The default 
is 1.0.

CorrelationLength = float Correlation length for normal field–dependent surface roughness 
scattering (in nm). The default is 1.49.

DopingtoSelectSDforFermi = float This selects all elements in the device where doping is equal to or 
higher than the specified value.
In these elements, the maximum carrier density is set to the doping 
density for the computation of the Fermi energy.

EnergyDistributionPosition1 = 
vector 

This specifies that the energy distribution for the specified position 
vector must be stored in a PLT file with the suffix _endist.plt.

EnergyDistributionPosition2 = 
vector 

This specifies that the energy distribution for the specified position 
vector must be stored in a PLT file with the suffix _endist.plt.

EnergyDistributionPosition3 = 
vector 

This specifies that the energy distribution for the specified position 
vector must be stored in a PLT file with the suffix _endist.plt.

EnergyDistributionPosition4 = 
vector 

This specifies that the energy distribution for the specified position 
vector must be stored in a PLT file with the suffix _endist.plt.

EnergyDistributionPosition5 = 
vector 

This specifies that the energy distribution for the specified position 
vector must be stored in a PLT file with the suffix _endist.plt.

EnergyDistributionPosition6 = 
vector 

This specifies that the energy distribution for the specified position 
vector must be stored in a PLT file with the suffix _endist.plt.

EnergyDistributionPosition7 = 
vector 

This specifies that the energy distribution for the specified position 
vector must be stored in a PLT file with the suffix _endist.plt.

EnergyDistributionPosition8 = 
vector 

This specifies that the energy distribution for the specified position 
vector must be stored in a PLT file with the suffix _endist.plt.

EnergyDistributionPosition9 = 
vector 

This specifies that the energy distribution for the specified position 
vector must be stored in a PLT file with the suffix _endist.plt.

Table 2 Parameter keywords in MonteCarlo section

Keyword Explanation
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MCl_crit = float This specifies the decay length in the exponential prefactor of the 
surface roughness scattering rate (in cm). The default is 100.1, that is, 
there is no effect.

PlotValleyOccupations
-PlotValleyOccupations

This specifies that the valley or valence-band occupations for the 
valleys or valence bands given in the Plot section must be plotted. 
The default is -PlotValleyOccupations.

RoughnessMeanSquare = float Roughness mean square (RMS) amplitude for normal field–
dependent surface roughness scattering (in nm). The default is 0.3.

SurfaceRoughnessModel = integer This activates a normal field–dependent surface roughness scattering 
rate:
■ Use SurfaceRoughnessModel=1 for a Gaussian power 

spectrum.
■ Use SurfaceRoughnessModel=2 for an exponential 

power spectrum.
■ Use SurfaceRoughnessModel=3 for the Pirovano 

power spectrum.
The default is SurfaceRoughnessModel=0, that is normal 
field–dependent surface roughness scattering is switched off.

WindowImpFactor1 shape 
[vector vector]

In Sentaurus Device Monte Carlo simulations, shape can be one of 
the following:
■ Line in one dimension
■ Rectangle in two dimensions
■ Cuboid in three dimensions
Inside the shape, the maximum carrier density is set to the doping 
density for the computation of the Fermi energy, if the keyword 
ImpWindowtoSelectSDforFermi is true.

WindowImpFactor2 shape 
[vector vector]

In Sentaurus Device Monte Carlo simulations, shape can be one of 
the following:
■ Line in one dimension
■ Rectangle in two dimensions
■ Cuboid in three dimensions
Inside the shape, the maximum carrier density is set to the doping 
density for the computation of the Fermi energy, if the keyword 
ImpWindowtoSelectSDforFermi is true.

ImpWindowtoSelectSDforFermi
-ImpWindowtoSelectSDforFermi

This specifies that, inside WindowImpFactor1 and 
WindowImpFactor2, the maximum carrier density is set to the 
doping density for the computation of the Fermi energy.
The default is -ImpWindowtoSelectSDforFermi.

Table 2 Parameter keywords in MonteCarlo section

Keyword Explanation
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NOTE Some quantities such as the band gap are taken from the parameter file.
Therefore, for a Monte Carlo simulation of a strained silicon device,
specify in the parameter file the correct values that correspond to the
strain level considered. Alternatively, use the parameter file
StrainedSilicon.par, which contains all values for typical biaxial
tensile strain levels.

Coordinate System

In the absence of stress and when using the ReadinStress option, Sentaurus Device Monte
Carlo can use both the unified coordinate system and the DF–ISE coordinate system in the
same way as Sentaurus Device.

If the MCStrain option or a pseudopotential table is used, the DF–ISE coordinate system with
the x-axis pointing into the channel direction must be used.
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CHAPTER 3 Physical and Numeric Models

In this chapter, the underlying physical models and various parts of
the Monte Carlo algorithm [1] are explained. Aspects that are
crucial for computational performance are emphasized. Other
points are addressed briefly.

Models for Band Structure and Scattering Mechanisms

The full band structure for Si is obtained by nonlocal pseudopotential calculations [2] where,
in addition, the spin-orbit interaction is taken into account [3]. Four conduction bands and three
valence bands are stored on a mesh in momentum space, with an equidistant grid spacing of

, where  denotes the lattice constant. Within each cube, the band energy is
expanded to linear order around the middle of the cube. Therefore, the group velocity is
constant in each momentum-space element.

The scattering mechanisms comprise phonon scattering, impact ionization, impurity scattering,
and surface roughness scattering. The phonon scattering model for electrons includes three g-
type and three f-type intervalley processes [4], as well as inelastic intravalley scattering [5]. In
the case of holes, optical phonon scattering and inelastic acoustic phonon scattering are
considered [6]. At present, only impact ionization for electrons with the scattering rate taken
from the literature [7] is considered. The comparison of the resulting velocity field
characteristics at different lattice temperatures [5][6] with time-of-flight measurements
[8][9][10][11] is shown in Figure 2 on page 32 and Figure 3 on page 32, respectively.

Impurity scattering is important in MOSFETs because of the highly doped source and drain
contacts. Unfortunately, it is also computationally intensive due to high scattering rates at low
energies, with almost no change in the momentum. This effect is particularly strong in the
Brooks–Herring (BH) model, which describes the screened two-body interaction with one
ionized impurity [12]. It is reduced in the Ridley (RI) statistical screening model, taking into
account the probability that there is no closer scattering center [13].

The most significant reduction of the computational burden, however, is achieved by
approximating the scattering rate by the inverse microscopic relaxation time, and selecting at
random the state-after-scattering on the equi-energy surface. This is shown in Figure 4 on
page 33 where, for purposes of illustration, density and doping concentrations have been
chosen so that this effect is particularly pronounced. Comprehensive investigations [14][15]
have shown that at high fields there is also almost no difference between this and the exact
treatment. Since impurity scattering is only important at low energies, an analytic, isotropic,

1 96⁄ 2π a0⁄ a0
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and nonparabolic band structure is used for the calculation of the inverse microscopic
relaxation time up to 1.0 eV, and it neglects impurity scattering for higher electron energies. 

The inverse relaxation time is given by:

(1)

where  denotes the crystal volume,  is the transition probability per unit time, and
. 

Figure 2 Comparison of full band Monte Carlo results for velocity field characteristics 
of Si-electrons at different lattice temperatures with corresponding time-of-flight 
measurements (measurements from literature [8][9]) 

Figure 3 Comparison of full band Monte Carlo results for velocity field characteristics 
of Si-holes at different lattice temperatures with corresponding time-of-flight 
measurements (measurements from [8][10][11])
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Figure 4 Scattering rates and inverse microscopic relaxation times of impurity scattering
in formulation of Brooks–Herring and Ridley (phonon scattering rate is shown 
for comparison)

In the case of the Brooks–Herring (BH) model, the result is:

(2)

with these abbreviations:

(3)

where:

■  is the elementary charge.

■  is the valley index.

■  is the impurity concentration.

■  is the static dielectric constant of silicon.

■  is the density-of-states mass at the band edge.

■  is the nonparabolicity factor.
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■  is the inverse screening length (where  is the electron density, 

is the hole density, and  is the Fermi energy). See Fermi Statistics on page 36.

Since the Ohmic drift mobility with the above impurity scattering model significantly deviates
from experimental results, especially for high doping concentrations, a doping-dependent
prefactor is introduced in Eq. 2 to reproduce the mobility measurements of [16]. This approach
to impurity scattering is heuristic, but it correctly and efficiently accounts for the mobility
reduction in highly doped contact regions. It is activated by the MasettiCalibration
keyword, which is true by default.

By default, the calibration is for arsenic doping in n-type silicon (boron doping in p-type
silicon). For phosphorus doping in n-type silicon, PhosphorousCalibration must be
specified, which is false by default.

If this doping-dependent prefactor calibrated to silicon mobilities must not be used, for
example, for InGaAs, it can be switched off by specifying -MasettiCalibration. The
effect of degeneracy is noticeable and most important for screening, even for applications
where Fermi–Dirac statistics is not important otherwise [17]. Therefore, the inverse screening
length is computed, by default, under nondegenerate conditions (that is, the corresponding
keyword WithFermiDiracScreening is true by default), and the Masetti calibration of the
Brooks–Herring model is performed only for this case.

If the keyword WithMCConwellWeisskopf is specified, impurity scattering can also be
simulated without screening using the Conwell–Weisskopf model. In this case, only the
function  in Eq. 3 must be changed according to [18]:

(4)

In this case, the function  does not depend on the inverse screening length .

In addition, the Conwell–Weisskopf model is calibrated by default to the Masetti mobilities in
silicon, resulting in a different doping-dependent prefactor.

NOTE While the results shown were obtained with inelastic acoustic phonons,
the actually employed phonon models use the elastic equipartition
approximation for acoustic intravalley phonon scattering (with a
coupling constant of 8.52 eV in the case of electrons; in the case of
holes, all coupling constants are those of [19]). The differences in
results are very small.
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Surface Roughness Scattering

Two models for surface roughness scattering are available:

■ A combination of specular and diffusive scattering to be applied to a classical density
profile where the quantum correction is considered in terms of effective oxide thickness
and workfunctions

■ A scattering rate proportional to the square of the normal electric field to be applied to a
quantum density profile as present, for example, in a density-gradient Monte Carlo
simulation

The combination of specular and diffusive scattering is a semi-empirical treatment where at
random either a specular or a diffusive scattering process is selected when an electron hits the
interface to the oxide. The probability of diffusive scattering can be adjusted to measured long-
channel effective mobilities. The default value of 15% diffusive scattering reproduces, with
high accuracy [20], the measured FinFET mobility curves [21], for both electrons and holes,
and for both (100) and (110) sidewall orientations. The orientation dependency of the effective
mobility results from the energy- and parallel-momentum conservation of specular surface
scattering (see the detailed discussion in [20]).

In the second approach, the perturbation potential is the component of the electric field normal
to the gate interface [22]. The corresponding transition rate per unit time from Fermi’s Golden
Rule reads:

(5)

where, in analogy to the treatment of soft-optical phonon scattering [23], the scattering
potential is treated parametrically for the 3D wavevector  conserving the normal
wavevector component  upon scattering.  is the fluctuating confining potential,  is the
unit area, and  is the effective mass.

The power spectrum of surface roughness  is given by:

 for the Gaussian model (SurfaceRoughnessModel=1) (6)

 for the exponential model (SurfaceRoughnessModel=2) (7)

 for the Pirovano model (SurfaceRoughnessModel=3) (8)
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where:

■  (RoughnessMeanSquare in units of nm) is the roughness mean square amplitude.

■  (CorrelationLength in units of nm) is the correlation length. 

■ For the exponential model, the exponent  (BetaExponentialSurfaceRoughness)
can be specified as well.

As for elastic ionized impurity scattering, the scattering rate is approximated by the inverse
microscopic relaxation rate:

(9)

where  is the angle between the in-plane wavevector components  and , and the after-
scattering state is selected at random on the equienergy surface under conservation of the
wavevector component normal to the gate interface.

In addition, this rate is multiplied by exp(–z/MCl_crit), which is analogous to the Lombardi
model in drift-diffusion simulations.

This allows you to concentrate the effect of surface roughness in the vicinity of the surface (see
Sentaurus™ Device User Guide, Enhanced Lombardi Model on page 334).

Fermi Statistics

For high doping levels, degeneracy of the carrier gas can have a significant impact on the drain
current. The Monte Carlo models affected by Fermi statistics can be split into two groups.

First, the expression for the inverse screening length in the Brooks–Herring model for ionized
impurity scattering is:

(10)

where:

■  is the electron density.

■  is the hole density.

■  is the Fermi energy.

The expression is evaluated under degenerate conditions if WithFermiDiracScreening is
specified.
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This keyword is true by default and is applied if Fermi statistics is not used otherwise, since
screening is the only aspect that is always significantly affected by Fermi statistics (compare
with Models for Band Structure and Scattering Mechanisms on page 31).

Considering nonparabolicity and valley/band splitting (for example, under stress), the density
expression for Fermi statistics is given by:

(11)

where:

■  is the conduction band edge.

■  is the minimum of valley  with respect to .

■  is the nonparabolicity factor of valley .

■  is the effective density-of-states of valley  with respect to .

■  and  denote the Fermi–Dirac integrals of the order 1/2 and 3/2, respectively.

The Fermi energy  at which the inverse screening length is evaluated in Eq. 10 is obtained
for given density  by numerically solving:

(12)

(13)

where  is the total density-of-states of the band structure that is used in the Monte Carlo
simulation. The Fermi energy for screening is always computed according to Eq. 12 even if
Fermi statistics is not used otherwise, unless screening of impurity scattering is not used, that
is, if the Conwell–Weisskopf model is used.

On the other hand, if Fermi statistics will be used completely during a Monte Carlo simulation,
the following aspects are affected additionally:

■ Carriers are injected from Ohmic contacts according to a semi-Fermi function.

■ The Dirichlet boundary condition for the Poisson equation is changed for Ohmic contacts
(see Sentaurus™ Device User Guide, Electrical Boundary Conditions on page 201).

■ The Pauli blocking term , with  denoting the distribution function, must be
considered in the scattering term of the Boltzmann transport equation. It is implemented
according to the scheme proposed by Ungersboeck and Kosina [24].
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Fermi statistics for these aspects is activated by specifying the keyword Fermi in the global
Physics section of the command files of both the initial drift-diffusion and the actual Monte
Carlo device simulations.

The Fermi energy is also needed for these aspects. The options for determining the Fermi
energy are:

■ The density expression , where  is the total effective density-of-states,
is used for the Fermi energy computation.

This expression is only strictly valid for a parabolic band structure. In the general case, it
is only an approximation where full-band effects come into play only by using a different
value for . This option is the default.

■ The density expression in Eq. 12 is used for the Fermi energy computation.

To activate this option, a short Monte Carlo run, where CreateDOSFile=1 is specified in
the MonteCarlo section of the Monte Carlo command file, must to be performed before
the initial drift-diffusion simulation and the actual Monte Carlo device simulation.

This run creates a file named <MonteCarloOut>.dostot.dat, containing the density-
of-states of the Monte Carlo band structure where MonteCarloOut is an output field in
the File section.

To read this file in the initial drift-diffusion and the actual Monte Carlo device simulation,
for example, eMultivalley(mcDOS("<MonteCarloOut>.dostot.dat")) must be
specified in the Physics section of the command files of both the initial drift-diffusion and
the actual Monte Carlo device simulations. For details about the options for reading this
file, see Sentaurus™ Device User Guide, Using Multivalley Band Structure on page 270.

NOTE The nonparabolicity option of the multivalley model in Sentaurus
Device is not supported for Fermi statistics in Monte Carlo simulations.

NOTE For high source/drain (S/D) doping and low mobilities, Monte Carlo
device simulations using Fermi statistics could involve numeric
instabilities. In this case, you can restrict the maximum carrier density,
in S/D regions, to the maximum doping for the computation of the
Fermi energy, thereby preventing a too strong mobility reduction due to
Monte Carlo carrier density fluctuations. This is not an approximation
for S/D regions since the carrier density equals the doping. The options
to specify S/D regions in the MonteCarlo section of the Sentaurus
Device Monte Carlo command file are:
a) DopingtoSelectSDforFermi selects all elements in the device
where the doping is equal to or higher than the specified value.
b) WindowImpFactor1 and WindowImpFactor2 select two windows
that cover the S/D regions, and ImpWindowtoSelectSDforFermi
activates the maximum carrier density restriction.

n NcF1 2⁄ η( )= Nc

Nc
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Arbitrary Lattice Temperature

Performing a Monte Carlo simulation for any lattice temperature between  and  is
possible using, for example, the specification temperature=245.0 in the Physics section
of both the initial Sentaurus Device command file and the Sentaurus Device Monte Carlo
command file.

Trajectory Calculation

Along lines that have been developed [25], the time during which the electron is propagated
according to Newton’s law is determined as the minimum of four times:

■ The flight time to reach the border of the 3D momentum-space element

■ The flight time to reach the border of the 2D real-space element

■ The remaining time to the end of a time interval into which the whole simulation time is
divided where, for example, simulation results are stored

■ The stochastically selected time for a scattering event

Since momentum-space changes occur often, the equidistant tensor grid in momentum space
is very useful for the calculation of the intersection with the border of a momentum-space
element. There is an explicit proof of this time-step propagation scheme within the framework
of basic probability theory [26].

This kind of trajectory calculation has several advantages. Within the scheme of self-scattering
[4], it allows for the use of different and small upper estimates of the real scattering rates in
each phase-space element. For the energy-dependent scattering rates of phonon scattering and
impact ionization, an upper estimation is computed and stored for each momentum-space
element. The corresponding rate for impurity scattering in Eq. 2 depends, in addition, on the
impurity concentration  and the electron density . Therefore, an upper estimation is
determined and stored for each real-space element by using the density obtained in the previous
iteration (initially from the drift-diffusion simulation).

In addition, the computation of the logarithm for the free flight time can, for the most part, be
avoided by first considering the probability, , that (real or fictitious) scattering occurs before
the other three events:

(14)

where  is the upper estimate of the real scattering rate and  is the minimum of the times for
the electron to leave the momentum-space element, leave the real-space element, and reach the
end of the given time interval.
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Therefore, the collisionless time-of-flight  only needs to be computed if an equally (between
0 and 1) selected random number  is smaller than , and then is given by:

(15)

Another advantage is the simple integration of the Newton equations of motion, as the group
velocity is constant in a momentum-space element and a constant electric field (taken from the
drift-diffusion simulation) is assigned to a real-space element. However, an additional action is
required for the Newton equations because the channel in MOSFETs, that is, the corresponding
line from source to drain, is oriented along the crystallographic <110> direction, but the crystal
momentum in the band structure calculation refers to a coordinate system with the coordinate
axes parallel to the principal axes of Si.

NOTE This discussion does not refer to the growth direction of the wafer,
which is in the z-direction, but to the direction within the xy plane
parallel to the Si–SiO2 interface.

Under the orthogonal transformation , where  refers to the Cartesian frame that is
aligned with the principal axes, the equations of motion become:

(16)

(17)

with the transformation matrix:

 (18)

where . This transformation must also be invoked for the surface roughness
scattering process.

A further advantage is the possibility to restrict computational actions to the necessary cases
only, for example, updating the group velocity of a particle only when the momentum-space
element is left, or accessing the table with the real scattering rates only when a scattering
process is to be performed.

Finally, the selection of the state-after-scattering is modeled with linked lists in the spirit of
[27]. All cubes of the irreducible wedge of the Brillouin zone are stored in a list of energy
intervals when they have a common energy range. The energy after scattering determines a
corresponding energy interval in the list, and a cube is selected according to its partial density-
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of-states by the acceptance–rejection technique [4], with a constant upper estimation of the
partial densities-of-states of all cubes in this energy interval. The momentum-after-scattering
is then stochastically chosen on the equi-energy plane in this cube.

Self-Consistent Single-Particle Approach

In the tool, the total simulation time as given by the second argument of the parameter Range
(see Table 2 on page 22) is split into a number of intervals, the number of which is given by the
parameter Intervals.

During the simulation within each interval, first, a single particle is injected from a contact. It
carries the whole electron charge as obtained by integrating the electron density of the drift-
diffusion simulation over the entire Monte Carlo window. The probability for injection from an
edge of a contact is proportional to the length of the edge multiplied by the density in the
adjacent element. When the position is selected randomly on this edge, the momentum of the
particle is chosen from a velocity-weighted Maxwellian [28]. Then, the particle is propagated
in a frozen electric field (initially taken from a drift-diffusion simulation) until it is absorbed at
a contact. These single-particle simulations continue until the time for the current simulation
interval is over.

Then, the nonlinear Poisson equation [29] is solved to achieve self-consistency and it is solved
with the density computed from the simulation interval that just ended. This density does not
contain statistics gathered during previous simulation intervals. After solving the Poisson
equation, the tool uses the computed electric field in the next simulation interval.

The whole procedure is iterated until the end of the maximum simulation time or until a
stopping criterion for the drain current is fulfilled. The tool ignores the statistical information
gathered during a certain time (as specified by the parameter FinalTime (see Table 2 on
page 22) at the beginning of the simulation when it computes the cumulative averages available
to the user. When this ignored time span is long enough so that steady state is reached, it can
be verified that the simulation results do not depend on the initial density distribution (obtained
from a drift-diffusion or hydrodynamic simulation). Furthermore, the results do not depend on
the duration of a simulation interval, provided it is long enough to gather sufficient statistics
for the density distribution needed to solve the Poisson equation [30].

Gathering Statistics

During the simulation within a frozen-field iteration, cumulative expectation values of
microscopic quantities, such as the group velocity, energy, and impact ionization scattering
rate, are collected in each real-space element. Usually, this is performed at equidistant time
steps of the simulation, but this is very time-consuming CPU-wise if the time step is small.
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Therefore, statistics are gathered at times just before scattering [4]. 

Within the scheme of phase-space element–dependent upper estimations of the real scattering
rate, the expectation value of a microscopic quantity A is given by:

(19)

where the sum runs over the times  of scattering events in the real-space element . 
denotes the momentum-space element occupied before  and  is the inverse upper
estimation in the phase-space element ( , ). This scheme for gathering statistics is applied to
all quantities except for the density and drift velocity, which are estimated by time averaging.
In addition, since a single-particle simulation is performed, the gathering of statistics can begin
at the start of the simulation without the need to reach a stationary state beforehand, as is
necessary in an ensemble simulation.

In the scheme described, phase-space elements are visited by the particle according to the real
particle density. It is also possible to enhance the gathering of statistics in a specified window,
which as a whole has a lower probability of being visited than the region outside this window.
This is achieved by the following repetition scheme. The simulation domain is divided into two
parts: one with a higher probability and one with a lower probability of being visited by the
electron.

The history of the electron begins in the part with the higher probability and its state is stored
when it enters the region of lower probability. When the electron leaves this region, the state is
changed back and the electron travels again through the low-probability region. This procedure
is repeated a prescribed number of times before the electron continues along its path in the
high-probability region and its statistical weight is adjusted accordingly. Therefore, the
statistics in the low-probability region are improved. Whereas this scheme was used previously
for hot-electron bulk transport [31], it was applied here to device simulation by identifying the
low-probability and high-probability regions with, for example, the channel region and the
highly doped source–drain regions, respectively.

Estimating Currents

This section briefly explains how estimations for drain and substrate currents are obtained.
These estimations are performed after each frozen-field iteration, before the field is updated for
the next iteration by using the nonlinear Poisson equation. After a certain number of iterations,
the stationary state is reached and the solution fluctuates around its average value. 
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Although there is still a certain correlation between the iterations, the relative error provides a
reasonable criterion to stop the simulation. Therefore, it is possible to discriminate adequately
between the different simulation times that are necessary to obtain a similar accuracy, at
different bias points, in analogy to a non-self-consistent simulation where there is strict
statistical independence [32].

Drain Current

The drain current  is estimated by either direct particle counting (the default) or the test
function method. For details about the latter, refer to the literature and its references [33].

Substrate Current

The substrate current  is calculated by using the expectation value of the impact ionization
scattering rate  according to:

(20)

where the integration is over the entire Monte Carlo window.

NOTE This formula is valid only when all generated holes can be assumed to
leave the device through the substrate contact.

Contact Resistance

A contact resistance occurs, for example, at a silicide–silicon junction, which typically forms
the contacts for the source and drain of a MOSFET [34]. The contact produces an additional
voltage drop, and this effectively changes the applied biases and terminal currents in the device.
To account for the contact resistance in Monte Carlo simulations, the nonlinear Poisson
equation coupled with the contact equation is solved (similarly as it is performed in the drift-
diffusion approach) after each carrier propagation step. The contact equation accounts for
Monte Carlo–computed contact currents, computes the voltage drop at each contact, and sets
it in the boundary conditions of the nonlinear Poisson equation. Note that the stochastical
nature of the Monte Carlo method may affect the convergence of such iterations and, therefore,
by default, Monte Carlo contact currents are averaged starting from the first step. This
averaging could be justified by the assumption that finally the steady-state solution should be
reached.
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Similarly to any drift-diffusion simulation, both lumped and distributed resistances must be
specified in the Electrode section:

Resist = value [ ]

or:

DistResist = value [ ]

where  is the dimension. For example, for 2D simulations, Resist must be specified in
 (see Sentaurus™ Device User Guide, Resistive Contacts on page 213). In addition, in

the MonteCarlo section, the statement SelfConsistent(FrozenQF) must be replaced by
SelfConsistent(Coupled{Poisson Contact}), which activates the coupled solution
of the Poisson and contact equations.

Averages and Statistical Error of the Currents

The tool computes the drain current and substrate current for each simulation interval as
described in Drain Current on page 43 and Substrate Current on page 43. After the tool has
reached steady state, it takes cumulative averages of the currents obtained from single
simulation intervals, , to obtain their average value  and their relative statistical error :

(21)

(22)

where the variance of the average current is:

(23)

and  is the number of simulation intervals since the tool reached steady state (see Self-
Consistent Single-Particle Approach on page 41). The indexing of all quantities starts with 1
for the first simulation interval after steady state is reached; the tool discards the statistical
information from simulation intervals before steady state is reached.

Unlike non-self-consistent simulations, the current estimations for different simulation
intervals are not strictly stochastically independent, because two successive simulation
intervals are coupled by the Poisson equation. Consequently, the usual interpretation of the
relative error for the confidence interval of the expectation value does not hold. Nevertheless,
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the relative error still shows the usual  behavior. Therefore, practically, the tool can use
it as a stopping criterion. This is vital for the tool to adjust automatically the simulation time
needed to reach the desired accuracy for a particular device and bias point, which is simulated.

The probability that the average value  deviates from the (unknown) expectation value  by
less than , that is:

(24)

is . Here,  is the student-t distribution function.

Use Eq. 22, Eq. 24, and the CurrentErrorBar and MinCurrentComput parameters (see
Table 2 on page 22) to select the stopping criterion for a simulation.

For , the student-t distribution function obeys the inequality . Then,
 is approximately a 95% confidence interval for the true average of

the current (in the case of statistically independent values). Values for the student-t distribution
function can be found in the literature [35].

Considering Traps

The electrostatic effect of acceptor-like border traps, which give rise, in particular, to Fermi-
level pinning, or donor-like interface traps can be taken into account in Monte Carlo device
simulations by specifying the following in the Solve section of the Sentaurus Device Monte
Carlo command file:

Coupled{ poisson electron }
Set(Traps(Frozen))
montecarlo
Set(Traps(-Frozen))

The parameters of the trap profiles must be specified in the Physics section for both the initial
drift-diffusion simulation and the Monte Carlo device simulation. For more information, see
Sentaurus™ Device User Guide, Chapter 17 on page 449.
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Quantum Correction

Effective Quantum Correction

Transport in short-channel devices is influenced both by quasiballistic and quantum-
mechanical effects. However, the Boltzmann equation describes only semiclassical transport
and does not include quantum confinement explicitly. The main quantum effects consist of a
modification of the effective oxide thickness and a threshold shift. Therefore, the question
arises as to how a quantum correction can be incorporated into a Monte Carlo simulation to
consider these two effects. Recently, an approach was proposed that achieves this in a simple
manner [36]: The oxide thickness is increased by using the difference of the charge centroids
of quantum-mechanical (density gradient) and classical drift-diffusion simulations, and the
threshold shift is compensated by a modification of the workfunction.

Using the modified oxide thickness (in terms of a modified dielectric constant of the gate
oxide) and workfunction in the tool, the authors achieved a good agreement with measured on-
currents in sub–  NMOSFETs [36]. While analytic formulas were used for the
modifications [36], this can also be achieved fully and automatically by using Sentaurus
Workbench. The result is shown in Figure 5.

The three continuous curves refer to drift-diffusion simulations: The dashed curve is a classical
drift-diffusion simulation, the dot-dashed curve is a density-gradient drift-diffusion simulation,
and the solid curve is a drift-diffusion simulation, where the quantum correction was
incorporated by the modified oxide thickness and workfunction. It can be seen that the
quantum-corrected drift-diffusion simulation accurately reproduces the density-gradient
simulation above the subthreshold regime. 

Figure 5 Transfer characteristics of a 45 nm bulk NMOSFET according to classical, 
quantum-mechanical, and quantum-corrected simulations
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At higher gate voltages, the current is influenced by the mobility models and the emerging
differences arise from the density-gradient mobility model not being calibrated to the universal
mobility curve. Recalibrating this mobility would allow a perfect agreement [36], but here the
aim is to use the modifications for oxide thickness and workfunction in Monte Carlo
simulations.

In this respect, it can be seen that the quantum-corrected Monte Carlo curve shifts in the same
way as the quantum-corrected drift-diffusion simulation.

From a technical perspective, this procedure can be implemented in the following way in a
Sentaurus Workbench project [37]: 

1. Process simulation and mesh generation using, for example, Sentaurus Mesh.

2. Density-gradient simulation storing the density profile perpendicular to the interface in the
source-side of the channel (in [36], it is demonstrated that the result is insensitive to the
choice of the position). This is achieved by the NonLocalPlot option of Sentaurus Device
while also having specified a nonlocal mesh (which is, for example, also used for
Schrödinger simulations).

3. Extraction of the quantum-mechanical charge centroid and the quantum-mechanical
threshold voltage using Inspect.

4. Analogous classical drift-diffusion simulation.

5. Extraction of the classical charge centroid and calculation of the increased oxide thickness
being converted into a reduced dielectric constant in the oxide using Inspect.

6. Classical drift-diffusion simulation with the modified oxide thickness.

7. Extraction of the threshold voltage for this modified classical drift-diffusion simulation
using Inspect.

8. Classical drift-diffusion simulation with the changed oxide thickness where, in addition,
the workfunction is changed by the threshold voltage difference to the density-gradient
simulation.

9. Monte Carlo simulation with Sentaurus Device Monte Carlo using the modified oxide
thickness and workfunction.

While this procedure may appear lengthy, this approach is fully automatic when a Sentaurus
Workbench project is set up and the CPU-limiting factor is still due to the Monte Carlo
simulation. From the physical perspective, this methodology has the advantage that the surface
roughness scattering model can still be consistently used in the Monte Carlo simulation when
considering the quantum correction. Therefore, changes in the surface mobility arising, for
example, under strain are still physically taken into account and it is possible to predict the
associated tendencies.
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For nonplanar multigate devices, this scheme must be extended to a second value of the
effective workfunction in the on-state [38].

NOTE Templates with the abovementioned flow for a Monte Carlo simulation
with quantum correction can be found in the Applications Library
accessible from Sentaurus Workbench (Applications_Library/
AdvancedTransport/MonteCarlo).

Density-Gradient Monte Carlo

As an alternative to the effective quantum correction based on effective oxide thickness and
workfunctions, a quantum density profile can be explicitly taken into account in Monte Carlo
simulations. 

This can be achieved by considering a quantum potential from the modified local-density
approximation (MLDA) model or the density gradient model, where the corresponding
gradient contributes to the driving force and leads to a quantum-density profile. This approach
is activated by introducing the same corresponding keywords as in the initial drift-diffusion
simulation, for example, eQuantumPotential in the Physics section and in the Coupled
statement of the Solve section. See Sentaurus™ Device User Guide, Chapter 14 on page 283.

Visualizing Energy Distributions

The energy distribution, corresponding to the product of the density-of-states multiplied by the
distribution function, can be visualized for up to nine positions in a device by specifying, for
example, for a 2D device simulation in units of :

EnergyDistributionPosition1 = (8.0e-3, -2.0e-3)

According to dimensionality, one, two, or three coordinates must be specified in the position
vector. The integral of the energy distributions over energy is normalized to one. The energy
distributions are stored in a file with the suffix _endist.plt, which shows the energy
distributions as a function of energy.
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Visualizing Valley Occupations

You can visualize the valley or valence-band occupations in a device by specifying the keyword
PlotValleyOccupations in the MonteCarlo section of the Sentaurus Device Monte Carlo
command file. In addition, the variable names corresponding to the valleys of interest must be
given in the Plot section of the Sentaurus Device Monte Carlo command file, that is:

■ eMCValleyDeltaX, eMCValleyDeltaY, eMCValleyDeltaZ 

■ eMCValleyGamma, eMCValleyLMinusMinus, eMCValleyLMinusPlus, 
eMCValleyLPlusMinus, eMCValleyLPlusPlus 

■ hMCBandHeavyHole, hMCBandLightHole, hMCBandSplitOff 

The valley occupation is a number between 0 and 1.

Averages Over Forward- and Backward-Flying Carriers

To study carrier transport in more detail, averages of quantities such as group velocity can be
computed over a subset of carriers. Specifically, carriers can be divided into forward-flying and
backward-flying depending on whether the scalar product between their group velocity and a
given direction vector is positive or negative, respectively (compare [39]). The corresponding
forward and backward quantities are available for the density, current density, and drift velocity
of the carrier.

Gathering of these additional statistics is activated by specifying the keyword
InjectionDirection in the MonteCarlo section. At the same time,
InjectionDirection is the vector (in the device coordinate system) that determines
whether a particle is forward flying or backward flying using the sign of the scalar product
between its group velocity and InjectionDirection. As an illustration, based on the
MCpFinFET example in the Applications Library, which can be found in the directory:

$STROOT/tcad/$STRELEASE/Applications_Library/GettingStarted/sdevice/MCpFinFET

the currents of forward- and backward-flying carriers are shown in Figure 6 on page 50, and
the drift velocities of forward-flying carriers are shown in Figure 7 on page 50.
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Figure 6 Standard total current and the currents of forward- and backward-flying holes 
(absolute values, integrated over the fin width) along the channel of a 50 nm 
p-FinFET

Figure 7 Standard drift velocity and the drift velocity of forward-flying holes (averaged with 
the corresponding hole densities over the fin width) along the channel of a 50 nm 
p-FinFET for two crystallographic channel orientations

NOTE The difference between forward and backward currents equals the total
current.

Of course, in addition to specifying InjectionDirection in the MonteCarlo section, you
also must include the corresponding plot variables such as hMCVelocityForward in the
Plot section (see Table 1 on page 20) to be able to visualize these quantities.
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Ballistic Transport

To investigate how far transport is from the ballistic limit, all scattering mechanisms can be
switched off (and surface roughness scattering can be set to 100% specular) in a user-defined
window in the device. Ballistic transport is activated by specifying the keyword
WindowBallistic in the MonteCarlo section in analogy to the usual Monte Carlo Window.
At the same time, WindowBallistic specifies the window where scattering is switched off
(see Table 2 on page 22 for the syntax).

If surface roughness is still present in the ballistic window when switching off all other
scattering mechanisms, SurfScattRatioBallistic can be set to a value smaller than 1
(which is the default corresponding to 100% specular scattering, that is, 0% diffusive
scattering).

Figure 8 shows as an example the drift velocity profiles along the channel of a 50 nm p-type
FinFET when either all scattering processes are active or scattering is switched off in a window
that comprises the channel between the two gate contacts. It can be seen that the ballistic
velocity is more than a factor of two higher, that is, the device operates still far from the ballistic
limit (the corresponding ballistic on-current is a factor of two higher). 

Figure 8 Drift velocity (averaged with the corresponding hole densities over the fin width) in 
the on-state (supply voltage = –1.3 V) along the channel of a 50 nm p-FinFET 
when all scattering mechanisms are considered or when scattering is switched off 
in a window below the gate contact

NOTE Ballistic transport can lead to numeric instabilities. In this case, you can
set SurfScattRatioBallistic to a value smaller than 1 or reduce
the size of WindowBallistic.
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CHAPTER 4 Strained Silicon

This chapter describes how strained-silicon devices can be
simulated with single-particle device Monte Carlo and presents
some typical results.

Bulk Properties

Bulk silicon and bulk germanium have different lattice constants, namely,  and
. The lattice constant in the alloy Si1–xGex formed from both materials varies

almost linearly between the values of the pure materials. A more precise fit [1] derived from
measurements [2] is:

(25)

A difference in the lattice constants between two bulk materials can be used to form a layer
under mechanical strain with possibly different transport properties. If, for example, a thin
silicon film is grown on top of a thick relaxed Si1–xGex substrate, the so-called in-plane lattice
constants parallel to the interface will adopt the value of the lattice constant in the substrate if
the film thickness is less than a critical thickness in the order of 10 nm.

The out-of-plane lattice constant of the layer in the perpendicular direction acquires a value
according to elasticity theory. In the case of a silicon layer on a relaxed SiGe substrate, the in-
plane lattice constants are increased and, therefore, the silicon layer is under biaxial tensile
strain. The corresponding strained-silicon channel in the conventional lateral MOSFET is
schematically shown in Figure 9. The strain changes the band structure.

Figure 9 Schematic structure of a planar MOSFET illustrating the formation 
and geometry of a Si channel under biaxial tensile strain
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Figure 10 Equienergy surfaces of the first conduction band in strained silicon: Four of the 
six valleys shift upwards in energy under strain. For a Ge content of x = 0.2 in the 
relaxed Si1–xGex substrate, the valley splitting amounts to 126 meV.

In the case of electrons, four of the six valleys in the first conduction band shift upwards in
energy as illustrated in Figure 10. Here, the growth direction is along the z-axis. The x- and y-
coordinates correspond to the in-plane directions. Since the two energetically lower-lying
valleys are predominantly populated, electrons traveling in a direction parallel to the Si–SiGe
interface experience only the small transverse effective mass. Obviously, this enhances in-
plane transport. However, in contrast to what typical illustrations such as Figure 10 suggest, the
band energies within one lower-lying valley resulting from the pseudopotential calculations
are, for higher energies, no longer identical along the in-plane <110> and <100> directions.

This is demonstrated in Figure 11 where the band energies in one lower-lying valley are plotted
as a function of the modulus of the in-plane -vector for the <110> and <100> directions. It
can be seen that the energies differ significantly above 100 meV and the band curvature is then
much stronger in the <100> direction. 

Figure 11 In-plane energy dispersion ( , where  is the out-of-
plane lattice constant) along the <100> and <110> directions in a lower valley of 
strained Si grown on a relaxed Si0.8Ge0.2 substrate
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This feature is not captured by the usual analytic formula for a nonparabolic, anisotropic band
structure [3] where the energy dispersion in both directions is exactly the same as shown in the
literature [4]. This difference is crucial for the on-current in nanoscale MOSFETs as explained
in the literature [5] and discussed in NMOSFETs on page 61.

In the case of holes, the most important change concerns the splitting of the heavy-hole and
light-hole bands at the –point with the light-hole band being situated at the valence-band
edge, but in contrast to the case of electrons, the shape within a band is also affected by strain.
This is illustrated in Figure 12 where the energy dispersions of the heavy-hole and light-hole
bands in unstrained and (001)-strained Si are shown along two different crystallographic
directions.

It can be clearly seen in Figure 12 (a) that the light-hole band is at the valence-band edge in
strained Si. Growing strain increases the split between the bands and, therefore, decreases the
occupation probability of the heavy-hole band. However, the curvature of the light-hole band
structure along the <110> direction does not change further, below 130 meV, as strain
increases. Only in the <011> direction does the band curvature continue to change under strain
being thus the origin of the continuing decrease of the density-of-states for increasing strain as
reported [6]. 

Figure 12 Energy dispersion along (a) <110> and (b) <011> direction of the heavy-hole 
and light-hole bands in unstrained Si and (001)–strained Si grown on a relaxed 
Si0.7Ge0.3 and Si0.6Ge0.4 substrate, respectively

The scattering mechanisms are, as usual, assumed to be unaffected by strain. The modified
transport properties of electrons and holes are, therefore, entirely related to the changes of the
band structures described above. Impact ionization is not considered for strained silicon.
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As confirmed by recent experiments [7], the strain-induced enhancement of transport saturates
in the case of electrons above a germanium content of 20% in the SiGe substrate. The reason
is that at this Ge content almost all electrons are already in the two lower valleys. Consequently,
further increases of the valley splitting have no effect. Therefore, the investigation of electron
transport in strained Si is restricted to the strain level corresponding to 20% Ge content in the
substrate. In contrast, the anisotropy between the crystallographic <100> and <110> in-plane
directions is studied, because the different band curvatures in Figure 11 on page 56 lead to an
expectation of different transport properties.

For a small electric field, most electrons populate the two lower-lying valleys in strained Si,
where they experience only the small transverse effective mass, which in conjunction with
reduced intervalley scattering leads to an enhanced drift velocity. This can be seen in the
velocity-field characteristics in Figure 13.

For the aforementioned analytic band structure description together with the phonon model
employed, it follows from symmetry that the Ohmic mobility is, both in unstrained and strained
silicon, exactly the same in the <100> and <110> directions. Figure 13 shows that this is still
valid in the case of the full band structures that are employed in the present Monte Carlo
simulations.

In the nonlinear regime, the drift velocities begin to differ between the two crystallographic
directions. In strained Si, the drift velocity is greater in the <100> direction because of the
stronger band curvature shown in Figure 11. However, the maximum improvement of the
velocity in the <100> direction is only 3.8%, occurring at a field strength of approximately
25 kV/cm. In contrast, the drift velocity is greater in the <110> direction in the case of
unstrained silicon. This is due to valley repopulations (compare [8]) and is explained later in
this section when discussing quasiballistic transport. 

Figure 13 Velocity-field characteristics of electrons at 300 K in unstrained 
and strained Si grown on a relaxed Si0.8Ge0.2 substrate along 
crystallographic <100> and <110> directions
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For the highest electric fields, the anisotropy vanishes for unstrained and strained silicon as
energetically higher valleys and bands are being populated. The most important consequence
of the increasing population of the four higher-lying valleys in strained Si is, however, the
disappearance of the velocity improvement under strain. In fact, the saturation velocity is
independent of strain and direction, attaining a value of approximately .

Regarding the issue of a comparison with measurements, they are very scarce for strained bulk
Si. However, in the case of electrons, some published experimental data is available. In this
respect, the low-field drift mobility of approximately 2200 cm2/(Vs) for a substrate Ge content
of 30% is, together with a Hall factor of 1.3 [9], in good agreement with the measured Hall
mobility of 2800 cm2/(Vs) [10]. In addition, the measured saturation of the drift velocity at a
much lower field than in unstrained silicon [11] is reproduced by the model used in the tool
(see Figure 13 on page 58 and [9]). In contrast to other theoretical models [12][13][14], which
do not reproduce these experimental results, this model should be a reliable basis for the device
simulation described in NMOSFETs on page 61.

Finally, quasiballistic transport, which occurs when electrons in or near equilibrium suddenly
experience a strong electric field, is addressed. This can occur in time (for example, in a
spatially homogeneous bulk system) or in space (for example, under stationary-state conditions
in a device). The effect is that the electrons then suffer only a few scattering events over a short
distance (in time or space) and, therefore, attain a higher velocity than the velocity that would
correspond to the electric field in the velocity-field characteristics shown in Figure 13.
Whether and to what extent quasiballistic transport occurs is fixed by (a) the strength of the
driving field, (b) the scattering rate, and (c) the band curvature that determines the gain in
velocity during a free flight. In this section, quasiballistic transport on the bulk level is studied
by suddenly applying a strong field of 100 kV/cm to an ensemble of electrons in equilibrium.
Figure 14 displays the transient velocities for electrons in unstrained and strained silicon where
the field is oriented along the <100> or <110> direction. An overshoot peak emerges before
the electrons finally acquire the stationary drift velocity. 

Figure 14 Transient velocity overshoots of electrons at 300 K after a sudden application 
of a 100 kV/cm field in unstrained Si and strained Si grown on a relaxed 
Si0.8Ge0.2 substrate along the crystallographic <100> and <110> directions
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An overshoot only occurs if the applied field is strong enough. For weak fields, the drift
velocity increases monotonically until the stationary value is reached according to the Drude
theory of an electron gas. In unstrained silicon, the overshoot peak is larger in the <100>
direction while the velocity in the <110> direction becomes higher when the stationary state is
reached. The reason is that, in the <100> direction, the electrons in four valleys experience only
the small transverse effective mass and, therefore, at first, a larger drift velocity is attained. As
these electrons also assume a higher energy, intervalley scattering is stronger, which then
enhances the population of the two valleys with the large longitudinal mass in the transport
direction. This finally leads to a smaller stationary drift velocity in the <100> direction [8]
(however, the anisotropy of the stationary velocities vanishes in the limit of very high fields).

In contrast, the overshoot phenomenon in strained Si is determined solely by the two lower-
lying valleys. Since neither the scattering rate in the two valleys nor the field strength is
affected by changing the direction of the electric field, the anisotropy of the overshoot peak
stems only from the different band curvatures shown in Figure 11 on page 56, which lead to a
stronger peak in the <100> direction. It must be emphasized that the most important difference
between unstrained and strained silicon consists of the much stronger anisotropy of the
overshoot peak in strained Si [4][15] (31% in strained silicon versus 9% in unstrained silicon).

In the case of holes, the performance of strained-silicon PMOSFETs reported [6] is only
slightly affected by the crystallographic in-plane direction. In contrast, there is a strong
dependence on strain, that is, on the Ge content in the substrate as confirmed by recent
experiments [16]. Therefore, the strain dependence of hole transport is investigated explicitly.

The velocity-field characteristics of holes for different strain levels are shown in Figure 15 on
page 61 and the corresponding transient velocity overshoot peaks are shown in Figure 16 on
page 61. It is clear that both the drift velocity at low fields and the transient velocity in
Figure 16 are enhanced as a function of strain. This is because the heavy-hole is pushed away
from the valence-band edge under strain as shown in Figure 12 on page 57, which reduces the
effective mass experienced by the holes as well as interband scattering. 

However, as a higher field eventually increases the energy of the holes, the population of the
heavy-hole band is again enhanced and, consequently, the strain-induced improvement
vanishes for the saturation velocity in Figure 15. Note that the continuing enhancement for
higher Ge substrate contents is due to the increase of the light-hole band curvature in the <011>
direction in Figure 12, which leads to a decrease of the density-of-states at lower energies and,
therefore, to a smaller scattering rate. The overshoot peaks of holes in Figure 16 are generally
smaller than those for electrons in Figure 14 on page 59 because the effective masses are larger.
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Figure 15 In-plane velocity-field characteristics of holes in unstrained and strained silicon 
at 300 K with the field parallel to the crystallographic <110> direction 

Figure 16 Transient velocity overshoots of holes at 300 K after a sudden application of a 
100 kV/cm field along the crystallographic <110> direction in unstrained and 
strained silicon

NMOSFETs

In this section, the main findings regarding the reported performance of strained-silicon
NMOSFETs [5] are discussed. The focus is on the decisive issue of how the strain-induced
performance enhancement scales as a function of the gate length.

MOSFETs with three different gate lengths are simulated. The scaling and simulation
methodology for the comparison of unstrained and strained material is as follows. The original
structure with a gate length of  ( ) was taken from the literature
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[17] and then scaled to  and , respectively, keeping only the oxide
thickness constant with a value of  similar to the literature [18] and readjusting a
constant channel doping such that the off-current does not change.

The geometry of the lightly doped drain (LDD) structure for the smallest simulated NMOSFET
is shown in Figure 1 of the literature [5]. The maximum values of the two n–type Gaussian
profiles of the LDD structure are  and . The
constant p–type doping levels in the channel are , ,
and  for the gate lengths of , 100 nm, and 150 nm, respectively,
thereby increasing for smaller  in accordance with the scaling rules.

Again in analogy to the literature [18], no attempt was made in the different configurations to
achieve the same threshold voltages , which are smaller for strained Si, in particular, due to
the smaller band gap. The comparability of the drain currents between the different simulations
is ensured by always applying the same gate overdrive of . The value of the
drain voltage , which defines the on-current, is taken to be 1.2 V [18]. The SiGe substrate
is not explicitly considered in the simulation. The germanium content of the substrate, which
is 20% in this study as in the experimental work [18], only serves to define the amount of strain
in the MOSFET. The strain-induced change of the band gap with respect to unstrained Si was
computed with the help of the model solid theory of Van de Walle [19]. The transport
parameters such as the effective densities-of-states or velocity-field characteristics entering the
drift–diffusion model, which was used for the determination of the threshold voltage from the
slope of the transfer characteristics, were consistently taken from Monte Carlo bulk
simulations or the underlying band structure calculation.

Figure 17 on page 63 shows the output characteristics of the smallest simulated NMOSFET
with an effective gate length of  based on unstrained or strained Si. Since the
drain current in the unstrained-Si device was nearly the same for both crystallographic
orientations, in this case, only results with a channel orientation along the <110> direction are
presented, as is usual in standard CMOS. (The substrate orientation, corresponding to the
growth direction of the strained Si layer on the virtual SiGe buffer, is always in the (001)
direction, that is, in the z-direction in the schematic MOSFET in Figure 9 on page 55.)

Explicit results for the anisotropy between channel orientations along the <110> and <100>
directions will be restricted to strained Si. In the linear regime, the drain currents in the
strained-Si NMOSFET are the same for both directions, consistent with identical bulk low-
field mobilities in Figure 13 on page 58. This shows that surface roughness scattering does not
affect this symmetry. Anisotropy appears only at higher drain voltages and results in
approximately a 10% higher strain-induced improvement of the on-current for the <100>
direction.

Lch 50 nm= Lch 150 nm=
tox 2 nm=
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Figure 17 Output characteristics of the smallest simulated NMOSFET with an effective 
channel length of 25 nm for strained Si with the channel oriented along the 
crystallographic <100> direction, as well as for strained and unstrained Si with 
orientation of the channel along <110> direction

Figure 18 demonstrates that the improvement by strain, despite a tendency to decrease, persists
at a high level as the gate length is reduced. The enhancements in Figure 18 (a) are also in good
agreement with the measured  improvement of approximately 35% reported in Figure 10 of
the literature [18] for an effective gate length of  (assuming the channel
orientation was in the standard <110> direction). These results show that strained-Si
NMOSFETs offer also in the  regime strong performance enhancements over
conventional CMOS. Together with the demonstration of the feasibility within standard
technology [18], the present work suggests that strained silicon is a viable candidate for the
continuation of increasing silicon nanoelectronics performance. 

Figure 18 Dependence of on-current on gate length: (a) improvement by strain for <100> 
and <110> directions relative to the unstrained case and (b) absolute values for 
strained and unstrained Si
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On-Current Interpretation

While the simulated performance enhancements by strain in nanoscale NMOSFETs are in
good agreement with measurements [18], they are surprising from a physical point of view,
because Figure 13 on page 58 shows that the strain-induced velocity enhancement vanishes for
high fields. Therefore, it is the goal of this section to understand the physics influencing the on-
current by an investigation of the internal velocity profiles and especially the anisotropy in
strained silicon. 

Figure 19 Drift velocity (a) and longitudinal electric field (b) profiles along the channel in the 
NMOSFETs with channel lengths of 50 nm and 100 nm, respectively, for strained 
Si in <100> direction as well as for strained and unstrained Si in <110> direction

The velocity and field profiles along the channel are shown in Figure 19 for the two smaller
transistors. Scaling increases the electric field (Figure 19 (b)) and the drift velocity (Figure 19
(a)) in the source side of the channel and consequently enhances the on-current (see Figure 18
on page 63 (b)). The position where the longitudinal field changes the sign at the source side
of the channel is taken as origin for both MOSFETs. The velocity and field are averaged with
the electron density perpendicularly to the Si–SiO2 interface.

Since the field always starts from zero before increasing into the channel, the velocity attained
along a certain distance in the source side of the channel is caused by a combination of linear,
nonlinear, and quasiballistic transport. In addition, quasiballistic transport will, even in the
presence of a high field, only occur if at the same time the scattering rate is small and the band
curvature is sufficiently strong.

The reduction of the strain-induced  improvement for decreasing gate length in
Figure 18 (a) can be attributed to a contribution of nonlinear transport because the velocity
improvement by strain decreases for an increasing field in the bulk velocity-field
characteristics displayed in Figure 13. On the other hand, it appears that nonlinear transport
cannot explain an  improvement of 30% in the smallest NMOSFET because, after 5 nm, the
field is already approximately 70 kV/cm where the strain-induced improvement in the velocity-
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field characteristics amounts to less than 5%. In contrast to a vanishing strain-induced
improvement in the nonlinear regime, both linear and quasiballistic transport are enhanced
under strain as discussed in Bulk Properties on page 55 and the correlation between an
improved low-field mobility and an enhancement of the source-side velocity has been
confirmed empirically [20].

The difference between linear and quasiballistic transport in strained silicon is, however, that
symmetry implies identical low-field mobilities in the <100> and <110> directions in contrast
to strong anisotropy for quasiballistic transport as seen in Figure 14 on page 59 (the anisotropy
of  in unstrained Si is nearly absent because the, on average, larger in-plane mass leads to a
smaller contribution of quasiballistic transport and because the anisotropy of the overshoot
peaks in Figure 14 is much weaker). Note that the maximum anisotropy in the velocity-field
characteristics of strained Si is only 3.8% as shown in Figure 13 on page 58. Therefore, the
10% stronger improvement of the on-current in the <100> direction can be attributed to a
contribution of quasiballistic transport. The crucial role of quasiballistic transport is also
supported by the fact that the velocity in the smallest strained-silicon MOSFET is significantly
anisotropic after 7 nm and appreciably above the saturation drift velocity (see Figure 19 on
page 64 (a)).

It can be concluded that the correlation of the low-field mobility with  is, apart from
contributing to the source–drain resistance, mainly due to a similar strain dependence as for
quasiballistic transport (both the drift velocity in the linear regime in Figure 13 and the
overshoot peak in Figure 14 are improved under strain).

Finally, it should be noted that models that relate the on-current to the thermal injection
velocity and backscattering [21] cannot explain the anisotropy of  in strained silicon. The
mean thermal injection velocity  for the full band structures were computed and it was
found that in strained silicon  is only 1% larger in the <100> direction than in the <110>
direction (in comparison, it was 4% larger in the <100> direction than the <110> direction in
unstrained Si). In addition, the backscattering coefficient does not depend on the
crystallographic in-plane direction because the low-field mobilities are identical and the field
is nearly the same.

Therefore, it is the velocity in the source side of the channel gained due to quasiballistic
transport rather than the injection velocity that determines the on-current in nanoscale
MOSFETs. In a completely analogous way, the failure of such models to explain the on-current
can be deduced by comparing the results of the full-band and analytic-band Monte Carlo
simulations for the output characteristics in unstrained-Si NMOSFETs [22]. The analytic
thermal injection velocity is only 2% greater than in the full-band case, and the low-field
mobilities are identical in both models. Whereas the model of Lundstrom [21] also predicts in
that case almost the same on-currents, they are actually much higher for the analytic band
structure.

Ion

Ion

Ion

vinj

vinj
Sentaurus™ Device Monte Carlo User Guide 65
N-2017.09



4: Strained Silicon 
PMOSFETs
PMOSFETs

In this section, the analogous investigation as in NMOSFETs on page 61 for NMOSFETs is
performed for PMOSFETs, that is, the strain-induced performance dependence on scaling is
addressed as reported in the literature [6]. In contrast to the case of NMOSFETs, in this study
of strained–Si PMOSFETs, the channel direction is fixed along the usual <110> direction and
the level of strain varies, that is, the germanium content in the SiGe substrate, because the
significant performance variations concern the strain dependence.

The device structures and simulation methodology are the same as for the NMOSFETs. As
already mentioned, all simulations are performed for a channel direction along the usual
crystallographic <110> direction, because the anisotropy in strained-Si PMOSFETs is
negligible. While the on-current in the 25 nm PMOSFET is, for unstrained Si, 6% greater in
the <100> direction, the difference in strained Si is already reduced to 1% for . It can
be seen in Figure 20 that the drain current for all voltages is continuously increased by strain. 

Figure 20 Output characteristics of smallest simulated PMOSFET for unstrained
and strained Si corresponding to Ge contents in the substrate of 20%, 
30%, and 40%, respectively

The variation of the on-current as a function of scaling and strain is depicted in Figure 21 on
page 67. The relative strain-induced improvement of the on-current becomes smaller for a
decreasing gate length (see Figure 21 (a)). Nevertheless, it can be observed that the reduction
of the on-current is relatively modest and the  enhancement attained for the smallest gate
length is still 20% for . In particular, the reduction of the  improvement has been
observed [23] where the gate length was scaled from 0.5 μm to 0. 1 μm. The dependence of the
absolute currents on the gate length in Figure 21 (b) shows that scaling continues to increase
the performance for both unstrained and strained silicon. The generally smaller currents in
comparison to NMOSFETs are related to the smaller source-side velocities shown in Figure 7
of the literature [6].
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Figure 21 Dependence of on-current on gate length: (a) improvement by strain relative to 
the unstrained case for different strain levels and (b) absolute values for strained 
and unstrained silicon

In particular, it is interesting to observe that the on-current in the 25 nm strained-Si PMOSFET
is smaller than in the corresponding unstrained-Si NMOSFET, even for , despite a
higher bulk low-field mobility (compare Figure 18 on page 63). The reason is that the warped
band structure of holes leads to a smaller effective channel mobility (compare Figure 4 in the
literature [23] with Figure 3 in [24]). On the other hand, the bulk velocity of holes in strained
Si with  becomes smaller above a field of 8 kV/cm than the electron velocity in
unstrained bulk silicon (compare Figure 15 on page 61 with Figure 13 on page 58). In addition,
the bulk velocity overshoot is slightly stronger for electrons in unstrained Si. Therefore, under
strain, nanoscale PMOSFET performance will also remain inferior to NMOSFET
performance.

Arbitrary Stress

Besides MOSFETs under biaxial tensile strain as discussed in the previous section, Sentaurus
Device Monte Carlo can simulate devices under arbitrary stress. The corresponding band-
structure data can be generated with Sentaurus Band Structure (see Creating Band Data for
Sentaurus Device Monte Carlo on page 128), or it can be computed using external programs
such as  solvers (send an email to support-tcad-eu@synopsys.com).

The single-particle device Monte Carlo solver is instructed to read custom band-structure data
by specifying MonteCarloPath in the File section, for example:

File {
MonteCarloPath="/home/lsmith/STRESSTABLE/SPARTA/uni110comp85/"

}
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Note that directory names for custom band-structure data must contain the substring SPARTA
(all uppercase) to be identified correctly by the simulator.

Strain may reduce the symmetry of the band structure. Depending on the strain configuration,
band-structure data must be supplied on either one octant of the Brillouin zone (orthorhombic
strain) or half the Brillouin zone (for example, uniaxial compressive stress in the <110>
direction). A valid set of band-structure data for orthorhombic or higher symmetry consists of
an energy file a.dat and a group velocity file b.dat. In the presence of shear strain, additional
files called a1.dat, a2.dat, a3.dat and b1.dat, b2.dat, b3.dat must be supplied.

Sentaurus Device Monte Carlo distinguishes between the two cases by checking for the
presence of a1.dat. Sample output for the low symmetry case is shown here:

Path is /home/lsmith/STRESSTABLE/SPARTA/uni110comp85/
Entering readina
First: reading /home/lsmith/STRESSTABLE/SPARTA/uni110comp85/a1.dat.gz ...
Band structure data for non-orthorhombic symmetry to be imported
reading /home/lsmith/STRESSTABLE/SPARTA/uni110comp85/cirate_taki.dat ... done
Entering setdosb finished with the map.
Entering readinb
reading /home/lsmith/STRESSTABLE/SPARTA/uni110comp85/xi.dat ... done
reading /home/lsmith/STRESSTABLE/SPARTA/uni110comp85/rotmat.dat ... done
reading /home/lsmith/STRESSTABLE/SPARTA/uni110comp85/rot.dat ... done
reading /home/lsmith/STRESSTABLE/SPARTA/uni110comp85/a.dat.gz ... done
reading /home/lsmith/STRESSTABLE/SPARTA/uni110comp85/a1.dat.gz ... done
reading /home/lsmith/STRESSTABLE/SPARTA/uni110comp85/a2.dat.gz ... done
reading /home/lsmith/STRESSTABLE/SPARTA/uni110comp85/a3.dat.gz ... done
reading /home/lsmith/STRESSTABLE/SPARTA/uni110comp85/b.dat.gz ... done
reading /home/lsmith/STRESSTABLE/SPARTA/uni110comp85/b1.dat.gz ... done
reading /home/lsmith/STRESSTABLE/SPARTA/uni110comp85/b2.dat.gz ... done
reading /home/lsmith/STRESSTABLE/SPARTA/uni110comp85/b3.dat.gz ... done
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CHAPTER 5 Surface and Channel Orientations

This chapter discusses surface and channel orientations with regard
to increasing the performance of PMOSFETs.

Changing Surface and Channel Orientations

Apart from stress engineering, changing surface and channel orientations is another possibility
to increase the performance of PMOSFETs [1][2]. This effect can be investigated in Sentaurus
Device Monte Carlo by specifying the crystallographic orientations for the surface and channel
directions. Its use in the command file is, for example:

ChannelDirection = (0 -1 1)

Normal2OxideDirection = (0 1 1)

See MonteCarlo Section on page 22 for details about these keywords.

The band structure table that is used in the tool is always stored with respect to a Cartesian
coordinate system with the three axes aligned to the principal axes of the six ellipsoids as
illustrated in Figure 22. 

Figure 22 Equienergy surface in the first conduction band of silicon 
under uniaxial compressive stress in <001> direction
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Changing Surface and Channel Orientations
This example corresponds to uniaxial compressive stress in the <001> direction and lifts four
of the six conduction band valleys upwards in energy. Specifying the channel and surface
orientations of a device entails orientating the device correspondingly, relative to the band
structure in Figure 22 on page 71.

In Figure 23, a schematic of a bulk MOSFET is shown where the channel direction is in the
crystallographic <hkl> orientation and the surface direction is in the crystallographic (mnp)
orientation, with the directional vectors <hkl> and (mnp) to be placed into Figure 22. 

Figure 23 Specification of crystallographic surface (mnp) and channel 
<hkl> orientation in schematic MOSFET

Note that, in 2D device simulation, the channel direction corresponds to the x-axis and the
surface direction to the –y-axis. The corresponding transformation is performed internally. The
specification of ChannelDirection and Normal2OxideDirection in the command file of
Sentaurus Device Monte Carlo must always be specified according to the orientations as shown
in Figure 23.

Figure 24 shows a comparison between measurements [1][2] and single-particle device Monte
Carlo simulations of the enhancements to the effective hole mobility due to different surface
and channel directions, relative to the standard (001) surface and <110> channel orientations. 

Figure 24 Long-channel effective hole mobility enhancement for (110) surface 
and different <hkl> channel orientations
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The simulated order of the enhancement and the dependence on the channel orientation are in
satisfactory agreement with the measurements in view of the differences between different
measurements. The physical reason for the enhancement of the hole surface mobility for a
(110) surface orientation is specular scattering at the interface, which is governed by the
conservation of energy and parallel wavevector. In the standard configuration, specular
scattering can revert the direction of the parallel component of the group velocity and,
therefore, degrades the mobility [3], whereas for a (110) surface orientation, this effect does
not occur due to the orientation of the band structure relative to the interface [4].

A corresponding Sentaurus Workbench example can be accessed from the TCAD Sentaurus
Tutorial (HTML training material):

1. On the command line, type the following two commands:

cd $STROOT/tcad/$STRELEASE/Sentaurus_Training
pwd

2. Start a browser and copy the path of the current directory into the address.

3. Click index.html.

4. Click the Sentaurus Device module.

5. Go to the Carrier Transport Models section.

6. Click Monte Carlo Transport. 
The project can be downloaded from here.

In contrast, in the case of electrons, changing the standard configuration degrades the surface
mobility. However, the effect appears to be underestimated in the simulation and may require
calibration, that is, it may be necessary to increase the percentage of diffusive scattering upon
surface roughness scattering.

Another application of arbitrary surface and channel orientations is the possibility to use one
band structure table of strained silicon more than once, the computation of which is time-
consuming with the pseudopotential method and which requires considerable disk space. For
example, using the band structure table for the uniaxial compressive stress in the <001>
direction illustrated in Figure 22 on page 71, together with the (001) surface and <100>
channel orientations, corresponds to uniaxial stress that is perpendicular to the gate oxide
interface, while using the same table with the (–100) surface and <001> channel orientations
corresponds to uniaxial stress in the channel direction.
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CHAPTER 6 Stress-Dependent Built-in Analytic 
Band Structures

This chapter describes the analytic band structures that are
incorporated in single-particle device Monte Carlo for strained
silicon.

Stress Engineering

Stress engineering requires the frequent computation of the corresponding band structures.
Since the accurate pseudopotential calculations are very CPU-intensive, the tool offers as a
third possibility – besides using the supplied pseudopotential band tables and the capability to
import external band tables – to use analytic band structures. The corresponding formulas are
incorporated in the tool and are evaluated for the symmetric strain tensor, which must be
specified using the variable MCStrain in the Sentaurus Device Monte Carlo command file. Its
use in the command file is:

(26)

Here:

(27)

is the symmetric strain tensor in the Cartesian coordinate system, where the three axes are
aligned to the principal axes of the three pairs of ellipsoids in the first conduction band, that is,
in the same coordinate system as used for the band structure tables in Chapter 5 on page 71. 
is the displacement vector. The relation of the symmetric strain tensor to the geometry of the
device is specified by ChannelDirection and Normal2OxideDirection (see Chapter 5
for a more detailed description).

NOTE The symmetric strain tensor differs from the so-called engineering or
conventional strain tensor appearing in Hooke’s law, which relates the
engineering strain tensor to the stress tensor. The off-diagonal
components of the engineering strain tensor are larger than the off-
diagonal components of the symmetric strain tensor by a factor of two.

MCStrain εxx εyy εzz εyz εxz εxy, , , , ,( )=

εij
1
2
---

dui

dxj
-------

duj

dxi
-------+ 

 =

u
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Visualizing Band Structures
Another alternative option to performing stress-dependent MC simulations is to use the stress
tensor that is defined in the Piezo section of the Sentaurus Device command file. This option
should be simpler than MCStrain for users because usage of the stress tensor in the Piezo
section is a typical way to perform stress-dependent drift-diffusion device simulations. In
addition, unlike MCStrain, the stress tensor should be defined in the device simulation
coordinate system, and it can be simply taken from the process simulation without any
transformation. To activate this option, the keyword ReadinStress must be specified. In this
case, Sentaurus Device Monte Carlo automatically transforms the stress tensor from the device
simulation coordinate system to the crystal one, and computes the strain tensor above using the
elasticity constants defined in the LatticeParameters section of the Sentaurus Device
parameter file. This option also defines the ChannelDirection and
Normal2OxideDirection vectors automatically using the corresponding X and Y vectors
from the LatticeParameters section (these vectors set the device simulation coordinate
system).

NOTE If the ReadinStress option is used, then the MCStrain,
ChannelDirection, and Normal2OxideDirection specifications
are ignored with warnings printed in the log file.

Since the influence of the position dependence of stress has been found to be negligible for gate
lengths below  [1], the analytic band structures allow for using Monte Carlo simulation
directly for stress engineering in a Sentaurus Workbench project, where the strain or stress
tensors are picked from the source side of the channel.

Visualizing Band Structures

The new analytic band models for electrons and holes, which are activated by specifying
MCStrain in the Sentaurus Device Monte Carlo command file, can also be visualized along a
line in the Brillouin zone by giving the initial and final wavevectors of the line, for example:

(28)

which will generate a file with the suffix _energy.plt showing the band energies along the
line between both wavevectors (the parameter on the x-coordinate varies between 0 and 1, and
the unit of the wavevectors is  with  denoting the lattice constant).

0.1 μm

KVecStart 0.0 0.0 0.85, ,( )=

KVecEnd 0.2 0.2 0.85, ,( )=

2π a⁄ a
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Hole Band Structure
Hole Band Structure

For holes, analytic solutions of the 6-band  Hamiltonian are used [2]. The values used for
the valence-band parameters and for the deformation potentials are shown in Table 3 together
with the elastic constants in silicon. The value of the spin-orbit splitting, ,
results from the pseudopotential calculation when setting  and 
in the literature [3]. 

In Figure 25 on page 78, the drain currents in unstrained-silicon PMOSFETs based on the 6-
band  band structure are compared to the corresponding results using the pseudopotential
band structure. The small differences show that 6-band  band structures are well suited to
drain current simulations where the high-energy regime is not important. 

Table 3 Valence-band parameters, deformation potentials, 
and elastic constants used for silicon

Parameter Unit Value Reference

L –6.69 [3]

M –4.62 [3]

N –8.56 [3]

eV 2.46 [4]

b eV –2.35 [5]

d eV –5.32 [5]

Mbar 1.675 [3]

Mbar 0.65 [3]

Mbar 0.8 [3]

k p⋅

Δso 0.043409 eV=
μ 0.00018 Ry= ζ 4.6 Å 1–=

h2 2m0( )⁄

h2 2m0( )⁄

h2 2m0( )⁄

av

C11

C12

C44

k p⋅
k p⋅
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Electron Band Structure
Figure 25 Monte Carlo simulation of saturation (VDS = –1.1 V) and linear (VDS = –0.1 V) 
drain currents in scaled PMOSFETs as a function of the gate length with a band 
structure obtained either from the nonlocal pseudopotential method [3] or by 
6-band k.p calculation

Electron Band Structure

For electrons, it had been found that the standard analytic band model, which is based on
different values for the longitudinal and the transverse mass and uses an isotropic
nonparabolicity factor [6], overestimates the drain current at short gate lengths and high drain
voltages [7] and does not include the anisotropy of quasiballistic overshoot in biaxially strained
silicon [8]. Therefore, the standard analytic band model has been extended to overcome these
two limitations [9]. In addition, the influence of stress is considered in terms of valley splitting
[10] and a change of effective mass in the case of a nondiagonal strain tensor [11].

For a given valley, the electron energy is decomposed according to:

(29)

where  is the valley minimum. The longitudinal and transverse parts of the electron energy
are given by:

(30)

(31)
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Electron Band Structure
respectively, with:

(32)

(33)

(34)

when taking the longitudinal direction along the -axis.  and  denote the longitudinal
effective mass and the transverse effective mass, respectively, and  is the free electron mass.
The expansion of the square root in Eq. 31 leads, in second order, to the anisotropic
nonparabolic transverse energy in Appendix B of [6] and represents the corresponding
generalization to the standard nonparabolic expression. Here, however, no averaging is
performed, so that the nonparabolicity factor is not an isotropic constant, but is given by Eq. 32.
Since Eq. 31 is used beyond the validity of the expansion to second order,  loses its
original meaning and is fitted to the pseudopotential energy dispersion with the result shown
in Figure 26. 

Figure 26 Electron energy in a lower valley of biaxially strained silicon grown on Si0.8Ge0.2 
versus modulus of the wavevector (measured with respect to the valley minimum) 
along two directions perpendicular to the longitudinal axis of the equienergy 
ellipsoid

In addition, a second conduction band is introduced in the spirit of the extended zone scheme
of the free electron model, where the conduction band minimum is correspondingly located at

 (  is the lattice constant), resulting from a shift by a reciprocal lattice
vector. The values for its effective masses are adjusted to compensate for the underestimation
of the full-band density-of-states above 130 meV by the standard analytic band model. The
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Electron Band Structure
comparison of the on-current scaling in Figure 27 when using either the pseudopotential or the
new analytic electron band model now shows only a small overestimation of the drain current
by the new analytic model. 

Figure 27 Monte Carlo simulation of saturation (VDS = 1.1 V) drain current in scaled 
NMOSFETs as a function of gate length with a band structure obtained from 
either the nonlocal pseudopotential method [3] or the new analytic electron band 
model

Under strain, the energy shift of, for example, the valley along the x-axis is given by [10]:

 (35)

with , , , and  [12]. In addition, a
nondiagonal symmetric strain tensor leads to a change of the effective mass according to [11]:

(36)

and to a change of the nonparabolicity factor according to [13]:

(37)

with . All values of the new analytic band model are given in Table 4 on page 81. 
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Electron Band Structure
Finally, simulation results of the new analytic electron band model are compared to
pseudopotential results for the low-field mobility in Figure 28 and for the anisotropic transient
velocity overshoot in Figure 29. 

Figure 28 Low-field drift mobility of electrons under biaxial or uniaxial <110> tensile stress; 
in the case of biaxial stress, the symbols correspond to substrate Ge contents of 
0%, 10%, 20%, and 30%; pseudopotential results are from [14]

Figure 29 Transient in-plane velocity overshoot after a sudden application of a 100 kV/cm 
field to electrons in biaxially strained silicon grown on Si0.8Ge0.2 

Good agreement between the results of the new analytic electron band model and the
pseudopotential approach can be seen that suggests its usability for drain current simulations.

Table 4 Electron band parameters

Unit (eV)

First conduction band 0.85 0.918 0.197 173.6 0.3

Second conduction band 1.15 1.2 0.4 173.6 –
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CHAPTER 7 Transport in Strained SiGe

This chapter describes the features of electron and hole transport in
strained silicon germanium (SiGe) that can be simulated using
Sentaurus Device Monte Carlo.

Hole Band Structure

The full band structure under consideration consists of three valence bands and is obtained
from nonlocal empirical pseudopotential calculations in the virtual crystal approximation
including spin-orbit interaction [1]. In addition to [1], the spin-orbit interaction in silicon is
taken into account by setting the corresponding parameters in Table I of [1] to 
and .

Strain is due to the lattice mismatch between the Si1–xGex alloy and the (100) Si1–yGey
substrate. The lattice constant of the unstrained SiGe alloy can be parameterized by [1][2]:

(38)

with the bulk lattice constants in Si and Ge being  and . Below
a critical thickness, the Si1–xGex layer is biaxially strained. Its lattice constants parallel ( )
and perpendicular ( ) to the interface, between the layer and the substrate, then follow from
elasticity theory with the result [1]:

(39)

The elastic constants in Si (Ge) are  (1.315) Mbar and  (0.494) Mbar.
Their values in the alloy are obtained by linear interpolation. Strain lifts the degeneracy of
heavy-hole and light-hole bands at the -point, but the heavy-hole band remains at the
valence-band edge under biaxial compressive strain ( ). In addition to this band-splitting,
however, the effective mass of the hole band at the valence-band edge, which is decisive for
transport, is reduced with increasing compressive strain. This is illustrated by the
corresponding band curvatures in Figure 30 on page 86.
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Hole Band Structure
Figure 30 Energy dispersion of the topmost valence band along the (left) <100> and (right) 
<110> wavevector directions for unstrained Si and strained Si0.7Ge0.3 grown on a 
Si substrate

In the case of the six-band band structure, the values used for the valence-band
parameters and for the deformation potentials in germanium are shown in Table 5 together with
the elastic constants, in analogy to the values for silicon in Table 3 on page 77. The value for
the spin-orbit splitting, , results from a pseudopotential calculation
with  and  in [1].

The valence-band parameters L, M, and N in the Si1–xGex alloy are computed according to the
expression given in [1], and the other parameters are obtained by linear interpolation between
the values in Si and Ge. 

Table 5 Valence-band parameters, deformation potentials, 
and elastic constants used for germanium

Parameter Unit Value Reference

L –21.65 [1]

M –5.02 [1]

N –23.48 [1]

eV 1.24 [3]

b eV –2.55 [4]

d eV –5.50 [4]

Mbar 1.315 [1]

Mbar 0.494 [1]

Mbar 0.668 [1]
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Scattering Mechanisms
Scattering Mechanisms

The scattering mechanisms included in the microscopic transport model are scattering by:

■ Si-type and Ge-type phonons.

■ Alloy scattering in the formulation of Harrison and Hauser [5].

■ Impurity scattering.

Phonon scattering in SiGe is approximated for the transport applications by considering the
scattering rates in Si and Ge, weighted by the relative fraction of the components in the
alloy [1], and includes inelastic acoustic phonons as well as optical phonons [3]. The scattering
rate for alloy scattering is:

(40)

where  is the unit cell, and  is the density-of-states per
spin of all three valence bands. 

An important uncertainty of the transport model is the strength of alloy scattering. The
underlying model of Harrison and Hauser [5] is supported by the old mobility measurements
of Busch and Vogt [4] that, while being affected by a large scatter of the data and uncertainties
regarding the extraction of the drift mobilities from the measurements, extend over the whole
range of Ge contents and exhibit a Ge content dependency of the mobility in accordance with
the model of Harrison and Hauser. 

In this model, the alloy potential is the only free parameter of the microscopic SiGe transport
model. Its value is crucial for transport in SiGe and, therefore, has been adjusted on the basis
of comprehensive and accurate drift mobility measurements at  in unstrained and low-
doped SiGe alloys [6] with Ge concentrations varying between 0% and 13% with the result

. The only change of the impurity scattering rate concerns the relative dielectric
constant, which is interpolated linearly between the values of 11.7 for silicon and 16.0 for
germanium.

Simulation Procedure and Results

Simulating Si1–xGex involves specifying the Ge content using xGe in the Sentaurus Device
Monte Carlo command file, which defines the contribution of Ge phonon scattering and alloy
scattering. Either the corresponding pseudopotential band-structure table is loaded (Si0.7Ge0.3
under biaxial compressive strain when specifying xGe = 30.0 and WithStrainedMaterial
or relaxed Ge when specifying xGe = 100.0), or the analytic six-band band structure can
be used for which, in addition to xGe, the strain tensor MCStrain must be given. This means,
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Simulation Procedure and Results
for example, that specifying xGe = 30.0 with MCStrain = (0,0,0,0,0,0) corresponds
to unstrained SiGe, while MCStrain = (-0.0113,-0.0113,0.0087,0.0,0.0,0.0)
corresponds to SiGe under biaxial compressive strain.

NOTE The calibration of the doping-dependent prefactor of the impurity
scattering rate and the diffusive percentage for surface roughness
scattering was performed for silicon and has not been changed for
germanium. Simulating germanium or germanium-rich SiGe alloys
requires the use of a screening length computed according to a heated
Fermi–Dirac distribution (WithFermiDiracScreening activated,
which is the default), because in this case the prefactor deviates only
moderately from unity and, possibly, requires changing the default
value for SurfScattRatio in the Sentaurus Device Monte Carlo
command file.

In Figure 31, the velocity field characteristics are shown for strained Si0.7Ge0.3 grown on a Si
substrate resulting from:

■ Pseudopotential bands and elastic acoustic phonons [7].

■ Pseudopotential bands and inelastic acoustic phonons.

■ Six-band band structure and inelastic acoustic phonons.

As expected, the consideration of inelastic phonons results in a smaller saturation velocity [3],
and a six-band band structure involves an underestimation of the drift velocity at higher
fields, which are, however, not important for the drain current [8]. 

Figure 31 Simulated in-plane velocity-field characteristics with the field parallel to the <100> 
direction of holes at 300 K for strained Si0.7Ge0.3 grown on a Si substrate
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Electron Transport
Electron Transport

The scattering mechanisms and the phonon-coupling constants for electrons in silicon as well
as for electrons in germanium are the same as given by Jacoboni and Reggiani [9]. The only
changed values are those for intravalley scattering in order to reproduce the velocity-field
characteristics with the pseudopotential band structure instead of the standard analytic band
model used by Jacoboni and Reggiani. Figure 32 shows the corresponding comparison with the
experimental time-of-flight results. 

Figure 32 Simulated and measured velocity-field characteristics for electrons in germanium 
at 77 K and 300 K for transport in the crystallographic <100> and <111> 
directions

Electron transport in SiGe with arbitrary mole fraction, stress, and crystallographic orientation
is possible. The band structures are Si-like up to xGe = 85% (only -valleys are considered)
and Ge-like above xGe = 85% (also the -valley and L-valleys are considered).

The default value for the alloy potential of  was obtained from adjustment to drift
mobility measurements as reported in [10].
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CHAPTER 8 Electron Transport in InGaAs

This chapter describes the features of electron transport in indium
gallium arsenide (InGaAs) that can be simulated using Sentaurus
Device Monte Carlo.

Features of Electron Transport

With regard to InGaAs, you can simulate electrons in relaxed InGaAs using the available
pseudopotential tables for GaAs (xGe=100), InAs (xGe=0), and InGaAs (xGe=47).

The scattering mechanisms and the phonon-coupling constants for GaAs are the same as given
by Lundstrom [1] (including, in particular, polar-optical phonon scattering) and reproduce the
measured velocity-field characteristics as shown in Figure 33. 

Figure 33 Simulated and measured [2][3][4][5] velocity-field characteristics for electrons in 
gallium arsenide at 300 K for transport in crystallographic <100> direction

For InAs, only the band structure and the dielectric constant change. In InGaAs, alloy
scattering is added and adjusted to reproduce the measured velocity-field characteristics as
shown in Figure 34 on page 92.
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References
Figure 34 Simulated and measured [5][6] velocity-field characteristics for electrons in 
relaxed InGaAs (gallium content = 47%) at 300 K for transport in crystallographic 
<100> direction
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CHAPTER 9 Mobility Reduction in High-k Gate 
Stacks

This chapter describes how the mobility reduction occurring in the
presence of high-k gate stacks can be taken into account in Sentaurus
Device Monte Carlo.

Introduction

The scaling rules require that a further reduction of the gate length is accompanied by a
reduction of the equivalent oxide thickness (EOT). However, further reduction of the physical
(nitrided) silicon-dioxide (SiO2) thickness below 1 nm is not possible, because the associated
gate leakage current becomes too high. 

An alternative is to replace SiO2 with another gate-oxide material that has a higher dielectric
constant so that a smaller EOT can be achieved with a physically thicker oxide, thereby
suppressing the gate leakage. The current material of choice is hafnium dioxide (HfO2), which
features a relative dielectric constant of approximately 22 compared to the value of 3.9 in SiO2
(new material HfO2).

However, a larger ionic polarization leading to the large static dielectric constant also involves
a larger scattering potential arising from the coupling of the channel electrons with the soft-
optical or surface-optical phonons arising at the semiconductor–insulator interface. This leads
to a degradation of the surface mobility. 

There are two models in Sentaurus Device Monte Carlo that take this mobility degradation into
account. The first one (activated in the Sentaurus Device Monte Carlo command file with
HighKModus=2) applies to the situation where the high-k dielectric is separated from the
semiconductor channel by a thin SiO2 interfacial oxide (new material InterfacialOxide).
Here, the scattering potential at a given electron position depends exponentially on the distance
to the high-k interface and explicitly on the thickness of the interfacial oxide. 

The second model (activated in the Sentaurus Device Monte Carlo command file with
HighKModus=1) applies to the situation where there is no interfacial oxide between the high-k
gate material and the semiconductor channel.
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Soft-Optical Phonon Scattering

To illustrate the principal ingredients of soft-optical (SO) phonon scattering, the simplest case
is described of a single interface between a semiconductor and an infinitely thick oxide with a
single insulator transverse-optical (TO) phonon mode . The solution of the secular
equation for obtaining the SO phonon dispersion:

(41)

with the following expressions for the dielectric function in the semiconductor:

(42)

and in the high-k oxide:

(43)

yields:

(44)

with the material parameters being the high-frequency dielectric constant in the semiconductor
 as well as the high-frequency dielectric constant , the low-frequency dielectric constant
, and the TO phonon energy  in the high-k oxide. The associated scattering potential

reads [1]:

(45)

with:

(46)

in the simple case described above, where  is the position of the interface. Therefore, 
is the distance to the semiconductor–high-k interface, and  is the 2D momentum exchanged
upon this scattering mechanism. 
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High-k Mobility in the Presence of an Interfacial Oxide
In semiclassical approximation, the dependence on  is treated parametrically, and the
resulting scattering rate is given by [2]:

(47)

where the upper sign stands for phonon absorption and the lower sign stands for phonon
emission.  is the Bose–Einstein distribution. Only the 2D  phonon vector is exchanged,
while the  component of the 3D electron wavevector  is conserved upon SO phonon
scattering.

NOTE The actual denominator in [2] is , that is, the scattering rate in
Eq. 47 is larger by a factor of . The denominator  emerges
upon converting the sum over the 2D  phonon vector into an integral
according to , where  denotes the unit area.

High-k Mobility in the Presence of an Interfacial Oxide

In the presence of an interfacial oxide (HighKModus=2), you also only consider the lowest-
energy TO phonons of the two oxides, that is, SiO2 and the high-k oxide, because these modes
are the most important ones for mobility degradation. These lead to three SO phonon modes.

Using the expressions for these three SO phonon modes and for the corresponding total
effective dielectric functions reported in the Appendix of reference [1], the scattering rates are
evaluated according to Eq. 47 where one integration cancels due to the energy-conserving delta
function, and the remaining integration is performed numerically using a parabolic
approximation for the dispersion of the electron or hole energy.

The resulting scattering rates for a position directly under an interfacial oxide of 1-nm
thickness are shown in Figure 35 on page 96. In contrast to bulk phonon-scattering rates, the
SO phonon-scattering rates do not depend on the total electron energy, but they do depend on
the parallel energy. The parallel energy is obtained from the total energy by subtracting the
energy component perpendicular to the gate oxide interface (for arbitrary geometry, the
direction normal to the interface is replaced by the direction pointing from the electron position
along the shortest distance to the high-k interface). The perpendicular energy is approximated
by multiplying the total energy by the ratio of the squares of the group-velocity component
normal to the interface and of the total group velocity.

The material parameters, which can be specified in the Sentaurus Device Monte Carlo
command file, are reported in Table 6 on page 96. 
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High-k Mobility in the Presence of an Interfacial Oxide
For each real-space element of the semiconductor, the distance  to the high-k oxide interface
and the thickness  of the interfacial oxide are extracted automatically from the geometry of
the device. 

Figure 35 Soft-optical phonon scattering rates directly under a 1-nm thick interfacial oxide 
for a HfO2 dielectric compared to the total bulk phonon scattering rate. These SO 
phonon scattering rates are computed with the denominator of [2]; according to 
Eq. 47, they would be larger by a factor of 2π.

Table 6 shows the lowest-energy TO phonon energies as well as high-, intermediate-, and low-
frequency dielectric constants of the high-k oxide and the interfacial oxide with the default
values taken from [1], which correspond to HfO2 and SiO2, respectively. 

NOTE In computing the distances to the high-k oxide interface, every insulator
is considered to be a high-k material except Oxynitride, Vacuum,
Si3N4, SiO2, and InterfacialOxide.

Table 6 Material parameters for SO phonon scattering in presence of an interfacial oxide

Parameter Keyword Value Unit

HOmegaTO1 12.40 meV

OxideHOmegaTO1 55.60 meV
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HighKEpsilonInt 6.58
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High-k Mobility in the Absence of an Interfacial Oxide
NOTE The thickness of the interfacial oxide is computed for the material
InterfacialOxide, that is, you have to deposit in the gate stack the
material InterfacialOxide between the high-k insulator and the
semiconductor channel. In addition, InterfacialOxide must be used
exclusively for this interfacial layer and not, for example, as spacer
material.

In view of the still-debated cause of high-k mobility degradation, the approximations involved
in the described SO phonon scattering model, and experimental uncertainties, calibration to
mobility measurements as reported, for example, in [3], is necessary. In addition to the model
parameters in Table 6 on page 96, it is therefore possible to specify the prefactor of the
scattering rates for the three SO phonon modes in the Sentaurus Device Monte Carlo command
file (SO1Factor, SO2Factor, and SO3Factor) that are set to 1.0 by default. If the scattering
rates coincide with those of [2], these prefactors must be equal to .

High-k Mobility in the Absence of an Interfacial Oxide

In the absence of an interfacial oxide, the previous model (HighKModus=2) can still be
applied. In this case, however, an extended model, activated by HighKModus=1, can be used.
Here, not only the lowest-energy TO phonon mode, but also the two lowest-energy transverse-
optical phonon modes (TO1 and TO2) of the high-k oxide are considered. 

The material parameters associated with the two resulting SO phonon modes are summarized
in Table 7, which lists the two lowest-energy transverse-optical (TO1 and TO2) phonon
energies as well as high-, intermediate-, and low-frequency dielectric constants of the high-k
oxide with the default values taken from [1], which correspond to HfO2. 

Again, the prefactor of the scattering rates of the two SO phonon modes (SO1Factor and
SO2Factor) can be changed from the default value of 1.0. 

Table 7 Material parameters for SO phonon scattering in absence of an interfacial oxide

Parameter Keyword Value Unit

HOmegaTO1 12.40 meV

HOmegaTO2 48.35 meV

HighKEpsilonInf 5.03

HighKEpsilonInt 6.58

HighKEpsilonZero 22.0
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Remote Coulomb Scattering
NOTE If this model is used in the presence of an interfacial oxide, the only
effect of the interfacial oxide is to increase the distance  to the high-k
interface by the thickness  of the interfacial oxide. This is not correct,
however, because the interfacial oxide leads to a modification of the SO
phonon spectrum and of the SO phonon scattering rates as incorporated
in the model activated by HighKModus=2.

Remote Coulomb Scattering

Another possible source for mobility degradation is scattering from interface charges between
the high-k insulator and the interfacial oxide. In analogy to Eq. 47, the corresponding inverse
microscopic relaxation time for unscreened remote Coulomb scattering (RCS) is:

(48)

where  denotes the density of interface charges per unit area, and  is the angle between
the 2D in-plane wavevectors of the carrier before and after scattering, and the effective
dielectric constant is approximated by:

(49)

in terms of the dielectric constants of the high-k insulator and the semiconductor, respectively.
For RCS, the value of the dielectric constant of the high-k insulator can be adjusted. The
wavevector after scattering is selected at random under conservation of energy and the
wavevector component perpendicular to the interface. Note that the effect of RCS tends to be
small for realistic densities of interface charges.

The material parameters associated with RCS are summarized in Table 8, which lists the
density of interface charges and the dielectric constant of the high-k insulator. Again, the
prefactor of the RCS rate (RCSHighKFactor) can be changed from the default value of 1.0. 

Table 8 Material parameters for remote Coulomb scattering

Parameter Keyword Value Unit

NintHighK 0.0

RCSHighKEpsilon 22.0
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CHAPTER 10 Parallelization

This chapter describes how parallelization can be used with
Sentaurus Device Monte Carlo.

Introduction

Single-particle device Monte Carlo is based on the propagation of independent particles
through the device. Therefore, it is well suited for parallelization and can make good use of
modern multicore computers.

Parallel Simulation Procedure

The parallelization of single-particle device Monte Carlo uses several threads of execution,
each of which propagates its own particle through the device. Independent propagation of
#threads particles for a time Ttotal/#threads gives rise to the same sample statistics as
propagating a single particle for the full time Ttotal. If Monte Carlo sampling dominates the
total execution time of a simulation, this gives rise to a near linear speedup (see Figure 36 on
page 102).

You enable parallel Monte Carlo simulation by specifying multiple solver threads in the Math
section of the command file:

Math {
NumberOfSolverThreads=integer 

}

The number of threads can either be a fixed number (for example,
NumberOfSolverThreads=8) or you can instruct Sentaurus Device to autodetect the number
of CPU cores in your system and use one thread per core by specifying
NumberOfSolverThreads=maximum. Alternatively, you can use the keyword
NumberOfThreads, but this has the side effect of setting not only the number of solver threads
(the number of threads used by Monte Carlo), but also the number of assembly threads.

To take full advantage of parallelization, the wallclock time between subsequent Poisson
updates must not be too small; otherwise, file writing and general bookkeeping can degrade
parallel performance. As a general rule, the sampling time between Poisson updates should be
several seconds (wallclock time) or more. In addition, at the onset of a Monte Carlo simulation,
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Parallel Simulations and Sentaurus Workbench
certain setup tasks (for example, reading band-structure files) must be performed. In very short
simulations, this can be a substantial part of the total runtime; therefore, very short Monte Carlo
simulations will not see the full parallel speedup. 

Figure 36 Parallel speedup of a typical Monte Carlo simulation

Parallel Simulations and Sentaurus Workbench

When scheduling parallel jobs using Sentaurus Workbench, be sure to communicate the
number of threads to the scheduler; otherwise, multiple parallel simulations may be scheduled
on the same machine, resulting in an excessive CPU load. The correct way to communicate the
number of threads to the scheduler is shown below for the example of the Sun Grid Engine
(SGE).

Suppose that, for each Sentaurus Device node, the number of threads you want to use is given
by the Sentaurus Workbench parameter nThreadsMC. Then, you can instruct the scheduler to
reserve nThreads queue slots by adding the following line to the project-specific
gtooldb.tcl file:

set ::WB_tool(sdevice,SGE,resource) {"cpus_used=@nThreadsMC@"}

The situation becomes slightly more complicated if different Sentaurus Device simulations in
the same experiment need to use different numbers of threads, for example, if you have both
scalar drift-diffusion simulations and parallel Monte Carlo simulations. Resources are handled
at the tool level. In that case, it is recommended to create a designated tool name for the
Sentaurus Device Monte Carlo nodes.
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The gtooldb.tcl file below creates a new tool name sdeviceMC from the sdevice
template and reconfigures sdeviceMC to request nThreadsMC queue slots from SGE;
whereas, the SGE resource string for sdevice remains at the default:

proc main {} {
copyTool sdevice sdeviceMC
set ::WB_tool(sdeviceMC,SGE,resource) {"cpus_used=@nThreadsMC@"}

}

proc copyTool { tool newTool } {
global WB_tool Icon WB_binaries WB_manual
if { [lsearch $WB_tool(all) $newTool] == -1 } {

lappend WB_tool(all) $newTool
}
foreach arr {WB_tool Icon WB_binaries WB_manual} {

foreach i [array names $arr] {
if { [regexp \[\[:<:\]\]${tool}\[\[:>:\]\] $i] } {
set newName [regsub $tool $i ${newTool}]
set ${arr}(${newName}) [set ${arr}($i)]
}

}
}

}

main

After adding the commands for the creation of the sdeviceMC tool name, you may have to
save and reload your project for the new tool name to become available. Afterwards, you can
switch the tool names of the Sentaurus Device instances intended for performing parallelized
Sentaurus Device Monte Carlo simulations from sdevice to sdeviceMC in the Tool
Properties dialog box.

Licensing

Parallel Sentaurus Device Monte Carlo is based on the Sentaurus Device parallel feature and
uses the same licensing. For every four threads, you need one parallel license.

For details, see Sentaurus™ Device User Guide, Parallelization on page 166.
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CHAPTER 11 Example: NMOS Transistor

This chapter presents an example of an NMOS transistor as
simulated by Sentaurus Device Monte Carlo.

Simulation of NMOS Transistor

This example is a realistic 2D NMOS transistor with 100 nm gate length obtained from a
process simulation. The geometry and the doping of the transistor are defined in a file named,
for example, n5_msh.tdr.

After the drift-diffusion simulation invoked by sdevice drift_new is completed, the Monte
Carlo simulation is performed by using sdevice mc_new as described in Chapter 1 on
page 3. Here, the emphasis is on the analysis of the simulation results. First, Figure 37 shows
the output characteristics of the NMOSFET. In comparison to Sentaurus Device Monte Carlo,
the drift-diffusion simulation significantly underestimates the on-current.

Figure 37 Output characteristics of 0.1 μm NMOSFET

The simulation example in Chapter 1 on page 3 refers only to the bias point with a drain voltage
of 1.2 V, which is analyzed in detail here. In Figure 38 on page 106, the simulation results
stored in the file with the suffix _time.plt (to be viewed with Inspect) are displayed, that is,
the currents as a function of the simulation time. 
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Simulation of NMOS Transistor
It can be seen that the currents begin to fluctuate around their average value after approximately
ten iterations (with a simulation time  of  per iteration). Consequently, averaging
over the current values shown above begins after ten iterations. The resulting, cumulative,
current averages are shown in Figure 39 as a function of iterations (after steady state is
reached). 

Figure 38 Drain and substrate currents calculated after consecutive time intervals  
corresponding to single iterations of Sentaurus Device Monte Carlo as a function 
of simulation time 

Figure 39 Cumulative averages for drain and substrate currents as a function of number 
of iterations
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Simulation of NMOS Transistor
Figure 40 Electron density resulting from a drift-diffusion and Monte Carlo 
simulation, 0.5 nm below gate oxide along the channel 

Figure 41 Electron drift velocity resulting from a drift-diffusion and Monte Carlo 
simulation, 0.5 nm below gate oxide along the channel

Finally, the internal variables in the data files drift_new_des.tdr and
mc_new_000024_des.tdr can be viewed using Sentaurus Visual, and the values can be
extracted along a line. In this example, a line along the channel 0.5 nm below the gate oxide is
chosen. The corresponding profiles for the electron density and drift velocity are shown in
Figure 40 and Figure 41, respectively. It can be seen that the velocity at the source side of the
channel is greater for the Monte Carlo model than the drift-diffusion model, which is the reason
for the higher on-current.
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Part II Band Structure and Mobility 
Calculation

This part of the Sentaurus™ Device Monte Carlo User Guide contains the following 
chapters:

Chapter 12 Using Sentaurus Band Structure on page 111

Chapter 13 Empirical Pseudopotential Method on page 139

Chapter 14 Analytic Bands for Bulk Crystals on page 159

Chapter 15 Subband and Mobility Calculations on page 167

Chapter 16 Sentaurus Band Structure/Tcl Command Reference on page 239





CHAPTER 12 Using Sentaurus Band Structure

This chapter describes how to use Sentaurus Band Structure.

Overview

Sentaurus Band Structure is a program for computing band-structure data for bulk crystalline
solids, and the subband structure and inversion mobility of 1D and 2D devices.

Bulk Band Structure

The bulk band-structure capabilities of Sentaurus Band Structure include:

■ The empirical pseudopotential method (EPM).

■ A two-band  method for the conduction bands.

■ A six-band  (Luttinger–Kohn or Bir–Pikus) solver for valence bands.

Sentaurus Band Structure can handle both relaxed and arbitrarily strained crystals. Band
structures for disordered alloys (for example, SiGe) are computed by applying the virtual
crystal approximation (VCA). Sentaurus Band Structure supports computation of band
energies and their derivatives with regard to the -vector up to second order (that is, group
velocities and reciprocal effective-mass tensors). Sentaurus Band Structure provides material
parameters for Si, Ge, and Si1–xGex.

In addition to the usual band-structure computation at real -vectors, the EPM of Sentaurus
Band Structure also supports the construction of real lines in complex -space: These consist
of -points for which the analytic continuation of the band structure yields real eigen-energies.
The complex band structure along real lines can be used to extract the  dispersion relation
needed to estimate tunneling probabilities in the framework of WKB tunneling theory.

k p⋅
k p⋅
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Subband Structure and Inversion Mobility

The self-consistent subband dispersion in 1D and 2D device structures, for arbitrary surface
orientation and strain, can be computed using several approaches:

■ Parabolic Schrödinger equation with a perturbative nonparabolic correction

■ Six-band  Schrödinger equation for holes

■ Two-band  Schrödinger equation for electrons

From the subband dispersion in 1D devices, a Kubo–Greenwood algorithm can be used to
compute the inversion-layer mobility using a variety of scattering mechanisms.

Tcl Interface

To allow for maximum flexibility, Sentaurus Band Structure is driven by a Tcl interpreter into
which band-structure and mobility computation capabilities have been added as application-
specific Tcl commands. For an introduction to Tcl, refer to the Tool Command Language
module in the TCAD Sentaurus Tutorial available from:

$STROOT/tcad/$STRELEASE/Sentaurus_Training/index.html

where $STROOT is an environment variable that indicates the installation location of the
Synopsys TCAD distribution, and $STRELEASE indicates the Synopsys TCAD release
number.

Starting Sentaurus Band Structure

The simplest way to start Sentaurus Band Structure is from the command line by typing:

sband

The startup message appears:

...
Initializing sBand.
sBand library path: (your-Sentaurus-Band-Structure-database-path)
sBand version (current-version)

This brings up an interactive Sentaurus Band Structure session. The command prompt belongs
to a Tcl interpreter; it accepts all standard Tcl commands as well as the application-specific
Sentaurus Band Structure/Tcl commands described in this manual.

k p⋅
k p⋅
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Command-Line Arguments

The Sentaurus Band Structure executable sband supports both interactive and batch sessions.
The complete startup syntax (see Notational Conventions of Syntax Description on page 240)
of the executable is:

sband [-v] [-nThreads n] [-showProgressBars] [-noLicense action]
[-|filename TclArg...]

The optional switch -v puts Sentaurus Band Structure into verbose mode. The -nThreads
switch can be used to set the number of worker threads used for parallel computation to n. The
-showProgressBars flag causes the confined  calculator to display progress bars.
Finally, the -noLicense flag can be used to control the behavior of Sentaurus Band Structure
in the event that, upon entering a parallel section of the program, the number of available
parallel licenses is insufficient for the requested number of threads. Table 9 lists the available
options for action. 

If no arguments other than optional switches are supplied on the command line, Sentaurus
Band Structure enters interactive mode. Otherwise, the mode is determined by the first
argument that is not a switch. 

If this argument is a solitary dash (-), Sentaurus Band Structure enters interactive mode.
Otherwise, the argument is interpreted as the filename of a Sentaurus Band Structure/Tcl
script that will be executed in batch mode. Any arguments following filename (or -) are
passed to the Tcl interpreter.

Example of Use of Command-Line Arguments

In this example, an interactive (-) Sentaurus Band Structure session is started with three
command-line arguments: arg1, arg2, and arg3. It is performed by typing on the command
line:

sband - arg1 arg2 arg3

Table 9 Options for action

Option Action

exit Exits if insufficient parallel licenses are available.

reduce (Default) Reduces the number of threads to the maximum allowed by the available number of 
parallel licenses.

throw Throws an exception (which can be caught by the Tcl catch command).

wait Waits until the required number of licenses becomes available.

k p⋅
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Inside the Sentaurus Band Structure session, command-line arguments are stored in a Tcl list
$argv:

puts $argv

Result:

arg1 arg2 arg3

The number of arguments is stored in $argc:

puts $argc

Result:

3

$argv0 is the name of the Tcl script being executed. In an interactive session, it is replaced by
the executable name sband:

puts $argv0

Result:

sband

EPM Band-Structure Tutorial

This is an introduction to the EPM band-structure calculation. You will be shown how to
compute the band energies of unstrained silicon at selected -vectors.

Creating a Silicon Crystal

First, you need to create an EPM::Crystal for unstrained silicon:

SiliconCrystal name=bulkSi

Result:

"Si" parameters from "(your-database-path)/Si_param.tcl".

This command creates an EPM::Crystal object representing an EPM calculator for
unstrained bulk silicon using default parameters. The name of the crystal is bulkSi. You can
use this name as a Tcl command to call methods of the EPM::Crystal class. 

k
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For example, you can display status information on bulkSi by using:

bulkSi status

Result:

"bulkSi" is an EPM::Crystal object.
lattice constant = 5.43 [AAngstroems]
internal strain parameter: 0.53
unit cell spanned by (unit: lattice constant):

{0 0.5 0.5}
{0.5 0 0.5}
{0.5 0.5 0}

atoms in the unit cell:
species: "Si"

{0.125 0.125 0.125}
{-0.125 -0.125 -0.125}

Computing Band-Structure Data

Next, you need to specify the -vectors at which band-structure data is needed. For example,
you can select the zone center, , and the conduction-band minimum in the

-direction, :

set Gamma { 0 0 0 }

set Delta { 0.85 0 0 }

In Sentaurus Band Structure, a three-dimensional vector (vector3D) is represented as a list of
three numbers (see Table 50 on page 239 for type-naming conventions in Sentaurus Band
Structure).

In unstrained crystals, -vectors are specified in units of , where  is the lattice
constant. In strained crystals, an anisotropic metric based on the diagonal entries of the strain
tensor is used; the -unit along direction  becomes:

(50)

Band-structure calculation at the two specified -vectors is performed by calling the
computeBandstructure method of bulkSi:

bulkSi computeBandstructure kVectors=[list $Gamma $Delta]

k
Γ 0 0 0, ,( )=

x Δ 0.85
2π
a0
------⋅ 0 0, , 

 =

k 2π a0⁄ a0

k i x y z, ,∈

2π
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Output:

writing "energy.dat"
writing "velocity.dat"
Band-structure calculation complete!

The call to bulkSi illustrates how Tcl commands in Sentaurus Band Structure use named
arguments. 

The line:

bulkSi computeBandstructure kVectors=[list $Gamma $Delta]

means: Use the Tcl list command to construct a list containing the two -vectors $Gamma
and $Delta, and pass this list to the computeBandstructure method of the
EPM::Crystal object bulkSi using an argument name of kVectors.

A full description of the command can be found in <EPM::Crystal> computeBandstructure on
page 256. The notation <EPM::Crystal> denotes the name of an object of class
EPM::Crystal.

By default, <EPM::Crystal> computeBandstructure computes both band energies and
their first derivatives with regard to the components of  (that is, the group velocities) and
stores the results in both internal data objects and external files (default names are
energy.dat, velocity.dat; the file format is described in Generating Band-Structure
Tables From k-Vector Files on page 123). 

These settings can be inspected and changed using the sBandGet and sBandSet commands
(see sBandGet/sBandSet on page 242).

Inspecting the Results

Band-energy results of the call to bulkSi computeBandstructure are stored in a
bandstructure_t container object of name bulkSi.bandstructure. To store the band
energies at the -point in a Tcl variable EGamma, use:

set EGamma [bulkSi.bandstructure get kVector=$Gamma]

Result:

-12.4325779396 -0.0434084085113 0.0 0.0 3.34924141875 3.37860208567 
3.37860208567 4.28964364273

The result is a list of band energies at the specified -value in eV, ordered from the lowest
energy to the highest energy. By default, the band structure is shifted such that the highest

k

k
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valence-band energy at the -point is zero; this is controlled by the global parameter
shiftValenceBands (see sBandGet/sBandSet on page 242 for details).

Individual band energies can be accessed by calling lindex on the result of the previous
command. For example:

set LSsplitting [expr [lindex $EGamma 3] - [lindex $EGamma 1]]

returns the silicon spin-orbit splitting energy. 

Alternatively, you can use the optional band argument of the method <bandstructure_t>
get. For example:

bulkSi.bandstructure get kVector=$Gamma band=1

returns the energy of the split-off band at . Indexing in Tcl is zero based; the lowest band is
band=0.

Group velocities can be accessed in a similar fashion. They are stored in a container object of
type groupVelocity_t and name bulkSi.groupVelocity. The unit for velocities is 
for unstrained crystals with the anisotropic generalization:

(51)

along direction  for strained crystals;  is Planck’s constant.

In contrast to bandstructure_t, each entry of groupVelocity_t is a 3D vector 
instead of a scalar :

bulkSi.groupVelocity get kVector=$Gamma

Result:

{-4.86118497298e-16 5.96545799415e-16 -1.20600149345e-15}
{7.01328040343e-15 2.95588548854e-15 3.12817509024e-15}
{-1.00799393365e-14 -6.64426133894e-15 6.86148234339e-15}
{-8.3453929703e-15 -9.35143006744e-16 1.55941477847e-14}
{-1.1541324112e-15 -1.68419123141e-15 2.09038668377e-14}
{-2.6478279379e-14 2.62866341284e-14 -5.50735119429e-16}
{-4.00283363058e-15 7.59429672475e-15 -1.37298691945e-14}
{-3.36626334074e-15 -4.74914628742e-15 -2.34160613001e-14}

As expected for the -point, all the velocities are essentially zero. Sentaurus Band Structure
uses numeric derivatives; the deviation of the results from zero is indicative of the level of
numeric noise.
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More interesting are the results at . The group velocity in the highest
valence band is returned by the command:

bulkSi.groupVelocity get kVector=$Delta band=3

Result:

-1.29159365151 5.9538212891e-14 -4.65946642766e-14

The velocity vector is parallel to the x-axis; its magnitude of  is a typical value away
from symmetry points.

The group velocity in the lowest conduction band is accessed by:

bulkSi.groupVelocity get kVector=$Delta band=4

Result:

0.00134385756792 1.07791226662e-13 3.70164103554e-13

There is still a small (but numerically significant) velocity component along the x-direction,
which indicates that the wave-number vector  is close to, but not exactly at, the conduction
band minimum.

Finding Band Minima

Sentaurus Band Structure can be used to find the position of a local minimum of an energy band
(default: the lowest conduction band, band=4) near a starting vector. 

The conduction band minimum near  is found using:

set Delta_min [findBandMinimum crystal=bulkSi kStart=$Delta]

Output:

K = 0.849880 0.000000 -0.000000; |dK|=1.203e-04; |v| = 8.065e-05
K = 0.849880 0.000000 -0.000000; |v| = 4.410e-08; done.
0.849879655201 5.8368242931e-16 -5.07548889268e-14

The lines starting with K = show the progress of the minimization process where:

■  is the magnitude of the last change in .

■  is the magnitude of the group velocity at the current -point.

Δ 0.85
2π
a0
------⋅ 0 0, , 

 =

1.29≈

Δ

Δ 0.85
2π
a0
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dK K
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The extracted position of the conduction-band minimum is:

(52)

Computing Effective Masses

Now that you have found the position of the conduction-band minimum, you can compute the
effective electron masses at the minimum. To do this, you need to enable the computation of
second derivatives of the band energies – the reciprocal effective-mass tensor  of band 
at  is the Hessian matrix:

(53)

of the band energy divided by .

Second derivatives are enabled by the command:

sBandSet derivOrder=2

Now, calls to <EPM::Crystal> computeBandstructure will compute energies, group
velocities, and reciprocal effective masses:

bulkSi computeBandstructure kVectors=[list $Delta $Delta_min]

Output:

writing "energy.dat"
writing "velocity.dat"
writing "eInvMass.dat"
Band-structure calculation complete!

The inverse mass tensors for each band are stored in an inverseMass_t container object of
the name bulkSi.inverseMass. The reciprocal effective-mass tensor for the lowest
conduction band at  is obtained by the Tcl command:

set invM [bulkSi.inverseMass get kVector=$Delta_min band=4]

Result:

{1.09441250877 1.87446738737e-08 -1.08349502291e-08}
{1.87446738737e-08 5.10579737043 4.86819561794e-10}
{-1.08349502291e-08 4.86819561794e-10 5.10579746899}

Delta_min

0.849879655201

5.8368242931 10
16–×

5.07548889268– 10
14–×

=

m 1– n
k

∂2εn k( )
∂ki∂kj
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The  reciprocal effective-mass tensor is represented as a list of three real row-vectors
(type signature: List#3/List#3/Double, shorthand: RealMatrix3D). To obtain the
effective masses proper, the matrix of inverse masses must be inverted:

set M [invertMatrix $invM]

Result:

{0.913732246283 -3.3545422434e-09 1.93902000089e-09}
{-3.3545422434e-09 0.195855794394 -1.86741579405e-11}
{1.93902000089e-09 -1.86741579405e-11 0.195855790613}

and you find the following values for the longitudinal mass:

set m_l [lindex [lindex $M 0] 0]

Result:

0.913732246283

and the transverse mass:

set m_t [lindex [lindex $M 1] 1]

Result:

0.195855794394

These values are in units of the free electron mass .

Comparing these results to those obtained at  instead of  shows that  is a
sufficiently good approximation to the position of the valley minimum in unstrained silicon.

Parallelization

To take full advantage of modern multicore architectures, Sentaurus Band Structure supports
multithreading for the computationally expensive pseudopotential calculations. The default
number of worker threads is 1.

This value can be overridden by specifying the -nThreads option during the startup of
Sentaurus Band Structure (see Command-Line Arguments on page 113).

At runtime, you can adjust the number of worker threads to the desired number  using the Tcl
command:

sBandSet nThreads=n 

3 3×

m0

Δ Δmin 0.85
2π
a0
------⋅ 0 0, , 

 

n
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Sentaurus Band Structure can detect automatically the number of hardware threads supported
by the architecture on which it runs. This is performed by specifying a thread number of -1
either on the command line or using sBandSet.

Applying Strain

For crystals of cubic symmetry, Sentaurus Band Structure can compute the displacement of the
atoms in the crystal lattice in response to mechanical strain (including the effect of internal
strain; see Bulk Strain and Internal Strain on page 150). This information can be used to
determine the effect of strain on the band structure.

If you already know the strain tensor , you can apply it to an EPM::Crystal object using
the <EPM::Crystal> set method.

An example is:

SiliconCrystal name=strainedSi
set strain {{0.01 0 0} {0 0.01 0} {0 0 -0.00776}}
strainedSi set strain=$strain

There are special commands that support the calculation of the strain tensor for special
situations.

Biaxial Strain

Biaxial strain resulting from growing a pseudomorphic material layer on top of a thick
substrate can be computed by calling the method apply biaxialStrain on the
pseudomorphic layer.

You need to provide the following information:

■ The direction dir of the interface between the two materials.

■ Information on the in-plane strain at the interface – you specify either inPlaneStrain
numerically or the substrate material, and Sentaurus Band Structure computes
inPlaneStrain from the lattice mismatch.

For example:

SiliconCrystal name=silicon_layer
SiGeCrystal name=SiGe30 xGe=0.3
silicon_layer apply biaxialStrain dir=[list 0 0 1] substrate=SiGe30
puts [silicon_layer get strain]

ε
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Output:

{0.0113938 0.0 0.0} {0.0 0.0113938 0.0} {0.0 0.0 -0.00884294925374}

Growing a pseudomorphic silicon layer on top of a (100) Si0.7Ge0.3 substrate results in
 of tensile in-plane strain and an out-of-plane contraction of .

Uniaxial Strain

In situations where there is only a single direction of stress, the strain tensor can be computed
from the direction of the stress dir (specified as a real 3D vector) and its magnitude (in Pa)
where positive is tensile and negative is compressive).

For example:

GermaniumCrystal name=germanium
germanium apply uniaxialStrain dir=[list 0 1 1] stress=1.0e9
puts [germanium get strain]

Output:

{-0.00261270185635 0.0 0.0}
{0.0 0.0034774321266 0.00374251497005}
{0.0 0.00374251497005 0.0034774321266}

Strain Tensor From Stress Tensor in Principal-Axis 
System

If you know the stress tensor in the principal-axis coordinate system of a cubic crystal,
Sentaurus Band Structure can convert it to strain by using the anisotropic Hooke’s law (Einstein
convention implied):

(54)

where  denotes the strain tensor,  is the stress tensor, and  is the compliance tensor.

Following the conventions of Voigt notation, pairs of indices (range: ) are combined into
a single index (range: 1…6) according to the mapping:

(55)

This allows certain operations involving second-rank and fourth-rank tensors to be mapped to
vector matrix operations. For example, the tensor contraction on the right-hand side of Eq. 54
is mapped onto a six-dimensional matrix vector product (note that the 4,5,6 components of the

1.14%≈ 0.88%≈

εij Sijklσkl=

ε σ S

x y z, ,

xx 1→ yy 2→ zz 3→ yz 4→ xz 5→ xy 6→
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strain vector must be divided by 2 during mapping to the components of the strain tensor –
 and so on):

(56)

This form of Hooke’s law is implemented in the Sentaurus Band Structure/Tcl command
computeStrainFromStress. Unfortunately, the reduction in effective tensor rank is at the
expense of the form invariance of the anisotropic Hooke’s law. In Voigt form, it is only valid in
the principal-axis coordinate system of the crystal. Therefore, stress tensors (for example, from
process simulation) may need to be transformed to this coordinate system before supplying
them to computeStrainFromStress.

For example:

SiliconCrystal name=silicon
silicon apply strainFromStress stress=[list {1e9 0 0} {0 0 0} {0 0 0}]
puts [silicon get strain]

Output:

{0.00762451321992 0.0 0.0}
{0.0 -0.00213158434106 0.0}
{0.0 0.0 -0.00213158434106}

Generating Band-Structure Tables From k-Vector Files

Full-band Monte Carlo simulation requires band energies and group velocities on a large
number of -vectors distributed throughout the Brillouin zone. For this situation, the
computeBandstructure method of EPM::Crystal allows you to supply the name of a file
containing the -vectors rather than a list of -vectors. Each line of that file must contain the
three coordinates of a -vector separated by whitespace.

For example:

sBandSet shiftConductionBands=1 shiftValenceBands=1 ;# enable band shifting
sBandSet automaticBandstructureFiles=1 ;# output "energy.dat", etc.
set f [open "tmp.file" "w"] ;# open k-vector file for writing
puts $f "0 0 0" ;# write some ...
puts $f "0.85 0 0" ;# ... k-vectors ...
puts $f "0 0.85 0" ;# ... into the file ...
puts $f "0 0 0.85" ;# ... "tmp.file"
close $f ;# close the file
SiliconCrystal name=bulk ;# create a bulk silicon crystal
bulk computeBandstructure kFile="tmp.file" ;# compute bands using ...

;# ... k-vectors from file

εyz ε4 2⁄=

εα Cαβσβ=

k

k k
k
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Output:

writing "energy.dat"
writing "velocity.dat"
Band-structure calculation complete!

Taking Advantage of Band-Structure Symmetries

For certain applications such as 3D plotting or full-band Monte-Carlo, it may be necessary or
convenient to store band-structure data on a region that is larger than the irreducible wedge of
the Brillouin zone. For crystals in the cubic system, Sentaurus Band Structure can infer
automatically the symmetry group that corresponds to a particular strain configuration and can
use this information to reduce the computational effort: For each set of symmetry-related -
vectors, the band-structure calculation is performed only once. Results at the remaining -
vectors are constructed by applying symmetry operations to the results at the first -vector.

For example:

SiliconCrystal name=bulk
bulk apply uniaxialStrain stress=1e9 dir=[list 1 1 1]
set sym [determineSymmetries strain=[bulk get strain] crystalClass=cubic]

Output:

{-1 -2 -3} {2 1 3} {3 2 1} {1 3 2}

Explanation: 

The symmetry group for silicon under 1 GPa of tensile stress along the [111] direction is
generated by Kramer’s symmetry ({-1 -2 -3}, that is, , , ) and
the permutations of the -vector components (for example, {2 1 3}, that is, ,

, ).

To make use of these symmetries during band-structure calculation, the symmetry list $sym
must be passed to the computeBandstructure call:

bulk computeBandstructure kFile="large.file" symmetries=$sym

k
k

k

kx k– x→ ky k– y→ kz k– z→
k kx ky→

ky kx→ kz kz→
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File Formats for Storing Band Data

Sentaurus Band Structure supports different formats for storing band data:

■ $SHORT_FORMAT: Includes only the three highest conduction bands and the four lowest
valence bands. This is the default format used by Sentaurus Band Structure (see File
Format $SHORT_FORMAT).

■ $LONG_FORMAT: All bands are included (see File Format $LONG_FORMAT on
page 127).

■ $TDR3DTENSOR_FORMAT: Band data is stored as a TDR 3D tensor-product file. This
format can only be selected if the -vectors form a 3D tensor-product grid.

■ $MONTECARLO_FORMAT: Creates band-structure data files in the format expected by the
single-particle device Monte Carlo simulator (see Creating Band Data for Sentaurus
Device Monte Carlo on page 128).

One or several of these formats can be selected using:

sBandSet fileFormat=Integer 

Formats are combined using binary OR. For example, both the short format and the long format
are selected by the command:

sBandSet fileFormat=[expr $SHORT_FORMAT|$LONG_FORMAT]

File Format $SHORT_FORMAT

The first line of this file contains the number of -vectors . The remaining lines list each
-vector with the band energies of the three highest valence and the four lowest conduction

bands in eV. Valence-band energies are shown with a prefactor of –1. 

The first line of this file contains the number of -vectors . The remaining lines list each
-vector with the group velocities of the three highest valence and the four lowest conduction

Table 10 Format of band-energy files (energy.dat)

… … … … … … … … … …

Table 11 Format of group-velocity files (velocity.dat)
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bands. Velocity units are , where  denotes an anisotropic metric that uses the
effective lattice constant  as length unit along the coordinate direction

. Valence-band velocities are shown with a prefactor of –1.

Each velocity vector is output as its x-, y-, and z-components separated by whitespace.

Reciprocal Effective Mass Files

If derivOrder is set to 2, Sentaurus Band Structure computes electron and hole reciprocal
effective masses and outputs them to the files eInvMass.dat and hInvMass.dat,
respectively.

The first line of these files contains the number of -vectors. The coordinates of the -vectors
are not included in these files; their order is the same as in the corresponding energy and group
velocity files.

For each -vector, there is a block of four lines (for the highest four valence bands or the lowest
four conduction bands) followed by a blank line. Each line lists the six independent
components of the reciprocal effective-mass tensor of one band in units of the inverse of the
electron mass . 

Table 12 Format of hole reciprocal effective mass files (hInvMass.dat)

… … … … … …
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File Format $LONG_FORMAT

In long format, data for all bands is written into files. The same sign conventions are used for
electron and hole states. 

Table 13 Format of electron reciprocal effective mass files (eInvMass.dat)

… … … … … …

Table 14 Format of band energy files (energy_dump.dat)

…

… … … … … … …

Table 15 Format of group velocity files (velocity_dump.dat)
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Each velocity vector is output as its x-, y-, and z-components separated by whitespace. 

Each line lists a -vector followed by the inverse mass components of the lowest band (in the
order xx, yy, zz, yz, xz, xy) followed by the inverse mass components of the next band, and so
on.

Creating Band Data for Sentaurus Device Monte Carlo

Band-structure tables for single-particle device Monte Carlo can be created using the command
createMonteCarloFiles. The following example generates Monte Carlo input files for
silicon under 3 GPa compressive stress in the SPARTA subdirectory of the current working
directory (see createMonteCarloFiles on page 275 for additional options):

SiliconCrystal name=bulk
bulk apply uniaxialStrain stress=-3e9 dir=[list 1 1 0]
createMonteCarloFiles crystal=bulk

Arbitrary Stress on page 67 describes how to instruct the Monte Carlo simulator to import
custom band-structure data.

Analytic Band-Structure Models

In addition to EPM, Sentaurus Band Structure supports a six-band  method for the
computation of valence-band energies and group velocities as well as analytic expressions for
the lowest two conduction bands. Analytic band structures are computed by
AnalyticBandSolver objects. 

For example, you can create an AnalyticBandSolver object suitable for approximating
silicon EPM results by using the command:

AnalyticBandSolverFromSpecies name=ana species=Si

An AnalyticBandSolver object can compute band energies at arbitrary -vectors. Due to
the approximations inherent in the computation methods, analytic valence bands will be
inaccurate far away from the -point, whereas analytic conduction bands will be most accurate

Table 16 Format of reciprocal effective mass files (invMass_dump.dat)
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in the vicinity of the band minima along the  lines (that is, the global band minima of silicon-
like band structures). This can be clearly seen from the comparison of the EPM and analytic
band-structure results for bulk silicon in Figure 42. 

Figure 42 Comparison of analytic and EPM bands for silicon

For silicon, Sentaurus Band Structure provides default parameters for both analytic conduction
and valence bands. For germanium, only valence-band parameters are supplied because the
analytic conduction-band expressions do not apply to materials whose -valleys are below
their -valleys.

You can enable or disable the computation of the conduction-band or valence-band energies by
setting the appropriate flags:

ana set conductionBands=Boolean 
ana set valenceBands=Boolean 

The analytic band solver has a computeBandstructure method similar to that of
EPM::Crystal. If kList is a list of -vectors, the corresponding analytic band-structure
data is computed using:

ana computeBandstructure kVectors=$kList

By default, the results are stored in the container objects ana.bandstructure and
ana.groupVelocity.

Δ

L
Δ

k
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Depending on the settings of the valenceBands flag, the indices of the conduction bands may
change. The index of the highest valence band stored in a bandstructure_t object can be
queried by the following method:

<bandstructure_t> get topValenceBand

It returns –1 if no valence bands are stored.

This means that the Tcl command:

ana.bandstructure get kVector=$K \
band=[expr [ana.bandstructure get topValenceBand] ]

will always return the energy of the lowest conduction band at -vector K.

Visualization

Sentaurus Band Structure is linked with the Tk and BLT extensions to Tcl. They are activated
by the Tcl commands package require Tk and package require BLT, respectively. 

When activated, a Sentaurus Band Structure/Tcl script can fully use the graphical user interface
(GUI) and visualization capabilities of Tk and BLT.

The output of interactive Sentaurus Band Structure scripts using the Tk and BLT extensions is
shown in Figure 42 on page 129, Figure 43, and Figure 44 on page 131. 

Figure 43 Sentaurus Band Structure GUI and visualization example using Tk/BLT

k
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Figure 44 Real band structure of silicon where the Γ-point is at the right end of the kx-axis 
(left) and complex band structure of silicon between Γ and Γ + 0.25  (right)

The full input for the plot shown in Figure 44 (left) is:

sBandSet derivOrder=0 ;# no derivatives are needed
SiliconCrystal name=bulk
set kList {}
for {set k 0} {$k <= 100} {incr k} {

lappend kList [list [expr $k/100.0] 0 0]
}
bulk computeBandstructure kVectors=$kList nBands=16
bandstructurePlot bands=bulk.bandstructure

To zoom into the plot, drag the pointer over an area. To zoom out, right-click in the plot.

2πi
a0

-------- êy
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Complex Band Structures

The  dispersion relation for tunneling processes can be obtained by solving the
eigenvalue problem for the analytic continuation of the EPM Hamiltonian to complex

-vectors.

Real eigenvalues (complex eigenvalues do not correspond to physical states and are
suppressed) of this non-Hermitian eigenvalue problem correspond to evanescent states in the
sense of WKB tunneling theory. Sentaurus Band Structure supports only energy computation
for complex ; group velocity and effective mass extraction are only available for real
wavevectors.

The format for complex numbers in Sentaurus Band Structure is
(realPart,imaginaryPart) (no spaces allowed), for example, (0,1) for .

All vector operations support complex vectors. For example, you can use the following
commands to create a sequence of equally spaced -vectors between  and

:

set kEnd {0 (0,0.25) 0}
set kList {}
for {set k 0} {$k <= 100} {incr k} {

lappend kList [vectorMultiply v=$kEnd x=[expr $k/100.0]]
}

The complex band structure is computed and plotted using the commands:

sBandSet derivOrder=0 ;# derivatives not supported for 
;# complex k-vectors

SiliconCrystal name=bulk
bulk computeBandstructure kVectors=$kList nBands=16
set xproc {imaginaryPart [lindex $K 1]} ;# plot Im(k_y) on the x-axis
bandstructurePlot bands=bulk.bandstructure xproc=$xproc \

xlabel="Im(k_y) \[2pi/a\]"

A slightly refined version of the resulting plot is shown in Figure 44 on page 131 (right). It
differs from the example by using nonequidistant -vector spacing to improve the quality of
the near-vertical sections of the band structure. 

For better orientation, Figure 44 (left) displays the real band structure of silicon on the same
energy scale. In both cases, valence bands are blue, and the conduction bands are red. In the
real band structure, the conduction and valence bands are separated by the band gap; the
complex bands link the conduction and valence bands.
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Calculating Electron Subbands and Mobility

This section introduces the subband and mobility calculation features of Sentaurus Band
Structure. It describes how to compute the self-consistent subbands of a 1D device as well as
the electron inversion mobility. The commands described here are from the command file
eQuickStart.cmd. To obtain this file, contact Synopsys Technical Support.

Loading a 1D Device Structure

In this example, a 1D bulk NMOS capacitor is simulated. The device structure is in a 1D TDR
file called nmoscap.tdr. The device structure is loaded into Sentaurus Band Structure using
the LoadDevice command:

LoadDevice tdrFile=nmoscap.tdr

This command loads the device regions, the 1D grid, the contacts, and the
DopingConcentration field. After reading the TDR file, the defaultPhysics.tcl file is
loaded automatically to set up several default models such as a set of valley models and the
bulk carrier-density models for silicon. In addition, several default scattering models for silicon
are created.

Specifying Top-Level Physics Parameters

The orientation of the device axes and the temperature are specified using the top-level
parameters of the Physics command:

Physics surfaceOrientation=[list 0 0 1] xDirection=[list 1 0 0] \
temperature=297.0

This command sets the surface orientation, that is, the z-axis, to [001] and sets the x-axis to
[100]. In addition, the ambient temperature is set to 297 K.

To retrieve a list of the currently defined models in Sentaurus Band Structure, use the
command:

Physics print

This command prints a model table on-screen and to the output log file.
Sentaurus™ Device Monte Carlo User Guide 133
N-2017.09



12: Using Sentaurus Band Structure 
Calculating Electron Subbands and Mobility
Performing an Initial Solve

Before solving the Schrödinger equation self-consistently, it is advisable to first solve with the
classical density models. Since no Schrödinger solvers have yet been defined in this example,
the following Solve command uses the default, bulk carrier-density models:

Solve V(gate)=0.5 initial

This command solves the Poisson equation at a gate bias of 0.5 V using a charge-neutral initial
guess. After the solution converges, the contact biases and other information are written to the
active bias log file, that is, eQuickStart.plt.

Defining a Nonlocal Line

To compute the inversion layer, a nonlocal line is defined immediately under the oxide–silicon
interface. This is performed using the Math command:

Math nonlocal name=NL1 minZ=0 maxZ=0.03

This command creates a nonlocal line starting at z=0.0, that is, the silicon–oxide interface in
this example, and extending down 30 nm below the interface. The nonlocal line is named NL1,
which allows you to refer to it in later commands.

Specifying a Schrödinger Solver

After the nonlocal line is defined, the Physics command is used to associate a Schrödinger
solver to the nonlocal line for computing the confined carrier density:

Physics nonlocal=NL1 eSchrodinger=Parabolic \
valleys=[list Delta1 Delta2 Delta3] Nk=32 Nphi=16 Nsubbands=32 Kmax=0.25

Here, a parabolic Schrödinger solver is assigned to the previously created nonlocal line NL1.
This Schrödinger solver is specified to solve for the valleys with the names Delta1, Delta2,
and Delta3. These valleys were created by default for all silicon regions in the
defaultPhysics.tcl file. Parameters controlling the polar grid for computing the subband
dispersion are given as well. In particular, a radial polar grid out to Kmax=0.25 with 32 points
is specified along with an angular -grid with 16 points. The Schrödinger solver is also
specified to solve for the 32 lowest-lying subbands in each valley.

ϕ
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Specifying a Mobility Calculator

After a nonlocal line and Schrödinger solver for that nonlocal line have been defined, you can
specify a mobility calculator to use for the same nonlocal line using another Physics
command:

Physics nonlocal=NL1 eMobilityCalculator=KGFromK Nk=64 Nphi=32

This command specifies that the KGFromK mobility calculator should be used to compute the
electron mobility for this nonlocal line. The mobility calculation is performed over a polar grid,
and the Nk and Nphi parameters specify details about this polar grid.

Performing a Self-Consistent Solve With the Schrödinger 
Equation

After a nonlocal line and Schrödinger solver for that nonlocal line have been defined,
subsequent solutions of the Poisson equation will solve the Poisson equation self-consistently
with your specified Schrödinger equation. To solve at the last converged bias point, use:

Solve

This command solves the Poisson equation at the bias point from the previous solve, that is,
0.5 V on the gate.

Computing the Mobility

After the Schrödinger equation has been solved, which necessarily computes the subband
dispersion and wavefunctions, the inversion mobility can be computed with the previously
defined mobility calculator using the ComputeMobility command:

ComputeMobility xx

This command computes the xx component of the mobility tensor and adds it to the active bias
log file. Here, the xx is relative to the in-plane device coordinate system, which was previously
defined using the xDirection parameter of the Physics command. The result of this
calculation is added to the active bias log file under the field name mobilityXX.

The scattering models that are used in the mobility calculation were created by default for all
silicon regions in the defaultPhysics.tcl file.
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Saving Models Over the Device Structure

Various physical models over the 1D device structure are saved to an xy TDR file using the
Save command:

Save tdrFile=eQuickStartZ.tdr \
models=[list ConductionBandEnergy eQuasiFermiEnergy \
Delta3_0_SubbandEnergy Delta3_0_Wavefunction]

This command creates a file called eQuickStartZ.tdr. The models specified by the models
parameter are saved as a function of the position z. Here, the conduction band energy and
electron quasi-Fermi energy are saved. In addition, two subband-related quantities for the
Delta3 valley, that is, the lowest-lying ladder, are saved: the minimum energy and the
wavefunction for the 0th subband of Delta3.

Saving Models Over 2D k-Space

Details of the subband dispersion and the momentum relaxation rates can be investigated by
saving a 2D TDR file with -space models for the subband dispersion and inverse momentum
relaxation time (IMRT). These models are saved using the SaveK command:

SaveK tdrFile=eQuickStartK.tdr models=[list Delta3_0_Dispersion Delta3_0_IMRT]

This command saves a file called eQuickStartK.tdr with the -space dispersion of the
lowest-lying subband in this example, the Delta3_0 subband. In addition, the IMRT for this
subband is saved. The IMRT models can be used to look at the strength and anisotropy of the
scattering.

Ramping the Bias

While no built-in bias ramping feature is available, bias ramps can be performed using the Tcl
commands for or foreach. For example, the following command block ramps the gate bias
over three values. For each bias, a Solve is performed and an effective field is computed and
added to the bias log file. Finally, at each bias the mobility is computed. The results of these
calculations are saved in a new bias log file named biasRamp.plt:

foreach Vg [list 0.5 1.0 1.5] {
# Solve at gate bias
Solve V(gate)=$Vg logFile=biasRamp.plt

# Extract Eeff by integrating eEeffIntegrand and add to the bias log file
set Eeff [Extract model=eEeffIntegrand region=si1 integral]
AddToLogFile name=Eeff value=$Eeff

k

k
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# Compute xx component of mobility
ComputeMobility xx

}

The effective electric field that is used here is based on a predefined model that uses a sheet-
charge formulation. The actual value of the effective field is computed by integrating the model
with the name eEeffIntegrand over the single silicon region in the device called si1 using
the Extract command. This formulation of the effective field value is used typically in
measurements of mobility and provides a convenient means of comparing mobility versus
effective-field data.
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CHAPTER 13 Empirical Pseudopotential Method

This chapter discusses the empirical pseudopotential method (EPM)
that is used to compute the electronic structure of crystalline solids.

Introduction to Pseudopotentials

The empirical pseudopotential method (EPM) is used to compute the electronic structure of
crystalline solids. To make this problem computationally tractable, the many-electron system
of the crystal is approximated by a single-electron model, in which the interactions between
the electrons are described by an effective potential (mean field approximation). Due to the
highly oscillatory nature of the electron wavefunctions close to the atomic nuclei, the exact
evaluation of the solutions of this effective single-electron system still requires a high
computational effort. This effort can be reduced by the pseudopotential method.

The pseudopotential method further reduces computational complexity by separating the
electrons of each atom in the crystal into inner (core) and outer (valence) electrons. Chemical
bond formation in a material is dominated by the valence electrons. Core electrons are closely
localized around the nuclei and do not participate in bond formation; their states are assumed
to be the same as in an isolated atom.

Now, it is necessary to formulate equations that only involve possible states of the valence
electrons. Because of the Pauli exclusion principle, the wavefunction  of such a state must
be orthogonal to the core states  of all atoms (  is a collective label for the position of the
nucleus and all internal quantum numbers of the core states). 

An arbitrary function  can be converted to a function that is orthogonal to the core states by
subtracting its projection onto all core states:

(57)

Then, the Schrödinger equation for  can be rewritten in terms of :

(58)
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(60)

In Eq. 60, the effect of the core electrons has been rewritten as an additional repulsive potential
term  (the potential is repulsive because valence energies  are larger than core energies

). 

Instead of the original Hamiltonian , an effective Hamiltonian 
is obtained with the pseudopotential .

The additional potential term  is both nonlocal and energy dependent; however, the most
important features of the band structure often can be captured by an energy-independent local
approximation to .

For some materials, there is significant variation in published pseudopotential parameters. For
example, the silicon pseudopotential used by [1] is mostly local with only a small nonlocal
correction; whereas, the nonlocal parameterization of silicon in [2] has such a strong nonlocal
potential that its removal would result in a direct band gap.

The importance of Eq. 60 is that, even though it involves the pseudo-wavefunction  rather
than the true wavefunction , the energy  is the true eigen-energy of the wavefunction that
corresponds to  in the sense of Eq. 57. 

In contrast to the true wavefunction , the pseudo-wavefunction  does not need to obey
any orthogonality restriction and, therefore, it can be expanded in an arbitrary basis, for
example, plane waves. 

In a periodic crystal, the Bloch theorem can be invoked: The (pseudo-)wavefunction can be
written as a product of a plane wave and a lattice periodic function ,
where the sum is taken over all reciprocal lattice vectors :

(61)

Substituting this into Eq. 60 results in the following equation for the Fourier coefficients of
:
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Empirical Pseudopotentials

In principle, the orthogonalization potential  can be obtained by solving the electronic
structure of each atomic species in the crystal and by attaching projectors onto the resulting
core electron states to each lattice site occupied by an atom of said species. In the EPM,
however, the pseudopotential is expressed in terms of a small number of empirical parameters,
which are obtained by fitting the band structure to experimental data or ab initio data.

The small size of the EPM parameter set arises from the observation that, in contrast to the bare
ion potential  (which has a singularity at each atomic site), the local part of the
pseudopotential  is a smooth function of position without short-ranged oscillations. The
periodicity of the crystal lattice implies that  can be expanded in terms of plane waves
whose wavevectors are taken from the reciprocal crystal lattice.

The locality of  implies that its plane-wave matrix elements  depend only on
the magnitude of the crystal momentum transfer: . The absence
of short-ranged oscillations in  allows truncation of the local pseudopotential of large
momentum transfer vectors . 

It is traditional to include only terms up to  in the local pseudopotential of
unstrained cubic crystals (  is the unstrained lattice constant of the crystal), with the claim that
terms with larger  are ‘small’. Changing the  cut-off, however, may have a pronounced
effect on the resulting band structure, especially in the presence of shear strain (which reduces
the crystal symmetry; compare with Using the Crystal Symmetry). This shows that the matrix
elements, which traditionally are neglected, are not small in a strict sense; however, since a 
cut-off was used to calibrate the  parameters, it needs to be retained for consistency.

Using the Crystal Symmetry

Depending on the crystal symmetry, a large number of matrix elements will vanish even within
the cut-off sphere: The (pseudo)potential inside a crystal is the (pseudo)potential around an
individual ion (valence electrons removed) convolved with the sublattice occupied by that
atomic species:

(63)

where  denotes the three-dimensional Dirac delta-distribution shifted to position . 

VR

V
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The double sum over unit cells and the basis (=positions of the atoms in each unit cell relative
to the origin of the cell) can be rewritten as a convolution of the primitive lattice with the basis:

(64)

so that its Fourier transform takes the form of a product:

(65)

where the structure factor  is introduced as a quantity, which encodes all relevant
information on the positions of atoms of species .

Note that this natural definition of the structure factor in Eq. 65 is not the definition usually
used in the literature. The conventional definition of the structure factor is:

(66)

and a factor of  (the total number of atoms in the unit cell) must be included in all
potential energy components for consistency (this is equivalent to using plane waves
normalized on the atomic volume  instead of the unit cell volume ). To be
able to use published pseudopotential parameterizations, Sentaurus Band Structure uses the
conventional definition of the structure factor.

In terms of the structure factor, the Fourier transform of the local potential takes the form:

(67)

Since the potential must obey the periodicity of the crystal lattice, its Fourier transform can
only contain reciprocal lattice vectors as expressed by the last term of Eq. 67. This turns the
Fourier integral:

(68)
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into a discrete sum:

(69)

Consequently, Fourier components of the ionic potential are needed only at reciprocal lattice
vectors. Many of the Fourier components at reciprocal lattice vectors disappear because the
structure factor vanishes. In (unstrained) crystals of diamond structure, for example, the local
pseudopotential has only three different nonvanishing contributions inside the conventional

 cut-off sphere:

(70)

In the absence of strain, the next higher nonvanishing contribution is at . The
symmetry reduction caused by the application of shear strain gives rise to additional terms with

. Therefore, the choice of the radius of the cut-off sphere is more critical in the
presence of shear strain than in relaxed or orthorhombic strained crystals.

Nonlocal Corrections to the Pseudopotential

To obtain a better fit to data, it is usual to introduce nonlocal corrections to the purely local
empirical pseudopotential of the previous section. The nonlocal contribution to the atomic
form-factor of species  is usually expressed as:

(71)

where:

■  models the effect of core states of angular momentum .

■  is the projector on the subspace of angular momentum  wavefunctions centered around
.

The model potential  is chosen to be either a step function  or a Gaussian
.
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For , Sentaurus Band Structure uses a step-function model potential. For , you can
choose either a step-function potential well (nonLocalWell=Square) or a Gaussian potential
well (nonLocalWell=Gaussian). All other nonlocal corrections are set to zero. In spherical
coordinates, the angular momentum projector takes the form:

(72)

where  denotes the spherical harmonics. 

With this, the matrix elements for the  nonlocal potential with a square-well model
potential can be written as (  and so on):

(73)

 is the plane-wave normalization volume; the definition of the structure factor from Eq. 66,
p. 142 implies  (the alternative definition without dividing by  implies

).

For arbitrary , this generalizes to [2]:
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Here,  are the Legendre polynomials. For ,  are spherical Bessel functions of the first
kind; negative indices indicate spherical Bessel functions of the second kind (sometimes called
spherical Neumann functions) according to the notational convention:

(75)

The corresponding expression for the  Gaussian well commonly used in conjunction
with silicon and gallium arsenide is:

(76)

where  denotes the modified spherical Bessel function of the first kind:

(77)

The prefactors  are treated usually as energy-independent fitting constants; Chelikowsky and
Cohen [2] make the prefactor for the  nonlocal potential energy-dependent by choosing
the parameterization:

(78)

where:

(79)

is the Fermi wavevector of a Fermi gas of electron density  and  is the number of
valence electrons in the unit cell of the crystal.

Spin-Orbit Coupling

Following the literature [1], spin-orbit coupling is included in the calculation by adding a
nonlocal spin-orbit coupling potential to the atomic structure factor of each species :

(80)
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Here,  is the projector onto the subspace spanned by the core states of species  with
principal quantum number  and angular momentum quantum number :

(81)

The core wavefunctions  can be either taken from ab initio methods (Chelikowsky
and Cohen [2] use the radial functions tabulated in [3]) or approximated by analytic
expressions. 

Sentaurus Band Structure follows [1] in pursuing the latter approach. This will later introduce
the length scale  of the radial wavefunction as an additional fitting parameter.

Typically, the dominant spin-orbit coupling contribution is the  term of the outermost
closed shell ( , where  is the period of element ). Other terms are usually
omitted.

In evaluating the dominant  term, it is convenient to switch from the usual  basis to
the chemical  basis:

(82)
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because of their vector-like transformation behavior. Writing the -state of shell  of species
 as:
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the projection of a normalized plane wave  onto this state takes the form:

(86)

with the radial overlap integral . Note the factor  in front of the integral in the
definition of the overlap integral. In place of , Chelikowsky and Cohen [2] have ‘a
normalization constant  as in reference [4]’.

However, the normalization convention used in [4] is , which implies a
division by  for functions that exhibit linear behavior in  close to . The evaluation
of the overlap integral in terms of analytic expressions for the radial core wavefunctions is
discussed in Evaluating Radial Overlap Integrals on page 148.

Now, the plane-wave matrix element of the projected spin-orbit coupling operator
 is evaluated. Without loss of generality, you can choose coordinates

such that . Then, the matrix element takes the form (atomic species index  omitted):

(87)

where  is invoked to exclude contributions from the -component of the vector integral
from the cross product, and you will recognize the definition of  from Eq. 86.

K| 

r θ φ, , n 1 λ, , |  α( ) α( )
n 1 λ|K, , 

1

Ωc

-----------fn1
α( )

r( )pλ θ φ,( ) r'
2
dr dφ' d θ'( )cos pλ θ' φ',( )fn1

α( )
r'( )

1–

1


0

2π


0

∞

=

3i

Ωc

-----------fn1
α( )

r( )pλ θ φ,( )K êλ
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Evaluating Radial Overlap Integrals

In Sentaurus Band Structure, analytic hydrogen-like radial functions are used to evaluate the
overlap integrals . The wavefunctions of the hydrogen atom have the form:

(88)

(89)

where  are the generalized Laguerre polynomials, and  is the Bohr radius. 

To accommodate the nuclear charge and screening in species , you introduce an adjustable
length scale parameter  and replace  from Eq. 89 with the expression:

(90)

Then, the radial part of the wavefunction is:

(91)

with the normalization condition:

(92)

Substituting this into the definition of  (see Eq. 86, p. 147) yields the following results in
terms of the dimensionless quantity :
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A slightly different choice of model orbitals (replace  with  in Eq. 91) leads
to the functions:

(96)

(97)

 is unchanged because of . Up to a constant prefactor,  is identical to the
overlap integral  for germanium of [1]. To keep spin-orbit parameters from [1] usable,
Sentaurus Band Structure implements the overlap integrals using only the leading terms of the
Laguerre polynomials.

Normalizing the Spin-Orbit Term

It is customary (compare to [2] for example) to drop all real constant prefactors from the spin-
orbit matrix element of Eq. 87, p. 147, to replace the spin vector-operator  with the
dimensionless operator  (where  is the formal vector of Pauli spin matrices), and to replace

 with the dimensionless function:

(98)

Then, the spin-orbit contribution to the atomic form factor (with  and  treated as
dimensionless vectors in units of ) reads (obvious indices omitted):

(99)

where  is an energy parameter that controls the magnitude of the splitting. For correct scaling
of the spin-orbit term in strained materials, it is necessary to return to Eq. 87: The matrix
element is proportional to . Therefore, under strain or in alloys, the spin-orbit terms must
be multiplied by .
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Strained Materials

Bulk Strain and Internal Strain

Homogeneous strain has two effects on a crystalline material:

■ It deforms the shape of the unit cell according to  where  is the bulk strain
tensor.

■ It may rearrange the ions within a unit cell in a nonbulk-like way (internal strain) [5].

To illustrate the origin of internal strain, consider a silicon atom and its four neighbors in a
relaxed silicon crystal. The silicon atom sits at the center of a regular tetrahedron (circumcenter
and barycenter coincide in a regular tetrahedron) whose corners are the sites of the four
neighbor atoms. Now, this coordination tetrahedron is deformed by applying strain. Applying
the bulk strain tensor  both to the corner atoms and the central atom moves the central atom
to the barycenter of the deformed tetrahedron.

For non-orthorhombic strain , the barycenter  of the deformed tetrahedron is different from
its circumcenter , which means that the bonds to the four neighbor atoms have acquired
unequal lengths.

NOTE Sentaurus Band Structure uses tensor strain, which differs from
‘engineering strain’ (strain as a six-component vector; Voigt notation)
by a factor of  in the off-diagonal terms.

This bond-length distortion results in a force that tends to move the central atom towards the
circumcenter. It is, however, opposed by noncentral (bond-bending) and nonnearest neighbor
force-components. Therefore, the equilibrium position of the central atom is expected to be
somewhere between the barycenter and circumcenter.

In crystals of diamond or zinc-blende structure, the effect of internal strain can be empirically
described by a single scalar parameter  (‘internal strain parameter’), where 
corresponds to a pure bulk-like deformation of the unit cell (central atom at the barycenter of
the deformed tetrahedron) and  corresponds to equal bond lengths (central atom at the
circumcenter of the deformed tetrahedron); intermediate values of  refer to intermediate
positions:

(100)
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where you have introduced the ‘internal strain displacement’  as the deviation of the
interatomic separation  from the value predicted by bulk elasticity. Crystals of lower
symmetry may need additional parameters to describe the effect of internal strain.

Empirical Pseudopotential Method for Strained Materials

To apply EPM to strained materials, the rigid-ion approximation [5] is invoked, that is, it is
assumed that the pseudopotential around an atom does not change shape as the crystal is
deformed. The effect of strain on the EPM pseudo-Hamiltonian in this approximation can be
seen easily by considering Eq. 67 and Eq. 66, p. 142. Deformation of the spanning vectors of
the unit cell leads to different reciprocal lattice vectors , which shifts the
evaluation points of the atomic form-factors  in Eq. 67 to different momentum transfer
vectors .

From Eq. 66, you can see that, in the absence of internal strain displacement ( ), the value
of the structure factor of the strained crystal at a deformed momentum transfer vector

 is the same as the vector of the structure factor of the undeformed crystal at
the momentum transfer vector :

(101)

A nonzero internal strain displacement vector , on the other hand, may give rise to potential
contributions from -vectors, which in the relaxed crystal would be suppressed by symmetry
(for example,  in a diamond lattice under non-orthorhombic strain).

Since there are analytic expressions for the nonlocal potential and the spin-orbit term at
arbitrary vectors  and , the new evaluation points raise no issues beyond the question of
correct plane-wave normalization in strained materials (compare to Plane-Wave Normalization
in Strained Crystals on page 153). The local pseudopotential, however, needs additional
attention.

Local Pseudopotential in Strained Crystals

To describe the local pseudopotential in an unstrained diamond-structure crystal, it is sufficient
to know the atomic form-factors at .

For zinc-blende, there are additional contributions from .

In strained crystals, however, the atomic form-factor is needed at a multitude of  values
both in the vicinity of the old sampling points and (in the presence of internal strain
displacement) around  locations that previously were suppressed by the crystal symmetry.
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This requires an analytic expression for the local form-factor . In the literature, there
are two choices for expanding the local pseudopotential sampling data to a functional form:
cubic spline interpolation [1] and an analytic ansatz by Friedel et al. [6].

Cubic Spline Interpolation of Local Pseudopotential

In this approach, the local pseudopotential  for arbitrary  is obtained by putting a cubic
spline through the pseudopotential sample values of the unstrained crystal (for example, 
at  for diamond structures).

The spline is made unique by requiring:

■

■

■

■

with the Fermi wavevector  as in Eq. 79, p. 145 and Fermi energy .

This is the method used for the treatment of strain by Rieger and Vogl [1]. There is no obvious
reason why the interpolation spline through this minimal parameter set should give the correct
strain response of the band structure. However, in the presence of orthorhombic strain, it yields
good agreement with theoretical valence-band splitting results published by Van de Walle [7].

Additional sample values can be added to the spline to adjust the strain response without
altering the unstrained band structure. If  is expressly supplied, it overrides the default
value of .

The above cubic spline is typically the C2 spline with maximum smoothness where the
continuity for the samples and the first-order and second-order derivatives at knots is fulfilled
at the same time. However, the C1 spline also can be used. For the C1 spline, the continuity for
the samples and the first-order derivative at knots is fulfilled, while the conservation of the
second-order derivative at knots is not necessarily fulfilled. Therefore, the C1 spline is uniquely
determined by not only the sample, but also the slope at knots. It is worth noting that the slope
at knots in the C2 spline is not an independent parameter, but it is determined by the spline.
Whereas, the slope at knots in the C1 spline is an independent parameter that is used to
determine the spline. This gives an additional degree of freedom for adjusting the strain
response of the band structure.
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Friedel Interpolation Formula for Local Pseudopotential

Friedel et al. [6] propose an analytic expression for the local pseudopotential of diamond-
structure crystals with six free parameters :

(102)

This allows interpolation of  at the three  values that feature in unstrained silicon and
still leaves freedom for adjusting the derivatives  and, therefore, the strain response.

Plane-Wave Normalization in Strained Crystals

When going from an unstrained crystal to a strained crystal, the volume of the unit cell changes
by a factor . The local pseudopotential function  of
the unstrained crystal corresponds to matrix elements obtained from plane waves normalized
on the unstrained cell volume . 

In the strained crystal, plane waves must be normalized to the deformed unit cell volume
. Consequently, the local form-factor of the strained crystal is:

(103)

No special treatment is needed for the kinetic energy and the nonlocal potential (both terms are
directly computed on the deformed crystal). However, the spin-orbit coupling term needs some
attention: In going from Eq. 87, p. 147 to the normalized expression of Eq. 99, p. 149, a factor
of  was discarded. Depending on the details of the implementation of Eq. 99, the unit
conversion of  and  may introduce an additional factor proportional to . To recover
the  scaling behavior of Eq. 87, the spin-orbit matrix elements in a strained crystal must
be multiplied by .

Alloys and the Virtual Crystal Approximation

The band structure of statistical alloys such as Si1–xGex can be treated by putting virtual 
Si1–xGex atoms on the lattice sites of a diamond lattice with appropriate lattice spacing. These
virtual atoms are statistical mixtures of the two constituent species involved; the atomic form-
factor is simply the linear interpolation of the form factors of the constituent species.

As discussed in Bulk Strain and Internal Strain on page 150, it is necessary to enforce correct
normalization of the plane waves on a unit cell whose volume differs from that of the reference
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crystals (pure silicon or pure germanium). In contrast to the situation in strained crystals where
the volume ratio could be inferred from the strain tensor, correct plane-wave normalization for
alloys requires storing the reference volume for each atomic species.

EPM Model Defaults

By default, Sentaurus Band Structure uses cubic spline interpolation for the local
pseudopotential. Nonlocal potential contributions and spin-orbit coupling are enabled. The
default parameters for Si and Ge are summarized in Table 17. 

Table 17 Default EPM parameters

Equation 
symbol

Sentaurus Band 
Structure name

Unit Value Parameter description

Si Ge

latticeConstant Å 5.43 5.65 Unstrained lattice constant

volume Å3 Volume per ion

nValence 1 4 4 Valence electrons per ion

Vloc(3) Ry –0.2241 –0.221 Local form factor at 

Vloc(8) Ry 0.0520 0.019 Local form factor at 

Vloc(11) Ry 0.0724 0.056 Local form factor at 

muLS Ry 0.00018 0.000965 Spin-orbit splitting strength

zetaLS  4.6 5.34 Radial scaling factor for analytic core 
wavefunctions

nLS 1 2 3 Principal quantum number of the shell 
that dominates spin-orbit coupling

R0 Å 1.06 0.0  nonlocal well radius

A0 Ry 0.03 0.0  nonlocal well depth

B0 1 0.0 0.0 Energy-dependent correction to the 
 nonlocal well depth

R2 Å 0.0 1.22  nonlocal well radius

A2 Ry 0.0 0.275  nonlocal potential strength

– nonLocalWell – Square Gaussian Nonlocal well shape

a0

Ωa a0
3

8⁄ a0
3

8⁄

Nval

Vloc 3
2π
a0
------ 

  q 2
3

2π
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------ 
  2
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2π
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  q 2
8

2π
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  2

=

Vloc 11
2π
a0
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  q 2
11

2π
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  2

=

μLS

ζLS
1 rBohr⁄

nLS

R0 l 0=

α0 l 0=
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l 0=
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Group Velocities and Effective Masses

Many applications (for example, Monte Carlo simulation) require the knowledge of group
velocities:

(104)

Some applications also need the reciprocal effective-mass tensor:

(105)

The positive sign is used for electrons, the negative sign is used for holes. Obtaining these
quantities by taking numeric derivatives of the band energies may encounter difficulties, for
example, at crossing points of different bands. Therefore, the Hellman–Feynman theorem [8]
is invoked to express the group velocities in terms of -derivatives of the Hamiltonian rather
than derivatives of the band energies:

(106)

Sentaurus Band Structure uses numeric derivatives of the Hamiltonian matrix elements for
evaluation of Eq. 106, which is considerably faster than evaluating the derivatives analytically.

For the evaluation of the effective masses, the degenerate perturbation theory is used. To obtain
the effective-mass tensor at a given wavevector , vector  is used (  is the unperturbed
Hamiltonian ), and the -dependent Hamiltonian is expanded in a power series around ;
terms up to second order in the  are retained:

(107)

zeta 1 0.53 0.45 Internal strain parameter

– Qcutoff Cut-off for the local pseudopotential 
form factor

Table 17 Default EPM parameters

Equation 
symbol

Sentaurus Band 
Structure name

Unit Value Parameter description

Si Ge

ζ
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The first-order change in band energy leads again to Eq. 106. The second-order change in
energy is related to the effective masses:

(108)

The first-order change in the wavefunction, , is given by:

(109)

To avoid a contradiction (zero LHS but nonzero RHS in Eq. 109), it is essential that the 
form a basis that diagonalizes  on all eigenspaces of . In the absence of degeneracy
beyond the trivial degeneracy of Kramers pairs of a single-particle spin-1/2 Hamiltonian in the
absence of an external magnetic field [9], this is automatically the case. Otherwise,  must
be diagonalized explicitly on each degenerate eigenspace of . 

Although Sentaurus Band Structure supports this explicit subspace diagonalization, this
approach may result in nonintuitive results (for example, linear combinations of bands with
large off-diagonal mass components). Therefore, the preferred approach for extracting the
(reciprocal) effective-mass tensor in the presence of degeneracy consists of applying
infinitesimal strain to break the degeneracy followed by calculating the nondegenerate
effective mass.

Substituting Eq. 109 and Eq. 107 into Eq. 108 yields:

(110)

and the effective masses take the form:

(111)

If the potential is pure local,  becomes proportional to the momentum operator , and the
second-order derivative of  reduces to:

(112)

Velocities are in units of , where  are the strained lattice constants according
to the diagonal part of the strain tensor. Reciprocal effective masses are in units of  where

 is the free electron mass.
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CHAPTER 14 Analytic Bands for Bulk Crystals

This chapter discusses analytic bands for bulk crystals.

Conduction Bands

The conduction band in silicon is usually approximated by three pairs of equivalent minima
located close to the X-point of the Brillouin zone (  away from the X-point in the
direction of the -point). It is commonly accepted that, close to the minima, the electron
dispersion is well described by the effective-mass approximation with two masses: longitudinal
mass  and transverse mass .

To describe a deviation of the density-of-states from pure parabolic expression, the
nonparabolicity parameter  is introduced.

NOTE An applied strain modifies the crystal structure and, for a relatively
small strain, the lattice constant can be defined for each crystal axis:

, , and  where ,
, and  are diagonal components of the strain tensor. Therefore,

components of the -vector are scaled by a corresponding component
of the lattice constant.

Without shear strain (zero off-diagonal components of the strain tensor), changes in the
conduction bands are trivial and are mostly defined by a constant strain-dependent energy shift
for each band. However, the presence of shear strain could greatly disturb conduction bands,
and it is described here.

Due to simplifications in band physics, the provided models describe conduction bands well
only in a vicinity of the band minima of each six silicon valleys. Therefore, for the defined

-vector, this analytic option selects one of the six valleys and computes bands for the selected
valley only.

Two-Band k.p Model

As it is well described in the literature [1], the two-band  model considers the first
conduction band  and the second conduction band  that are degenerate
exactly at the X-point without stress. Since the minimum of the conduction band is only

0.15
2π
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 away from the X-point, the dispersion around the minimum can be well described
by the degenerate  perturbation theory, which only includes these two bands.

In Eq. 113, only the pair of equivalent conduction-band valleys along the [001] direction is
considered, but the electron dispersion of other valleys can be expressed similarly [1]:

(113)

where:

■  for the valley in the [001] direction.

■  is the band index.

■  is negative with  at the X-point.

■  is the parameter of the  model related to coupling between bands.

■  is the shear-stress component positive for tensile stress in the [110] direction.

■  is the shear deformation potential,  is the dilation deformation potential, and  is
the uniaxial deformation potential.

The matrix element  is a dependent variable and is defined by a position of the band minima
of the first band at  without the stress: .

Ellipsoidal Model

This model provides pure parabolic bands with a stress-induced change of effective masses and
band minima position. Analytic derivation of these changes is performed in [1] and is based on
an evaluation of Eq. 113. 

To simplify final expressions, the dimensionless off-diagonal strain is introduced:
 where  is an energy gap between the bands (  and ) at

 with no stress condition.

With stress, the first band minima position  moves along the -axis in the direction of the
X-point as follows:

(114)
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The band minima of the second band are reflected through the X-point ( ) to have
it similar to the no-stress condition.

The minima of the first band move down in energy with the following approximation:

(115)

The energy minima of the second band are estimated as .

The effective masses  and  are modified with shear strain as well. Evaluating Eq. 113 at
the band minima of the first band [1] gives two branches for the transverse mass across the 
direction and along the  stress direction:

(116)

(117)

(118)

Finally, the parabolic electron dispersion of two bands is expressed as:

(119)

where  and  are components of vector  in the directions (-110) and (110), respectively,
for valleys along the (001) direction. For valleys of other directions, the electron dispersion is
similar.
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Nonparabolicity Model

Generally, nonparabolic electron dispersion  of a band with the effective mass  is
introduced by  where  is the nonparabolicity parameter.
Considering that the band minima energy ( ) is different for each of the  and  bands,
the nonparabolic dispersion can be written as:

(120)

where  is the electron dispersion defined by Eq. 113 or Eq. 119.

In the literature [1], it is derived that the nonparabolicity parameter  depends on the shear
strain , and this is accounted for in the ellipsoidal band model:

(121)

Model Parameters

All parameters of the analytic conduction-band model are listed in Table 18 with default values
that can be modified. 

Table 18 Model parameters

Symbol Parameter name Default value Unit

ml 0.914 –

mt 0.196 –

 (ellipsoidal) el_alpha {0.5 0.5}

 ( ) kp_alpha {0.15 0.15}

K0 0.85 –

M 1.2 –

Xi_d 0.77 eV

Xi_u 9.17 eV

Xi_s 7 eV

dbs 0.53 eV
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The nonparabolicity parameters el_alpha and kp_alpha take a list of two values. The first
value is used for the first conduction band and the second value, for the second conduction
band.

Valence Bands

The analytic band model for valence bands in diamond-type and zinc-blende-type
semiconductors is based on the six-band  approach. This approach is computationally
inexpensive, while at the same time, it considers both the warped and nonparabolic nature of
the valence bands as well as arbitrary strain. While this method can be applied for arbitrary 
in the Brillouin zone, this method is most accurate near the -point and loses accuracy a few
hundred meV away from the band edge.

Theory

The  method is a perturbative approach for solving the one-electron Schrödinger equation,
typically around an extremum of the band structure [2]. Using the Bloch theorem, the
wavefunction for a state in band  with wavevector  can be written as:

(122)

where  is the periodicity of the crystal lattice. Considering both spin-orbit coupling ( )
and strain ( ), the Schrödinger equation for  is:

(123)

At the -point ( ) in the absence of strain, the Hamiltonian above reduces to the first
three terms, and its solution for states near the band gap generates a set of six valence band
states ( ) and a set of conduction band states ( ).

While the combined set of valence and conduction band states at  without strain can serve as
a basis for solving Eq. 123 for arbitrary  and strain, a more convenient formulation can be
obtained by treating the last three terms of the Hamiltonian using the Löwdin perturbation
method [2]. In this approach, the six  states are treating directly, while their coupling to the

 states is treated using first-order perturbation theory. 
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Within the  basis, the Hamiltonian is then reduced to a  matrix including a spin
degeneracy of two. While the elements of this Hamiltonian matrix can be computed explicitly
from perturbation theory, the resulting coefficients are typically taken as fitting parameters that
can be extracted from experimental measurements or from more rigorous band-structure
approaches such as EPM.

Luttinger–Kohn or Bir–Pikus Hamiltonian

In the  basis of total angular momentum (Luttinger–Kohn basis) that diagonalizes the spin-
orbit Hamiltonian at the -point in the absence of strain, the  Luttinger–Kohn
Hamiltonian augmented by the Bir–Pikus strain terms (in the crystallographic coordinate
system) is given by [3]: 

 (124)
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 where:

■

■

■  are the Luttinger parameters.

■  are the Bir–Pikus deformation potentials.

■  is the spin-orbit split-off energy.

The free electron mass is given by , and  is the -th element of the physical strain
tensor. Only the upper-right part of  is given since the matrix is Hermitian. The minus sign
in front of the matrix indicates that the hole energies grow negative away from .

The states written as  are states with total angular momentum  and -projected
momentum . In the absence of strain, the states , , and  represent the
heavy-holes, light-holes, and split-off holes, respectively. In the presence of strain, these states
become mixed and this simple identification cannot be made.

Model Parameters

The user-adjustable parameters for the six-band  model for Si and Ge are listed in
Table 19. The default values were extracted from Sentaurus Band Structure EPM calculations
(exception: values for the  deformation potential are taken from Van de Walle [4]). 

Table 19 Parameters of six-band k.p model

Symbol Parameter name Si default value Ge default value Unit

gamma1 4.306 10.536 1

gamma2 0.345 3.107 1

gamma3 1.44 4.397 1

Delta 0.0434 0.297 eV
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a_v 2.46 1.25 eV

b –2.316 –2.067 eV

d –5.514 –3.836 eV

Table 19 Parameters of six-band k.p model

Symbol Parameter name Si default value Ge default value Unit
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CHAPTER 15 Subband and Mobility Calculations

This chapter describes the features and physical models for
computing subband structure and inversion mobility.

Device Structure

Subband and mobility calculations are performed on device structures that are typically MOS
capacitors. These structures are read from a TDR file that can be created, for example, by
Sentaurus Process.

Regions and Materials

As shown in Figure 45, the different materials of a device structure are represented as regions.
Each region has one material and there can be multiple regions of the same material. The
materials silicon, polysilicon, and oxide (SiO2) are supported by default using the names
Silicon, Polysilicon, and Oxide, respectively. 

Figure 45 (Left) One-dimensional device structure and (right) two-dimensional device 
structure

Each material has a material type that is either semiconductor or insulator. New materials can
be introduced into Sentaurus Band Structure by the Material command (see Material on
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page 330). Each region has a unique name that can be used to reference the region during
model specification. Each region consists of a set of points on which various models are
defined, such as the vacuum potential and the electron density.

Contacts

Contacts are used to apply bias to a device and are read automatically from the TDR file. The
workfunction of a contact can be modified using the Physics contact command.

Nonlocal Lines and Nonlocal Areas

The calculation of the confined carrier density by the solution to the Schrödinger equation and
the calculation of the inversion mobility are confined to so-called nonlocal lines for 1D devices
and nonlocal areas for 2D devices.

A nonlocal line or nonlocal area represents a part of the device structure. The geometry of a
nonlocal line or nonlocal area is defined using the Math command. For each nonlocal line or
nonlocal area, one Schrödinger solver can be associated using the Physics command. In
addition, one mobility calculator also can be associated with a nonlocal line or nonlocal area
using the Physics command.

Device Coordinate Axes

The convention used to define the device coordinate axes depends on the dimensionality of the
device structure.

Axes for 1D Devices

Figure 46 Axes for 1D devices
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Device Structure
As shown in Figure 46 on page 168, the 1D device direction is along the z-axis. The z-axis also
defines the surface orientation. This direction relative to the crystallographic coordinate system
can be specified with the surfaceOrientation parameter of the Physics command.

For mobility calculations for 1D devices, the in-plane device axes are given by the x- and y-
axes. The x-axis relative to the crystallographic coordinate system can be specified using the
xDirection parameter of the Physics command. The specified surfaceOrientation
and xDirection must be orthogonal. The y-axis is then formed from the cross product of the
z-and x-axes. Table 20 lists some common surfaceOrientation and xDirection
combinations. 

Axes for 2D Devices

Figure 47 Axes for 2D devices

For 2D devices, the axes of the device are always labeled as x and y. As shown in Figure 47,
two different conventions are used depending on whether the unified coordinate system (UCS)
is used. For UCS structures, the horizontal axis is the y-axis and the vertical axis is the x-axis.
For non-UCS structures, the axis labels are exchanged. The coordinate system used, that is,
UCS or non-UCS, is read from the TDR file. The direction of the x-axis and y-axis, relative to
the crystallographic coordinate system, can be specified using the xDirection and
yDirection parameters of the top-level Physics command.

Table 20 Common surface orientation and x-axis directions

Surface orientation surfaceOrientation xDirection

(100) [list 0 0 1] [list 1 0 0]

(110) [list 0 1 1] [list 1 0 0]

(111) [list 1 1 1] [list 1 1 -2]

Non-UCSUCS

y

x

x

y
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Files Used by Subband and Mobility Calculations

Sentaurus Band Structure uses several files to compute subband structure and mobility. With
the name of the command file given by <base>.cmd, the various files are as follows.

Input Files

The input files are:

■ Sentaurus Band Structure command file (<base>.cmd)

This is the main command (or input) file for Sentaurus Band Structure. It consists of the
commands described in this manual for Sentaurus Band Structure along with intrinsic Tcl
commands.

■ Default physics file (defaultPhysics.tcl)

This is a Tcl script that sets the default models and parameters. This file is read
automatically during the LoadDevice command and is loaded from the SBAND_LIB
directory.

■ Input device structure (*.tdr)

This is a TDR file containing device structure and doping information.

Output Files

The output files are:

■ Output log file (<base>.log)

This file contains a log of the commands and additional information generated during the
simulation. 

■ Bias log file (<base>.plt)

This file contains the contact voltage biases and various simulation results after each call
to the Solve command and each call to the AddToLogFile command. This file is in .plt
format. The default file name is based on the command file name. For example, if the
command file is mobility.cmd, by default the bias log file is named mobility.plt.
The name of the active bias log file can be changed using the logFile parameter of the
Solve command. 
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■ TDR file of real-space models (*.tdr)

The Save command is used to save a TDR file with user-specified models as a function of
the z-coordinate for 1D structures and the xy coordinates for 2D structures. The actual file
name is user specified.

■ TDR file of -space models (*.tdr)

The SaveK command is used to save a TDR file with selected models over 2D -space for
1D device structures and 1D -space for 2D device structures. The actual file name is user
specified.

Poisson Equation

For a self-consistent solution, the Poisson equation must be solved in conjunction with models
for the electron and hole carrier densities:

(125)

where the solution variable, , is the vacuum potential. The various charge densities on the
right-hand side (RHS) are the net active doping concentration , the hole density ,
the electron density , and a representative interface charge density . The dielectric
permittivity is given by , and the absolute value of the charge on an electron is denoted by .
The various quantities in the Poisson equation that can be accessed for visualization and
extraction using model keywords are listed in Table 22 on page 172. The specification of
charges at interfaces is described in Interface Charge on page 187. 

Table 21 Quantities saved to the bias log file by default

Quantity Description Unit

V(<contact>) Applied bias on contact. V

Q(<contact>) Charge on contact. 1D: C/
2D: C/

Ninv_in_well0 Integrated eDensity in semiconductor well 0. 1D: 
2D: 

Pinv_in_well0 Integrated hDensity in semiconductor well 0. 1D: 
2D: 

NewtonIterations Number of Newton iterations for solving Poisson equation. 1
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Boundary Conditions

At an insulator–contact boundary, a Dirichlet boundary condition is used:

(126)

where  is the applied bias at the contact and  is the contact workfunction that can be
set using the workfunction parameter of the Physics command. The workfunction value is
in units of eV.

At a semiconductor–contact boundary, a charge-neutrality condition is enforced:

(127)

The vacuum potential is solved in all device regions and is continuous across all internal device
boundaries.

Electric Field

The electric field is computed from the vacuum potential:

(128)

The electric field is computed in all materials and can be accessed for visualization or
extraction purposes by the model keyword ElectricField.

Table 22 Model keywords for quantities in the Poisson equation

Model keyword Unit Description

DopingConcentration Net active doping concentration.

eDensity  Electron density.

hDensity Hole density.

Permittivity 1 Dielectric permittivity relative to the vacuum permittivity.

VacuumPotential V Vacuum potential.
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Convergence

The Poisson equation is a nonlinear equation that is solved using the Newton method. Solving
the Poisson equation with carrier densities computed using one of the Schrödinger equations
can lead to degraded convergence. Several parameters and options are available in the Math
command to improve and handle convergence issues. In particular, the maximum number of
Newton iterations to allow for convergence can be set by the iterations parameter. It is
recommended to set this parameter to a relatively large value, approximately 30. The criteria
for convergence can be set by the potentialUpdateTolerance and residualTolerance
parameters. These parameters set the criteria that must be met for convergence on the infinity
norm of the potential update and the residual of the Poisson equation. Both criteria must be met
for convergence. To prevent the iterative solution from changing too much in one Newton
iteration, the potentialUpdateClamp parameter can be used to set the maximum-allowed
change in the potential.

In some cases, convergence can be difficult to achieve. In these cases, an algorithm that
adaptively dampens the potential updates can be used to improve convergence. This algorithm
can be activated using the damping parameter.

The behavior of the program when the Poisson equation fails to converge can be set using the
doOnFailure parameter. By default, the program will generate a Tcl error that can be treated
using the Tcl catch command in the command file. If the error is not handled in this way, the
program will stop. This behavior can be suppressed by setting doOnFailure = 0, in which
case, no error is generated and the simulation will continue to the next command without
stopping.

Valley Models

The conduction and valence bands in most semiconductors are composed of multiple valleys
or multiple bands or both. For example, in silicon, the conduction band is composed of states
from three pairs of  valleys, while the valence band is composed of three bands at the 
point. A single valley is represented using a particular valley model (ValleyModel). A valley
model can represent multiple bands. Valley models serve two main purposes: 

■ To hold or compute model parameters that are then used by a Schrödinger solver or a bulk
density model.

■ To automatically generate a set of bulk density and band-edge models.

Valley models are multimodels in that more than one valley model can be defined for each
region. To be able to refer to a particular ValleyModel, a name for the ValleyModel must
be specified.

Δ Γ
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Common Syntax

All valley models share a common syntax, as shown in this example: 

Physics material=Silicon ValleyModel=<ModelName> name=Delta1 degeneracy=2 \
useForEBulkDensity=1 <param1>=<value1> ...

The ValleyModel keyword is used to specify a particular model. A name should be
associated with this model so that the valley can be later referred to by other models. The valley
degeneracy must also be specified using the degeneracy parameter. Each particular model
will have a set of parameters that can also be set.

Automatic Generation of Bulk Density and Band-Edge 
Models

One of the reasons for creating a valley model is to provide parameters for computing the bulk
carrier density for the valley. Specifying one of the parameters useForEBulkDensity or
useForHBulkDensity causes a corresponding bulk carrier-density model to be created for
computing the bulk carrier density for the valley. In addition, a model for the band edge of the
valley also is created automatically for visualization purposes.

For valley models that model multiple bands, a bulk density model and band-edge model for
each band is created automatically. For example, using the ValleyModel example above with
the name of Delta1, the following models are created automatically: Delta1_Density and
Delta1_BandEdge. These can be accessed for visualization or extraction purposes.

Ellipsoidal Valleys

Some valleys, such as the  valleys in silicon, can be modeled as ellipsoids. Two models are
available for this type of valley.

ConstantEllipsoid

The valley model ConstantEllipsoid models an ellipsoidal valley in which the effective
masses and band-edge shifts of the valley are constant. The three principal axes and masses can
be specified independently. When used for the parabolic Schrödinger equation, the
nonparabolicity for in-plane dispersion can be specified using the alpha parameter; while the
nonparabolicity for quantization can be specified using the alphaZ parameter.

Δ
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This model can be specified using:

Physics material=Silicon ValleyModel=ConstantEllipsoid name=Delta1 \
degeneracy=2 kl=[list 1 0 0] kt1=[list 0 1 0] kt2=[list 0 0 1] \
ml=0.9 mt1=.19 mt2=.19 alpha=0.0 Eshift=0.0 useForEBulkDensity=1

The three principal axes of the ellipsoid are specified in crystallographic coordinates using the
kl, kt1, and kt2 parameters along with their corresponding effective masses. Specifying
useForEBulkDensity causes an eEllipsoidalDensity model to be created
automatically. This model uses the parameters of the ValleyModel, except for the alpha
parameter, to compute the bulk density in the valley. 

2kpEllipsoid

The valley model 2kpEllipsoid provides a more accurate, strain-dependent, ellipsoidal
model for the  valleys in silicon. This model treats the effective masses and band-edge shifts
as a function of strain using the Ellipsoidal Model on page 160. This model is based on two-
band  theory, and it can be specified using a Physics command of the form:

Physics material=Silicon ValleyModel=2kpEllipsoid name=Delta1 \
degeneracy=2 longAxis=100 useForEBulkDensity=1

Specifying useForEBulkDensity causes an eEllipsoidalDensity model to be created
automatically. This model uses the model parameters of the ValleyModel, except for the
alpha and alphaZ parameters, to compute the bulk density in the valley. Note that this
ValleyModel represents only one ellipsoidal valley. In silicon, for example, three ellipsoidal

Table 23 Parameters and default values for the ConstantEllipsoid valley model

Parameter Value in all 
materials

Unit Description

a0 5.43e-8 cm Relaxed lattice constant.

alpha 0.0 Nonparabolicity parameter.

alphaZ 0.0 Nonparabolicity parameter for quantization.

Eshift 0.0 eV Energy shift relative to relaxed band edge.

kl {1 0 0} 1 Longitudinal principal axis.

kt1 {0 1 0} 1 First transverse principal axis.

kt2 {0 0 1} 1 Second principal axis.

ml 1.0 1 Longitudinal mass.

mt1 1.0 1 First transverse mass.

mt2 1.0 1 Second transverse mass.

eV
1–

eV
1–

Δ

k p⋅
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valleys should be specified, each with a degeneracy of two. To indicate the crystallographic
axis along which the valley lies, the longAxis parameter must be used. 

Valleys Based on k.p Theory

Models based on  theory allow for a more detailed treatment of band dispersion including
warping and anisotropic nonparabolicity. Different models based on this approach are
available.

The 6kpValley Model

The hole band structure in most semiconductors is very warped but can be modeled analytically
using six-band , or Luttinger–Kohn, theory. The valley model 6kpValley is based on the
Luttinger–Kohn model (see Luttinger–Kohn or Bir–Pikus Hamiltonian on page 164) and
represents three bands at the -point.

Table 24 Parameters and default values for the 2kpEllipsoid valley model

Parameter Value in all 
materials

Unit Description

a0 5.43e-8 cm Relaxed lattice constant.

alpha 0.5 Nonparabolicity parameter.

alphaZ 0.0 Nonparabolicity parameter for quantization.

dbs 0.53 eV Energy gap at  between first and second bands.

Eshift 0.0 eV Energy shift relative to relaxed band edge.

k0 0.15 1 Location of relaxed band minimum from the X-point.

longAxis 100 1 Indicates along which crystal axis the longitudinal axis of 
this valley is aligned. Options are 100, 010, 001.

M 1.2 1 Coupling parameter.

ml 0.916 1 Longitudinal mass.

mt 0.194 1 Transverse mass.

Xi_d 0.77 eV Linear deformation potential at the -point.

Xi_s 7.0 eV Linear deformation potential at the X-point.

Xi_u 9.17 eV Linear deformation potential at the -point.

eV
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eV
1–
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Δ

Δ
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This model is controlled by seven parameters: 

■ Three Luttinger–Kohn parameters (gamma1, gamma2, gamm3) that determine the band
dispersion.

■ The spin-orbit split-off energy (delta).

■ Three deformation potentials (a_v, b, d) that determine the strain response. 

This model can be created using a Physics command of the form:

Physics material=Silicon ValleyModel=6kpValley name=Gamma degeneracy=1 \
useForHBulkDensity=1

Specifying useForHBulkDensity causes a 6kpDensity model to be created automatically
for each of the three bands. 

The 3kpValley Model

Sentaurus Band Structure provides the three-band  valley model, which is a simplified
version of the six-band  valley model. In the case of weak spin-orbit interaction, the
resulting (subband) dispersions are very similar and, in the special case of no spin-orbit
interaction (delta=0.0), the results are identical.

Using the 3kpValley model decreases the computational burden significantly, since spin
degeneracy is implicitly taken into account and, therefore, the size of the Hamiltonian is
reduced.

The valley model 3kpValley uses the same parameters as the 6kpValley model except that,
the 3kpValley model does not use delta (see Table 25).

Table 25 Parameters and default values for the 6kpValley valley model

Parameter Value in all 
materials

Unit Description

a_v 2.1 eV Absolute deformation potential.

a0 5.43e-8 cm Relaxed lattice constant.

b -2.33 eV Deformation potential.

d -4.75 eV Deformation potential.

delta 0.044 eV Spin-orbit split-off energy.

gamma1 4.27 1 Luttinger–Kohn parameter.

gamma2 0.315 1 Luttinger–Kohn parameter.

gamma3 1.387 1 Luttinger–Kohn parameter.

k p⋅
k p⋅
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The 8kpValley Model

The valley model 8kpValley describes the lowest conduction band and three valence bands
around the -point. It is a suitable band structure model for direct bandgap materials.
Compared to the 6kpValley model, this model has the following additional parameters:

■ The bulk effective mass of the conduction band mc.

■ The optical matrix parameter Ep.

■ The deformation potential a_c, which determines the strain response of the conduction
band.

The renormalized inverse effective mass of the conduction band is denoted by Ac. Since its
value is often not given in the literature, it is computed internally using the following
convention [1]:

(129)

The rest of the parameters for 8kpValley are exactly the same as for 6kpValley (see
Table 25 on page 177). The valence band parameters are renormalized internally as well [2]
(see Eq. 186, p. 210 for more details).

This model can be created using a Physics command of the form:

Physics material=GaAs ValleyModel=8kpValley name=Gamma degeneracy=1 \
useForHBulkDensity=0 

Table 26 Parameters and default values for the 8kpValley valley model

Parameter Value in all 
materials

Unit Description

mc 0.067 1 Bulk effective mass of the conduction band.

Ep 23.81 eV Optical matrix parameter.

a_c -10.62 eV Deformation potential of the conduction band.

a_v -0.85 eV Deformation potential.

b -1.85 eV Deformation potential.

d -5.10 eV Deformation potential.

a0 5.65e-8 cm Relaxed lattice constant.

delta 0.341 eV Spin-orbit split-off energy.

gamma1 7.05 1 Luttinger–Kohn parameter.

Γ

Ac :=  
1

mc
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Spurious Solutions

The eight-band  model is prone to spurious solutions, but only if certain rules for its input
parameters are violated. Therefore, when the 8kpValley model is used in a Schrödinger
equation as explained in Usage of Eight-Band k.p Schrödinger Equation Solver on page 211,
the user-defined input parameters are checked internally for consistency. If there is a violation,
a warning message is printed to screen. A detailed discussion of the spurious solution problem
in the eight-band  model can be found in the literature [1][3]. In most cases, an artificial
reduction of the optical matrix parameter Ep must be considered to circumvent spurious
solutions.

The 2kpValley Model

The valley model 2kpValley is used to model the  valleys in the silicon conduction band
using a warped, nonparabolic, strain-dependent dispersion, going beyond the simple ellipsoid
approximation (see Two-Band k.p Model on page 159). The 2kpValley parameter set is
described in Table 27, which is very similar to the one in Table 24 on page 176. Currently, only
the 2kp Schrödinger solver can utilize this valley model.

The argument valleyDir is the identifier for the three different  valleys in -space. Valid
input values are {0,1,2}. See Usage of Two-Band k.p Schrödinger Equation Solver on
page 208 for an example of the proper definition of the 2kpValley model. 

gamma2 2.35 1 Luttinger–Kohn parameter.

gamma3 3.0 1 Luttinger–Kohn parameter.

Table 27 Parameters and default values for the 2kpValley valley model

Parameter Value in all 
materials

Unit Description

a0 5.43e-8 cm Relaxed lattice constant.

k0 0.15 Location of relaxed band minimum from the X-point.

delta_Ec 0.128 eV Difference between the relaxed band minimum and the 
conduction band energy at the X-point.

M 1.2 1 Coupling parameter.

ml 0.916 1 Longitudinal mass.

mt 0.194 1 Transverse mass.

Xi_d 0.77 eV Dilation deformation potential.

Table 26 Parameters and default values for the 8kpValley valley model

Parameter Value in all 
materials

Unit Description
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Default Valley Models in Silicon

Table 28 lists the set of valley models and corresponding bulk density and band-edge models
that are created by default for all silicon and polysilicon regions. 

Electrostatic Models

The electrostatic models used in the solution of the Poisson equation are described here.

Permittivity

The dielectric permittivity is modeled as a constant value relative to the vacuum permittivity
and can be set using:

Physics material=Silicon Permittivity epsilon=11.7 

Xi_s 7.0 eV Shear deformation potential.

Xi_u 9.17 eV Uniaxial deformation potential.

Table 28 Default valley models for silicon

Name ValleyModel Description

Delta1 2kpEllipsoid Longitudinal direction along [100], ml=0.914, mt=0.196.

Delta2 2kpEllipsoid Longitudinal direction along [010], ml=0.914, mt=0.196.

Delta3 2kpEllipsoid Longitudinal direction along [001], ml=0.914, mt=0.196.

Gamma 6kpValley Three bands at gamma, default parameters from Table 25 on page 177.

Table 29 Default permittivity values

Model keyword Parameter Silicon Polysilicon Oxide

Permittivity epsilon 11.7 11.7 3.9

Table 27 Parameters and default values for the 2kpValley valley model

Parameter Value in all 
materials

Unit Description
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Relaxed Band Models

Figure 48 Band diagram for a bulk MOS capacitor

Band models are used in the calculation of the carrier densities by either bulk models or the
solution of a Schrödinger equation. The specification and calculation of the needed band edges
for these models have two parts: the specification of the relaxed electron affinity, , and the
band gap, , and then strain-dependent shifts computed by various valley models or by strain-
dependent Schrödinger equations. The relaxed affinity and band gap are modeled as constant
values over a region and are independent of temperature and doping. The specification of the
parameters for these models can be performed using:

Physics material=Silicon Affinity chi=4.5
Physics material=Silicon Bandgap Eg=1.24 

The relaxed conduction-band and valence-band energies can be computed directly from the
vacuum potential, the relaxed affinity, and the band gap as indicated in Table 31 and Figure 48
on page 181. 

Table 30 Parameters and default values for relaxed band models

Model keyword Parameter Unit Silicon Polysilicon Oxide

Affinity chi eV 4.0727 4.0727 0.90

Bandgap Eg eV 1.242 1.242 9.0

Table 31 Default valley models for silicon

Model keyword Equation Unit

ConductionBandEnergy eV

ValenceBandEnergy eV

ΦM

EF

Evac

Ec

EFEv

Metal Oxide Silicon

Eg

χ

χ
Eg

ψvac χ+( )–

ψvac χ Eg+ +( )–
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Quasi-Fermi Levels

In addition to the band models, the quasi-Fermi levels are used in the calculation of the carrier
densities. The quasi-Fermi levels are defined only for semiconductor regions and are modeled
as fixed values tied to a particular contact value. The contact that is used to set the value of the
quasi-Fermi level in a particular region is determined by looking at the connectivity of the
region to the contact. The contact that is connected to a particular semiconductor region by
other semiconductor regions is used to set the value of the quasi-Fermi level in that region.

If a semiconductor region is floating, in that there is no semiconducting path from a contact to
that region, the quasi-Fermi level is set to 0. This case often occurs in double-gate-type
structures. Table 32 lists the different models related to quasi-Fermi levels. The models for
energy are simply the negative of the models for potential. These models are used internally by
Sentaurus Band Structure and can be saved for visualization purposes. 

Carrier Density

Several models are provided for computing the carrier densities for electrons and holes.
Distinctions are made between models that treat confined carriers and those that model bulk
densities, as well as between models that treat strain or do not treat strain. Carrier densities are
computed only in semiconductor regions.

Bulk Versus Confined Carrier Density

When a Schrödinger equation is defined for a carrier over a segment of the device, as
determined by a nonlocal line, the carrier density over the nonlocal line is computed by
integrating the subband dispersion as described in Calculating Confined Carrier Density on
page 194. Outside of the nonlocal line, or for a carrier not treated by a Schrödinger equation,
the carrier density is computed by a bulk density model.

The automatic treatment of the carrier density as confined or bulk is handled by the carrier
density models with the names eHybridDensity and hHybridDensity. These models

Table 32 Model keywords for models related to quasi-Fermi levels

Model keyword Units Description

eQuasiFermiEnergy eV Electron quasi-Fermi energy.

hQuasiFermiEnergy eV Hole quasi-Fermi energy.

eQuasiFermiPotential V Electron quasi-Fermi potential.

hQuasiFermiPotential V Hole quasi-Fermi potential.
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switch automatically from a confined density calculation to a bulk density model outside of the
nonlocal line.

The density model that is used for the bulk calculation is set using the eBulkDensity and
hBulkDensity keywords. For example:

Physics material=Silicon eDensity=eHybridDensity
Physics material=Silicon eBulkDensity=eFermiDensity

This example sets the primary model for computing the electron density to eHybridDensity,
which automatically applies the confined calculation to all nodes on the nonlocal line. Outside
of the nonlocal line, eHybridDensity automatically applies the bulk density model called
eFermiDensity. 

Due to the complicated nature of the electron and hole bands under strain, several model
choices for the bulk density are available.

Fermi–Dirac Bulk Density Model

Assuming parabolic dispersion within a set of valleys or bands with the same band extrema,
the carrier density for electrons and holes under a Fermi–Dirac distribution function is given
by:

(130)

where:

■  and  are the conduction and valence effective band density-of-states (DOS) at
300 K, respectively.

■  and  are the electron and hole quasi-Fermi energies, respectively.

■  and  are the conduction and valence band edges, respectively.

■  is the Fermi–Dirac integral of the order one-half.

■  is the Boltzmann constant.

■  is the ambient temperature.

The values of  and  are independent of strain, and they can be set using the following
Physics commands:

Physics material=Silicon eBulkDensity=eFermiDensity Nc=1.0e19
Physics material=Silicon hBulkDensity=hFermiDensity Nv=2.0e19
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Table 33 lists the default values for  and . 

Bulk Density Model Based on an Ellipsoidal Valley

For one band of an ellipsoidal ValleyModel, such as ConstantEllipsoid or
2kpEllipsoid, the bulk carrier densities, assuming parabolic dispersion and Fermi–Dirac
statistics, can be computed using the models eEllipsoidalDensity and
hEllipsoidalDensity, and are given by:

(131)

where:

■  is the valley degeneracy.

■ , , and  are the principal masses of the ellipsoidal valley.

■ ,  are the relaxed conduction and valence band edges, respectively.

■ ,  are the shifts of the valley band edge relative to the relaxed conduction or
valence band, respectively.

The valley-dependent parameters of this model, such as the masses and the band-edge shift, are
defined or computed by the ValleyModel with the name specified by the valley parameter.

Bulk Hole Density Model Based on 6kp

The valence band in silicon is composed of three bands at the  point. In relaxed silicon, these
are usually referred to as the heavy-hole, light-hole, and split-off bands. Under general strain,
however, the bands and effective masses become mixed, making it difficult to label the bands
in this way. Due to the large warping of the valence bands in silicon, a simple ellipsoidal band
is not an accurate model for the valence-band dispersion. Instead, a Fermi–Dirac model in
conjunction with a more accurate calculation of the hole carrier-concentration effective mass,

, in each band can be selected using the 6kpDensity model. This model obtains its
parameters from the 6kpValley valley model specified by name with the valley parameter
and for the band specified by the band parameter.

Table 33 Default parameter values for Fermi–Dirac bulk density model

Model name Parameter Unit Silicon Polysilicon

eFermiDensity Nc 2.8567e19 2.8567e19

hFermiDensity Nv 3.1046e19 3.1046e19

NC NV
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To compute the hole  for one of the valence bands for arbitrary strain, the band structure
provided by the six-band  method is integrated explicitly assuming Boltzmann
statistics [4]. In this approximation,  is given by:

(132)

where the energy-dependent DOS mass, , is given by:

(133)

The band structure–related integrand is computed from the inverse six-band  method in
polar -space coordinates. The integrals for  and  are evaluated using optimized
quadrature rules.

Using , the density within the treated band is given by:

(134)

where  is the relaxed valence band edge, and  is the shift of the band edge for the treated
band relative to .

Multivalley Bulk Density Model

The conduction and valence bands in most semiconductors are composed of multiple valleys
or multiple bands or both. For example, in silicon, the conduction band is composed of states
from three pairs of  valleys, while the valence band is composed of three bands at the

-point. Most of the bulk density models compute the density for only a single valley or band.
To obtain the total carrier density, these individual densities must be summed.

This summation can be performed automatically using the models eMultiValleyDensity
and hMultiValleyDensity for electrons and holes, respectively. These models
automatically sum the density from all density models created by valley models in which
useForEBulkDensity or useForHDensity has been specified.
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Default Models for Carrier Density

To treat both confined and bulk carrier densities for multiple valleys and bands, the following
set of models is activated by default:

Physics material=semiconductor eDensity=eHybridDensity
Physics material=semiconductor eBulkDensity=eMultiValleyDensity
Physics material=semiconductor hDensity=hHybridDensity
Physics material=semiconductor hBulkDensity=hMultiValleyDensity

The actual bulk density models that are used for electrons and holes are determined by the
default valley models.

Maxwell–Boltzmann Statistics

By default, the models that compute the carrier densities use Fermi–Dirac statistics. Optionally,
you can select to use Maxwell–Boltzmann statistics. In that case, the Fermi–Dirac integrals are
replaced by exponential functions. This option can be selected on a region basis using the
CarrierStatistics model in the Physics command. For example, to activate Maxwell–
Boltzmann statistics in all regions, specify:

Physics material=all CarrierStatistics=Boltzmann

To set Fermi–Dirac statistics explicitly, specify CarrierStatistics=Fermi.

Doping Concentration

The main doping quantities are:

■ The net doping concentration (DopingConcentration), which is used in the Poisson
equation.

■ The total doping concentration (TotalConcentration), which is used for Coulomb
scattering.

The values of these doping quantities are determined by a set of rules that depend on which
fields are read from the input TDR file.

By default, during the LoadDevice command, Sentaurus Band Structure will read the active
doping concentration of all individual dopants that it recognizes. The Dopant command is
used to specify properties of new dopants including quantities such as the dopant name, the
element symbol, and the type of dopant (see Dopant on page 326). After a dopant has been
specified, its active concentration will be loaded from the TDR file if it is present. For example,
for boron, a field with the model keyword BoronActiveConcentration will be created
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with values from the TDR file. By default, the following dopants have been specified for all
semiconductor materials: boron, arsenic, and phosphorus.

To disable the loading of individual dopants, specify the ignoreDopants parameter in the
LoadDevice command (see LoadDevice on page 329). From the doping-related fields read
from the TDR file, other models are created such as DonorConcentration,
AcceptorConcentration, DopingConcentration, and TotalConcentration.

Based on the value of the ignoreDopants parameter, the contents of the TDR file, and the
known dopants specified with the Dopants command, Table 34 lists the rules that are used to
load and create doping information. 

If required, the doping that is loaded from the TDR file can be replaced by a constant value
within a region using a Physics command of the following type:

Physics region=si1 BoronActiveConcentration=ConstantModel value=1.0e18

Net Density

The bulk net density within a semiconductor region is given simply by the RHS of the Poisson
equation (Eq. 125, p. 171), excluding the interface charge, in units of . This model can be
saved for visualization purposes using the model keyword NetDensity.

Interface Charge

Either a fixed charge or trapped charge at region interfaces can be specified using the
TrapModel keyword in the Physics command (see Physics on page 334). More than one
value of the interface charge can be specified by issuing multiple Physics commands. The net

Table 34 Rules for loading and computing doping-related models

Model keyword No dopants read from TDR file At lease one dopant read from TDR 
file

AcceptorConcentration (TotalConcentration -
DopingConcentration)/2

Sum of active acceptor dopants read 
from TDR file

DonorConcentration (TotalConcentration + 
DopingConcentration)/2

Sum of active donor dopants read from 
TDR file

DopingConcentration Read from 
DopingConcentration or 
NetActive in TDR file

DonorConcentration - 
AcceptorConcentration

TotalConcentration |DonorConcentration| DonorConcentration + 
AcceptorConcentration

cm 3–
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interface charge at a particular region interface is then the sum of all the specified charges.
Region interfaces can be specified in terms of region names using the regionInterface
parameter or in terms of materials using the materialInterface parameter using a slash
(/) to separate the regions (or materials) on either side of the interface.

For example, to specify the interface between a region named si1 and a region named ox1,
the interface would be specified as regionInterface="si1/ox1". The order of the
specified regions does not matter. Likewise, the materialInterface parameter can be used
as a shorthand for all interfaces between regions of particular materials, for example,
"Silicon/Oxide".

Fixed Interface Charge

A fixed interface charge is specified using TrapModel=FixedCharge. This model has only
the parameter conc that specifies the interface charge in units of . Here is an example of
specifying fixed charges at interfaces:

Physics regionInterface="si1/ox1" TrapModel=FixedCharge conc=1e12 name=Qss1
Physics regionInterface="si1/ox1" TrapModel=FixedCharge conc=-1e12 name=Qss2

In this example, two fixed charges are specified at the same interface. The fixed charge can be
specified with either a positive or negative concentration. Note that each fixed charge can be
given a unique name. This allows the value of the fixed charge to be changed later in the
simulation by specifying this name, for example:

Physics regionInterface="si1/ox1" TrapModel name=Qss1 conc=2e12 

During initial specification, if the name parameter is not specified, then a default name will be
created.

Interface Traps

An interface trap is specified using either TrapModel=Donor for donor-type traps or
TrapModel=Acceptor for acceptor-type traps. Donor traps are positively charge when
occupied by a hole; acceptor traps are negatively charged when occupied by an electron. The
interface trapped-charge concentration in each type of trap is given by:

(135)

(136)
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where  is the energy profile of the interface trap density. The distribution functions for
trap occupancy are given by  for the hole occupancy of a donor trap and  for the
electron occupancy of an acceptor trap:

(137)

(138)

where:

■  is the quasi-Fermi energy of the carrier specified using the carrierType parameter.

■ g is a degeneracy parameter. Its default value is 1, which makes  and  both a
standard equilibrium Fermi–Dirac distribution function. Other common values for g are
g=2 for donor traps and g=4 for acceptor traps.

The energy profile of the interface trap density can be specified using the DitProfile
parameter. Different types of profile are available. For all profiles, energies are specified
relative to the relaxed valence band. All profiles are treated as a continuous distribution in
energy and taken to have positive . The sign of the trapped charge is determined by the trap
type, either donor or acceptor:

■ The table profile is defined using the Tcl list parameter DitTable as a list of {Energy
Dit} pairs in which the energy is given in eV relative to the relaxed valence band, and 
is given in . To produce a continuous  distribution from this list, linear
interpolation on log( ) is performed.

■ The uniform profile defines a uniform trap energy profile with a density given by the conc
parameter.

■ The Gaussian profile defines a Gaussian profile that is parameterized by the conc,
EnergyMid, and EnergySig parameters:

EnergyMid is defined relative to the relaxed valence band.

■ The exponential profile defines an exponential profile to either side of the EnergyMid
parameter. It is parameterized by the conc, EnergyMid, and EnergySig parameters:

EnergyMid is defined relative to the relaxed valence band.

The energy range for the trap profile is defined using the Emin and Emax parameters. For
analytic profiles, the default values of these parameters are the relaxed valence band and the
relaxed conduction band, respectively, that is, the trap profile is contained with the relaxed band
gap. You can extend the trap profile into the valence band or into the conduction band by setting
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Emin and Emax appropriately. For the table profile, the minimum and maximum energies from
the specified DitTable list are used.

For convenience, the energy parameters Emin, Emax, and EnergyMid can be specified with
one of the following values:

■ CondBand = Relaxed conduction band edge

■ ValBand = Relaxed valence band edge

■ MidBandGap = Middle of the relaxed band gap

■ Numeric value = Value interpreted as relative to the relaxed valence band edge

The material or region that provides the reference band edges for defining the trap energy
profile can be specified using the refMaterial or refRegion parameter, respectively. By
default at a semiconductor–insulator interface, the semiconductor band edges are taken as
reference. At a semiconductor–semiconductor interface, you must specify the reference region
or material. Interface traps at insulator–insulator interfaces are not supported.

Visualization of Interface Charge

The spatial profile of a trapped interface charge can be saved to a TDR structure file using the
Save command with the model parameters eInterfaceTrappedCharge and
hInterfaceTrappedCharge for the total negative trapped charge and the total positive
trapped charge, respectively. These quantities include the charge from fixed and trapped
interface charges in units of .

For interface traps, the energy profile of  and other quantities for a specific trap can be saved
to an xy TDR file using the SaveDitProfile command (see SaveDitProfile on page 350).
With this command, you specify the trap by name and a point in the structure near the interface
node for which the profile quantities are saved. Sentaurus Band Structure will locate the nearest
interface point and save the quantities listed in Table 35 to the TDR file. 

Table 35 Interface trap profile–related quantities saved to TDR file

Quantity Description

DistributionFunction Distribution function for trap occupancy in units of [1].

Ec Indicated by 1 at the energy of the relaxed conduction band.

Ev Indicated by 1 at the energy of the relaxed valence band.

Ef Indicated by 1 at the energy of the quasi-Fermi energy.

Energy Energy relative to the relaxed valence band in units of eV.

TrapDensity Interface trap density in units of .

TrappedChargeDensity Density of trapped charge in units of .
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Effective Field for Universal Mobility

The effective field concept has proven useful for simplifying the modeling and characterization
of inversion-layer mobility in silicon MOSFETs [5]. Experimentally, the effective field is
defined as a linear combination of inversion sheet density, , and the depletion sheet density,

, as:

(139)

where  is the permittivity of the semiconductor. The weighting factor  has been
experimentally determined to be different for electrons and holes. Models have been defined to
compute the integrand of this charge-based effective field. The weighting factor  can be set,
for example, for electrons, using:

Physics material=Silicon eEeffIntegrand nu=0.5

Table 36 lists the model keywords and default values for . 

To compute the actual effective field value, these models must be integrated over the
appropriate region using the Extract command, for example:

Set Eeff [Extract model=eEeffIntegrand region=si1 integral]

Alternatively, the effective field can also be defined in terms of a weighted integral of the local
electric field, :

(140)

where  can be either the electron or hole density, whichever is inverted. The calculation of the
effective field in this approach is treated by providing a model for the integrand of the
numerator called eDensityTimesEField for electrons and hDensityTimesEField for
holes. The actual value of the effective field can then be computed by integrating over the
appropriate region and dividing by the inversion sheet density, for example:

set nTimesE [Extract model=eDensityTimesEField region=si1 integral]
set Ninv [Extract model=eDensity region=si1 integral]
set Eeff [expr $nTimesE/$Ninv]

Table 36 Charge-based effective field models

Model keyword Parameter Unit Silicon

eEeffIntegrand nu 1 0.5

hEeffIntegrand nu 1 0.333
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Strain

The strain tensor in the crystallographic coordinate system is set using the CrystalStrain
model keyword. Only constant strain within a region is supported. The strain tensor can be
computed using the elasticity features of Sentaurus Band Structure. 

The following example shows how to apply 1 GPa of uniaxial stress along <110>:

SiliconCrystal name=mySi
mySi apply uniaxialStrain dir=[list 1 1 0] stress=1.0e9
set strainTensor [mySi get strain]
Physics material=Silicon CrystalStrain strain=$strainTensor

The strain tensor is used internally by many different models. In addition, the strain tensor can
be saved for visualization using the CrystalStrain model keyword.

Calculating Subbands

The confined carrier density, the subband dispersion, and the wavefunctions within an
inversion layer can be computed using different Schrödinger solvers. These solvers compute
the subband dispersion and wavefunctions in -space over previously defined nonlocal lines
or nonlocal areas. These results are then used to directly compute the confined carrier density.
Models for the minimum energy and wavefunction of each subband are created automatically
for visualization or extraction purposes.

Polar Grid for 2D k-Space

Figure 49 (Left) Polar grid over which a 1D Schrödinger equation is solved and (right) 
example of subband dispersion with irreducible wedge (IW) highlighted; in 
example, IW symmetry is IW4 and ϕ0 = –π/4
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For 1D device structures, the Schrödinger solvers are solved over a 2D -space grid in polar
coordinates. To reduce the computation time, these solves are performed only over the angular
section of the polar grid that is unique from a symmetry perspective. This part of the polar grid
is called the irreducible wedge (IW). Figure 49 on page 192 shows a polar grid and an example
of a subband dispersion with its associated IW. The IW is described by two parameters: the IW
symmetry that gives the number of equivalent sections that span , and the starting angle for
the IW, , relative to the kx-axis. The direction of the kx-axis is specified using the
xDirection parameter of the Physics command. The example in Figure 49 has an IW
symmetry of IW4 and . The supported IW symmetries are IW12, IW8, IW4, and
IW2. The particular IW symmetry and  that should be used during a calculation depends on
the carrier, the surface orientation, and the applied strain. Some Schrödinger solvers compute
the IW symmetry and  parameter automatically, while others require you to specify these
parameters in the Physics command. This is discussed in detail for each type of Schrödinger
solver. For interpolation of the subband dispersion and other quantities over the polar grid, the
Fourier-spline approach is used [6].

The polar grid is specified using a set of parameters of the Physics nonlocal command.
The specified polar grid should be sufficiently fine to properly resolve the dispersion for all the
computed subbands. For the radial -grid, the grid points can be specified as uniform using the
Nk and Kmax parameters. Alternatively, the radial grid can be given as an explicit list of -
values using the kGrid parameter. The -grid is always uniformly spaced, and the total
number of points spanning  is specified using the Nphi parameter.

NOTE Nphi must be consistent with the IW symmetry, that is, Nphi must be
divisible by the IW symmetry. If this is not the case, Nphi is adjusted
upwards automatically to the next smallest value that is consistent with
the IW symmetry.

Grid for 1D k-Space

For 2D device structures, the solution of the 2D Schrödinger equation requires computing the
dispersion on a 1D grid in -space. This -grid can be specified in the Physics nonlocal
command using the Nk and Kmax parameters or using the kGrid parameter.

Ladders

The bands of many semiconductors are often composed of more than one valley. For example,
the conduction band in silicon is composed of three pairs of  valleys. The solution of a
Schrödinger equation in each valley produces a ladder of subbands of increasing energy. The
valleys to be included in the solution of a particular Schrödinger equation can be specified with
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the Physics command using the valleys parameter. The required number of subbands to
compute for each ladder is specified with the Nsubbands parameter.

Calculating Confined Carrier Density

The confined carrier density is computed directly from the subband dispersion and
wavefunctions using:

 for 1D confinement (141)

 for 2D confinement (142)

where:

■  includes the degeneracy for both the spin and valley degeneracy of subband .

■  is the Fermi–Dirac distribution function.

■  is the subband dispersion.

■  is the wavefunction.

In general, the sum over subbands, , includes multiple valleys or ladders.

The accurate evaluation of the integrand in Eq. 141 possibly requires a finer radial grid than
that used for computing the dispersion. For this reason, a separate -grid can be specified in
the Physics command for evaluating the carrier density using the NkForNinv or
kGridForNinv parameters.

If you selected Maxwell–Boltzmann statistics in the first semiconductor region in the nonlocal
line or nonlocal area, the Fermi–Dirac distribution function is replaced by a Maxwell–
Boltzmann distribution function.

Calculating the Thermal Injection Velocity

The thermal injection velocity for valley  along the direction  is computed as the
occupancy-weighted average of the group velocity over one-half of -space. 
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Due to inversion symmetry, this can be computed as an integral over all -space using:

(143)

where:

■  is the valley degeneracy.

■  is the spin degeneracy.

■  is the equilibrium distribution function, that is, either Fermi–Dirac or Maxwell–
Boltzmann.

■  is the subband dispersion for subband .

■  is the dimensionality of the -space dispersion. For 1D confinement, . For 2D
confinement, .

The overall injection velocity for all valleys is computed from the sum of the per-valley
injection velocities weighted by the valley occupancies. The calculation of the thermal
injection velocity can be initiated using the ComputeVinj command (see ComputeVinj on
page 325).

Calculating the Transport Mass

The transport mass is computed from the occupancy-weighted inverse transport mass. The
occupancy-weighted inverse transport mass is computed as one component of the inverse mass
tensor integrated over all -space and weighted by the equilibrium Fermi–Dirac or Maxwell–
Boltzmann distribution function. For valley , the lm component of the occupancy-weighted
inverse mass tensor is:

(144)

where:

■  is the valley degeneracy.

■  is the spin degeneracy.

■  is the equilibrium distribution function, that is, either Fermi–Dirac or Maxwell–
Boltzmann.
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■  is the subband dispersion for subband .

■  is the dimensionality of the -space dispersion. For 1D confinement, . For 2D
confinement, .

The overall inverse transport mass for all valleys is computed from the sum of the per-valley
inverse masses weighted by the valley occupancies. The calculation of the transport mass can
be initiated using the ComputeMass command (see ComputeMass on page 322).

Automatically Created Models for Visualization and 
Extraction

All Schrödinger solvers automatically create for each subband a set of models for the subband
energy minimum, the wavefunction value and norm at the center of the polar grid, and the
carrier density profile in each subband. These models can be accessed for visualization or
extraction purposes.

The names of the models start with the name of the valley or ladder for which the subband
belongs and then the subband index starting at 0.

For example, the lowest-lying subband computed for the valley named Delta1 has the
following models created automatically:

■ Delta1_0_SubbandEnergy 

■ Delta1_0_SubbandDensity 

■ Delta1_0_Wavefunction 

■ Delta1_0_WavefunctionValue 

The next higher-lying subband within the same ladder has the following models created
automatically:

■ Delta1_1_SubbandEnergy 

■ Delta1_1_SubbandDensity 

■ Delta1_1_Wavefunction 

■ Delta1_1_WavefunctionValue 

For the wavefunction values, the models that are saved to the TDR file are expanded
automatically to include both the real and imaginary parts for the parabolic Schrödinger solver,
as well as the different vector components for the  Schrödinger solvers. For example,
when the wavefunction value for a Delta1_0 subband from the parabolic Schrödinger solver
is requested, the following models are saved to the TDR file:

Delta1_0_WavefunctionValue_real, Delta1_0_WavefunctionValue_imag

Ei i

d k d 2=
d 1=

k p⋅
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For the  Schrödinger solvers, such as the 6kp Schrödinger solver, each vector component,
as well as the real and imaginary parts, are saved automatically. For example, requesting the
wavefunction value for the Gamma_0 subband from the 6kp Schrödinger solver causes the
following twelve models to be saved to the TDR file:

Gamma_0_WavefunctionValue_0_real, Gamma_0_WavefunctionValue_0_imag,
Gamma_0_WavefunctionValue_1_real, Gamma_0_WavefunctionValue_1_imag,
Gamma_0_WavefunctionValue_2_real, Gamma_0_WavefunctionValue_2_imag,
Gamma_0_WavefunctionValue_3_real, Gamma_0_WavefunctionValue_3_imag,
Gamma_0_WavefunctionValue_4_real, Gamma_0_WavefunctionValue_4_imag,
Gamma_0_WavefunctionValue_5_real, Gamma_0_WavefunctionValue_5_imag

The subband dispersion as a function of -space can be saved to a TDR file using the SaveK
command using the model name: valley-name_subband-index_Dispersion. For
example, for a valley named Delta1, the name of the dispersion model for the lowest-lying
subband is Delta1_0_Dispersion.

Parabolic Schrödinger Solver

The Schrödinger solver named Parabolic is based on the solution of the parabolic
Schrödinger equation with a correction for nonparabolicity computed using perturbation
theory. This solver is most relevant for electrons. For an ellipsoidal valley, the parabolic
Schrödinger equation is given by:

(145)

where:

■  is the reduced Planck’s constant.

■  is the inverse mass tensor for the ladder for the confinement direction or directions.

■  is the wavefunction.

■  is the eigenenergy at the center -point of the dispersion.

■  is the confining band-edge energy, which is typically computed in terms of the relaxed
conduction or valence band edge plus some fixed or strain-dependent shift.

Dirichlet boundary conditions are applied to the boundaries of the nonlocal line or nonlocal
area over which the Schrödinger equation is solved. The band parameters used in the
Schrödinger equation are obtained from the valley models specified with the valleys
parameter of the Physics command. These valley models must be one of the ellipsoidal
models described in Ellipsoidal Valleys on page 174.
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Dispersion

For a parabolic band, the eigenenergy for a subband, , is combined with a parabolic
dispersion function to compute the total dispersion, , over the -space grid:

(146)

where the parabolic dispersion function is given by:

(147)

where  is the inverse mass tensor for dispersion, and  is the in-plane wavevector, both
specified relative to the in-plane device coordinates.

When nonparabolicity is considered, both the in-plane dispersion and the subband minimum
energy can be altered. As described here, for computing this nonparabolic correction, three
models are provided. The required model can be set using the correction parameter. Setting
alpha=0 and alphaZ=0 for the associated ellipsoidal valley suppresses any of these
corrections.

Setting correction=1 uses a model based on [7] in which only the in-plane dispersion is
modified, resulting in a total dispersion of the form:

(148)

where  is the nonparabolicity parameter. This is the default model.

Setting correction=2 uses a model based on [8], which adds a perturbative correction to the
subband minimum energy and results in a total dispersion of the form:

(149)

where . In this formulation, the in-plane dispersion is the same as in
the first model in which the nonparabolicity is specified with the alpha parameter. The impact
of nonparabolicity on the minimum subband energy is characterized separately by the alphaZ
parameter.
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Setting correction=3 uses a model based on [9] in which an alternative perturbative
correction corrects both the subband minimum energy and in-plane dispersion, resulting in a
total dispersion of the form:

(150)

Surface Orientation and Effective Masses

Changes in surface orientation alter the inverse mass tensor that goes into the parabolic
Schrödinger equation as well as the inverse mass tensor that is used for the dispersion. These
tensors are computed automatically by transforming the inverse mass tensor of each ellipsoidal
valley based on the user-specified device axes [10]. As an example, Figure 50 shows the
orientations of the six -valley constant-energy ellipses for (100), (110), and (111) surface
orientations and typical x-directions. 

Figure 50 In-plane constant-energy ellipses for 1D confinement for silicon Δ valleys for 
(100), (110), and (111) surface orientations; the directions of the kx- and ky-axes 
for typical x-directions are also shown

For 1D confinement, the IW symmetry of the elliptical valleys is always IW4. The 
parameter describing the start of the IW is computed automatically based on the principal axes
of each ellipsoidal valley as determined by the transformed inverse mass tensor.

Usage

The Parabolic Schrödinger solver is selected using a Physics command of the type:

Physics nonlocal=NL1 eSchrodinger=Parabolic correction=1 \
valleys=[list Delta1 Delta2 Delta3] Nk=22 Kmax=0.3 Nphi=16

This example specifies that the Parabolic Schrödinger equation should be solved on the
previously defined nonlocal line named NL1. Note that the valley names listed in the valleys
parameter should each refer to one of the ellipsoidal valley models described in Ellipsoidal
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Valleys on page 174. In this example, the nonparabolic correction model is set to model 1.
Parameters for the polar grid for 1D confinement over which the subband dispersion is
computed are specified as well. For 2D confinement, the Nphi parameter is ignored.

In this example, a uniformly spaced -grid is specified with a maximum -value of 0.3 and
22  points. The -grid is always uniformly spaced and is specified here to have 16 points. 

NOTE The parameters iwSymmetry and phi0 do not need to be specified
since they are computed automatically by the Parabolic solver.

Confined k.p Schrödinger Solvers

In contrast to the Parabolic Schrödinger solver, which is based on the single-band effective
mass approximation, the confined  Schrödinger solvers are based on a perturbation
method involving multiple bands.

In an extended crystal and in the absence of a confining potential well, this perturbation method
results in a bulk  Hamiltonian operator. For example, an expansion in terms of the six
valence-band states around the  point results in the Luttinger–Kohn or Bir–Pikus
Hamiltonian of Eq. 124, p. 164. This operator is a  matrix, whose elements are functions
of the -vector and the strain tensor .

In an inversion layer, the symmetry of the system is reduced by the presence of a surface and
a confining potential well : Translational invariance along the confining direction or
directions is lost.

This situation is addressed by the formal substitution  for 1D confinement and
 for 2D confinement in the  Hamiltonian. This turns the

Hamiltonian into a differential operator operating on a vector valued envelope wavefunction 
with one component per band of the bulk  Hamiltonian.

Arbitrary Surface Orientations

In the discussion of analytic bulk band structures (see Chapter 14 on page 159), coordinates
were always assumed to be in the crystallographic coordinate system, that is, the x-, y-, and z-
axes are aligned with the (100) directions of the bulk crystal. For arbitrary orientation, it is
necessary to define the device coordinate system. For 1D confinement, the confinement
direction is along the -axis, and the - and -axes span the surface parallel plane. For 2D
confinement, the - and -axes define the confinement plane. Primed coordinates refer to the
device coordinate system; whereas, unprimed coordinates refer to crystal coordinates.

k k
ϕ

k p⋅

k p⋅
Γ

6 6×
k ε

V x( )

kz ih∂ ∂z⁄–→
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For arbitrary orientation, it is necessary to transform the bulk  Hamiltonian from its
representation in the crystal coordinate system ( ) to its representation in device
coordinates ( ) before replacing the confined wavevectors with confinement operators.
The details of this transformation depend on the particular choice of the underlying bulk 
model and are discussed for the case of six-band  for holes and two-band  for
electrons.

In both cases, subband energies  and envelope wavefunctions  are found by solving the
eigenvalue problem (shown here for 1D confinement):

(151)

Reordering the Subband Dispersion

For 2D confined systems, a new algorithm is available to reorder the numerically computed
subband dispersion, following the concepts outlined in [11]. As shown in Figure 51, reordering
a 6kp subband dispersion allows the formation of light hole–like subbands. See the
reorderDispersion argument in Physics of Nonlocal Lines or Nonlocal Areas on page 345. 

Figure 51 Reordering of a 6kp subband dispersion allows the formation of light hole–like 
subbands
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Confined Six-Band k.p Schrödinger Equation Solver

The implementation of the confined six-band  method follows [1][12]. The  
Hamiltonian associated with the Luttinger–Kohn basis states can be expressed based on the

 spin degenerate  Hamiltonian associated with the chemical basis states.

Within the crystallographic coordinate system , the  spin degenerate 
Hamiltonian associated with the chemical basis states , ,  is expressed as follows
[1]:

(152)

where the parameters  relate to the  parameters  as follows:

(153)

Here,  and  are given by [1]:

(154)

Note that since  and  are different, the operator ordering established by:

(155)

forms a nonsymmetric matrix form. This nonsymmetric-operator ordering approach has been
shown to eliminate spurious solutions for the wavefunction within a heterostructure quantum
well [1].

It is important to note that the six (including spin degeneracy) top valence bands at the  point
consist of p orbitals of the lattice atoms. The Luttinger–Kohn Hamiltonian (Eq. 124, p. 164) is
expressed in terms of total angular momentum  states, which are linear combinations of
the chemical basis states , , , , , and  where + and –
denote the spin-up and spin-down states, respectively. Therefore, the   Hamiltonian
associated with the Luttinger–Kohn basis states can be expressed, based on , as follows:

(156)
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where the  unitary matrix  connects the Luttinger–Kohn basis states to the chemical
basis states (compared to [13]).

To transform the bulk Hamiltonian correctly between the crystal and device coordinates, it is
important to note that the chemical basis states have vector-like transformation properties.
Therefore, for any fixed wavevector , the Hamiltonian in device coordinates can be
expressed as:

(157)

where the real  rotation matrix  transforms between device and crystal coordinates (for
example, ).

Consequently, the Luttinger–Kohn Hamiltonian associated with the device coordinate system
can be expressed as:

(158)

For 1D confinement, to apply the  substitution, it is useful to express the 
Hamiltonian as a polynomial in :

(159)

In the case of a six-band , the  take the form:

(160)

 (161)

(162)

(163)

where  is the component of the expansion of the Hamiltonian:

(164)
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For an arbitrary surface orientation,  can be determined as follow:

(165)

where:

(166)

Here,  and  are components of the unitary rotation matrix U.

NOTE The following symmetry  holds.

Consequently,  has the following symmetry: .

Therefore, it can be shown that  holds, and ,  are Hermitian matrices.
These important symmetries ensure that the eigenproblem of the quantum confinement system
is of a Hermitian type, which in turn ensures a real (noncomplex) value for the eigenenergies.

To reduce the computation time of the confined six-band  Schrödinger solver, the
symmetry of the valence subband structure for 1D confinement can be detected automatically
using the algorithm based on [14]. To use this feature, specify iwSymmetry=AUTO in the
Physics nonlocal command. Internally, the iwSymmetry and phi0 values, for a given
configuration of the surface/channel orientation and strain, are determined automatically.

For 2D confinement, only the positive half of 1D -space needs be considered due to inversion
symmetry.

For 1D confinement, however, the iwSymmetry and phi0 values in the Physics nonlocal
command are expected to be either specified manually or computed using the AUTO feature.
Table 37 lists the iwSymmetry and phi0 settings for typical cases. 

Table 37 Typical symmetry settings for 1D-confined six-band k.p
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Usage of Six-Band k.p Schrödinger Equation Solver

The six-band  Schrödinger solver is selected using the name 6kp for the hSchrodinger
parameter of the Physics nonlocal command. For example, the 6kp solver for 1D
confinement can be selected using:

Physics nonlocal=NL1 hSchrodinger=6kp valleys=[list Gamma] \
Nk=22 Kmax=0.3 iwSymmetry=AUTO nPhi=48 useKdependentWF=1 \
useNonsymBulkKPHamil=1

This example specifies that the 6kp Schrödinger equation should be solved on the previously
defined nonlocal line named NL1. Note that the valley name listed in the valleys parameter
must refer to a 6kpValley valley model:

Physics material=Silicon ValleyModel=6kpValley name=Gamma \
degeneracy=1 useForHBulkDensity=1

Parameters for the polar grid over which the subband dispersion is computed are specified as
well. In this example, a uniformly spaced radial -grid is specified with a maximum -value
of 0.3 and 22 points. The automatic symmetry is switched on with iwSymmetry=AUTO, and
the symmetry of the subband is detected automatically. Within the irreducible -range
determined by the AUTO feature, the -grid is always uniformly spaced and is specified here
to have 48 points. For 2D confinement, the Nphi parameter is ignored.

The Schrödinger solvers compute the subband dispersion at each point in the IW of the
specified -space grid. The wavefunctions also can be computed at each -space grid point by
specifying useKdependentWF=1. Alternatively, the calculation of the wavefunctions can be
limited to only the -vector of the subband minimum. This is indicated by specifying
useKdependentWF=0, which is the default value for this parameter.

The nonsymmetric-operator ordering approach is used in this example by specifying
useNonsymBulkKPHamil=1, which is the default value.

(001)
(001)
(001)
(001)
(110)
(111)
(111)
(001)
any any

orthorhombic
orthorhombic

from  stress
from  stress
from  stress
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Table 37 Typical symmetry settings for 1D-confined six-band k.p

surfaceDirection xDirection strain iwSymmetry phi0
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If useNonsymBulkKPHamil=0, the symmetric-operator ordering approach is used, which
implies:

(167)

Confined Three-Band k.p Schrödinger Equation Solver

The  spin degenerate  Hamiltonian can be expressed using the chemical basis states
as outlined in Confined Six-Band k.p Schrödinger Equation Solver on page 202.

Usage of Three-Band k.p Schrödinger Equation Solver

The Physics input has been extended to enable the three-band  valley model, with the
3kpValley keyword for the ValleyModel parameter, for example:

Physics material=Silicon ValleyModel=3kpValley name=Gamma \
degeneracy=1 gamma1=3.6 gamma2=0.67 gamma3=1.21 a_v=2.1 b=-2.33 d=-4.75 \
useForHBulkDensity=0

In addition, the 3kp keyword is available for the hSchrodinger parameter, for example:

Physics nonlocal=NL1 hSchrodinger=3kp valleys=Gamma

Confined Two-Band k.p Schrödinger Equation Solver

The   Hamiltonian for two nondegenerate conduction bands associated with the 
valley is given by:

(168)

In contrast to the valence bands of the six-band  method, the lowest conduction bands at
the X point consist of spherical  orbitals. This simplifies the relationship between  and

 to:

(169)

where  is the same rotation matrix as in the six-band  case.
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Here,  defined as:

(170)

is the rotation matrix used to rotate the  valley to the  valley.

Unlike the six-band case, the two-band bulk  Hamiltonian may contain first-order terms
in . This can be observed in the expansion of  into :

(171)

For an arbitrary surface orientation, the component  can be determined as follows:

(172)

and the components  and  are given by:

(173)

Here,  and  are components of the unitary rotation matrix
.

It can be easily shown that  holds.

When the components , , and  have been calculated, the matrices , ,
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Ũαx
1
mt
-----Ũβx Ũαy

1
mt
-----Ũβy Ũαz
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Ũβy– 2Ũαy
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(177)

Again, it can be shown that  holds, and ,  are Hermitian matrices.
These important symmetries ensure that the eigenproblem of the quantum confinement system
is of a Hermitian type, which in turn ensures a real (noncomplex) value for the eigenenergies.

For 2D confinement, only the positive half of 1D -space needs be considered due to inversion
symmetry. For 1D confinement, however, the iwSymmetry and phi0 values in the Physics
nonlocal command are expected to be either specified manually or computed using the AUTO
feature.

Usage of Two-Band k.p Schrödinger Equation Solver

The two-band  Schrödinger solver is selected using the name 2kp for the eSchrodinger
parameter of the Physics nonlocal command. For example, the 2kp solver for 1D
confinement can be selected using:

Physics nonlocal=NL1 eSchrodinger=2kp valleys=[list X1 X2 X3] \
Nk=22 Kmax=0.3 iwSymmetry=AUTO nPhi=48 useKdependentWF=1 \
useNonsymBulkKPHamil=1

This example specifies that the 2kp Schrödinger equation should be solved on the previously
defined nonlocal line named NL1. Note that the valley names listed in the valleys parameter
must refer to a 2kpValley valley model:

Physics material=Silicon ValleyModel=2kpValley name=X1 valleyDir=0 \
degeneracy=1 useForEBulkDensity=1

Physics material=Silicon ValleyModel=2kpValley name=X2 valleyDir=1 \
degeneracy=1 useForEBulkDensity=1

Physics material=Silicon ValleyModel=2kpValley name=X3 valleyDir=2 \
degeneracy=1 useForEBulkDensity=1

The argument valleyDir must be used to define the -space orientation of the respective 
valley.

As for the other  models, the iwSymmetry=AUTO functionality for detecting the
symmetry of -space is supported by the two-band  model.

If useNonsymBulkKPHamil=0, the symmetric-operator ordering approach is used, which
implies:

(178)
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Confined Eight-Band k.p Schrödinger Equation Solver

This implementation is very similar to the   described in Confined Six-Band k.p
Schrödinger Equation Solver on page 202. What is different here are the terms for the
conduction band  and the coupling between the conduction band and the valence band .

Choosing the chemical basis states , , , and  as a basis for the Hamiltonian, the
second order in the -part of the conduction band Hamiltonian can be written as:

(179)

where the renormalized inverse effective mass  is defined as in Eq. 129, p. 178 and the
possible non-alignment of the device coordinates with the crystal coordinates is taken into
account by:

(180)

as in Confined Six-Band k.p Schrödinger Equation Solver on page 202. The coupling between
the conduction band and the valence band is of first order in  and is given by:

(181)

(182)

and  is defined as:

(183)

The valence band Hamiltonian part of the second order in  is formally given by the same
expression as in the case of  :
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However, instead of the   parameters , , and , you use the renormalized
parameters [2]:

(186)

The relation between the parameters , , and , and the Luttinger parameters , , and
 is given by Eq. 153, p. 202. The definition of  and  can be found in Eq. 154, p. 202.

The Hamiltonian part of the zeroth order in  has three contributions:

■ A diagonal entry from the band edge:

(187)

■ A contribution from the strain :

(188)

■ From spin-orbit coupling. Before you can add the spin-orbit coupling, you must put all of
the other terms together into:

(189)

and finally write:

(190)

using a spin-dependent chemical basis system , , , , , ,
, and , where + and – denote the spin-up and spin-down states, respectively.
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By transforming from the spin-dependent chemical basis states to the basis states of the total
angular momentum [2], the spin-orbit coupling term  in Eq. 190 becomes diagonal:

(191)

The transformation matrix  in Eq. 191 is given by:

(192)

From the bulk Hamiltonian in Eq. 191, you obtain the Hamiltonian for the confined system by
replacing the components of the -vector with the respective derivatives, as described in
Eq. 151, p. 201 and Eq. 155, p. 202.

Usage of Eight-Band k.p Schrödinger Equation Solver

The 8kpValley described in The 8kpValley Model on page 178 can be used in a Schrödinger
equation, which is associated with the carrier type. Using the keyword eSchrodinger, the
electron subbands are calculated and, using the keyword hSchrodinger, the hole subbands
are calculated.
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For a self-consistent simulation where both the electron and the hole charges are computed
from the eight-band  model, you must define two 8kpValley models and use them with
the respective Schrödinger equation object:

Physics material=GaAs ValleyModel=8kpValley name=Gamma1 degeneracy=1 \
useForHBulkDensity=0

Physics material=GaAs ValleyModel=8kpValley name=Gamma2 degeneracy=1 \
useForEBulkDensity=0

Physics nonlocal=NL1 hSchrodinger=8kp valleys=[list Gamma1] Nk=22 Kmax=0.3 \
iwSymmetry=AUTO nPhi=48 useKdependentWF=1 useNonsymBulkKPHamil=1

Physics nonlocal=NL1 eSchrodinger=8kp valleys=[list Gamma2] Nk=22 Kmax=0.3 \
iwSymmetry=AUTO nPhi=48 useKdependentWF=1 useNonsymBulkKPHamil=1

As for the six-band  model, the iwSymmetry=AUTO functionality for detecting the
symmetry of the -space is supported by the eight-band  model.

If useNonsymBulkKPHamil=0, the symmetric-operator ordering approach is used, which
implies:

(193)

Handling of Subband Degeneracies

In calculations using the  band models, subband degeneracies often arise.

In some cases, these degeneracies can cause numeric issues that degrade accuracy or
convergence. In these cases, it is often helpful to split the degeneracies slightly using the
degenSubbandEnergySplit parameter, which specifies a value (in eV) that is added to the
diagonal of the  Hamiltonians to split degenerate subbands. By default, the value of this
parameter is zero. Effective splitting can be achieved with values as small as 1.0e-6 eV.

Interface Potential Spike

A delta-function spike in the confining band-edge potential can be specified at region interfaces
using the SpikeModel keyword in the Physics command (see Physics for Interface Potential
Spike Models on page 344). The SpikeModel keyword can specify multiple models, each
model being associated with a unique list of valleys. The potential spike is included as part of
the confining potential when solving one of the Schrödinger equations. The value of the spike
potential is specified using the value parameter in units of . For both eSchrodinger
and hSchrodinger solvers, a positive value of the spike potential creates a spike-like barrier
at the interface, while a negative value creates a spike-like well as the interface. Region
interfaces can be specified in terms of region names using the parameter regionInterface
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or in terms of materials using the parameter materialInterface, using a slash (/) to
separate regions (or materials) on either side of the interface.

For example, to specify a spike-like barrier of 2.0e-9  at the region interface between
regions si1 and si2 to be applied for the three default -valleys in silicon, use the following
command:

Physics regionInterface="si1/ox1" SpikeModel=ConstantSpike value=2.0e-9 \
valleys=[list Delta1 Delta2 Delta3] name=DeltaSpike

The only available model to use for SpikeModel is ConstantSpike, as shown in this
example. This creates a constant spike-like potential along the entire specified interface. In
addition, each SpikeModel can be given a unique name using the name parameter. This name
can then be used in subsequent Physics SpikeModel commands to modify or remove an
existing SpikeModel. In addition, this name is used to automatically generate a model for the
spike potential that can be saved to a TDR file.

Visualizing the Interface Potential Spike

The spatial profile of a specified SpikeModel can be saved to a TDR structure file using the
Save command. To save a particular SpikeModel, specify the SpikeModel name in the
model list for the models parameter. For example, to save the SpikeModel created in the
previous example, with the name DeltaSpike, use the following command:

Save tdrFile=device.tdr models=[list DeltaSpike]

Using Sentaurus Band Structure as an External 
Schrödinger Solver for Sentaurus Device

Sentaurus Device and Sentaurus Band Structure can cooperate to run 3D device simulations
with 2D Schrödinger confinement. In this cooperative simulation mode, Sentaurus Device
handles the 3D device structure and solves a system of equations as specified in the Solve
section of its command file. However, whenever Sentaurus Device needs to update the carrier
densities, it calls Sentaurus Band Structure to provide quantum-mechanical density corrections
on 2D slices normal to the main transport direction (see Figure 52 on page 214).
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Figure 52 Three-dimensional device structure with five 2D Schrödinger slices

On the Sentaurus Device side, the cooperative mode is triggered by an
ExternalSchroedinger block in the command file (see Sentaurus™ Device User Guide,
External 2D Schrödinger Solver on page 292). A Sentaurus Band Structure process can
connect to a Sentaurus Device master process by executing the ConnectToMasterProcess
Tcl command, for example:

set sliceIndex [lindex $argv 0]

set offsetVector [list 0.007 0.009 [expr (0.01 * $sliceIndex)]]

ConnectToMasterProcess connectionName=SBandSDeviceLink slice=$sliceIndex \
timeout=600 transform=[list {1 0 0} {0 1 0} {0 0 1}] translate=$offsetVector

The connectionName must correspond to the name of the ExternalSchroedinger block
in the Sentaurus Device command file, in this example:

ExternalSchroedinger "SBandSDeviceLink" {
NumberOfSlices=2
...

}

Each Sentaurus Band Structure process is responsible for handling exactly one 2D slice, which
is identified by a slice number between 0 and , where  is the number of slices requested
in the ExternalSchroedinger block. The  matrix transform (units: dimensionless)
and the 3D vector translate (units: ) define an affine linear transformation that relates
the 2D coordinates of the slice mesh to the 3D coordinates of the full device. Typically, the

N 1– N
3 3×
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offset vector by which the mesh is displaced will be a function of the slice index. The timeout
(in seconds) specifies how long Sentaurus Band Structure will wait for Sentaurus Device to
respond to connection requests and messages before terminating with an error message.

Beyond the ConnectToMasterProcess command, Sentaurus Band Structure behaves as
usual: The (2D slice) structure is loaded using LoadDevice, and a 2D Schrödinger simulator
is set up in the same way as for a standalone 2D confined charge-density calculation.

When Sentaurus Device has finished its calculations, it returns control to Sentaurus Band
Structure, and the usual execution of Tcl commands resumes.

NOTE The meshes of the 2D slices passed to Sentaurus Band Structure must
satisfy the Delaunay criterion. A 2D cut through a 3D Delaunay mesh is
usually not a Delaunay mesh.

NOTE Sentaurus Device can be configured to start one Sentaurus Band
Structure process per slice automatically. In this mode, the slice index is
passed to Sentaurus Band Structure as a command-line argument
([lindex $argv 0]).

Calculating Mobility

The calculation of the inversion-layer mobility combines the subband dispersion computed by
one of the Schrödinger solvers along with a set of user-defined scattering models within either
the Kubo–Greenwood formalism or using a direct solution of the linear Boltzmann transport
equation. This provides a general microscopic approach for computing any component of the
mobility tensor for arbitrary strain, orientation, and temperature.

Kubo–Greenwood Formalism

A linearization of the Boltzmann transport equation in the driving electric field gives the
following Kubo–Greenwood expression for the  component of the low-field mobility tensor
in subband :

(194)

where:

■  is the degeneracy.

■  is the subband inversion carrier density.

ij
ν

μi j
ν e

h2
-----

1
kBT
---------

gν
Nν
------

kd

2π( )d
--------------τi

ν
ki∂

∂Eν
kj∂

∂Eνf0 Eν( ) 1 f0 Eν( )–[ ]=

gν

Nν
Sentaurus™ Device Monte Carlo User Guide 215
N-2017.09



15: Subband and Mobility Calculations 
Calculating Mobility
■  is the total momentum relaxation time for subband  in direction ( ).

■  is the subband energy dispersion.

■  is the equilibrium Fermi–Dirac distribution function.

■  is the dimension of -space.

The total mobility is then given by a weighted average over all subband mobilities:

(195)

where  is the total inversion sheet charge density.

Momentum Relaxation Time

The inverse momentum relaxation time (IMRT) for a given scattering mechanism for transport
along the -th axis, for example, is given by an integral over final states by:

(196)

where  is the transition rate between the initial wavevector  in subband  and the final
wavevector  in subband . The matrix element for scattering between initial and final states
is denoted by  and  is the subband dispersion.

For inelastic phonon processes, the phonon dispersion is assumed to be constant with energy
. The upper sign in the energy-conserving delta function refers to absorption, while the

lower sign refers to emission. The  factor is the so-called momentum relaxation factor and
takes several forms depending on various approximations and assumptions [15]. Each
scattering mechanism implements a particular model for this term or provides a parameter for
choosing different models. The total IMRT is computed by summing the IMRT for each of the
individual scattering mechanisms.

Linear Boltzmann Transport Equation

In the limit of the vanishing driving field, , the carrier distribution function can be written as
a small perturbation, , to the equilibrium Fermi–Dirac distribution, :

(197)
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Inserting this form of the distribution function into the Boltzmann transport equation (BTE)
and only keeping terms that are linear in the perturbation, the following linear BTE can be
solved to give :

(198)

where  is the total transition rate from the initial state  to the final state
. After  has been found, the mobility in subband  can be computed using:

(199)

where:

■  is the valley and spin degeneracy.

■  is the group velocity.

■  is the direction.

■  is the inversion charge in subband .

■ d is the -space dimension, either one or two.

Mobility Calculators

Within Sentaurus Band Structure, the evaluation of the IMRTs and the Kubo–Greenwood
integral (Eq. 194) or the solution of the linear BTE is handled by a mobility calculator defined
on a nonlocal line or nonlocal area.

Two types of mobility calculator are available: KGFromK and LinearBTE. The KGFromK
calculator evaluates Eq. 194 and the LinearBTE calculator evaluates Eq. 199 using optimized
quadrature rules over the -space grid defined in the Physics command.

For KGFromK, the IMRTs are evaluated on the same -space as the Kubo–Greenwood integral.
For LinearBTE, Eq. 198 is solved on the same -space grid as the mobility integral.

The mobility calculator for a nonlocal line or nonlocal area obtains the subband dispersions and
wavefunctions from the Schrödinger equation assigned to the same nonlocal line or nonlocal
area. The mobility calculator obtains the scattering models used in the evaluation of the IMRTs
from models defined by the Physics ScatteringModel command. Typically, multiple
scattering models are defined.

NOTE Currently, mobility can be computed from the Parabolic and 
Schrödinger solvers (2kp, 3kp, 6kp, and 8kp).
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k-Space Grid

The -space grid used for the evaluation of the mobility must be specified independently of
the -space grid used for the calculation of the subband dispersion from the Schrödinger
equation. The grid spacing of the specified -grid and -grid should be sufficiently fine to
resolve the integrand in Eq. 194.

Usage

Using a mobility calculator involves three main steps:

1. Specify a set of scattering models.

Details on scattering models are given below.

2. Specify a mobility calculator and its parameters for a nonlocal line.

A mobility calculator for electrons, for example, can be specified for a nonlocal line using
a Physics command of the form:

Physics nonlocal=NL1 eMobilityCalculator=KGFromK Nk=128 Kmax=0.3 Nphi=32

This specifies that the KGFromK mobility calculator should be used for electron mobility
calculations on the nonlocal line NL1. Parameters for the polar grid used for the mobility
evaluation are also specified.

3. Use the ComputeMobility command to actually compute the mobility. 

For example, to compute the xx component of the mobility tensor, use the command: 

set MobilityXX [ComputeMobility xx]

This command returns the computed mobility value to the Tcl variable MobilityXX. In
addition, the computed value is added automatically to the bias log file. To also add the
mobilities in each valley to the bias log file, specify the writeMobilityPerValley
option in the ComputerMobility command.

Visualization Quantities

The -space quantities related to the calculation of mobility can be saved to the -space TDR
file using the SaveK command. For both mobility calculators, the IMRT can be saved using a
model name of the form valley-name_subband-index_IMRT, for example
Delta1_0_IMRT.

When using the LinearBTE calculator, the solution to the linear BTE can also be saved using
the LinearBTE model name, for example, Delta1_0_LinearBTE.

k
k

k ϕ

k k
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Coulomb Green’s Function

The solution of the Green’s function for the Poisson equation, known here as the Coulomb
Green’s function, is used in two aspects of mobility calculations. First, it computes the
Lindhard dielectric screening function, which can be used to screen certain scattering
mechanisms. Second, it computes the unscreened scattering matrix element for Coulomb
scattering.

The Coulomb Green’s function for a point charge at  and an in-plane wavevector  is the
solution of:

(200)

where  is the dielectric permittivity. In one dimension, two different sets of boundary
conditions can be specified for the solution of this equation. For null boundary conditions, 
is set to zero at metal contacts. This is important in high-k/metal gate devices in which the
metal gate provides additional screening. Another option is to use mixed boundary conditions,
which mimic semi-infinite layers on the top and bottom of the device. This is a common
approximation used for conventional gate stacks. 

For this boundary condition,  must fulfill:

(201)

The Coulomb Green’s function is computed automatically as needed. The required boundary
conditions can be set using the parameter BC for the model keyword
CoulombGreensFunction, for example:

Physics material=all CoulombGreensFunction BC=mixed

By default in one dimension, the mixed boundary conditions are used. For 2D structures, the
null boundary condition is always used.

Spatial Mobility Profile

The mobility computed using the ComputeMobility command represents an effective
mobility value for all subbands over the entire nonlocal line or area. This mobility value has no
explicit spatial dependency.
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However, by weighting each subband mobility value by the subband inversion charge and the
wavefunction norm, a spatial profile for the mobility can be computed [16]:

(202)

where:

■ , , and  are the wavefunction, the inversion charge, and the mobility for subband ,
respectively.

■  is the local electron density.

This spatial mobility profile can be saved to a device structure TDR file using the model
keywords eMobility and hMobility, for electrons and holes, respectively, in the Save
command. For example, to save the electron mobility spatial profile, use:

Save tdrFile=device_out.tdr models=[list eMobility]

Scattering Models

Scattering models compute the transition rate for carriers to scatter from initial to final states
due to various scattering mechanisms. Currently, phonon scattering, alloy disorder scattering,
surface scattering, and Coulomb scattering are supported.

Common Parameters

As described here, several common parameters are used by different scattering models,
including the list of allowed valleys involved in the transition, the type of transition, the
approach for computing the momentum transfer, and, for some models, the approach for
computing dielectric screening.

Valleys

All scattering models require a description of the allowed transitions between valleys. This
description consists of a list of the allowed initial/final valley pairs, as given by the valleys
parameter of the Physics command, and a description of the type of transitions allowed, as
given by the transitionType parameter. Each initial/final valley pair is entered as a Tcl list,
for example, {Delta1 Delta2}. This indicates that transitions from the Delta1 valley to the
Delta2 valley are allowed.
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To allow transitions to occur between multiple valley pairs, a list of these valley pairs can be
specified. 

NOTE Reciprocal transitions must be listed explicitly, for example, to enable
transitions also from Delta2 to Delta1 in this example, a list of the
form {Delta2 Delta1} must be specified.

Transition Type

In addition to a list of the allowed valley pairs, the type of the transition must be specified using
the transitionType parameter. In general, transitions can occur between states in the same
subband (intra-subband), or between states that lie in the same subband or different subbands
but are still in the same valley (intravalley), or between subbands that lie in different valleys
(intervalley). 

For intervalley transitions, two different types of transition are distinguished based on the
equivalence of the valleys. The transition type partly determines the degeneracy of the final
state. Table 38 summarizes the allowed types and final-state degeneracy. 

For inelastic phonon scattering, two additional common parameters must be specified: the
phonon energy and the inelastic type. As specified by the inelasticType parameter, the
inelastic type indicates whether phonon absorption or emission occurs during the transition.
The phonon energy dispersion is assumed to be constant and is specified using the hbarOmega
parameter.

Momentum Relaxation Factor

For the Kubo–Greenwood approach, the calculation of the IMRT from the transition rate
involves a factor that models the momentum transfer during scattering, that is, the momentum
relaxation factor. This factor is given by:

(203)

Table 38 Allowed transition types, with degeneracy of initial and final valleys denoted by gv 
and gv’, respectively

transitionType Final-state 
degeneracy

Description

gIntervalley Only transitions between equivalent valleys are allowed.

Intervalley Only transitions between non-equivalent valleys are allowed.

Intrasubband 1 Only transitions within the initial subband are allowed.

Intravalley 1 Only transitions within subbands from the same valley are allowed.
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where  is the equilibrium Fermi–Dirac distribution function, and the mrFactor model is
selected according to Table 39. For isotropic scattering models, such as nonpolar phonon
scattering, this factor is computed automatically. For anisotropic mechanisms, such as surface
roughness and Coulomb scattering, different mrFactor models can be selected as summarized
in Table 39. The required model is selected with the mrFactor parameter. For 1D devices, by
default, mrFactor=2 is used. When using the linear BTE approach, mrFactor is ignored. 

Screening

Some scattering mechanisms, namely, surface roughness, Coulomb, alloy, and polar-optical
phonon scattering, can be screened by carriers in inversion layers. Two different approaches for
computing this dielectric screening are provided: tensor-based and scalar.

Tensor-Based Lindhard Screening

In the tensor-based approach to dielectric screening, the screened matrix elements, , for a
particular scattering mechanism are related to the unscreened matrix elements, , using the
fourth-rank dielectric tensor :

(204)

where  is the magnitude of the wavevector change between the initial and final states. Given
the unscreened matrix elements and the dielectric tensor, the linear system above can be
inverted to give the screened matrix elements. The dielectric tensor itself is given by:

(205)

Table 39 Models for mrFactor

Model number Equation for 1D 
simulation

Equation for 2D 
simulation

Description

1 1 1 Treat as isotropic.

2 Consider the change in angles of the wavevectors.

3 Consider the change in wavevectors.

4 Consider the change in group velocities.

5 Same as 4 Consider the change in the x-component of the 
wavevectors.
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where:

■  are subbands from the same valley, and  are subbands from the same valley.

■ The polarization is given by:

(206)

where  is the degeneracy,  is the subband dispersion, and  is the Fermi–Dirac
distribution function.

■ The screening form-factor is given by:

(207)

where  are the wavefunctions, and  is the Coulomb Green’s function given by
Eq. 200.

Treating all of the inter-subband contributions to the dielectric tensor is time consuming.
Whether a scattering transition between two subbands,  and , is screened is determined by
the tdfDegenTol parameter in the Physics nonlocal command when specifying the
mobility calculator. For two subbands that have a difference in minimum energies less than this
tolerance, the inter-subband transition is screened. If the energy difference is greater than
tdfDegenTol, the scattering transition is treated as unscreened. By default, tdfDegenTol is
set to -1, which indicates a special algorithm is used to identify nearly degenerate subband
pairs. To set a specific tolerance value, use a positive value such as 1.0e-4 eV.

NOTE It is recommended that the tensor-based approach to dielectric screening
always is used for double-gate structures to properly treat nearly
degenerate subbands.

Scalar Lindhard Screening

For bulk or single-gate MOS capacitor structures, some simplifying approximations can be
used to reduce the complexity of the dielectric screening calculation. In this scalar Lindhard
dielectric function approach [17], all inter-subband matrix elements remain unscreened, while
the intra-subband matrix elements are screened using:

(208)
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where a scalar version of the dielectric function, , is given by:

(209)

where:

■  is the permittivity of the semiconductor.

■  is the screening form-factor (Eq. 207).

■  is the polarization (Eq. 206).

NOTE Because the scalar dielectric function does not consider inter-subband
contributions from nearly degenerate subbands, it is not appropriate for
use in double-gate structures.

Usage

Screening can be activated for those scattering mechanisms that support it by using the
screening parameter. In general, the following options are available, although some
scattering models allow only the scalar approach:

■ screening=Lindhard selects the scalar Lindhard dielectric function.

■ screening=LindhardTDF selects the tensor Lindhard dielectric function.

■ screening=none deactivates screening.

Scattering Model Availability by Device Dimension

Table 40 lists which scattering models are available depending on the dimensionality of the
simulated device. 

Table 40 Available scattering models by device dimension

Scattering model Available for 1D devices Available for 2D devices Screening options 
(default: bold)

Elastic acoustic phonon Yes Yes –

Alloy

ElasticAlloy Yes Yes none 
Lindhard
LindhardTDF

OldElasticAlloy Yes Yes –

Coulomb Yes Yes none
Lindhard
LindhardTDF 

ε q( )

ε q( ) 1 Fνν q( )Πνν q( )
ν
+=

εS

Fνν

Πνν
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Phonon Scattering

Models for acoustic and inelastic phonon scattering for a heterostructure channel containing
multi–SiGe layers are available.

Acoustic Phonon Scattering

Acoustic phonon scattering is treated as an elastic isotropic process within the energy
equipartition approximation.

As an example for SiGe, for both electrons and holes, the matrix element for the isotropic
scattering is:

(210)

where:

■  is the layer index.

■  is the mole fraction of layer .

Inelastic phonon Yes Yes –

Polar-optical phonon Yes Yes none 
Lindhard
LindhardTDF

Surface roughness

IsotropicPrangeNee Yes No none 
Lindhard

SRFor2D No Yes none 
Lindhard
LindhardTDF

SRFrom6kp Yes No none
Lindhard 
LindhardTDF

SRFromParabolic Yes No none
Lindhard 
LindhardTDF

Table 40 Available scattering models by device dimension

Scattering model Available for 1D devices Available for 2D devices Screening options 
(default: bold)
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■  is the mass density of Si (Ge).

■  is the longitudinal sound velocity of Si (Ge).

■  is the effective deformation potential of Si (Ge), combining multiple phonon
branches and angular averaging.

■  is the so-called wavefunction overlap form-factor given by:

(211)

where  is the wavefunction for subband . The integral is taken over layer  only, implying
a layer separation of the form factor. The vector notation indicates that the wavefunction can,
in general, have multiple components. Acoustic phonon scattering is typically limited to
intravalley transitions. Because this mechanism is elastic and the matrix element is isotropic,
the momentum relaxation factor is simply 1.

This model is specified with the name ElasticAcousticPhonon. You must specify
separately in the Tcl file the Si and Ge parts within the brackets {} on the RHS of Eq. 210. For
each part, Table 41 lists the user-modifiable parameters for this model. 

Inelastic Phonon Scattering

Inelastic phonon scattering is treated in an isotropic approximation and assumes constant
phonon energy dispersion with energy  and .

The matrix element for SiGe, as an example, is given by:

(212)

where:

(213)

Table 41 Parameters for acoustic phonon scattering

Equation parameter Parameter name Unit Description

 or Dac eV Deformation potential.

 or density Mass density.

 or ul cm/s Longitudinal sound velocity.
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Si ul
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(214)

Here,  is the phonon occupancy. The upper and lower signs in
Eq. 196 and Eq. 213 refer to absorption and emission processes, respectively.

This model is specified with the name InelasticPhonon. You must specify separately in the
Tcl file the Si and Ge parts within the braces {} on the RHS of Eq. 212. For each part, the user-
modifiable parameters are listed in Table 42. Note that the scattering models for emission and
absorption processes must be specified separately. 

Evaluating the Wavefunction Overlap Form-Factor

For the 6kp Schrödinger solver, the wavefunction overlap form-factor (Eq. 211, p. 226) is, in
general, dependent on the wavevector of the initial and final states. This -dependency can be
treated in one of two ways as set by the kdepFF parameter.

When kdepFF=0, the -dependency of the form factor is ignored, and the form factor is
always evaluated at the center of the -space grid used for the mobility calculation. For the
6kp Schrödinger solver, the overlap form-factor between pairs of subbands that are degenerate
at the -point is often very small. This suppresses inter-subband phonon scattering between
these subband pairs.

To avoid this suppression, the useDonettiOverlapFix parameter in the Math command can
be used to replace the evaluation of the overlap form-factor between these degenerate subbands
with the intra-subband form-factor from the subband of the initial state [17]. This modification
to the form-factor calculation is not activated by default. To activate this modification, set
useDonettiOverlapFix=1.

When kdepFF=1, the dependency of the form factor on the initial wavevector is treated by
evaluating the initial and final wavefunctions in Eq. 211 at the initial wavevector.

Table 42 Parameters for inelastic phonon scattering

Equation parameter Parameter name Unit Description

 or DtK eV/cm Deformation potential.

 or density Mass density.

 or hbarOmega eV Phonon energy.
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Polar-Optical Phonon Scattering

Polar-optical phonon (POP) scattering is an important scattering mechanism in materials with
polar bonds such as III–Vs. POP scattering is treated as an intravalley, anisotropic scattering
mechanism with a constant phonon-energy dispersion with energy .

The unscreened matrix element is given by:

(215)

where:

■  is the phonon occupancy.

■  is the magnitude of the change in the wavevector between the initial and final states.

■  and  are the high-frequency and static permittivities, respectively.

The upper and lower signs in Eq. 215 refer to absorption and emission processes, respectively.
The POP form-factor, , is given by:

(216)

By default, the wavefunctions are evaluated at the center of the -space grid. To take into
account the initial -vector dependency of the wavefunction, use the kdepFF parameter. The
mechanism can be screened with either screening model.

This model is specified with the name POP. Table 43 lists the user-modifiable parameters for
this model. Note that the scattering models for emission and absorption processes must be
specified separately. 

Alloy Disorder Scattering

A model for alloy disorder scattering for a heterostructure channel containing multiple
semiconductor layers is available.

Table 43 Parameters for polar-optical phonon scattering

Equation parameter Parameter name Unit Description

epsInfinity High-frequency permittivity

eps0 Static permittivity

hbarOmega eV Phonon energy

hω
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Alloy disorder scattering is an elastic isotropic process. For both electrons and holes, the matrix
element for isotropic scattering is:

(217)

where:

■  is the lattice constant of the SiGe alloy in layer . The lattice constant is a model
parameter that is typically interpolated as a function of mole fraction [18].

■  is the alloy scattering potential, which also is provided by users.

Because this mechanism is elastic and the matrix element is isotropic, the momentum
relaxation factor is 1. Transitions due to alloy disorder are typically limited to either intra-
subband or intravalley transitions.

This model is specified with the name ElasticAlloy. 

Surface Roughness Scattering

Surface roughness scattering due to semiconductor–insulator interfaces is treated as an elastic
but anisotropic process. All models for surface roughness scattering share some common
modeling options and user-modifiable parameters. These include which surface-roughness
power-spectral density function to use, which momentum relaxation factor to use, which
transition type to use, and whether carrier screening is used.

Surface-Roughness Power Spectrum

The surface roughness of a semiconductor–insulator interface can be characterized by a power-
spectral density function, .  is a function of the magnitude of the difference in
wavevectors between initial and final states: .

Different models for  are available, specified by the names Gaussian, Exponential,
and Pirovano. A particular model can be selected using the powerSpectrum parameter. All
models share two common parameters, the root-mean-square (RMS) amplitude  and the

Table 44 User-modifiable parameters for alloy disorder scattering

Equation 
parameter

Parameter name Unit Description

U eV Alloy potential.

a cm Lattice constant.
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correlation length , as summarized in Table 45. 

The different forms of the power-spectrum density function are:

■ For the Gaussian model: .

■ For the Pirovano model: .

■ For the Exponential model: .

This model provides an adjustable parameter called beta for the exponent of the
denominator. To obtain a true exponential spectrum, set beta to 1.5.

Common Parameters

By default, mrFactor=2 is used to compute the momentum transfer. For the transition type,
transitions due to surface roughness are typically limited to either intra-subband or intravalley
transitions. For screening, surface roughness scattering can remain unscreened or be treated
using either of the screening models.

Surface Roughness Scattering From Parabolic Schrödinger for 1D

This formulation requires that the Parabolic Schrödinger equation be used. For an SOI
device, the two semiconductor–insulator interfaces are assumed to be uncorrelated and,
therefore, this model is applied to both interfaces using the same model parameters.

From the Parabolic Schrödinger solver, the unscreened matrix element for surface scattering
is based on an integral formulation [19][20]. For bulk MOS capacitors, this is given by:

(218)

Table 45 Common parameters for surface-roughness power-spectrum models

Equation parameter Parameter name Unit Description

delta cm RMS amplitude.

lambda cm Correlation length.

Λ

Δ

Λ

S q( ) πΔ2Λ2 q2Λ2 4⁄–( )exp=

S q( ) πΔ2Λ2 q4Λ4 4⁄–( )exp=

S q( ) πΔ2Λ2

1 q2Λ2 2⁄+[ ]β-----------------------------------=

Mνk ν'k',
unscr 2
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For SOI MOS capacitors, this is given by:

(219)

where:

■  and  are the endpoints of the nonlocal line.

■  is the vertical component of the electric field.

■  is the minimum subband energy for subband .

■  is the wavefunction for subband .

This model for surface roughness scattering is selected by specifying SRFromParabolic for
the ScatteringModel parameter. By default, mrFactor is set to use model 3.

Surface Roughness Scattering From 6kp Schrödinger for 1D

Based on the 6kp Schrödinger solver, the unscreened matrix element for surface scattering is
given by [21]:

(220)

where:

(221)

and where:

■ The wavefunction derivatives are evaluated at  and at the semiconductor–insulator
interface.

■  is the bulk  Hamiltonian in device coordinates (see Eq. 152, p. 202).

For an SOI device, the two semiconductor–insulator interfaces are assumed to be uncorrelated
and, therefore, this model is applied to both interfaces using the same model parameters.

This model for surface roughness scattering is selected by specifying SRFrom6kp for the
ScatteringModel parameter. By default, mrFactor is set to use model 2.
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Isotropic Prange–Nee Surface Roughness Scattering From 6kp 
Schrödinger for 1D

Based on the 6kp Schrödinger solver and the Prange–Nee unscreened matrix element for
surface scattering, the matrix element for an isotropic formulation of the surface roughness
model is given by [22]:

(222)

where  is given by Eq. 221.

For an SOI device, the two semiconductor–insulator interfaces are assumed to be uncorrelated
and, therefore, this model is applied to both interfaces using the same model parameters.

The angular averaging in Eq. 222 over the initial and final states is performed on the isoenergy
contour determined by the energy of the initial state.

This model for surface roughness scattering is selected by specifying IsotropicPrangeNee
for the ScatteringModel parameter. Because this is an isotropic model, the mrFactor is not
used.

Usage for 1D

The names of the surface-roughness scattering models and their parameters are specified in the
Physics command. For example, to specify an SRFromParabolic model, use a command
of the form:

Physics material=Silicon ScatteringModel=SRFromParabolic \
valleys=[list Delta1] transitionType=Intrasubband mrFactor=1 \ 
screening=Lindhard powerSpectrum=Gaussian name=ElectronSR

In this example, an SRFromParabolic surface-roughness scattering model is created for
intra-subband transitions within the valley named Delta1. The mrFactor model is selected
as model 1, and Lindhard screening is switched on. A Gaussian power spectrum is selected as
well.

Surface Roughness Scattering for 2D

For 2D device structures, surface roughness scattering is implemented as a generalization of
the Prange–Nee model as applied to semiconductor–insulator boundaries of arbitrary shape
[23]. The model is called SRFor2D.
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Denoting the perimeter of the semiconductor–insulator boundary as  and the channel
direction as , the matrix element is decomposed using a Fourier series in the wavevector, ,
around the perimeter:

(223)

where  is the usual power spectrum. The Fourier decomposed matrix element at  is
given by an integral around the perimeter of the semiconductor–insulator boundary:

(224)

where the matrix element at position  along the perimeter is given by:

(225)

where  is the kinetic energy part of the bulk Hamiltonian. The gradients of the wavefunctions
are taken along the local normal to the semiconductor–insulator interface at position . The
local amplitude of the surface roughness at position  is given by .

The specification of the local surface-roughness amplitude is performed using a list of pairs
where each pair consists of a surface orientation and an amplitude value in cm. During the
calculation of the matrix element around the perimeter, the surface normal of each local
segment snaps to the closest user-specified surface orientation, and the corresponding
amplitude value is used. For example, to specify different values of the surface roughness
amplitude for (100) and (110) surfaces, the delta parameter is specified as a Tcl list as
follows:

delta=[list {100 0.2e-7} {110 0.5e-7}]

This specification would apply an amplitude value of 0.2 nm to surfaces that are closest to
(100) and a value of 0.5 nm to surfaces closest to (110).

Usage for 2D

As an example, to specify an SRFor2D model for a silicon device, use a command of the form:

Physics material=Silicon ScatteringModel=SRFor2D name=ElectronSR \
valleys=[list Delta1 Delta2 Delta3] transitionType=Intravalley mrFactor=3 \ 
powerSpectrum=Exponential beta=1.5 lambda=1.5e-7 \
delta=[list {100 0.2e-7} {110 0.5e-7}]

In this example, an SRFor2D surface roughness scattering model is created for intravalley
transitions within the three silicon -valleys. The mrFactor model is selected as model 3 and

C
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an exponential power spectrum is selected with an exponent of 1.5. The power spectrum
lambda parameter is set to 1.5 nm, while the delta parameter consists of a list of two pairs
specifying an amplitude of 0.2 nm and 0.5 nm for surface orientations nearest to (100) and
(110), respectively.

Coulomb Scattering

Coulomb scattering due to bulk impurities and interface charge is activated using the model
name Coulomb and is treated as an elastic, intravalley scattering mechanism. The norm of the
overall screened matrix element for Coulomb scattering is given by:

(226)

where:

■  is the overall screened matrix element, evaluated as a function of the magnitude
of the wavevector difference, , between the initial and final states.

■  is the location of the bulk impurity charge.

■  is the amount of bulk impurity charge at  that contributes to scattering. This is
given by the TotalConcentration.

■  is a representative interface charge at location . This is given by the absolute
value of all the interface charges specified using the TrapModel keyword in the Physics
command as described in Interface Charge on page 187.

■  is a unitless factor that is used to scale the overall squared matrix element. This is
specified using the scaleFactor parameter for Coulomb scattering. It is set to 1.0 by
default.

■  is the screened point-charge matrix element due to a point charge at .

The screened point-charge matrix element is computed from the unscreened point-charge
matrix element, which is given by:

(227)

where:

■  is the wavefunction for subband .

■  is the Coulomb Green’s function, described in Coulomb Green’s Function on
page 219.
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Common Parameters

By default, mrFactor=2 is used to compute the momentum transfer. For the transition type,
Coulomb scattering must always be treated as an intravalley mechanism. For screening,
Coulomb scattering must not remain unscreened. Either the scalar or tensor screening model
can be used as described in Screening on page 222.

Speeding Up the Matrix Element Calculation

The calculation of the unscreened matrix element, Eq. 227, can be time consuming when bulk
doping is treated in a large 2D cross section. An algorithm to speed up this calculation is
activated by default. This algorithm uses additional memory to precompute some of the needed
quantities. For typical applications, this additional memory consumption should not be large.
However, if this additional memory consumption becomes an issue for large applications, you
can deactivate this optimization by specifying useCache=0 when activating Coulomb
scattering.

Usage

Besides setting the required screening approach, the only adjustable parameter for Coulomb
scattering is the scaleFactor parameter. For each region in which Coulomb scattering is
activated, the bulk TotalConcentration at all region nodes and all of the interface charges
at the region interfaces are considered automatically in the Coulomb scattering calculation.

To ensure that all of the doping and interface charges in the device are considered in the
Coulomb scattering calculation, it is recommended to always activate Coulomb scattering for
all regions. For example, to activate Coulomb scattering for electrons in a silicon device with
three  valleys, it is recommended to use the following:

Physics material=all ScatteringModel=Coulomb name="eCoulomb" scaleFactor=1.0
transitionType=Intravalley valleys=[list Delta1 Delta2 Delta3]
screening=LindhardTDF

Default Scattering Models

Based on the default valley models created for silicon listed in Table 31 on page 181, a set of
scattering models for silicon is specified by default. Parameters common to several of the
scattering models are listed in Table 46 on page 236, the acoustic phonon scattering models are
listed in Table 47 on page 236, the inelastic phonon scattering models are listed in Table 48 on
page 236. For 1D devices, surface roughness scattering is also activated by default, and the
default parameters are listed in Table 49 on page 236. The electron parameters here are suitable
for (100) surfaces; while the hole parameters are suitable for all surface orientations.   

Δ
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Notes:

■ Both emission and absorption versions of the models in Table 48 are specified.

■ fValleys refers to the valley pairs {Delta1 Delta2}, {Delta1 Delta3},
{Delta2 Delta1}, {Delta2 Delta3}, {Delta3 Delta1}, and {Delta3 Delta2}.

■ gValleys refers to the valleys Delta1, Delta2, Delta3. 

Table 46 Default common scattering parameters for silicon

Parameter name Default value

density 2.33 

ul 9.05e5 

Table 47 Default acoustic phonon models and scattering parameters for silicon

Name ScatteringModel Transition type Valleys Dac [eV]

ElectronAC ElasticAcousticPhonon Intravalley Delta1, 
Delta2, Delta3

14.0

HoleAC ElasticAcousticPhonon Intravalley Gamma 10.2

Table 48 Default inelastic phonon scattering models and parameters for silicon

Name ScatteringModel Transition type Valleys DtK [eV/cm]  [meV]

ElectronIVf1 InelasticPhonon Intervalley fValleys 0.3e8 18.96

ElectronIVf2 InelasticPhonon Intervalley fValleys 2.0e8 47.4

ElectronIVf3 InelasticPhonon Intervalley fValleys 2.0e8 59.03

ElectronIVg1 InelasticPhonon gIntervalley gValleys 0.5e8 12.06

ElectronIVg2 InelasticPhonon gIntervalley gValleys 0.8e8 18.53

ElectronIVg3 InelasticPhonon gIntervalley gValleys 11.0e8 62.04

HoleOP InelasticPhonon Intravalley Gamma 15.0e8 62.0

Table 49 Default surface scattering models and parameters for silicon for 1D devices

Name ScatteringModel Valleys delta [cm] lambda [cm]

ElectronSR SRFromParabolic Delta1, Delta2, 
Delta3

0.40e-7 1.2e-7

HoleSR SRFrom6kp Gamma 0.25e-7 4.0e-7

g/cm
3

cm/s

hω
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Note that both ElectronSR and HoleSR use:

■ Intravalley transition type

■ Exponential power spectrum with 

■ No dielectric screening
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CHAPTER 16 Sentaurus Band Structure/Tcl 
Command Reference

This chapter presents reference documentation with regard to the
syntax used by Sentaurus Band Structure.

Overview

Sentaurus Band Structure extends the Tcl syntax by adding named argument (name=value)
parsing, type checking, support for real/complex 3D vector/matrix arithmetic, and application-
specific commands for band-structure calculation. The type-naming scheme for arguments to
Tcl commands is described in get_type on page 315.

Table 50 summarizes the available types. Except where noted, commands use named
arguments. 

Table 50 Types recognized by Sentaurus Band Structure

Type Description

Numeric types (implicit type propagation allowed from top to bottom)

Integer
Double
Complex

For example: 100 
For example: 3.1415927; 1.0 
For example: (0.0,1.0) for  (no spaces allowed)

Instantiable classes

EPM::AtomicSpecies 
EPM::RealAtomicSpecies
EPM::RealAtomicSpecies_Friedel
EPM::RealAtomicSpecies_VlocProc
EPM::VirtualAtomicSpecies
EPM::Crystal
AnalyticBandSolver
Elasticity
CubicElasticity
bandstructure_t
groupVelocity_t
inverseMass_t

Atomic species for use in an EPM::Crystal:
• This subclass uses cubic-spline interpolation for .
• This subclass uses Friedel formula for .
• This subclass uses a Tcl procedure for .
• This subclass describes a statistical mixture of species for VCA.
EPM band-structure solver with crystal description.
Band-structure solver for analytic band models.
Class for storing elasticity information:
• Subclass for crystals of cubic symmetry.
Container class for band-energy results.
Container class for group-velocity results.
Container class for (reciprocal) effective mass results. 

i 1–=

Vloc
Vloc
Vloc
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Notational Conventions of Syntax Description

Sentaurus Band Structure supports two ways of passing arguments to commands: positional
arguments and named arguments. 

In both conventions, an argument enclosed by brackets is optional, for example, [opt-arg];
an argument followed by ‘…’ corresponds to zero or more arguments. 

The vertical bar ‘|’ is an exclusive or operator: Of two or more arguments separated by |, exactly
one must be specified. Braces are used for grouping.

Positional Arguments

This is the usual way of passing arguments in Tcl: the argument values are listed on the
command line in the sequence in which they appear in the procedure definition.

Example:

vectorSubtract {1 1 1} {0 1 2}

Result:

1 0 -1

Tcl-related types (implicit type propagation may drop #n or /T)

String
Array
List

List#n 
List/T 
List#n/T 

Any type may be propagated to a String.
The type for the name of a Tcl array data-structure.
A Tcl list data-structure with an arbitrary number of elements of 
arbitrary types.
A list with  elements of arbitrary type.
A list with an arbitrary number of elements of type .
A list with  elements of type .

Shorthand notation for frequently used 
types:

vector3D
RealVector3D
matrix3D
RealMatrix3D

= List#3/Complex (a 3D vector).
= List#3/Double (a real 3D vector).
= List#3/vector3D (a  matrix (three row vectors)).
= List#3/RealVector3D (a real  matrix).

Table 50 Types recognized by Sentaurus Band Structure

Type Description

n
T

n T

3 3×
3 3×
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This command takes two arguments of type vector3D and subtracts the second from the first.
This is denoted by the following syntax description:

This command subtracts v from u and returns the result u – v.

Tcl syntax (positional arguments):

■ vectorSubtract u v 

• vector3D u 

• vector3D v 

Named Arguments

In named-argument parsing, the meaning of a parameter is not determined by its position in the
argument list. Instead, the receiving command parses its argument list for sequences of the
form name=value (or -name value) and sets up a map from argument names to argument
values. Details of this mechanism are described in parse_args on page 314.

Example:

check_type obj=[list 1 2 2.5] type=List/Integer

Output:

"1 2 2.5" has type List#3/Double --- expected type: List/Integer.

This command checks that the object passed as argument obj can be converted to the type
described by the String type. In the example, this check fails – a list of three Doubles
cannot be converted to a list of integers. The obj argument must accept objects of any type.
Since any Tcl object can be converted to a string, the correct type for the obj argument is
String.

This leads to the following syntax description:

Syntax of command check_type:

check_type obj=String type=String 

Description of arguments:

■ String obj – A Tcl object or the Tcl command associated with a C++ object.

■ String type – A type signature string (see get_type on page 315 for details).
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Object-Oriented Tcl Commands

In the object-oriented approach to Tcl commands, each object is represented by a command
with the same name as the object. The first argument to this command specifies the method to
perform on the object [1]. Many of the commands of Sentaurus Band Structure work this way.
For example, if there is an EPM::Crystal called bulkSi, then there is also a command
named bulkSi. 

You can invoke the status method of bulkSi by using the command bulkSi status to print
the status of the object, for example. In the documentation, this method is listed as
<EPM::Crystal> status.

General Settings

sBandGet/sBandSet

Syntax

sBandGet automaticBandstructureFiles | cutOffEnergy | dbPath | derivOrder | 
degeneratePerturbationTheory | deltaK | derivOrder | fileFormat | 
nThreads | outputPostfix | outputPrefix | Qcutoff | Q2cutoff | 
shearStrainInKVecTransform | shiftValenceBands | shiftConductionBands | 
showProgressBars | verbose | withLS | withNL

sBandSet [automaticBandstructureFiles=Boolean] [cutOffEnergy=Double] 
[dbPath=String] [derivOrder=Integer] [degeneratePerturbationTheory=Boolean] 
[deltaK=Double] [derivOrder=Integer] [fileFormat=String] [nThreads=Integer] 
[outputPostfix=String] [outputPrefix=String] [Qcutoff=Double] 
[Q2cutoff=Double] [shearStrainInKVecTransform=Boolean] 
[shiftValenceBands=Boolean] [shiftConductionBands=Boolean] 
[showProgressBars=Boolean] [verbose=Boolean] [withLS=Boolean] 
[withNL=Boolean]

Description

The command sBandGet is used to retrieve the global Sentaurus Band Structure flags, and the
command sBandSet is used to set the global flags.

sBandSet accepts any number of name=value pairs where:

■ name is the name of one of the global arguments of Sentaurus Band Structure listed below.

■ value is a legal value for parameter name and sets each parameter to the requested value.
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Arguments

Argument Description

automaticBandstructureFiles Controls automatic writing of energy, group velocity, and effective mass 
files from: <EPM::Crystal> computeBandstructure.
Supported values are:
• 0: No automatic files written.
• 1: Automatic file generation (default).

cutOffEnergy Maximum kinetic energy (in Rydberg) of plane waves to be included in 
the basis for the Bloch wavefunctions.
Default: 12.0.

dbPath The directory containing the default material files, the 
sband_util.tcl file, and so on. 
Default: (installation dependent).

degeneratePerturbationTheory Boolean flag that controls how to resolve degeneracies during calculation 
of group velocities or effective masses:
• 0: Apply a small strain perturbation to split the degenerate states 

(default).
• 1: Diagonalize the perturbing Hamiltonian on the degenerate 

eigenspace, and apply degenerate perturbation theory.

deltaK Step size (in ) used for taking numeric -derivatives of the band 
structure. Default: 1e-4.

derivOrder Sets the maximum order up to which -derivatives of the band energies 
are computed. Supported values are:
• 0: Compute energies only.
• 1: Compute energies and group velocities (default).
• 2: Compute energies, group velocities, and effective masses.

fileFormat Selects one or several output formats for 
automaticBandstructureFiles. Each format is associated 
with a predefined constant Tcl variable. Supported formats are:
• $SHORT_FORMAT: Outputs only three valence bands and four 

conduction bands.
• $LONG_FORMAT: Outputs all bands (no sign flips).
• $TDR3DTENSOR_FORMAT: Stores data as a 3D TDR tensor grid 

file (requires the -vectors to form a tensor grid).
• $MONTECARLO_FORMAT: Stores data in the format for single-

particle device Monte Carlo simulations.
Multiple formats can be selected by combining their values using the 
binary OR operation. For example, both $SHORT_FORMAT and 
$LONG_FORMAT are selected using the value 
[expr $SHORT_FORMAT|$LONG_FORMAT].
Default: $SHORT_FORMAT.

nThreads Sets the number of threads to use for parallel tasks.
Default: 1.

1 rBohr⁄ k
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k
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outputPostfix, outputPrefix If automaticBandstructureFiles is set, 
outputPrefix and outputPostfix are, respectively, prefixes 
and postfixes to the file names of the automatic energy, group velocity, 
and effective mass file names. Default: (empty string).

Qcutoff, Q2cutoff Specifies the maximum  (in ) or  (in ) for 
evaluating the local part of the atomic form factor. In strained crystals, 
the norm is computed for the corresponding unstrained wavevector. 
Default: -1 (that is, inactive; use the per-species value; compare to 
AtomicSpecies on page 265).
If both the per-species and the global Qcutoff or Q2cutoff are 
inactive (that is, they have negative values), an error is thrown during 
band-structure calculation.

shearStrainInKVecTransform Boolean flag that controls the -vector coordinate system in the presence 
of shear strain. Supported values are:
• 0: Include only diagonal strain components in the basis (default).
• 1: Include shear strain components in the basis.

shiftConductionBands Controls normalization of the conduction-band energies. If enabled, the 
conduction bands shift in order to move the minimum of the lowest 
conduction band to zero energy. If both shiftConductionBands 
and shiftValenceBands are set, 
shiftConductionBands is applied after 
shiftValenceBands. Supported values are:
• 0: Leave band structure unmodified (default).
• 1: Shift conduction-band minimum to zero.

shiftValenceBands Controls normalization of the valence-band energies. If enabled, the 
entire band structure shifts in order to move the maximum of the top 
valence band to zero energy. Selecting this argument silently includes the 
Gamma point in the list of -vectors. Supported values are:
• 0: Leave band structure unmodified.
• 1: Shift valence-band maximum to zero (default).

showProgressBars Controls display of progress bars from the confined  solver. 
Supported values are:
• 0: Do not display progress bars (default).
• 1: Display progress bars.

verbose Controls output of additional status messages. Supported values are:
• 0: Minimal console output (default).
• 1: Verbose output.

withLS Sets the spin-orbit flag. Supported values are:
• 0: Ignore spin-orbit coupling.
• 1: Use spin-orbit coupling (default).

withNL Sets the nonlocal potential flag. Supported values are:
• 0: Ignore nonlocal potential terms.
• 1: Use nonlocal potential terms (default).

Argument Description

q 2π a⁄ q 2
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Examples

 sBandGet derivOrder

The default value of 1 means: compute energies and their first derivatives (group velocities).

sBandSet derivOrder=2

Enables computation of second derivatives of the band energies (reciprocal effective masses).

Classes for Band-Structure Calculation

Sentaurus Band Structure supports two band-structure calculation approaches: EPM and
analytic band-structure formulas. For each approach, there is a band-structure calculator class;
their names are EPM::Crystal and AnalyticBandSolver.

An AnalyticalBandSolver object stores parameters that relate directly to the shape of the
band structure, for example, the energy separation Delta between the heavy-hole or light-hole
bands and the split-off band at the -point or the electron effective mass in the conduction-
band minimum.

On the other hand, an EPM::Crystal stores a geometric representation of the material under
study. This description consists of the size and shape of the unit cell as well as the species and
positions of the ions inside each unit cell. These ions, in turn, are described by
EPM::AtomicSpecies objects. Band-structure calculation is performed by calling the
computeBandstructure method on a band-structure calculator object and passing it a list
of -vectors.

Both AnalyticBandSolver and EPM::Crystal store their results in container objects.
There are container objects for the band energies (bandstructure_t) as well as for their first
derivatives (groupVelocity_t) and second derivatives (inverseMass_t) with regard to .

The default names for these containers are name.bandstructure, name.groupVelocity,
and name.inverseMass (only EPM::Crystal computes effective masses). These names
can be overwritten using the optional bandstructure, groupVelocity, and (for
EPM::Crystal) inverseMass arguments to computeBandstructure.

In addition, if the automaticBandstructureFiles flag is set, the band-structure solver
writes results for the highest three valence bands (four, for effective masses) and the lowest four
conduction bands to files with default names of energy.dat, velocity.dat,
eInvMass.dat, and hInvMass.dat. You can prefix or postfix these file names with a user-
supplied string stored in the global parameters outputPrefix and outputPostfix.

Γ
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Creating EPM::Crystal Objects
Raw band-structure results in Sentaurus Band Structure will, in general, have nonzero values
both for the conduction band minimum and the valence band maximum. Often, it is desirable
to shift either or both of these extrema to an energy of zero. This is supported through the global
flags shiftConductionBands and shiftValenceBands. Band-shifting applies to both
the energies returned by <bandstructure_t> get and the values in energy.dat. No
shifting is applied to band energies when they are written manually into a bandstructure_t
object using <bandstructure_t> set.

Creating EPM::Crystal Objects

Sentaurus Band Structure contains commands for easy creation of standard crystals (for
example, bulk silicon, bulk germanium, and silicon germanium). If your crystal is not
supported by these commands, you can define a custom crystal using the Crystal command
(see Crystal on page 251).

SiliconCrystal

Syntax

SiliconCrystal name=String 

Description

This command calls DiamondCrystal (see DiamondCrystal on page 250) to create a silicon
crystal for the EPM band-structure calculation. If no AtomicSpecies of name Si exists when
the SiliconCrystal command is called, the atomic species is created automatically using
default parameters from the file Si_param.tcl.

Arguments

Examples

SiliconCrystal name=bulk

Creates a bulk silicon crystal called bulk using default EPM parameters.

Argument Description

name Name of EPM::Crystal object created by this call.
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GermaniumCrystal

Syntax

GermaniumCrystal name=String 

Description

This command calls DiamondCrystal (see DiamondCrystal on page 250) to create a
germanium crystal for EPM band-structure calculation. If no AtomicSpecies of name Ge
exists when the GermaniumCrystal command is called, the atomic species is created
automatically using default parameters from the file Ge_param.tcl.

Arguments

Examples

GermaniumCrystal name=bulk

Creates a bulk Ge crystal called bulk using default EPM parameters.

Argument Description

name Name of EPM::Crystal object created by this call.
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compute_SiGe_a0

Syntax

compute_SiGe_a0 xGe 

Description

This command returns the relaxed lattice constant (in Å) of a SiGe crystal with germanium
mole fraction xGe according to the formula [2]:

(228)

Arguments

Examples

compute_SiGe_a0 0.5

Result:

5.5350815

Relaxed Si0.5Ge0.5 has a lattice constant of 5.535 Å.

Argument Description

xGe Positional argument of type Double. The germanium mole fraction.

aSiGe aSi 0.200326 Å+  xGe 1 xGe–( ) aGe aSi–( )xGe
2

+=
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SiGeCrystal

Syntax

SiGeCrystal name=String xGe=Double 

Description

This command calls DiamondCrystal (see DiamondCrystal on page 250) to create a 
Si1–xGex crystal for EPM band-structure calculation in the virtual crystal approximation (that
is, each atom is treated as a statistical mixture of a silicon and a germanium atom; see
Arguments for Building a ‘Virtual’ Atomic Species on page 267).

The lattice constant is interpolated using compute_SiGe_a0 (see compute_SiGe_a0 on
page 248). The internal strain coefficient and compliance tensor are interpolated linearly.

Arguments

Examples

SiGeCrystal name=SiGe30 xGe=0.3

Creates a Si0.7Ge0.3 crystal with the name SiGe30.

Argument Description

name Name of EPM::Crystal object created by this call.

xGe Germanium mole fraction.
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DiamondCrystal

Syntax

DiamondCrystal name=String species=EPM::AtomicSpecies [a0=Double]

Description

This command creates a diamond structure crystal for EPM band-structure calculation. If no
EPM::AtomicSpecies of name $species exists when the DiamondCrystal command is
called, the atomic species is created automatically using default parameters from the file
${species}_param.tcl.

Arguments

Examples

DiamondCrystal name=bulk species=Si

This is equivalent to SiliconCrystal name=bulk.

Argument Description

a0 Lattice constant of the crystal (in Å). If a0 is not specified, the reference 
lattice spacing of species is used.

name Name of EPM::Crystal object created by this call.

species The crystal consists of atoms of species species.
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Creating User-Defined Crystals

Crystal

Syntax

Crystal name=String a0=Double [primitiveBasis=List#3/RealVector3D]
[atoms=List/List#2] [zeta=Double] [strain=List#3/RealVector3D]

Description

The Crystal command is a low-level command for creating a new EPM::Crystal object.
All the standard crystal commands of the previous section rely on Crystal for the actual
creation of the new EPM::Crystal object.

Arguments

Argument Description

a0 Lattice constant for the new crystal (in Å).

atoms This list specifies the species and positions of atoms within the unit cell 
of the crystal. Each list entry of atoms must be of the form 
species=EPM::Crystal pos=List/RealVector3D 
where species is the type of atoms to be inserted into the unit cell of 
the crystal, and pos is a list of 3D position vectors for the placement of 
the atoms (in units of a0).

name Sets both the command name and the handle string associated with the 
new EPM::Crystal object.

primitiveBasis Each one of the three entries of this List must convert to a (real) 
vector3D. Together, these three vectors span the unit cell of the new 
crystal (in units of a0).

strain If the atomic positions and the primitiveBasis supplied during 
construction of a Crystal object correspond to nonzero strain, the 
corresponding strain tensor (  matrix) should be supplied to the 
Crystal constructor for inclusion in the basis vectors of the reciprocal 
space. Default: zero strain.

zeta Sets the internal strain parameter to zeta.

3 3×
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Examples

requireAtomicSpecies Si
Crystal name=bulk a0=[Si get latticeConstant] \

primitiveBasis=[list {0 0.5 0.5} {0.5 0 0.5} {0.5 0.5 0}] \ 
atoms=[list species=Si pos=[list {0.125 0.125 0.125} \

{-0.125 -0.125 -0.125}]]

Constructs a bulk silicon crystal called bulk. This is not entirely equivalent to calling
SiliconCrystal name=bulk because the latter command also sets the internal strain
parameter and the elasticity of the new EPM::Crystal.

Alternative Constructor

StrainedCrystal

Syntax

StrainedCrystal name=String unstrained=EPM::Crystal [strain=RealMatrix3D]
[zeta=Double]

Description

This procedure builds an EPM::Crystal from an unstrained crystal, the strain tensor (default:
zero strain) and (optionally) the internal strain parameter zeta. If zeta is not specified, its
value is inherited from the unstrained crystal. The EPM::Crystal is associated with the Tcl
command name as described in the comment section of the Crystal command. unstrained
is the name of the underlying unstrained crystal. 

Typically, calling StrainedCrystal expressly is only necessary if multiple EPM::Crystal
objects with different strain conditions need to coexist. In most other situations, it is expected
that using <EPM::Crystal> set strain will result in simpler scripts.
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Arguments

Examples

SiliconCrystal name=unstrainedSi
set strain [[unstrained get elasticity] biaxialStrain dir=[list 0 1 1] \

inPlaneStrain=0.01]
StrainedCrystal name=strainedSi unstrained=unstrainedSi strain=$strain

First, an unstrained silicon crystal called unstrainedSi is created and, then, a new crystal
strainedSi is created by deforming the unstrainedSi crystal by applying 1% of biaxial
(100) strain.

Using EPM::Crystal Objects

EPM::Crystal objects are accessed by using their name as a Tcl command name. This is
denoted as <EPM::Crystal>.

The argument list may be empty (output a message identifying the associated object) or the first
argument must specify a method. The available methods are:

■ <EPM::Crystal> addAtom 

■ <EPM::Crystal> apply 

■ <EPM::Crystal> computeBandstructure 

■ <EPM::Crystal> computeDOS 

■ <EPM::Crystal> destroy 

■ <EPM::Crystal> get 

■ <EPM::Crystal> scaleKvector 

■ <EPM::Crystal> set 

Argument Description

name Name of EPM::Crystal object created by this call.

unstrained The unstrained EPM::Crystal object from which the strained 
crystal will be built.

strain The strain tensor used to deform unstrained into the final crystal. If 
strain is omitted, it defaults to zero.

zeta The internal strain parameter of the crystal. If unstrained already 
contains a valid value for the internal strain parameter, this argument is 
optional; otherwise, it is required.
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■ <EPM::Crystal> status 

■ <EPM::Crystal> unscaleKvector 

NOTE Named-argument (name=value) parsing is used for the arguments to
these methods.

<EPM::Crystal> addAtom

Syntax

<EPM::Crystal> addAtom species=EPM::AtomicSpecies pos=RealVector3D 

Description

This method adds an atom to the unit cell of the crystal.

Arguments

Examples

source [sBandGet dbPath]/Si param.tcl ;# load Si parameters
Crystal name=myCrystal ;# create an empty crystal
myCrystal set a0=5.43 ;# lattice spacing is 5.43 A
myCrystal addAtom species=Si pos=[list 0.125 0.125 0.125] ;# insert 1st atom
myCrystal addAtom species=Si pos=[list -0.125 -0.125 -0.125];# insert 2nd atom
myCrystal status ;# show the crystal

Result:

myCrystal is an EPM::Crystal object.
lattice constant = 5.43 [AAngstroems]
cell spanning vectors: not yet defined.
atoms in the unit cell:

species: "Si"
{0.125 0.125 0.125}
{-0.125 -0.125 -0.125}

Argument Description

pos Position of the new atom. Unit: lattice spacing .

species The type of atom to be added to the unit cell.

a0
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<EPM::Crystal> apply

Syntax

<EPM::Crystal> apply method arg...

Description

This method uses the elasticity of the material described by the EPM::Crystal object to apply
certain strain conditions. The first argument to <EPM::Crystal> apply must be the name
of a method of elasticity that returns a strain tensor, for example, biaxialStrain or
uniaxialStrain.

The call:

<EPM::Crystal> apply method arg...

is equivalent to:

<EPM::Crystal> set strain=[<EPM::Crystal> get elasticity] method arg...]

Examples

Apply 1 GPa of tensile stress along  to a silicon crystal.

SiliconCrystal name=bulk
bulk apply uniaxialStrain dir=[list 1 1 0] stress=1.0e9
puts [bulk get strain]

Output:

{0.00274646443943 0.003125 0.0}
{0.003125 0.00274646443943 0.0}
{0.0 0.0 -0.00213158434105}

Special Case

<EPM::Crystal> apply biaxial dir=vector3D|String
substrate=EPM::Crystal|AnalyticBandSolver 

This call computes the in-plane strain from the lattice mismatch between the EPM::Crystal
and the substrate material and then replaces the substrate parameter with
inPlaneStrain=result before calling <Elasticity> biaxialStrain.

d 1 1 0, ,( ) 2⁄=
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Example:

SiliconCrystal name=silicon; SiGeCrystal name=SiGe30 xGe=0.3
silicon apply biaxialStrain substrate=SiGe30 dir=[list 0 0 1]
puts [silicon get strain]

Computes the strain in a pseudomorphic silicon film grown on an infinitely thick (100)
Si0.7Ge0.3 substrate.

Result:

{0.0113938 0 0} {0 0.0113938 0} {0 0 -0.00884294925374}

<EPM::Crystal> computeBandstructure

Syntax

<EPM::Crystal> computeBandstructure {kFile=String | kVectors=List/vector3D}
[bandstructure=bandstructure_t] [groupVelocity=groupVelocity_t] 
[inverseMass=inverseMass_t] [nBands=Integer] [symmetry=List/List#3/Integer]
[remainingOnly]

Description

Computes band-structure data.

Arguments

Argument Description

kFile Name of a file containing one -vector per line as a space-separated list 
of three Doubles. Unit: .

kVectors The -vectors used for the band-structure calculation as a List of 
vector3D. If only a single -vector is provided, it does not need to be 
wrapped in a one-element list. Unit: .

nBands Number of bands to compute. If spin-orbit coupling is active (see 
sBandSet in sBandGet/sBandSet on page 242), the number of bands 
is internally multiplied by 2.

bandstructure The bandstructure_t for storing band-energy results. If this 
argument is omitted, bandstructure defaults to name. 
bandstructure, where name is the name of the crystal object. If 
name.bandstructure does not exist, it is created automatically.

k
2π axyz⁄

k
k

2π axyz⁄
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Examples

SiliconCrystal name=bulk
set Gamma {0 0 0} ; set Delta {0.85 0 0}
bulk computeBandstructure kVectors=[list $Gamma $Delta]
puts "Gamma: [bulk.bandstructure get kVector=$Gamma]"
puts "Delta: [bulk.bandstructure get kVector=$Delta]"

Sets up a bulk silicon crystal and computes its band energies (in eV) at the zone center and near
the conduction band minimum.

Output:

writing "energy.dat"
writing "velocity.dat"
Gamma: -12.4325779396 -0.0434084085113 0.0 0.0
3.34924141875 3.37860208567 3.37860208567 4.28964364273
Delta: -9.3238120997 -6.92864680226 -2.94277507525 -2.94061556233
1.06286616589 1.59472285825 10.8782585993 10.8892234861

groupVelocity The groupVelocity_t for storing group-velocity results. If this 
argument is omitted, groupVelocity defaults to 
name.groupVelocity, where name is the name of the crystal 
object. If name.groupVelocity does not exist, it is created 
automatically. 

inverseMass The inverseMass_t for storing reciprocal effective mass results. If 
this argument is omitted, inverseMass defaults to 
name.inverseMass, where name is the name of the Crystal 
object. If name.inverseMass does not exist, it is created 
automatically.

remainingOnly If this flag is supplied, the eigen-problem is only solved at -vectors for 
which the containers of the results do not yet contain data.

symmetry A list of symmetry operations (see determineSymmetry on page 274 for 
the notation). These symmetries can be used to reduce the computational 
effort of band-structure calculation.

Argument Description

k
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<EPM::Crystal> computeDOS

Syntax

<EPM::Crystal> computeDOS nk=Integer carrierType=String [DOSfile=String]
[band=Integer] [nE=Integer] [maxE=Double] [maxK=Double]
[bandstructure=bandstructure_t] [algorithm=String]

Description

Computes density-of-states (DOS) data and returns it as a list of energy/DOS(energy) pairs
and, optionally, writes it to a file. Band energies are computed automatically unless they are
already present in bandstructure. Units: energy [eV]; DOS . The factor 2 for
spin degeneracy is not yet included.

Arguments

Argument Description

algorithm The numeric algorithm used for DOS calculation:
• scm: State-counting method (default)
• tet: Tetrahedral integration method
The tetrahedral integration method is less susceptible to numeric noise 
than the state-counting method, especially at small energy intervals.
For backward compatibility, the default is the state-counting method.

band Restricts the DOS computation to the band with this band index.
Default: Use all bands.

bandstructure The bandstructure_t for storing and retrieving band-energy 
results. If this argument is omitted, bandstructure defaults to 
name.bandstructure, where name is the name of the crystal 
object. If name.bandstructure does not exist, it is created 
automatically.

carrierType Values are e or electron for electron DOS, and h or hole for hole 
DOS.

DOSfile File name for storing DOS data. Default: No file.

maxE The maximum energy for DOS calculation. Default: 10 eV.

maxK Includes only -vectors with  < maxK in the DOS calculation.
Unit: . Default: 2.

nE The number of energy intervals for DOS calculation. Default: 100.

nk This parameter controls the density of the -vector grid used during 
DOS calculation. It specifies the number of -vector intervals along the 

 line (that is, between  and X).

eV 1–  cm 3–[ ]

k k
2π axyz⁄
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Examples

SiliconCrystal name=bulk
bulk computeDOS nk=100 carrierType=h DOSfile=dos_h.dat

This example computes the hole density-of-states for unstrained bulk silicon and writes it to
the file dos_h.dat. Because of the large number of -vectors, this example has a
considerable runtime. A similar but faster example is shown in <AnalyticBandSolver>
computeDOS on page 283.

<EPM::Crystal> destroy

Syntax

<EPM::Crystal> destroy

Description

This method destroys the EPM::Crystal object. It has no arguments.

k
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<EPM::Crystal> get

Syntax

<EPM::Crystal> get a0 | zeta | strain | elasticity | cellVolume |
primitiveBasis

Description

This method provides read access to crystal parameters.

Arguments

Examples

GermaniumCrystal name=bulkGe
bulkGe get a0

This outputs the lattice spacing of bulk germanium: 5.65 (Å).

Argument Description

a0 Lattice constant  in Å.

cellVolume The volume of the unit cell in Å3.

elasticity Name of the object describing the elasticity of the material.

primitiveBasis The spanning vectors of the unit cell as List#3/Vector3D.

strain The strain tensor as a  matrix.

zeta Internal strain parameter (typically, 0 < zeta < 1).

a0

3 3×
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<EPM::Crystal> scaleKvector

Syntax

<EPM::Crystal> scaleKvector K=vector3D 

Description

This method returns K converted to units of .

Arguments

Argument Description

K A -vector in .

1 rBohr⁄

k 2π ax y z⁄⁄⁄
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<EPM::Crystal> set

Syntax

<EPM::Crystal> set a0=Double | primitiveBasis=List#3/RealVector3D |
elasticity=Elasticity | cellVolume=Double | strain=RealMatrix3D |
zeta=Double 

Description

This method provides write access to crystal parameters in the format parameter=new
value.

NOTE You must specify exactly one of the supported parameters.

Arguments

Examples

This example completes the manual construction of a silicon crystal started in the example for
<EPM::Crystal> addAtom on page 254:

myCrystal set primitiveBasis=[list {0.0 0.5 0.5} {0.5 0.0 0.5} {0.5 0.5 0.0}]
myCrystal status

Result: 

myCrystal is an EPM::Crystal object.
lattice constant = 5.43 [AAngstroems]
internal strain parameter: 0.53
unit cell spanned by (unit: lattice constant):

{0 0.5 0.5}
{0.5 0 0.5}
{0.5 0.5 0}

Argument Description

a0 Lattice constant  in Å.

cellVolume The volume of the unit cell in Å3.

elasticity Name of an object describing the elasticity of the material.

primitiveBasis Three vectors that span the unit cell (unit is lattice constant).

strain Sets the strain tensor from a  matrix.

zeta Internal strain parameter (typically, 0 < zeta < 1).

a0

3 3×
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atoms in the unit cell:
species: "Si"

{0.125 0.125 0.125}
{-0.125 -0.125 -0.125}

<EPM::Crystal> status

Syntax

<EPM::Crystal> status

Description

Return status information on the EPM::Crystal objects. It has no arguments.

Examples

 SiliconCrystal name=bulk
 bulk status

Result: 

"bulk" is an EPM::Crystal object.
lattice constant = 5.43 [AAngstroems]
internal strain parameter: 0.53
unit cell spanned by (unit: lattice constant):

{0 0.5 0.5}
{0.5 0 0.5}
{0.5 0.5 0}

atoms in the unit cell:
species: "Si"

{0.125 0.125 0.125}
{-0.125 -0.125 -0.125}
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<EPM::Crystal> unscaleKvector

Syntax

<EPM::Crystal> unscaleKvector K=vector3D 

Description

This method returns K converted to units of .

Arguments

Argument Description

K A -vector in .

2π ax y⁄ z⁄⁄

k 1 rBohr⁄
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Creating EPM::AtomicSpecies Objects

AtomicSpecies

Syntax

AtomicSpecies name=String 
{ nValence=Integer latticeConstant=Double muLS=Double zetaLS=Double 
nLS=Integer A0=Double B0=Double R0=Double A2=Double R2=Double 
[Qcutoff=Double | Q2cutoff=Double] Vloc=Array | 
{[Vloc=Array] a1=Double a2=Double a3=Double a4=Double 
a5=Double a6=Double} | 

{[Vloc=Array] VlocProc=String]} 
} | 
{ species1=EPM::AtomicSpecies species2=EPM::AtomicSpecies
moleFraction=Double }

Description

This command creates a new EPM::AtomicSpecies object. The command has two variants
for building:

■ A real atomic species.

■ A virtual atomic species (that is, a statistical mixture of atoms).

Arguments for Building a ‘Normal’ Atomic Species

This variant of the command builds an EPM::AtomicSpecies object of dynamic type
EPM::RealAtomicSpecies. 

Argument Description

A0 Energy prefactor (in Rydberg) for the nonlocal pseudopotential at 
.

A2 Energy prefactor (in Rydberg) for the nonlocal pseudopotential at 
.

B0 Energy-dependent correction (unit: 1) to the prefactor A0 for the 
nonlocal  pseudopotential:

latticeConstant Lattice constant  of the reference crystal for the new 
EPM::RealAtomicSpecies object.

L 0=

L 2=

L 0=

ΔA0 K1 K2,( ) h
2

2m0
---------- K1 K2⋅ kF

2
–( )B0=

a0
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muLS Energy parameter for spin-orbit splitting (in Rydberg).

name Name of the new EPM::RealAtomicSpecies object.

nLS Principal quantum number of the core shell that dominates the spin-orbit 
interaction (usually, one less than the principal quantum number of the 
species).

nValence Number of valence electrons.

Qcutoff, Q2cutoff Specifies the maximum  (in ) or  (in ) for 
evaluating the local part of the atomic form factor. In strained crystals, 
the norm is computed for the corresponding unstrained wavevector. 
Default: -1 (that is, inactive; use the global cut-off value; compare to 
sBandGet/sBandSet on page 242).
If both the per-species and the global Qcutoff or Q2cutoff are 
inactive (that is, they have negative values), an error is thrown during 
band-structure calculation.

R0 Well radius (in Å) for the nonlocal pseudopotential at .

R2 Well radius (in Å) for the nonlocal pseudopotential at .

Vloc
(optional if either the Friedel 
parameters a1 to a6, or 
VlocProc are supplied)

Name of a Tcl array. The key of this field is the modulus squared of a 
reciprocal lattice vector (unit: ). The value type is the local 
pseudopotential at this wavevector in Rydberg.

zetaLS Length scale parameter for spin-orbit splitting in .

Optional parameters (Friedel 
formula):
a1, a2, a3, a4, a5, a6 

If these parameters are present, Sentaurus Band Structure uses the Friedel 
interpolation formula (see Friedel Interpolation Formula for Local 
Pseudopotential on page 153) instead of a cubic spline for interpolation 
of the local pseudopotential. The dynamic type of the 
EPM::AtomicSpecies object constructed in the presence of a1 
to a6 is EPM::RealAtomicSpecies_Friedel.
Units: Hartree atomic units, that is,  in Hartree; , , ,  in 

;  in .

Optional parameters (local potential 
from Tcl procedure):
VlocProc

The name of a Tcl procedure used to evaluate the local pseudopotential
form factor. This procedure must take a single argument, the magnitude
of the crystal-momentum transfer vector  (in ). Before
returning the value, the local pseudopotential must be multiplied by the
unit cell volume per ion . The return value of the procedure is,
therefore, in Hartree. An example of VlocProc is given in Arguments
for Combining the Pseudopotentials of Two Species on page 267.

Argument Description

q 2π a⁄ q 2
2π a⁄( )2

L 0=

L 2=

2π a0⁄( )2

1 rBohr⁄

a1 a2 a4 a5 a6
1 rBohr

2⁄ a3 rBohr
2

q 1 rBohr⁄

Ωa
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Arguments for Building a ‘Virtual’ Atomic Species

This variant of the command builds an EPM::AtomicSpecies object of dynamic type
EPM::VirtualAtomicSpecies. Such an object represents a statistical mixture of two
atomic species in the spirit of the virtual crystal approximation (VCA), that is, the atomic form
factor is interpolated linearly between the two species involved. 

Examples

requireAtomicSpecies Si
requireAtomicSpecies Ge
AtomicSpecies name=SiGe_30 species1=Si species2=Ge moleFraction=0.3

Builds a virtual atomic species for Si0.7Ge0.3.

Arguments for Combining the Pseudopotentials of Two Species

This variant of the command builds an EPM::AtomicSpecies object of dynamic type
EPM::VirtualAtomicSpecies. Such an object represents a statistical mixture of two
atomic species in the spirit of the VCA, that is, the atomic form factors of two species are
combined linearly with two weighting factors. 

Argument Description

name Name of the new EPM::VirtualAtomicSpecies object.

species1 First constituent species of the virtual species.

species2 Second constituent species of the virtual species.

moleFraction Mole fraction of species2 in the virtual species.

Argument Description

name Name of the new EPM::VirtualAtomicSpecies object.

species1 First constituent species of the virtual species.

species2 Second constituent species of the virtual species.

preFactor1 Weighting factor associated with species1.

preFactor2 Weighting factor associated with species2.
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Examples

# Local pseudopotential form factor is created first.
AtomicSpecies name=Loc VlocProc=myVlocProc Q2cutoff=1000

# Nonlocal pseudopotential form factor is created next.
AtomicSpecies name=nonLoc Q2cutoff=0.0 Vloc=emptyVloc \

A0=$A0 B0=$B0 R0=$R0 A2=$A2 R2=$R2 zetaLS=$zetaLS muLS=$muLS

# Combine local and nonlocal pseudopotential form factors.
AtomicSpecies name=Loc_nonLoc species1=Loc preFactor1=1.0 \

species2=nonLoc preFactor2=1.0

Combine local and nonlocal pseudopotential form factors. Here, the local and nonlocal
pseudopotential form factors are multiplied by the weighting factors preFactor1 and
preFactor2, respectively (all 1 in this example).

This combination is useful when you want to build an atomic species with a customized local
pseudopotential form factor. In the above example, you can use your own form factor for the
local pseudopotential as a function of , which is specified by the procedure myVlocProc.
You should provide this procedure. An example of the procedure myVlocProc is:

################################################
# Note:
# - This procedure must have only 1 argument q
# - Unit of q is 1/rBohr
################################################

proc myVlocProc {q} {
# Declare global variables used in this procedure.
global rBohr; global PI; global a0

# Convert unit of q from 1/rBohr to 2pi/a0.
set unscale_q [expr $q / ($PI * 2.0 * $rBohr / $a0)]

# Calculate local pseudopotential for a given unscale_q.
set Vloc [getVloc $unscale_q]

# Calculate unit cell volume per ion.
set Vion [expr 0.125 * pow($a0 / $rBohr,3)]

# Multiply Vloc and Vion, and return.
return [expr $Vloc*$Vion]

}

q
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Autoloading Atomic Species

requireAtomicSpecies

Syntax

requireAtomicSpecies name 

Description

The command requireAtomicSpecies provides an automatic loading mechanism for
default atomic species from parameter files. If an EPM::AtomicSpecies object called name
is not yet present, Sentaurus Band Structure searches its database directory (compare to
dbPath in the description of the sBandGet and sBandSet commands) for a file called
name_param.tcl. 

If such a file exists, it is source’d into the Sentaurus Band Structure/Tcl interpreter.
Afterwards, Sentaurus Band Structure rechecks for the existence of the atomic species name.
If the species still does not exist, an error is generated.

Arguments

Examples

requireAtomicSpecies Si

This command returns the Si parameters from (your-Sentaurus-Band-Structure-
database-path)/Si_param.tcl.

Using EPM::AtomicSpecies Objects

An EPM::AtomicSpecies object is accessed by using its name <EPM::AtomicSpecies>
as a Tcl command name.

Using the object name as a Tcl command without arguments causes Sentaurus Band Structure
to output a message that identifies the associated object. Alternatively, the first command-line
argument may specify a method that will be executed on the object.

Argument Description

name Positional argument of type String.
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The available methods are:

■ <EPM::AtomicSpecies> destroy 

■ <EPM::AtomicSpecies> dynamicType 

■ <EPM::AtomicSpecies> get 

■ <EPM::AtomicSpecies> rename 

■ <EPM::AtomicSpecies> set 

■ <EPM::AtomicSpecies> status 

NOTE Named-argument (name=value) parsing is used for the arguments to
these methods.

<EPM::AtomicSpecies> destroy

Syntax

<EPM::AtomicSpecies> destroy

Description

This method destroys the EPM::AtomicSpecies object. It has no arguments.

<EPM::AtomicSpecies> dynamicType

Syntax

<EPM::AtomicSpecies> dynamicType

Description

This method returns the dynamic type of the associated EPM::AtomicSpecies object, that
is, one of the subclasses:

■ EPM::RealAtomicSpecies 

■ EPM::RealAtomicSpecies_Friedel 

■ EPM::RealAtomicSpecies_VlocProc 

■ EPM::VirtualAtomicSpecies 

It has no arguments.
270 Sentaurus™ Device Monte Carlo User Guide
N-2017.09



16: Sentaurus Band Structure/Tcl Command Reference
Using EPM::AtomicSpecies Objects
Examples

source [sBandGet dbPath]/Si_param.tcl
puts "Si has dynamic type: [Si dynamicType]" 
source [sBandGet dbPath]/Ge_param.tcl
AtomicSpecies name=SiGe species1=Si species2=Ge moleFraction=0.3 
puts "SiGe has dynamic type: [SiGe dynamicType]"

Result:

Si has dynamic type: EPM::RealAtomicSpecies
SiGe has dynamic type: EPM::VirtualAtomicSpecies

<EPM::AtomicSpecies> get

Syntax

<EPM::AtomicSpecies> get nValence | latticeConstant | Vloc | VlocProc | muLS |
zetaLS | nLS | A0 | B0 | R0 | A2 | R2 | a1 | a2 | a3 | a4 | a5 | a6 | 
moleFraction | Qcutoff | Q2cutoff

Description

This method returns the value of one of the settable parameters of AtomicSpecies objects
(all the parameters of the AtomicSpecies command with the exception of name and
species1 and species2 of an EPM::VirtualAtomicSpecies).

If the parameter is not accessible because of incorrect dynamic type of the associated object,
the command fails.

NOTE Because of the special treatment of arrays in Tcl,
<EPM::AtomicSpecies> get Vloc cannot directly return a Tcl
array (in Tcl, arrays are not variables). Instead, it returns a List/
List#2/Double suitable for setting an array using the Tcl command
array set. Vloc accepts an optional argument q2. If this parameter
is present, the command returns the interpolated local pseudopotential

.Vloc q( 2
q2 )=
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<EPM::AtomicSpecies> rename

Syntax

<EPM::AtomicSpecies> rename newName=String 

Description

This method changes the Tcl command name that is the handle associated with the
AtomicSpecies object and the name field of the AtomicSpecies object to newName.

Arguments

<EPM::AtomicSpecies> set

Syntax

<EPM::AtomicSpecies> set [nValence=Integer] [latticeConstant=Double]
[[Vloc=Array] [VlocProc=String] [muLS=Double] [zetaLS=Double] [nLS=Integer] 
[A0=Double] [B0=Double] [R0=Double] [A2=Double] [R2=Double] [a1=Double] 
[a2=Double] [a3=Double] [a4=Double] [a5=Double] [a6=Double] 
[moleFraction=Double] | [Qcutoff=Double | Q2cutoff=Double]

Description

This method allows you to modify one or several parameters of the associated
EPM::AtomicSpecies object. At this time, accessible parameters are all of the parameters
listed in AtomicSpecies except for name and the constituent species, species1 and
species2, of an EPM::VirtualAtomicSpecies. To change the name, use
<EPM::AtomicSpecies> rename.

If a parameter is not accessible because of incorrect dynamic type of the associated object, the
command fails.

Argument Description

newName This string becomes the new Tcl command name and handle string.
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<EPM::AtomicSpecies> status

Syntax

<EPM::AtomicSpecies> status

Description

This command outputs status information about the associated EPM::AtomicSpecies object.
It has no arguments.

Examples

requireAtomicSpecies Ge ;# load germanium parameters
Ge status

The result is:

species name = "Ge"
dynamic type: EPM::RealAtomicSpecies
nValenceElectrons: 4
Vloc entries assume a lattice constant of 5.65 AAngstroems.
Vloc(3) = -0.221 [Ry]
Vloc(8) = 0.019 [Ry]
Vloc(11) = 0.056 [Ry]
Qcutoff = 3.52704 (Q2cutoff = 12.44) ;# not overridden by global Qcutoff
volume = 22.5453 [AAngstroem^3]
muLS = 0.000965 [Ry]
zetaLS = 5.34 [1/rBohr]
principal quantum number: 3
nonLocalWell = Gaussian
A0 = 0 [Ry]
B0 = 0 [1]
R0 = 0 [AAngstroem]
A2 = 0.275 [Ry]
R2 = 1.22 [AAngstroem]
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Determining Symmetries of Band Structure From the 
Strain Tensor

determineSymmetry

Syntax

determineSymmetry crystalClass=String strain=Matrix3D 

Description

This command returns a list of symmetries for use by <EPM::Crystal> computeBandstructure
on page 256. These symmetries are generators of the symmetry group that results from
deforming a crystal of class crystalClass by applying strain. Each symmetry is
represented by a list of three integers that describe permutations and sign flips of the
coordinates of 3D -space. The symmetry {l m n} maps the -vector  to

.

Arguments

Examples

See Creating Band Data for Sentaurus Device Monte Carlo on page 128.

Argument Description

crystalClass The name of the symmetry class of the crystal. 
Supported values:
• "cubic": The relaxed crystal has cubic symmetry.
• "generic": Use if the crystal class is not known; only Kramer’s 

symmetry ({-1 -2 -3}) is assumed.

strain The strain tensor that reduces the symmetry relative to the full symmetry 
of the crystal class.

k k k1 k2 k3( )
sgn l( )k l  sgn m( )k m  sgn n( )k n( )
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Input Files for Single-Particle Device Monte Carlo

createMonteCarloFiles

Syntax

createMonteCarloFiles crystal=EPM::Crystal|AnalyticBandSolver 
[crystalClass=String] [directory=String]

Description

This command determines the symmetry of the strained crystal (assuming cubic symmetry
unless specified otherwise), performs band-structure calculation including symmetry effects,
writes band-structure data files for Sentaurus Device Monte Carlo, creates an ana.dat file
with the correct strained lattice constants (the other values in ana.dat are parameters for
impurity scattering rates, which are retained at relaxed silicon defaults), and copies additional
auxiliary files (${STROOT_LIB}/sparta/*.dat) from the TCAD Sentaurus library
directory to the specified output directory.

To use these files for a Sentaurus Device Monte Carlo simulation in Sentaurus Device, set
MonteCarloPath in the File section of your Sentaurus Device command file to the name of
the output directory of createMonteCarloFiles (see Arbitrary Stress on page 67 for
further details).

Arguments

Examples

See Creating Band Data for Sentaurus Device Monte Carlo on page 128.

Argument Description

crystal Calculates band-structure data using this band-structure calculator object. 
crystal can be either an EPM::Crystal object or an 
AnalyticBandSolver.

crystalClass The symmetry class associated with crystal. Default: "cubic".
See determineSymmetry on page 274 for more information.

directory Output directory path. To be treated correctly by the Monte Carlo 
simulator, the directory name must contain SPARTA (all uppercase).
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Finding Conduction Band Valley Positions

findBandMinimum

Syntax

findBandMinimum crystal=EPM::Crystal kStart=RealVector3D [band=Integer] 
[dK_max=Double] [v_max=Double] [damping=Double] [bandstructure=String] 
[groupVelocity=String] [inverseMass=String]

Description

This command uses a 3D Newton search to find the minimum of band band of crystal
crystal. The search starts at -vector kStart. 

The -vector at which either  of  is smaller than the corresponding tolerance is
returned as a Tcl list with three components (unit: ).

Arguments

Argument Description

band Finds a minimum of the band with index band. Default: 4.

bandstructure, groupVelocity, 
inverseMass

These parameters may be supplied to specify the names of the container 
objects used by findBandMinimum to store band structure, group 
velocity, and reciprocal effective mass results computed during the 
Newton search. Upon successful completion of findBandMinimum, 
these container objects contain valid data at the converged minimum. If 
necessary, findBandMinimum construct bandstructure_t, 
groupVelocity_t, and inverseMass_t objects of the 
requested name.

crystal Searches the band structure of this crystal.

damping Multiplies the update vector  with damping. Default: 1.

dK_max Convergence is reached if the length of the (undamped) update vector  
is less than dK_max (unit: ). Default: 1e-7.

kStart Starting point of the Newton search (unit: ).

v_max Convergence is reached if the modulus of the gradient of the band 
structure (or the group velocity ) at the current -vector is smaller 
than v_max (unit: ). Default: 1e-7.

k

k dk v
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Examples

SiliconCrystal name=bulkSi
findBandMinimum crystal=bulkSi kStart=[list 1 0 0]

Output: 

K = 0.855746 0.000000 -0.000000; |dK|=1.443e-01; |v| = 1.049e-01
K = 0.849893 -0.000000 0.000000; |dK|=5.853e-03; |v| = 3.936e-03
K = 0.849880 -0.000000 0.000000; |dK|=1.332e-05; |v| = 8.924e-06
K = 0.849880 -0.000000 0.000000; |v| = 4.590e-09; done.

Result:

0.849879596213 -4.3193223934e-13 4.1853096846e-13

findBandMinima

Syntax

findBandMinima crystal=EPM::Crystal kStart=List/RealVector3D [band=Integer]
[dK_max=Double] [v_max=Double] [damping=Double] [bandstructure=String]
[groupVelocity=String] [inverseMass=String] [variables=List/String]

Description

This command uses 3D Newton searches to find minima of band band of crystal crystal
near each of the -vectors contained in the list kStart. All the searches are performed in
parallel.

The -vectors of the minima found by findBandMinima are returned as an ordered list of 3D
vectors. The order of the minimum vectors corresponds to that of the starting vectors in
kStart. Convergence criteria are the same as in findBandMinimum (see findBandMinimum
on page 276).

Arguments

Argument Description

crystal Searches the band structure of this crystal.

kStart A list of starting points (unit: ).

band Finds minima of the band with index band. Default: 4.

dK_max Convergence is reached if the length of the (undamped) update vector  
is less than dK_max (unit: ). Default: 1e-7.

k

k
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dk
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SiliconCrystal name=silicon
silicon apply uniaxialStrain dir=[list 1 1 0] stress=3.0e9
findBandMinima crystal=silicon kStart=[list {0.85 0 0} {0 0 0.85} \

variables=[list DeltaX DeltaZ]
puts "DeltaX: \{ $DeltaX \}" puts "DeltaZ: \{ $DeltaZ \}"

This example performs a parallel search for the conduction-band minima in the x- and z-
direction and stores the -vectors of the minima in Tcl variables DeltaX and DeltaZ,
respectively.

Output:

0: K = 0.851077 -0.008973 -0.000000; |dK|=9.037e-03; |v| = 2.777e-02
1: K = -0.000000 -0.000000 0.865961; |dK|=1.596e-02; |v| = 8.967e-03
0: K = 0.851145 -0.008965 0.000000; |dK|=6.910e-05; |v| = 5.026e-05
1: K = -0.000000 0.000000 0.866406; |dK|=4.451e-04; |v| = 2.362e-04
0: K = 0.851145 -0.008965 0.000000; |v| = 2.302e-08; done.
1: K = 0.000000 -0.000000 0.866407; |dK|=7.345e-07; |v| = 3.891e-07
1: K = 0.000000 -0.000000 0.866407; |v| = 2.550e-10; done.
0.851145300153 -0.00896520620977 2.80874278617e-13 4.56550566776e-12
-6.99094408167e-13 0.866407041341
DeltaX: { 0.851145300153 -0.00896520620977 2.80874278617e-13 }
DeltaZ: { 4.56550566776e-12 -6.99094408167e-13 0.866407041341 }

v_max Convergence is reached if the modulus of the gradient of the band 
structure (or the group velocity ) at the current -vector is smaller 
than v_max (unit: ). Default: 1e-7.

damping Multiplies the update vector  with damping. Default: 1.

bandstructure, groupVelocity, 
inverseMass

These arguments may be supplied to specify the names of the container 
objects used by findBandMinima to store band structure, group 
velocity, and reciprocal effective mass results computed during the 
Newton search. Upon successful completion of findBandMinima, 
these container objects contain valid data at all the minima that were 
found. If necessary, findBandMinima constructs 
bandstructure_t, groupVelocity_t, and 
inverseMass_t objects of the requested name.

variables The length of this list must match the length of kStart. If this 
argument is supplied, findBandMinima creates or sets a variable in 
the scope of the calling function for each vector in kStart. The names 
of these variables are the entries of variables, and their values upon 
successful completion of findBandMinima are the positions of the 
band minima that were found.

Argument Description

v k
eV
h
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AnalyticBandSolverFromSpecies

Syntax

AnalyticBandSolverFromSpecies name=String species=EPM::AtomicSpecies 

Description

The parameter files of the atomic species distributed with Sentaurus Band Structure contain
EPM parameters, elasticity data, and templates for AnalyticBandSolver objects that
approximate the EPM band structures.

From this information, you can create an AnalyticBandSolver object for a given atomic
species using the command AnalyticBandSolverFromSpecies.

Arguments

Examples

AnalyticBandSolverFromSpecies name=analytic species=Si

Builds an AnalyticBandSolver object suitable for silicon.

Argument Description

name Name of the new AnalyticBandSolver object.

species Use parameters from parameter file for species species.
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AnalyticBandSolver

Syntax

AnalyticBandSolver name=String 

Description

This command creates a new AnalyticBandSolver object. The name argument becomes the
command name of a new Tcl command for accessing the AnalyticBandSolver object (see
Accessing AnalyticBandSolver Objects).

Arguments

Accessing AnalyticBandSolver Objects

AnalyticBandSolver objects are accessed by using their name as a Tcl command. This is
denoted as <AnalyticBandSolver>.

The argument list must be empty (output a message identifying the associated object) or first
argument must specify a method. The available methods are:

■ <AnalyticBandSolver> apply 

■ <AnalyticBandSolver> computeBandstructure 

■ <AnalyticBandSolver> computeDOS 

■ <AnalyticBandSolver> copy 

■ <AnalyticBandSolver> destroy 

■ <AnalyticBandSolver> get 

■ <AnalyticBandSolver> set 

■ <AnalyticBandSolver> status 

NOTE Named-argument (name=value) parsing is used for the arguments to
the methods.

Argument Description

name Name of AnalyticBandSolver object created by this call.
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<AnalyticBandSolver> apply

Syntax

<AnalyticBandSolver> apply method arg...

Description

This method uses the elasticity of the material described by the AnalyticBandSolver object
to apply certain strain conditions. The first argument to <AnalyticBandSolver> apply
must be the name of a method of elasticity that returns a strain tensor, for example,
biaxialStrain or uniaxialStrain.

The call:

<AnalyticBandSolver> apply method arg...

is equivalent to:

<AnalyticBandSolver> set strain=[[<AnalyticBandSolver> get elasticity] \
method arg...]

Examples

Apply 1 GPa of tensile stress along  to an AnalyticBandSolver object
for silicon:

AnalyticBandSolverFromSpecies name=kp species=Si
kp apply uniaxialStrain dir=[list 1 1 0] stress=1.0e9
puts [kp get strain]

Output:

{0.00274646443943 0.003125 0.0}
{0.003125 0.00274646443943 0.0}
{0.0 0.0 -0.00213158434105}

d 1 1 0, ,( ) 2⁄=
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<AnalyticBandSolver> computeBandstructure

Syntax

<AnalyticBandSolver> computeBandstructure 
{kFile=String | kVectors=List/Vector3D} [bandstructure=bandstructure_t]
[groupVelocity=groupVelocity_t] [remainingOnly]
[symmetry=List/List#3/Integer]

Description

This command computes band-structure data.

Arguments

Argument Description

kFile Name of a file that contains one -vector per line as space-separated list 
of three Doubles. Unit: .

kVectors The -vectors to be used for the band-structure calculation as a List of 
real 3D vectors. Unit: .

bandstructure The bandstructure_t for storing the band-structure result. If this 
argument is omitted, bandstructure defaults to 
name.bandstructure, where name is the name of the crystal 
object. If name.bandstructure does not exist, it is created 
automatically.

groupVelocity The groupVelocity_t for storing the group-velocity results. If 
this argument is omitted, groupVelocity defaults to 
name.groupVelocity, where name is the name of the crystal 
object. If name.groupVelocity does not exist, it is created 
automatically.

remainingOnly

symmetry

These arguments are supported only to keep the interface compatible 
with <EPM::Crystal> computeBandstructure. When 
used with <AnalyticBandSolver> 
computeBandstructure, these arguments have no effect.

k
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k
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<AnalyticBandSolver> computeDOS

Syntax

<AnalyticBandSolver> computeDOS 
nk=Integer carrierType=String [DOSfile=String] [band=Integer] [nE=Integer]
[maxE=Double] [maxK=Double] [bandstructure=bandstructure_t]
[algorithm=String]

Description

Computes density-of-states (DOS) data and returns it as a list of energy/DOS(energy) pairs
and, optionally, writes it to a file. Band energies are computed automatically unless they are
already present in bandstructure. Units: energy [eV]; DOS . The factor 2 for
spin degeneracy is not yet included.

Arguments

Argument Description

algorithm The numeric algorithm used for DOS calculation:
• scm: State-counting method (default)
• tet: Tetrahedral integration method
The tetrahedral integration method is less susceptible to numeric noise 
than the state-counting method, especially at small energy intervals.
For backward compatibility, the default is the state-counting method.

band Restricts the DOS computation to the band with this band index.
Default: Use all bands.

bandstructure The bandstructure_t for storing or retrieving band-energy 
results. If this argument is omitted, bandstructure defaults to 
name.bandstructure, where name is the name of the crystal 
object. If name.bandstructure does not exist, it is created 
automatically.

carrierType Values are e or electron for electron DOS; h or hole for hole 
DOS.

DOSfile File name for storing DOS data. Default: No file.

maxE The maximum energy for DOS calculation. Default: 10 eV.

maxK Includes only -vectors with  < maxK in the DOS calculation. 
Unit: . Default: 2.

nE The number of energy intervals for DOS calculation. Default: 100.

nk This parameter controls the density of the -grid used during DOS 
calculation. It specifies the number of -intervals along the  line (that 
is, between  and X).

eV 1–  cm 3–[ ]

k k
2π axyz⁄

k
k Δ

Γ
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Examples

AnalyticBandSolverFromSpecies name=kpSi species=Si
kpSi computeDOS nk=100 carrierType=h DOSfile=dos_e.dat maxK=0.2

This example computes the hole DOS for unstrained bulk silicon using six-band and restricting
the -vector range to vectors shorter than 0.2 (in the  metric) and writes it to the file
dos_h.dat.

<AnalyticBandSolver> copy

Syntax

<AnalyticBandSolver> copy newName=String 

Description

This method duplicates an AnalyticBandSolver object.

Arguments

<AnalyticBandSolver> destroy

Syntax

<AnalyticBandSolver> destroy

Description

This method destroys the AnalyticBandSolver object. It has no arguments.

Argument Description

newName Name of the copy of the AnalyticBandSolver object.

k 2π axyz⁄
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<AnalyticBandSolver> get

Syntax

<AnalyticBandSolver> get valenceBands | conductionBands | a0 | strain | 
gamma1 | gamma2 | gamma3 | Delta | a_v | b | d | method | M | K0 | ml | mt |
el_alpha | kp_alpha | Xi_u | Xi_d | Xi_s | dbs

Description

This method returns the value of one of the parameters of the analytic band-structure solver.
See <AnalyticBandSolver> set for descriptions of the accessible parameters.

<AnalyticBandSolver> set

Syntax

<AnalyticBandSolver> set [valenceBands=Boolean] [conductionBands=Boolean] 
[a0=Double] [elasticity=Elasticity] [strain=RealMatrix3D] [gamma1=Double] 
[gamma2=Double] [gamma3=Double] [Delta=Double] [a_v=Double] [b=Double]
[d=Double] [method=Integer] [M=Double] [K0=RealVector3D] [ml=Double]
[mt=Double] [el_alpha=List#2/Double] [kp_alpha=List#2/Double] [Xi_u=Double]
[Xi_d=Double] [Xi_s=Double] [dbs=Double]

Description

This method sets one or more parameters of the analytic band-structure solver.

Arguments

Argument Description

General parameters

strain Strain tensor as a 3 × 3 matrix represented by a list of 3D row vectors.

valenceBands Supported values are:
• 0: Do not compute valence bands.
• 1: Compute valence bands (default).

conductionBands Supported values are:
• 0: Do not compute conduction bands (default).
• 1: Compute conduction bands.

a0 Relaxed lattice spacing in Å.
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<AnalyticBandSolver> status

Syntax

<AnalyticBandSolver> status

Description

The command returns status information about the AnalyticBandSolver object. It has no
arguments.

Valence band parameters

gamma1, gamma2, gamma3 Luttinger band parameters in atomic units.

Delta Spin-orbit splitting energy in eV.

a_v, b, d Bir–Pikus deformation potentials in eV.

Conduction band parameters

method Supported values are:
• 0: Use two-band  (default).
• 1: Use ellipsoidal bands.

M The Sverdlov  parameter [3].

K0 Position of band minima (unit: ). This is not a vector.
The three entries of K0 are the -space distances between the -points 
along the  direction and the corresponding  valley minimum.

ml Longitudinal electron mass [ ].

mt Transverse electron mass [ ].

el_alpha Nonparabolicity [ ] for the ellipsoidal model.
The first list entry applies to the lowest conduction band; the second list 
entry applies to the second lowest conduction band.

kp_alpha Nonparabolicity [ ] for the two-band  model.
The first list entry applies to the lowest conduction band; the second list 
entry applies to the second lowest conduction band.

Xi_u, Xi_d, Xi_s Conduction-band deformation potentials in eV.

dbs Energy difference between first and second conduction bands at the band 
minimum.

Argument Description

k p⋅

k p⋅
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Constructor: bandstructure_t

Syntax

bandstructure_t name=String 

Description

This command creates a new bandstructure_t object. The name argument becomes the
name of a new Tcl command for accessing the bandstructure_t object.

Arguments

Tcl Access Command <bandstructure_t>

This procedure is used to access a bandstructure_t object from Tcl.

The argument list must be empty (output a message identifying the associated object) or the
first argument must specify a method. The available methods are:

■ <bandstructure_t> destroy 

Destroys the associated object.

■ <bandstructure_t> get kVector=vector3D [band=Integer] 

Returns a list containing the band energies at -vector kVector, or (if the optional
argument band is given) the energy of the specified band at -vector kVector.

■ <bandstructure_t> get kVectors 

Returns a list of all -vectors for which band energies are stored.

■ <bandstructure_t> get { valenceMax | conductionMin } 

Returns the valence-band maximum or conduction-band minimum (in eV).

■ <bandstructure_t> set kVector=vector3D energies=List/Double 

Sets the band energies at kVector to the vector energies. No shifting is applied
(compared with the shiftConductionBands or shiftValenceBands flags in the
description of sBandGet/sBandSet on page 242).

Argument Description

name Name of bandstructure_t object created by this call.

k
k

k
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■ <bandstructure_t> set topValenceBand=Integer 

For band-shifting purposes, it treats topValenceBand as the index of the highest valence
band.

■ <bandstructure_t> size 

Return the number of k points in the dataset.

■ <bandstructure_t> status 

Returns status information about the bandstructure_t object.

Constructor: groupVelocity_t

Syntax

groupVelocity_t name=String 

Description

This command creates a new groupVelocity_t object. The name argument becomes the
command name of a new Tcl command for accessing the groupVelocity_t object.

Arguments

Tcl Access Command <groupVelocity_t>

This procedure is used to access a groupVelocity_t object from Tcl.

The argument list must be empty (output a message identifying the associated object) or first
argument must specify a method. The available methods are:

■ <groupVelocity_t> destroy 

Destroys the associated object.

■ <groupVelocity_t> get kVector=vector3D [band=Integer] 

Returns a list of the group velocity vectors at -vector kVector or (if the optional
argument band is given) the group velocity vector of the specified band at -vector
kVector. Velocities are given in units of  where  denotes the lattice constant
along the x-, y-, and z-axis, resulting from deformation under the diagonal part of the strain
tensor.

Argument Description

name Name of groupVelocity_t object created by this call.

k
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■ <groupVelocity_t> size 

Returns the number of -points in the dataset.

■ <groupVelocity_t> status 

Returns status information about the groupVelocity_t object.

Constructor: inverseMass_t

Syntax

inverseMass_t name=String 

Description

This command creates a new inverseMass_t object. The name argument becomes the name
of a new Tcl command for accessing the inverseMass_t object.

Arguments

Tcl Access Command <inverseMass_t>

This procedure is used to access an inverseMass_t object from Tcl.

The argument list must be empty (output a message identifying the associated object) or the
first argument must specify a method. The available methods are:

■ <inverseMass_t> destroy 

Destroys the associated object.

■ <inverseMass_t> get kVector=vector3D [band=Integer] 

Obtains a list of the reciprocal effective-mass tensors at -vector kVector or (if the
optional argument band is given) the reciprocal effective-mass tensor of the specified band
at -vector kVector.

■ <inverseMass_t> size 

Returns the number of -points in the dataset.

■ <inverseMass_t> status 

Returns status information about the inverseMass_t object.

Argument Description

name Name of inverseMass_t object created by this call.

k

k
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bandstructurePlot

Syntax

bandstructurePlot bands=bandstructure_t [graph=String] [title=String]
[xlabel=String] [xproc=String] [kVectors=List/vector3D]

Description

This command uses the BLT and Tk Tcl packages to create xy band-structure plots.

Arguments

Examples

For usage examples, see Visualization on page 130 and Complex Band Structures on page 132.

Argument Description

bands Takes band-structure data from this container object.

graph Name of the target blt::graph widget for the plot. Default: .g.

title Sets the title string of the graph to title.

xlabel Sets the x-axis label to xlabel. Default: "|k| \[2pi/a_0\]".

xproc A command that converts the -vector "$K" to the x-coordinate used 
for the xy plot. Default: vectorLength \$K.
Note that the $ character must be escaped in order to defer variable 
expansion until $xproc is evaluated inside of 
bandstructurePlot.

kVectors The -vector sequence to be used for plotting. If kVectors is not 
specified, it defaults to the result of $bands get kVectors.

k

k
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attachZoomStack

This command adds interactive zooming capabilities to a blt::graph object.

Tcl syntax (positional arguments):

crossProduct g 

• blt::graph g 

Describing Elastic Properties of Materials

Elasticity

Syntax

Elasticity name=String 
{ type=String { s11=Double s12=Double s44=Double } | 

{ c11=Double c12=Double c44=Double } } | 
{ e1=Elasticity e2=Elasticity x2=Double }

Description

Sentaurus Band Structure uses Elasticity objects to describe the elastic properties of
materials. The information stored in an Elasticity object consists of a symmetry class and
a sequence of elasticities  (in %/GPa) that uniquely defines the compliance tensor .

Elasticity objects are created by the command Elasticity.

NOTE Currently, only cubic elasticity is supported. Future releases may
support other symmetry classes, for example, hexagonal crystals.

Arguments

Argument Description

name Name of Elasticity object created by this call.

type Symmetry class of the crystal. Supported values: Cubic.

s11, s12, s44 Components of compliance tensor (unit: %/GPa = 1/Mbar).

c11, c12, c44 Components of stiffness tensor (unit: GPa/% = Mbar).

sij S
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The name of an Elasticity object can be used as a Tcl command. The following methods
are supported:

■ <Elasticity> copy newName=String 

Copies the Elasticity object.

■ <Elasticity> destroy 

Destroys the Elasticity object.

■ <Elasticity> dynamicType 

Returns the dynamic type of an Elasticity object.

■ <Elasticity> status 

Outputs status information about the Elasticity object.

■ <Elasticity> biaxialStrain 

See <Elasticity> biaxialStrain on page 293.

■ <Elasticity> biaxialStrainRatio 

See <Elasticity> biaxialStrainRatio on page 294.

■ <Elasticity> strainFromStress 

See <Elasticity> strainFromStress on page 295.

■ <Elasticity> uniaxialStrain 

See <Elasticity> uniaxialStrain on page 296.

e1, e2
x2

A new Elasticity object may be constructed by linear interpolation 
between two existing Elasticity objects, e1 and e2. 
x2  is the statistical weight of e2 in the interpolated 
Elasticity.

Argument Description

[0,1]∈
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<Elasticity> biaxialStrain

Syntax

biaxialStrain dir=vector3D|String inPlaneStrain=Double 

Description

This method returns the biaxial strain tensor for a pseudomorphic material layer epitaxially
grown on an infinitely thick substrate.

Arguments

Examples

Elasticity name=E type=Cubic c11=1.675 c12=0.65 c44=0.8
E biaxialStrain dir=100 inPlaneStrain=0.01

Result:

{0.01 0 0} {0 0.01 0} {0 0 -0.00776119402986}

Argument Description

dir The normal direction of the interface between substrate and 
material as vector3D.

For backward compatibility, the fixed strings 100 and 111 are 
recognized as synonyms for the normal vectors {0 0 1} and {1 1 1}, 
respectively.

inPlaneStrain Strain parallel to the material boundary between the pseudomorphic layer 
and substrate:
+: Tensile
–: Compressive
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<Elasticity> biaxialStrainRatio

Syntax

computeStrainRatio dir=String 

Description

This command returns the ratio between out-of-plane and in-plane strain for a pseudomorphic
material layer epitaxially grown on an infinitely thick substrate.

Arguments

Examples

Elasticity name=E type=Cubic s11=0.762 s12=-0.213 s44=1.25
E biaxialStrainRatio dir=111

The result is -0.445643793369: 1% tensile in-plane strain leads to 0.446% compressive
strain normal to the (110) interface.

Argument Description

dir Direction of the interface between substrate and material. 
Supported values are 100 and 111.
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<Elasticity> strainFromStress

Syntax

computeStrainFromStress stress=RealMatrix3D 

Description

This command returns the strain tensor that corresponds to the stress tensor stress.

NOTE Both the stress tensor and the resulting strain tensor use the principal-
axis coordinate system of the crystal, which typically is different from
the process or device coordinate systems of Sentaurus Process or
Sentaurus Device.

Arguments

Examples

Elasticity name=E type=Cubic c11=1.675 c12=0.650 c44=0.8
set stress {{1.0e9 0.0 0.0} {0.0 0.0 0.0} {0.0 0.0 0.0}}
E strainFromStress stress=$stress

Result:

{0.00762451321992 0.0 0.0}
{0.0 -0.00213158434106 0.0}
{0.0 0.0 -0.00213158434106}

Argument Description

stress Stress tensor represented as a list of 3D row vectors (unit: Pa).
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<Elasticity> uniaxialStrain

Syntax

uniaxialStrain dir=RealVector3D stress=Double 

Description

This command returns the strain tensor resulting from uniaxial stress along direction dir.

Arguments

Examples

SiliconCrystal name=Silicon
[Silicon get elasticity] uniaxialStrain dir=[list 1 1 1] stress=1.0e9

Result:

{0.00112044817927 0.00208333333333 0.00208333333333}
{0.00208333333333 0.00112044817927 0.00208333333333}
{0.00208333333333 0.00208333333333 0.00112044817927}

Argument Description

dir Direction of uniaxial stress as a three-component vector. This vector does 
not need to be normalized. 

stress The stress in direction dir in Pa. 
Positive values: tensile.
Negative values: compressive.
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3D Vector/Matrix Auxiliary Commands

crossProduct

This command returns the cross product .

Tcl syntax (positional arguments):

crossProduct  

• vector3D u 

• vector3D v 

Examples

crossProduct {1 0 0} {0 1 0}

Returns: 

{0.0 0.0 1.0}

invertMatrix

This command returns the inverse  of a  matrix M.

Tcl syntax (positional arguments):

invertMatrix 

• matrix3D M

Examples

invertMatrix {{0.5 -0.5 0.0} {0.5 0.5 0.0} {0.0 0.0 2.0}}

Result: 

{1.0 1.0 0.0} {-1.0 1.0 0.0} {0.0 0.0 0.5} 

u v×

u v

M 1– 3 3×

M
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invertMatrix {{1 0 0} {0 1 0} {0 0 0}}

Result: 

Caught an exception of type std::domain error.
Description: Cannot invert a singular matrix!

invertMatrix {{0 (0,1) 0} {(0,-1) 0 0} {0 0 1}}

Result: 

{0 (-0,1) 0} {(0,-1) 0 0} {0 0 1}

This complex matrix is its own inverse.

matrixProduct

This command returns the matrix product AB.

Tcl syntax (positional arguments):

matrixProduct  

• matrix3D A

• matrix3D B

Examples

matrixProduct {{0 1 0} {1 0 0} {0 0 2}} {{0 1 0} {1 0 0} {0 0 0.5}}

Result:

{1.0 0.0 0.0} {0.0 1.0 0.0} {0.0 0.0 1.0} 

A B
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matrixVectorProduct

This command returns the vector .

Tcl syntax (positional arguments):

matrixVectorProduct  

• matrix3D M

• vector3D x 

Examples

matrixVectorProduct {{0.5 0.5 0} {{0.5 -0.5 0} {0 0 2}} {1 0 1} 

Result: 

0.5 0.5 2.0

scalarProduct

This command returns the scalar product .

Tcl syntax (positional arguments):

scalarProduct  

• vector3D 

• vector3D 

Examples

scalarProduct {1 0 0} {0 1 0}

Result: 

0.0

The vectors are orthogonal.

y := Mx

M x

u v⋅

u v

u

v
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solveLinearEquation

Syntax

solveLinearEquation M=matrix3D b=vector3D 

Description

This command solves the linear equation  and returns the solution vector .

NOTE This function uses named-argument (name=value) parsing.

Arguments

Examples

set A {{0.5 -0.5 0.0}
{0.5 0.5 0.5}
{0.0 0.0 2.0}}

solveLinearEquation M=$A b=[list 1 0 0]

Result: 

1.0 -1.0 0.0

NOTE The value for the b vector is wrapped into a list call to work around a
limitation of Tcl (the Tcl parser does not permit argument lists of the
form b={1 0 0}). Alternatively, a list argument can be set by
expanding a variable as shown for argument M.

Argument Description

M A  matrix M.

b A three-dimensional vector .

Mx b= x

3 3×

b
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transposeMatrix

This command returns the transposed  matrix .

Tcl syntax (positional arguments):

transposeMatrix 

• matrix3D M

Examples

transposeMatrix {{1 2 3} {0 4 5} {0 0 6}}

Result: 

{{1.0 0.0 0.0} {2.0 4.0 0.0} {3.0 5.0 6.0} 

unitVec

This command returns a unit vector along the direction of .

Tcl syntax (positional arguments):

unitVec 

• vector3D 

Examples

unitVec {1 1 1}

Result: 

0.57735026919 0.57735026919 0.57735026919

unitVec {0 0 0}

Result:

Caught an exception of type std::domain error.
Description: Cannot construct unit vector from zero vector.

3 3× MT

M

v

v

v

Sentaurus™ Device Monte Carlo User Guide 301
N-2017.09



16: Sentaurus Band Structure/Tcl Command Reference 
3D Vector/Matrix Auxiliary Commands
vectorAdd

This command adds vectors and returns the result .

Tcl syntax (positional arguments):

vectorAdd  

• vector3D 

• vector3D 

Examples

vectorAdd {1 0 0} {1 1 0} 

Result: 

2.0 1.0 0.0

vectorAdd {1 0 1} {(0,1) 1 1} 

Result: 

(1,1) 1.0 2.0 

u v+

u v

u

v
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vectorDivide

This command divides a vector  by a scalar  and returns the result .

Tcl syntax (positional arguments):

vectorDivide  

• vector3D 

• Double 

Examples

vectorDivide {2 1 0} 2

Result: 

1.0 0.5 0.0

The divisor is promoted automatically to a Double to avoid unexpected round-off effects as in
expr 1/2 (result: 0) versus expr 1/2.0 (result: 0.5).

vectorLength

This command returns the length of vector .

Tcl syntax (positional arguments):

vectorLength 

• vector3D 

Examples

vectorLength {1 1 0}

Result: 

1.41421356237

vectorLength {(1,1) 0 0}

Result: 

1.41421356237

v x v x⁄

v x

v

x

v

v

v
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vectorMultiply

Syntax

vectorMultiply v=vector3D x=Double 

Description

This command multiplies a vector by a scalar and returns the result .

NOTE This function uses named-argument (name=value) parsing.

Arguments

Examples

vectorMultiply v=[list 1 2 3] x=1.5

Result: 

1.5 3.0 4.5

Argument Description

v A 3D vector.

x A scalar.

xv
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vectorSubtract

This command takes two vector arguments and returns the vector difference .

Tcl syntax (positional arguments):

vectorSubtract  

• vector3D 

• vector3D 

Examples

vectorSubtract {3.0 2.0 1.0} {1.0 2.0 3.0}

Result: 

2.0 0.0 -2.0

Tcl Support for Complex Numbers

imaginaryPart

This command returns the imaginary part of a complex number.

Tcl syntax (positional arguments):

imaginaryPart 

• Complex 

Examples

imaginaryPart (1.5,-2.0)

Result: -2.0 

u v–

u v

u

v

z

z
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realPart

This command returns the real part of a complex number.

Tcl syntax (positional arguments):

realPart 

• Complex 

Examples

realPart (1.5,-2.0)

Result: 1.5 

Tcl Support for Named-Argument Parsing

check_args

Syntax

check_args arrayName 

Description

This command returns an error if the named argument array $arrayName contains unknown
arguments in the sense of get_unknown_args (see get_unknown_args on page 310).

Arguments

Argument Description

arrayName Positional argument of type Array, which is usually a named argument 
array from parse_args.

z

z
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Examples

proc myProcXY args { parse args para $args
set X [get arg para "X"]
set Y "<undefined>"
if { [has arg para "Y"] } {

set Y [get arg para "Y"]
}
check args para
puts "argument list is valid: X=$X; Y=$Y."

}
myProcXY X=1
myProcXY X=2 Y=yString
myProcXY X=3 Y=yStringA Z=something

This test defines a Tcl procedure myProcXY with a mandatory argument X and an optional
argument Y. This procedure is then called with three different argument lists. 

Output:

argument list is valid: X=1; Y=<undefined>.
argument list is valid: X=1; Y=yString.
Error: unknown argument { Z } detected. The following arguments are known: X Y.

get_arg

Syntax

get_arg arrayName name [type]

Description

This command obtains a named argument name from a named argument array arrayName
(typically created by a call to parse_args (see parse_args on page 314)). If array arrayName
does not have an entry at key name, an error is thrown. 

An optional second argument type may be supplied to impose a type restriction on the
argument value $arrayName($name): If the result of argument lookup cannot be converted
to type type, a type mismatch error is thrown.

As a side-effect, name is added to the list of known arguments.
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Arguments

Examples

parse args para { x=1.5 }
puts "test1: [get arg para "x"]"

Result: 

test1: 1.5

puts "test2: [get arg para "x" Double]"

Result: test2: 1.5: Successful type check.

puts "test3: [get arg para "x" Integer]"

Result:

Type mismatch error in argument "x":
"1.5" has type Double --- expected type: Integer.

puts "test4: [get arg para "y"]"

Result:

Argument "y" not found. The following named arguments were supplied: "x".

Argument Description

arrayName Positional argument of type Array, which is usually a named argument 
array from parse_args.

name Positional argument. Name of the argument.

type Positional argument. Optional type signature string (compare with 
get_arg on page 307).
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get_known_args

Syntax

get_known_args arrayName 

Description

Extracts a list of known argument names from the named argument array $arrayName in the
scope of the calling procedure. An argument name becomes known by being passed as the
name argument to has_arg (see has_arg on page 311) or get_arg (see get_arg on page 307).

This function is intended for use on arrays created by parse_args (see parse_args on
page 314).

Arguments

Examples

parse_args para { x=3.0 y=test }
get_known args para

Result: <none>: Initially all arguments are unknown.

get_arg para "x"
has_arg para "z"
get_known_args para

Result: The get_arg command returns 3.0 (the value of the x argument). The call to
has_arg returns 0 (no argument z is contained in the Array para.

The call to get_known_args returns x z, which are the names of the arguments mentioned
in the two preceding calls.

Argument Description

arrayName Positional argument of type Array, which is usually a named argument 
array from parse_args.
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get_unknown_args

Syntax

get_unknown_args arrayName 

Description

Extracts a list of unknown argument names from named argument array $arrayName in the
scope of the calling procedure. An argument name becomes known by being passed as the
name argument to has_arg (see has_arg on page 311) or get_arg (see get_arg on page 307).
All other argument names are unknown.

This function is intended for use on arrays created by parse_args (see parse_args on
page 314).

Arguments

Examples

parse_args para { x=3.0 y=test }
get_unknown_args para

Result: x y: Initially all arguments in para are “unknown”.

get_arg para "x"
has_arg para "z"
get_known_args para

Result: The get_arg command returns 3.0 (the value of the x argument). The call to
has_arg returns 0 (no argument z is contained in the Array para. 

The call to get_unknown_args returns y, which is the name of the argument that was not
mentioned in the two preceding calls.

Argument Description

arrayName Positional argument of type Array, which is usually a named argument 
array from parse_args.
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has_arg

Syntax

has_arg arrayName name 

Description

This command queries whether the array $arrayName in the scope of the calling procedure
contains an entry for $name (return value: 1) or not (return value: 0). As a side effect, name is
added to the list of known arguments.

This function is intended for use on arrays created by parse_args (see parse_args on
page 314).

Arguments

Examples

parse args para { x=0 }
puts "looking for x: [has arg para x]"
puts "looking for y: [has arg para y]"

Result:

looking for x: 1 Found in named argument array para.

looking for y: 0 Not found in named argument array para.

Argument Description

arrayName Positional argument of type Array, which is usually a named argument 
array from parse_args.

name Positional argument. Check for the presence of the argument name.
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init_arg

Syntax

init_arg arrayName name defaultValue [type]

Description

This command queries whether the array $arrayName in the scope of the calling procedure
contains a value at key $name. If successful, this value is returned; otherwise, the procedure
returns $defaultValue.

By default, init_arg accepts only argument values that can be promoted to the type of
defaultArgument. An optional third argument type may be supplied to specify a target type
different from the type of the default value. This can be useful, for example, if the default value
of an argument is real, but complex values are also acceptable.

As a side effect, name is added to the list of known arguments.

This function is intended for use on arrays created by parse_args (see parse_args on
page 314).

Arguments

Examples

parse_args para1 { x=5.0 }
set x [init_arg para1 "x" 1.0]
set y [init_arg para1 "y" 2.0]
puts "x: $x; y: $y"

Result: x: 5.0; y: 2.0 – x takes the value $para1{"x"}=5.0; y is not listed in para and
defaults to 2.0.

Argument Description

arrayName Positional argument of type Array, which is usually a named argument 
array from parse_args.

defaultValue Positional argument. Default value if argument name does not exist.

name Positional argument. Get value of parameter name.

type Positional argument. Optional target type signature. If type is not 
given, the value of argument name must be convertible to the type of 
defaultValue. Otherwise, it must convertible to type.
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parse_args para2 { x=(0,1) }
puts "x: [init_arg para2 "x" 1.0]"

Result:

Type mismatch error in argument "x":
"(0,1)" has type Complex --- expected type: Double.

Here, init_arg fails because the type of the actual argument value (Complex) differs from
the type of the default argument (Double).

In situations where this is desired (it is acceptable to have a complex number, but the default
value is real), you can provide an explicit target type:

puts "x: [init_arg para2 "x" 1.0 Complex]"

Result: 

"x: (0,1)"
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parse_args

Syntax

parse_args arrayName argv 

Description

This command extracts named-argument declarations from the List $argv and stores the
results of this search in an array of name $arrayName in the scope of the calling procedure.
The command parse_args supports two syntactic forms for declaring an argument name:

■ name=value 

■ -name value 

The value of each extracted argument is stored as an array entry $arrayName($name).

The difference between the name=value and the -name value notations is that the former
is slightly more readable and the latter is more efficient, because the argument name and
argument value do not need to be combined into a single string object. This allows the value
object to be passed by reference and preserves its internal type representation. In addition, the
parsing rules of Tcl do not allow list literals to be passed using the name=value syntax.

Arguments

Examples

parse_args A {x=5 y="string with spaces" z=word -myList {a b c}}
puts "x: $A(x); y: $A(y); z; $A(z); myList: $A(myList)."

The command parse_args extracts four named arguments x, y, z, and myList from argv
and stores them in Array A. 

Result:

x: 5; y: string with spaces; z: word; myList: a b c.

Argument Description

argv A List of command-line arguments.

arrayName Name of output Array in scope of calling function.
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proc myProc args {
parse_args para $args
puts "value of argument x: [get_arg para "x"]

}
myProc x="This is a string."

This example shows how parse_args is used to parse the argument list of a Tcl procedure.
The first command defines a procedure myProc; myProc calls parse_args to parse its
argument list args and to store the result in Array para. get_arg is used to report the value
of the x argument passed to myProc. The second command is an example call to myProc.

Result: value of argument x: This is a string.

Tcl Support for Type Checking

get_type

Syntax

get_type obj 

Description

This command returns the type of object obj.

Arguments

get_type recognizes the following types:

■ Numeric types (implicit type propagation allowed from top to bottom)

• Integer, for example: 100

• Double, for example: 3.1415927; 1.0

• Complex, for example: (0.0,1.0) for  (no spaces allowed)

Argument Description

obj Positional argument. Find the type of this object.

i 1–=
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■ Instantiable classes:

• EPM::AtomicSpecies 

• EPM::Crystal 

• bandstructure_t 

• groupVelocity_t 

• inverseMass_t 

• AnalyticBandSolver 

• Elasticity 

■ Tcl-related types:

• String – Any type may be propagated to a String.

• Array – This is the type for the name of a Tcl array data-structure (note that since, in
Tcl, arrays are not variables, they are passed by reference by passing their names).

• List – A Tcl list data-structure with an arbitrary number of arbitrary elements

• List#n – A list with n elements of arbitrary type.

• List/T – A list with an arbitrary number of elements of type .

• List#n/T – A list with  elements of type .

The type of a List is analyzed recursively, for example, get_type {{1 2} {1 3} {1 4}}
returns a type signature of List#3/List#2/Integer for a List with three elements, each
of which is a List with two elements of type Integer.

Examples

get_type {{1 2} {1 2 3} {1 2}}

Returns List#3/List/Integer, that is, a list of three lists (arbitrary length) of integers.

get_type {1 1.5 "a"}

Returns List#3 (no common element type other than String).

T

n T
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check_type

Syntax

check_type obj=String type=String 

Description

This command checks if the object obj can be converted to type type. If so, the function
returns; otherwise, an exception is thrown.

NOTE This command uses named-argument (name=value) parsing for its
argument list.

Arguments

Examples

check_type obj=1.5 type=Double

Result: success (no message)

check_type obj=1.5 type=Integer

Result: 

"1.5" has type Double --- expected type: Integer.

check_type obj=1.0 type=Integer

Result: 

"1.0" has type Double --- expected type: Integer.

Argument Description

obj A Tcl object or the Tcl command associated with a C++ object.

type A type signature string (see get_type on page 315).
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common_type

Syntax

common_type type1 type2 

Description

This command takes two type signature strings type1 and type2, and returns the most
specialized type to which objects of both types can be propagated.

Arguments

Examples

common_type Double Complex

Returns Complex because a real number can be promoted to a complex number but not vice
versa.

common_type List#3/List#2/Double List#3/List/Integer

Returns List#3/List/Double because an Integer may be propagated to a Double, and a
List of specified length may be propagated to a list of arbitrary length.

Argument Description

type1, type2 Positional arguments: type signature strings.
318 Sentaurus™ Device Monte Carlo User Guide
N-2017.09



16: Sentaurus Band Structure/Tcl Command Reference
General Utility Procedures
General Utility Procedures

import_array

Syntax

import_array arrayName [localName]

Description

This command brings the array $arrayName from the scope two levels up to the scope of the
calling function under the name localName. If localName is not given, it defaults to
theArray.

Arguments

Examples

proc myProc {} {
puts "A before import: [array exists A]"
puts "X before import: [array exists X]"
import array X A
puts "A after import: [array exists A]"
puts "A(1) = $A(1)"

}
set X(1) 5
myProc

The call to import_array makes Array  visible inside myProc; the name for accessing
array  from within myProc is .

Output of myProc: 

A before import: 0
X before import: 0
A after import: 1
A(1) = 5

Argument Description

arrayName Positional argument. An Array in the scope of the caller of the caller of 
import_array.

localName Positional argument. New name for the same array in the scope of the 
caller of import_array.

X
X A
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tee

Syntax

tee file message 

Description

This command outputs a message message both to the screen and the file descriptor file.

Arguments

Examples

set f [open "tmp.file" "w"]
tee $f "This is a test."
close $f
exec cat tmp.file

This test opens a file tmp.file for writing ("w"), writes the message "This is a test"
both to the screen and the file, closes the file, and, finally, displays the contents of tmp.file
using the UNIX command cat.

Output: 

This is a test.
This is a test.

Material Parameter Files

In Sentaurus Band Structure, material parameters files are Tcl input files that can be source’d
to make a given material available in a session. The installation directory of the default
parameter files is ${STROOT_LIB}/sband, and the file names have the format
name_param.tcl, where name identifies the material. 

To change the directory for autoloading of parameter files to dir, use:

sBandSet dbPath=dir 

Argument Description

file Positional argument. A Tcl file descriptor.

message Positional argument. Output this message.
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Subband and Mobility Calculations

This section describes the commands used for subband and mobility calculations.

AddToLogFile

Syntax

AddToLogFile name=String value=Double 

Description

This command adds a scalar value to the bias log file at the current bias.

Arguments

Examples

AddToLogFile name=Ec1 value=$Ec

This command adds the field called Ec1 to the current bias log file with the value given by the
Tcl variable Ec.

Argument Description

name Name of the new field to appear in the bias log file.

value Scalar value to add to the bias log file.
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ComputeMass

Syntax

ComputeMass {xx | xy | yy} direction=RealVector3D [Nk=Integer]
[nonlocal=String] [Nphi=Integer] [subbands=List]

Description

This command computes a particular component of the inverse transport mass tensor,
expressed as an effective mass in units of the free electron mass based on the last Schrödinger
solution. For 2D devices, the transport direction is known and need not be specified. The
calculation can be limited to a particular set of subbands using the subbands parameter. If all
subbands are included in the calculation, the total mass as well as the masses per valley are
computed. All computed results are stored in the bias log file. The total mass is returned from
the calculation. The calculation typically requires a finer -space grid than the dispersion. This
finer grid can be specified using the Nk and Nphi parameters.

Arguments

Argument Description

direction Specifies the direction, relative to the in-plane device axes, for which the directed 
mass tensor component should be computed. For 1D devices only.

Nk Number of radial -space grid points to use for the mass calculation.
Default: 128.

nonlocal Name of the nonlocal line for which to compute the mass. If not specified, the 
first found nonlocal line is used.

Nphi Number of angular -space grid points to use for the mass calculation. For 1D 
devices only. Default: 128.

subbands Tcl list of subbands to be included in the calculation.
Default: Include all subbands.

xx Specifies that the xx tensor component of the mass is computed. Used by default. 
For 1D devices only.

xy Specifies that the xy tensor component of the mass is computed. For 1D devices 
only.

yy Specifies that the yy tensor component of the mass is computed. For 1D devices 
only.

k

k

k
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Examples

set mass [ComputeMass yy subbands=[list Delta3_0]]

This command computes the yy transport mass tensor component in a 1D device for only the
Delta3_0 subband. The computed results are added automatically to the bias log file, and the
total mass is returned to the Tcl variable mass.
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ComputeMobility

Syntax

ComputeMobility {xx | yy | xy | direction=RealVector3D} [nonlocal=String]
[writeMobilityPerValley]

Description

This command computes one component of the mobility tensor for a particular nonlocal line
or nonlocal area based on the last Schrödinger solution. One tensor component in the device
coordinate system can be specified, or the mobility component along one particular direction
can be computed. The mobility is computed in units of .

Arguments

Examples

set mobility [ComputeMobility direction=[list 1 1 0]]

This command computes the mobility along the [110] direction for a 1D device structure. The
result is added automatically to the bias log file and is returned to the Tcl variable mobility.

Argument Description

direction Specifies the direction, relative to the in-plane device axes, for which the directed 
mobility tensor component should be computed. For 1D devices only.

nonlocal Name of the nonlocal line for which to compute the mobility. If not specified, the 
first found nonlocal line is used.

xx Specifies that the xx component of the mobility tensor should be computed. For 
1D devices only.

xy Specifies that the xy component of the mobility tensor should be computed. For 
1D devices only.

yy Specifies that the yy component of the mobility tensor should be computed. For 
1D devices only.

writeMobilityPerValley If specified, the mobility in each valley is written to the bias log file.

cm2/Vs
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ComputeVinj

Syntax

ComputeVinj {x | y | direction=RealVector3D} [nonlocal=String] [Nk=Integer]
[Nphi=Integer] [subbands=List]

Description

This command computes the thermal injection velocity in units of cm/s along the user-specified
direction based on the last Schrödinger solution. For 2D devices, the transport direction is
known and need not be specified. The calculation can be limited to a particular set of subbands
using the subbands parameter. If all subbands are included in the calculation, the total
velocity as well as the velocities per valley are computed. All computed results are stored in
the bias log file. The total velocity is returned from the calculation. The calculation typically
requires a finer -space grid than the dispersion. This finer grid can be specified using the Nk
and Nphi parameters.

Arguments

Examples

set velocity [ComputeVinj direction=[list 1 1 0]]

This command computes the thermal injection velocity along the [110] direction relative to the
device axes in a 1D device. The computed results are added automatically to the bias log file,
and the total velocity is returned to the Tcl variable velocity.

Argument Description

direction Specifies the direction, relative to the in-plane device axes, for which the velocity 
is computed. For 1D only.

Nk Number of radial -space grid points to use for the velocity calculation. 
Default: 128.

nonlocal Name of the nonlocal line for which to compute the velocity. If not specified, the 
first found nonlocal line is used.

Nphi Number of angular -space grid points to use for the velocity calculation. For 1D 
only. Default: 128.

subbands Tcl list of subbands to be included in the calculation.
Default: Include all subbands.

x Specifies that the x-component of the velocity is computed. Used by default. For 
1D only.

y Specifies that the y-component of the velocity is computed. For 1D only.

k
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Dopant

Syntax

Dopant material=String name=String symbol=String type=String 
[print] [remove] [removeAll]

Description

This command defines a new dopant. After a dopant is defined, the active concentration of the
dopant will be read from the TDR file during the next LoadDevice command.

Arguments

Examples

Dopant material=Silicon name=Boron symbol=B type=acceptor

This command defines boron as an acceptor dopant in silicon with element symbol B.

Argument Description

material Specifies the material for which the dopant is defined. You also can use all, 
insulator, or semiconductor.

name Name of the dopant, for example, Boron.

symbol Element symbol of the dopant, for example, B.

type Dopant type, either donor or acceptor.

print Prints a list of the defined dopants.

remove Removes a defined dopant by name for a specific material.

removeAll Removes all defined dopants.
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Extract

Syntax

Extract model=String { z=Double | {x=Double y=Double} |
{ {region=String | nonlocal=String} integral }

}

Description

This command extracts a scalar value from the named model. It can either extract a model value
at a point or integrate the model over a region or a nonlocal line or nonlocal area.

Arguments

Examples

set Ec [Extract model=ConductionBandEnergy z=0.0]

This command extracts the value of the conduction band energy at the z-coordinate of 0.0
and places the result into the Tcl variable named Ec.

Argument Description

integral Indicates that the model should be integrated over the specified region.

model A valid model keyword.

nonlocal Name of the nonlocal line or nonlocal area over which to integrate the model.

region Name of the region over which to integrate the model.

x The x-coordinate where the model value should be extracted, in . For 2D 
only.

y The y-coordinate where the model value should be extracted, in . For 2D 
only.

z The z-coordinate where the model value should be extracted, in . For 1D 
only.
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GetLast

Syntax

GetLast name=String 

Description

This command obtains the latest value of the named field from the bias log file.

Arguments

Examples

set Vgate [GetLast name="V(Gate)"]

This command extracts the latest value for the field named V(Gate) from the bias log file and
returns it to the Tcl variable Vgate.

Argument Description

name Name of the field from the bias log file.
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LoadDevice

Syntax

LoadDevice tdrFile=String [ignoreDopants=Integer]

Description

This command loads a 1D or 2D device structure from a TDR file.

Arguments

Examples

LoadDevice tdrFile=moscap.tdr

This command reads the TDR file moscap.tdr including any doping-related fields and
contacts.

Argument Description

ignoreDopants When set to 1, individual active dopants in the TDR file are ignored. 
Default=0, that is, known dopants are read from the TDR file.

tdrFile Name of the 1D TDR file to load.
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Material

Syntax

Material {name=String type=String} | {getType name=String} | 
getNames | getList

Description

This command is used to add new materials to Sentaurus Band Structure or to obtain
information about the existing materials.

Arguments

Examples

Material name=Germanium type=semiconductor

This command adds a new material with the name Germanium, specified as a semiconductor.
Models and parameters for this material can then be specified.

Argument Description

getList Obtain a Tcl list of known materials and their material type.

getNames Obtain a Tcl list of known materials by name.

getType Obtain the type of the named material.

name Name of the material.

type Type of the material. Options are:
• semiconductor 
• insulator 
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Math

Syntax

Math { nonlocal name=String [regions=List]
{ [minZ=Double] [maxZ=Double] } |
{ [minX=Double] [maxX=Double] [minY=Double] [maxY=Double] }

} |
{ [potentialUpdateTolerance=Double] [potentialUpdateClamp=Double]
[residualTolerance=Double] [iterations=Integer] [damping=Boolean]
[doOnFailure=Integer] [confinedEigensolver=Integer]
[useDonettiOverlapFix=Boolean]

}

Description

This command is used either to create the geometry of a nonlocal line or nonlocal area to set
parameters related to the solution of the Poisson and Schrödinger equations, and the mobility
calculations. For the specification of a nonlocal line or nonlocal area, only mesh elements fully
contained within the specified geometry parameters are made part of the nonlocal line or
nonlocal area.

Arguments

Argument Description

confinedEigensolver Specifies which eigensolver to use for the confined  Schrödinger 
equations. Options are:
• 0: Arpack 
• 1: Dense Lapack 
• 2: Banded Lapack (default for 1D)
• 3: Banded Lapack with parallelized ‘inverse iteration’ algorithm (see 

second example for further information)
• 4: Arpack shift-and-invert (default for 2D)

damping Specifies that a damping algorithm will be used during the solution of the 
Poisson equation to improve convergence. Options are:
• 0: Do not use damping (default).
• 1: Use damping.

doOnFailure Specifies the action to take when the Poisson equation does not converge. 
Options are:
• 0: Continue the simulation.
• 1: Issue a Tcl error that can be treated with the catch command 

(default).

iterations Maximum number of allowed Newton iterations. Default: 50.

k p⋅
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NOTE Convergence of the Poisson equation requires that both the update and
residual tolerances be met.

maxX Maximum x-coordinate of the nonlocal area, in . For 2D only.
Default: .

maxY Maximum y-coordinate of the nonlocal area, in . For 2D only.
Default: .

maxZ Maximum z-coordinate of the nonlocal line, in . For 1D only.
Default: .

minX Minimum x-coordinate of the nonlocal area, in . For 2D only.
Default: .

minY Minimum y-coordinate of the nonlocal area, in . For 2D only.
Default: .

minZ Minimum z-coordinate of the nonlocal line, in . For 1D only.
Default: .

name Name of the nonlocal line or nonlocal area.

nonlocal Specifies that a nonlocal line or nonlocal area should be defined with the 
specified name.

potentialUpdateClamp Absolute value of the maximum-allowed update applied to the potential 
during one Newton iteration in volts. Default: 1.

potentialUpdateTolerance Convergence tolerance applied to the potential update in units of the 
thermal voltage: . Default: 1.0e-5.

regions List of regions to be included in the nonlocal line or nonlocal area. 
Default: All regions.

residualTolerance Convergence tolerance applied to the residual of the Poisson equation in 
units of . Default: 1.0.

useDonettiOverlapFix Specifies that the wavefunction overlap form-factor between degenerate 
subbands will be computed from the intra-subband form-factor. Options 
are:
• 0: Do not use this modification.
• 1: Use this modification (default).

Argument Description
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Examples

Math nonlocal name=NL1 minZ=0 maxZ=20.0e-3 regions=[List sil]

This command creates a nonlocal line with the name NL1 consisting of mesh elements from the
region with the name si1 and made of points that fall within z=0  to z=0.02 .

Math confinedEigensolver=3

This command switches from the default banded Lapack eigensolver (for calculating both
confined  eigenenergies and wavefunctions) to an alternative scheme that uses the
standard Lapack eigensolver only for calculating eigenvalues; eigenvectors are then computed
from the eigenvalues by a parallelized ‘inverse iteration’ scheme. In scenarios that do not use

-dependent wavefunctions, this alternative algorithm may provide improved scalability on
machines with a large number of CPU cores.

Progress bars (see showProgressBars in sBandGet/sBandSet on page 242) offer some
guidance on the choice of algorithm: The time taken for the wavefunction calculation at the
subband minimum is framed by < and >. Progress of the calculation of the subband dispersion
on the polar grid is indicated by a number of dots (.). If the completion marker (>) of the
wavefunction calculation is very close to the end of the progress bar, this typically indicates a
scaling bottleneck, which may be overcome by switching from eigensolver mode 2 to mode 3.

μm μm

k p⋅

k

Sentaurus™ Device Monte Carlo User Guide 333
N-2017.09



16: Sentaurus Band Structure/Tcl Command Reference 
Subband and Mobility Calculations
Physics

The Physics command is used to specify a range of physical models and parameters. The
types of model and parameter that can be specified are separated into different groups:

■ Top-level parameters

■ Contact parameters

■ Electrostatic physical models

■ Valley models

■ Scattering models

■ Trap models

■ Interface potential spike models

■ Nonlocal line parameters for specifying Schrödinger solvers and mobility calculators

Physics for Top-Level Parameters

Syntax

Physics {[surfaceOrientation=RealVector3D] [xDirection=RealVector3D]} |
{[xDirection=RealVector3D] [yDirection=RealVector3D]} |
[temperature=Double] [print]

Description

This command sets the top-level, global device parameters that define the device axes and
temperature. In addition, it enables printing of all defined models.

Arguments

Argument Description

print Prints a table of all models in all regions.

surfaceOrientation 1D: Surface orientation relative to the crystal axes. Default: [list 0 0 1].

temperature Temperature in kelvin. Default: 300.

xDirection 1D: Direction of the in-plane x-axis relative to the crystal axes.
Default: [list 1 0 0].
2D: Direction of the confinement x-axis relative to the crystal axes.
Default: [list 1 0 0].

yDirection 2D: Direction of the confinement y-axis relative to the crystal axes.
Default: [list 0 1 0].
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Physics surfaceOrientation=[list 0 1 1] xDirection=[list 1 0 0] \
temperature=77.0

For a 1D device, this command sets the surface orientation to [011], the x-axis direction to
[100], and the ambient temperature to 77 K.

Physics for Contacts

Syntax

Physics contact=String workfunction=Double 

Arguments

Examples

Physics contact=gate workfunction=5.2

This command sets the workfunction of the gate contact to 5.2 eV.

Physics for Electrostatic Models

Various electrostatic models are used during the solution of the Poisson equation. These
models are specified for particular regions or materials. Each model is identified by a model
keyword for which a particular model can be selected. Model parameters specific to each
selected model are also specified using the Physics command.

Syntax

Physics {material=String | region=String} <ModelKeyword>=String 
<paraName1>=<value1> ...

Argument Description

contact Name of the contact.

workfunction Workfunction value for the contact in eV. Default: 4.10.
Sentaurus™ Device Monte Carlo User Guide 335
N-2017.09



16: Sentaurus Band Structure/Tcl Command Reference 
Subband and Mobility Calculations
Arguments

Examples

Physics material=Silicon eDensity=eFermiDensity Nc=2.9e19

This command sets the model for the electron density, with the model keyword eDensity, to
the Fermi–Dirac model for electrons, with the name eFermiDensity. This model has one
adjustable parameter, the effective conduction band DOS at 300 K, with the name Nc. Here, it
is set to 2.9e19 .

Modifying Parameters

When a physical model and an initial set of parameters have been specified, the model
parameters can be subsequently modified with another Physics command using only the
model keyword. For example, if the eDensity model was already set to the eFermiDensity
model, the Nc parameter can be modified using:

Physics material=Silicon eDensity Nc=2.9e19

Switching Models

The selected model for a model keyword can be changed with another Physics command that
specifies the new model name. For example, the following commands first set the eDensity
model to the Fermi–Dirac model and then change it to the multivalley model:

Physics material=Silicon eDensity=eFermiDensity Nc=2.9e19
Physics material=Silicon eDensity=eMultiValleyDensity

Argument Description

material Name of a material in the device. All regions of this material will have the same 
model and parameters set. Specify either material or region but not both. 
Convenient aliases are provided:
• semiconductor for all semiconductor regions.
• insulator for all insulator regions.
• all for all regions.

<ModelKeyword> This is a keyword for a built-in model. The value of this parameter selects a 
specific model to use for the calculation of the built-in model.

<paramName1> This is the name of any valid parameter for the selected model and is used to set 
the value of that parameter.

region Name of a region in the device for which the given model and parameters are set. 
Specify either material or region but not both.

cm 3–
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NOTE When a new model is selected, the parameters of the old model are lost.
Subsequently, reverting the model to the original model will not recover
any modified parameters.

Physics for Valley Models

Valley models are a special category of model. They hold parameters representing the band
structure around valley extrema in -space. Valley models are multimodels in that more than
one ValleyModel can be defined for each region. To be able to refer to a particular
ValleyModel, a name for the ValleyModel must be specified.

Syntax

Physics {material=String | region=String} ValleyModel=String name=String 
degeneracy=Integer
[{useForEBulkDensity=Boolean | useForHBulkDensity=Boolean}]
[remove] [removeAll] <paraName1>=<value1> ...

Arguments

Argument Description

degeneracy The valley degeneracy.

material Name of a material in the device. All regions of this material will have the same 
model and parameters set. Specify either material or region but not both. 
Convenient aliases are provided:
• semiconductor for all semiconductor regions.
• insulator for all insulator regions.
• all for all regions.

name Unique name for this valley. This name is used by other models to refer to this 
valley.

<paramName1> This is the name of any valid parameter for the selected valley model and is used 
to set the value of that parameter.

region Name of a region in the device for which the given model and parameters are set. 
Specify either material or region but not both.

remove Keyword to indicate that a particular ValleyModel should be removed.

removeAll Keyword to indicate that all valley models should be removed.

useForEBulkDensity Flag to indicate if a bulk electron density model is created automatically. Options 
are:
• 0: Bulk model not created (default).
• 1: Bulk model is created.

k
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Physics material=Silicon ValleyModel=2kpEllipsoid name=Delta1 \
degeneracy=2 longAxis=100 useForEBulkDensity=1 ml=0.92

This command creates a valley model based on the 2kpEllipsoid model with the name
Delta1. The valley degeneracy is specified as 2, and this command sets the longitudinal axis
and ml parameters of the model to 100 and 0.92, respectively. Specifying the
useForEBulkDensity flag automatically creates a model to compute the bulk electron
density for this valley.

Modifying Parameters

When a valley model and an initial set of parameters have been specified, the model parameters
can be modified subsequently by another Physics command using only the ValleyModel
keyword and the name of the valley. For example, the Delta1 valley created in the above
example can be modified using:

Physics material=Silicon ValleyModel name=Delta1 ml=0.916

Switching Models

The selected model for a valley model can be changed by another Physics command that
specifies the new model name along with the name of the original valley. For example, the
model for the Delta1 valley created in the previous examples can be changed using:

Physics material=Silicon ValleyModel=ConstantEllipsoid name=Delta1 \ 
degeneracy=2 ml=0.92

NOTE When a new ValleyModel is selected for an existing valley, the
parameters of the old model are lost. Subsequently, reverting the model
to the original model will not recover any modified parameters.

Removing Valley Models

A valley model can be removed from use by Sentaurus Band Structure by specifying the
ValleyModel keyword and valley name along with the remove keyword. For example, using
the Delta1 example above:

Physics material=Silicon ValleyModel name=Delta1 remove

useForHBulkDensity Flag to indicate if a bulk hole density model is created automatically. Options are:
• 0: Bulk model not created (default).
• 1: Bulk model is created.

ValleyModel Name of the selected valley model.

Argument Description
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All of the valley models in use by Sentaurus Band Structure can be removed by using the
removeAll keyword:

Physics material=Silicon ValleyModel removeAll

Physics for Scattering Models

Scattering models are a special category of model. They represent the different scattering
mechanisms used during the mobility calculation. Multiple scattering models can be specified
using multiple Physics ScatteringModel commands.

Syntax

Physics {material=String | region=String} ScatteringModel=String name=String 
valleys=List transitionType=String inelasticType=String 
hbarOmega=Double [remove] [removeAll] <paraName1>=<value1> ...

Arguments

Argument Description

hbarOmega For inelastic phonon models, the phonon energy in eV. Default: 0.0.

inelasticType For inelastic models, indicates whether the transition is for absorption or 
emission. Options are:
• ABS (default)
• EMS 

material Name of a material in the device. All regions of this material will have the same 
model and parameters set. Specify either material or region but not both. 
Convenient aliases are provided: 
• semiconductor for all semiconductor regions.
• insulator for all insulator regions.
• all for all regions.

name Unique name for this scattering model. This name can be used in subsequent 
Physics commands to modify model parameters.

<paramName1> This is the name of any valid parameter for the selected model and is used to set 
the value of that parameter.

region Name of a region in the device for which the given model and parameters are set. 
Specify either material or region but not both.

remove Keyword to indicate that a particular scattering model should be removed.

removeAll Keyword to indicate that all scattering models should be removed.

ScatteringModel Name of the selected scattering model.
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Physics material=Silicon ScatteringModel=ElasticAcousticPhonon name=AC1 \
valleys=[list Delta1 Delta2 Delta3] transitionType=Intravalley Dac=6.8

This command adds a model for elastic acoustic phonon-scattering to the list of scattering
models in all silicon regions. This model is named AC1 and is specified to only apply to
intravalley transitions. Because only intravalley transitions are allowed, the valleys to which
this model will be applied can be listed singly since the initial and final valleys are the same.
Here, three Delta valleys are listed. One model-specific parameter, Dac, is also specified.

set fValleys [list {Delta1 Delta2} {Delta1 Delta3} \
{Delta2 Delta1} {Delta2 Delta3} \
{Delta3 Delta1} {Delta3 Delta2} ]

Physics material=Silicon ScatteringModel=InelasticPhonon \
name=fIV_ABS valleys=$fValleys transitionType=Intervalley \
inelasticType=ABS hbarOmega=61.2e-3 DtK=1.0e8

This command adds a model for f-type inelastic phonon-scattering to all silicon regions. The
list of allowed transitions is specified as a list of initial/final valley pairs. The transition is
specified as Intervalley, which applies to transitions between nonequivalent valleys. Since
this transition is inelastic, the type of inelastic transition must be specified. Here, it is specified
to be a transition involving phonon absorption. The phonon energy is set to 61.2 meV, and one
model-specific parameter, DtK, is specified.

Modifying Parameters

When a scattering model and an initial set of parameters have been specified, the model
parameters can be subsequently modified by another Physics command using only the
ScatteringModel keyword and the unique name of the model. For example, the model
named fIV_ABS created in the above example can be modified using:

Physics material=Silicon ScatteringModel name=fIV_ABS DtK=2.0e8

Switching Models

The selected model for a ScatteringModel can be changed by another Physics command
that specifies the new model name along with the name of the original model. 

transitionType Indicates the type of valley transitions allowed. Options are:
• Intervalley 
• gIntervalley 
• Intravalley (default)
• Intrasubband 

valleys A list of valley pairs denoting the allowed transitions.

Argument Description
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NOTE When a new ScatteringModel is selected, the parameters of the old
model are lost. Subsequently, reverting the model to the original model
will not recover any modified parameters.

Removing Scattering Models

A scattering model can be removed from use by Sentaurus Band Structure by specifying the
ScatteringModel keyword and model name along with the remove keyword. For example,
using the fIV_ABS example above:

Physics material=Silicon ScatteringModel name=fIV_ABS remove

All of the scattering models in use by Sentaurus Band Structure can be removed by using the
removeAll keyword:

Physics material=Silicon ScatteringModel removeAll

Physics for Trap Models

Trap models are a special category of model that enables the specification of interface charge.
Two types of interface charge can be specified: fixed charge and donor (or acceptor) traps.
Multiple values of interface charge can be specified using multiple Physics TrapModel
commands.

Syntax

Physics {materialInterface=String | regionInterface=String}
TrapModel=String [name=String]
[remove] [removeAll]
conc=Double # For TrapModel=FixedCharge 
carrierType=String } For 
DitProfile=String } TrapModel=Donor 
[conc=Double] [DitTable=List] } or 
[EnergyMid=String] [EnergySig=Double] } TrapModel=Acceptor 
[Emin=String] [Emax=String] [g=Double] }
[{refMaterial=String | refRegion=String}] }

Arguments

Argument Description

conc Interface trap concentration:
• For fixed charge, this specifies a fixed charge in units of  and can be 

positive or negative.
• For donor or acceptor traps, this parameter is used by the analytic  

profiles and is specified in units of  and must be positive.
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carrierType Selects which quasi-Fermi energy is used in the distribution function for trap 
occupancy. Options are electron or hole. Default = electron.

DitProfile Profile to use for the interface trap density. Options are Exponential, 
Gaussian, Table, or Uniform.

DitTable For DitProfile=Table, this specifies the  profile as a Tcl list of 
{Energy Dit} pairs in which the Energy is in eV relative to the relaxed 
valence band and Dit is in units of .

Emax Maximum energy of  profile. Options are CondBand, ValBand, 
MidBandGap, or a numeric value. It is specified relative to the relaxed valence 
band. The default for analytic profiles is CondBand. The default for 
DitTable is the maximum energy from the list.

Emin Minimum energy of  profile. Options are CondBand, ValBand, 
MidBandGap, or a numeric value. It is specified relative to the relaxed valence 
band. The default for analytic profiles is ValBand. The default for 
DitTable is the minimum energy from the list.

EnergyMid Middle energy parameter used by exponential and Gaussian profiles. Options are 
CondBand, ValBand, MidBandGap, or a numeric value. 
Default = MidBandGap.

EnergySig Decay parameter used by the exponential and Gaussian profiles. Default value 
and unit is 0.1 eV.

g Degeneracy parameter for trap occupancy distribution functions. Default=1.

materialInterface Name of region interfaces between two materials. Material names must be 
separated by a slash (/), for example, "Silicon/Oxide". All interfaces 
between regions of these two materials will have the same model and parameters 
set. Specify either materialInterface or regionInterface, but 
not both.

name Unique name for the trap model. This name can be used in subsequent 
Physics commands to modify model parameters.

refMaterial Material that supplies the reference energy bands for the  profile. For 
semiconductor–insulator interfaces, this is given by the semiconductor region by 
default.

refRegion Region that supplies the reference energy bands for the  profile. For 
semiconductor–insulator interfaces, this is given by the semiconductor region by 
default.

regionInterface Name of an interface between two regions. Region names must be separated by a 
slash, for example, "si1/ox1". Specify either materialInterface or 
regionInterface, but not both.

remove Keyword to indicate that a particular trap model must be removed.

Argument Description
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Physics regionInterface="si1/ox1" TrapModel=FixedCharge name=Nss1 conc=1e12

This command adds a model for a fixed interface charge to the list of interface charge models
at the interface between the regions with names si1 and ox1. This model is named Nss1 and
is given a surface charge concentration of  using the conc model parameter.

Physics regionInterface="si1/ox1" TrapModel=Donor \
name=Dit1 DitProfile=Table \
DitTable=[list {0.0 5.0e12} {0.5 2.0e12} {1.0 1.0e12}] \
Emax=MidBandGap carrierType=electron

This command creates a donor interface trap at the boundary between the si1 and ox1 regions.
The  profile is specified as a table with three entries and extends from 0.0, that is, the
valence band edge, since energies are specified relative to the valence band, to mid-gap. The
carrierType parameter indicates that the electron quasi-Fermi energy should be used to
compute the trap occupancy.

Modifying Parameters

When a trap model and an initial set of parameters have been specified, the model parameters
can be subsequently modified by another Physics command using only the TrapModel
keyword and the unique name of the model. For example, the model named Nss1 created in
the above example can be modified using:

Physics regionInterface="si1/ox1" TrapModel name=Nss1 conc=2e12

Removing Trap Models

A trap model can be removed from use by Sentaurus Band Structure by specifying the
TrapModel keyword and the model name along with the remove keyword. For example,
using the Nss1 example:

Physics regionInterface="si1/ox1" TrapModel name=Nss1 remove

All of the trap models used by Sentaurus Band Structure can be removed with the removeAll
keyword:

Physics regionInterface="si1/ox1" TrapModel removeAll

removeAll Keyword to indicate that all trap models must be removed.

TrapModel Name of the selected trap model. Options are Acceptor, Donor, or 
FixedCharge.

Argument Description

1012 cm 2–

Dit
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Physics for Interface Potential Spike Models

Potential spike models are a special category of model that enables the specification of spike-
like potential barriers or wells at region interfaces. Multiple interface spike models can
specified using multiple Physics SpikeModel commands.

Syntax

Physics {materialInterface=String | regionInterface=String}
SpikeModel=String valleys=List value=Double 
[name=String] [remove] [removeAll]

Arguments

Examples

Physics regionInterface="si1/ox1" SpikeModel=ConstantSpike name=DeltaSpike \
value=2.0e-9 valleys=[list Delta1 Delta2 Delta3]

This command adds a model for a potential spike at the interface between the regions named
si1 and ox1. The model is named DeltaSpike and is given a potential spike value of

 using the value parameter. Using the valleys parameter, this SpikeModel
is restricted to the valleys named Delta1, Delta2, and Delta3.

Argument Description

materialInterface Name of region interfaces between two materials. Material names must be 
separated by a slash (/), for example, "Silicon/Oxide". All interfaces 
between regions of these two materials will have the same model and parameters 
set. Specify either materialInterface or regionInterface, but 
not both.

name Unique name for the spike model. This name can be used in subsequent 
Physics commands to modify model parameters.

regionInterface Name of an interface between two regions. Region names must be separated by a 
slash, for example, "si1/ox1". Specify either materialInterface or 
regionInterface, but not both.

remove Option that indicates a particular spike model must be removed.

removeAll Option that indicates that all spike models must be removed.

SpikeModel Name of the selected spike model. Currently, the only option is 
ConstantSpike.

valleys List of valleys for which this SpikeModel will be applied.

value Value of the potential spike in units of . Positive values produce a spike-like 
barrier at the interface, while negative values produce a spike-like well at the 
interface.

Vcm

2.0 10 9–⋅ Vcm
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Modifying Parameters

After you specify a spike model and an initial set of parameters, the model parameters can be
subsequently modified by another Physics command using only the SpikeModel keyword
and the unique name of a model. For example, the model named DeltaSpike previously
created can be modified using:

Physics regionInterface="si1/ox1" SpikeModel name=DeltaSpike value=-1.0e-9

Removing Spike Models

A spike model can be removed from use by Sentaurus Band Structure by specifying the
SpikeModel keyword, the model name, and the remove option. For example, using the
DeltaSpike model:

Physics regionInterface="si1/ox1" SpikeModel name=DeltaSpike remove

You can remove all spike models used by Sentaurus Band Structure with the removeAll
option:

Physics regionInterface="si1/ox1" SpikeModel removeAll

Physics of Nonlocal Lines or Nonlocal Areas

Nonlocal lines or nonlocal areas are used to indicate where a Schrödinger solve and mobility
calculation should be performed. Nonlocal lines or nonlocal areas are created using the Math
command. Using the Physics command, one Schrödinger solver and one mobility calculator
can be assigned to a nonlocal line or nonlocal area. In addition, various parameters used by the
Schrödinger solver and mobility calculator can be specified.

Syntax

For specifying a Schrödinger solver:

Physics nonlocal=String {eSchrodinger=String| hSchrodinger=String} 
valleys=List/String Nphi=Integer iwSymmetry=String phi0=Double 
{{Kmax=Integer Nk=Integer} | kGrid=List/Double} Nsubbands=Integer 
[{NkForNinv=Integer | kGridForNinv=List/Double}] a0=Double 
[useKdependentWF=Boolean] [remove] [reorderDispersion=Boolean]
<paramName1>=<value1>

For specifying a mobility calculator:

Physics nonlocal=String 
{eMobilityCalculator=String | hMobilityCalculator=String} 
{{Kmax=Integer Nk=Integer} | kGrid=List/Double} [tdfDegenTol=Double]
Nphi=Integer [remove] <paramName1>=<value1>
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Arguments

Argument Description

a0 Scales the -vectors in the polar grid to units of  by multiplying the -
vectors by . Default: 5.43e-8 cm.

eMobilityCalculator Name of a particular mobility calculation approach to use for electrons on the 
nonlocal line.

eSchrodinger Name of a Schrödinger solver to use for electrons on the nonlocal line.

hMobilityCalculator Name of a particular mobility calculation approach to use for holes on the 
nonlocal line.

hSchrodinger Name of a Schrödinger solver to use for holes on the nonlocal line.

iwSymmetry For 1D, specifies the polar symmetry to apply to the calculation of the dispersion. 
The subband dispersion is computed only over the irreducible wedge (IW) 
determined by iwSymmetry and phi0. It must be one of:
• AUTO – Symmetry is detected automatically; only used for six-band  

Schrödinger equation solver (hSchrodinger=6kp)
• IW12 – Twelve-fold symmetry
• IW8 – Eight-fold symmetry
• IW4 – Four-fold symmetry
• IW2 – Two-fold symmetry (default)

kGrid List of values to use for the -grid along the radial direction for the calculation 
of the dispersion, in units of .

kGridForNinv List of values to use for the -grid along the radial direction for the calculation 
of the carrier density, in units of .

Kmax Maximum value of the radial -vector magnitude for the calculation of the 
dispersion, in units of . Default: 0.3.

Nk Number of uniformly spaced points along the radial direction for the calculation 
of the dispersion. Default: 11.

NkForNinv Number of uniformly spaced points in the radial direction for the calculation of 
the carrier density. Default: 22.

nonlocal Name of an existing nonlocal line or nonlocal area.

Nphi Number of uniformly spaced points along the angular direction from 0 to  in 
the polar representation of the dispersion. Ignored for 2D. Default: 48.

Nsubbands Number of subbands to solve for. Default: 8.

<paramName1> This is the name of any valid parameter for the selected Schrödinger solver or 
mobility calculator, and is used to set the value of that parameter.

phi0 Starting angular  value (in radians) to use in conjunction with iwSymmetry. 
Ignored for 2D. Default: 0.0.

remove Keyword to indicate that a Schrödinger solver or mobility calculator should be 
removed.

k cm
1– k

2π a0⁄

k p⋅

k
2π a0⁄( )

k
2π a0⁄( )

k
2π a0⁄( )

2π

ϕ

346 Sentaurus™ Device Monte Carlo User Guide
N-2017.09



16: Sentaurus Band Structure/Tcl Command Reference
Subband and Mobility Calculations
Notes:

■ The specification of the Schrödinger solver and the mobility calculator for a nonlocal line
should be performed in separate Physics commands. The Schrödinger solver must be
defined first.

■ The only polar grid parameters that can be specified for a mobility calculator are Nk,
kGrid, and Nphi. The other parameters are taken from the corresponding Schrödinger
solver previously defined for the same nonlocal line.

Examples

Physics nonlocal=NL1 eSchrodinger=Parabolic \
valleys=[list Delta1 Delta2 Delta3] Nk=8 Nphi=16 phi=0.0 iwSymmetry=IW4 \
Kmax=0.25 Nsubbands=8 correction=3

This command assigns the Parabolic Schrödinger solver to the nonlocal line NL1. It is
specified to solve the Schrödinger equation for the valleys named Delta1, Delta2, and
Delta3. A polar grid with 8 radial points from 0 to Kmax=0.25  and 16 angular
points starting from phi=0 radians is specified. The IW symmetry is set to IW4, that is, a four-
fold symmetry. The lowest eight subbands will be computed for each valley. The correction
parameter for the Parabolic solver specifies that model 3 for the nonparabolic correction
should be used.

Physics nonlocal=NL1 eMobilityCalculator=KGFromK Nk=64 Nphi=48

This command assigns the KGFromK mobility calculator to the nonlocal line NL1 for
computing the electron mobility. A polar grid with 64 uniformly spaced grid points in k and 48
uniformly spaced grid point in phi is specified. The Kmax value for the radial grid is taken from
that previously defined for the Schrödinger solver on the same nonlocal line.

reorderDispersion The default order of the subbands for each -point is based on the energy value. 
If reordering of the subband dispersion is switched on, the order of the subbands 
is determined through wavefunction overlap in -space. Options are:
• 0 – Do not reorder subband dispersion (default).
• 1 – Reorder subband dispersion.

tdfDegenTol Subband energy difference tolerance for screening inter-subband transitions with 
the tensor Lindhard screening model. Default: –1.

useKdependentWF Specifies that the wavefunctions should be computed at each -point in the -
space grid. Options are:
• 0 – Only evaluate wavefunctions at the subband minimum (default).
• 1 – Evaluate wavefunctions at each -point.

valleys List of valleys by name that the Schrödinger solver will use.

Argument Description

k

k

k k
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Modifying Parameters

When a Schrödinger solver or mobility calculator has been defined for a nonlocal line or
nonlocal area, and an initial set of parameters has been specified, the parameters can be
subsequently modified by another Physics command using only the eSchrodinger,
hSchrodinger, eMobilityCalculator, or hMobilityCalculator keyword along with
the name of the nonlocal line.

For example, a previously defined Schrödinger solver for electrons on the nonlocal line NL1
can be modified using:

Physics nonlocal=NL1 eSchrodinger Nk=22

Switching Schrödinger Solvers and Mobility Calculators

The selected Schrödinger solver or mobility calculator for a nonlocal line or nonlocal area can
be changed by another Physics command that specifies the new Schrödinger solver or
mobility calculator name along with the name of the nonlocal line. 

NOTE When a new Schrödinger solver or mobility calculator replaces an
existing one, the original parameters are lost. Subsequently, reverting
the model to the original Schrödinger solver or mobility calculator will
not recover any modified parameters.

Removing Schrödinger Solvers and Mobility Calculators

A Schrödinger solver or mobility calculator can be removed from use by Sentaurus Band
Structure by specifying the eSchrodinger, hSchrodinger, eMobilityCalculator, or
hMobilityCalculator keyword along with the name of the nonlocal line or nonlocal area
followed by the remove keyword. For example, using the NL1 example above:

Physics nonlocal=NL1 eSchrodinger remove

Save

Syntax

To save to a TDR file:

Save tdrFile=String models=List/String [noXYTDR]

To save to a text file:

Save dataFile=String [noHeader] [highPrecision] models=List/String 
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Description

This command saves a real-space TDR file or a text file with the specified models as a function
of the real-space device coordinates.

Arguments

Examples

Save tdrFile=solution.tdr models=[list eDensity hDensity ConductionBandEnergy]

This command saves a TDR file containing the solutions for the electron and hole densities and
the conduction band energy over the device structure.

Save dataFile=mypot.xy noHeader highPrecision models=VacuumPotential

This command saves, to the xy text file mypot.xy, the solutions for the vacuum potential with
high precision as a function of the z-coordinate of the 1D device structure. Here, the header of
the file is omitted and only data is saved. The saved file mypot.xy can be used for the
Solve biasFromPotFile=mypot.xy or Solve initialPotFile=mypot.xy
command (for more details, see Solve on page 352).

Argument Description

dataFile Name of the xy text file to save.

highPrecision If not specified, data with low precision is saved. If specified, data with higher
precision is saved.

models A Tcl list of models to save, given by their model keywords.

noHeader If specified, the header of the xy text file is omitted. This option is especially
useful for saving the vacuum potential used for the initial guess of the self-
consistent process (since the Solve biasFromPotFile=String
command or the Solve initialPotFile=String command accepts
only a simple xy text file without header).

noXYTDR For 1D structures, saves a structure-based TDR file that can be reread. By default,
1D structures are saved as xy TDR files, which are more convenient for
visualization.

tdrFile Name of the TDR file to save.
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SaveDitProfile

Syntax

SaveDitProfile tdrFile=String trapName=String 
{ {x=Double y=Double} | z=Double }

Description

This command saves a TDR file containing profile information for interface trap–related
quantities. These quantities are extracted for the interface node closest to the specified
coordinates.

Arguments

Argument Description

tdrFile Name of the TDR file.

trapName Name of the trap for which the interface trap quantities are extracted.

x The x-coordinate in  for 2D simulations.

y The y-coordinate in  for 2D simulations.

z The z-coordinate in  for 1D simulations.

μm

μm

μm
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SaveK

Syntax

SaveK tdrFile=String models=List/String [nonlocal=String] [Nk=Integer]
[Kmax=Double]

Description

This command saves a TDR file containing -space models for the subbands over a uniformly
spaced, Cartesian, tensor-product mesh.

Arguments

NOTE

• For a 1D device, while the -space mesh used in the solution of the
Schrödinger equation and the calculation of mobility is a polar grid,
the mesh used to save data to the TDR file is a Cartesian tensor-
product mesh. The extent and mesh spacing of this mesh can be
controlled using the Nk and Kmax parameters.

• The name of each -space model saved must include a unique
identifier for the required subband. This identifier is composed of
the valley name, an underscore (_), and then the subband index. For
example, Gamma_0 would be used to identify the 0th subband of the
Gamma valley. The dispersion for this subband can be saved by
specifying Gamma_0_Dispersion.

Argument Description

Kmax Maximum -value in the Cartesian tensor-product mesh for the TDR file. The 
default value is determined from the -space grid of the nonlocal line or nonlocal 
area.

models A list of -space models to save, prepended by the valley name and subband 
index. Valid models are Dispersion, IMRT, or LinearBTE for the linear 
BTE mobility calculator.

Nk Number of -points to use in the Cartesian tensor-product mesh for the TDR file. 
Default: 101.

nonlocal Name of the nonlocal line for which to save the subband models. By default, the 
first found nonlocal line is used.

tdrFile Name of the TDR file.

k

k
k

k

k
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Examples

SaveK tdrFile=kspace.tdr nonlocal=NL1 \
models=[list Delta1_1_Dispersion Delta2_0_IMRT]

This command saves a TDR file with -space models from the nonlocal line named NL1. The
dispersion for the subband with index 1 for the valley named Delta1 is saved along with the
IMRT for the Delta2 valley, subband 0.

Solve

Syntax

For a self-consistent solve where biases are specified:

Solve V(ContactName1)=Double V(ContactName2)=Double [initial] \
[saveVacuumPotToFile=String] [logFile=String]

For a self-consistent solve where the initial solution of the vacuum potential is read from a text
file:

Solve initialPotFile=String [initial] [saveVacuumPotToFile=String] \
[logFile=String]

For a self-consistent solve where biases are read from a text file:

Solve biasFromPotFile=String [initial] [saveVacuumPotToFile=String] \
[logFile=String]

For a triangular potential well:

Solve Esurface=Double [Ninv=Double] [logFile=String]

For a non-self-consistent solve, based on the potential read from a TDR file:

Solve potentialFile=String [potentialModel=String] [offset=Double]

Description

This command is used to solve the Poisson and Schrödinger equations.

k
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Arguments

NOTE No built-in bias-ramping capability is supplied. You can use a Tcl
foreach loop to perform a bias ramp.

Examples

Solve V(Gate)=1.0 V(Substrate)=0.0 initial logFile=mydata.plt

This command solves the Poisson equation at a gate bias of 1.0 V and substrate bias of 0.0 V.
A charge-neutral approximation is used as the initial guess, and the resulting data after
convergence is written to the bias log file mydata.plt.

Argument Description

biasFromPotFile If specified, this is the name of the vacuum potential file from which the biases of
contacts are read. The vacuum potential file is a text file with two columns: The
first column is the spatial coordinate, and the second column is the vacuum
potential.

Esurface Value of the vertical surface field (in V/cm) that is used to create a triangular 
potential well. Use positive values for NMOS devices, and use negative values 
for PMOS devices.

initial If specified, a charge-neutral approximation is used as the initial guess for 
solving the Poisson equation.

initialPotFile If specified, this is the file name for the initial guess of the vacuum potential. The
vacuum potential file is a text file with two columns: The first column is the
spatial coordinate, and the second column is the vacuum potential.

logFile Name of the bias log file to write results to after the solve is completed. If not 
specified, the currently open bias log file is used.

Ninv If specified, this is the target value of the total inversion density used in 
conjunction with Esurface. The Fermi level is adjusted automatically to meet 
this target value, in units of .

offset Constant value (in V) by which to shift the specified potentialModel 
when mapping to the internal VacuumPotential. Default: 0 V.

potentialFile Name of the TDR file from which to read the potential for a non-self-consistent 
solve.

potentialModel Name of the potential model to read from the specified potentialFile for 
a non-self-consistent solve. Default: VacuumPotential.

saveVacuumPotToFile If specified, this is the file name to which the vacuum potential after each
iteration step is saved. The vacuum potential file is a text file with two columns:
The first column is the spatial coordinate, and the second column is the vacuum
potential.

V(ContactName1) Specifies the bias to apply to the named contact.

cm
2–
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Solve biasFromPotFile=mypot.xy initial logFile=mydata.plt

This command solves the Poisson equation where the biases are read from the text file
mypot.xy. A charge-neutral approximation is used as the initial guess, and the resulting data
after convergence is written to the bias log file mydata.plt.

Solve initialPotFile=mypot.xy saveVacuumPotToFile=mypot.xy

This command solves self-consistently the Schrödinger equation–Poisson equation system
where the initial guess for the vacuum potential is read from the text file mypot.xy, and the
vacuum potential after each iteration step is overwritten to the same text file mypot.xy. Using
this command, the intermediate solution of the vacuum potential is always saved, regardless of
whether the simulation is stopped either accidently or intentionally. Therefore, when the
simulation is restarted, the unnecessary repetition of previous iteration steps is avoided, and the
self-consistent process continues with the most-updated vacuum potential. Consequently, the
total CPU time consumption is reduced.

Solve potentialFile=myfile.tdr potentialModel=ElectrostaticPotential
offset=0.25

This command solves any specified models, including Schrödinger solvers, non-self-
consistently with the Poisson equation. In this example, the ElectrostaticPotential field
from the myfile.tdr file is read into the program, it is shifted by a constant offset of 0.25 V,
and it is interpolated onto the VacuumPotential model of the internal device mesh. Then,
this VacuumPotential is used unmodified when solving any specified Schrödinger solvers
or computing other models.
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