
Using the

ELECTRIC

VLSI Design System

Version 9.07

Steven M. Rubin

Author's affiliation:

Static Free Software

ISBN 0−9727514−3−2

Published by R.L. Ranch Press, 2016.

Copyright (c) 2016 Static Free Software

Permission is granted to make and distribute verbatim copies of this book provided the copyright notice and
this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this book under the conditions for verbatim
copying, provided also that they are labeled prominently as modified versions, that the authors' names and
title from this version are unchanged (though subtitles and additional authors' names may be added), and that
the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this book into another language, under the above
conditions for modified versions.

Electric is distributed by Static Free Software (staticfreesoft.com), a division of RuLabinsky Enterprises,
Incorporated.

Table of Contents
Chapter 1: Introduction...1

1−1: Welcome...1
1−2: About Electric...2
1−3: Running Electric..3
1−4: Building Electric from Source Code...5
1−5: Plug−Ins..10
1−6: Fundamental Concepts..12
1−7: The Display...15
1−8: The Mouse...17
1−9: The Keyboard..18
1−10: IC Layout Tutorial...21
1−11: Schematics Tutorial...30
1−12: Schematics and Layout Tutorial..36

Chapter 2: Basic Editing..47
2−1: Selection..47
2−2: Circuit Creation...52
2−3: Circuit Deletion...57
2−4: Circuit Modification..59
2−5: Changing Size...63
2−6: Changing Orientation..65

Chapter 3: Hierarchy...67
3−1: Cells...67
3−2: Cell Creation and Deletion..69
3−3: Creating Instances...71
3−4: Examining Cell Instances..73
3−5: Moving Up and Down the Hierarchy..74
3−6: Exports..76
3−7: Cell Information..82
3−8: Rearranging Cell Hierarchy..87
3−9: Libraries..88
3−10: Copying Cells Between Libraries...95
3−11: Views...97

Chapter 4: Display..101
4−1: The Tool Bar...101
4−2: The Messages Window...103
4−3: Creating and Deleting Editing Windows..104
4−4: Zooming and Panning...108
4−5: The Sidebar...111
4−6: Color..119
4−7: Grids and Alignment...123
4−8: Printing..127

 Using the Electric VLSI Design System, version 9.07 i

Table of Contents
4−9: Text Windows...129
4−10: 3D Windows..131
4−11: Waveform Windows...137

Chapter 5: Arcs...145
5−1: Introduction to Arcs..145
5−2: Constraints...146
5−3: Setting Constraints..149
5−4: Other Properties..150
5−5: Default Arc Properties...153

Chapter 6: Advanced Editing..155
6−1: Making Copies..155
6−2: Creation Defaults..156
6−3: Preferences..158
6−4: Making Arrays..160
6−5: Spreading Circuitry...162
6−6: Replacing Circuitry...163
6−7: Undo Control...165
6−8: Text...166
6−9: Networks...175
6−10: Outlines...182
6−11: Interpretive Languages..186
6−12: Project Management..190
6−13: CVS Project Management...194
6−14: Emergencies..196

Chapter 7: Technologies..197
7−1: Introduction to Technologies..197
7−2: Scaling and Units..201
7−3: I/O Control..203
7−4: The MOS Technologies..219
7−5: Schematics...223
7−6: Special Technologies..228

Chapter 8: Creating New Technologies..239
8−1: Technology Editing...239
8−2: Converting between Technologies and Libraries..241
8−3: Hierarchies of Technology Libraries..243
8−4: The Layer Cells...244
8−5: The Arc Cells..248
8−6: The Node Cells..250
8−7: Miscellaneous Information..255
8−8: How Technology Changes Affect Existing Libraries...257

ii Using the Electric VLSI Design System, version 9.07

Table of Contents
8−9: Examples of Use...259
8−10: Technology XML File Format..263
8−11: The Technology Creation Wizard...278

Chapter 9: Tools...287
9−1: Introduction To Tools...287
9−2: Design Rule Checking (DRC)...289
9−3: Electrical Rule Checking (ERC)...296
9−4: Simulation Interface..298
9−5: Simulation (built−in)...312
9−6: Routing..326
9−7: Network Consistency Checking (NCC)..338
9−8: Generation...357
9−9: Logical Effort..367
9−10: Extraction..371
9−11: Compaction...375
9−12: Silicon Compiler...376
9−13: Placement..379

Chapter 10: The JELIB and DELIB File Format...381
10−1: Introduction to File Format...381
10−2: Header...383
10−3: Body..386
10−4: Miscellaneous..391

 Using the Electric VLSI Design System, version 9.07 iii

iv Using the Electric VLSI Design System, version 9.07

Chapter 1: Introduction

1−1: Welcome

Now you have it!

A state−of−the−art computer−aided design system for VLSI circuit design.

Electric designs MOS and bipolar integrated circuits, printed−circuit−boards, or any type of circuit you
choose. It has many editing styles including layout, schematics, artwork, and architectural specifications.

A large set of tools is available including design−rule checkers, simulators, routers, layout generators, and
more.

Electric interfaces to most popular CAD specifications including EDIF, LEF/DEF, VHDL, CIF and GDS.

The most valuable aspect of Electric is its layout−constraint system, which enables top−down design by
enforcing consistency of connections.

This manual explains the concepts and commands necessary to use Electric. It begins with essential features
and builds on them to explain all aspects of the system. As with any computer system manual, the reader is
encouraged to have a machine handy and to try out each operation.

 Using the Electric VLSI Design System, version 9.07 1

1−2: About Electric

The About Electric... command (in menu Help) shows you the names of the Electric development team. It
also outlines your legal rights with respect to Electric.

This manual is available while running Electric. Use the User's Manual... command (in menu Help) to see
this manual (you may already be doing that).

While inside of the manual, click "Menu Help" to get help with Electric's pulldown menus. It displays a
pulldown menu inside of the manual page which mimics the real pulldown menu. Select any command from
this new menu to get help for the real pulldown menu entry.

Chapter 1: Introduction

2 Using the Electric VLSI Design System, version 9.07

1−3: Running Electric

There are two ways to run Electric:

Download the JAR file from GNU. This is discussed further below.•
Build Electric from source code. This is discussed in Section 1−4−1.•

Downloading the Electric JAR file is explained here. Electric is written in the Java programming language
and so the JAR file is typically called "electric−version.jar" where version is 8.09, 8.10, 9.00, 9.01, etc. There
are two variations on the JAR file: with or without source code (the version without source code has the word
"Binary" in its name). Either of these files can run Electric, but the one with source code is larger because it
also has all of the Java code.

Electric requires OpenJDK, Apache Harmony, or Oracle Java version 1.6. It is developed with Oracle Java,
so if you run into problems with other versions, try installing Java 1.6 or later from Oracle.

Running Electric varies with the different platforms. Most systems also allow you to double−click on the
JAR file. If double−clicking doesn't work, try running it from the command−line by typing either:

java −jar electric−version.jar [libraries]

or:
java −classpath electric−version.jar com.sun.electric.Launcher [libraries]

There are a number of options that can be given at the end of the command line:

−mdi force a multiple document interface style (where Electric is one big window with smaller edit
windows in it). This is the default interface on Windows.

•

−sdi force a single document interface style (where each Electric window is separate). This is the
default interface on UNIX/GNU−Linux and the Macintosh. Note that the MDI/SDI settings can also
be made from the Display Control Preferences (see Section 4−3).

•

−s script run the script file through the Bean Shell. If the script is "−" then the script is read from the
standard input.

•

−batch run in batch mode (no windows or other user interface are shown; batch mode implies 'no
GUI', and nothing more).

•

−version provides full version information including the build date.•
−v provides brief version information.•
−NOMINMEM ignores minimum memory requirements when starting the JVM.•
−help prints a list of available command options.•
−debug adds developer menus and other debugging state. One of the debug menus is "Test" which
lets Electric test itself. The test data is available for download at
www.staticfreesoft.com/ElectricRegressionData.zip. After extracting the data, you must set its
location in the "Tests" Preferences.

•

Chapter 1: Introduction

 Using the Electric VLSI Design System, version 9.07 3

#chap01-04-01
http://www.staticfreesoft.com/productsFree.html
#chap04-03
http://www.staticfreesoft.com/ElectricRegressionData.zip

Memory Control

One problem with Java is that the Java Virtual Machine has a memory limit. This limit prevents programs
from growing too large. However, it prevents large circuits from being edited.

If Electric runs out of memory, you can request more. To do this, use the General Preferences (in menu File /
Preferences..., "General" section, "General" tab). The "Memory" section has two memory limit fields, for
Maximum memory and Maximum permanent space. Changes to these values take effect when you next run
Electric. Note that any request to expand Electric beyond the default Java sizes will cause Electric to
re−launch itself at startup so that the JVM has access to more memory. To prevent relaunching of Electric,
set the memory fields back to zero.

The Maximum memory size is the most important because increasing it will offer much more circuitry
capacity. Note that 32−bit JVMs can only grow so far. On 32−bit Windows systems you should not set it
above 1500 (1.5 Gigabytes). On 32−bit Linux or Macintosh system, you should not set it above 3600 (3.6
Gigabytes).

Permanent space is an additional section of memory that may need to be increased. For very large chips, a
value of 200 or more may enhance performance.

Chapter 1: Introduction

4 Using the Electric VLSI Design System, version 9.07

1−4: Building Electric from Source Code

1−4−1: Introduction to Source Code

It is not necessary to build Electric from the source code because the downloads are ready to run. For people
who wish to explore the source code, this section describes how you can do it.

Source code is available in two forms:

Packaged in the JAR file. The Electric download from the Free Software Foundation (GNU) has
source code in it which you can extract to build Electric. See Section 1−4−2 for more. Note that this
method is not the preferred way to access the Electric source code because it does not handle
dependencies.

•

At savannah.gnu.org. The Electric source code is in a repository at savannah.gnu.org, specifically
here. There are a number of ways to build Electric from the source code:

Using the command−line (see Section 1−4−3).♦
Using the Netbeans development environment (see Section 1−4−4).♦
Using the Eclipse development environment (see Section 1−4−5).♦

•

1−4−2: Source Code in the JAR Files

Two Electric downloads are available from the Free Software Foundation (GNU): with and without source
code. Therefore it is possible to build Electric from the source code in the download. Note, however, that this
is not the preferred way to access the source code because it does not include the various dependencies. The
preferred way to access the source code is to use Subversions and to access the code on savannah.gnu.org
(see the next three sections for more).

To extract the source code from the ".jar" file, place it in its own directory, change to that directory, and run
the following command:

jar xf electric−version.jar

(Windows users may want to install "cygwin," from www.cygwin.com, in order to more easily run "jar" and
other commands.) The "jar" command will create a number of files and folders on your disk:

com is a folder with all of the source code.•
org and scala are folders with additional source code that isn't needed when rebuilding.•
META−INF is a support folder used when running the ".jar" file and can be deleted.•
ChangeLog.txt is a detailed list of changes to Electric.•
COPYING.txt is the GNU copyright document that applies to your use of Electric.•
README.txt is a file of notes about Electric.•

Chapter 1: Introduction

 Using the Electric VLSI Design System, version 9.07 5

#chap01-04-02
http://savannah.gnu.org
http://savannah.gnu.org/svn/?group=electric
#chap01-04-03
#chap01-04-04
#chap01-04-05
http://www.cygwin.com

The next step is to get a version of Java that can build source code. Although a "JRE" (Java Runtime
Environment) is sufficient for running Electric, it is not able to build the source code. For that, you must have
a "JDK" (Java Development Kit). In addition, you may want to use an IDE (Integrated Development
Environment) such as NetBeans (at www.netbeans.org) or Eclipse (at www.eclipse.org).

Using the Command Line

"Ant" is a scripting system for building Java programs, and Electric comes with an Ant script called
"build.xml". Once the source code is extracted, you can rebuild Electric simply by typing "ant". Before you
do that, there are some considerations:

If you are not on a Macintosh, you must obtain the Apple Java Extensions from
developer.apple.com/samplecode/AppleJavaExtensions and place it in the directory (next to the
"build.xml" file).

•

The build script only builds what is on your disk. If you want to include the Static Free Software
extensions, you must download it and extract it before building.

•

The build script does not include the parts of Electric that are coded in Scala (insignificant).•
The build script does not build the Bean Shell or Jython.•

Running under Eclipse

Here are some notes about building Electric under Eclipse:

Setup Workspace. The Workspace is a point in the file system where all source code can be found.
You can use the directory where you extracted the Electric source code, or any point above that.

•

Create Project. The Project defines a single program that is being built. Use File / New /
Project and choose "Java Project from Existing Ant Buildfile". Choose the "build.xml" file in the
folder where the files were extracted. Give the project a name, for example, "Electric."

•

Configure Libraries. The "Libraries" tab of the Eclipse project settings lets you add other packages
that may be relevant to the build. There are no required libraries, but many optional ones (see Section
1−5 on plug−ins). Use the "Add External JARs" button to add any extra libraries.

•

Handle Macintosh variations. If you are building on a Macintosh, no changes are needed. If you
are not building on a Macintosh, you must decide whether or not you want the code that you produce
to also run on a Macintosh. If you do not care about being able to run on a Macintosh, remove the
source code module "com.sun.electric.tool.user.MacOSXInterface.java" (which probably has a red
"X" next to it indicating that there are errors in the file). If you want the final code to be able to run
on all platforms, download the stub package "AppleJavaExtensions.jar" from
developer.apple.com/samplecode/AppleJavaExtensions and add this as an external JAR file.

•

Run Electric. Use the Run... command (under the Run menu) to create a run configuration. Under
the "Main" tab of the run−configuration dialog, give the configuration a name (for example,
"Electric"), set the Project to match the one that you have created, and set the "Main class" to be
"com.sun.electric.Launcher". Under the "Arguments" section of the dialog, it is a good idea to
increase Electric's memory size by entering "−mx1000m" under "VM arguments".

•

Chapter 1: Introduction

6 Using the Electric VLSI Design System, version 9.07

http://www.netbeans.org
http://www.eclipse.org
AppleJavaExtensions
#chap01-05
#chap01-05
http://developer.apple.com/samplecode/AppleJavaExtensions

1−4−3: Command−line Access to the savannah.gnu.org Repository

Before attempting to build Electric from the savannah.gnu.org, you must have these tools installed on your
computer:

JDK 1.6 or later (a JRE is sufficient for running Electric, but a JDK is necessary to build it).1.
Subversion. This is the source−code control system.2.
Apache Ant 1.8.0 or later.3.

The following variable should be defined:
JAVA_PATH path to JDK root directory

Next, download the latest sources using Subversion. The first time you do this, issue these commands:
cd WORK−DIR

svn checkout svn://svn.savannah.gnu.org/electric

cd electric

Once the code has been downloaded, it can be updated with these commands:
cd WORK−DIR/electric

svn update

Next, compile the sources (it takes longer the first time, but works incrementally after that):
cd WORK−DIR/electric/packaging

ant

Next run Electric (note that the "X.XX" should be replaced with the current version, for example "9.01"):
WORK−DIR/electric/packaging/electricPublic−X.XX.jar

or:
java −jar WORK−DIR/electric/packaging/electricPublic−X.XX.jar

or:
java −classpath WORK−DIR/electric/packaging/electricPublic−X.XX.jar

com.sun.electric.Launcher

If your design is large and you need more memory, you can request a larger heap size with this command:
java −classpath WORK−DIR/electric/packaging/electricPublic−X.XX.jar

com.sun.electric.Launcher −Xmx1024m −XX:MaxPermSize=128m

Chapter 1: Introduction

 Using the Electric VLSI Design System, version 9.07 7

1−4−4: Netbeans Access to the savannah.gnu.org Repository

Start NetBeans 7.0 or later (these instructions do not work with earlier versions).1.
Install the Team Server Plugin (may be done already with some NetBeans installations):

Use Tools / Plugins and choose the "Available Plugins" tab in the Plugins manager.♦
In the left pane, check the "Team Server" plugin and click "Install". If it is not listed, then it
may already be installed.

♦

Use Window / Services to open the "Services" tab♦
Expand the "Team Server" node and check that the "savannah.gnu.org" Team Server is listed.♦

2.

Download Electric Sources from savannah.gnu.org .
Use Team / Team Server / savannah.gnu.org and click Open Project♦
Search for "electric", select "Electric: VLSI Design System", and click "Open From Team
Server"

♦

Expand the "Electric: VLSI Design System" node in the "Team" tab and the "Sources"
subnode

♦

Click "Source Code Repository (get)"♦
Either enter "Folder To Get" or click the "Browse..." button and choose "trunk" .♦
Choose "Local Folder" and select the location for Electric Sources. The default is
"~/NetBeansProjects/electric~svn"

♦

Click "Get From Team Server"♦
When done, the "Checkout Completed" dialog will say that projects were checked−out. Click
"Open Project...", choose "electric", and click "Open".

♦

3.

Build Electric
Click Run / Set Project Configuration / release−profile. ♦
In the "Projects" tab, right−click "electric" and choose "Build". The Electric project is large.
If the build hangs, then it may be necessary to add "−J−Xmx2g" to the
netbeans_default_options in file <NETBEANS_INSTALLATION>/etc/netbeans.conf .

♦

4.

Run Electric.
Use either Run / Run Main Project (electric) or Debug / Debug Main Project
(electric) from the main menu.

♦
5.

Create a shortcut to start Electric from Desktop:
Create a shortcut to "~/NetBeansProjects/electric~svn/electric/dist/electric.jar" in Unix or to
"Local
Folder\Documents\NetBeansProjects\electric~svn\trunk\electric\target\electric−V.VV−n−SNAPSHOT−jar−with−dependencies.jar"
in Windows

♦

Edit shortcut's "OpenWith" to OpenJDK or other Java distribution. Make this shortcut
executable.

♦

Launch Electric with this shortcut.♦

6.

Create electric distribution for your organization (optional).
Copy the folder ~/NetBeansProjects/electric~svn/electric/dist (with subdirectories) to a
shared location in your file system.

♦
7.

Chapter 1: Introduction

8 Using the Electric VLSI Design System, version 9.07

1−4−5: Eclipse Access to the savannah.gnu.org Repository

Install Eclipse:
Install from www.eclipse.org. The instructions use the "Juno" or later version.♦
Because compiling Electric consumes more than average memory, edit the file eclipse.ini in
the installed area and change the last line from −Xmx512m to −Xmx1024.

♦

1.

Add Subversions to Eclipse:
Do: Help / Install New Software♦
Work with http://subclipse.tigris.org/update_1.6.x♦

2.

Add Scala to Eclipse:
Do: Help / Install New Software♦
Work with http://download.scala−ide.org/sdk/e38/scala29/stable/site (check all 3)♦

3.

Download Electric:
Do: File / Import♦
Choose: SVN / Checkout Projects from SVN♦
Repository is: svn+ssh://strubin@svn.savannah.gnu.org/electric/trunk Select the
top−level When asked, choose "Check out as a project in the workspace" and name it
"Electric"

♦

4.

Make two Electric projects, one for Java code, one for Scala code:
Do: File / New / Java Project♦
Browse to: Electric/electric−java♦
Set output to: electric−java/bin♦
Set external libraries to these JAR files in the "packaging" folder: AppleJavaExtensions−1.4,
scala−library−2.9.1.jar, slf4j−api−1.6.2, slf4j−jdk14−1.6.2, j3dcore, j3dutils, vecmath,
jmf.jar, bsh−2.0b4, jython.jar

♦

Do: File / New / Java Project♦
Browse to: Electric/electric−scala♦
Set output to: electric−scala/bin♦
Set external libraries to these JAR files in the "packaging" folder: slf4j−api−1.6.2,
slf4j−jdk14−1.6.2

♦

Right−click on "electric−scala" project and choose "Configure / Add Scala Nature" ♦

5.

Link the two Electric projects:
Right−click the "electric−scala" project, choose Properties, then Java Build Path Under the
"Projects" tab, click "Add..." and add the "electric−java" project.

♦

Right−click the "electric−java" project, choose Properties, then Java Build Path Under the
"Libraries" tab, click "Add Class Folder" and choose "electric−scala/bin".

♦

6.

Make a launch configuration:
Do: Run / Run configurations♦
Create a new launch configuration (icon in upper−left)♦
In the Main tab, set the project to electric and the main class to com.sun.electric.Launcher♦
In the Arguments tab, set the VM arguments to −mx1200m (to request a 1.2GB JVM)♦

7.

Chapter 1: Introduction

 Using the Electric VLSI Design System, version 9.07 9

http://www.eclipse.org

1−5: Plug−Ins

Electric plug−ins are additional pieces of code that can be downloaded separately to enhance the system's
functionality. If you are building from the savannah.gnu.org repository, then all of these plug−ins are already
available. If, however, you are running from the GNU download, then these plugins are not present and must
be downloaded separately.

Currently, these plug−ins are available:

Static Free Software extras (IRSIM, Animation) This plugin contains all of the pieces of Electric,
written by Static Free Software, that are unable to be packaged with the GNU download (for
licensing reasons). It includes the IRSIM simulator and interfaces to the 3D Animation options. The
IRSIM simulator is a gate−level simulator from Stanford University. Although originally written in
C, it was translated to Java so that it could plug into Electric. The Static Free Software extras are
available from Static Free Software at www.staticfreesoft.com/electricSFS−9.07.jar.

•

Bean Shell The Bean Shell can be added to Electric to enable Java scripting and parameter
evaluation. Advanced operations that make use of cell parameters will need this plug−in. The Bean
Shell is available from www.beanshell.org.

•

Jython Jython can be added to Electric to enable Python scripting. Jython is available from
www.jython.org. Build a "standalone" installation to create a JAR file that can be used with Electric.

•

3D The 3D facility lets you view an integrated circuit in three−dimensions. It requires the Java3D
package, which is available from the Java Community Site, www.j3d.org. This is not a plugin, but
rather an enhancement to your Java installation. Please note that if you are using a 64−bit version of
Java, you must install a 64−bit version of Java3D. Also note that your video card driver must support
OpenGL 1.2 or later in order for Java3D to work.

•

Animation Another extra that can be added to the 3D facility is 3D animation. This requires the Java
Media Framework (JMF). The Java Media Framework is available from Oracle at
java.sun.com/products/java−media/jmf (this is not a plugin: it is an enhancement to your Java
installation).

•

To attach a plugin, it must be in the CLASSPATH. The simplest way to do that is to invoke Electric from the
command line, and specify the classpath. For example, to add the beanshell (a file named "bsh−2.0b1.jar"),
type:
 java −classpath electric.jar:bsh−2.0b1.jar com.sun.electric.Launcher

Note that you must explicitly mention the main Electric class (com.sun.electric.Launcher) when using
plug−ins since all of the jar files are grouped together as the "classpath".

Chapter 1: Introduction

10 Using the Electric VLSI Design System, version 9.07

http://www.staticfreesoft.com
http://www.staticfreesoft.com/electricSFS-9.07.jar
http://www.beanshell.org
http://www.jython.org
http://www.j3d.org
http://www.oracle.com
http://java.sun.com/products/java-media/jmf/

On Windows, you must use the ";" to separate jar files, and you might also have to quote the collection since
";" separates commands:
 java −classpath "electric.jar;bsh−2.0b1.jar" com.sun.electric.Launcher

The above text can be placed into a ".bat" file to make a double−clickable Electric launch. You can also add
Java switches and special Electric controls mentioned in Section 1−3. For example, to add in the SFS
extension and extend the memory to 1GB, you can put this line in the ".bat" file:
 java −classpath "electric.jar;electricSFS.jar" −mx1000m
 com.sun.electric.Launcher

To find out which plugins are installed, click the "Plugins" button in the "About Electric..." dialog (in menu
Help).

Chapter 1: Introduction

 Using the Electric VLSI Design System, version 9.07 11

#chap01-03

1−6: Fundamental Concepts

MOST CAD SYSTEMS use two methods to do circuit design: connectivity and geometry.

The connectivity approach is used by every Schematic design system: you place components and
draw connecting wires. The components remain connected, even when they move.

•

The geometry approach is used by most Integrated Circuit (IC) layout systems: rectangles of "paint"
are laid down on different layers to form the masks for chip fabrication.

•

ELECTRIC IS DIFFERENT because it uses connectivity for all design, even IC layout. This means that you
place components (MOS transistors, contacts, etc.) and draw wires (metal−2, polysilicon, etc.) to connect
them. The screen shows the true geometry, but it knows the connectivity too.

The advantages of connectivity−based IC layout are many:

No node extraction. Node extraction is not a separate, error−prone step. Instead, the connectivity is
part of the layout description and is instantly available. This speeds up all network−oriented
operations, including simulation, layout−versus−schematic (LVS), and electrical rules checkers.

•

No geometry errors. Complex components are no longer composed of unrelated pieces of geometry
that can be moved independently. In paint systems, you can accidentally move the gate geometry
away from a transistor, thus deleting the transistor. In Electric, the transistor is a single component,
and cannot be accidentally destroyed.

•

More powerful editing. Browsing the circuit is more powerful because the editor can show the
entire network whenever part of it is selected. Also, Electric combines the connectivity with a layout
constraint system to give the editor powerful manipulation tools. These tools keep the design
well−connected, even as the circuit is modified on different levels of hierarchy.

•

Tools are smarter when they can use connectivity information. For example, the Design Rule
checker knows when the layout is connected and uses different spacing rules.

•

Simpler design process. When doing schematics and layout at the same time, getting a correct LVS
typically involves many steps of design rule cleaning. This is because node extraction must be done
to obtain the connectivity of the IC layout, and node extractors cannot work when the design rules
are bad. So, each time LVS problems are found, the layout must be fixed and made DRC clean again.
Since Electric can extract connectivity for LVS without having perfect design rules, the first step is
to get the layout and schematics to match. Then the design rules can be cleaned−up without fear of
losing the LVS match.

•

Common user interface. One CAD system, with a single user interface, can be used to do both IC
layout and schematics. Electric tightly integrates the process of drawing separate schematics and has
an LVS tool to compare them.

•

Chapter 1: Introduction

12 Using the Electric VLSI Design System, version 9.07

The disadvantages of connectivity−based IC layout are also known:

It is different from all the rest and requires retraining. This is true, but many have converted and
found it worthwhile. Users who are familiar with paint−based IC layout systems typically have a
harder time learning Electric than those with no previous IC design experience.

•

Requires extra work on the user's part to enter the connectivity as well as the geometry. While this
may be true in the initial phases of design, it is not true overall. This is because the use of
connectivity, early in the design, helps the system to find problems later on. In addition, Electric has
many power tools for automatically handling connectivity.

•

Design is not WYSIWYG (what−you−see−is−what−you−get) because objects that touch on the
screen may or may not be truly connected. Electric has many tools to ensure that the connectivity has
been properly constructed.

•

The way that Electric handles all types of circuit design is by viewing it as a collection of nodes and arcs,
woven into a network.

The nodes are electrical components such
as transistors, contacts, and logic gates.
Arcs are simply wires that connect two
components. Ports are the connection
sites on nodes where the wires connect.

In the above example, the transistor node on the left has three pieces of geometry on different layers:
polysilicon, active, and well. This node can be scaled, rotated, and otherwise manipulated without concern
for specific layer sizes. This is because rules for drawing the node have been coded in a technology, which
describes nodes and arcs in terms of specific layers.

Because Electric uses nodes and arcs for design, it is important that they be used to make all of the relevant
connections. Although layout may appear to be connected when two components touch, a wire must still be
used to indicate the connectivity to Electric. This requires a bit more effort when designing a circuit, but that
effort is paid back in the many ways that Electric understands your circuit.

Besides creating meaningful electrical networks, arcs which form wires in Electric can also hold constraints.
A constraint helps to control geometric changes, for example, the rigid constraint holds two components in a
fixed configuration while the rest of the circuit stretches. These constraints propagate through the circuit,
even across hierarchical levels of design, so that very complex circuits can be intelligently manipulated.

A cell is a collection of these nodes and arcs, forming a circuit description. There can be different views of a
cell, such as the schematic, layout, icon, etc. Also, each view can have different versions, forming a history
of design. Multiple views and versions of a cell are organized into Cell groups.

For example, a clock cell may consist of a schematic view and a layout view. The schematic view may have
two versions: 1 (older) and 2 (newer). In such a situation, the clock cell group contains 3 cells: the layout

Chapter 1: Introduction

 Using the Electric VLSI Design System, version 9.07 13

view called "clock{lay}", the current schematic view called "clock{sch}", and the older schematic view
called "clock;1{sch}". Note that the semicolon and numeric version number (;2) are omitted from the
newest version.

Hierarchy is implemented by placing instances of one cell into another. When this is done, the cell that is
placed is considered to be lower in the hierarchy, and the cell where it is placed is higher. Therefore, the
notion of going down the hierarchy implies moving into a cell instance, and the notion of going up the
hierarchy implies popping out to where the cell is placed. Note that cell instances are actually nodes, just like
the primitive transistors and gates. By defining exports inside of a cell, these become the connection sites, or
ports, on instances of that cell.

A collection of cells forms a library, and is treated on disk as a single file. Because the entire library is
handled as a single entity, it can contain a complete hierarchy of cells. Any cell in the library can contain
instances of other cells. A complete circuit can be stored in a single library, or it can be broken up into
multiple libraries.

Chapter 1: Introduction

14 Using the Electric VLSI Design System, version 9.07

1−7: The Display

The Electric display varies from platform to platform. The image below shows a typical display with some
essential features.

The editing window is the largest window that initially says "No cell in this window" (this indicates that no
circuit is being displayed in that window). You can create multiple editing windows to see different parts of
the design.

Chapter 1: Introduction

 Using the Electric VLSI Design System, version 9.07 15

The left side of the edit window is the side
bar that has 3 tabbed sections, the components
menu, the cell explorer, and the layers. You can
move it to the right side with the On
Right command (of menu Windows / Side Bar)
and move it back with the On Left command.
You can also request that the side bar always be
on the right by checking "Side bar defaults to the
right side" in the Display Control Preferences (in
menu File / Preferences..., "Display" section,
"Display Control" tab).

The cell explorer lets you examine the hierarchy,
system activity, and error messages (see Section
4−5−2 for more).

The components menu shows a list of nodes
(blue border) and arcs (red border) that can be
used in design. The arrangement of the entries in
the components menu varies with the different
technologies. For MOS technologies, see Section
7−4−2; for schematics, see Section 7−5−1; and
for artwork, see Section 7−6−1.

The top three entries in the components menu let
you place pure−layer nodes (see Section
6−10−1), miscellaneous objects (see Section
7−6−3) and instances of cells (see Section 3−3).

The layers tab lets you control which parts of the
display are visible. See Section 4−5−3 for more
on layer visibility.

Below the edit window is the messages window, which is used for all textual communication.

Above the edit windows is a pulldown menu along the top with command options. On some operating
systems, the pulldown menu is part of the edit window, and on others it is separate. Below the pulldown
menu is a tool bar which has buttons for common functions.

Finally, the status area gives useful information about the design state. It appears along the bottom of the
editing window or (in this example) at the bottom of the screen. The status area shows cursor coordinates,
and can show global coordinates when traversing the hierarchy (see Section 4−3).

Chapter 1: Introduction

16 Using the Electric VLSI Design System, version 9.07

#chap04-05-02
#chap04-05-02
#chap07-04-02
#chap07-04-02
#chap07-05-01
#chap07-06-01
#chap06-10-01
#chap06-10-01
#chap07-06-03
#chap07-06-03
#chap03-03
#chap04-05-03
#chap04-03

1−8: The Mouse

Electric mostly uses the left and right mouse buttons, although there are functions that can use a middle
button. On Macintosh systems with only one button, hold the Command key to get the right button functions.

Modifier Button Action

Left Click Select

SHIFT Left Click Invert selection

CTRL Left Click Cycle through selected objects

CTRL + SHIFT Left Click Cycle through objects to Invert

Left Double Click Get Info

Left Drag Move selected objects or Select area

CTRL Left Drag Move selected objects, constrained

Right Click Draw or Connect Wire

CTRL Right Click Draw Wire (no connect)

SHIFT Right Click Zoom Out

SHIFT Right Drag Zoom In

CTRL + SHIFT Right Drag Draw Box

Middle Drag Pan Screen

SHIFT Middle Drag Select area without moving

Wheel Up/Down Scroll Up/Down

SHIFT Wheel Up/Down Scroll Right/Left

CTRL Wheel Up/Down Zoom in/out

By combining special keystrokes with the mouse functions, advanced layout operations can be done:

Switch Wiring Targets Hit Space while holding the Right mouse button to switch between possible
wiring targets under the mouse.

•

Switch Layers Type a number between 1−9 to switch layout layers. You can also use "+" and "−" to
move up or down by one layer (when typing "+", it is not necessary to hold the Shift key, so you are
really typing "=" on most keyboards). Additionally, if you have a port highlighted that can connect to
the new layer, a contact cut will be created at that point and connected to the port.

•

Abort Type ESCAPE to abort the current operation.•

Chapter 1: Introduction

 Using the Electric VLSI Design System, version 9.07 17

1−9: The Keyboard

Many common commands can be invoked by typing "quick keys" for them. These quick keys are shown in
the pulldown menus next to the item. For example, the New Cell... command (in menu Cell) has the quick
key "Control−N". On the Macintosh, the menu shows "N", indicating that you must hold the command key
while typing the "N"; on Windows and UNIX systems, the menu shows "Ctrl−N", indicating that you must
hold the Control key while typing "N". There are also unshifted quick keys (for example, the letter "n" runs
the Place Cell Instance command).

To change the bindings
of quick keys, use the
Key Bindings
Preferences (in menu
File / Preferences...,
"General" section, "Key
Bindings" tab).

The dialog shows the
hierarchical structure of
the pulldown menus on
the top, and lets you add
or remove key bindings
in the bottom area.

You can remove a quick key binding with the "Remove" button, and you can add a quick key binding with
the "Add" button. Change key bindings with caution, because it customizes your user interface, making it
more difficult for other users to work at your computer.

You can get to EVERY menu command with key mnemonics. The mnemonic keys are underlined in the
menus. For example, the File menu has the "F" underlined, and the Print... command of that menu has the
"P" underlined. This means that you can hold the Alt key and type "FP" to issue the print command. Note
that the mnemonic keys are different than the quick keys.

Chapter 1: Introduction

18 Using the Electric VLSI Design System, version 9.07

The default key bindings are shown here (use the Show Key Bindings command in menu Help to see the
current set). For alternate key binding sets that mimic Cadence, see Section 4−6−2.

Letter Control Plain Other

A Select All (see 2−1−1) Add Signal to Waveform (4−11)

B Size Interactively (2−5−1)

C Copy (6−1) Change (6−6)

D Down Hierarchy (3−5) Down Hierarchy In−place (3−5)
Shift: Down Hierarchy
In−place to Obj (3−5)

E Create Export (3−6−1)

F Focus on Highlighted (4−4−1) Full Unit Movement (2−4−1)

G Toggle Grid (4−7−1) Set Signal Low (4−11)

H Half Unit Movement (2−4−1)

I Object Properties (2−4−2)

J Rotate 90 Counterclockwise (2−6)

K Show Network (6−9−1)

L Find Text (4−9)

M Duplicate (6−1) Measure Mode (4−7−4)

N New Cell (3−2) Place Cell Instance (3−3)

O Open Library (3−9−2) Overlay Signal in Waveform (4−11)

P Peek (3−4) Pan Mode (4−4−2)

Q Quit (1−11−8) Cycle through windows (4−3)

R Remove Signal from Waveform (4−11)

S Save All Libraries (3−9−3) Select Mode (2−1−1)

T Toggle Negation (5−4−2) Place Annotation Text (2−2−1)

U Up Hierarchy (3−5) Select Object Under Cursor (2−1)

V Paste (6−1) Set Signal High (4−11)

W Close Window (4−3)

X Cut (6−1) Set Signal undefined (4−11)

Y Redo (6−7) Outline Edit Mode (6−10−2)

Z Undo (6−7) Zoom Mode (4−4−1)

Chapter 1: Introduction

 Using the Electric VLSI Design System, version 9.07 19

#chap04-06-02
#chap02-01-01
#chap04-11
#chap02-05-01
#chap06-01
#chap06-06
#chap03-05
#chap03-05
#chap03-05
#chap03-06-01
#chap04-04-01
#chap02-04-01
#chap04-07-01
#chap04-11
#chap02-04-01
#chap02-04-02
#chap02-06
#chap06-09-01
#chap04-09
#chap06-01
#chap04-07-04
#chap03-02
#chap03-03
#chap03-09-02
#chap04-11
#chap03-04
#chap04-04-02
#chap01-11-08
#chap04-03
#chap04-11
#chap03-09-03
#chap02-01-01
#chap05-04-02
#chap02-02-01
#chap03-05
#chap02-01-01
#chap06-01
#chap04-11
#chap04-03
#chap06-01
#chap04-11
#chap06-07
#chap06-10-02
#chap06-07
#chap04-04-01

Key Control Plain Shift Other

0 Zoom Out (4−4−1) Wire to Poly (1−8) See All Layers (4−5−3)

1 Wire to Metal−1 (1−8) See Metal−1 (4−5−3)
F1: Mimic Stitch
(9−6−3)

2 Pan Down (4−4−2) Wire to Metal−2 (1−8) See Metal−2/1 (4−5−3)
F2: Auto Stitch
(9−6−2)

3 Wire to Metal−3 (1−8) See Metal−3/2 (4−5−3)

4 Pan Left (4−4−2) Wire to Metal−4 (1−8) See Metal−4/3 (4−5−3)

5 Center cursor (4−4−2) Wire to Metal−5 (1−8) See Metal−5/4 (4−5−3)
F5: Run DRC
(9−2−1)

6 Pan Right (4−4−2) Wire to Metal−6 (1−8) See Metal−6/5 (4−5−3) F6: Array (6−4)

7 Zoom In (4−4−1) Wire to Metal−7 (1−8) See Metal−7/6 (4−5−3)
F7: Repeat Last
Action (6−7)

8 Pan Up (4−4−2) Wire to Metal−8 (1−8) See Metal−8/7 (4−5−3)

9 Fill Window (4−4−1) Wire to Metal−9 (1−8) See Metal−9/8 (4−5−3)
F9: Tile Windows
Vertically (4−3)

=
Increase all Text Size
(6−8−4)

Wire to next layer up
(1−8)

−
Decrease all Text Size
(6−8−4)

Wire to next layer
down (1−8)

DEL Erase (2−3)

> Next Error (9−1)

< Previous Error (9−1)

]
Next Error, same
Window (9−1)

[
Previous Error, same
Window (9−1)

Space
Switch Wiring Target
(1−8)

L arrow Move more left (2−4−1) Move left (2−4−1) Move more left (2−4−1)

R arrow Move more right (2−4−1)Move right (2−4−1) Move more right (2−4−1)

U arrow Move more up (2−4−1) Move up (2−4−1) Move more up (2−4−1)

D arrow
Move more down
(2−4−1)

Move down (2−4−1) Move more down (2−4−1)

Chapter 1: Introduction

20 Using the Electric VLSI Design System, version 9.07

#chap04-04-01
#chap01-08
#chap04-05-03
#chap01-08
#chap04-05-03
#chap09-06-03
#chap04-04-02
#chap01-08
#chap04-05-03
#chap09-06-02
#chap01-08
#chap04-05-03
#chap04-04-02
#chap01-08
#chap04-05-03
#chap04-04-02
#chap01-08
#chap04-05-03
#chap09-02-01
#chap04-04-02
#chap01-08
#chap04-05-03
#chap06-04
#chap04-04-01
#chap01-08
#chap04-05-03
#chap06-07
#chap04-04-02
#chap01-08
#chap04-05-03
#chap04-04-01
#chap01-08
#chap04-05-03
#chap04-03
#chap06-08-04
#chap01-08
#chap06-08-04
#chap01-08
#chap02-03
#chap09-01
#chap09-01
#chap09-01
#chap09-01
#chap01-08
#chap02-04-01
#chap02-04-01
#chap02-04-01
#chap02-04-01
#chap02-04-01
#chap02-04-01
#chap02-04-01
#chap02-04-01
#chap02-04-01
#chap02-04-01
#chap02-04-01
#chap02-04-01

1−10: IC Layout Tutorial

1−10−1: IC Layout Tutorial: Make a Cell

This section takes you through the design of some simple IC layout.

Before you can place any IC layout,
the editing window must have a cell
in it. Use the New Cell... command
(in menu Cell). This will show a
dialog that lets you type a new cell
name. Type the name ("MyCircuit"
is used here) and click OK. The
editing window will no longer have
the "No cell in this window"
message, and circuitry may now be
created.

After creating a cell, look at the cell explorer (in
the status bar on the left side of the edit window).
Under the "LIBRARIES" icon, you will see the
list of libraries (currently only one called
"noname"). If you open that library's icon, you
will see the cells in the library (currently only
"MyCircuit").

1−10−2: IC Layout Tutorial: Create a Node

Layout is placed by selecting nodes from the side bar's components menu, and then wiring them together.
This example shows two nodes that have been created. This was done by clicking on the appropriate
component menu entry, and then clicking again in the editing window to place that node. After clicking on
the component menu entry, the cursor changes to a pointing hand to indicate that you must select a location
for the node. When placing the node, if you press the button and do not release it, you will see an outline of
the new node, which you can drag to its proper location before releasing the button.

Chapter 1: Introduction

 Using the Electric VLSI Design System, version 9.07 21

In this example, the top node is called
Metal−1−Polysilicon−1−Con (a contact between
metal layer 1 and polysilicon layer 1, found in the
fifth entry from the bottom in the right column of
the component menu). The node on the bottom is
called N−Transistor (lower−right entry of the
component menu). Both of these nodes are from the
MOSIS CMOS technology (which is listed as
"mocmos" in the status area).

1−10−3: IC Layout Tutorial: Highlighting

A highlighted node has two selected areas: the node
and a port on that node. Note that the transistor is
highlighted in the previous example, and the contact
is highlighted in the example here. The larger
selected area covers the node, and it surrounds the
"important" part (for example, on the Transistor, it
covers only the overlap area, excluding the tabs of
active and gate on the four sides). The smaller
selected area is the currently highlighted port (there
are four possible ports on the transistor, but only one
on the contact).

To highlight a node, use the left button. The node, and the closest port to the cursor, will be selected. After
highlighting, you can hold the mouse button down and drag the highlighted object to a new location. If
nothing is under the cursor when the selection button is pushed, you may drag the cursor while the button
remains down to define an area in which all objects will be selected.

Another way to affect what is highlighted is to use the shift−left button. This button causes object
highlighting to be reversed (highlighted objects become unhighlighted and unhighlighted objects are
highlighted).

The shape of the highlighted port is important. Ports are the sites of arc connections, so the end point of the
arc must fall inside this port area. Ports may be rectangles, lines, single points (displayed as a "+"), or any
arbitrary shape. For example, when the active tabs of a transistor are highlighted, the port is shown as a line.

Chapter 1: Introduction

22 Using the Electric VLSI Design System, version 9.07

#chap01-08
#chap01-08

1−10−4: IC Layout Tutorial: Make an Arc

To wire a component, select it, move
the cursor away from the component,
and use the right button. A wire will be
created that runs from the component
to the location of the cursor. Note that
the wire is a fixed−angle wire which
means that it will be drawn along a
horizontal or vertical path from the
originating node.

To see where the wire will end, click but do not release the button and drag the outline of the wire's
terminating node (a pin) until it is in the proper location. It is highly recommended that you do all wiring
operations this way, because wiring is quite complex and can follow many different paths.

Once a wire has been created, the other end is highlighted (see above). This is the highlighting of a pin node
that was created to hold the other end of the arc. Because it is a node, the right button can be used again to
continue the wire to a new location. If, during wiring, the cursor is dragged on top of an existing component,
the wire will attach to that component.

To remove wires or components, you can issue the Undo command (in menu Edit) to remove the last created
object. Alternatively, you can select the component and use the Selected command (in menu Edit / Erase).

1−10−5: IC Layout Tutorial: Constraints

Once components are wired, moving them will also move their connecting wires. Notice that the wires
stretch and move to maintain the connections. What actually happens is that the programmable constraint
system follows instructions stored on the wires, and reacts to node changes. The default wire is
fixed−angle and slidable, so the letters "FS" are shown when the wire is highlighted.

Select a wire and issue the Rigid command (in menu Edit / Arc). The letters change to "R" on the arc and
the wire no longer stretches when nodes move. Find another arc and issue the Not Fixed−angle command.
Now observe the effects of an unconstrained arc as its neighboring nodes move. These arc constraints can be
reversed with the Rigid and Fixed−angle commands. See Section 5−2−1 for more on these constraints.

Chapter 1: Introduction

 Using the Electric VLSI Design System, version 9.07 23

#chap01-08
#chap01-08
#chap05-02-01

1−10−6: IC Layout Tutorial: Adding Contacts to a Transistor

One very common structure in IC layout is the transistor−contact combination. Here you will see the proper
way to construct it.

Start with a transistor (in
this example on the left, an
n−transistor).

•

Rotate the transistor so that
the gate is vertical. To do
this, use the 90 Degree
Counterclockwise command
(in menu Edit / Rotate), or
just type Control−J.

•

Note that the active gate on
the left is highlighted (it is
just a line).

•

Although the default transistor is 2x3 in size, most people want them to be wider. For the purposes of this
example, make the transistor be 12 wide. To do this, select the node and use the Object Properties command
(in menu Edit / Properties).

Two easier
ways to see the
objects
properties are
to double−click
on the node, or
select it and
type Control−I.
When the
"node
Properties"
dialog appears,
make the width
12 and click
OK.

Chapter 1: Introduction

24 Using the Electric VLSI Design System, version 9.07

Next we need a contact. Choose a
"Metal−1−N−Active−Con" to
connect the N−Active to Metal−1.
Make its size be 5x12 instead of
the default 5x5. Notice that
contacts are "smart" about the cuts,
and add them to fill the node. Note
also that the port (the inner
rectangle) grows with the node.

Designers who have used polygon−based systems will be tempted to move these two nodes together so that
they form the desired structure:

THIS IS WRONG!

Electric is a connectivity−oriented system,
and insists that these components be wired
together.

The easiest way to connect the contact to the transistor is to spread the nodes apart, wire them, and then push
them back together. These two figures show the transistor and contact nodes, spread apart, and connected by
an arc.

Chapter 1: Introduction

 Using the Electric VLSI Design System, version 9.07 25

On the left, the nodes and their ports; on the right, the arc.

The arc was made by selecting one node, clicking and HOLDING the right button, dragging the mouse over
the other component, and then releasing the button to create the arc.

Notice that the ends of an arc are centered and indented from the edge by half of the arc's width (the ends are
illustrated by "+" on the right). The ends of an arc must sit inside of the ports. If an arc moves such that its
ends are still in the ports, then the nodes don't have to move. See Section 5−4−3 for more on arc geometry.

THIS IS RIGHT!

Now that the nodes are wired together,
bring the contact in close. Notice that the
arc has shrunk down to a square, with the
endpoints very close together. If you make
the arc rigid, the two nodes will be held
together in this configuration. To do this,
use the Rigid command (in menu Edit /
Arc). As shown here, the "R" on the
selected arc tells you that it has been made
rigid. See Section 5−2−1 for more arc
constraints.

Chapter 1: Introduction

26 Using the Electric VLSI Design System, version 9.07

#chap01-08
#chap05-04-03
#chap05-02-01

Another common situation in making contacts meet transistors is when the sizes are not the same. In this
example, the contact is the default size. The arc runs from the center of the contact's port to the top of the
transistor's port. The finished layout is shown on the right.

Here are some points about connecting nodes with arcs:

By doing it, the system understands your circuit connectivity and uses it in many other places.•
The design−rule checker will flag objects that touch but are not connected.•
After you create one of these structures, it can be copied−and−pasted many times. Use the Copy and
Paste commands (in menu Edit). Note that when pasting, you must not have anything selected, or
else it tries to replace the selected objects with the copied objects. Therefore, to duplicate some
circuitry, select it, Copy, click away to deselect, and then Paste.

•

If you want to rotate or mirror these structures, select all of it (both nodes and the arc) and use the
Rotate or Mirror commands (in menu Edit).

•

Chapter 1: Introduction

 Using the Electric VLSI Design System, version 9.07 27

1−10−7: IC Layout Tutorial: Hierarchy

Electric supports hierarchy by
allowing you to place instances of
another cell. These instances are
nodes, just like the simpler ones in
the component menu. To see
hierarchy in action, create a new cell
with the New Cell... command (in
menu Cell). Make sure the "Make
new window" option is checked in
the dialog. Then type the new cell
name ("Higher" is used in the
example here).

A new (empty) cell will appear in a separate window. Try creating a few simple nodes in this new window
(place a contact or two).

Now place an instance of the other
cell by using the Place Cell
Instance... command (in menu Cell).
You can also click the "Cell" entry in
the component menu. You will be
given a list of cells to create: select
the one that is in the OTHER window
(the one called "MyCircuit" in this
example). Then click in the newer
cell to create the instance.

Chapter 1: Introduction

28 Using the Electric VLSI Design System, version 9.07

The box that appears is a node in the same sense

as the contacts and transistors: it can be moved,
wired, and so on. In addition, because the node
contains subcomponents, you can see its
contents by selecting it and using the One Level
Down command (in menu Cell / Expand Cell
Instances, or click on the opened−eye button in
the tool bar). Note that if the objects in a cell no
longer fit in the display window, use the Fill
Display command (in menu Window).

1−10−8: IC Layout Tutorial: Exports

Before you can attach wires to the instance node, there must be connection sites, or ports on that node.
Primitive nodes such as contacts and transistors already have their ports established, but you must explicitly
create ports for cell instances. This is done by creating exports inside the cell definition.

Move the cursor to the window
with the lower−level cell
("MyCircuit") and select the
contact node. Then issue the
Create Export... command (in
menu Export). You will be
prompted for an export name and
its characteristic (the
characteristics can be ignored for
now).

This takes the port on
the contact node and
exports it to the outside
world. Its name will be
visible on the
unexpanded instance
node in the
higher−level cell. You
can now connect wires
to that node in just the
same way as you wired
the contact.

Chapter 1: Introduction

 Using the Electric VLSI Design System, version 9.07 29

1−11: Schematics Tutorial

1−11−1: Schematics Tutorial: Make a Cell

This section takes you through the design of some simple schematics.

Before you can place any
schematics, the editing window must
have a cell in it. Use the New
Cell... command (in menu Cell).
Type the name ("MyCircuit" is used
here) and select the "schematic"
view.

The editing window will no longer have the "No cell in this window" message, and circuitry may now be
created. Note that the component menu on the left will change to show schematics primitives. Also, the
Schematic technology is now listed in the status area at the bottom of the screen.

After creating a cell, look at the cell explorer (in
the status bar on the left side of the edit window).
In the "LIBRARIES" icon, you will see the list
of libraries (currently only one called "noname").
If you open that library's icon, you will see the
cells in the library (currently only "MyCircuit").

Chapter 1: Introduction

30 Using the Electric VLSI Design System, version 9.07

1−11−2: Schematics Tutorial: Make a Node

Schematic nodes are placed by selecting
them from the side bar's components menu
(on the left), and then wiring them together.
This example shows two nodes that have
been created. This was done by clicking on
the appropriate component menu entry, and
then clicking again in the editing window to
place that node.

After clicking on the component menu entry, the cursor changes to a pointing hand to indicate that you must
select a location for the node. When placing the node, if you press the button and do not release it, you will
see an outline of the new node, which you can drag to its proper location before releasing the button.

In this example, the top node is called a Buffer (found on the right side of the component menu in the third
entry from the top). The node on the bottom is called an And (top entry on the right).

1−11−3: Schematics Tutorial: Highlighting

A highlighted node has two selected parts: the
node and a port on that node. Note that the
And is highlighted in the previous example,
and the Buffer is highlighted in the example
here. The little "+" sign is the currently
highlighted port (there are two possible ports
on these nodes, on the input and the output).

To highlight a node, use the left button. The node, and the closest port to the cursor, will be selected. After
highlighting, you can hold the mouse button down and drag the highlighted object to a new location. If
nothing is under the cursor when the selection button is pushed, you may drag the cursor while the button
remains down to define an area in which all objects will be selected.

Another way to affect what is highlighted is to use the shift−left button. This button causes object
highlighting to be reversed (highlighted objects become unhighlighted and unhighlighted objects are
highlighted).

The shape of the highlighted port is important. Ports are the sites of arc connections, so the end point of the
arc must fall inside this port area. Ports may be rectangles, lines, single points (displayed as a "+"), or any
arbitrary shape. For example, the entire left side of the And gate is the input port and so its highlighting is a
line.

Chapter 1: Introduction

 Using the Electric VLSI Design System, version 9.07 31

#chap01-08
#chap01-08

1−11−4: Schematics Tutorial: Make an Arc

To wire a component, select it, move the
cursor away from the component, and use the
right button. If you click the right button and
hold it without releasing, then you can move
around and see where the wire will go when
you do release.

A wire will be created that runs from the component to the location of the cursor. Note that the wire is a
fixed−angle wire which means that it will be drawn along a horizontal, vertical, or 45−degree path from the
originating node. To see where the wire will end, click but do not release the button and drag the outline of
the wire's terminating node (a pin) until it is in the proper location. It is highly recommended that you do all
wiring operations this way, because wiring is quite complex and can follow many different paths.

Once a wire has been created, the other end is highlighted (see above). This is the highlighting of a pin node
that was created to hold the other end of the arc. Because it is a node, the right button can be used again to
continue the wire to a new location. If, while wiring, the dragged location is over an existing component, the
wire will attach to that component.

To remove wires or nodes, you can issue the Undo command (in menu Edit) to remove the last created
object. Alternatively, you can select the component and use the Selected command (in menu Edit / Erase).

1−11−5: Schematics Tutorial: Multi−Input gates and Negation

One aspect of the And, Or, and Xor gates that you will notice is that their left side (the input side) can accept
any number of wires. To see this in action, place one of these components in the cell. Then repeatedly select
its left side and use the right button to draw wires out of it. Each wire will connect at a different location in
the input port, and once the side fills with arcs, it will automatically grow to fit more. Note that the vertical
cursor location along the input side is used to select the position that will be used when a new wire is added.

To negate an input or output of a digital gate, select the port or the arc and
use the Toggle Port Negation command (in menu Edit / Technology
Specific). With this facility, you can construct arbitrary gate configurations.

Chapter 1: Introduction

32 Using the Electric VLSI Design System, version 9.07

#chap01-08
#chap01-08
#chap01-08

1−11−6: Schematics Tutorial: Constraints

Once components are wired, moving them will also move their connecting wires. Notice that the wires
stretch and move to maintain the connections. What actually happens is that the programmable constraint
system follows instructions stored on the wires, and reacts to component changes. The default wire is
fixed−angle, so the letter "F" is shown when the wire is highlighted.

Select a wire and issue the Rigid command (in menu Edit / Arc). The letter changes to "R" on the arc and
the wire no longer stretches when components move. Find another arc and issue the Not
Fixed−angle command. Now observe the effects of an unconstrained arc as its neighboring nodes move.
These arc constraints can be reversed with the Rigid and Fixed−angle commands. See Section 5−2−1 for
more on these constraints.

1−11−7: Schematics Tutorial: Hierarchy and Icons

Electric supports hierarchy by allowing you to create icons for a schematic and place them in another cell.
Before creating an icon, all connection points to the schematic should be defined. To define connection
points for a schematic, you must create exports on the schematic.

To see an example of this, select
the output port of the Buffer node
and issue the Create
Export... command (in menu
Export). You will be prompted
for an export name and its
characteristics (set the
characteristics to "output").

The output port on the buffer node is now exported to the
outside world. Run a wire from the input side of the And node
and export the pin at the end of the wire. Your circuit should
look like this.

Chapter 1: Introduction

 Using the Electric VLSI Design System, version 9.07 33

#chap05-02-01

You can now make an icon for this
circuit by using the Make
Icon command (in menu View). The
icon will be placed in your circuit (you
may have to move it away from the rest
of the circuitry). The result will look like
this.

To test this icon in a circuit, create a
new cell in which to place instances
of the icon. Use the New
Cell... command (in menu Cell).
Type the new cell name ("Higher" is
used in the example here) and make
sure its view is "schematic".

A new (empty) cell will appear in a
separate window. Try creating a few
simple nodes in this new window
(place a gate or two).

Now place an instance of the other
cell by using the Place Cell
Instance... command (in menu Cell).
You can also click the "Cell" entry in
the component menu. You will be
given a list of cells to create: select
the one that is in the OTHER window
(the one called "MyCircuit{ic}" in
this example). Then click in the
newer cell to create the instance.

Chapter 1: Introduction

34 Using the Electric VLSI Design System, version 9.07

The icon that appears is a node in the same sense as the
Buffer and And gate: it can be moved, wired, and so on.
In addition, because the node contains subcomponents,
you can see its contents by selecting it and using the
Down Hierarchy command (in menu Cell / Down
Hierarchy). Note that if the objects in a cell no longer fit
in the display window, use the Fill Window command
(in menu Window).

1−11−8: Schematics Tutorial: Final Points

Some final commands that should be mentioned in this introductory example are the Save Library and the
Quit commands which can be found in the File menu. They do the obvious things.

Chapter 1: Introduction

 Using the Electric VLSI Design System, version 9.07 35

1−12: Schematics and Layout Tutorial

1−12−1: Introduction to Schematic/Layout Tutorial

This tutorial was originally written by David Harris at Harvey Mudd College as the first in a set of lab
instructions for an undergraduate−level CMOS VLSI design class. It provides very basic instructions to
acclimatize first−time users with Electric. As such, it is not a full introduction to using Electric, nor does it
cover many commonly used commands.

What this tutorial does cover is:

Basic schematic editing. You will create a simple "nand" gate.•
Layout drawing. You will create the IC layout of the "nand" gate.•
Hierarchy. You will assemble the "nand" with an "inverter" to build an "and" gate.•
Analysis. You will run the design rule checker on the layout, and will compare the layout with the
schematic.

•

To begin, load the "mipscells" library from the Static Free Software website
(www.staticfreesoft.com/productsLibraries.html). This library contains many parts of the MIPS processor
that are provided to you. You will add your new design to the library as you work through the tutorial.

1−12−2: Schematic Entry

Your first task is to create a schematic for a 2−input NAND gate. Each design is kept in a cell; for example,
your schematic will be in the "nand2{sch}" cell, while your layout will eventually go in the "nand2{lay}"
cell and your AND gate will go in the "and2{sch}" cell. Use the New Cell command (in menu Cell), or just
type Ctrl−N. Enter "nand2" as the cell name and select "schematic" as the view. The editing window will
now have the title "mipscells:nand2{sch}" indicating the library, cell name, and view. It is useful to put a
label inside a cell, in addition to assigning its given name. To label your cell, select the "Components" tab of
the sidebar (on the left), click on "Misc.", and select "Annotation text". Move the cursor to the location where
you want the label to appear, and click to create the text. Change the text by double−clicking on it and typing
"nand2". When done typing, click away from the text to exit the in−place editing (the text is now selected
with an "X" through it). Then bring up the full properties dialog for this text with the Object
Properties command (in menu Edit / Properties), or just type Ctrl−I. Set the "Text Size" to 5 units and click
OK. When your cell is finished, you can move this label to a sensible location.

Electric defines various technologies for schematics and layout. To draw transistor−level schematics, you can
use the symbols in the Components tab of the side bar.

Chapter 1: Introduction

36 Using the Electric VLSI Design System, version 9.07

http://www.staticfreesoft.com/productsLibraries.html

Your goal is to draw a gate like the
one shown here. Turn on the grid to
help you align objects. To do this, use
the Toggle Grid command (in menu
Window), or just type Ctrl−G. Click
on an nMOS transistor symbol in the
Components tab on the left side of the
screen. Then click in your schematic
window to place the transistor in the
circuit (perform this as two separate
clicks, not drag−and−drop). Repeat
until you have two nMOS transistors,
two pMOS transistors, the Power
symbol, and the Ground symbol
arranged on the page.

These symbols are nodes in Electric parlance. You may move the nodes around by clicking and dragging.
The transistors default to a width/length value of 2/2. Double−click on the pMOS transistor and change its
width to 12. Recall that nMOS transistors are roughly twice as strong as pMOS transistors. So a single nMOS
transistor would only have to be 6 wide. However, because the nMOS transistors are in series, they should
also be 12 wide.

Now, connect the nodes with wires (called arcs in Electric parlance). Notice that when you click on a node,
the closest port is also selected. These ports are the sides of arc connections. Click on a port such as the gate,
source, or drain of a transistor. Right−click, hold the mouse, and drag away from the node. When you release
the mouse, an arc will be created from the original node to the location of the cursor. A new "pin" node will
also be created at the cursor to hold the other end of the arc. If you right−click and drag over an existing
node, then you will connect to it. If two objects to be connected are not lined up, Electric will create two arcs
to join them. The location of the cursor determines the angle of the bend, so wiggle it to see how the two arcs
will run before releasing the button and creating the connection. See Section 2−2−2 for more on arc creation.

When the schematic is wired, you will need to create exports which define inputs and outputs of the cell.
From the Components tab, select the "Off−Page" symbol and place it in the circuit. Connect the tip of the
arrow the proper place in the circuit. To make an export on the other side of the Off−Page, select that port
and use the Create Export command (in menu Export), or just type Ctrl−E. Name the export "a" and define
its characteristic as "input". Similarly, create Off−Page symbols and exports for "b" and "y".

Now is a good time to save your library. Use the Save Library command (in menu File), or just type Ctrl−S.
Get into the habit of saving your library regularly. Also, learn the keyboard shortcuts for the commands you
use frequently.

Chapter 1: Introduction

 Using the Electric VLSI Design System, version 9.07 37

#chap02-02-02

1−12−3: Layout

Now that you have a schematic, it is time to draw the layout. Use the New Cell command (in menu Cell) to
bring up the new cell dialog. Enter "nand2" as the cell name and "layout" as the view. Notice that the
Components change from schematic symbols to layout primitives. The default technology is "mocmos"
(MOSIS CMOS) but can be changed with the pop−up menu at the top of the Components tab. The "mocmos"
technology has many options, such as the number of metal layers. To see these options, use the
Preferences command (in menu File), and choose the "Technology" tab. In the "MOSIS CMOS" section, set
the number of Metal layers to 6. (This preference is remembered, and you will not have to set it again in
future sessions with Electric.) See Section 7−4−2 for more on the MOSIS CMOS technology.

Your goal is to draw a layout like the one shown
here. It is important to choose a consistent layout
style so that various cells can "snap together." In
this project's style, power and ground run
horizontally in Metal−2 at the top and bottom of the
cell, respectively. The spacing between power and
ground is 80 units, center to center. No other
Metal−2 is used in the cell, allowing the designer to
connect cells with Metal−2 over the top later on.
nMOS transistors occupy the bottom half of the cell
and pMOS transistors occupy the top half. Each cell
has at least one well and substrate contact. Inputs
and outputs are given Metal−1 exports within the
cell.

You may find it convenient to have another sample
of layout visible on the screen while you draw your
gate. Use the Place Cell Instance command (in
menu Cell) and select "inv{lay}". Then click to
drop this inverter in the layout window. To view the
contents of the inverter, highlight the inverter and
use the One Level Down command (in menu Cell /
Expand Cell Instances), or click on the "opened
eye" icon in the toolbar.

The inverter instance is really just a node, and its contents are unavailable for editing. To extract the contents,
so that the individual nodes and arcs are available for editing, use the Extract Cell Instance command (in
menu Cell). Note that this command flattens makes a copy of the inverter cell inside of your NAND cell.
Study the inverter until you understand what each piece represents.

Chapter 1: Introduction

38 Using the Electric VLSI Design System, version 9.07

#chap07-04-02

Start by drawing your nMOS
transistors. Recall that an nMOS
transistor is formed when polysilicon
crosses N−diffusion. N−diffusion is
represented in Electric as green
diffusion, surrounded by a dotted
yellow N−select layer all within a
hashed brown P−well background.
This set of layers is conveniently
provided as a 3−terminal transistor
node in Electric. Move the mouse to
the Components tab on the left side of
the screen.

As you move the mouse over various nodes, their name will appear in the status area at the bottom of the
screen. Click on the N−Transistor, and click again in the layout window to drop the transistor in place. To
rotate the transistor so that the red polysilicon gate is oriented vertically, use the 90 Degrees
Counterclockwise command (in menu Edit / Rotate), or just type Ctrl−J. There are two nMOS transistors in
series in a 2−input NAND gate, so we would like to make each wider to compensate. Double−click on the
transistor (or type Ctrl−I). In the node properties dialog, adjust the width to 12.

We need two transistors in series, so copy and paste the transistor you have drawn. You can also duplicate
the selected object with the Duplicate command (in menu Edit) or just type Ctrl−M. Drag the two transistors
along side each other so they are not quite touching. Click the diffusion (source/drain) of one of the
transistors and right click on the diffusion of the other transistor to connect the two. Notice that Electric uses
nodes and arcs in IC layout as well as in schematics. Once connected, drag the two transistors until the
polysilicon gates are 3 units apart, looking like they do below. You will probably find it helpful to turn on the
grid (type Ctrl−G). The grid defaults to small dots every unit and large dots every 10 units. You can change
this with the Preferences command (in menu File), "Display" section, "Grid" panel. Change the "Frequency
of bold dots" to 7, because the cells in this library have a wire pitch of seven.

You can move objects around with the arrow keys on the keyboard. The distance that they move defaults to 1
unit, but this can be changed by using the "Make grid larger" or "Make grid smaller" icons in the toolbar (or
by pressing the "f" or "h" keys). You will avoid messy problems by keeping your layout on a unit grid as
much as possible. Inevitably, though, you will create structures that are an odd number of units in width and
thus will have either centers or edges on a half−unit boundary. (To move an object 7 units per click, or the
equivalent of one bold−spaced unit, press Control and then press the appropriate arrow key. If you first hit
"h" and then the control−arrow key will move an item one−half the distance of a bold−spaced unit, 3.5 in this
case.)

Electric has an interactive design rule checker (DRC). If you place elements too closely together, it will
report errors in the "Messages" window. Try dragging one of the transistors until its gate is only 2 units from
the other. Observe the DRC error. Then drag the transistors back to proper spacing. When you are in doubt
about spacing, you can recheck the cell with the Check Hierarchically command (in menu Tools / DRC), or
just type the F5 key.

Chapter 1: Introduction

 Using the Electric VLSI Design System, version 9.07 39

Next we will create the contacts from the
N−diffusion to Metal−1. Diffusion is also referred to
as "active". Drop a Metal−1−N−Active−Contact
node in the layout window and double−click to
change its Y size to 12. You will need a second
contact for the other end of the series stack of nMOS
transistors, so duplicate the contact you have drawn
(type Ctrl−M). Move the contacts near each end of
the transistor stack and draw diffusion lines to
connect to the transistors.

A quick way to connect many items that are
touching is to use the "auto router". To do this, select
all of the objects to be routed (click and drag a
selection box over them) and use the Auto−Stitch
Highlighted Now command (in menu Tools /
Routing), or just type the F2 key. See Section
9−6−2 for more on auto−stitching.

Once the contacts are connected to the transistors you will need a gap of only 1 unit between the metal and
polysilicon. Use the design rule checker to ensure you are as close as possible but no closer. Using similar
steps, draw two pMOS transistors in parallel and create contacts from the P−diffusion to Metal−1. At this
point, your layout should look something like this.

Draw wires to connect the polysilicon gates, forming inputs "a" and "b", and the Metal−1 output node "y".
Then add Metal−2 power and ground lines. You can create these Metal−2 wires by creating a "Metal−2−Pin"
node and right−clicking on it to draw a wire. Use the grid to make sure that the Metal−2 wires are 80 units
apart. This is the same spacing as the power/ground lines of the inverter. Note that when two objects are
selected, the Properties dialog box (Ctrl−I), also tells the distance between them.

A via, called "Metal−1−Metal−2−Con", is required to connect the Metal−1 to the Metal−2 lines. Select an
active contact and right−click to connect it to the ground line. Electric will automatically create the necessary
via for you while making the connection. Complete the other connections to power and ground. Let power
and ground extend 2 units beyond the contents of the cell (excluding wells) on either side so that cells may
"snap together" with their contents separated by 4 units (so design rules are satisfied).

Recall that well contacts are required to keep the diodes between the cells and source/drain diffusion reverse
biased. We will place an N−well contact and a P−well contact in each cell. It is often easiest to drop the
"Metal−1−N−Well−Con" near the desired destination (near VDD), then right click on the power line to
create the via. Then drag the contact until it overlaps the via to form a stack of N+ diffusion, the diffusion to
Metal−1 contact, Metal−1, the Metal−1−Metal−2−Con, and Metal−2. Repeat with the P−well.

In our datapath design style, we will be connecting gates, with horizontal and Metal−2 lines. Metal−2 cannot
connect directly to the polysilicon gates. Therefore, we will add contacts from the polysilicon gate inputs to
Metal−1 to facilitate connections later in our design. Place a "Metal−1−Polysilicon−1−Con" node near the

Chapter 1: Introduction

40 Using the Electric VLSI Design System, version 9.07

#chap09-06-02
#chap09-06-02

left polysilicon gate. Connect it to the polysilicon gate and drag it near the gate. You will find a 3 unit
separation requirement from the Metal−1 in the contact to the metal forming the output "y". Add a short strip
of Metal−1 near the contact to give yourself a landing pad for a via later in the design. You may find Electric
wants to draw your strip from the contact in polysilicon rather than Metal−1. To tell Electric explicitly which
layer you want, click over the Metal−1 arc in the Component tab (arcs have red borders). Then draw your
wire.

Electric is agnostic about the polarity of well and substrate; it generates both n− and p−well layers. In our
process that has a p−substrate already, the p−well, indicated by brown slanting lines, will be ignored. The
n−well, indicated by small brown dots, will define the well on the chip. Electric only generates enough well
to surround the n and p diffusion regions of the chip. (Electric creates well contacts that are only 11 units
wide! This will generate a DRC error, but this behavior is intentional. Wells should be 12 units wide to meet
DRC's expectations.) It is a good idea to create rectangles of well to entirely cover each cell so that when you
abut multiple cells you don't end up with awkward gaps between wells that cause design rule errors. To do
this, click on the "Pure" entry of the Components tab and select "N−Well−Node" or "P−Well−Node". To
change its size so that it entirely covers the existing well, resize it with the Interactively command (in menu
Edit / Size) or just type Ctrl−B. You will find the pure layer nodes are annoying because you will tend to
select them when you really want to select a transistor or wire. To avoid this problem, select them and use the
Make Selected Hard command (in menu Edit / Selection) to make the node hard−to−select. Once an item is
defined as hard−to−select, you must use "special select" mode to be able to select it (click on the arrow with
the letters "SP" in the toolbar). You can use the Make Selected Easy command if you want to restore a node
or arc to be easily selected. Electric also provides the Coverage Implants Generator command (in menu
Tools / Generation) that automatically creates hard−to−select pure layer nodes for N and P wells. This
command is convenient for simple geometries inside of a cell.

Create exports for the cell. When you use the cell in another design, the exports define the locations that you
can connect to the cell. Click near the end of the short Metal−1 input line that you just drew on the left gate,
and select the Metal−1−Pin node. If you accidentally select the Metal−1 arc instead, click elsewhere in space
to deselect the arc, then try again to find the pin. You may also try holding the Control key while clicking to
cycle through everything that is under the cursor. Add an input export called "a" (type Ctrl−E to get the
export dialog). Repeat for input "b". Export output "y" from the metal line connecting the nMOS and pMOS
transistors. You may have to place an extra pin and connect it to the output line to give yourself a pin to
export as "y". Also export "vdd" and "gnd" from the Metal−2 arcs; these should be of type power and ground,
respectively. Electric recognizes "vdd" and "gnd" as special names, so be sure to use them.

Chapter 1: Introduction

 Using the Electric VLSI Design System, version 9.07 41

1−12−4: Hierarchical Design

Now that you have a 2−input NAND gate, you can use it, and an inverter, to construct a 2−input AND gate.
Such hierarchical design is very important in the creation of complex systems. You have found that the
layout of an individual cell can be quite time consuming. It is very helpful to reuse cells wherever possible to
avoid unnecessary drawing. Moreover, hierarchical design makes fixing errors much easier. For example, if
you had a chip with a thousand NAND gates and made an error in the NAND design, you would prefer to
have to fix only one NAND cell so that all thousand instances of it inherit the correction.

Each schematic has a corresponding symbol (an icon), used to represent the cell in a higher−level schematic.
For example, open the "inv{sch}" and "inv{ic}" cells to see the inverter schematic and icon. You will need to
create an icon for your 2−input NAND gate. When creating your icon, it is a good idea to keep everything
aligned to the 1 unit grid; this will make connecting icons simpler and cleaner when you use it in another cell.

Edit your "nand2{sch}" cell and use the Make
Icon View command (in menu View). Electric
will create a generic icon based on the exports as
shown here. It will drop the icon in the
schematic for handy reference; drag the icon
away from the transistors so it leaves the
schematic readable.

A schematic is easier to read when familiar
icons are used instead of generic boxes.
Modify the icon to look like this. Pay attention
to the dimensions of the icon; the overall
design will look more readable if icons are of
consistent sizes.

To edit the icon, click on it and use the Down Hierarchy command (in menu Cell / Down Hierarchy) or
just type Ctrl−D. The Component tab will now show with various shapes (this is the "Artwork" technology).
Delete the generic black box but leave the input and output wires. Turn on the grid.

The body of the NAND is formed from an open C−shaped polygon, a semicircle, and a small negating circle.
To form the semicircle, create an unfilled circle node. Double−click to change its size to 6x6 and to span only
180 degrees of the circle. Use the rotate commands under the Edit menu to rotate the semicircle into place.
Place another circle, adjust its size to 1x1, and move it into place. Alternatively, you can type "h" and use the
arrow keys to move objects by 1/2 grid increments, then press "f" to return to full grid movement.

Chapter 1: Introduction

42 Using the Electric VLSI Design System, version 9.07

The Opened−Polygon node can be used to form the
C−shaped body. When first created, it appears as a
zigzag, shown here. To manipulate its shape, select it and
enter "outline edit mode" by using the Toggle Outline
Edit command (in menu Edit / Modes / Edit), or just
type "y", or click on the icon in the toolbar.

In this mode, you can use the left button to select and move points and the right button to create points. Since
the default Opened−Polygon node has 4 points already, you should be able to form the "C" shape simply by
clicking and dragging these points. Outline edit mode is not entirely intuitive at first, but you will master it
with practice. When done, use the same command to exit the mode (just type "y"). See Section 6−10−1 for
more on outline editing.

Electric is finicky about moving the lines with inputs or outputs. If you click and drag to select the line along
with the input, everything moves as expected. If you try to move only the export name, it won’t move as you
might expect. Therefore, make a habit of moving both the line and export simultaneously when editing icons.
For appearance, remove the thin export connector lines. Replace these with bold black lines. You can easily
do this by left clicking on a wire of the icon, then right−clicking, placing the cursor where you want the end
point of the wire to be. Electric draws a wire that extends from the artwork of the icon.

Use the "Text" item in the
Component menu to place a
label "nand2" in the icon.
Make the text be 2 units
high.

Now that you have an icon with three exports, create a new schematic called "and2" (don't forget to set the
view to "schematic"). Use the Place Cell Instance command (in menu Edit) to instantiate a "nand2{ic}" and
an "inv{ic}". Wire the two together and create exports on inputs "a" and "b" and output "y". Double−click on
the wire between the two gates and give it a name like "yb" so you know what you are looking at in
simulation. It is good practice to label every net in a design. When you are done, your "and2" schematic
should look like this.

Next, create a new layout called "and2" (remember to select the "layout" view). Instantiate the "nand2{lay}"
and "inv{lay}" layouts. ALWAYS use the Place Cell Instance command to create layout from pre−existing
cells. NEVER build a cell by cutting and pasting entire existing cells. If you do, then make a correction to the
original cell, your correction will not propagate to the new layout.

Chapter 1: Introduction

 Using the Electric VLSI Design System, version 9.07 43

#chap06-10-01

Initially the cell instances appear as black
boxes with ports. Select both instances and
use the All the Way command (in menu
Cell / Expand Cell Instances) to view the
contents of each layout. Wire power and
ground to each other. Move the cells
together as closely as possible without
violating design rules. You may need to
place large blobs of pure layer nodes over
the n−well and p−well to avoid
introducing well−related errors from
notches in the wells. Connect the output of
the "nand2" to the input of the "inv" using
Metal−1. Remember that connections may
only occur between the ports of the two
cells. Also connect the power and ground
lines of the cells using Metal−2. Export
the two inputs, the output, and power and
ground. An easy way to do this is to use
the Re−Export Everything command (in
menu Exports) to bring exports to the
surface level.

The Messages window shows how many ports were exported. The final gate should resemble this.

1−12−5: Analysis

Design Rule Checking

At any time, you can check your layout against the design rules by using the Check
Hierarchically command (in menu Tools / DRC), or just type the F5 key. When DRC is done, use the ">"
key to step through and highlight errors; see the Messages window for comments.

You can also use this command to check a schematic. Schematic design rules are simply "rules of etiquette"
which report unusual situations in the circuit. See Section 9−2−1 for more on DRC.

Network Consistency Checking

One of the most useful analysis tools is Network Consistency Checking (NCC). This compares the networks
in two different cells to make sure they are equivalent (this step is sometimes called LVS:
layout−versus−schematic).

To run NCC, edit either the layout or the schematic cell, and use the Schematic and Layout Views of Cell
in Current Window command (in menu Tools / NCC). This check will not consider transistor sizes, only

Chapter 1: Introduction

44 Using the Electric VLSI Design System, version 9.07

#chap09-02-01

circuit connectivity.

When the circuit has passed NCC at the connectivity level, turn on transistor size checking. To do this, check
"Check transistor sizes" in the NCC Preferences (use the Preferences command in menu File, section
"Tools", tab "NCC").

Electric ideally likes layout, schematic and icons of the same items to be named identically (i.e.
"nand2{sch}" and "nand2{lay}" have identical names). Having the same name places cells in the same cell
group. (Much of this naming happens automatically in Electric when new views of a current cell are made.)
If the two cells to be compared are not in the same group, additional work is needed to tell NCC what to
compare. See Section 9−7−1 for more on NCC.

Simulation

Electric has two built−in simulators, and can interface to many more. The built−in simulators are ALS and
IRSIM. ALS is a logic−level simulator, and is not useful for transistor−level design. IRSIM is a gate−level
simulator, and can handle the transistors in this example. Unfortunately, IRSIM is not packaged with the
basic Electric system (it is a free, but separate, "plugin"). See Section 1−5 for details on adding the IRSIM
simulator to Electric.

To simulate a circuit with IRSIM, use the IRSIM: Simulate Current Cell command (in menu Tools /
Simulation (Built−in)). A waveform window appears to show the simulation status. To get the waveform
window and your schematic/layout to appear side−by−side, use the Tile Vertically command (in menu
Window / Adjust Position).

The exported signals of your design will automatically appear in the waveform window. To add an internal
signal to the waveform display, select it and use the Add to Waveform in New Panel (in menu Edit /
Selection), or just type "a". To set a "1" value on a signal, select it (in either the waveform or the
schematic/layout) and use Set Signal High at Main Time (in menu Tools / Simulation (Built−in)), or just
type "V". You can drag the "main" time cursor (the dashed line) to any point in the waveform window.
Notice that as you drag it, level information is displayed in the schematic/layout. See Section 9−5−1 for more
on the IRSIM simulator.

Besides built−in simulation, Electric can generate input decks for many popular external simulators (see
Section 9−4−1). For example, to simulate with Spice, follow these steps:

Use the Spice/CDL Preferences to select your Spice engine (HSpice, PSpice, etc.)•
Use the Write Spice Deck... command (in menu Tools / Simulation (Spice)) to generate an input
deck for Spice.

•

Run the simulation externally•
Use the Plot Spice Listing... command (in menu Tools / Simulation (Spice)) to read the output of
Spice and display it in a waveform window.

•

See Section 9−4−3 for more on Spice.

Chapter 1: Introduction

 Using the Electric VLSI Design System, version 9.07 45

#chap09-07-01
#chap01-05
#chap09-05-01
#chap09-04-01
#chap09-04-03

Chapter 1: Introduction

46 Using the Electric VLSI Design System, version 9.07

Chapter 2: Basic Editing

2−1: Selection

2−1−1: Selecting Nodes and Arcs

Electric is a noun/verb system, meaning that all commands work by first selecting something (the noun) and
then doing an operation (the verb). For this reason, selection is important.

Selection (and movement, wiring, and zooming) are done
in "selection" mode, which is the default mode. This
mode is indicated by having the "selection" icon
highlighted in the tool bar.

Selection is done with clicks of the left button. Individual nodes and arcs are selected by clicking over them.
You can tell in advance what will be selected by the button click, because the next object to be selected is
shown in blue. This advance selection is called "mouse−over highlighting" and can be disabled (see Section
2−1−4). Once selected, objects are highlighted on the screen. If you use the shift−left button, unhighlighted
nodes and arcs are added to the selection, but objects that are already highlighted become deselected.

There are often multiple objects under the cursor (for example, in the area where an arc overlaps a node). To
get the object you want, hold the control key while clicking. The control−left button cycles through all
objects under the cursor. You can also use the Select Object Under Cursor... command (in menu Edit /
Selection) which pops−up a list of objects under the cursor and lets you choose which one to select.

The notion of toggling selection (shift−left) and cycling through what is under the cursor (control−left) can
be combined. If there are multiple objects under the cursor, and you are trying to toggle the selection, use the
control−shift−left button to cycle through them.

To select an object by its name, use the Select
Object... command (in menu Edit / Selection).
The resulting dialog lets you select nodes, arcs,
exports, or networks in the cell. You can also
search for objects by name (and can use regular
expressions in the search).

To select everything in the cell, use the Select
All command (in menu Edit / Selection). To
deselect everything, use Select Nothing.

 Using the Electric VLSI Design System, version 9.07 47

#chap01-08
#chap02-01-04
#chap02-01-04
#chap01-08
#chap01-08
#chap01-08

The Deselect All Arcs command deselects all selected arcs. This is useful when you wish to select a set of
nodes, but you have selected the entire area, including nodes and arcs.

To select everything in the cell that is the same as the currently selected objects, use the Select All Like
This command (in menu Edit / Selection). For example, if a Metal−1 arc is selected, the command will
select all Metal−1 arcs in the cell; if a P−Transistor is selected, the command will select all P−Transistor
nodes in the cell; if an export with the "output" characteristic is selected, the command will select all output
exports in the cell (for more on export characteristics, see Section 3−6−1).

To loop through the objects similar to the selected one, use Select Next Like This and Select Previous Like
This.

2−1−2: Selection Appearance

Highlighted objects have a box drawn around them. In some cases, the object extends beyond the box, but the
box encloses the essential part of the object.

For example, MOS transistors are
highlighted where the two
materials cross, even though the
materials extend on all four sides.
Also, CMOS active arcs have
implants that surround them, but
the highlight covers only the
central active part.

Besides the basic box, there will be other things drawn when an object is highlighted. Highlighted arcs have
their constraint characteristics displayed. The example above shows an arc that is both fixed−angle ("F") and
slidable ("S"). The letter "R" is used for rigid arcs, and an "X" appears when none of these constraints apply.
See Section 5−1 for more information on arc constraints.

When nodes are selected, a port is also highlighted. The port that is highlighted is the one closest to the
cursor when the node is selected. If the port is a single point, you see a "+" at the port. If the port is larger
than a single point, it is shown as a line or rectangle.

Chapter 2: Basic Editing

48 Using the Electric VLSI Design System, version 9.07

#chap03-06-01
#chap05-01

Highlighted nodes will also show the
entire network that extends out of
the highlighted port. Arcs in that
network will be drawn with dashed
lines, and nodes in that network will
be indicated with dots. The example
here shows the highlighting of a pin
node (in the upper−right) with a
single−point port ("+") which is
connected to a contact and a
transistor.

It is important to understand that Electric is not exactly a WYSIWYG editor
(what−you−see−is−what−you−get). Nodes that are touching on the screen may not actually be connected if
there are no arcs joining them. The best way to ensure that the circuit is correct is to highlight a node and see
the extent of the connections on it.

2−1−3: Unusual Selection: Areas and Text

Besides highlighting nodes and arcs, Electric can also highlight an arbitrary rectangular area. The notion of a
highlighted area, as opposed to a highlighted object, is used in some commands, and it generally implies
highlighting of everything in the area.

There are two ways to highlight an area. If you click the left button where there is no object, and hold it down
while dragging over objects, all of those objects will be highlighted.

To more precisely define a highlighted area, switch to area selection (as
opposed to object selection) with the Select Area command (in menu Edit
/ Modes / Select, or click on the "Area Selection" icon in the tool bar). Use
Select Objects to revert back to object selection.

Once in area selection mode, each click and drag of the left button leaves the highlight rectangle on the
screen exactly as it was drawn. You can convert this selection to a set of actual nodes and arcs with the
Enclosed Objects command (in menu Edit / Selection).

Selecting Text

Highlighted text appears as an "X" over the letters. However, text is a special case, so it will not be covered
until later (Section 6−8−2). For now, if you highlight some text, it is best to click again and select something
else.

Chapter 2: Basic Editing

 Using the Electric VLSI Design System, version 9.07 49

#chap01-08
#chap01-08
#chap06-08-02

2−1−4: Controlling Selection

Once a selection is made, you can save it with the Push Selection command (in menu Edit / Selection). The
highlighting is not changed, but it is saved on a stack. To restore this selection at a later time, use the Pop
Selection command.

Another selection feature is enabled by clicking on the "Selection" area of the Status Area (in the bottom−left
of a window). A menu pops up that lets you save the current selection or restore any saved selection. Another
menu item lets you clear the list of saved selections.

There are some selection preferences that can be set with Selection Preferences (in menu File /
Preferences..., "General" section, "Selection" tab).

"Easy selection of cell
instances" controls
whether instances can be
selected with simple
clicks, or whether they
require extra effort to
select (see the next
section for more).

The "Dragging must
enclose entire object"
requests that
area−selection completely
enclose an object in order
to select it. The default is
that any object touching
the area is selected.

To prevent accidental moving of an object after selecting it, object movement is disabled for a short time
after the selection click. This delay can be controlled.

When the cursor roams over a circuit, it shows a "preview" of what will be selected by the next click. The
advance preview is shown in a different color than the actual highlighting (initially blue, but this can be
changed with the Layers Preferences, see Section 4−6−2). This feature is called "mouse−over highlighting".
If you do not want to see this preview, uncheck "Enable Mouse−over highlighting".

Chapter 2: Basic Editing

50 Using the Electric VLSI Design System, version 9.07

#chap02-01-05
#chap02-01-05
#chap04-06-02

When a node is selected, all connected circuitry is also selected. To disable this, uncheck "Highlight
Connected Objects".

When all of the layers of a node or arc are made invisible, the nodes and arcs are not selectable. To allows
invisible nodes and arcs to be selectable, check "Can select objects whose layers are invisible". See Section
4−5−3 for more on layer visibility.

"Routing mode (cannot change connectivity)" is a state in which nodes cannot be selected, and no changes to
the circuit are allowed. See Section 9−6−1 for more on routing.

2−1−5: Easy and Hard Selection

In a busy circuit, many objects may overlap, causing confusion when selecting. To simplify selection, objects
can be marked so that they are no longer easy−to−select, which means that standard selection does not work
on them.

To select hard−to−select objects, use the Toggle Special Select command
(in menu Edit / Modes / Select). You can also click on the "Special Select"
tool bar button to enable "special selection". Once in this mode, all objects
are selectable.

Ease of selection extends to more than just nodes and arcs. There are four "classes" of objects that can be
selected:

Basic objects (all arcs, primitive nodes, and port names) •
Cell instances •
Node and arc text (names and other text placed on nodes and arcs) •
Instance names (an unexpanded cell instance's name) •

By default, the first three classes are easy−to−select, and instance names are hard−to−select. If you uncheck
"Easy selection of cell instances" in the Selection Preferences dialog, then cell instances become
hard−to−select.

Although all nodes and arcs are typically easy−to−select, you can control them individually by unchecking
the "Easy to Select" field in their properties dialog (use the Object Properties... command in menu Edit /
Properties). If multiple objects are selected, the Object Properties... dialog has a popup on the right for
changing their selection difficulty.

Special commands exist in the Selection menu for dealing with easy−to−select nodes and arcs. You can
select all of the easy−to−select objects in the current cell with the Select All Easy command. Similarly, you
can select those that are not easy−to−select with the Select All Hard command. To change the ease of
selection for a set of objects, highlight them and use either Make Selected Easy or Make Selected Hard.

Chapter 2: Basic Editing

 Using the Electric VLSI Design System, version 9.07 51

#chap04-05-03
#chap04-05-03
#chap09-06-01

2−2: Circuit Creation

2−2−1: Node Creation

Node creation is done by selecting a node from the component menu in the side bar (on the left). Nodes in
the component menu are outlined in blue. After clicking on one of these nodes, click in the edit window to
place the node. If you hold the Control key, the node location will snap to one of the axes.

The location of the cursor is aligned to the nearest grid unit. This adjustment can be controlled with the Grid
Preferences (in menu File / Preferences..., "Display" section, "Grid" tab, see Section 4−7−2).

When placing a node, the cursor points to the anchor point of the newly created node. This is the center (for
primitives) or the location of the cell−center (for cell instances). Cell instances can change their anchor point
by moving the Cell−Center node inside of their layout (see Section 3−3).

When placing a node, but before you click to actually create the node, it is possible to temporarily switch
from node−placement to zoom/pan mode. This allows you to better select the location of the newly−created
node. To temporarily zoom, type "z", zoom the display, and then type "z" again to finish placing the node. To
temporarily pan, type "p", pan the display, and then type "p" again to finish placing the node. For more on
zooming and panning, see Sections 4−4−1 and Sections 4−4−2.

Besides basic components, there are special entries in the component menu for creation of additional nodes:

The "Cell" button displays a list of cell instances that can be created (see Section 3−3).•
The "Pure" button (only available in layout technologies) lets you place pure−layer nodes (see
Section 6−10−1).

•

The "Spice" button (only available in schematics) lets you place Spice primitives (see Section
9−4−3).

•

Chapter 2: Basic Editing

52 Using the Electric VLSI Design System, version 9.07

#chap04-07-02
#chap03-03
#chap04-04-01
#chap04-04-02
#chap03-03
#chap06-10-01
#chap09-04-03
#chap09-04-03

The "Misc" button has a collection of special objects that can be created.•

"Cell Instance..." brings up a dialog to
select a cell instance to place (see Section
3−3).

•

"Annotation Text" places a node that
contains only text (see Section 6−8−1).
This can also be accomplished with the
Add Text Annotation command (in
menu Edit / Text)

•

"Layout Text..." brings up a dialog to
create text from layout nodes (see Section
6−10−3).

•

"Layout Image..." brings up a dialog to
create an image from layout nodes (see
Section 6−10−3).

•

"Annular Ring..." brings up a dialog to
create circular shapes (see Section
6−10−3).

•

"Cell Center" places a node that defines
the origin of the cell (see Section 3−3).

•

"Essential Bounds" places a node that
defines the corners of the cell's essential
bounds (see Section 7−6−3).

•

"Spice Code" places a text−only node that will be inserted into Spice decks (see Section 9−4−3).•
"Spice Declaration" places a text−only node that will be inserted into Spice decks near the top (see
Section 9−4−3).

•

"Verilog Code" places a text−only node that will be inserted into the code area of Verilog decks (see
Section 9−4−2).

•

"Verilog Declaration" places a text−only node that will be inserted into the declaration area of
Verilog decks (see Section 9−4−2).

•

"Verilog Parameter" places a text−only node that will be inserted after the "module" header of this
cell so that a parameter can be defined (see Section 9−4−2).

•

"Verilog External Code" places a text−only node that will be inserted outside of any "modules" so
that arbitrary external code can be inserted (see Section 9−4−2).

•

"Simulation Probe" places a node that can be used to display simulation results (see Section 4−11).•
"DRC Exclusion" places a node that hides geometry from DRC examination (see Section 9−2−3).•
"AFG Exclusion" places a node that tells Auto−Fill Generation to ignore the area (not currently used,
but see Section 9−8−2 for more on Auto−Fill Generation).

•

"Invisible Pin" places an invisible−pin node (see Section 7−6−3).•
"Universal Pin" places an universal−pin node (see Section 7−6−3).•
"Unrouted Pin" places an unrouted−pin node (see Section 7−6−3).•

Chapter 2: Basic Editing

 Using the Electric VLSI Design System, version 9.07 53

#chap03-03
#chap03-03
#chap06-08-01
#chap06-10-03
#chap06-10-03
#chap06-10-03
#chap06-10-03
#chap06-10-03
#chap03-03
#chap07-06-03
#chap09-04-03
#chap09-04-03
#chap09-04-02
#chap09-04-02
#chap09-04-02
#chap09-04-02
#chap04-11
#chap09-02-03
#chap09-08-02
#chap07-06-03
#chap07-06-03
#chap07-06-03

2−2−2: Arc Creation

As the introductory example showed, arcs are created by clicking the right button. This can actually function
in two different ways, depending on what is highlighted.

Segment Wiring

If one node is highlighted, segment wiring is done, in which an arc is drawn from the highlighted node to the
location of the cursor. If there is nothing at that location, a pin is created, and it is left highlighted. Using the
right button again runs an arc from that pin to another location. By clicking and holding the right button, you
can see the path that the new arc will follow.

In general, all wiring operations should be done by clicking and holding the right button, then moving the
cursor until the intended wiring is shown, and finally releasing. This is recommended because wiring is quite
complex and can follow many different paths.

If you type a digit key while the right button is pressed, it changes the wiring layer by inserting contacts to
that layer of metal. For example, if you are running a metal−1 wire, and type "3" during the wiring, then two
contacts will be added (metal−1−metal−2 and metal−2−metal−3) to make the wire run in metal−3.

If the cursor is over another object when the right button is released, the new wire attaches to that object. If
there are multiple objects under the cursor, press the space bar (while the right button is pressed) to cycle
through the possible endpoints (including the possibility of connecting to none of them). To prevent the wire
from connecting to anything under the cursor, hold the control key while routing.

If an Unrouted arc is attached to the original node, that arc moves to the new pin. This allows you to replace
Unrouted arcs incrementally, one segment at a time. When both ends of the Unrouted arc are replaced by a
segment, that arc is removed. See Section 9−6−1 for more about Unrouted Arcs.

Two−Point Wiring

The other way that the creation button can operate is two−point wiring, in which two nodes are highlighted
and one or more arcs are created to connect them. Highlighting of these two nodes is done by clicking the
left button over the first one, and then using the shift−left button on the second. Note that if the second node
is obscured by other objects, you can cycle through the objects under the cursor with the
control−shift−left button. Once the two nodes are highlighted, use the right button to wire them together.
Note that the highlighted ports on the selected nodes are important: arcs will run between them, so they must
be compatible in their wiring capabilities.

Two−point wire creation first attempts to run a single arc. Generally, this can happen only if the ports are
lined up accurately. Failing single arc placement, an attempt is made to connect with two arcs and an
intermediate node. These two arcs can bend in one of two directions, determined by the location of the
cursor.

Chapter 2: Basic Editing

54 Using the Electric VLSI Design System, version 9.07

#chap01-08
#chap01-08
#chap09-06-01
#chap01-08
#chap01-08
#chap01-08
#chap01-08

Special Considerations

In addition to running an arc between two nodes, you can also use arcs as the starting or ending point of arc
creation.

If it is sensible, the creation command actually uses one of the nodes on an end of the selected arc. However,
if the connection falls inside the arc, it is split and a new node is created to make a "T" connection.

Electric will allow you to connect two nodes or arcs as long as there is some way in the current technology
for those objects to be connected. For example, if connecting between metal−1−pin and a metal−3−pin in the
MOSIS CMOS technology, Electric will place metal−1−metal−2 and metal−2−metal−3 contact cuts down,
and wire between all four nodes. When vias are inserted, they are placed closest to the "destination" node (or
farthest from the original node).

As mentioned in Section 1−8, pressing the number keys for a valid layer switches to that layer. If a node is
highlighted, it will route to that layer from the node, creating contacts as necessary.

Chapter 2: Basic Editing

 Using the Electric VLSI Design System, version 9.07 55

#chap01-08

2−2−3: Special Cases

The default width is set by the Arcs Preferences (in menu File / Preferences..., "General" section, "Arcs"
tab). If there are other arcs of this type already connected to the new one, and they are wider than normal,
then the new arc will use that width. Also, if an arc connects to a node that is wider than normal, it will grow
to match the size of the node (this can be disabled in the Arc Preferences, see Section 5−5).

Note that all arcs overlap their endpoint by half of their width, so very wide arcs may overlap their
destination with too much geometry. You can turn off this overlap by using the Toggle End Extension of
Head and Toggle End Extension of Tail commands (in menu Edit / Arc). See Section 5−4−3 for more on
end extension.

An unusual circuit creation command is the
Insert Jog In Arc command (in menu Edit /
Arc). This command inserts a jog in the
highlighted arc by replacing it with three new
arcs. Two of the new arcs run to the location of
the cursor, and the third arc is perpendicular to
them, connecting the ends at the cursor location
(initially it has zero length).

Once the jog is inserted, either half of the arc may be moved without affecting the other half, and the
perpendicular arc will keep the circuit connected.

Beginning users often leave many extra pins in their circuits. With the Cleanup Pins command (in menu
Edit / Cleanup Cell), these pins are automatically removed from your circuit, leaving a cleaner network. The
command does other pin organizations, such as making sure that text on these pins is located correctly,
identifying zero−sized pins, and identifying oversized pins. The Cleanup Pins Everywhere command does
this function for all cells at once.

The Connect Arcs that Cross Named Network... command (in menu Edit / Arc) looks for arcs that
intersect a specified network and forces them to connect to the network. For example, if a network consists of
a Metal−2 arc, and a Metal−3 arc crosses that network, then a via will be inserted at the intersection point to
connect the arcs. This command actually breaks the intersecting arcs and inserts a contact node so that the
circuit is in proper form.

Chapter 2: Basic Editing

56 Using the Electric VLSI Design System, version 9.07

#chap05-05
#chap05-04-03

2−3: Circuit Deletion

To remove circuitry, select nodes and/or arcs and use the Selected command (in menu Edit / Erase). A
keyboard shortcut for this is the Delete key. If there is a highlighted area rather than a highlighted object,
everything in the area is erased.

Note that an arc always connects two nodes, and therefore it cannot remain if one of the nodes is gone. This
means that certain rules apply to circuit deletion:

When a node is erased, all connecting arcs are also deleted. However, if a node is deleted that has
exactly two arcs, connected as though the node were in the middle of a single arc, then the node and
two arcs are replaced with a single arc.

•

In the interest of cleanliness, if an arc is erased, any isolated pins are also erased.•
If an erased
node has an
export on it (as
in this
example), then
the export
disappears and
so do all arcs
connected to
the port on
instances of
the current cell
(for more
information on
hierarchy, see
Chapter 3).

•

The exception to these rules is the Nodes Preference "Reconstruct arcs and exports when deleting instances"
(see Section 6−2) which requests that when a cell instance is deleted, and it has arcs connected to it or
exports from it, these arcs and exports will be "reconstructed" so that they continue to exist. Reconstruction
consists of creating pins where the cell instance ports used to be so that the arcs and exports can continue to
exist.

Chapter 2: Basic Editing

 Using the Electric VLSI Design System, version 9.07 57

#chap03-01
#chap06-02

When an area is selected instead of objects
(see Section 4−7−2) the Edit / Erase /
Selected command erases all geometry in
the highlighted area. All arcs that cross into
that area will be truncated. Thus, this
command erases precise geometry,
independent of the structure of nodes and
arcs. Note that the area to be erased is
adjusted by the current alignment values
(see Section 4−7−2).

Two special arc deletion commands are Arcs Connected to Selected Nodes and Arcs Connected Between
Selected Nodes (in menu Edit / Erase). The first command removes all arcs that have either end on a
selected node. The second command removes all arcs that have both ends on selected nodes.

Chapter 2: Basic Editing

58 Using the Electric VLSI Design System, version 9.07

#chap04-07-02
#chap04-07-02

2−4: Circuit Modification

2−4−1: Movement

Components can be moved by clicking on them with the left button and then dragging them around while
keeping the button pressed. During the drag, the new location of the components will be shown (as well as
the amount of motion), and once the button is released the circuitry will be moved.

While moving, simple design−rules are
applied and a warning is shown if the object
is in violation. In the example here, the
Metal−1−Metal−2 contact is moved down
toward the Metal−1 arc and is too close. Use
DRC Preferences to control these error
messages (see Section 9−2−2).

Another way to move objects is to use the arrow keys. When a node or arc is selected, each press of an arrow
key moves that object by one grid unit. If the shift key or the control key is held, then the arrow keys move
the object by a block of grid units. A block of grid units is defined in the Grid Preferences (in menu File /
Preferences..., "Display" section, "Grid" tab) to be the frequency of bold dots in the grid, initially 10. If you
hold both the shift key and the control key, then the distance moved will be a block squared (i.e. initially
100). Note that these arrow keys are available in the Edit / Move menu with the commands Move Objects
Left/Right/Up/Down for a single unit, Move Objects More Left/Right/Up/Down for a block of units, and
Move Objects Most Left/Right/Up/Down for a squared−block of units. Also note that the amount moved is
always grid−aligned (useful when squaring the block amount causes off−grid distances).

The distance that the arrow keys move is also affected by the grid
alignment setting (see Section 4−7−2). The current alignment/movement is
shown, and there are buttons to increase or decrease the size.

Clicking on the size amount brings up a menu that lets you change to any of the 5 movement/alignment sizes,
or bring up the Preferences dialog for further control. Note also that the "f" key increases the size by one step
and the "h" key decreases the size by one step.

To move objects along only one line (just horizontally or vertically but not both), hold the Control key down
during motion. Note that holding the Control key down before clicking will change the nature of the mouse
action, so you must click first, and then press Control. When editing schematics, this will constrain objects to
movement along 45 degree angles.

When arcs are moved by a large amount, they cause the connecting nodes to move with them. However, for
small arc motion, the arc may shift within its ports. This can only happen if the port has nonzero area and if

Chapter 2: Basic Editing

 Using the Electric VLSI Design System, version 9.07 59

#chap01-08
#chap09-02-02
#chap04-07-02

the arc has the slidable constraint (shown with the letter "S" when highlighted). These constraints are
discussed in greater detail in Section 5−2−2.

2−4−2: Other Modification

Another way to move a node is to use
the Object Properties... command (in
menu Edit / Properties), and type new
X and Y positions. This dialog allows
other modifications to be made as well
(orientation, etc.)

The dialog shows the location of the
anchor−point of the node.

The dialog also has a field for the node's name. This name is not related to network information, but it must
be unique, and can be used for identification. If a schematic node is given an arrayed name (such as
"and[0:3]") then it indicates that the node is arrayed that many times. Nodes (and arcs) are automatically
given unique names when first created (such as "nmos@0").

Chapter 2: Basic Editing

60 Using the Electric VLSI Design System, version 9.07

#chap05-02-02

The Object Properties dialog
is modeless: it can remain on
the screen while other editing
is being done. If a different
node is selected, the dialog
updates to show that node's
information. The "Apply"
button changes the selected
node to match the new values
typed into the dialog.

The Object
Properties... dialog can also
expand to show more
information. When the
"More" button is clicked, it
grows to full size as shown.
The full size Object
Properties... dialog has many
new controls, which vary
according to the type of node
selected:

"Expanded" and "Unexpanded" control how the node is drawn (if it is a cell instance). An expanded
instance is one that shows its contents; an unexpanded instance is drawn as a black box (see Section
3−4).

•

"Easy to Select" sets whether this node is selectable with a simple click. This feature allows you to
eliminate pieces of circuitry from active editing (see Section 2−1−5).

•

"Invisible Outside Cell" indicates that this node will not be drawn when the current cell is viewed
from higher−up the hierarchy.

•

"Locked" nodes may not be changed (moved, deleted).•

The bottom of the expanded Object Properties... dialog has a scroll area that can view "Ports",
"Parameters", or "Bus Members on Port". By default, a list of the node's ports is shown, including any
exports, connections, and highlight details. The "See" button selects the selected object in the list, either a
port or an arc. If the "Parameters" button is selected, the list shows the parameters on the node. When
"Parameters" is selected, the entries in the list let you modify individual values. Note that there is also an
"Edit Parameters" button, which brings up a full dialog for editing them. See Section 6−8−5 for more on
Parameters. The last button, "Bus Members on Port" lists all of the signals found on the currently selected
bus port (see Section 6−9−3 for more on busses).

In some situations, the list may be too large to display easily (for example, a cell instance with hundreds of
ports). When the list contains more than 100 entries, only the first 100 are shown, and the "Show All" button
is available to show the entire list.

Chapter 2: Basic Editing

 Using the Electric VLSI Design System, version 9.07 61

#chap03-04
#chap03-04
#chap02-01-05
#chap06-08-05
#chap06-09-03

If many objects are selected, you can move them by a specific distance with the Move Objects
By... command (in menu Edit / Move).

If many nodes are selected, the Object Properties... command will list all of them, and allow appropriate
changes to be made (depending on what is selected).

Changes are only made in the fields where you type a value. To remove an item from the list of selected
objects, use the "Remove" button. To remove all but the selected item, use "Remove Others". If only two
objects are selected, this dialog shows the distance between their centers.

Chapter 2: Basic Editing

62 Using the Electric VLSI Design System, version 9.07

2−5: Changing Size

2−5−1: Node Sizing

To change the size of a node, select it and use the Interactively command (in menu Edit / Size).

The command will show 8 handles around the node, four
in the corners and four on the sides. Clicking and
dragging on any handle will resize the node
appropriately. When you release the button, the node
changes size. If multiple nodes are selected, only one has
the handles but all are resized.

While stretching the node, hold the Control key to constrain the size to just one axis, and hold the Shift key to
constrain the X and Y sizes so that they scale uniformly. If you hold the Control and Shift keys, then the node
will resize about its center.

It is recommended that you hold the mouse button down while dragging so you can see the final size of the
node. Release the mouse button to actually resize the node. To abort this operation, type Escape.

Another way to change the size of one or more
nodes is to select them and use the All Selected
Nodes... command (in menu Edit / Size). The
dialog allows you to set the X and Y sizes of the
selected nodes. If you leave one of these size fields
empty, that coordinate is not changed.

Note that when typing size amounts into a dialog, specify the size of the highlighted area. In a typical MOS
transistor, the highlighted area (where active and polysilicon cross) is 2x3, even though the component is
much larger if you include the four overlap regions sticking out.

Chapter 2: Basic Editing

 Using the Electric VLSI Design System, version 9.07 63

2−5−2: Arc Sizing

To change the width of an arc, issue the Interactively command (in menu Edit / Size). Note that the arc
stretches about its center so that an edge is at the cursor location. Click a button to make the change. To
change the size of more than one arc at a time, select the arcs and use the All Selected Arcs... command.

Another way to change an arc's width is
to select it and use the Object
Properties... command (in menu Edit /
Properties).

Note that when typing size amounts into
a dialog, specify the size of the
highlighted area. A CMOS active arc
shows highlighting only on its active
area, even though the complete arc has
implant regions that are much larger.

The "Name" field lets you name an arc
(see Section 6−8−1). Arc names are
only displayed on the arc if they have
been explicitly typed into this dialog.
You can also use the "Props." button to
show a dialog that controls all aspects
of a displayed arc name.

The "Easy to Select" checkbox enables
selection of the arc with a simple click
(see Section 2−1−5).

Many pieces of state can be changed here, including Rigid and Fixed−angle (see Section 5−2−1), Slidable
(see Section 5−2−2), Directionality (see Section 5−4−1), Ends extension (see Section 5−4−3), and Negation
(see Section 5−4−2).

When an Artwork arc has been selected (see Section 7−6−1), the "Color and Pattern..." button is available for
setting its color.

Chapter 2: Basic Editing

64 Using the Electric VLSI Design System, version 9.07

#chap06-08-01
#chap02-01-05
#chap05-02-01
#chap05-02-02
#chap05-04-01
#chap05-04-03
#chap05-04-02
#chap07-06-01

2−6: Changing Orientation

There are two commands that can be used to change the orientation of circuitry. The Rotate command (in
menu Edit) has a submenu that allows the currently highlighted objects to rotate in any of three Manhattan
directions or by an arbitrary amount.

The Mirror command (in menu Edit) has a submenu that allows you to flip the currently highlighted objects
about their vertical centerline (left/right mirroring) or their horizontal centerline (up/down mirroring).

For individual nodes, the Object Properties... dialog (in menu Edit / Properties) lets you control its rotation
and mirroring.

Be aware that mirroring is not the same as rotating, even though both may produce the same visual results.
Mirroring causes the node to be flipped about its horizontal or vertical centerline, and thus appear backwards.

Chapter 2: Basic Editing

 Using the Electric VLSI Design System, version 9.07 65

Chapter 2: Basic Editing

66 Using the Electric VLSI Design System, version 9.07

Chapter 3: Hierarchy

3−1: Cells

A collection of nodes and arcs is called a cell, and instances of cells can be placed in other cells. When a cell
instance is placed, that instance is also a node, and is treated just like the simpler transistor and contact nodes.
Thus, nodes come in two forms: primitive and complex. Primitive nodes are found in the component menu
and are pre−defined by the technologies (transistors, contacts, pins). Complex nodes are actually instances of
other cells, and are found in libraries.

Electric gives each cell a view and a version and organizes cells into cell groups. A cell's view describes its
contents (for example "layout", "schematics", "netlist", etc.) A cell's version defines its design age. The full
name of a cell is:

CELLNAME;VERSION{VIEW}

where CELLNAME is the name of the cell, VIEW is the abbreviated name of this cell's view, and VERSION
is the version number of this view of the cell. When no version number is specified, it implies that this cell is
the most recent version (has the largest number). Thus, the cell "gate;2{lay}" is more recent than
"gate;1{lay}" but less recent than "gate{lay}" (which must have a higher version number, probably 3).

In the above example, there is a library with two cell groups. One group has a set of cells called "gate" and
the other has a set of cells called "latch". On the right is the explorer view of these cells. See Section
4−5−2 for more on the cell explorer.

 Using the Electric VLSI Design System, version 9.07 67

#chap04-05-02
#chap04-05-02

Although it is not necessary for cells in a group to all have the same name, the system presumes that common
names will be grouped together. Once in a group, you can rename a cell to give it a different name than the
others in its group. Use the Rename Cell... command (in menu Cell). You can also use context menus in the
cell explorer to rearrange groups.

Chapter 3: Hierarchy

68 Using the Electric VLSI Design System, version 9.07

3−2: Cell Creation and Deletion

Cells are created with the New
Cell... command (in menu Cell).

The New Cell... command requests
a new cell name as well as its view
and technology. You can choose to
show the cell in the current window,
or create a new one.

Cell names may not contain spaces,
tabs, curly braces, semicolons,
unprintable characters, or a colon.

Another way to create a new cell is to make a copy of an existing one. The Duplicate Current Cell... and
Duplicate Cell... commands (in menu Cell) copy a cell to a different one with a new name (you will be
prompted for the new name). The New Version of Current Cell command makes a copy of the cell in the
current window, but since it is a "new version", it has the same cell name. The newly created cell is displayed
in the window.

Once cells are created you can edit them with the Edit Cell... command (in menu Cell). Cells can also be
edited by using the cell explorer (see Section 4−5−2 for more).

Chapter 3: Hierarchy

 Using the Electric VLSI Design System, version 9.07 69

#chap04-05-02

To delete a cell, use the Delete
Cell... command (in menu Cell). When
deleting a cell, there cannot be any
instances of this cell, or the deletion fails.
As a side effect of failure, you are shown a
list of all other cells that have instances of
this, so you can see the extent of its use.
To find out whether a cell is being used
elsewhere in the hierarchy, use the List
Cell Usage command (in menu Cell / Cell
Info). For an explanation of the "Evaluate
Numbers when Sorting Names" checkbox,
see Section 3−7−1.

Because Electric is able to keep old
versions of cells, deleting the latest
version will cause an older version to
become the "most recent". Old versions
are those whose cell names include the
";VERSION" clause indicating that there
is a newer version of this view of the cell.

For example, if you have cell "Adder" and an older version "Adder;1", then deleting "Adder" will cause
"Adder;1" to be renamed to "Adder". This might make you think that the deletion failed, because there is still
a cell called "Adder", but this cell is actually the older (but now most recent) version.

To clean−up old and unused versions of cells, use the Delete Unused Old Versions command (in menu
Cell). Any such cells that are no longer used as instances in other cells will be deleted from the library. You
will get a list of deleted cells, and it is possible to undo this command.

Chapter 3: Hierarchy

70 Using the Electric VLSI Design System, version 9.07

#chap03-07-01

3−3: Creating Instances

To place an instance of a cell in another cell, use the "Cell" button in the component menu. After choosing a
cell from the popup list, click in the edit window to place the instance.

Another way to place an instance of a
cell is to use the Place Cell
Instance... command (in menu Cell).
You will be shown a list of cells that
are available for creation. After
selecting one, click to create an
instance in the current cell.

The cell selection dialog has three
controls at the top for viewing cells.
The "Library" popup lets you choose
which library to examine. You can
choose "ALL" to see cells from all
libraries. The "View" popup lets you
see only those cells in the specified
view. Again, you can choose "All" to
see all views. The "Filter" field
contains a regular expression that
must match a cell name in order to list
it. For an explanation of the "Evaluate
Numbers when Sorting Names"
checkbox, see Section 3−7−1.

If you place an instance from a different library, that library will be linked to the current one. Linked libraries
are read from disk together, and form a single hierarchy that spans multiple files. See Section 3−9−1 for more
on libraries.

An alternate way to create a cell instance is to duplicate an existing one on the screen. This requires that an
instance of that particular cell already exist. Select the existing cell and use the Duplicate command (in menu
Edit). Then move the cursor to the intended location of the new instance and click to create the copy. Note
that this command copies all attributes of the original node including its orientation.

Chapter 3: Hierarchy

 Using the Electric VLSI Design System, version 9.07 71

#chap03-07-01
#chap03-09-01

When a cell instance is
being created, the cursor
points to its anchor
point. The anchor point
is that point inside of the
cell where the
coordinate space has its
origin. This is often
defined by the location
of a cell−center node
inside of the cell (see
Section 7−6−3).

Most cells have a cell−center node placed automatically in them. If there isn't one and you want it, click on
the "Misc" button in the component menu on the left, and choose "Cell Center". A cell−center node, placed
inside of the cell definition, affects the anchor point for all subsequent creation of instances of the cell.

The cell−center is always at the origin of the cell. If you move it, then the origin moves (in other words,
moving the cell center is really like moving everything else in the cell). Note that the cell center is "hard to
select" and can only be moved in "special select" mode (see Section 2−1−5). You can move the cell center to
the center of the selected objects by using the Cell Center to Center of Selection command (from menu
Edit / Move).

Schematic Instances

When drawing schematics, you place instances of the icon cell, not the schematics cell. An icon cell can be
automatically created with the Make Icon View command (in menu View, see Section 3−11−4). The icon
cell can then be edited to have any appearance (see Section 7−6−1).

Chapter 3: Hierarchy

72 Using the Electric VLSI Design System, version 9.07

#chap7-06-03
#chap2-01-05
#chap03-11-04
#chap07-06-01

3−4: Examining Cell Instances

When instances are initially created, they are drawn as black boxes with nothing inside. This form of instance
display is called unexpanded. When the instances show the actual layout inside of them, they are expanded.
This distinction applies only in layout; schematic icons never show their actual contents.

To expand a cell instance, select it and use the commands of the Cell / Expand Cell Instances menu. The
One Level Down command opens up the next closed level; the All the Way command opens up all levels to
the bottom; and the Specified Amount... lets you type a number of levels of hierarchy to expand. These
commands expand all highlighted cells. If a highlighted cell is already expanded, this command expands any
subcells inside of the instance, repeatedly down the hierarchy.

Once expanded, a cell instance will continue to be drawn with its contents shown until the commands of the
Cell / Unexpand Cell Instances command are used. These commands return cell instances to their
black−box form, starting with the deepest subcells that are expanded at the bottom of the hierarchy. The One
Level Up command closes up the bottommost expanded level; the All the Way command closes all levels
from the bottom; and the Specified Amount... lets you type a number of levels of hierarchy to close.

You can also use the expansion (opened eye) and unexpansion (closed eye)
icons from the tool bar to expand and unexpand by one level.

The expansion information can also be controlled by using the Object Properties... command (in menu Edit
/ Properties) and clicking on the "Expanded" or "Unexpanded" buttons.

There are times when you want to see the layout inside of a cell instance, but only temporarily. The Look
Inside Highlighted command (in menu Cell) displays everything in the highlighted area, down through all
hierarchical levels. This is a one−shot display that reverts to unexpanded form if the window is shifted,
scaled, or redrawn.

There is a slight difference in specification between the Expand Cell Instances commands and the Look
Inside Highlighted command. The Expand Cell Instances commands affect cell instances only, and thus
any instances that are highlighted or in the highlighted area will be completely expanded. The Look Inside
Highlighted command affects layout display in an area, so only those parts of instances that are inside of the
highlighted area will be shown. Thus, the command Look Inside Highlighted is more precise in what it
expands and can be used, in conjunction with Area selection, to show only a specific part of the circuit (see
Section 2−1−3 for more on area selection).

Chapter 3: Hierarchy

 Using the Electric VLSI Design System, version 9.07 73

#chap02-01-03

3−5: Moving Up and Down the Hierarchy

Each editing window in Electric displays a single cell. Editing changes can be made only to that cell, and not
to any subcells that appear as instances. Thus, you may be able to see the contents of a cell instance, but you
cannot edit it.

To edit a cell instance, use one of these commands in the Cell / Down Hierarchy menu:

Down Hierarchy descends into the definition of the currently selected cell instance. You will now
be able to edit that cell.

•

Down Hierarchy, Keep Focus descends while keeping the same window zoom and pan.•
Down Hierarchy, New Window creates a new window in which to show the lower−level cell.•
Down Hierarchy, Keep Focus, New Window creates a new window in which to show the
lower−level cell, while maintaining the zoom and pan factor.

•

The opposite of going down the hierarchy is the Up Hierarchy command (in menu Cell / Up Hierarchy),
which pops you to the next higher cell in the hierarchy. If there was an associated Down
Hierarchy command, then this returns you to the place where you started, up the hierarchy. If the Down
Hierarchy commands were not used, Electric attempts to figure out the next higher cell in the hierarchy,
switching icons for schematics where appropriate. If there are multiple possibilities (because the current cell
is used in many locations) then you will be prompted for a specific location. An alternate version of this
command is Up Hierarchy, Keep Focus which moves up the hierarchy, but keeps the current cell's zoom
and pan factors the same so that the circuitry does not move on the screen.

Besides traversing the hierarchy, you can also traverse the sequence of cells that has been edited. To edit the
cell that was previously displayed, use the Go Back a Cell command (in the Cell / Cell Viewing
History menu) and to go forward in the list, use the Go Forward a Cell.

These commands are also accessible from the tool bar "back" and
"forward" buttons. If you right−click on these buttons, you are given a list
of cells and can jump directly to one of them.

When going down or up the hierarchy, if an export or port is selected, then the equivalent port or export is
shown after the level of hierarchy has changed.

Chapter 3: Hierarchy

74 Using the Electric VLSI Design System, version 9.07

Layout Considerations

If a layout cell is selected, you can use the Down Hierarchy In Place command to edit the cell while
showing the upper level of the hierarchy. A red border is drawn around the cell now being edited and the
surrounding geometry at the upper level, which is not editable, is grayed−out. To change the border color,
use the Layers Preferences (in menu File / Preferences..., "Display" section, "Layers" tab) and set the colors
for the layer "SPECIAL: DOWN−IN−PLACE BORDER". To disable the graying−out of upper levels of
hierarchy, use the Display Control Preferences and uncheck "Dim upper levels of hierarchy when editing
Down−In−Place".

The Down Hierarchy In Place To Object command finds the object under the cursor (at any level of the
hierarchy) and descends to that level. This may go down the hierarchy many levels. It descends "in place" so
that the original geometry is visible, but higher−levels are grayed−out. It is useful when trying to quickly find
the hierarchy that exists at that point, and see which instances were used to construct it. Note that there may
be many different levels of hierarchy under the cursor, which will cause a popup to appear listing the possible
subcells to edit.

Schematic Considerations

If an icon is selected, the Down Hierarchy commands will take you to the associated schematic. If the icon
that is selected is already in its own schematic (you can place an icon inside its own schematic for
documentation purposes), then the Down Hierarchy command takes you to the actual icon so that you can
edit it. The Down Hierarchy In Place command takes you directly to the icon, showing it in the context of
the upper−level schematic.

Schematic nodes can be arrayed by giving them array names (see Section 6−9−3). When you descend into an
arrayed node, the system does not know which element of the array you are entering. Most of the time, the
specific element is irrelevant, but if the circuit is being simulated, the specific instance may be necessary for
cross−probing. Therefore, if the cell is being simulated and you descend into an arrayed node, you will be
prompted for the specific element that you wish to visit.

There are other situations that cannot be detected, where the specific element needs to be known. To solve
this problem, you can request that Electric prompt for the specific element in all situations where an arrayed
node is visited. To do this, check "Always prompt for index when descending into array nodes" in the Nodes
Preferences (in menu File / Preferences..., "General" section, "Nodes" tab)

Chapter 3: Hierarchy

 Using the Electric VLSI Design System, version 9.07 75

#chap06-09-03

3−6: Exports

3−6−1: Export Creation

All nodes in Electric have connection sites, called ports, which indicate where wires may be attached. The
primitive nodes have predefined ports, but ports on cell instances must be defined by the user. To do this,
simply select a port on a node inside the cell, and turn it into an export, which makes it available on all
instances of the current cell. Although most ports are on nodes along the edge of the cell, Electric makes no
port location restrictions, so they may appear anywhere.

To see the location of all ports on the selected nodes, use the Show Ports on Node command (in menu
Export). This command highlights the ports on the screen, using the global text scale to affect size (see
Section 6−8−4).

To create an export, select a port
on a node and use the Create
Export... command (in menu
Export). The resulting dialog
requests an export name and
some characteristics.

All export names on a cell must be unique; if a nonunique name is given, it is modified to be unique. This
modification involves adding "_1", "_2", etc. to the end of scalar export names, or changing the index (from
[1] to [2], etc.) for arrayed export names. Like cell names, export names may not contain spaces, tabs, or
unprintable characters.

Behavioral characteristics can be associated with an export by selecting the appropriate field in the export
creation dialog. These behavior characteristics are stored with the export and used primarily by simulators.
The characteristics include the following:

Directional: "input", "output", and "bidirectional". •
Supply: "power" and "ground". •
Clocking: "clock" (a generic clock export) and "clock phase 1" through "clock phase 6". •
Reference: "reference input", "reference output", and "reference base". In addition, reference exports
carry an associated export name that is used by the CIF netlister.

•

Chapter 3: Hierarchy

76 Using the Electric VLSI Design System, version 9.07

#chap06-08-04

The "Always drawn" check box requests that the export label should always appear, regardless of the
connection or expansion of its cell. Typically, an export label on an instance of a cell is not displayed when
that port is connected to an arc or when the instance is expanded. This check box overrides the suppression.

Another special check box, "Body only," requests that this export not appear when an icon is generated for
the cell. This is useful for power and ground exports or duplicate connection sites on a single network.

You can control exporting of all
of the ports on the currently
highlighted node with the
Manipulate Ports on
Node... command (in menu
Export). This dialog shows all
ports, and lets you select sets of
them for reexport.

There are many special exporting commands that are primarily used in array−based layout. If a cell instance
is replicated many times and the instances are wired together, then ports on the edge of the array are the only
ones that are not wired. These ports define the connections for the next level of hierarchy. What you want to
do is to create exports for all unwired ports, automatically generating unique names. To do this, use these
commands in menu Export:

Re−Export Everything reexports all ports on all nodes in the current cell. •
Re−Export Selected reexports only ports on currently highlighted nodes:

Unwired Ports Only reexports only those ports that are not connected to an arc.♦
Wired and Unwired Ports reexports all ports.♦
Wired Ports Only reexports only those ports that are connected to an arc.♦

•

Re−Export Selected Port on All Nodes reexports the selected port on the every node in the cell that
is the same as the current one.

•

Re−Export Power and Ground reexports only Power and Ground exports.•
Re−Export Highlighted Area reexports only ports inside the currently highlighted area (for precise
area selection, see Section 2−1−3):

Unwired Ports Only reexports only those ports that are not connected to an arc.♦
Wired and Unwired Ports reexports all ports.♦
Wired Ports Only reexports only those ports that are connected to an arc.♦

•

Re−Export Deep Highlighted Area reexports only ports inside the currently highlighted area, but•

Chapter 3: Hierarchy

 Using the Electric VLSI Design System, version 9.07 77

#chap02-01-03

goes all the way down the hierarchy, reexporting from the lowest level. This causes unconnected
exports deep down the hierarchy to become available for connection:

Unwired Ports Only reexports only those ports that are not connected to an arc.♦
Wired and Unwired Ports reexports all ports.♦
Wired Ports Only reexports only those ports that are connected to an arc.♦

Note that ports on primitive nodes are not exported with these commands. See Section 6−4 for more about
arrays, and see Section 9−6−1 for more on automatic wiring.

Another special command for export creation is Add Exports from Library... (in menu Cell / Merge
Libraries), which copies exports from another library into the current one. The other library is examined for
cells whose names match ones in the current library. When a cell is found in the other library, all of its
exports are copied to the cell in the current library (if they don't already exist) and placed in the same
location. This command is useful in managing standard cell libraries that are imported from other file formats
(see Section 3−9−4 on Standard Cell Libraries). Because some formats contain geometry and others contain
connectivity, this command is needed to put them together.

3−6−2: Export Information

Exports are selected by clicking on their text, or by clicking on the node from which they are exported. If a
very dense design makes export selection hard, you can choose from a list by using the Select
Object... command (in menu Edit / Selection).

To see all exports that have been defined in the current cell, use the Show Exports command (in menu
Export). This command highlights the exports on the screen, using the global text scale to affect size (see
Section 6−8−4).

The List Exports command gives the same information, but in text form, and the Summarize
Exports command gives a text list that is reduced where sensible. To see a list of exports that are electrically
connected to the current object, at multiple levels of hierarchy, use the List Exports on Network and List
Exports below Network commands (in menu Tools / Network). To see a list of cells and networks where
the currently selected export is used, higher up in the hierarchy, use the Follow Export Up
Hierarchy command.

Chapter 3: Hierarchy

78 Using the Electric VLSI Design System, version 9.07

#chap06-04
#chap09-06-01
#chap03-09-04
#chap06-08-04

Once a port has been
exported, its characteristics
can be modified by selecting
the export name and using
the Object
Properties... command (in
menu Edit / Properties).

You can change basic export
information such as the
name, characteristic, and
reference name (if
applicable). You can control
export state such as whether
it is always drawn, and
whether or not it appears on
icons.

You can also change the appearance of the export by editing the size, font, color, style, anchor point, and
rotation of the name. See Section 6−8−1 for more about text appearance. See Section 6−8−4 for "smart"
export text control.

Special buttons in the Export Properties dialog allow you to examine related objects. The "Highlight Owner"
button shows the node on which this export resides.

You can change the characteristics of many exports at once by selecting them and using the Object
Properties... command (in menu Edit / Properties). This multi−object dialog has popups that will change all
export characteristics at once. You can change the name of exports by using the Rename Export... command
(in menu Export).

Chapter 3: Hierarchy

 Using the Electric VLSI Design System, version 9.07 79

#chap06-08-01
#chap06-08-04

Displaying Ports and Exports

Ports and exports can be
displayed on the screen in
many different ways. To
control this, use the
Ports/Exports Preferences (in
menu File / Preferences...,
"Display" section,
"Ports/Exports" tab).

The dialog offers three options
for ports and exports: "Full
Names" shows full text names,
"Short Names" shows port and
export names only up to the
first nonalphabetic character,
and "Crosses" shows crosses at
the locations.

With short names, the exports "Power−left" and "Power−1" are both written as "Power," which allows
multiple exports with the same functionality but different names to be displayed as if they have the same
name.

To remove port display completely, use the "Layers" tab of the side bar (see Section 4−5−3). In this panel are
options to make exports text completely invisible.

Chapter 3: Hierarchy

80 Using the Electric VLSI Design System, version 9.07

#chap04-05-03

3−6−3: Export Deletion and Movement

You can delete an export simply by selecting its name and using the Selected command of the Edit /
Erase menu (or typing the Delete key). You can also use the Delete Export command (in menu Export).

To remove many exports at once, the Delete Exports on Selected command removes all exports on all
highlighted nodes. Also, the Delete Exports in Highlighted Area command removes only those exports that
are in the selected area. When an export is deleted, all arcs connected to that port on instances of the current
cell (higher up the hierarchy) are also deleted (see Section 2−3).

To move export text, simply select it and drag it. The location of the text has no effect on the location of the
export: moving the text is only for improvement of the display. However, if you check "Move node with
export name" in the Ports/Exports Preferences (in menu File / Preferences..., "Display" section,
"Ports/Exports" tab), then moving an export name will cause the node (and the export) to move as well.

It is sometimes desirable to keep an export but to transfer it to another node. If a cell is in use higher in the
hierarchy, unexporting and then reexporting deletes all existing connections. Instead, the Move
Export command (in menu Export) can be used. Before using this command, two nodes and their ports must
be highlighted with left button and shift−left button. The export is moved from the first node to the second
node.

You can control all existing exports in
the current cell with the Manipulate
Exports... command. This dialog
shows the exports and lets you sort
them by name, layer, or characteristic.
Schematic cells also offer a "body
only" control which, when checked,
makes that export appear only in the
body (the schematic) and not in the
icon cell (see Section 3−6−1). You can
change export names and
characteristics.

If multiple exports are selected, changing one of their characteristics changes all of them. You can also
delete, show, or renumber selected exports. Renumbering of exports presumes that the exports have numbers
in their names and renames them so that there are no gaps in the sequence (and the first has no number). For
example, the ports "gnd_7", "gnd_9", and "gnd_10" will be renamed "gnd", "gnd_1", and "gnd_2".

Chapter 3: Hierarchy

 Using the Electric VLSI Design System, version 9.07 81

#chap02-03
#chap01-08
#chap01-08
#chap03-06-01

3−7: Cell Information

3−7−1: Cell Lists

To get some basic information about the
current cell (size, dates, etc) use the
Describe this Cell command (in menu
Cell / Cell Info).

To get information about more than one
cell, use the General Cell
Lists... command. The dialog selects a
subset of the cells in the current library.

The section labeled "Which cells:" selects
the cells to be listed (all, only those used
in other cells, only those NOT used in the
current cell, only those in the current cell,
or only "placeholder" cells: those created
because of cross−library dependency
failures, see Section 3−9−1).

The section labeled "View filter:" allows
only certain views to be displayed.

The section labeled "Version filter:"
allows removal of older or newer versions
of cells.

The section labeled "Display ordering:"
controls the order in which the selected
cells will be listed.

The section labeled "Destination:" allows
you to dump this listing to a disk file,
formatted for spreadsheets
(tab−separated).

The "Evaluate Numbers when Sorting Names" checkbox controls how cells are sorted (only relevant when
cells are to be ordered by name). When checked, numbers inside of cell names are evaluated and sorted
numerically. Thus, a set of cells called "A8", "A9", "A10", and "A11" will appear in that order. When not

Chapter 3: Hierarchy

82 Using the Electric VLSI Design System, version 9.07

#chap03-09-01

checked, cells are sorted lexically, causing the cells to appear in this order: "A10", "A11", "A8", "A9".

The result of cell information listing looks like this:

−Cell−−−−−−−−−−−−Version−−−−Creation date−−−−−−−−−−Revision Date−−−−−−−−−Size−−−−Usage−−L−I−S−D

tech−Artwork{} 1 Dec 31, 1969 16:00:00 Dec 15, 2004 11:34:15 131.0x83.0 0 L

tech−Bipolar{ic} 1 Dec 15, 2004 11:34:25 Dec 15, 2004 11:34:25 10.0x12.0 1

tech−Bipolar{lay} 1 Jul 23, 1990 23:25:49 Dec 15, 2004 12:38:11 37.0x73.5 0

tech−Bipolar{sch} 1 Jul 26, 1990 23:58:58 Dec 15, 2004 11:34:27 58.75x59.5 0 L I

tech−DigitalFilter{} 1 Dec 31, 1969 16:00:00 Dec 01, 2000 13:56:47 48.0x45.5 0

tech−MOSISCMOS{lay} 1 Jul 24, 1998 16:10:55 Dec 09, 2001 12:35:29 85.5x83.0 0 D

tech−PCB7404{} 1 Dec 31, 1969 16:00:00 Dec 15, 2004 11:45:03 12.5x28.5 1

tool_NCC{sch} 1 Mar 27, 2001 06:35:49 Jan 25, 2002 15:57:57 44.0x41.5 0 L I

The last five columns show the usage and four state bits. The usage is the number of times that this cell
appears as an instance in other cells. The state bits are:

"L" if the cell contents are locked•
"I" if instances in the cell are locked•
"S" if the cell is a standard cell•
"D" if the cell has passed design−rule checking•

For more cell information, use the commands of menu Cell / Cell Info:

Summarize Cell Contents lists the nodes and layers used in the current cell.•
Summarize Selected Cell Contents lists the nodes and layers used in the selected geometry.•
List Nodes/Arcs in this Cell counts the number of nodes and arcs in current cell and below. This is a
hierarchical count: if two cell instances each have two transistors inside of them, the total is 4
transistors. However, it counts only actual nodes, ignoring arrayed nodes (see Section 6−9−3).

•

List Cell Instances shows all cell instances below the current cell.•
List Cell Usage looks up the hierarchy and finds cells that contain the current cell as an instance.•
List Cell Usage, Hierarchically looks up the hierarchy and finds cells that contain the current cell as
an instance or as a subinstance. For example, if cell A contains cell B, and cell B contains cell C,
then using this command on cell C will mention both cells A and B, whereas the nonhierarchical
version of this command will mention only cell B.

•

Number of Transistors counts the number of transistors in the current cell and below (considering
arrayed instances, see Section 2−4−2).

•

Chapter 3: Hierarchy

 Using the Electric VLSI Design System, version 9.07 83

#chap06-09-03
#chap02-04-02

3−7−2: Cell Graphing

Cell graphing shows the hierarchical structure of your circuit. The graph is stored in a new cell called
"CellStructure", built from Artwork nodes.

The Cell Graph,
Entire
Library command (in
menu Cell / Cell Info)
displays a graph of
every cell in the
library. The Cell
Graph, From
Current
Cell command
displays a graph that
places the current cell
at the top.

A cell graph can be
edited like anything
else in Electric. Click
and drag the cell
names to rearrange the
graph.

Electric can also
construct a graph of
library dependencies
with the Library
Graph command.

Chapter 3: Hierarchy

84 Using the Electric VLSI Design System, version 9.07

3−7−3: Cell Properties

To examine and set more information about cells, use the Cell Properties... command (in menu Cell): The
left side of the dialog lists cells by library. On the right are the properties of the cells.

The checkbox "Disallow modification of anything in this cell", allows you to control whether the contents of
a cell is editable or not. When modification is disallowed, no changes may be made. This is useful when you
want to allow examination without accidental modification.

The checkbox "Disallow modification of instances in this cell", also prevents changes to the selected cell, but
in this case, only instances of sub−cells are locked. This is useful when you have a correct instance
placement and are doing wiring.

If you make a change that has
been disallowed, a dialog
appears that asks if you want
to override the lock.

Chapter 3: Hierarchy

 Using the Electric VLSI Design System, version 9.07 85

You may make the change ("Yes"), disallow the change ("No"), or remove the lock ("Always", which
unchecks the locks in this dialog).

The check box "Standard cell in a cell−library" indicates that this cell is a standard cell and should be treated
accordingly. Verilog generation uses this information (see Section 9−4−2).

The check box "Part of technology editor library" indicates that this cell helps to define a technology. For
more on the technology editor, see Section 8−1.

The check box "Expand new instances of this cell" indicates whether newly created instances of this cell are
expanded (contents visible) or unexpanded (drawn with a black outline) See Section 3−4 for more on
expansion.

For the first 5 checkboxes in this dialog, there are buttons on the right which allow you to set or clear these
flags for all cells in the library.

Each cell is tied to a specific technology. The cell's technology is set when the cell is created. You can
change the technology that is associated with a cell by using the "Technology" popup.

The section labeled "For Textual Cells" lets you set the font and size of the text in that cell (see Section 4−9).

At the bottom is the cell frame control. The frame is a border that is usually drawn around schematics. You
can set the frame size, whether it is wider (Landscape mode) or taller (Portrait mode), and whether a title box
is drawn in the corner. Additionally, you can set the designer name to be drawn for each cell. Other
information in the title box (company name, project name) are set on a per−user or per−library basis with the
Frame Preferences (in menu File / Preferences..., "Display" section, "Frame" tab). See Section 7−5−2 for
more on frames.

Chapter 3: Hierarchy

86 Using the Electric VLSI Design System, version 9.07

#chap09-04-02
#chap08-01
#chap03-04
#chap04-09
#chap07-05-02

3−8: Rearranging Cell Hierarchy

In order to manipulate hierarchical circuits, it is useful to create and delete levels of the hierarchy. The
Package Into Cell... command (in menu Cell) collects all of the highlighted objects into a new cell. You will
be prompted for the cell name. To package everything in an area, use the Area Selection commands (see
Section 2−1−3). When packaging an area, every node touching the area and all arcs between nodes in the
area are included in the new cell.

Packaging does not affect the highlighted circuitry. However, after packaging circuitry into a new cell, that
circuitry can be deleted and replaced with an instance of the cell.

The opposite function is the removal of levels of hierarchy. This is done with the Extract Cell
Instance subcommands (in menu Cell), which takes the currently highlighted cell instances and replaces
them with their contents. The One Level Down subcommand just replaces the selected instances with their
contents. The All the Way subcommand continues to extract instances inside of instances until there are no
more instances, just primitives. The Specified Amount... prompts for a number of levels of hierarchy and
extracts that many levels deep. All arcs that were connected to the cell instances are reconnected to the
correct parts of the instantiated circuitry. Note that extraction works only with layout cells; it cannot be used
with schematics.

Chapter 3: Hierarchy

 Using the Electric VLSI Design System, version 9.07 87

#chap02-01-03

3−9: Libraries

3−9−1: Introduction to Libraries

A library is a collection of cells that forms a consistent hierarchy. To enforce this consistency, Electric stores
an entire library in one disk file that is read or written at one time. It is possible, however, to have multiple
libraries in Electric. Only one library is the current one, and this sometimes affects commands that work at
the library level. When there are multiple libraries, you can switch between them with the Change Current
Library... command (in menu File) or by using the library's context menu in the cell explorer (see Section
4−5−2). To see which libraries are read in, use the List Libraries command.

To create a new, empty library, use the New Library... command (in menu File). To change the name of the
current library, use the Rename Library... command. To delete a library, use the Close Library command.
This removes only the memory representation, not the disk file.

It is possible to link two libraries by placing an instance of a cell from one library into another (this is done
with the Place Cell Instance... command in menu Cell). When this happens, the library with the instance
(the main library) is linked to the library with the actual cell (this is the reference library). Because the
reference library is needed to complete the main library, it will be read whenever the main library is read.

When there are many libraries used in the design of a circuit, it may be the case that a consistent set of library
files is read into Electric, but that there are unused library files that have not been read. To detect this
situation, use the Find Unused Library Files (in menu File / Check Libraries). This command will look for
unused library files in the disk directories used by the circuit and will report them to you so that the disk can
be cleaned−up. The command does not delete the library files: that is left to the user.

If referenced libraries are edited independently, it is possible that a reference to a cell in another library will
not match the actual cell in that library. When this happens, Electric creates a "placeholder" cell that matches
the original specification. Thus, the link to the referenced library is broken because the cell there does not fit
where the instance should be. To see a list of all placeholder cells that were created because of such
problems, use the General Cell Lists... command (in menu Cell / Cell Info) and select "Only placeholder
cells".

Electric comes with some built−in libraries:

There are two Spice primitive libraries (see Section 9−4−3). •
A library of examples can be loaded with the Load Sample Cells Library command (in menu
Help). Another simple library can be found in the Load Library command (in menu Help / 3D
Showcase).

•

A set of gates, useful for Logical Effort (see Section 9−9), can be loaded with the Load Logical
Effort Libraries (Purple, Red, and Orange) command (in menu Tools / Logical Effort).

•

Chapter 3: Hierarchy

88 Using the Electric VLSI Design System, version 9.07

#chap04-05-02
#chap04-05-02
#chap09-04-03
#chap09-09

Additional libraries are available at the Static Free Software website
(www.staticfreesoft.com/productsLibraries.html).

3−9−2: Reading Libraries

The Open Library... command (in menu File) brings a new library into Electric from disk. These libraries
may have the extension ".elib", ".jelib", or ".delib" (the jelib format is the default, see Section 10−1). There is
also a Open Recent Library entry that lists all recently opened libraries.

You can also use the open−library icon from the tool bar.

Electric users with very old ".elib" files may have difficulty reading them into Electric. If you have been
using versions of Electric prior to 7.00, it may help to upgrade to that version and read the libraries. Saving
".elib" files from version 7.00 will work properly in the current system.

By default Electric searches for libraries in the working directory, absolute file path references, and Electric's
internal library directory. Users can specify additional directories to search by using a file called "LIBDIRS"
placed in the directory with the files being read. This file provides additional paths to search for library files.
The file has the following syntax:

 * <comments>
 include <another_LIBDIRS_file>

<library_directory>

Paths may be absolute or relative.

Besides Electric libraries, it is possible to read circuit descriptions that are in other formats with these
commands in the File / Import menu:

Applicon 860 is a layout format from old Applicon EDA systems.•
Bookshelf is an open format for specifying placement tasks.•
CIF (Caltech Intermediate Format) is used to describe integrated circuit layout. It contains no
connectivity, so after the library is read, it does not know about transistors and contacts: just layers.
You can use the node extractor to convert CIF to real Electric components (see Section 9−10−2). To
affect how CIF is read, use the CIF Preferences (in menu File / Preferences..., "I/O" section, "CIF"
tab). See Section 7−3−2 for more on CIF.

•

DEF (Design Exchange Format) is an interchange format that describes the contents of a library.
DEF input often makes use of associated LEF files which must already have been read. Use the
LEF/DEF Preferences (in menu File / Preferences..., "I/O" section, "LEF/DEF" tab) to affect how
DEF is read (see Section 7−3−5).

•

DXF (AutoCAD) is a solid−modeling interchange format, and so it may contain 3D objects that
cannot be read into Electric. Nevertheless, Electric creates a library of artwork primitives as well as it
can. Use the DXF Preferences (in menu File / Preferences..., "I/O" section, "DXF" tab) to affect how
DXF is read (see Section 7−3−7).

•

Chapter 3: Hierarchy

 Using the Electric VLSI Design System, version 9.07 89

http://www.staticfreesoft.com/productsLibraries.html
#chap10-01
#chap09-10-02
#chap07-03-02
#chap07-03-05
#chap07-03-07

EDIF (Electronic Design Interchange Format) is used to describe both schematics and layout.
Electric reads EDIF version 2 0 0. Use the EDIF Preferences (in menu File / Preferences..., "I/O"
section, "EDIF" tab) to affect how EDIF is read (see Section 7−3−4).

•

ELIB is an older Electric library format that is in an undocumented binary format.•
GDS II (Stream)... and GDS II (Stream) Skeleton are used to describe integrated circuit layout.
The Skeleton version of the command reads only a skeletonized version of the top−level cell
(bounding box and exports, no other content, see Section 3−11−2). This skeletonized cell also has a
pointer back to the original GDS file so that when it is written to disk, the full GDS can be merged
back in. GDS contains no connectivity, so after the library is read, it does not know about transistors
and contacts: just layers. You can use the node extractor to convert GDS to real Electric components
(see Section 9−10−2). To affect how GDS is read, use the GDS Preferences (in menu File /
Preferences..., "I/O" section, "GDS" tab). See Section 7−3−3 for more on GDS.

•

Gerber is a printed−circuit board artwork format. Use the Gerber Preferences (in menu File /
Preferences..., "I/O" section, "Gerber" tab) to affect how Gerber is read (see Section 7−3−9).

•

LEF (Library Exchange Format) is an interchange format that describes the cells in a library. The
cells that are read in often contain only ports and very little contents. Use the LEF/DEF Preferences
(in menu File / Preferences..., "I/O" section, "LEF/DEF" tab) to affect how DEF is read (see Section
7−3−5).

•

Readable Dump is an older Electric library format that captures the entire database in a
text−readable format. These files were used when the ".elib" file was the main way of saving
libraries, because a way was needed of reading library files. Now that the newer ".jelib" format is
also text−readable, there is no need to use Readable Dumps anymore.

•

Spice Deck (Single file) and Spice Decks (Whole directory) are input to the Spice simulator and
define a netlist of circuitry. You can read a single file, or an entire directory (all .SPI files found
there). See Section 9−4−3 for more on Spice. Reading Spice Decks will create wired instances, but
the placement of the instances will be automatically generated because that information is not in the
Spice deck.

•

SUE (Schematic User Environment) is a schematic editor that captures a single cell in each file.
The circuitry in SUE files is added to the current library instead of being placed in its own library
(because many SUE files may have to be read to build up a single Electric library). When reading a
SUE file, any subdirectories that start with "suelib_" will also be examined for dependent SUE cells.
Use the SUE Preferences (in menu File / Preferences..., "I/O" section, "SUE" tab) to affect how SUE
is read (see Section 7−3−8).

•

Text Cell Contents is used to read a text file into a text cell. The current window must be a textual
view (such as VHDL, Verilog, documentation, etc.)

•

Verilog is a hardware description language used for simulation and fabrication. Electric reads the
Verilog file and constructs a schematic representation. Because there is no placement in Verilog files,
the schematic is topologically correct, but visually messy.

•

See Section 4−9 for more on text windows.

Some file formats (CIF, GDS, EDIF, LEF, DEF, SUE, and Applicon 860) are technology−specific. Before
reading them, you will be prompted for the layout technology to use. The default is to use the current
technology.

Chapter 3: Hierarchy

90 Using the Electric VLSI Design System, version 9.07

#chap07-03-04
#chap03-11-02
#chap09-10-02
#chap07-03-03
#chap07-03-09
#chap07-03-05
#chap07-03-05
#chap09-04-03
#chap07-03-08
#chap04-09

If you import a library that already exists in Electric, the following warning appears:

You can save the previous library, overwrite the previous library, cancel the operation, or merge the new
library into the previous library. The "Merge" option creates new versions of cells when the names conflict,
producing a library that has both the previous and new contents in it.

3−9−3: Writing Libraries

Writing libraries to disk is done with the Save Library command (in menu File). The Save All
Libraries command writes all libraries that have changed.

You can also use the save−libraries icon from the tool bar.

To force all libraries to be saved,
use the Mark All Libraries for
Saving command, or use Save All
Libraries in Format... to specify
how they are to be saved.

If a library was read from disk, it
is written back to the same file. If,
however, you wish to write the
library to a new file (thus
preserving the original) then use
the Save Library As... command.

The Library Preferences (in menu
File / Preferences..., "I/O"
section, "Library" tab) offers
options for writing libraries to
disk. By default, saved libraries
overwrite the previous files and no
backup is created. If you choose
"Backup of last library file", then
the former library is renamed so
that it has a "~" at the end.

Chapter 3: Hierarchy

 Using the Electric VLSI Design System, version 9.07 91

If you choose "Backup history of library files", then the former library is renamed so that it has its creation
date as part of its name.

Electric can also write external format files with these commands in the File / Export menu:

Bookshelf is an open format for specifying placement tasks.•
CIF (Caltech Intermediate Format) is used to describe integrated circuit layout. The output file
contains only the current cell and any circuitry below that in the hierarchy. Use the CIF Preferences
(in menu File / Preferences..., "I/O" section, "CIF" tab) to affect how CIF is written. See Section
7−3−2 for more on CIF.

•

DFTM is a network interchange format for digital filters/transactional memory routers.•
DXF (AutoCAD) is a solid−modeling interchange format. Use the DXF Preferences (in menu File /
Preferences..., "I/O" section, "DXF" tab) to affect how DXF is written. See Section 7−3−7 for more
on DXF.

•

Eagle is an interface to the Eagle schematics design system (its netlist format). Before writing Eagle
files, you must give every node the "ref_des" attribute, and every port on these nodes the "pin"
attribute. If you also place the "pkg_type" attribute on the node, it overrides the cell name.

•

ECAD is an interface to the ECAD schematics design system (its netlist format). Before writing
ECAD files, you must give every node the "ref_des" attribute, and every port on these nodes the
"pin" attribute. If you also place the "pkg_type" attribute on the node, it overrides the cell name.

•

EDIF (Electronic Design Interchange Format) can write either the Netlist or the Schematic view
of the circuit. Electric writes EDIF version 2 0 0. Use the EDIF Preferences (in menu File /
Preferences..., "I/O" section, "EDIF" tab) to affect how EDIF is written. See Section 7−3−4 for more
on EDIF.

•

ELIB (Version 6) writes old−format binary files. These files can be read by version 6 of Electric.•
GDS II (Stream) is also used to describe integrated circuit layout. The output file contains only the
current cell and any circuitry below that in the hierarchy. Use the GDS Preferences (in menu File /
Preferences..., "I/O" section, "GDS" tab) to affect how GDS is written. See Section 7−3−3 for more
on GDS.

•

Gerber is a printed−circuit board artwork format.•
HPGL is the Hewlett−Packard printing language. The output file contains only a visual
representation of the current cell (or part of that cell).

•

JELIB (Version 8.03) writes old−format JELIB files. These files are useful for versions 8.03 and
earlier.

•

L is the GDT language, still appearing in some commercial systems. The output file contains only
the current cell and any circuitry below that in the hierarchy.

•

LEF (Library Exchange Format) and DEF (Design Exchange Format) are interchange formats
that describe a two−level layout. The lower level (the standard cells) are written to the LEF file. The
top−level is written to the DEF file. If the hierarchy has more than two levels, then it is flattened and
written all in the LEF file. See Section 7−3−5 for more on LEF and DEF.

•

Pads is an interface to the Pads schematics design system (its netlist format). Before writing Pads
files, you must give every node the "ref_des" attribute, and every port on these nodes the "pin"
attribute. If you also place the "pkg_type" attribute on the node, it overrides the cell name.

•

PNG (Portable Network Graphics) is an image format that captures the current window.•
PostScript is the Adobe printing language. The output file contains only a visual representation of•

Chapter 3: Hierarchy

92 Using the Electric VLSI Design System, version 9.07

#chap07-03-02
#chap07-03-02
#chap07-03-07
#chap07-03-04
#chap07-03-03
#chap07-03-05

the current cell (or part of that cell). PostScript options can be controlled with the Printing
Preferences (in menu File / Preferences..., "General" section, "Printing" tab).
Flattened Rectangles is a general format for writing flattened geometry as rectangles. Users are
prompted for the format to use, with %l replaced by the rectangle layer, %x replaced by the X
coordinate of the center of the rectangle, %y replaced by the Y coordinate of the center of the
rectangle, %w replaced by the width of the rectangle, and %h replaced by the height of the rectangle.

•

STL (Stereolithography) is a format for interfacing with "3D printing" machines.•
SVG is a web format (Scalable Vector Graphics) that captures the current window. See Section
7−3−10 for more on SVG.

•

Telesis is an old netlist interface. Each cell in the circuit is saved to a separate Telesis file with the
".txt" extension.

•

Text Cell Contents is used to write a text file from a text cell. The current window must be a textual
view (such as VHDL, Verilog, documentation, etc.) See Section 4−9 for more on text windows.

•

The exported files from Electric are often considered to be proprietary information, and must be marked
appropriately. Copyright information can be inserted into exported files with the Copyright Preferences (in
menu File / Preferences..., "I/O" section, "Copyright" tab).

Since each export file has a different format for comments, the copyright text should not contain any such
characters. Instead, the system will insert the proper comment characters for the particular export format.

Chapter 3: Hierarchy

 Using the Electric VLSI Design System, version 9.07 93

#chap07-03-10
#chap07-03-10
#chap04-09

The copyright information will be inserted into decks exported for CIF, LEF, and PostScript, as well as in
simulation netlists for Verilog, Spice, Silos, ESIM/RSIM/RNL/COSMOS, FastHenry, Maxwell, and IRSIM.

3−9−4: Standard Cell Libraries

Electric comes with few useful libraries for doing design (see Section 3−9−1). However, the system is able to
make use of Artisan libraries. These libraries are free, provided that you sign an Artisan license. Once you
are licensed, you will have standard cell libraries, pad libraries, memory libraries, and more.

Artisan libraries are not distributed in Electric format. Instead, they come in a variety of formats that can be
read into Electric. The GDS files contain the necessary geometry, and the LEF files contain the connectivity.
By combining them, Electric creates a standard cell library that can be placed−and−routed and can be
fabricated. Note that the data is not node−extracted, so not all of Electric's capabilities can be used with this
data.

To create an Artisan library, follow these steps:

Select the Artisan data that you want, and extract the GDS and LEF files for it. The GDS files will
have the extension ".gds2", which is not what Electric expects (Electric expects them to end with
".gds"), so you may want to rename them.

•

Read the LEF file into Electric with the LEF (Library Exchange Format)... command (in menu
File / Import). Keep in mind that the LEF data may come in multiple versions for different numbers
of metal layers.

•

Read the GDS data into Electric with the GDS II (Stream)... command (in menu File / Import).
Note that the proper GDS layers must be established first (with the GDS Preferences, see Section
7−3−3). There will now be two libraries in memory: one with the GDS data and one with the LEF
data.

•

Merge the port information from the LEF library into the GDS library. It is important that the GDS
library be the "current library" (use the Change Current Library... command in menu File if it is
not). To merge the LEF port information, use the Add Exports from Library... command (of menu
Cell / Merge Libraries). You will be prompted for another library, and should select the one with
the LEF data.

•

At this point, the GDS library now has standard cells in it, including the export information that was
in the LEF library. Before saving it to disk, you should probably use the Cell Properties... command
(of menu Cells, see Section 3−7−3) and set all of the cells to be "Standard cell in a cell library".

•

Chapter 3: Hierarchy

94 Using the Electric VLSI Design System, version 9.07

#chap03-09-01
http://www.artisan.com
#chap07-03-03
#chap07-03-03
#chap03-07-03

3−10: Copying Cells Between Libraries

In general, different libraries are completely separate collections of cells that do not relate. For example, two
cells in different libraries can have the same name without being the same size or having the same content.
Although a cell from one library can be used as an instance in another, this causes the two libraries to be
linked together. It may be simpler to copy the cells from one library to another, thus allowing a single library
to contain the entire design.

A simple way to copy cells from one library to another is to drag them in the Explorer window (see Section
4−5−2).

A more powerful
method is the
Cross−Library
Copy... command (in
menu Cell). This
command provides a
dialog for copying cells
between libraries. The
left and right columns
show the contents of
two different libraries
(and the pulldowns
above each column let
you select the two
libraries that you want
to see).

Chapter 3: Hierarchy

 Using the Electric VLSI Design System, version 9.07 95

#chap04-05-02
#chap04-05-02

When there is a cell with the same name in both libraries, the system compares them to determine which is
newer. If you check "Date and content" (and then "Compare" to do comparison again) Electric will compare
the actual contents of cells when determining their equality. Unchecking "Examine quietly" will cause the
system to describe differences found during comparison.

By choosing one or more cells in the right−hand library and clicking "<< Copy", those cells are copied into
the left−hand library. The "Copy >>" button does the reverse. If "Delete after copy" is checked, the buttons
change to "<< Move" and "Move >>".

The system can be requested to copy additional cells that relate to the selected one. By checking "Copy
subcells", all subcells of the copied cell are also transferred. By checking "Copy all related views", all related
views (icon, schematic, layout, etc.) are also transferred. Note that if "Copy all related views" is off but you
want to "Copy subcells", it still copies related views in a limited fashion (i.e. schematics and icons are copied
together).

When there is a reference to an instance inside of a copied cell, and that instance already exists in the
destination library, there are many ways to handle the transfer. For example, library "Frank" has cell "A"
which has, inside of it, an instance of cell "B" ("B" is also in library "Frank"). You want to copy cell "A" to
library "Tom", but there is already a cell called "B" in library "Tom". These things may happen:

If "Copy subcells" is checked, then a new version of "Tom:B" is created from "Frank:B", and this
cell is instantiated in the copied "Tom:A".

•

If "Copy subcells" is not checked, the instance in the new "Tom:A" points to the old "Frank:B".•
If "Copy subcells" is not checked and "Use existing subcells" is checked, the instance in the new
"Tom:A" points to the existing cell "Tom:B". In order for this to work, however, the size and exports
of "Tom:B" must match the original in "Frank:B". Therefore, if "Copy subcells" is checked, "Use
existing subcells" is implied.

•

Chapter 3: Hierarchy

96 Using the Electric VLSI Design System, version 9.07

3−11: Views

3−11−1: Setting a Cell's View

Each cell has a view, which provides a description of its contents. A view consists of a full name and an
abbreviation to be used in cell naming. For example, the "layout" view is abbreviated "lay" and so the layout
view of cell "adder" is called "adder{lay}." When no view name appears, the cell has the "unknown" view.
Possible views are:

"layout" (for IC layout) •
"schematic" (for logic designs) •
"icon" (to describe a cell symbolically) •
"layout.skeleton" (a minimal view) •
"documentation" (a text−only view) •
"VHDL" or "Verilog" (text−only views for hardware−description languages) •
a number of "netlist" views (text−only views that list connectivity for various tools such as "netlisp",
"als", "quisc", "rsim", and "silos")

•

"unknown" (no specified view) •

When creating a cell with the New Cell... command, you can
specify its view. After creation, you can change the current cell's
view with the Change Cell's View... command (in menu View).
You can also use context menus in the cell explorer to change a
cell's view.

3−11−2: Switching between Views of a Cell

When editing one view of a cell, there are commands in the View menu that will switch to an alternate view
of the same cell.

Use Edit Layout View to switch to the layout view.•
Use Edit Schematic View to switch to the schematic view.•
Use Edit Icon View to switch to the Icon view.•
Use Edit VHDL View to switch to the VHDL view.•
Use Edit Documentation View to switch to the text−only documentation view.•
Use Edit Skeleton View to switch to the Skeleton view.•

For all other view types, use Edit Other View... and select the desired view. Note that these commands are
equivalent to the Edit Cell... command (in menu Cell) with an appropriate selection.

Chapter 3: Hierarchy

 Using the Electric VLSI Design System, version 9.07 97

When editing cells with text−only views (VHDL, Documentation, etc.), the window becomes a text editor.
You may then use the Text Cell Contents... commands (in menu File / Export and File / Import) to save
and restore this text to disk. See Section 4−9 for more on text editing.

The commands to edit another view work only when that cell exists. To create a new cell of a particular type,
use the Make... commands of the View menu. These view conversion commands are available:

Make Icon View creates an icon from a schematic (see Section 3−11−4 for more on this).•
Make Schematic View creates a schematic from a layout.•
Make Alternate Layout View... converts from layout or schematic to an alternate layout. You must
choose a specific layout technology, and the new layout will use components from that technology.
You can also request that the converted layout be placed into a new library. This is useful if the
conversion creates a hierarchy of cells in the new technology.

•

Make Skeleton View makes a skeletonized layout from a layout (the only thing in the skeleton is the
exports and the frame; it is a "layout icon").

•

Make VHDL View converts the current layout or schematic into structural VHDL. This VHDL is
used by the Silicon Compiler (see Section 9−12) and the ALS simulator (see Section 9−5−2). Note
that there are 5 schematic primitives which can exist in a normal and negated form ("buffer", "and",
"or", "xor", and "mux"). You can choose the names to use for these two forms in the "Schematics"
section of the Technology Preferences (in menu File / Preferences..., "Technology" section,
"Technology" tab).

•

There is also a way to convert from a hardware description language (VHDL or Verilog) to a circuit. To do
this, use the Convert Current Cell to Rats−Nest Structure command (in menu Tools / Silicon Compiler).
The resulting cell will be either a layout cell or a schematics cell (depending on the "Make Layout Cells (not
Schematics)" setting in the "Verilog" preferences, see Section 9−4−2). See Section 9−12 for more on Silicon
Compilation.

3−11−3: Creating and Deleting Views

If the list of possible views is not
sufficient to describe a cell, new views
can be created with the View
Control... command (in menu View).
This command shows all views and
lets you create and delete them.

When creating a new view, a name and
an abbreviation are required. The
abbreviation should be the first few
letters of the full view name. This
abbreviation will be used when
describing cells with that view.

Chapter 3: Hierarchy

98 Using the Electric VLSI Design System, version 9.07

#chap04-09
#chap03-11-04
#chap09-12
#chap09-05-02
#chap09-04-02
#chap09-12

The "Text View" checkbox indicates that this is a text−only view, like "Documentation", "Netlist",
"Verilog", and "VHDL".

The "Delete" button deletes views that you have created (it cannot delete the views that exist on startup, such
as "layout", "schematic", etc). Also, there must be no cells with the view that is being deleted.

3−11−4: Automatic Icon Generation

A particularly useful view type is icon. The icon cell is used for instances of an associated contents cell,
which contains schematics. For example, you may have a cell called "adder{sch}" which contains a
schematic. You may then create a cell called "adder{ic}" that contains a circle with a plus sign inside (these
are nodes in the Artwork technology). This is then the icon for the contents cell "adder{sch}". Now, if you
create an instance of the schematic cell, the icon cell will actually be placed, because it is the symbol that
gets used for instances.

The icon cell is correctly tied to its contents in most respects. If you descend into it (with the commands in
the Cell / Down Hierarchy menu), then you actually find yourself editing the associated contents cell. The
Up Hierarchy command properly returns you to the location of the icon instance. Also, the network
consistency checker and the simulators correctly substitute the contents whenever an icon appears. In order
for this to work, however, all exports in the contents cell must exist with the same name in the icon cell (with
the exception of those that are marked "Body Only").

To generate an icon cell automatically, use the Make Icon View command (in menu View). Be sure to create
all relevant exports before issuing this command, so that the proper icon can be constructed. Note that any
export that has its "Body only" attribute checked will be omitted from the icon.

To control the look of the icons, use the Icon Preferences (in menu File / Preferences..., "Technology"
section, "Icon" tab).

The top part of the dialog lets you control where exports are placed. You may choose to place them
according to their characteristics (input, output, etc.) or to place them relative to their location in the original
cell. When placed by characteristics, exports are arranged alphabetically around the icon, and you can choose
to reverse the alphabetical order. Text can be rotated in any of four directions. When placed by location in the
cell, you can set rotation on each side, ask that any side be omitted (no ports on that side) and request that the
exact location of the original exports be used in the icon.

The middle section of the dialog controls the body and leads of the icon. You can choose whether or not to
draw the body and leads. You can set the spacing and length of leads. You can control the size of the text
used on the cell body. You can request that exports be "Always Drawn" (which means that they appear even
when wired or reexported, see Section 3−6−1). You can choose the location of the exports (at the end of the
leads, in the middle of the leads, or on the body). You can choose the style of the export text (whether it
grows inward, outward).

The bottom part of the dialog has miscellaneous controls. You can choose the technology of the exports
("Schematic" uses nodes from the Schematic technology and can connect only to other Schematic arcs;

Chapter 3: Hierarchy

 Using the Electric VLSI Design System, version 9.07 99

#chap03-06-01

"Universal" uses nodes from the Generic technology which can connect to any arc). You can choose the
location of the "example" icon instance in the original schematic (when you use the Make Icon
View command, it generates the icon and places an example instance of that icon in the schematic). One of
the choices is "No Instance" which prevents placement of example icons. A button at the bottom requests that
an icon be made now, and takes the place of the Make Icon View command.

Chapter 3: Hierarchy

100 Using the Electric VLSI Design System, version 9.07

Chapter 4: Display

4−1: The Tool Bar

The tool bar sits near the top of the screen, below the menu bar. It provides shortcuts for many common
commands.

The tool bar has these sections:

Library Control Icons to read a library (Section 3−9−2) and to save libraries (Section 3−9−3). •
Editing Modes Icons for selection (Section 2−1−1), panning (Section 4−4−2), zooming (Section
4−4−1), outline edit (Section 6−10−2), and measuring (Section 4−7−4).

•

Alignment and Arrow Distance The center shows the current alignment value and the distance that
arrow keys will move. Icons on the left and right make that distance larger or smaller. Clicking on
the distance value shows a popup with more choices (Section 2−4−1).

•

Object or Area Icons switch between object selection and area definition (Section 2−1−3).•
Hard Select Icon to toggle the selection of hard−to−select objects (Section 2−1−5).•
Preferences Icon to show the preferences dialog (Section 6−3).•
Undo Icons to undo and redo (Section 6−7).•
Hierarchy Icons to go back and forward while traversing the hierarchy (Section 3−5).•
Expansion Icons to expand and unexpand cell instances (Section 3−4).•

 Using the Electric VLSI Design System, version 9.07 101

#chap03-09-02
#chap03-09-03
#chap02-01-01
#chap04-04-02
#chap04-04-01
#chap04-04-01
#chap06-10-02
#chap04-07-04
#chap02-04-01
#chap02-01-03
#chap02-01-05
#chap06-03
#chap06-07
#chap03-05
#chap03-04

The toolbar can be rearranged with the Toolbar Preferences (in menu File / Preferences..., "Display" section,
"Toolbar" tab). An image at the top of the dialog shows the current state of the toolbar. This can be
manipulated by dragging icons within the dialog. To add a new toolbar button, drag a command from the list
at the bottom to the toolbar image at the top. To insert a separator, drag the "Sep" to the toolbar image. To
remove a toolbar button or separator, drag it from the toolbar image at the top to the trash icon. To rearrange
the toolbar, drag the buttons within the toolbar image.

Most commands in Electric do not have icons associated with them. You can drag these commands to the
toolbar, but they will all show a "?". To add an icon to a command, select the command from the list at the
bottom, click the "Attach Image to Command..." button and choose an image file. The image to be attached
to a command must be 16 pixels high and will be scaled down if it is larger.

Chapter 4: Display

102 Using the Electric VLSI Design System, version 9.07

4−2: The Messages Window

The messages window is a text window near the bottom of the screen. Many commands list their results in
the messages window, and minor error messages are reported there.

The text in the messages window can be selected with the cursor and edited with the Cut, Copy, and
Paste commands (in menu Edit). You can remove all text with the Clear command (in menu Window /
Messages Window). In addition, you can right−click in the messages window to "Cut", "Copy", "Cut All",
"Copy All", "Clear", or "Paste" text.

The text in the messages window can be saved to disk by using the Save Messages... command (in menu
Window / Messages Window). You will be prompted for the place to save the text. This saves all future
text, but not the text currently there. To save all text currently in the messages window, right−click on the
window and choose "Save All".

You can select the messages window font with the Set Font... command.

The command Tile with Edit Window adjusts the messages window so that it abuts the edit window cleanly.

If the preference "Dock messages window to each edit window" is set (in menu File / Preferences...,
"Display" section, "Display Control" tab), a panel will appear at the bottom of each edit window displaying
the messages (all panels contain identical content). If it is not set (the default) there will be only one
messages panel, and it will have its own window.

Chapter 4: Display

 Using the Electric VLSI Design System, version 9.07 103

4−3: Creating and Deleting Editing Windows

Initially, there is only one editing window on the screen. Electric allows you to create multiple editing
windows, each of which can show a different cell. You can also have the same cell in more than one window
to see it at different scales and locations.

New windows are created by checking the appropriate checkbox in the New Cell... or Edit Cell... commands
(in menu Cell). New windows can also be created from the cell explorer by using the context menu on a cell
name.

All of the windows are listed at the bottom of the Window pulldown menu, including the Messages Window.
To bring a window to the top for editing, select its name from this list. To cycle through the different
windows, type "q".

To delete a window, click its close box, or use the Close Window command (in menu Window). Note that
you cannot delete the last window on systems where the pulldown menu is inside of each window, because
then the pulldown menus would become unavailable.

When there are many editing windows on the display, you can arrange them neatly with the Window /
Adjust Position commands. The Tile Horizontally command adjusts the windows so that they are
full−width, but just tall enough to fill the screen, one above the other. The Tile Vertically command adjusts
the windows so that they are full−height, but just wide enough to fill the screen, one next to the other. The
Cascade command adjusts the windows so that they are all the same size and overlap each other uniformly
from the upper−left to the lower−right.

Window Frames

When Electric runs on the Windows operating systems, each editing window lives inside of a larger frame on
the display. This is called an MDI (Multiple Document Interface) interaction. On non−Windows systems
(UNIX/Linux, Macintosh, etc.) each editing window is a separate frame on the display. This is called an SDI
(Single Document Interface) interaction. Note that Windows users can request an SDI interaction, and
non−Windows users can request MDI interaction. This is done with command−line switches (see Section
1−3).

When running in SDI mode, there are two extra commands (in menu Windows) for controlling the frames:

Move to Other Display requests that the current window frame be moved to a different display.
Some systems (Macintosh) let you drag the frames between displays, but others keep each display
distinct, requiring this command to make the move.

•

Remember Location of Display requests that the current editing window's frame location be used as
the initial location when Electric runs again. This command can also be used to start the system on a
different display.

•

Chapter 4: Display

104 Using the Electric VLSI Design System, version 9.07

#chap01-03
#chap01-03

Display Considerations

Electric offers many settings for controlling the display, available in the Display Control Preferences (in
menu File / Preferences..., "Display" section, "Display Control" tab).

The status area at the bottom of the screen shows current selection, cursor coordinates, etc. If "Show
hierarchical cursor coordinates in status bar" is checked, it will also show global coordinates when traversing
the hierarchy.

The side bar can be set to always show on the right by checking "Side Bar defaults to the right side". See
Section 1−7 for more on the side bar.

Chapter 4: Display

 Using the Electric VLSI Design System, version 9.07 105

#chap01-07

When editing "down−in−place", the upper levels of hierarchy are dimmed. Some displays find this difficult
to do and draw slowly in down−in−place mode. This is particularly noticeable on X Window systems that
use Xorg and Xinerama. To disable the dimming and speed the display, uncheck "Dim upper levels of
hierarchy when editing Down−In−Place". See Section 3−5 for more on down−in−place editing.

Many commands cause cells to be displayed in a new window. If you uncheck "Show cell results in new
window", then the cells are shown in the current window instead.

When errors are highlighted, the highlighting pulsates to make the error more visible. To disable pulsating
highlighting, uncheck "Make error highlighting pulsate".

Another error display control is "Shift window to show errors" which requests that the window pan and zoom
to focus on the error. When this is not checked, errors that are off−screen cause an arrow to briefly display
indicating the direction of the error.

Many dialogs are "modeless" meaning that they can remain up while other work is done. These modeless
dialogs can be covered by the editing windows. Checking "Keep modeless dialogs on top" forces these
dialogs to always remain visible.

The Measurement tool is used to show distances (see Section 4−7−4). Checking "Cadence measurement
style" requests that it draw rulers similar to Cadence systems.

The "Dock messages window to each edit window" requests that the messages window be attached to the edit
window, instead being a separate window.

When panning the window using menu commands, the distance to pan can be controlled with the "Panning
distance" selection (see Section 4−4−2 for more on panning).

The "Display style" controls whether Electric uses the MDI (Multiple Document Interface) or the SDI
(Single Document Interface) style of interaction. MDI (used typically on Windows systems) uses a single
large window that has all of the editing windows inside of it. SDI (used typically on Linux and Macintosh
systems) creates a window for every editing window in Electric. You can leave the default style for your
operating system, or you can override that and force a style.

Chapter 4: Display

106 Using the Electric VLSI Design System, version 9.07

#chap03-05
#chap04-07-04
#chap04-04-02

Display Algorithms

Electric has three different display algorithms:

The "Pixel Display Algorithm" is the older. It was the only display algorithm prior to version 8.04 of
Electric.

•

The "Vector Display Algorithm" is newer, and is faster for panning and zooming. This algorithm
optimizes the display of circuitry by simplifying the display of objects when they get to be very
small. For example, when zoomed−out very far, a transistor may be only 1 screen pixel in size, and it
does not make sense to carefully compute and draw all of its parts. In such cases, the algorithm
"simplifies" display of the object, usually drawing it as a single dot.

•

Besides simplifying individual nodes and arcs, Electric also simplifies the display of entire cells if
their contents are all too small to draw. Such simplification can consist of rendering the cell with a
single "approximating" color, or keeping a small image of the cell and using it in the proper place.

There are some controls for the Vector Display Algorithm. The first control selects whether cell
simplification uses an image of the cell or just an approximating color. The next control determines
the size at which objects are simplified. The default is to "Simplify objects smaller than 3 pixels".
Making this value smaller will cause more detailed drawing, but take longer. The last control
determines the threshold for simplifying entire cells. Although a cell's contents may be small, the cell
may be quite large on the screen, and so should not be simplified (this happens to top−level cells in a
deep hierarchy). The default limit is to "Do not simplify cells greater than 10 percent of the screen".
Making this number smaller causes more cells to be drawn fully. Making this number zero turns off
cell simplification.

The "Layer Display Algorithm" is the newest, but still experimental. It has controls for the use of
pattern displays, and has controls for Alpha blending (used in layer composition). When zoomed out
below the "Alpha blending overcolor limit", standard alpha blending composition rule is used. When
zoomed in above this limit, alphablending with overcolor composition rule is used.

•

Chapter 4: Display

 Using the Electric VLSI Design System, version 9.07 107

4−4: Zooming and Panning

4−4−1: Zooming

The scale of a window's contents can be controlled in a number of ways. The Zoom In command (in menu
Window) zooms in, magnifying the contents of the display. The Zoom Out command does the opposite − it
shrinks the display. Both zoom by a factor of two.

During normal editing, you can zoom the display with the shift−right button or with the
control−mouse−wheel (see Section 1−8). Holding shift−right while dragging a rectangular area causes the
display to zoom into that area, making it fill the screen. Clicking shift−right in a single location causes the
display to zoom out, centered at that point. Holding the control key and rolling the mouse wheel also zooms
in and out.

You can also use the Zoom tool from the tool bar to zoom in and out. This
has the same zoom in and out functions, but they are now attached to the
left button (no shift needed). To zoom into an area, click and drag out that
area. To zoom out, hold the shift key and click in the center of the desired
area. The Zoom tool can also scale continuously by clicking the right
button and dragging up and down. This mode can also be invoked with the
Toggle Zoom command (in menu Edit / Modes / Edit).

The most useful scale change command is Fill Window (in menu Window), which makes the current cell fill
the window.

There are four special zooming commands in the Window / Special Zoom menu:

Focus on Highlighted makes the highlighted objects fill the display. This is useful for examining a
specific area of the display. To examine a specific area of the display that is not necessarily aligned
with nodes and arcs, use the area select commands (see Section 2−1−3).

•

Zoom Box allows you to drag−out a rectangle, and then zooms to that area. •
Make Grid Just Visible zooms in or out until the grid is minimally visible. Any further zoom−out
from this point will make the grid invisible. If the grid is not being displayed, it is turned on. See
Section 4−7−1 for more on the grid.

•

Match Other Window redraws the current window at the same scale as the other. If there are more
than two windows, you will be asked to select the window to match.

•

Chapter 4: Display

108 Using the Electric VLSI Design System, version 9.07

#chap01-08
#chap02-01-03
#chap04-07-01

4−4−2: Panning

Besides scaling, you can also pan the window contents, shifting it about on the display. This is typically done
with the sliders on the right and bottom of the window. On systems that have a mouse wheel, you can use it
to pan vertically (and hold the shift key while rolling the mouse wheel to pan horizontally). On systems with
a middle mouse button, this button pans the display.

You can also use the Pan tool from the tool bar to move the window
contents. Once in this mode, clicking and dragging slides the circuitry
smoothly. This mode can also be invoked with the Toggle Pan command
(in menu Edit / Modes / Edit).

Yet another way to control screen panning is to use menu commands. The Pan Left, Pan Right, Pan Up,
and Pan Down commands (in menu Window) all shift the window contents appropriately (and because they
are bound to quick keys, these operations can even be done from the keyboard). By default, these commands
shift the screen by about 30% of its size. You can use the Display Control Preferences (in menu File /
Preferences..., "Display" section, "Display Control" tab), to change that amount. The Small panning distance
causes subsequent shifts to be about 15% of the screen size. The Medium panning distance causes
subsequent shifts to be about 30% of the screen size. The Large panning distance causes subsequent shifts to
be about 60% of the screen size.

There are five special panning commands in the Window / Special Pan menu:

Center Selection makes the window shift so that the highlighted objects are in the center of the
window.

•

Center Cursor makes the window shift so that the current cursor location is in the center of the
window. Note that this command is useful only when bound to a keystroke, because you cannot issue
the command and have a valid cursor location at the same time.

•

Match Other Window in X redraws the current window so that it has the same horizontal pan as the
other. If there are more than two windows, you will be asked to select the window to match.

•

Match Other Window in Y redraws the current window so that it has the same vertical pan as the
other. If there are more than two windows, you will be asked to select the window to match.

•

Match Other Window in X, Y and Scale redraws the current window so that it has the same zoom
and pan as the other. If there are more than two windows, you will be asked to select the window to
match.

•

One final command is useful if the display appears incorrect. If this happens, redraw the screen with the
Redisplay Window command (in menu Window).

Chapter 4: Display

 Using the Electric VLSI Design System, version 9.07 109

4−4−3: Focus

A particular scale and pan in a window is called a focus. Each time you zoom in or out, the focus is saved in
a list.

You can move back through the list and show the last focus with the Go To Previous Focus command (in
menu Windows). You can move forward in the list with the Go To Next Focus command.

The Set Focus... command (in menu Window)
lets you type specific pan and zoom factors.
The "X Center" and "Y Center" fields are the
database coordinates of the center of the screen.
The "Horizontal Grid Units" field is the number
of database grid units across the screen.

Chapter 4: Display

110 Using the Electric VLSI Design System, version 9.07

4−5: The Sidebar

4−5−1: The Component Menu

The component menu shows the nodes and arcs
of the current technology. The popup menu at the
top lets you change the current technology and
see its nodes and arcs.

In the component menu, nodes have a blue
outline and arcs have a red outline. To place a
node in the current cell, click on its entry and
then click again in the cell to place the node. If
you type "," or "." before clicking to place the
node, then the rotation of the placed node
changes. To select a default arc for wiring, click
on its entry (note that the default arc has a
heavier red outline).

Some node entries in the component menu have
multiple nodes in them, as indicated by a black
arrow in the lower−right corner. Clicking on the
arrow shows a menu of possible nodes to create.
Once selected, that node becomes the default for
the menu entry.

Special component menu entries with text in
them are provided for special functions:

"Pure" places pure−layer nodes (see
Section 6−10−1).

•

"Misc" places unusual nodes (see
Section 2−2−1).

•

"Cell" places cell instances (see Section
3−3).

•

"Spice" places special Spice nodes (see
Section 9−4−3).

•

"Export" places export nodes when
editing icon artwork (see Section 7−6−1).

•

Chapter 4: Display

 Using the Electric VLSI Design System, version 9.07 111

#chap06-10-01
#chap02-02-01
#chap03-03
#chap03-03
#chap09-04-03
#chap07-06-01

The layout of the component menu is controlled by the Component Menu Preferences (in menu File /
Preferences..., "Display" section, "Component Menu" tab). The menu is shown on the left, and the possible
entries (Nodes, Arcs, Cells, and Special entries) are on the right. To change a menu entry, select it (the
selected entry is highlighted in green), and choose either "Remove" to clear that entry, or "<< Add" to change
the entry. Adding multiple nodes to a menu entry allows that entry to have a popup menu to select among the
nodes.

The structure of the menu can be altered with the buttons in the lower−right. The "Rows" section lets you
"Add Below Current" to insert a new row of menu entries underneath the currently selected entry, or "Delete
Current" to delete the row in which the currently selected entry resides. The "Columns" section lets you add
and delete columns ("Add to Right of Current" and "Delete Current"). It also lets you shift items in a column
up or down ("Rotate Current Up" and "Rotate Current Down"). You can split a column in half, reducing a tall

Chapter 4: Display

112 Using the Electric VLSI Design System, version 9.07

column into two shorter ones ("Split to Right") and you can swap two columns with each other ("Swap with
Right").

When a menu entry with a node is selected, the fields in the lower−left let you add information to that node.

"Angle" indicates the angle that the node will be placed. For example, if you want a transistor node
to appear and be placed with 90−degree rotation, set this field to 90.

•

"Function" indicates the function of the node. This information is used for grouping like−nodes and
scaling them together.

•

"Label" is optional text that will appear in the menu entry.•

4−5−2: The Cell Explorer

The cell explorer resides in the "Explorer" tab of the side bar. It shows a hierarchical tree with three main
sections: LIBRARIES, ERRORS, and JOBS. The LIBRARIES section of the explorer lists all libraries and
cells. You can examine them in three different ways:

Alphabetically all cells are listed
alphabetically.

•

By group all cells are listed
alphabetically, but are also
organized into cell groups.

•

By hierarchy only the "top level"
cells of each library are listed (top
level cells are those that are not
used as instances in any other
cells). Inside of a cell are the
subcells that comprise it, along
with the number of times that that
cell appears.

•

To change the view, right−click on the LIBRARIES icon and choose a view. Note that libraries and cells
which have been modified are listed in bold−face.

When an entry in the explorer is shown in boldface, it means that it has been changed and not saved. When a
schematic cell in the explorer has "**" after its name, it means that the cell is the "main schematic" (this
happens only when there are multiple schematic cells in a single cell group).

The second part of the cell explorer is the ERRORS section. This lists all errors that were generated by other
tools (DRC, ERC, NCC, etc.) and which can be examined with the "<" and ">" keys.

The third section of the explorer is the JOBS section. Here are listed all running tasks in Electric. The section
is usually empty, but if multiple jobs are running at the same time, you can examine and manipulate them.

Chapter 4: Display

 Using the Electric VLSI Design System, version 9.07 113

Many special functions can be done in the cell explorer. You can double−click on any cell name to see that
cell in the right half of the window. You can drag a cell or cell−group from one library to another. This
makes a copy of that cell or group in the destination library.

Context Menus for Libraries

There are special context menus available by right−clicking on an entry (use command−click on the
Macintosh).

The context menu for the LIBRARIES
icon has 6 sections. The top four entries
let you control the expansion of the tree.
The next entry lets you create a new cell.
The next three entries lets you view the
libraries in different ways (explained
above). The "Evaluate Numbers when
Sorting Names" checkbox is explained in
Section 3−7−1. The bottom two entries
let you search for cells by name and get
information about the library.

The context menu for each library icon has
4 sections. The top four entries let you
control the expansion of the tree. The next
entries lets you make the library the
current library and manage Project
Management (see Section 6−12 for more
on Project Management). The next entry
lets you create a new cell in the library.
The bottom five entries let you rename,
save, delete, or reload the library.

Chapter 4: Display

114 Using the Electric VLSI Design System, version 9.07

#chap03-07-01
#chap06-12

The context menu for each cell icon has 6
sections. The top two entries let you edit the cell
(in the current or in a new window). If the cell is
a textual cell (Verilog, documentation, etc.) then
an addition entry is available for editing that text
in an external editor. To specify the external text
editor, use the "Text" preferences (in menu File
/ Preferences..., "Display" section, "Text" tab).
The next two entries let you place an instance of
the cell and create a new cell. The next four
entries let you create a new cell version, create a
new cell copy, delete the cell, and copy the cell
to a different library. The next two entries let
you rename the cell or change its view. The
bottom entries let you rearrange cell groups and
collapse the tree.

The context menu for each cell group has 3
sections. The top four entries let you control
the expansion of the tree. The middle entries
let you create a new cell in the group or to
delete all cells in the group. The bottom two
entries let you rename or duplicate every cell
in the group.

The context menu for a multi−page schematic
cell has 3 sections (see Section 7−5−2 for more
on multi−page schematics). The top two entries
let you edit the cell (in the current or in a new
window). The middle entries let you add a new
page to the current multi−page schematic, or
delete the current page of the multi−page
schematic. The bottom entry lets you collapse
the tree.

Chapter 4: Display

 Using the Electric VLSI Design System, version 9.07 115

#chap07-05-02

Context Menus for Errors and Jobs

The ERRORS section has 3 sections. The top four
entries let you control the expansion of the tree. The
middle section controls collections of errors: "Delete
All" removes all error collections and "Import
Logger" reads a saved set of errors and creates a
new collection (this function is also available with
the XML Error Logger... command in the File /
Import menu). The bottom section has the "Get
Info" command to describe this collection of errors.

Each collection of errors in the ERRORS section
has a context menu with 3 sections. The top four
entries let you control the expansion of the tree.
The middle entries do this: "Delete" removes this
collection of errors; "Export" saves is collection of
errors to a disk file for later import; "Show All"
highlights all of the errors in this collection (this is
also accomplished with the Show Current
Collection of Errors command in the Edit /
Selection menu); "Set Current" makes this the
current collection of errors (which can be examined
with the "<" and ">" keys). The bottom section lets
you describe this collection of errors.

The context menu for individual jobs under the JOBS
icon has these entries: "Get Info" requests any
additional information about the job; "Abort"
requests that the Job stop itself (not always possible);
and "Delete" removes a job from the queue.

Chapter 4: Display

116 Using the Electric VLSI Design System, version 9.07

4−5−3: Layer Visibility

The nodes and arcs on the display are composed of more basic layers. By using the "Layers" tab of the Side
Bar, you can control which layers are actually drawn.

The layers tab shows the layers in the current
technology. Changing the technology popup
at the top of this tab will change the current
technology. When a layer is checked, it is
visible. You can turn the check on and off by
double−clicking on a line or by using the
"Make Visible" and "Make Invisible" buttons.
The "Select All" button selects every layer so
that the "Make..." buttons will work on the
entire set.

Note that the layers are listed in order of
height, and that you can select multiple
entries in the list by using the Shift key. This
means that you can easily control visibility by
depth in the chip. If a different order of layers
is desired, simply drag them around to
rearrange them.

Visibility Configurations

As a convenient shortcut to layer visibility, you can type SHIFT−1, double−click on "Set M1 Visible" in the
Visibility Configurations seciton, or use the Set M1 Visible command (in menu Window / Visible Layers)
to make metal layer 1 be the only visible layer. Type SHIFT−2 or use the Set M2 Visible command to make
metal layers 2 and 1 be the only visible layers. In general, using these commands makes the specified layer
and the one below it be the only visible layers. To restore full visibility, type SHIFT−0 or use the Set All
Visible command.

You can also customize these commands so that an arbitrary combination of layers is visible. To do this, set
the desired layer visibility, click on an entry in the "Visibility Configurations" section, and click the "Save
Visibility" icon (second from the left at the top of the "Visibility Configurations" section). To rename an
entry, use the "Rename" icon (rightmost icon).

Chapter 4: Display

 Using the Electric VLSI Design System, version 9.07 117

Besides customizing the SHIFT−number and Set Mnumber Visible commands, you can create new visibility
configurations by using the "New" icon (leftmost icon). To delete a configuration, use the "Delete" icon
(second from the right).

Highlighting and Text Visibility

The two buttons in the "Highlighting" section control the highlighting of layers. By selecting a layer and
clicking "Toggle", it makes that layer stand out on the display. Use "Clear" to return to normal layer display.

The bottom of the tab lets you choose which of the different types of text will be visible. These different
types of text are described more fully in Section 6−8−1.

Chapter 4: Display

118 Using the Electric VLSI Design System, version 9.07

#chap06-08-01

4−6: Color

4−6−1: Electric's Color Model

The Layers Preferences (in menu File / Preferences..., "Display" section, "Layers" tab) controls the
appearance of individual layers in the editing window.

Before explaining this panel, it is useful to understand the distinction between transparent and opaque layers.

Every layer in a technology is either transparent or opaque. Transparent layers are able to overlap each other,
and it is possible to see all of them. Typically, the most commonly used layers are transparent because it is
clearer to distinguish.

The remaining layers in a technology are opaque, meaning that when drawn, they completely obscure
anything underneath. These layers typically have stipple patterns so that they do not cover all of the bits. In
this way, the opaque layers can combine without obscuring the display. Because opaque color does obscure
everything under it, the less common layers are drawn in this style.

When editing colors, the opaque layers have only one color, whereas the transparent layers have many
different colors, considering their interaction with other transparent layers.

4−6−2: Editing Colors and Patterns

The Layers Preferences (in menu File / Preferences..., "Display" section, "Layers" tab) controls the
appearance of layers and other display elements. The top of the dialog lists all of the technologies and their
layers. It also lists special colors (at the bottom of the "Layer" list):

BACKGROUND is the color of the background (default: gray).•
DEFAULT−ARTWORK is the color of artwork primitives that have not been assigned a specific
color (default: black).

•

DOWN−IN−PLACE BORDER is the color of the cell edge when editing down−in−place (default:
red).

•

GRID is the color of grid dots (default: black).•
HIGHLIGHT is the color of highlighting (default: white).•
INSTANCE OUTLINES is the color of unexpanded cell instances (default: black).•
MEASUREMENT is the color of the distance ruler (default: black, see Section 4−7−4).•
MOUSE−OVER HIGHLIGHT is the color of highlighting when the mouse roams over a new object
(default: light blue).

•

NODE HIGHLIGHT is the color of highlighted nodes in special situations (default: blue).•
PORT HIGHLIGHT is the color of highlighted ports in special situations (default: blue).•
TEXT is the color of text that has not been assigned a specific color (default: black).•

Chapter 4: Display

 Using the Electric VLSI Design System, version 9.07 119

#chap04-07-04

WAVEFORM* are special colors used in drawing the waveform window (see Section 4−11).•
3D* are special colors used in drawing the waveform window (see Section 4−10−2).•

Each layer has a color on the left and a pattern on the right. The color can be specified directly in the color
picker, or it can be set to one of the transparent layers. If you change the color of a layer that has
transparency assigned to it, the change will affects all layers assigned to that transparency.

You can draw in the pattern area to set a pattern, and you can choose from a set of predefined patterns by
clicking on their image below the pattern−editing area. You can also choose an outline texture to draw.

The lower−right controls the appearance of the layer on the printed page. A separate "Use Fill Pattern"
control lets you use patterns on a printer, even if they are not used on the display. The Opacity is also used
for printer blending, and for some display algorithms.

When changing the background color, note that it must contrast with both the highlight color and the inverse
of the highlight color (the inverse is black in the default settings).

Chapter 4: Display

120 Using the Electric VLSI Design System, version 9.07

#chap04-11
#chap04-10-02

To automatically switch to a black or white background, there are commands in the Window / Color
Schemes menu that change the special colors (background, highlighting, grid, etc.) These commands do not
affect individual layer appearance, just the special colors that define the overall look of the display.

Black Background Colors sets the background to black.•
White Background Colors sets the background to white.•
Restore Default Colors sets the background to gray (the default). •
Cadence Colors, Layers and Keystrokes loads a set of colors that mimic Cadence systems. In
addition to changing the colors, this command also changes key bindings (shown below) and other
preferences that cannot easily be undone. It is recommended that you save your current preferences
before switching to Cadence mode to make it easier to revert.

•

Letter Ctrl Plain Other

A Select All (2−1−1)
Add Signal to Waveform
Window (4−11)

Alt : Align To Grid (4−7−2)

B Size Interactively (2−5−1)

C Copy (6−1) Duplicate (6−1) Shift: Change (6−6)

D Down Hierarchy (3−5) Select Nothing (2−1−1)

E Up Hierarchy (3−5) Down Hierarchy (3−5)
Shift: Down Hierarchy In−place
(3−5)

F
Unexpand Cell All The Way
(3−4)

Fill Window (4−4−1)
Shift: Expand Cell All The Way
(3−4)

G Toggle Grid (4−7−1) Set Signal Low (4−11)

H Half Unit Movement (2−4−1)

I Object Properties (2−4−2) Shift: Place Instance (3−3)

J
Rotate 90 Counterclockwise
(2−6)

Rotate 90 Clockwise (2−6)

K Show Network (6−9−1) Measure Mode (4−7−4)

L Find Text (4−9)

M Duplicate (6−1) Measure Mode (4−7−4)
Shift: Move Objects By...
(2−4−2)

N New Cell (3−2) Place Cell Instance (3−3)

O Open Library (3−9−2)
Overlay Signal in Waveform
Window (4−11)

P Create Export (3−6−1) Pan Mode (4−4−2)
Shift: Peek (3−4)
Alt : Preferences (6−3)

Q Quit (1−10−9) Object Properties (2−4−2)

Chapter 4: Display

 Using the Electric VLSI Design System, version 9.07 121

#chap02-01-01
#chap04-11
#chap04-07-02
#chap02-05-01
#chap06-01
#chap06-01
#chap06-06
#chap03-05
#chap02-01-01
#chap03-05
#chap03-05
#chap03-05
#chap03-04
#chap04-04-01
#chap03-04
#chap04-07-01
#chap04-11
#chap02-04-01
#chap02-04-02
#chap03-03
#chap02-06
#chap02-06
#chap06-09-01
#chap04-07-04
#chap04-09
#chap06-01
#chap04-07-04
#chap02-04-02
#chap03-02
#chap03-03
#chap03-09-02
#chap04-11
#chap03-06-01
#chap04-04-02
#chap03-04
#chap06-03
#chap01-10-09
#chap02-04-02

R
Redisplay Window (4−4−2)

Remove Signal from Waveform
Window (4−11)

S Save All Libraries (3−9−3) Select Object... (2−1−1)

T Toggle Negation (5−4−2) Place Annotation Text (2−2−1)

U Up Hierarchy (3−5) Undo (6−7)

V Paste (6−1) Set Signal High (4−11)

W Close Window (4−3) Cycle through windows (4−3)

X Create Export (3−6−1) Mirror Left <−> Right (2−6) Alt : Show Exports (3−6−2)

Y Redo (6−7) Mirror Up <−> Down (2−6)

Z Zoom In (4−4−1) Zoom Box (4−4−1) Shift: Zoom Out (4−4−1)

0 Zoom Out (4−4−1) Wire to Poly (1−8)

1 Wire to Metal−1 (1−8) F1: Mimic Stitch (9−6−3)

2 Pan Down (4−4−2) Wire to Metal−2 (1−8) F2: Auto Stitch (9−6−2)

3 Wire to Metal−3 (1−8) F3: Cleanup Pins (2−2−3)

4 Pan Left (4−4−2) Wire to Metal−4 (1−8)

5 Center cursor (4−4−2) Wire to Metal−5 (1−8) F5: Run DRC (9−2−1)

6 Pan Right (4−4−2) Wire to Metal−6 (1−8) F6: Array (6−4)

7 Zoom In (4−4−1) Wire to Metal−7 (1−8) F7: Repeat Last Action (6−7)

8 Pan Up (4−4−2) Wire to Metal−8 (1−8)
F8: NCC Cells in Windows
(9−7−2)

9 Fill Window (4−4−1) Wire to Metal−9 (1−8)
F9: Tile Windows Vertically
(4−3)

= Increase all Text Size (6−8−4)

− Decrease all Text Size (6−8−4)

DEL Erase (2−3)

> Show Next Error (9−1)

< Show Previous Error (9−1)

Space Switch Wiring Target (1−8)

Chapter 4: Display

122 Using the Electric VLSI Design System, version 9.07

#chap04-04-02
#chap04-11
#chap03-09-03
#chap02-01-01
#chap05-04-02
#chap02-02-01
#chap03-05
#chap06-07
#chap06-01
#chap04-11
#chap04-03
#chap04-03
#chap03-06-01
#chap02-06
#chap03-06-02
#chap06-07
#chap02-06
#chap04-04-01
#chap04-04-01
#chap04-04-01
#chap04-04-01
#chap01-08
#chap01-08
#chap09-06-03
#chap04-04-02
#chap01-08
#chap09-06-02
#chap01-08
#chap02-02-03
#chap04-04-02
#chap01-08
#chap04-04-02
#chap01-08
#chap09-02-01
#chap04-04-02
#chap01-08
#chap06-04
#chap04-04-01
#chap01-08
#chap06-07
#chap04-04-02
#chap01-08
#chap09-07-02
#chap04-04-01
#chap01-08
#chap04-03
#chap06-08-04
#chap06-08-04
#chap02-03
#chap09-01
#chap09-01
#chap01-08

4−7: Grids and Alignment

4−7−1: Drawing a Grid

The Toggle Grid command (in menu Window) turns the grid display on and off. The grid consists of dots at
every grid unit, and bolder dots every 10 units, but both of these distances are settable.

The size of a grid unit can be related to real−world distance by considering the scale of the technology. For
example, in the MOSIS CMOS technology, the scale is 0.2 microns, as shown in the status area. When the
grid is displayed, the dots are therefore 0.2 microns apart. For more information on scaling, Section 7−2−1.

Note that the grid display changes as you zoom in and out. When zoomed too far out to show all of the dots,
only the bolder dots are shown. When zoomed too far out to show even the bolder dots, the grid is not
displayed. However, the fact that the grid should be on is remembered, so it reappears when you zoom back
in. Use the Make Grid Just Visible command (in menu Window / Special Zoom to change the zoom factor
so that the grid is minimally visible.

The Grid Preferences
(in menu File /
Preferences...,
"Display" section,
"Grid" tab) presents a
dialog in which grid
dot spacing may be set.
You can change the
grid spacing for the
current window, and
also set a default grid
spacing to be used in
new windows. The grid
spacing is also used by
arrow keys when they
move objects (see
Section 2−4−1).

Additional grid graphics are available, such as the display of bolder grid dots and the drawing of coordinate
axes. When the X and Y axes are shown, they pass through the cell center.

Chapter 4: Display

 Using the Electric VLSI Design System, version 9.07 123

#chap07-02-01
#chap02-04-01

4−7−2: Aligning to a Grid

When moving or creating circuitry, the cursor location is snapped to a grid so that editing is cleaner. This
snapping is controlled by the alignment options (which are not necessarily the same as the grid options).

The Grid Preferences (in menu File / Preferences..., "Display" section, "Grid" tab) presents a dialog in which
alignment values may be set. For example, if the grid spacing is 2x3, and the alignment is 0.5 x 0.5, then
there are up to six different positions for placement inside a displayed grid rectangle.

There are 5 alignment values, all settable in the dialog. The current alignment setting is shown in the toolbar
(see Section 2−4−1).

Note that these
alignment values are
also used to determine
the distance moved by
arrow keys. You can
change the alignment
setting with the
commands Grid
Alignment 1 (largest),
Grid Alignment 2,
Grid Alignment 3,
Grid Alignment 4,
and Grid Alignment 5
(smallest) (in menu
Edit / Modes /
Movement).

You can also change the alignment by a single step by using the commands Make Grid Larger (attached to
the "f" key) and Make Grid Smaller (attached to the "h" key).

The Align to Grid command (in menu Edit / Move) cleans up the selected objects by moving them to
aligned coordinates. This is useful for circuitry that has been imported from external sources, and needs to be
placed cleanly for further editing.

Chapter 4: Display

124 Using the Electric VLSI Design System, version 9.07

#chap02-04-01

4−7−3: Aligning to Objects

It is often the case that a collection of objects should line−up uniformly. The commands of the Edit /
Move menu offer six possible ways to do this.

The command Align Horizontally to Left (and Align Horizontally to Right) moves all of the selected
objects so that their left edge (or right edge) is moved to the leftmost (or rightmost) edge of those objects.
The command Align Horizontally to Center moves all of the selected objects so that their X center is at the
location of the X center coordinate of those objects.

The command Align Vertically to Top (and Align Vertically to Bottom) moves all of the selected objects
so that their top edge (or bottom edge) is moved to the topmost (or bottommost) edge of those objects. The
command Align Vertically to Center moves all of the selected objects so that their Y center is at the
location of the Y center coordinate of those objects.

4−7−4: Measuring

If you wish to find the distance between any two points on the display, use
the "Measure" tool from the tool bar.

This mode can also be invoked with the Toggle Measure Distance command (in menu Edit / Modes / Edit)
or the Toggle Measurement Mode command (in menu Window / Measurements). Another way to measure
distances is to use the cursor coordinates, displayed in the status area.

Measurements remain on the screen until removed with the Clear Measurements command (in menu
Window / Measurements)

Chapter 4: Display

 Using the Electric VLSI Design System, version 9.07 125

Measuring in an Edit Window

In measure mode, each click places a new point on the display, and shows the distance to the previous point.
Clicking the right button lets you start a new measure point without connecting it to the previous one. If you
hold the shift key down, the cursor snaps to points and edges. Double−clicking the right button removes the
measurements. The measurement text is scaled by the global text scale (see Section 6−8−4).

Measurements can be
drawn in two different
styles: Electric and
Cadence. Electric style
shows the coordinates
of the endpoints and
shows the distance in
the center. Cadence
style shows a notched
ruler with distances
along the way.

This is controlled with the "Cadence measurement style" preference (in menu File / Preferences..., "Display"
section, "Display Control" tab).

The measured distance can be used by the Array... command (in menu Edit) to specify spacing (see Section
6−4).

Measuring in a Waveform Window

When waveform windows are measured, the display shows a rectangle, with low and high time values as
well as low and high waveform values. Each new click drags−out a different measurement. Use the
right−click to clear all measurement displays in the panel.

Chapter 4: Display

126 Using the Electric VLSI Design System, version 9.07

#chap06-08-04
#chap06-04
#chap06-04

4−8: Printing

To make a paper copy of the contents of the current window, use the Print... command (in menu File). You
can use the Page Setup... command for general print settings.

As an alternative to printing, you can request the system to write a PostScript, HPGL, PNG, or SVG file
(with the PostScript..., HPGL, PNG (Portable Network Graphics)..., and SVG commands of the File /
Export menu). You can also do a screen−capture in order to get a copy of the image. The following table
shows the tradeoffs between the different ways of obtaining hardcopy from the screen:

METHOD TEXT QUALITY LAYOUT QUALITY

Print command High May be dithered

Screen capture Low High

PostScript export High but different fonts Dithered

HPGL export High but different fonts Dithered

PNG export Low High

SVG export High High

For specific printing and PostScript settings, use the Printing Preferences (in menu File / Preferences...,
"General" section, "Printing" tab).

The "For all
printing" section
at the top has
some general
options. The
default is to
include the entire
cell, but you can
choose to print
only what is
highlighted or
only what is
displayed.

Chapter 4: Display

 Using the Electric VLSI Design System, version 9.07 127

Note that when printing the highlighted area, a precise selection can be made with Area selection (see
Section 2−1−3).

The "Print resolution" is the number of dots−per−inch (DPI) that the printer expects. Higher resolutions use
more memory for the print image.

There are many PostScript options, available in the lower section.

"Encapsulated" requests that the PostScript output to be insertable in other documents (EPS). •
"Color" offers four color choices: "Black&White", uses stipple patterns for the layers; "Color" uses
solid colors, but does not handle overlap (because PostScript does not handle transparency); "Color
Stippled" uses color stipple patterns for better overlap; and "Color Merged" computes layer overlap
and generates blended colors to recreate the appearance on the screen (this takes time and memory).

•

"Printer" and "Plotter" let you specify the size of the page (choose "Printer" for devices that print
onto single pieces of paper, and "Plotter" for devices that print onto continuous rolls of paper). The
"Margin" field is the amount of white space to leave on the sides. All distances in the "Height",
"Width", and "Margin" fields are in inches.

•

"Line Width" controls the width of PostScript lines. Although they default to 1, this may be too thin
on some printers.

•

"Rotation" controls rotation of the image by 90 degrees so that it fits better on the page. The default
is "No Rotation", but the popup can switch to "Rotate plot 90 degrees" or "Auto−rotate plot to fit".

•

"Plot Date In Corner" requests that additional information appear in the corner of the plot. •
"EPS Scale" sets the scale factor of the specified cell when it is written as encapsulated PostScript. •
"Synchronize to file" requests that PostScript files be synchronized with the current cell. Clicking the
"Set" button prompts you for a file name, which is stored with the current cell. Whenever you write
any PostScript, Electric checks all synchronized cells to see if they are newer than their associated
disk file. If they are newer, the files are regenerated. Thus, you can specify PostScript files for many
different cells in a library, and when PostScript is generated, all of the files will be properly updated
to reflect the state of the design.

•

Finally, to print a waveform window, there are special commands in the Window / Waveform
Window submenu that invoke "gnuplot" (which must be installed already). Use Plot Simulation Data as
PS... to create a PostScript file with the simulation data. Use Plot Simulation Data On Screen to show the
simulation data in a Gnuplot window.

Chapter 4: Display

128 Using the Electric VLSI Design System, version 9.07

#chap02-01-03

4−9: Text Windows

Some cells are textual in nature (VHDL, Verilog, Netlists, or Documentation), and cause text to appear in the
edit window. When editing a textual cell, a standard point−and−click editor appears.

You can use the Cut, Copy, and
Paste commands (in menu Edit).
You can specify the font and size
to use in textual editing windows
with Text Preferences (in menu
File / Preferences..., "Display"
section, "Text" tab).

Instead of using the built−in text
editor, you can request an external
text editor be used (for example,
EMACS). Do this with the Edit
Text Cell Externally... command
(in menu Edit / Text). Specify the
external editor to use with the Text
Preferences.

The contents of a text window can be saved to disk with the Text Cell Contents... command (in menu File /
Export) and restored from disk with the Text Cell Contents... command (in menu File / Import).

Note that there is no "saving" of text windows because they are editing internal data structures. Therefore
every change updates the information in Electric (but the library must be saved to truly preserve changes).

Chapter 4: Display

 Using the Electric VLSI Design System, version 9.07 129

Text searching is done
with the Find
Text... command (in
menu Edit / Text). You
can find and/or replace
text with the appropriate
buttons. Check boxes
allow the search to be
case sensitive, have
regular expressions, and
to go in the reverse
direction. In addition,
you can jump directly to
a specified line number.

When using "Regular Expressions", note that the syntax is Java−based which means that:

Dot matches any character. For example, "a.y" will match "any" or "amy".•
Asterisk repeats the previous character. For example "a*b" will match "ab", "aaab", or "aaaaaab".
Also ".*" will match any string.

•

You must quote special characters such as "[" and "]" by placing a backslash before them.•

Interestingly, the Find Text... command can also be used outside of the text edit window. If you are editing a
layout or schematic, this dialog will search all of the node, arc, export, and other names. The checkboxes in
the "Objects to Search" area control which of these pieces of text will be considered. "Automatically
Generated" names are those created for you by the system. They can be included in the search but normally
are not. The checkbox "Limit Search to the Highlighted Objects/Area" causes only objects that are
highlighted to be considered in the text search. See Section 2−1−3 for more on area selection. Finally, you
can restrict selection to those pieces of text that have a specified "Code" or "Units" setting (see Section
6−8−3 for more on "code" and "units").

Chapter 4: Display

130 Using the Electric VLSI Design System, version 9.07

#chap02-01-03
#chap06-08-03
#chap06-08-03

4−10: 3D Windows

4−10−1: Introduction to 3D

Electric has the ability to view an integrated circuit in 3−dimensions as shown below, allowing a fuller
understanding of the interaction between layers. When displaying 3D, you can rotate, zoom, and pan the
image to get a better view, however you can no longer change the circuit.

The 3D View is based on Java3D, the Java interface for interactive 3D graphics. Because not everyone has a
full 3D capability on their computer, the 3D facilities are dependent on these extra plugins:

Java3D is the core 3D
package and must be
installed. Take care when
choosing a version of
Java3D: if your JVM (Java
Virtual Machine) is 64−bit
then you must install a
64−bit version of Java3D.

•

JMF is an optional
package from Oracle that
enables animation.

•

Animation is an optional
extra download from Static
Free Software that does
animation (it needs JMF).

•

See Section 1−5 for details about
getting these extensions.

To see the 3D view of a layout cell, use the 3D View command (in menu Window / 3D Window). The cell
is displayed in 3D, and mouse movements will rotate, pan, or zoom the circuit. Use the left button to rotate,
the right button for panning, and the middle one for zooming. When zooming, drag the middle button in one
direction to zoom in, and the other direction to zoom out. Standard pan and zoom operations (in menu
Window) are also available (see Section 4−4−1 and Section 4−4−2).

Each layer of a node or arc is drawn as a separate object in the 3D view. If you click on a node or arc in a 2D
view, all of its layers will be highlighted in the 3D view. Conversely, clicking on any layer of a node or arc in
the 3D view will show the entire component in the 2D view.

Chapter 4: Display

 Using the Electric VLSI Design System, version 9.07 131

#chap01-05
#chap04-04-01
#chap04-04-02

Cell instances will be
drawn as bounding boxes
if they are unexpanded
(top illustration), and will
show their contents if
expanded (bottom
illustration).

Troubleshooting

If you are running on Windows and are using MDI mode (multiple document interface) the 3D display may
not work properly. See Section 1−3 for instructions on running Electric in SDI mode.

Because Java3D makes use of the graphics hardware on your computer, it may be useful to test that hardware
with the Test Hardware command (in menu Window / 3D Window).

Chapter 4: Display

132 Using the Electric VLSI Design System, version 9.07

#chap01-03

4−10−2: Preferences

To control the 3D view, use the 3D Preferences (in menu File / Preferences..., "Display" section, "3D" tab).
This provides access to most of the parameters that control 3D viewing. The only other controls available are
the colors used to draw 3D features, which are available in the Layers Preferences (see Section 4−6−2).

In the 3D
Preferences, the
thickness and Z
distance (height) of
each layer can be
controlled as well
as the view mode,
the Z−axis scale,
and use of
antialiasing.

On the left side of
this dialog is a list
of layers in the
current technology.
On the right side is
a cross sectional
view of the chip,
showing the
relative position of
each layer. You
can select a layer
by clicking on
either side of the
dialog.

The currently selected layer is highlighted in the list on the left and drawn transparently in the right−hand
view.

Chapter 4: Display

 Using the Electric VLSI Design System, version 9.07 133

chap04-06-02.html

Change the "3D HIGHLIGHTED INSTANCES" entry in the Layers Preferences to change the color used for
highlighting layers in the 3D view and in the preferences.

The distance of the layer from the wafer bottom and its thickness are the most important values. These values
are not only used for the 3D view; they are also used whenever layers are presented in "height" order. Once
selected, you can type new values into the "Thickness" and "Distance" fields.

By default, a perspective view is shown. Uncheck "Use Perspective" to see a parallel display. Antialiasing
can be turned on by checking "Use Antialiasing". Due to performance issues, antialiasing is not on by
default. You can also control the display of cell bounds and axes. The limit on the number of nodes prevents
massively large circuits from swamping the 3D system.

The transparency option controls whether you can see through layers, allowing finer control of the display.
The transparency factor ranges from 0 (fully opaque: not transparent at all) to 1 (completely transparent: an
invisible shape). The transparency mode sets the rasterization technique to use during rendering. Possible
values are NONE, BLENDED, FASTEST, NICEST or SCREEN DOOR. The default setting of "NONE"
indicates that all objects are opaque. Due to rendering issues while setting more than 1 layer with the
transparency mode "NICEST", the select layers are set with "SCREEN_DOOR" so they can be seen from
any angle. Refer to www.j3d.org for technical details.

Other controls are available in this dialog, for example the initial zoom factor and rotation. If the displayed
layers are too thin along the Z axis (compared to their X and Y values), use the "Z Scale" field to make
everything thicker.

Lights

The 3D view uses one the ambient (background) light and two directional lights. The ambient light is always
on, but the directional light can be enabled or disabled with the checkboxes.

The directional lights sit outside of the circuit and point in the given direction. The default directions of (−1,
1, −1) and (1, −1, −1) illuminate the 3D view from the front. Although the lights have a default color of
white, this can be changed by editing the "SPECIAL: 3D DIRECTIONAL LIGHT" entry in the Layers
Preferences.

Ambient light is the background light that fills a space. It is used to illuminate those areas that are not directly
hit by the directional lights. The default color of the ambient light is gray, but this can be changed by editing
the "SPECIAL: 3D AMBIENT LIGHT" entry in the Layers Preferences.

Chapter 4: Display

134 Using the Electric VLSI Design System, version 9.07

http://www.j3d.org

If Java3D is not
installed, the
distance and the
thickness can still
be controlled. In
such a situation, the
3D Preferences
dialog has much
more limited
information. The
cross−section
information on the
right shows layers
and their range of
depth. You can
choose either the
layer name or its
cross−section name.

4−10−3: Behaviors and Animation

Behaviors are controls that affect the 3D display. In Electric, there are 3 types of behaviors available.

Orbit Behavior combines three basic mouse behaviors: zoom, pan and rotate. The left button
rotates, the right button pans, and the middle button zooms. Click and drag to alter the display.

1.

3D Axis Behavior available when the 3D axis is shown. Clicking on the axis affects rotation (but not
panning or zooming). This axis is not part of the standard Electric distribution and must be installed
separately (see Section 1−5).

2.

Navigator Behavior controlled by special keys. Use the up/down/left/right arrow keys as shown in
the table.

3.

Chapter 4: Display

 Using the Electric VLSI Design System, version 9.07 135

#chap01-05

Effect Positive Negative

Move along Z axis UP Arrow DOWN Arrow

Move along Y axis CTRL + UP Arrow CTRL + DOWN Arrow

Move along X axis ALT + RIGHT Arrow ALT + LEFT Arrow

Rotate along Y axis LEFT Arrow RIGHT Arrow

Rotate along Z axis CTRL + LEFT Arrow CTRL + RIGHT Arrow

Rotate along X axis ALT + UP Arrow ALT + DOWN Arrow

Animation

A 3D display can be animated by creating "key frames" along a time line. Interpolators examine the key
frames and smoothly animate the 3D view. There are two types of interpolators: simple and path. Simple
interpolators have a start and end frame, varying the view between them linearly. Path interpolators allow
multiple key frames to combine into a single smooth animation.

Spline interpolators can be created and
controlled with the Capture
Frame/Animate command (in menu
Window / 3D Window). To animate, you
must create a sequence of key frames that
define the view changes. Each key frame
represents a different 3D view of the scene.

To control the animation, make changes to the display and click "Enter Frame". You can enter as many
frames as you want and animate them later. The animated sequence is a "demo" that can be saved to disk and
restored later for playback. A QuickTime movie can be created by using the "Create Movie" button. For this
option, the JMF plugin must be available (see Section 1−5).

There is a built−in demo of animation, available in the Help / 3D Showcase menu. First, use the Load
Library command to load the demo library. Next, use the 3D View of Cage Cell command to start the 3D
viewer on the cage cell (used on the cover page of this manual). Finally, use the Animate Cage
Cell command to start an animation demo on the 3D view of the cage cell.

Chapter 4: Display

136 Using the Electric VLSI Design System, version 9.07

#chap01-05

4−11: Waveform Windows

The waveform window is able to display simulation output and cross−probe it to the layout or schematic.
This simulation output can come from external simulators (such as Spice and Verilog) or from built−in
simulators (such as ALS and IRSIM). When displaying the results of external simulators, it reads the
simulation output and shows it. When internal simulators are displayed, you have the additional capability of
changing the stimuli.

The waveform window looks like the picture below. Note that there is a side bar with a cell explorer in the
window, just like in all windows, but the explorer has a "SIGNALS" section that lists the signals found in the
simulation (and optionally a "SWEEPS" section if swept data was found). When reading HSpice data, the
signals and sweeps sections may be further qualified by analysis, for example "TRANS SIGNALS", "DC
SIGNALS", etc.

Panels

The waveform window contains a set of panels, each with one or more signals. There is a "current panel"
which is identified with a thicker vertical axis (the top panel in the above picture). In a panel, signal names
are shown on the left, and their waveform on the right. Above the signal names in each panel are a number of
controls:

Chapter 4: Display

 Using the Electric VLSI Design System, version 9.07 137

Panel number each panel is numbered so that it can be hidden and retrieved.•
Close (an "X") to remove the panel from the waveform window. The command Clear All Signals in
Waveform Window (in menu Window / Waveform Window) removes all waveform panels from
the display.

•

Hide to stop displaying the panel, but keep it available (it can be restored by selecting its name from
the popup at the top of the waveform window).

•

Remove Signal remove the selected signal from the panel (the DELETE key works for this, too).•
Remove All Signals remove all signals from the panel.•

You can create a new panel, with no signals in it, by clicking on the button in the upper−left of the waveform
window () or by using the Create New Waveform Panel command (in menu Window / Waveform
Window).

When viewing digital simulation
output (such as Verilog)
waveforms can be busses. Busses
are collections of single signals
that display integer values (for
example, "path[0:31]"). To see
the individual signal that make
up a bus, double−click the bus
signal (and double−click it again
to remove the individual signals).

You can see new signals by double−clicking on the name in the "SIGNALS" area. For digital simulations, a
new panel will be created for that signal; for analog simulations, the signal will be added to the current panel.
You can also add signals to a panel by dragging the text onto the panel. Signal names in panels can be
renamed by double−clicking on their text (this does not rename the actual signal in Electric: it merely assigns
an "alias" name to the signal in the waveform window, which is useful for documentation).

If the layout or schematics cell that produced the simulation is being displayed in another window, and a
network is selected in that window, then that network can be added to the waveform window with the Add to
Waveform in New Panel command (in menu Edit / Selection). The command Add to Waveform in
Current Panel overlays the signal on top of others in the currently selected waveform panel.

You can rearrange the order of the waveform panels by clicking on their panel−number and dragging the
panel to a new location. You can move signals from one panel to another by dragging their names to their
desired panel. If you use shift−click to drag signals, they are copied to the new panel.

You can change the color of a signal by right−clicking on its name and choosing a different color. When
viewing digital waveforms, the color can also vary with the strength of the signal. To enable such a display,
check "Multistate display" in the Simulators Preferences (in menu File / Preferences..., "Tools" section,
"Simulators" tab). To control the actual colors used in multistate display, use the Layers Preferences (in menu
File / Preferences..., "Display" section, "Layers" tab) and set the colors for "WAVEFORM: OFF
STRENGTH", "WAVEFORM: NODE (WEAK) STRENGTH", "WAVEFORM: GATE STRENGTH", and
"WAVEFORM: POWER STRENGTH" (see Section 4−6−2).

Chapter 4: Display

138 Using the Electric VLSI Design System, version 9.07

#chap04-06-02

The order of signals in the waveform window is saved so that subsequent simulations will show the same
signals. You can also save the configuration of the waveform window with the Save Waveform Window
Configuration to Disk... command (in menu Window / Waveform Window) and you can restore the
configuration with the Restore Waveform Window Configuration from Disk... command.

The Export Simulation Data... command (in menu Window / Waveform Window) writes a tab−separated
file with all simulation data (names and values). The Export Simulation Data As CSV... command writes a
comma−separated file with all simulation data. These commands are useful for doing spreadsheet analysis of
the data.

Sweeps

If the simulation had sweeps, those values are shown in the cell explorer in a separate "SWEEPS" area. You
can double−click on a sweep to toggle its visibility, or right−click on a sweep and choose to include or
exclude it from the display. Right−clicking on the "SWEEPS" icon lets you include or exclude all of them.

A single sweep can be highlighted to distinguish it on the display. Right−click on that sweep and choose
"Highlight". To remove all highlighting, right−click on the "SWEEPS" icon and choose "Remove
Highlighting".

Time Control

Two vertical cursors appear in the window, called "main" and "extension" (the extension cursor is dotted).
Their time values and their difference are shown at the top of the window. You can click over the cursors and
drag them to different time locations. You can also use the "Center" buttons to bring these cursors to the
center of the display.

Another way to
measure in the
waveform window is to
use the "measure" tool
(see Section 4−7−4).
This tool lets you drag a
rectangle, and it shows
the left/right time with
difference as well as the
top/bottom values with
difference. The tool
snaps to data points so
it is easy to get precise
measurements.

Chapter 4: Display

 Using the Electric VLSI Design System, version 9.07 139

#chap04-07-04

The time range in the simulation window can be controlled with the appropriate Window menu commands.
Use Zoom Out and Zoom In to scale the time axis by a factor of two. Use Focus on Highlighted (in menu
Window / Special Zoom) to display the range between the main and extension cursors.

Besides controlling time with menu commands, you can also
use the Pan and Zoom tools of the toolbar.

The pan tool lets you smoothly shift time when you click and drag. In the zoom tool, you zoom into an area
by clicking and dragging out that area. To zoom out, shift−click in the center of the desired area. You can
also adjust time by clicking−and−dragging in the time axis at the top.

You can control the horizontal and
vertical range precisely by
double−clicking in the vertical scale
area. The dialog lets you type exact
values into the ranges.

Both the horizontal and vertical axis are drawn linearly. Either axis can be changed to a logarithmic scale by
right−clicking on the ruler and choosing "Logarithmic" (use "Linear" to restore the scale).

The different panels in the waveform window are locked in time: they all show the same range of time, as
shown at the top of the waveform window. If you click on the "time lock" button at the top of the waveform
window (looks like a lock with the time on it:) or use the Toggle Horizontal Panel
Lock command, then time is unlocked, and each panel has its own time scale. Now individual panels can
show a different range of time than the rest.

A set of VCR buttons is available to animate the main time cursor. The play rate can be controlled by the
up−arrow and down−arrow buttons to the right of the VCR controls. These buttons make the playback run
faster or slower. As the time cursor sweeps across the waveform window, the original circuit can be seen to
change levels. These VCR controls are also available by using the Rewind Main X Axis Cursor to Start,
Play Main X Axis Cursor Backwards, Stop Moving Main X Axis Cursor, Play Main X Axis Cursor,
Move Main X Axis Cursor to End, Move Main X Axis Cursor Faster, and Move Main X Axis Cursor
Slower commands.

These window functions apply to the simulation window:

Window / Fill Window make all data fit in window. If you wish to fill only in X, use the Fill Only
in X command (in the Window / Waveform Window menu). To fill only in Y, use Fill Only in Y.

•

Window / Zoom Out show twice as much time.•
Window / Zoom In show half as much time.•
Window / Special Zoom / Focus on Highlighted show from main to extension cursors.•

Chapter 4: Display

140 Using the Electric VLSI Design System, version 9.07

Window / Pan Left show earlier time.•
Window / Pan Right show later time.•
Window / Special Pan / Center Cursor shifts the time so that the location of the main cursor is in
the center.

•

"Pan" tool in tool bar freehand drag of time.•
"Zoom" tool in tool bar drag area to zoom in, hold shift to zoom out.•
"Measure" tool in tool bar for measuring time.•

Crossprobing

You can select a signal by selecting either its name or the actual waveform. When you select a signal, and the
equivalent schematic or layout is being displayed, Electric does crossprobing and shows the selected network
in the schematic/layout. Similarly, when a network in the original schematic or layout is selected, the
equivalent waveform is highlighted.

Another feature of crossprobing is the ability to show the electrical state of the network in the original
schematic or layout cell (this happens only for digital waveforms). Electric not only highlights the network in
the original circuit, but it shows wires with different colors depending on their state (high/low/X/Z) at the
current time. If you connect Simulation Probe nodes to any part of the circuit, those nodes light up with the
appropriate color instead, which allows better visualization of activity patterns (see Section 7−6−3). You can
control the colors used in crossprobing by using the Layers Preferences (in menu File / Preferences...,
"Display" section, "Layers" tab) and setting the colors for "WAVEFORM: CROSSPROBE LOW",
"WAVEFORM: CROSSPROBE HIGH", "WAVEFORM: CROSSPROBE UNDEFINED", and
"WAVEFORM: CROSSPROBE FLOATING" (see Section 4−6−2).

If a Spice deck was generated from the schematic, then crossprobing its simulation results to layout may not
work properly. This can be fixed with the Run NCC for Schematic Cross−Probing command (in menu
Tools / NCC, see Section 9−7−2).

Eye Plots

The horizontal axis does not have to represent time. Any signal can be used in the horizontal axis, simply by
dragging that signal onto the horizontal ruler. To restore the horizontal axis to show time, right−click on it
and choose "Make the X axis show Time".

Chapter 4: Display

 Using the Electric VLSI Design System, version 9.07 141

#chap07-06-03
#chap04-06-02
#chap09-07-02

Stimuli (for Built−in Simulators)

When the waveform window displays the output of built−in simulators, you can set stimuli on the signals to
affect the simulation. Each stimulus that you set is marked with a large red box at the time of the stimulus.
You can select the stimuli by clicking on the red box. A selected stimulus has a green box in it.

To set stimuli, select either a waveform or the equivalent network in the original schematic or layout. Once
selected, use the Set Signal High at Main Time (in menu Tools / Simulation (Built−in)) to make that
signal go to "high" at the time indicated by the Main cursor. Use Set Signal Low at Main Time to set the
selected signal "low", and use Set Signal Undefined at Main Time to set the selected signal "undefined"
(X). Use the Get Information about Selected Signals command to show stimuli and other information on
the selected signals.

To remove the selected stimulus, use the Clear Selected Stimuli command. To remove all stimuli on a the
selected waveforms, use Clear All Stimuli on Selected Signals. To remove all stimuli in the simulation, use
Clear All Stimuli.

Besides simple test vectors, the ALS simulator
can also set clock patterns on the currently
selected signal by using the Set Clock on
Selected Signal... command. There are two
ways to specify a clock: by frequency (in
cycles per second) or period (in seconds).

Note that the clock cycles infinitely, but Electric generates simulation events to fill only the current
waveform window. If you want more clock events generated, zoom−out the waveform window before
issuing the clock command.

Once a set of stimuli has been established, you can save it to disk with the Save Stimuli to Disk... command.
These stimuli can be restored later with the Restore Stimuli from Disk... command. Each built−in simulator
has its own format for saving stimuli.

Chapter 4: Display

142 Using the Electric VLSI Design System, version 9.07

The Simulators Preferences (in menu File / Preferences..., "Tools" section, "Simulators" tab), offers some
controls for built−in simulators.

"Auto advance time" requests that the main time cursor advance after each stimulus is added. This
allows each stimulus added to occur at a new time.

•

"Resimulate each change" requests that the simulator rerun the simulation after any change to the
stimuli. Because the process of simulating a circuit can be costly, you might want to delay
resimulation until all stimuli have been set. If you uncheck this item, you must issue the Update
Simulation Window command to re−run the simulation.

•

Other Controls

At the top of the waveform window, above the signal names, are many useful controls. Those relating to time
have already been discussed. Here are the remaining buttons:

"Refresh" Rereads the simulation output file and updates the display. If the simulation has
been re−run, and the output file is different, then this button shows the new data. This function is also
available with the Refresh Simulation Data command (in menu Window / Waveform Window).

•

"Show Vertices" Controls the display of dots on the vertices of the waveforms. The
button toggles between three states: (1) showing lines only, (2) showing lines and dots, and (3)
showing dots only. This is only available for analog waveforms: digital signals are always drawn
with lines. These functions are also available with the Show Points and Lines, Show Lines, and
Show Points commands (in menu Window / Waveform Window).

•

"Show Grid" Displays a grid in the waveform panels. The button toggles between showing
and not−showing the grid. This function is also available with the Toggle Grid Points command (in
menu Window / Waveform Window).

•

The Panel popup This is a list of all panels, including the hidden ones. Selecting a panel from this
list toggles its "hidden" state, making a visible one disappear, and making a hidden one reappear.

•

"Grow" and "Shrink" These buttons, which show a waveform being stretched or
squeezed, cause the minimum panel size to change. These functions are also available with the
Increase Minimum Panel Height and Decrease Minimum Panel Height commands (in menu
Window / Waveform Window). By shrinking the panel size, more of them can fit in the window
without having to use a slider to access them. Also, the panels can be resized individually by
dragging any of the dividers.

•

Plotting can be done with special commands in the Window / Waveform Window submenu (see Section
4−8 for more on printing).

An analog signal can be converted to digital with the command Generate Digital Signal from Analog
Signal (0.5v threshold) (in menu Window / Waveform Window).

Chapter 4: Display

 Using the Electric VLSI Design System, version 9.07 143

#chap04-08
#chap04-08

Chapter 4: Display

144 Using the Electric VLSI Design System, version 9.07

Chapter 5: Arcs

5−1: Introduction to Arcs

The arcs in a circuit are much more than
simple connecting wires. They can take many
different forms according to the needs of the
design environment. In schematics, arcs can
be negated, directional, zigzag, and more. In
layout, they can be directional and extended
by half of their width.

The most important property of an arc is its ability to remain connected when physical changes are made to
the circuit. Constraining properties provide for intelligent circuit layout.

Electric allows you to control how layout changes when the circuit is modified. This is done by placing
constraints on the arcs that react to node changes. Electric has a set of four constraints that, although not
complete, have been found to be useful in circuit design.

 Using the Electric VLSI Design System, version 9.07 145

5−2: Constraints

5−2−1: Rigid and Fixed−Angle Arcs

The first constraint in Electric is the rigid constraint.
When an arc is made rigid, it cannot change length. If a
node on either end is moved, the other node and the arc
move by the same amount. Besides keeping a constant
length, rigid arcs attach in a fixed way to their nodes.
This means that if the node rotates or mirrors, the arc
spins about so that the overall configuration does not
change. Without this rigidity constraint, arcs simply
stretch and rotate to keep their connectivity.

The second constraint, which is used only if an arc is
not rigid, is the fixed−angle constraint. This constraint
forces a wire to remain at a constant angle (usually used
to keep horizontal and vertical wires in their Manhattan
orientations). For example, if a vertical fixed−angle arc
connects two nodes, and the bottom node moves left,
then the arc and the top node also move left by the same
amount. If that bottom node moves down, the arc
simply stretches without affecting the other node. If the
bottom node moves down and to the left, the arc both
moves and stretches. Rotation of nodes causes no
change to fixed−angle arcs unless the arc is connected
to an off−center port, in which case a slight translation
and stretch may occur.

Most IC layout is done with Manhattan geometry. If you suspect that some of your wires have become
skewed, use the Show Nonmanhattan command (in menu Edit / Cleanup Cell).

Chapter 5: Arcs

146 Using the Electric VLSI Design System, version 9.07

5−2−2: Slidable Arcs

Another constraint, available only for nonrigid arcs, is slidability. When an arc is slidable, it may move about
within its port. To understand this fully, you should know exactly where the arc endpoint is located. Most
arcs are defined to extend past the endpoint by one−half of their width. This means that the arc endpoint is
centered in the end of the arc rectangle. If the arc is 2 wide, then the endpoint is indented 1 from the edge of
its rectangle. All arc endpoints must be inside of the port to which they connect. If the port is a single point,
then there is no question of where the arc may attach. If, however, the port has a larger area, as in the case of
contacts, then the arc can actually connect in any number of locations.

Slidable arcs may adjust themselves within the port area rather than move. For example, if a node's motion is
such that the arc can slide without moving, then no change occurs to the arc or to the other node. Without the
slidable constraint, the arc moves to stay connected at the same location within the port. Slidability
propagation works both ways, because if an arc moves but can slide within the other node's port, then that
node does not move. Note that slidability occurs only for complete motions and not for parts of a motion. If
the node moves by 10 and can slide by 1, then it pushes the arc by the full 10 and no sliding occurs. In this
case, only motions of 1 or less will slide.

Because ports have area, and because arcs end somewhere inside of that area, the actual ending point can
vary considerably. If the arc is at the far side of the port, it may protrude out of the far side of the node,
causing unwanted extra geometry. You can shorten an arc so that its endpoint is at the closest side of the port
with the Shorten Selected Arcs command (in menu Edit / Cleanup Cell).

Chapter 5: Arcs

 Using the Electric VLSI Design System, version 9.07 147

5−2−3: Constraint Propagation

The last of Electric's constraints is the only one that is not actually programmable by the user.

This is the constraint that all arcs
must stay in their ports, even
across hierarchical levels of
design. When a node in a cell
moves, and has an export on it,
all the ports on instances of that
cell also change. The constraint
system therefore adjusts all arcs
connected to those instances, and
follows their constraints. If those
constraints change nodes with
exports in the higher−level cell,
then the changes propagate up
another level of hierarchy.

This bottom−up propagation of changes guarantees a correctly connected hierarchy, and allows top−down
design. Users can create skeleton cells that are mostly empty and contain only exports on unconnected nodes.
They can then do high−level design with these skeleton cell instances. Later, when circuitry is placed in the
cells, or when layout views are substituted for the skeletons, the constraint system will maintain proper
connectivity in all higher levels of hierarchy.

The hierarchical−propagation aspect of the constraint system leaves open the possibility of an
overconstrained situation. For example, if two different cell instances are connected to each other with two
rigid wires, and one connection point moves, then it is not possible to keep both wires rigid. Electric jogs an
arc, converting it into three arcs that zigzag, to retain the connection. Although connectivity is retained, the
geometry may be in the wrong place, causing unexpected changes to the circuit. Users are encouraged to
examine the hierarchy to make sure that arbitrary hierarchical changes do not cause undetected damage to the
layout. Electric will warn you of any changes which affect undisplayed cells farther up the hierarchy.

Chapter 5: Arcs

148 Using the Electric VLSI Design System, version 9.07

5−3: Setting Constraints

The two most common constraints, rigid and fixed−angle (see Section 5−2−1), can be controlled from the
Edit / Arc menu. When the Rigid, Non Rigid, Fixed Angle, and Not Fixed Angle commands are issued, all
of the currently highlighted arcs have those constraints set.

In order to set slidability (see Section 5−2−2), select a single arc and issue the Object Properties... command
(in menu Edit / Properties).

At the bottom of the arc
properties dialog, when the
"More" button has been pressed,
are check boxes that control
constraints. This is the only way
to affect the slidable constraint
(which is not very commonly
used).

Chapter 5: Arcs

 Using the Electric VLSI Design System, version 9.07 149

#chap05-02-01
#chap05-02-02

5−4: Other Properties

5−4−1: Directionality

For documentation purposes, it is possible to display
a directional arrow on arcs to indicates flow. This
property can be changed with the Toggle
Directionality command (in menu Edit / Arc). It
may also be controlled by the Object
Properties... dialog (in menu Edit / Properties).

The controls in the Object Properties... dialog offer the option of placing the arrow head on either end, both
ends, or neither end. This allows arbitrary combinations of arrow heads and bodies to display arbitrarily
intricate directionality schemes.

5−4−2: Negation

Arcs in the Schematic technology may be negated,
which causes them to have a bubble drawn where
they attach to schematic elements. This property
can be changed with the Toggle Port
Negation command (in menu Edit / Technology
Specific). It may also be controlled by the Object
Properties... dialog (in menu Edit / Properties).
Note that you can toggle negation when an arc is
selected (which leaves the system to guess which
end you want to negate) or you can toggle negation
when a node and port is selected (in which case, the
arc attached to that port is negated).

Note that the Object Properties... dialog offers precise control of the negating bubbles, allowing you to
specify which ends have the bubbles on them. Negated arcs make no sense in layout technologies and are
ignored.

Chapter 5: Arcs

150 Using the Electric VLSI Design System, version 9.07

5−4−3: End Extension

All arcs are drawn so that their
geometry extends beyond their
endpoints by one−half of their width.
This property can be set or reset with the
Toggle End Extension of Head,
Toggle End Extension of Tail and
Toggle End Extension of Both
Head/Tail commands (in menu Edit /
Arc). It may also be controlled by the
Object Properties... dialog (in menu
Edit / Properties).

5−4−4: Naming

Another property of an arc is its name. This is a character string that is displayed on the arc and used to name
the electrical network connected to that arc. The "Name" field in the Object Properties... dialog allows you
to specify this property, which is then displayed on the arc. See Section 6−8−4 for "smart" arc name control.

All arcs are named in Electric, so if you don't give it a name, one will be assigned. These names, which
typically take the form "object@number" are temporary names, and are distinguished from the names given
by the user. Temporary names are not displayed on the arcs, but user−defined names are.

Note that creating exports is another way of naming a network. See Section 6−9−2 for more on network
naming.

Arc names can be quite complex when applied to busses. The names can be indexed, aggregated, and
otherwise be used to describe multiple signals. See Section 6−9−3 for more on bus naming.

Chapter 5: Arcs

 Using the Electric VLSI Design System, version 9.07 151

#chap06-08-04
#chap06-09-02
#chap06-09-03

5−4−5: Curvature

An unusual arc property, used only in circular geometry, is curvature. Although most arcs cannot handle
curvature, those in the Artwork and Round CMOS ("rcmos") technologies can.

The Curve through Cursor command (in menu
Edit / Arc) requests that the currently
highlighted arc curve in such a way that it passes
through the location of the cursor. The Curve
about Cursor command requests that the
currently highlighted arc curve between its
endpoints such that the center of curvature is at
the location of the cursor. After issuing these
commands, click and drag to see how the arc will
curve.

The Remove Curvature command makes the arc straight.

Chapter 5: Arcs

152 Using the Electric VLSI Design System, version 9.07

5−5: Default Arc Properties

The Arcs Preferences (in menu File / Preferences..., "General" section, "Arcs" tab) lets you control the arc
creation process. It does not affect existing arcs, only those that are subsequently created.

The top part of the
dialog allows you to set
defaults for specific
types of arcs. You select
the "Technology" and
"Arc Type", and then
set defaults for it (such
as the "Default width").

The "Default width"
field specifies the width
of newly placed arcs.
When there are already
arcs connected to one of
the nodes being wired,
the new wire is made as
wide as the widest
existing arc on either
node. Also, when the
nodes are larger than
normal, arcs connected
to them will be made
appropriately wider.

The "Placement angle" is the granularity for running this type of arc (in degrees). A value of 90 lets arcs run
at 0, 90, 180, or 270 degrees: manhattan geometry. A value of 45 lets it run at any of 8 angles (useful for
schematics). A value of 0 lets it run at any angle (used in artwork).

The "Pin" is the node that gets used for connecting two of these arcs. It is typically a "Pin" node (see Section
7−1−1). If changed to a node with geometry (such as a contact node) then these contacts will be placed at the
bends of this arc.

Chapter 5: Arcs

 Using the Electric VLSI Design System, version 9.07 153

#chap07-01-01
#chap07-01-01

The checkboxes in the "Default State" section have these meanings:

Rigid − whether the arc is rigid in length and relationship to its nodes (see Section 5−2−1).•
Fixed−angle − whether the arc stays at the same angle when one end moves (see Section 5−2−1).•
Slidable − whether the arc slides around in its node's port (see Section 5−2−2).•
Directional − whether the arc has an arrow drawn on it (see Section 5−4−1).•
Ends extended − whether the arc extends past its endpoint by half its width (see Section 5−4−3).•

The bottom portion of the dialog has controls for all arcs.

"Play 'click' sounds when arcs are created" − plays a sound to confirm arc creation. The sound is a
single click for one arc, a double−click for two arcs, and a triple−click for three or more arcs.

•

"Duplicate/Array/Paste increments arc names" − sets whether the name on an arc should be kept
unique by auto−incrementing after this arc has been duplicated, arrayed, or pasted.

•

"Draw arcs as wide as their connecting nodes" − requests that arc widths expand when connected to
wider−than−normal nodes (see Section 2−2−3).

•

Chapter 5: Arcs

154 Using the Electric VLSI Design System, version 9.07

#chap05-02-01
#chap05-02-01
#chap05-02-02
#chap05-04-01
#chap05-04-03
#chap02-02-03

Chapter 6: Advanced Editing

6−1: Making Copies

Once you have created a collection of objects, it may be desirable to have other identical copies. There are
two ways to do this: by duplication, and by cut−and−paste.

Duplication

The Duplicate command (in menu Edit) makes a copy of the selected nodes and arcs. After issuing this
command, you can move the cursor to any location and click to place the copy. While moving the cursor, an
outline of the duplicated objects is shown (as well as the amount of motion).

If you have disabled "Move after Duplicate" (in the Nodes Preferences, in menu File / Preferences...,
"General" section, "Nodes" tab) then the duplicated objects are placed immediately without dragging.
Initially, they are moved by a predefined amount. However, Electric remembers motion that is made after a
duplication and uses that offset in subsequent duplications.

If any of the nodes have exports on them, they are not duplicated (unless "Duplicate/Array/Paste copies
exports" is set in the Nodes Preferences).

The Duplicate command forces newly created nodes and arcs to have unique names. This means that if any
nodes or arcs are named (using the Object Properties... command, in menu Edit / Properties) and then
duplicated, the new ones will have different names (specifically, the old names with numbers appended or
modified).

Cut−and−Paste

Another way to make copies of nodes and arcs is with the cut−and−paste commands. The Copy and
Cut commands (in menu Edit) copy the currently selected nodes and arcs to a special buffer. Cut also
removes the objects after copying them. The Paste command then copies the objects from the special buffer
to the display. After issuing this command, an outline of the pasted objects attaches to the cursor. When you
click, the objects are placed at that location. You can right−click during the paste drag to affect the location,
and to abort the paste.

Note that if you copy a node or arc and then select another before pasting, then the copied object will replace
the selected object (changing its type and other properties, similar to the Change... command, see Section
6−6). If you want the Paste command to make a second copy, be sure that nothing is selected when you issue
the command. Thus, duplicating an object cannot be done by issuing a Copy and then a Paste. You must do a
Copy, then deselect the object, then do a Paste.

 Using the Electric VLSI Design System, version 9.07 155

#chap06-06
#chap06-06

6−2: Creation Defaults

The Duplicate command is useful because a node may have been modified (rotated, scaled, etc.) and
duplication preserves all of those changes. Using Copy and Paste does the same thing. Another way to create
nodes that are nonstandard is to set creation defaults.

To do this, use the
Nodes Preferences
(in menu File /
Preferences...,
"General" section,
"Nodes" tab). The
top part of the
dialog controls new
primitive nodes.
You can change the
default size of any
primitive node by
choosing the node
and changing the
values.

The middle section of the dialog controls cells:

"Check cell dates during editing" requests that date information be used to ensure a proper circuit
building sequence. When this box is checked, warning messages will be issued when editing a cell
that has more recent subcell instances. Electric tracks cell creation and revision dates, and this
information can be displayed with the Describe this Cell command and others in menu Cell / Cell
Info (see Section 3−7−1).

•

"Switch technology to match current cell" requests that the current technology automatically change
whenever the current cell changes, so that the two match.

•

Chapter 6: Advanced Editing

156 Using the Electric VLSI Design System, version 9.07

#chap03-07-01

"Place Cell−Center in new cells" requests that all newly created cells have a Cell−Center node placed
at the origin (see Section 3−3 for more on Cell centers).

•

"Reconstruct arcs and exports when deleting instances" requests that arcs connected to cell instances
be reconstructed when the cell instances are deleted. These reconstructed arcs appear to be the same
as before, but they now connect to pins that end where the instance ports used to be. In addition,
exports that were on deleted cell instances are moved to pins in the same location. When this box is
not checked, arcs and exports connected to deleted instances are also deleted.

•

"Convert between schematic and layout when pasting" requests that if you copy a schematic cell
instance (from a schematic) and then paste it into a layout, it will convert it to the equivalent layout
cell instance. This presumes that the schematic icon has a layout equivalent in the same cell group.

•

"Always prompt for index when descending into array nodes" controls whether nodes with array
specifications should be precisely tracked when descending the hierarchy (see Section 3−5 for more).

•

The bottom part of the dialog applies to all nodes:

"Disallow modification of complex nodes" requests that all cell instances, transistors, and other
complex nodes be anchored. Pins and contacts are not considered to be complex.

•

"Disallow modification of locked primitives" requests that all lockable primitive node instances be
anchored. Once locked, these nodes cannot be created, deleted, or modified in any way. Typically,
only primitives in "array" technologies are lockable (such as the FPGA technology, see Section
7−6−2), presuming that these components will be used to define the fixed circuitry that is then
customized. Design of the fixed circuitry is done with this lock off, and then the customization phase
is done with this lock on.

•

"Move after Duplicate" allows duplicated objects to be positioned interactively. This is the default
condition. However, if this is unchecked, then the Duplicate command (in menu Edit) will place a
copy automatically, without allowing the new location to be specified by the cursor.

•

"Duplicate In Place" causes the "duplicate" command to place the duplicated object exactly where
the original was. This is useful for layout geometry that needs to stay on a grid.

•

"Duplicate/Array/Paste copies exports" requests that these node−copying operations also copy their
exports. This includes the Duplicate, Array, and Paste commands (in menu Edit). See Section
6−4 for more on arrays.

•

"Increment rightmost array index" requests that when multidimensional busses or nodes are
duplicated, the rightmost index is incremented. When this is not checked, the leftmost index is
incremented. See Section 6−9−3 for more on bus naming.

•

"Extract copies exports" requests that extraction of cell instances also copy the exports. Extraction is
done with the Extract Cell Instance command (in menu Cell). See Section 3−8 for more on
extraction.

•

Chapter 6: Advanced Editing

 Using the Electric VLSI Design System, version 9.07 157

#chap03-03
#chap03-05
#chap07-06-02
#chap07-06-02
#chap06-04
#chap06-04
#chap06-09-03
#chap03-08

6−3: Preferences

All preferences in Electric are controlled with the Preferences... command
(in menu File). You can also get Preferences with this icon on the tool bar.

This dialog has a central panel with a tree−structured list of all of the preferences, and two panels on the left
and right for setting the Project and User aspects of the preferences. If a particular preference has no User or
Project part, that panel does not appear. The differences between User and Project preferences is:

User Preferences (on the right) affect the user's interaction with the system. Examples are printer
control, display colors, and keyboard bindings. Each user may have different preferences, and it does
not impact the design being done.

•

Project Preferences (on the left) affect the actual circuitry being edited (and so should be the same
for every user who is editing that circuitry). Examples are GDS layer mappings and technology
scaling.

•

The Preferences dialog is modeless, meaning that it can remain on the screen while other work is done. For
this reason, the dialog has an "Apply" button so that changes can be made without dismissing the dialog. The
Preferences dialog also has "Export" and "Import" buttons for saving Preferences to an XML file (this
function is also available from the File / Import and File / Export menus). Use the "Help" button to see the
page in the user's manual that explains the current panel. Finally, the Preferences dialog has a "Reset" button
for resetting the current User Preferences panel to its factory−default state, and a "Reset All" button for
resetting all User Preferences to their factory−default state. Note that Project Preferences are not affected by
the reset buttons.

Chapter 6: Advanced Editing

158 Using the Electric VLSI Design System, version 9.07

Where Preferences Are Stored

All Preferences are stored permanently on your computer and are remembered each time you run Electric.
The actual location of this information varies with each operating system.

Windows: In the registry. Look in: HKEY_CURRENT_USER / Software / JavaSoft / Prefs / com /
sun / electric.

•

UNIX/Linux: In your home directory. Look in: ~/.java/.userPrefs/com/sun/electric •
Macintosh: In your home directory, under Library/Preferences. Look at:
~/Library/Preferences/com.sun.electric.plist

•

You can delete the appropriate data to reset Electric to its "factory" state.

To save your preferences to disk, for saving and transporting to other systems, use the "Export" button in the
Preferences dialog, or use the Preferences... commands (in menu File / Export). This will write an XML file
with preference information which can be read back into Electric with the "Import" button, or the
Preferences... commands (in menu File / Import).

Project Preferences are also saved with your circuitry so that the values will be correct when the circuits are
read back in.

By default, project preferences are saved in each library that is written to disk. However, for multiple−library
projects, this can be troublesome if some libraries have different preferences than others. The solution is to
create a file, in the same directory as the libraries, called "projsettings.xml". If this file exists, then
preferences are taken from it (and ignored in the libraries). To write this file, use the Project
Preferences... command (in menu File / Export). To override current settings and explicitly read a project
preferences file, use the Project Preferences... command (in menu File / Import).

When Electric finds Project Preferences that are inconsistent with the current values, this dialog appears. You
must choose whether you want to use the new setting values or the current setting. This can be done on an
individual basis, or for all settings that conflict.

Chapter 6: Advanced Editing

 Using the Electric VLSI Design System, version 9.07 159

6−4: Making Arrays

If one copy is not enough, Electric has a command for building an array of circuitry.

The Array... command (in menu Edit) takes the currently highlighted objects and replicates them many
times. You specify the number of replications in the X and Y directions and the geometry is arrayed.
Arbitrary expressions can be used in this dialog, for example "3*4+1".

Arrays are generated by X
(row) with Y (column),
following a raster scan
order. If you request that
alternate rows or columns
be flipped, then they are
mirrored in the direction
of repetition. If you
request that alternate rows
or columns be staggered,
then each element is offset
by an alternating amount.
If you request that the
rows or columns be
centered, then the original
circuitry will be placed in
the middle of the array
instead of the corner. If the
X or Y values are
negative, then the array is
laid out backwards
(replications are placed in
the reverse direction).

There are four ways to specify spacing: edge overlap, centerline distance, essential bounds spacing, or
measured distance. The edge overlap amounts indicate the amount by which the rows and columns will be
squeezed together (zero overlap causes the each arrayed copy to touch the next one, negative overlap can be
specified to spread the objects apart). Centerline distance is the distance between object centers, and defaults
to the size of the selected objects (which causes the copies to touch). Essential bounds is a size that is set for
set for specific cells by placing two or more Essential Bounds nodes in the cell (see Section 7−6−3). If a cell
with essential bounds is arrayed, that value can be used. Finally, the last measured distance can be used to
determine the array spacing (for more on measuring, see Section 4−7−4).

Chapter 6: Advanced Editing

160 Using the Electric VLSI Design System, version 9.07

#chap07-06-03
#chap04-07-04

Checkboxes at the bottom of the dialog are special cases:

"Linear diagonal array" indicates that the array is linear (one of the repeat factors must be 1) but that
both spacing rules will be applied. This therefore creates a single line that runs diagonally.

•

"Generate array indices" requests that the array entries be drawn with index information. When this
is checked, array entries are labeled with the index of each entry. The original copy is labeled "0−0"
and the copy to its right is labeled "1−0". These names are simply visual tags that have no bearing on
the contents (use the Object Properties... command, in menu Edit / Properties, to set or remove
these names).

•

"Only place entries that are DRC correct" requests that array entries only be placed where they do
not create design−rule violations. This option is only available if a single node is being arrayed. After
the array is created, the design−rule checker is run on each entry, and if it causes an error, it is
removed.

•

"Transpose placement ordering" requests that array placement go by column instead of by row. This
is useful if the arraying includes names which are being auto−incremented in the array. By
transposing the order of arraying, the names will run in the orthogonal direction.

•

Note that the Array dialog is modeless and can remain on the screen while other work is being done. Both the
"OK" and "Apply" buttons create an array, but the "OK" button also closes the dialog. The "Draw" button
lets you drag an area on the screen in which the array will be placed. As you are dragging the area, the
individual array elements are shown so that you can see the extent of the array. When the button is released,
the array is created.

Chapter 6: Advanced Editing

 Using the Electric VLSI Design System, version 9.07 161

6−5: Spreading Circuitry

When a large amount of circuitry has been placed too close together or too far apart, Electric's constraint
system can help. All that is necessary is to make all arcs in an area rigid and then move one node. Of course,
you may have to move more than one node if the one you pick is not connected to everything else you want
to move. Also, you must make sure that arcs connecting across the area boundary are nonrigid. Finally,
setting arc rigidity should be done temporarily so that it does not spoil an existing constraint setup. All these
operations are handled for you by the Spread... command (in menu Edit / Move).

With the Spread... command, the
highlighted node is a focal point about which
objects move. A dialog is presented in which
an amount and a direction (up, down, left, or
right) are specified. An infinite line is passed
through the highlighted node's center and
everything above, below, to the left of, or to
the right of the line is moved by the specified
amount.

Negative spread distances compact the circuit.

Chapter 6: Advanced Editing

162 Using the Electric VLSI Design System, version 9.07

6−6: Replacing Circuitry

The Change... command (in menu Edit) removes the currently highlighted node or arc and replaces it with a
new one of a different type.

This same effect can be had
by copying one object and
then pasting it onto another
(see Section 6−1). A dialog
is presented in which the
possible replacements are
shown. For node changing,
you can choose to show
primitives from the current
technology, cells from the
current library, or both.

When replacing an arc, the
existing nodes on either end
must be able to reconnect to
the new type of arc. If
"Change nodes with arcs" is
checked, nodes will be
changed to allow the new
type of arc to remain
connected.

When replacing a node, the existing arcs on it must be able to reconnect properly to the new node. However,
the sizes of the replaced object can be different, and the layout will be adjusted. Electric determines which
ports on the replaced node to use by examining the port names and locations. If the ports are aligned
correctly but not named the same, this matching will fail. Check "Ignore port names" to disable name
matching and use only position information. If the new node is missing essential ports, such that existing
wires cannot be reconnected, then the change will fail (unless "Allow missing ports" is checked).

When replacing schematic icon instances, any parameters that were overridden on the original instance are
copied to the new instance. To prevent this, uncheck "Preserve parameters".

Chapter 6: Advanced Editing

 Using the Electric VLSI Design System, version 9.07 163

#chap06-01

Besides replacing the currently highlighted node or arc ("Change selected ones only"), it is also possible to
specify replacement of many other objects.

"Change all connected to this" requests that objects of the same type, which are connected to the
highlighted ones, be changed.

•

"Change all in this cell" requests that all objects of the same type in this cell be changed. •
"Change all in this library" requests that all objects of the same type in the current library be
changed.

•

"Change all in all libraries" requests that all objects of the same type in every library be changed. •

This is a modeless dialog: it can remain up while other editing is being done. Click "Done" to dismiss it, and
"Apply" to make a change.

Note that some Schematic nodes use parameters to further describe them. For example, an electrolytic
capacitor is really just a capacitor with the "electrolytic" parameter on it. Therefore, you can change a node
into a capacitor, but not an electrolytic capacitor, because it is not in the list. To change a capacitor into an
electrolytic capacitor, paste an electrolytic capacitor onto it. Besides capacitors, parameters can be found on
diodes, transistors, sources, and two−ports (the four−connection primitives such as VCCS).

Replacing Cell Instances

There are two special commands for working with cell instances. The Replace Instance with Duplicate
Cell... command (in menu Cell) allows you to modify the selected cell instance, independently of other
instances of the same cell. It does this by making a copy of the selected cell and changing that instance to use
the new copy. You can then go down the hierarchy and edit that cell without affecting other instances. The
command will prompt you to name the new copy of the cell that is being used for the selected instance.

Another command for changing circuitry is Replace Cells from Library... (in menu Cell / Merge
Libraries). This command replaces instances in the current cell with like−names ones from another library.
It is useful when a new standard−cell library is replacing an old one, and all instances must be switched.

Chapter 6: Advanced Editing

164 Using the Electric VLSI Design System, version 9.07

6−7: Undo Control

Electric has an undo mechanism that tracks all changes made during a session. When a command is issued, it
and its side effects are stored.

The Undo command (in menu Edit) reverses the last change made (this includes any changes that may have
been made by other tools). Multiple uses of the Undo command continue to undo further back. The
Redo command redoes changes, up to the most recent change made.

You can also use the undo (counterclockwise) and redo (clockwise) icons
from the tool bar.

Electric stores only the last 40 changes, so anything older than that cannot be undone. To increase the
number of changes that are saved, use the General Preferences (in menu File / Preferences..., "General"
section, "General" tab), and change the "Maximum undo history" field. To see a history of changes that were
made, use the Show Undo List command (in menu Edit).

In Electric, almost every command is undoable, but there are some exceptions. Commands that write disk
files are not undoable, because Electric would not be so presumptuous as to delete a disk file. Also,
commands that read a disk file are undoable, but because users generally do not want to remove libraries
from memory once read in, the system prompts you to be sure that such a large undo is really desired.

Another useful command in for controlling changes being made is Repeat Last Action (in menu Edit). This
repeats the last command, but only works for commands that can sensibly be repeated.

Chapter 6: Advanced Editing

 Using the Electric VLSI Design System, version 9.07 165

6−8: Text

6−8−1: Understanding Text

There are a number of ways to place text in a circuit.

Each unexpanded instance of a cell has text that describes it, and its ports. •
Each export has a text label. •
Nodes and arcs can be named (with Object Properties...) so that they have text on them. They can
also have additional attributes that appear as text. For NCC annotations, see Section 9−7−4. For
Spice multipliers, see Section 9−4−3. For Verilog transistor strength, see Section 9−4−2. For GDS
text, see Section 7−3−3.

•

Certain primitive nodes (such as the Flip−Flop component of the Schematic technology) have text as
an integral part of their image.

•

It is even possible to create a special node that is only text (with some of the commands under the
"Misc" entry of the component menu: "Annotation Text", "Spice Code", "Spice Declaration",
"Verilog Code", and "Verilog Declaration").

•

Schematic and icon cells can have parameter definitions, and the instances of those cells can have
parameter values (see Section 6−8−5).

•

Essentially, every piece of text on the display is tied to some node or arc (or occasionally a cell). By
understanding the relationship between text and its attached object, it becomes easy to manipulate that text.

The visibility of text can be controlled with the "Layers" tab of the sidebar (see Section 4−5−3). This allows
you to reduce the clutter of text on the display.

When the node or arc that the text is tied to is modified (rotated or mirrored), the text adjusts as well. The
two text factors that change are (1) the offset of the text from the center of the node, and (2) the anchor point.

The example here shows the
rotation of an offpage node that
has an export on the flat end.

The left side of the example shows the node and text before the node is rotated: the export text is anchored on
the right side (the green "U" shows the anchor point, see Section 6−8−2) and the anchor point is offset to the
left of center so that it starts at the left side of the node.

After rotation (on the right) the export text is anchored on top and the anchor is rotated to be below the node.

Note that all other text factors remain unchanged when the attached object is modified. This includes the text
rotation, which can be set only in the Properties dialog (see Section 6−8−3).

Chapter 6: Advanced Editing

166 Using the Electric VLSI Design System, version 9.07

#chap09-07-04
#chap09-04-03
#chap09-04-02
#chap07-03-03
#chap06-08-05
#chap04-05-03
#chap06-08-02
#chap06-08-03

6−8−2: Selecting Text

The only category of text that is not selectable is the text that is integral to a node's graphics (i.e. the
Flip−Flop). For the rest, you can select and manipulate the text just as you would the object on which the text
resides. (Note that port names on cell instances are not selectable: instead, select their export name inside of
the cell definition.)

Note that the name of an unexpanded cell instance is not easily selectable. This is a feature that prevents
accidental selection of unimportant text. For these hard−to−select pieces of text, the only way to select them
is to use special select mode (see section 2−1−5).

All text is attached to its node, arc, or
cell at an anchor−point. This is the one
point on the text that never moves,
regardless of the size of the text. The
highlighting of selected text varies
according to the anchor−point.
Typically, the highlighting consists of
an "X" through the text. This indicates
that the anchor−point is in the center. If
a "U" is drawn in any of four
orientations, it indicates that the
anchor−point is on the side and that the
text grows out of the opened end. If an
"L" is drawn in any of four orientations,
it indicates that the anchor−point is in a
corner.

Besides these 9 anchor points, there is one more special type of anchor called boxed. Boxed text has a
centered anchor point, but is limited in size to a particular box. It appears as an "X" but also has four lines
that indicate the edge of the box. Boxed text is typically used on unexpanded cell instance names so that the
text does not exceed the size of the instance.

Note that text can be moved away from its
attached node or arc. If this has been done, then
selection of the text will also indicate the
attached component by drawing a dashed line to
it.

Chapter 6: Advanced Editing

 Using the Electric VLSI Design System, version 9.07 167

#chap02-01-05

6−8−3: Modifying Text

Like nodes and arcs, text can be moved simply by clicking and dragging. Text can be rotated by selecting it
and using the Rotate commands in the Edit menu. Text can be erased by selecting it and using the
Selected command of the Edit / Erase menu (the Delete key).

Changing a Single Piece of Text

To change text, double−click on it and type a new value. To change other aspects of selected text, and use the
Object Properties... command (in menu Edit / Properties).

Besides the text at the top
of the dialog, these fields
can be modified:

"Text Size" can be
absolute (given in
"points") or
relative (given in
units).

•

"X/Y offset" is
relative to the
center of the
attached object.

•

"Rotation" is in
90−degree
increments only.

•

"Anchor" is the point in the text that remains unchanged (see Section 6−8−2).•
"Font" can be the default font or any font installed on your system.•
"Color" can be any color.•
"Bold", "Italic", and "Underline" can be set in any combination.•

These additional factors can be controlled:

"Code" allows the text to be code in an interpretive language, in which case, the evaluation of that
code is displayed. The code choices are:

•

Chapter 6: Advanced Editing

168 Using the Electric VLSI Design System, version 9.07

#chap06-08-02

"Not Code" the text is taken as−is.♦
"Java" the text is handed to a Java interpreter for evaluation. For example, the expression
"Math.abs(−4*5)" will be converted to "20".

♦

"Spice" the text is handled as a Spice expression. Spice allows simple expressions and
Electric is able to evaluate them. These expressions are not as powerful as Java. One
advantage of Spice code is that the Spice deck writer can send them unevaluated to the Spice
deck.

♦

"Units" can be any electrical type (capacitance, resistance, etc.) See Section 7−2−2 for more on units.•
"Show" allows you to show the text value, the name of the piece of text, or both.•
"Multi−Line Text" allows the text to have more than one line. After checking this box, it may be
useful to stretch the dialog in order to have a larger field for editing the text.

•

"Highlight Owner" highlights the node or arc on which the text is attached.•
"Invisible outside cell" requests that the text not be drawn when an instance of the cell is examined.•

Changing Multiple Pieces of Text

The above dialog changes information on a single piece of text. There are two ways to change information on
multiple pieces of text: (1) select all of the text and use Object Properties... or (2) use the Change Text
Size... command (in menu Edit / Text).

The Change Text
Size... command allows you to
change the size, font, and style
of any text object. Instead of
selecting the text, you have a
choice of 6 classes of text that
can be changed, and you can
choose whether to make the
changes only on selected
objects, in the current cell, in
all cells of a particular view,
or everywhere.

Chapter 6: Advanced Editing

 Using the Electric VLSI Design System, version 9.07 169

#chap07-02-02

6−8−4: Text Defaults

To change default information for all new text, use the Text Preferences (in menu File / Preferences...,
"Display" section, "Text" tab). The top part of the dialog controls how new text will appear. Select the type
of text, and then its appearance (size, anchor, font, etc.)

The middle section is "For Textual Cells" and controls the fonts used to display textual cells (see Section
4−9).

The bottom part of
the dialog controls
text drawn in
circuitry. You can
set the default font,
and a global text
scale for the current
and new windows.
Normally, all text is
drawn at 100% of
its stated size.
However, you can
globally scale all
text by typing a
value other than 100
into this field. You
can also use the
Increase All Text
Size and Decrease
All Text
Size commands (in
menu Edit / Text)
to change this value,
and alter the size of
all displayed text.

The "Show temporary node names" checkbox requests that unnamed nodes show their temporary names (for
more on node names, see Section 2−4−2).

Chapter 6: Advanced Editing

170 Using the Electric VLSI Design System, version 9.07

#chap04-09
#chap04-09
#chap02-04-02

The Smart Text Preferences (in menu File / Preferences..., "Display" section, "Smart Text" tab) controls
where new text will appear on Exports and Arcs.

For arcs, you can
choose to place the
name on the inside
of the arc (the
default), or on one
side of the arc,
depending on
whether it is vertical
or horizontal.

For export names,
you can control their
offset relative to the
arc attached to that
export. For example,
if a node on the left
end of a wire has an
export, and the
"Horizontal"
placement is set to
"Inside", then the
export text will
attach on the left
side, causing the
label to appear
inside of the wire.

Chapter 6: Advanced Editing

 Using the Electric VLSI Design System, version 9.07 171

6−8−5: Cell Parameters

Parameters are special pieces of text that are passed from icon instances to the schematic cells. Parameters
are defined in the icon or schematic cell, and then they appear on the icon instances. Users can set different
values on each icon instance, and these values will be passed down into the schematic and applied as
necessary. The computer−programming equivalent of this is that the cell's parameter is the "formal" value
and the instance parameters are the "actual" values.

For example, an inverter schematic may have transistor sizes defined with a parameter. The actual transistors
inside of the inverter schematic will use the parameter values, and each inverter instance will have a different
parameter value, causing that particular inverter to have a different transistor ratio. Another example of the
use of cell parameters is in the Spice primitives, where user−defined values (such as voltage) are
communicated into the icon for generation in the Spice deck (see Section 9−4−4).

To define parameters on a cell,
it is necessary to be editing
either the schematic or one of
its icons (it does not matter
which, because the set of
parameters is the same inside
of the cell group). Use the Cell
Parameters... command (in
menu Edit / Properties).

A list of parameters is shown
at the top. You can create a
new parameter by typing its
name in the "Name" field, its
default value in the "Value"
field and then clicking the
"Create New" button. If
"Show new parameter on
instances" is checked, this new
parameter will be seen on all
instances with its default
value.

Chapter 6: Advanced Editing

172 Using the Electric VLSI Design System, version 9.07

#chap09-04-04

The "Edit" button next to the "Value" field lets you change the value in a separate dialog (useful for major
changes). You can delete a parameter with the "Delete" button and change its name with the "Rename..."
button. You can also copy parameters from another parameterized cell using the "Copy From Cell..." button.

The bottom part of the dialog has controls for the appearance and nature of the selected parameter.

"Code" determines whether the parameter is code or pure data. This can be changed to one of the
interpretive languages in Electric. When this happens, the parameter value is treated as code that is
sent to that interpreter. Then, the true value of the parameter is the evaluation of that code. For
example, if the value of a parameter is "3+5" and the parameter is set to be Java code, then the Java
interpreter will be invoked, and the parameter will actually be "8".

•

"Units" determines the type of unit (choices are capacitance, resistance, inductance, current, voltage,
or distance). See Section 7−2−2 for more on these units.

•

"Show" controls the way that a parameter is displayed in the circuit. You can request that various
combinations of the parameter's name and value be displayed.

•

"Text Size" gives the size of the parameter text, which can be in relative or absolute units.•
"X/Y offset" is the distance of the text's anchor point from the center of the cell.•
"Rotation" is the text orientation (in 90−degree increments).•
"Anchor" controls the anchor−point of the parameter text. When the anchor style is "Boxed", the
"Boxed width" and "height" fields give the size limits. See Section 6−8−2 for more on text anchors.

•

"Font" is the text font.•
"Color" is the text color.•
"Bold", "Italic", and "Underline" control the style of the text.•
"Invisible outside cell" requests that the parameter not be drawn when viewed farther up the
hierarchy.

•

The "Done" button terminates this dialog. Note that there is no "Cancel" button: this dialog makes changes as
they are entered.

Special Considerations

To use a parameter inside of a cell, create text that has the code set to "Java" and has a "@" in front of the
parameter name. For example, if a cell has the parameter "size" defined and you want a transistor in the cell
to be size*2 in width, then edit the transistor and set its width to "@size*2" and its code to "Java".

To display the current value of a parameter from up the hierarchy, create a piece of "Annotation Text" (found
in the "Misc" entry of the component menu) and set its "code" to Java and its value to "@PNAME" (where
PNAME is the parameter name). Note that when a parameter is used in a cell but there is no value from up
the hierarchy, the text appears as "not found".

Parameters on cells are not tied to any node or arc. Instead, they float freely inside of the cell. You can select
the text and drag it to any location in the cell.

Parameters get inherited when the cell is instantiated. This means that each new icon, when created, will
have all of the parameters shown on it, with default values. You can select any of these pieces of text and edit

Chapter 6: Advanced Editing

 Using the Electric VLSI Design System, version 9.07 173

#chap07-02-02
#chap06-08-02

their text or other information (with the exception of the "Units" field which must match the defined
parameter's units). If you delete a parameter's text, the parameter remains, but with its default value.

Parameters on instances of cells are placed at the same location as they appear inside of the icon cell. To
change the location on all subsequently created icon instances, move the location in the icon.

If a parameter is added to a cell without checking "Show new parameter on instances", existing instances of
that cell will not show the parameter. To see the parameter at a later time, use the Update Parameters on
Node command (in menu Edit / Properties). To do this everywhere, use the Update Parameters all
Libraries command.

It is sometimes desirable for each instance parameter to have a unique value. When the default value of a
parameter inside the schematic or icon cell has "++" in it, then the number before that will be incremented
after each new icon instance is created. Similarly, a "−−" indicates that the number be decremented after
instance is created. This allows all instance parameters to be given unique values.

Chapter 6: Advanced Editing

174 Using the Electric VLSI Design System, version 9.07

6−9: Networks

6−9−1: Introduction to Networks

A collection of electrically connected components defines a network. Networks may span many arcs, or they
may reside on only a single export of a single node. Because networks are stored in the Electric database,
they can be immediately accessed when needed.

Whenever a port on a node is selected, the highlighting indicates the entire network that is connected to that
port. Another way to see an entire network is to use the Show Network command (in menu Tools /
Network). This will highlight all arcs on the currently selected networks. Repeated use of the command
causes the network to be highlighted at successively lower levels of the hierarchy, useful when cell instances
are part of the network. The command will also "cross−probe" by highlighting networks that have the same
name in other views of this cell.

Cells that are imported from other EDA systems often have no connectivity information and are built with
pure layer nodes (see Section 6−10−1 for more). When the Show Network command is run on such cells, it
quickly extracts the information, then displays it. Also, if a cell instance is selected but no individual port is
selected (such that there is no single network selected) then the command highlights all wired ports.

If the design is very dense, you can select one or more networks by name with the Select Object... command
(in menu Edit / Selection). The Show All Networks command (in menu Tools / Network) highlights every
network in a different color (useful if there are not too many nets).

There are many commands in the Tool / Network menu that give information about the networks in a cell:

List Networks shows a list of the networks in the current cell. •
List Exports on Network lists all export names on the currently highlighted network. This list
contains the names of exports at all levels of the hierarchy, above and below the current cell. The
facility is useful if, for example, you have propagated clock lines throughout the circuit and wish to
make sure that all of the export names on this network have some variant of the name "phi". By
quickly examining this list, you can see all of the names that have been used on the network,
throughout the hierarchy.

•

List Exports below Network lists all export names on the currently highlighted network. This list is
similar to the one generated by List Exports on Network except that it works only on cells below
the current one.

•

List Connections on Network lists all nodes in the current cell that are connected to the current
network. This list includes only those nodes at the ends of the net, not the pin or contact nodes used
inside of the network. The command is useful if you are at one end of a wire and want to check to see
what is at the other end.

•

List Geometry on Network lists all geometry in the current cell that is connected to the current•

Chapter 6: Advanced Editing

 Using the Electric VLSI Design System, version 9.07 175

#chap06-10-01

network. This reports the area and perimeter of all attached layers.
Calculate Network Quality analyzes the currently selected network for length, area, and via usage. •
List Total Wire Lengths on All Networks lists the lengths of all networks in the current cell.•
Show Undriven Networks lists all networks in the current cell or below it in the hierarchy that are
"undriven." An undriven network is one that does not connect to the source or drain of a transistor.

•

6−9−2: Naming Networks

Network names are derived from export names and arcs that are named in a cell. The name given to an export
becomes the network name for all arcs connected to that export. Similarly, the name given to an arc (by
setting the name field in the Object Properties... dialog) becomes the name of the network for all connected
arcs. You can rename a network by changing the name of a connected export or arc.

Two phenomena can occur in network naming: a network can be multiply named, and it can span disjoint
circuitry. A network has multiple names when two or more connected arcs or exports are named with
different names. For example, if you make an export on a contact node and call it "clock", then you select an
arc connected to that contact node and name it "sig", the circuitry will be on the network "clock/sig." Thus,
both names now apply to the same network.

The other phenomenon of network naming is that a single network can include unconnected parts of the
circuit. This happens when arcs in unconnected parts of the circuit are given the same name. This causes the
two arcs to be implicitly joined into one network. Because this network naming phenomena is most
commonly used in schematics, the unification of like−named networks only happens in cells with the
"schematic" view.

6−9−3: Bus Naming

The Bus arc of the Schematics technology is a special arc that can carry multiple signals (see Section 7−5−1).
When giving a network name to Bus arcs, it is possible to specify complex bus names.

Simple arrays Bus names can be arrays (for example, "A[0:7]" which defines an 8−wide bus). The
indices can ascend or descend.

•

Lists Bus names can be lists (for example, "clock,in1,out" which aggregates 3 signals into a 3−wide
bus).

•

Array index lists and ranges Arrayed bus names can have lists of values (separated by commas) or
ranges of values (using the colon). For example, the bus "b[0],c[3,5],d[1:2],e[8:6]" is an 8−wide bus
with signals in this order: b[0], c[3], c[5], d[1], d[2], e[8], e[7], e[6].

•

Multidimensional array indices Arrays can be multiply indexed (for example "b[1:2][100,102]"
defines a bus with 4 entries: b[1][100], b[1][102], b[2][100], and b[2][102]). You can have any
number of dimensions in an array. Note that the order of signals in a multidimensional array is such
that the rightmost index varies the fastest. For example, the bus "D[1:2][1:2]" has signals in this
order: D[1][1], D[1][2], D[2][1], D[2][2].

•

Symbolic array indices It is possible to use symbolic indices in bus naming (for example, the bus
"r[x,y]" defines a 2−wide bus with the signals r[x] and r[y]).

•

Chapter 6: Advanced Editing

176 Using the Electric VLSI Design System, version 9.07

#chap07-05-01

When a bus is unnamed, the system determines its width from the ports that it connects. Some tools (such as
simulation netlisters) need to name everything, and so use automatically−generated names. When this
happens, the system must choose whether to number the bus ascending or descending. To resolve this issue,
use the Network Preferences (in menu File / Preferences..., "Tools" section, "Network" tab), and choose
"Ascending" or "Descending". (For information about the "Node Extraction" portion of the Network
Preferences, see Section 9−10−2.)

Individual wires that connect to a bus must be named with names from that bus. As an aid in obtaining
individual signals from a bus, the Rip Bus command (in menu Edit / Arc) will automatically create such
wires for the selected bus arc.

To find out what signals are on a bus, select that bus and use the Object Properties... command (in the Edit /
Properties menu). In the full dialog (obtained by clicking the "More" button), select "List Shows Bus
Members" to see a list of networks on the selected bus arc. When a node's port is a bus, you can see the
signals on that bus by selecting that port of the node and using the Object Properties... command. In the full
dialog, select "Bus Members on Port" to see the signals.

Chapter 6: Advanced Editing

 Using the Electric VLSI Design System, version 9.07 177

#chap09-10-02

Arrayed Nodes

Besides using array names on busses, you can also give array names to cell instances in a schematic.
Netlisters will create multiple copies of that node, named with the individual elements of the array.

When a cell instance
is arrayed, the
connections to its
ports can be similarly
arrayed. For example,
suppose that
schematic cell X has
wire port Y and bus
port Z[1:2]. An
instance of cell X is
arrayed by giving it
the name M[2:4].
Ports Y and Z can be
connected in two
ways:

Implicit connection to all instances (top illustration). If the wire port Y is connected to a single wire
(A), then wire A connects to port Y on all three instances of cell X. If the bus port Z is connected to a
2−wide bus (B), then each element of that bus connects to the same element of bus port Z on all three
instances of cell X. So B[1] connects to port Z[1] and B[2] connects to Z[2] on all three instances,
M[2], M[3], and M[4].

•

Explicit connection to individual instances (bottom illustration). If the wire port Y is connected to a
3−wide bus (C), then each element of the bus connects to port Y on a different instance of cell X.
C[1] connects to Y on M[2]; C[2] connects to Y on M[3]; and C[3] connects to Y on M[4]. If the bus
port Z is connected to a 6−wide bus (D), then it is viewed as 3 pairs of signals, and each pair
connecting to the two−wide bus Z on a different instance of cell X. D[1] and D[2] connect to Z[1]
and Z[2] on M[2]; D[3] and D[4] connect to Z[1] and Z[2] on M[3]; and D[5] and D[6] connect to
Z[1] and Z[2] on M[4].

•

Note that it is not possible to array a primitive node from the Schematic technology. Instead, you must place
that node inside of a cell, and array instances of the cell.

Chapter 6: Advanced Editing

178 Using the Electric VLSI Design System, version 9.07

Parameterized Bus Names

It is possible to have variable−width
busses by parameterizing their names.
Electric maintains a list of global
parameters, and these can be
manipulated with the Edit Bus
Parameters... command (in menu Edit
/ Properties). You can create and delete
parameters, and can set values for each.

To use these parameters, you must add a template to an arc, node, or export name.

This figure shows an
export called "in", and an
arc called "internal". Both
the export name and the arc
name were selected, and
the command
Parameterize Bus
Name issued (in menu
Edit / Properties).

The templates are then shown near the original names. Arrayed nodes can also have their names
parameterized.

You may type any text into the template. Wherever the string $(par) appears, it will be replaced with the
parameter par. In this example, the parameter x has the value 7. You can also use simple arithmetic
operators (just "+", "−", "*", and "/"), for example in[0:$(x)−1] defines a bus that runs from 0 to one
minus the value of "x". When parameter values change, click the "Update All Templates" button to
reevaluate all node, arc, and export names.

Chapter 6: Advanced Editing

 Using the Electric VLSI Design System, version 9.07 179

6−9−4: Power and Ground

Identification of a power network is done by finding:

a Power node from the Schematic technology; •
an export in the current cell that has the "power" characteristic; •
an export in the current cell that begins with the letters "vdd", "vcc", "pwr", or "power"; •
a port on a component in the current cell that has either of the above two properties. •

Ground networks use the same rules, except that the acceptable port names begin with "vss", "gnd", or
"ground".

All supply networks defined with the Power and Ground nodes of the Schematic technology are combined
into one network. This means, for example, that two arcs, each connected to a separate Ground node, appear
on the same network regardless of their actual connectivity in the circuit.

As a debugging aid for power and ground networks, the command Show Power and Ground (in menu
Tools / Network) shows the entire power and ground network. The Validate Power and Ground command
checks all power and ground networks in the circuit. Any power or ground networks that are named
according to the prefixes listed above must have the proper characteristics. If, for example, a power network
is called "gnd007", then it will be flagged by this command. The command Repair Power and
Ground changes the characteristics where necessary.

Many designs require multiple power and ground rails. Electric allows additional power and ground signals
through the use of the Global node (see next Section).

6−9−5: Global Networks

When wiring an IC layout, the only way to get a signal from one point to another is to physically place the
wires. Signals that span a large circuit, such as power and ground, must be carefully wired together at each
level of the hierarchy.

In schematics, however, it is often the case that a signal is used commonly without explicitly being wired or
exported. Examples of such signals are power, ground, clocks, etc. The power and ground signals can be
established in any schematic with the use of the Power and Ground nodes. To create another such signal, use
the Global node of the schematics technology (see Section 7−5−1).

The Global node is diamond−shaped, and it has a name and characteristic similar to exports (input, output,
etc.) All signals with the same global name are considered to be connected when netlisting occurs. Thus, the
Global symbol can be used to route clock signals, as well as to define multiple power and ground rails. Note
that with multiple power and ground rails, only one of them is the true "power and ground" as defined by the
Power and Ground symbols. All others, declared with Global nodes, are not true power and ground signals,
but are simply globals. The distinction is made by some netlisters which treat the true power and ground
signals specially.

Chapter 6: Advanced Editing

180 Using the Electric VLSI Design System, version 9.07

#chap06-09-05
#chap07-05-01

Global Partitioning

It is sometimes the case that the designer wishes to isolate a global signal and wire it differently. For
example, a schematic cell may be defined with power and ground symbols, connecting it to the global power
and ground. But a particular instance of the cell may need to be wired to alternate power and ground rails, for
example "dirty power". Another example of rewiring happens when you want to test a specific instance of a
cell, and you need to connect its globals differently for the purposes of simulation.

The solution is to place a
"Global Partition" node inside
of the schematic (see Section
7−5−1). This symbol acts like
an "offpage" symbol: it is
wired to something inside of
the cell (a global signal) and it
is also exported to the outside
world.

In this example, the schematic has power and ground signals, but the power signal is also connected to a
Global Partition node and exported (as "vddR"). The icon has an extra connection for this power tap. In
normal use, the extra connections created by the Global Partition nodes are not wired up, because they
connect to globals, and their connectivity is understood. If, however, the extra exports are wired, it means
that the signal inside of the cell is disconnected from the global, and connected instead to that wire.

In the example here, two "invR" icons
are placed, but only one of them has
its "vddR" connection wired (to a
different power source). The
subcircuit for the rightmost icon will
not use the global power signal, but
will instead use the attached signal,
"vddInv".

When writing a Spice netlist that makes use of Global Partitions, you cannot use the .GLOBAL block
because it will prevent the overriding of signals. You must set the "Globals" field in Spice/CDL Preferences
to "Create .SUBCKT ports" (see Section 9−4−3).

Chapter 6: Advanced Editing

 Using the Electric VLSI Design System, version 9.07 181

#chap07-05-01
#chap07-05-01
#chap09-04-03

6−10: Outlines

6−10−1: Introduction to Outlines

For some primitive nodes, it is not enough to rotate,
mirror, and scale. These primitives can to be
augmented with an outline, which is a polygonal
description.

There are quite a few primitive nodes that make use
of outline information. The MOS transistors use the
outline to define the gate path in serpentine
configurations (see Section 7−4−1). The Artwork
technology has nodes that use outline information:
Opened−Solid−Polygon, Opened−Dotted−Polygon,
Opened−Dashed−Polygon,
Opened−Thicker−Polygon, Closed−Polygon,
Filled−Polygon, and Spline (see Section 7−6−1).

For arbitrary shapes on arbitrary layers, use the
pure−layer nodes in the IC layout technologies. The
pure−layer nodes are found under the "Pure" entry in
the component menu. For example, the node called
"Metal−1−Node" in the CMOS technologies looks
like a rectangle of the Metal−1, until you add outline
information. With an outline, this node can take any
shape. It is even possible to have multiple disjoint
outlines in a single pure−layer node (users cannot
create this situation, but some tools such as GDS
import can).

Because pure−layer nodes are unusual, it is useful to be able to identify them. Use the Show Pure Layer
Nodes command (in menu Edit / Cleanup Cell) to highlight all of them in the current cell. If pure−layer
nodes overlap each other, use Show Redundant Pure Layer Nodes to identify those that are enclosed by
others and, therefore, are redundant.

Chapter 6: Advanced Editing

182 Using the Electric VLSI Design System, version 9.07

#chap07-04-01
#chap07-06-01

6−10−2: Manipulating Outlines

To manipulate outline information on the currently highlighted node, use
"Outline Edit" mode (click on the icon in the tool bar or use the Toggle
Outline Edit command, in menu Edit / Modes / Edit).

In this mode, there is always a "current point", identified with an "X" over it. To further identify this point,
the lines coming into and out of the point have arrows on them indicating the direction of the outline.

In outline edit mode, the left button is used to select and move a point on the outline, and the right button
adds a new point after the selected one.

Besides selecting points with the mouse, you can also step through the points of the outline with the "." key
(next outline point) and "," key (previous outline point). These keys are under the ">" and "keys, so you can
think of them as the "next point" (>) and "previous point" (<) commands.

The Selected command (in menu Edit / Erase) deletes the current outline point (this is the Delete key).

When the Object Properties... command is
issued in outline−edit mode, a special dialog
appears to show the point coordinates of the
outline.

When done editing the outline, switch to standard selection mode (the Click/Zoom/Wire command, in menu
Edit / Modes / Edit).

Chapter 6: Advanced Editing

 Using the Electric VLSI Design System, version 9.07 183

6−10−3: Special Outline Generation

To generate a doughnut shaped outline, use the
"Annular Ring..." command under the "Misc"
entry in the component menu. This dialog
prompts for a layer to use and an inner and
outer radius for the annulus. By default, it is
made as a full circle (360 degrees), but this can
also be changed. Also, the number of line
segments used in the construction can be set,
allowing for smoother or coarser shapes.

Chapter 6: Advanced Editing

184 Using the Electric VLSI Design System, version 9.07

To generate text−shaped outlines, use the "Layout
Text..." command under the "Misc" entry in the
component menu. This dialog prompts for text and a
layer to use as well as the size, scale, font, and style. A
nonzero dot separation causes each pixel of the text to
be placed separately (some design rules need this).
"Reverse Video" inverts the placement of the dots that
make up the text.

To generate images in layout, use the
"Layout Image..." command under the
"Misc" entry in the component menu.
This dialog prompts for an image file
and a layer to use as well as other
factors in generating the image.

Chapter 6: Advanced Editing

 Using the Electric VLSI Design System, version 9.07 185

6−11: Interpretive Languages

Electric has two scripting languages: Java (using the Bean Shell) and Python (using Jython). These languages
enable you to load custom code that adds functionality to Electric. Neither of these languages is part of the
default Electric distribution. You must add them as "plug ins" (see Section 1−5 for more on plug−ins).

To run a Java script, use the Run Java Bean Shell Script... command (in menu Tools / Languages). To run
a Python script, use the Run Jython Script... command. Note that during execution of these scripts, Electric
may give warning messages about preferences, which can be ignored.

You can attach a script to the
Tools / Languages menu by
using the Manage
Scripts... command. Scripts
can have mnemonic letters
assigned to them (see Section
1−9 for more on mnemonics).

Java Script Examples

Here are some example scripts in the Java Bean Shell. For more information about accessing the internals of
Electric, read the Javadoc in the source code.

import com.sun.electric.database.hierarchy.Cell;
import com.sun.electric.database.topology.NodeInst;
import com.sun.electric.tool.Job;
import java.util.Iterator;

// get the current cell
Cell c = Job.getUserInterface().getCurrentCell();

// find all transistors
for(Iterator it = c.getNodes(); it.hasNext();) {
 NodeInst ni = it.next();
 if (ni.getFunction().isTransistor())
 System.out.println("Found transistor: " + ni.describe(false));
}

// find all exports that start with "A"
for(Iterator it = c.getPorts(); it.hasNext();) {
 com.sun.electric.database.hierarchy.Export e =
(com.sun.electric.database.hierarchy.Export)it.next();
 if (e.getName().toLowerCase().startsWith("a"))
 System.out.println("Found export: " + e.getName());
}

This example searches the
current cell, printing all
transistors and all exports
that start with the letter
"a".

Notice that Electric's
"Export" object must be a
fully−qualified name,
because the name
"Export" is used for other
reasons in the Bean Shell.
This also applies to
Electric's "EPoint" class.

Chapter 6: Advanced Editing

186 Using the Electric VLSI Design System, version 9.07

#chap01-05
#chap01-09
#chap01-09

import com.sun.electric.database.hierarchy.Cell;
import com.sun.electric.database.topology.NodeInst;
import com.sun.electric.technology.PrimitiveNode;
import com.sun.electric.technology.Technology;
import com.sun.electric.tool.lang.EvalJavaBsh;
import java.awt.geom.Point2D;

Cell newCell = Cell.makeInstance(Library.getCurrent(), "samp1{lay}");
Technology tech = Technology.findTechnology("mocmos");
PrimitiveNode trP = tech.findNodeProto("P−Transistor");
NodeInst tP = NodeInst.makeInstance(trP, new Point2D.Double(10, 10),
 trP.getDefWidth(), trP.getDefHeight(), newCell);
EvalJavaBsh.displayCell(newCell);

This example creates
a new cell, places a
transistor in it, and
displays the cell.

import com.sun.electric.database.hierarchy.Cell;
import com.sun.electric.database.geometry.Orientation;
import com.sun.electric.database.topology.ArcInst;
import com.sun.electric.database.topology.NodeInst;
import com.sun.electric.technology.ArcProto;
import com.sun.electric.technology.PrimitiveNode;
import com.sun.electric.technology.Technology;
import java.awt.geom.Point2D;

// create the new cell
Cell newCell = Cell.makeInstance(Library.getCurrent(), "samp2{lay}");

Technology tech = Technology.findTechnology("mocmos");

// place a rotated transistor
PrimitiveNode trP = tech.findNodeProto("P−Transistor");
NodeInst tP = NodeInst.makeInstance(trP, new Point2D.Double(0, 20),
 trP.getDefWidth(), trP.getDefHeight(), newCell,
 Orientation.R, "T1");

// place a metal−Active contact
PrimitiveNode coP = tech.findNodeProto("Metal−1−P−Active−Con");
NodeInst maP = NodeInst.makeInstance(coP, new Point2D.Double(8, 20),
 coP.getDefWidth(), coP.getDefHeight(), newCell);

// wire the transistor to the contact
ArcProto aP = tech.findArcProto("P−Active");
ArcInst.makeInstance(aP, tP.findPortInst("diff−bottom"),
 maP.findPortInst("metal−1−p−act"));

// export the contact
com.sun.electric.database.hierarchy.Export.newInstance(newCell,
 maP.findPortInst("metal−1−p−act"), "IN", PortCharacteristic.IN);

This example goes a
bit further: it creates
a rotated transistor
and a contact, wires
them together, and
exports the contact.
The transistor is
named "T1."

Chapter 6: Advanced Editing

 Using the Electric VLSI Design System, version 9.07 187

Python Script Examples

from com.sun.electric.database.hierarchy import Cell
from com.sun.electric.database.topology import NodeInst
from com.sun.electric.tool import Job
from java.util import Iterator

get the current cell
c = Job.getUserInterface().getCurrentCell()

find all transistors
it = c.getNodes()
while it.hasNext():
 ni = it.next()
 if ni.getFunction().isTransistor():
 print "Found transistor: " + ni.describe(0)

find all exports that start with "A"
it = c.getPorts()
while it.hasNext():
 e = it.next()
 if e.getName().lower().startswith("a"):
 print "Found export: " + e.getName()

This example
searches the current
cell, printing all
transistors and all
exports that start
with the letter "a".

from com.sun.electric.database.hierarchy import Cell
from com.sun.electric.database.hierarchy import Library
from com.sun.electric.database.topology import NodeInst
from com.sun.electric.technology import Technology
from com.sun.electric.tool.lang import EvalJython
from java.awt.geom import Point2D
newCell = Cell.makeInstance(Library.getCurrent(), "sample1{lay}")
tech = Technology.findTechnology("mocmos")
trP = tech.findNodeProto("P−Transistor")
tP = NodeInst.makeInstance(trP, Point2D.Double(10, 10), trP.getDefWidth(),
trP.getDefHeight(), newCell)
EvalJython.displayCell(newCell)

This example creates
a new cell, places a
transistor in it, and
displays the cell.

Chapter 6: Advanced Editing

188 Using the Electric VLSI Design System, version 9.07

from com.sun.electric.database.geometry import Orientation
from com.sun.electric.database.hierarchy import Cell
from com.sun.electric.database.hierarchy import Library
from com.sun.electric.database.hierarchy import Export
from com.sun.electric.database.prototype import PortCharacteristic
from com.sun.electric.database.topology import ArcInst
from com.sun.electric.database.topology import NodeInst
from com.sun.electric.technology import Technology
from java.awt.geom import Point2D

create the new cell
newCell = Cell.makeInstance(Library.getCurrent(), "sample2{lay}")

tech = Technology.findTechnology("mocmos")

place a rotated transistor
trP = tech.findNodeProto("P−Transistor")
tP = NodeInst.makeInstance(trP, Point2D.Double(0, 20), trP.getDefWidth(),
trP.getDefHeight(), newCell, Orientation.R, "T1")

place a metal−Active contact
coP = tech.findNodeProto("Metal−1−P−Active−Con")
maP = NodeInst.makeInstance(coP, Point2D.Double(8, 20), coP.getDefWidth(),
coP.getDefHeight(), newCell)

wire the transistor to the contact
aP = tech.findArcProto("P−Active")
ArcInst.makeInstance(aP, tP.findPortInst("diff−bottom"),
maP.findPortInst("metal−1−p−act"))

export the contact
Export.newInstance(newCell, maP.findPortInst("metal−1−p−act"), "IN",
PortCharacteristic.IN)

This example goes a
bit further: it creates
a rotated transistor
and a contact, wires
them together, and
exports the contact.
The transistor is
named "T1."

Chapter 6: Advanced Editing

 Using the Electric VLSI Design System, version 9.07 189

6−12: Project Management

The project management system in Electric allows multiple users to work together on the design of a circuit.
This is accomplished by having a repository in a shared location, and local libraries in each user's disk area.
Users work on cells by checking them out of the repository, making changes, and then checking them back
in. The project management system ensures that only one user can access a cell at a time. In addition, it also
applies its understanding of the circuit hierarchy to inform users of potential inconsistencies that may arise.

The project management system uses the full power of cell naming to accomplish its task. It handles design
history by creating a new version of a cell each time it is checked out of the repository. The user's library
contains only the most recent version of each cell, taken from the repository. When a user updates their
library from the repository, newer versions are brought in and substituted for older versions. Unless the user
specifically asks for an older version, it is removed from their library.

Because the project management system uses versions to manage design progress, users are discouraged
from managing versions explicitly. Thus, the command New Version of Current Cell (in menu Cell) is not
allowed. Also, it is not appropriate for a user to use two different versions of a cell explicitly, because they
are considered to be part of a single cell's history.

All commands to the project management system can be found under the Project Management command
(in menu File).

Subcommands exist for checking cells in and out, updating local libraries from the repository, and more.
Many project management functions are also in context menus in the cell explorer.

Chapter 6: Advanced Editing

190 Using the Electric VLSI Design System, version 9.07

The first step needed to use the project management system is to choose a location for the repository. This
must be a shared location that each user can access (read and write).

Use the Project Management Preferences, in menu File / Preferences..., "General" section, "Project
Management" tab.

Each user must set the same location in their Project Management Preferences so that they can share the
repository. Also, be sure that your user name is correct, as this will be used when tagging file changes.

After the repository has been set, libraries can be entered into it. Use the Add Current Library To
Repository command to place your library in the repository. Use Add All Libraries To Repository to add
all libraries in the system. Note that a library that has been entered into the repository is also tagged with
information about the repository location, as well as the state of the cells (checked−in or checked−out).
Therefore, you should save your library after entering it into the repository.

Other users can obtain a copy of your library directly from the repository by using the Get Library From
Repository... command.

Checking Cells In and Out

When a cell is not checked out, you cannot make changes to it. Any change is immediately undone by the
project management system. This means that a change which affects unchecked−out cells, higher up the
hierarchy, will also be disallowed.

To check−out the current cell, use the Check Out This Cell command. If there are related cells
(hierarchically above or below this) that are already checked−out to other users, you will be given warnings
about potential conflicts that may arise.

To check the current cell back in, use the Check In This Cell... command. You will be prompted for a
documentation message about the change. No further changes will be allowed to the cell. Note that when
checking−in a cell, other cells above and below this in the hierarchy will also be checked−in. This is because
changes affect other cells in the hierarchy, and so consistent pieces of the hierarchy must be updated at the
same time.

Chapter 6: Advanced Editing

 Using the Electric VLSI Design System, version 9.07 191

The cell explorer shows
the state of cells that are
under project
management control (see
Section 4−5−2). Locks
are drawn over cells to
indicate their state
(checked−in,
checked−out to you, or
checked−out to others).
You can also access many
of the project
management commands
by selecting cells in the
explorer and using
context menu commands.

To update your library so that it contains the most recent version of every cell, use the Update command.
This will retrieve the newest version of every cell in every library that is being managed. You will be given a
list of cells that were replaced.

Advanced Commands

If, after a cell has been checked−out, you change your mind and do not wish to make changes, use the
Rollback and Release Check−Out command (or use the "Rollback and Release Check−Out" context menu
when clicking on a cell name in the cell explorer). This will destroy any changes made to the cell since it was
checked−out and revert the cell to its state when it was checked−in.

If, in the course of design, a new cell is created, it must be added to the repository so that others can share it.
Use the Add This Cell command to include the cell in the repository. Similarly, if a cell is to be deleted, use
the Remove This Cell command to delete it from the repository.

To examine the history of changes to a cell, use the Show History of This Cell... command (or use the
"Show History of This Cell..." context menu when clicking on a cell name in the cell explorer). Besides
showing the history of changes, you can use this dialog to retrieve an earlier version of the cell.

Chapter 6: Advanced Editing

192 Using the Electric VLSI Design System, version 9.07

#chap04-05-02

Under the Hood

The project management system makes use of version information on all cells to control cell changes. When
a cell is checked−out, a new version is made in your local library, and the old version is deleted. All instances
of the old version are switched to the new version. The old version remains in the repository. When the cell is
checked−in, that new version also goes into the repository. When updates are done, newer versions are
obtained from the repository, and appropriate substitutions are performed.

Chapter 6: Advanced Editing

 Using the Electric VLSI Design System, version 9.07 193

6−13: CVS Project Management

Electric implements an interface to the Concurrent Versioning System (CVS) program, a popular version
control system. This section assumes the user is familiar with how CVS works, and the various CVS
commands. Such information is readily available on the web.

To enable Electric to use
CVS, you must first
configure the CVS
Preferences (in File /
Preferences..., "General"
section, "CVS" tab). CVS
must be enabled, and the
repository location must be
specified. Electric does not
implement the CVS
protocol, it merely provides
an interface to interact with
an external CVS program,
so that program must be
specified in the preferences.

The Electric GUI allows the user to perform the common CVS commands via the menu File / CVS, or via
the popup−context menu on the libraries and cells listed in the explorer tree. The menu commands apply to
all libraries; the explorer−tree context menus apply only to the selected library.

With CVS enabled in Electric, the explorer tree uses colors to show the state of libraries or cells in CVS.
When using a JELIB or ELIB library format, the library name and all cells are the same color, because the
entire library is a single file. When using a DELIB format, the cells are different color, because each cell is
its own file. The colors and their associated state are shown below. Colors at the top of the table will be
displayed before colors at the bottom of the table, if two states are simultaneously valid.

Chapter 6: Advanced Editing

194 Using the Electric VLSI Design System, version 9.07

State Color

Conflicts with CVS version Red

Locally Modified Blue

Needs Update Magenta

Added/Removed Green

Unknown (not in CVS) Light gray

Up−to−date Black

These are the commands implemented by Electric:

Commit Commit a locally modified version to CVS.•
Update Retrieves latest version from CVS repository.•
Get Status Check the status with respect to the CVS version.•
List Editors List other users who have a locally modified version of the file.•
Show Log Display a dialog of all versions of the file in CVS (allows checkout of specific version).•
Rollback Revert to latest CVS version.•
Add to CVS Add the file to CVS (requires a commit to actually add it).•
Remove from CVS Remove the file from CVS (requires a commit to actually remove it).•
Undo CVS Add or Remove Undo a previous CVS add or remove before a commit is done.•
Rollforward Move local modified file to a temporary location, get a fresh copy from CVS and put
back the local copy. This is to prevent merge cases with conflicts and still preserve local
modifications.

•

Chapter 6: Advanced Editing

 Using the Electric VLSI Design System, version 9.07 195

6−14: Emergencies

Electric uses separate Java threads for all activities. Because of this, if the system encounters an error, it
aborts the thread but the main program continues to run.

If a thread crashes and leaves a Job running, then you will not be able to issue other commands, because their
Jobs will be queued behind the stuck one (see Section 4−5−2 for more viewing Jobs). Even the
Quit command is a job, and so it cannot run. To solve this problem, use the Force Quit (and
Save) command (in menu File).

If you suspect that the database is corrupt, use the subcommands of the Check Libraries command (in menu
File). The Check command examines the database but does not fix errors. The Repair command checks and
repairs the database (if it can).

Chapter 6: Advanced Editing

196 Using the Electric VLSI Design System, version 9.07

#chap04-05-02

Chapter 7: Technologies

7−1: Introduction to Technologies

7−1−1: Technologies

A technology is an environment in which design is done. Technologies can be layout specific, for example
MOSIS CMOS, or they can be abstract, for example Schematics and Artwork. There are multiple CMOS
variations to handle popular design rules such as MOSIS, submicron, etc.

Each technology consists of a set of primitive nodes and arcs. These, in turn, are constructed from one or
more layers. Each technology also includes information necessary to do design, such as design rules,
connectivity rules, simulation information, etc.

The primitive nodes in a technology come in three styles:

PINS are used to join arcs, so there is one pin for every arc in the technology. •
COMPONENTS are the basic nodes used in design: contacts, transistors, etc. •
PURE−LAYER NODES are used for geometric manipulation (see Section 6−10−1). There is one
pure−layer node for every layer in the technology.

•

The component menu in the side bar (on the left side of the editing window) shows arcs on the left (the menu
entries with red border), pin nodes in the center column (these appear as boxes with a cross inside), and
components on the right (the more complex layer combinations). See Section 4−5−1 for more on the
component menu.

These are the technologies that come with Electric. Some of these technologies are illustrated with sample
cells in the built−in "sample" library. To access this library, use the Load Sample Cells Library command
(in menu Help).

artwork is used for drawing graphics, for example when designing icons. See Section 7−6−1 for
more. The cell tech−Artwork in the sample library illustrates this technology.

•

bicmos a hybrid bipolar/CMOS technology, as specified by MOSIS using older N−Well SCE rules.•
bipolar a bipolar technology (self−aligned, single−poly). The cell tech−Bipolar{lay} in the
sample library illustrates this technology.

•

cmos a generic CMOS technology described in a old paper (Griswold, Thomas W., "Portable Design
Rules for Bulk CMOS," VLSI Design, III:5, 62−67, September/October 1982). It was never aligned
with an actual process and exists only for illustration.

•

efido a high−level digital−filter architecture technology. The cell tech−DigitalFilter in the
sample library illustrates this technology.

•

 Using the Electric VLSI Design System, version 9.07 197

#chap06-10-01
#chap04-05-01
#chap07-06-01

fpga a customizable technology that can describe field−programmable gate array architectures. The
basic technology does not have any FPGA capabilities: it must be customized with a special
architecture file (see Section 7−6−2 for more).

•

gem a temporal−logic technology that illustrates Electric's capability to do graph editing in
nonelectrical environments. Based on the paper: Lansky, A. L. and Owicki, S. S., "GEM: A Tool for
Concurrency Specification and Verification," Proceedings 2nd Annual ACM Symposium on
Principles of Distributed Computing, 198−212, August 1983. The cell tech−Gem in the sample
library illustrates this technology.

•

generic a technology used for special features such as inter−technology connections, routing
specifications, cell definitions, etc. This technology is never used for actual design, but its nodes and
arcs appear in many places. See Section 7−6−3 for more.

•

mocmos a CMOS technology that conforms to MOSIS design rules. This is the most used CMOS
technology in Electric, because it is kept current with MOSIS rules. See Section 7−4−2 for more. The
cell tech−MOSISCMOS{lay} in the sample library illustrates this technology.

•

mocmosold an older version of the "mocmos" technology, kept for compatibility with older designs.
The technology should not be used for any new designs.

•

mocmossub an older version of the "mocmos" technology that focuses on submicron facilities. The
technology should not be used for any new designs because the "mocmos" technology incorporates
these submicron features.

•

mocmos−cn a modified version of the "mocmos" technology that has carbon−nanotube transistors.•
nmos an old nMOS technology, based on the book: Mead, C. and Conway, L., Introduction to VLSI
Systems, Addison−Wesley, Reading, Massachusetts, 1980. The cell tech−nMOS{lay} in the
sample library illustrates this technology.

•

pcb a printed−circuit board technology with 8 layers. The cell tech−PCB{sch} in the sample
library illustrates this technology.

•

photonics a simple photonics technology with a few basic light−guide elements. The cells named
tech−photonics*{lay} in the sample library illustrate this technology.

•

rcmos a round CMOS technology, based on work at CalTech. The cell
tech−RoundCMOS{lay} in the sample library illustrates this technology.

•

schematic a schematic capture facility. See Section 7−5−1 for more. The cells
tech−SchematicsDigital{sch} and tech−SchematicsAnalog{sch} in the sample
library illustrates the digital and analog capabilities of this technology.

•

tft an organic thin−film technology. Thin film transistors are p−type depletion devices formed with
an aluminum gate, gold source/drain electrodes, and a pentacene active area. Two layers of metal are
available for routing signals, Metal−1 (the aluminum gate metal) and Metal−2 (the source/drain
metal). A capacitor is also available in the process and is formed between the gate electrode and a
source/drain electrode. The cell tech−TFTInverter{lay} in the sample library illustrates this
technology.

•

Chapter 7: Technologies

198 Using the Electric VLSI Design System, version 9.07

#chap07-06-02
#chap07-06-03
#chap07-04-02
#chap07-05-01

7−1−2: Controlling Technologies

Electric has the concept of a current technology which is shown in the status bar. This technology affects
many things, including the selection of nodes and arcs in the component menu. There are a number of ways
to affect the current technology, both manual and automatic.

You can change the current technology by selecting it from the popup at the top of the side bar (either the
"Components" or "Layers" tab). Electric automatically switches the current technology to match the cell
being edited. If there are multiple cells being edited from different technologies, this switching can become
annoying. To disable automatic technology switching, use the Nodes Preferences (in menu File /
Preferences..., "General" section, "Nodes" tab), and uncheck "Switch technology to match current cell".

To see a list of primitive nodes and arcs in the current technology, use the Describe this
Technology command (in menu Edit / Technology Specific). To see a detailed description of the current
technology, use the Document Current Technology command.

Some technologies have preferences that further customize them. The Technology Preferences command (in
menu File / Preferences..., "Technology" section, "Technology" tab) lets you control many User and Project
preferences. The Project Preferences are on the left, and the bottom part of the Project Preferences is specific
to the MOSIS CMOS technology. More information about this can be found in Section 7−4−2.

Chapter 7: Technologies

 Using the Electric VLSI Design System, version 9.07 199

#chap07-04-02

The Defaults section at the top of the Project Preferences section has these controls:

"Startup technology" controls the technology that is used when Electric first begins. It is also used
when reading old libraries that are missing some technology information.

•

"Layout technology to use for Schematics" sets the technology to use for real geometry (an
integrated circuit technology, not a schematics or artwork technology). The default layout technology
is used to give further information about schematics components (see, for example, Section 9−4−3).

•

"PSubstrate process in Layout Technology" declares that the layout technologies use P Substrate
(NWell), and therefore the PWell spacing and minimum width rules should be ignored by the
design−rule checker. Since Electric displays both wells, users might be concerned with filling in
notches in the PWell, but in these processes it is not necessary.

•

The User Preferences section is discussed elsewhere For information about rotating transistors in the menus,
see Section 7−4−2. For information about Schematic primitive names, see Section 7−5−1 and Section
3−11−2.

Chapter 7: Technologies

200 Using the Electric VLSI Design System, version 9.07

#chap09-04-03
#chap07-04-02
#chap07-05-01
#chap03-11-02
#chap03-11-02

7−2: Scaling and Units

7−2−1: Scale

Electric represents all distances in dimensionless units. A transistor that is 2 x 3 in size is actually stored in
memory as 2 x 3. To convert these units to real distances, each technology has a scale, measured in
nanometers (billionths of a meter). The scale of a technology is shown in the status area after the technology's
name.

For example, if the scale for the MOSIS CMOS ("mocmos") technology is 200 nanometers, then a 2 x 3
transistor is actually 400 x 600 nanometers (or 0.4 x 0.6 microns).

To set the scale, use
the Scale
Preferences (in menu
File / Preferences...,
"Technology section,
"Scale" tab).

Scale only applies to
integrated−circuit
layout technologies.
There is no scale for
Schematics,
Artwork, and other
nonlayout
technologies.

Chapter 7: Technologies

 Using the Electric VLSI Design System, version 9.07 201

7−2−2: Units

By default, distances are
expressed in dimensionless
"grid units", and the true unit
size is shown in the status bar.
The Units Preferences (in menu
File / Preferences...,
"Technology" section, "Units"
tab) allows you to request that
dimensions be shown in real
units, such as nanometers.

You can also control the precision of displayed numbers by setting the number of digits to the right of the
decimal point. This will be used on the display and in netlists.

Chapter 7: Technologies

202 Using the Electric VLSI Design System, version 9.07

7−3: I/O Control

7−3−1: Introduction to I/O Control

Electric is able to read and write circuits in a number of different formats. This is done with the Import and
the Export commands (in menu File). See Section 3−9−2 for more on Import; see Section 3−9−3 for more
on Export.

To properly control translation, use the many Preferences dialogs for the different file types, (in menu File /
Preferences..., "I/O" section).

Unfortunately, many of these formats are pure geometry with no information about the circuit connections.
When read, they appear as pure−layer nodes. This means that transistors, contacts, and other multi−layer
nodes are not constructed properly. Although the cell appears visually correct, and can be used to export the
same type of file, it cannot be analyzed at a circuit level. The node extractor can be used to convert these
pure−layer nodes to true Electric components (see Section 9−10−2).

The next few sections describe control of different I/O formats.

7−3−2: CIF Control

CIF (Caltech Intermediate Format) is used as an interchange between design systems and fabrication
facilities. Control of CIF I/O is done with the CIF Preferences (in menu File / Preferences..., "I/O" section,
"CIF" tab).

Chapter 7: Technologies

 Using the Electric VLSI Design System, version 9.07 203

#chap03-09-02
#chap03-09-03
#chap09-10-02

Project Preferences

The CIF Project Preferences let you can assign CIF names to each layer in the technology. It also offers these
controls:

"Output Mimics Display" lets you use CIF output for printing. By default, CIF output writes the
entire hierarchy below the current cell. If you check this box, cell instances that are unexpanded will
be represented as an outline in the CIF file. This is useful when the CIF output is intended for
hardcopy display, and only the screen content is desired.

•

"Output Merges Boxes" controls the aggregation of geometry when writing CIF. This is an issue
because of the duplication and overlap that occurs wherever arcs and nodes meet. The default action
is to write each node and arc individually. This makes the file larger because of redundant box
information, however it is faster to generate and uses simpler constructs. If you check this box, all
connecting regions on the same layer are merged into one complex polygon. This requires more
processing, produces a smaller file, and generates more complex constructs.

•

"Output Instantiates Top Level" controls whether or not to instantiate the circuit in the CIF. By
default, the currently displayed cell becomes the top level of the CIF file, and is instantiated at the
end of the file. This causes the CIF file to display the current cell. If, however, the CIF file is to be
used as a library, with no current cell, then uncheck this box, and there will be no invocation of the
current cell.

•

"Output scale" controls the scaling factor used in cell headers when writing CIF. Be advised that the
CIF format has a minimum resolution of 10 nanometers. Since nothing smaller can be accurately
represented in the file, the CIF output of smaller geometries will generate errors. The workaround is
to set a large scale here, which will cause all numbers in the CIF file to be scaled by that amount, and
then divided by that amount in the cell header. The resulting CIF will be the same size, but it will be
able to represent smaller values.

•

User Preferences

There is just one User Preference: "Input Squares Wires." When reading CIF files, the CIF "wire" statements
are assumed to have rounded geometry at the ends and corners. If you check this box, CIF input assumes that
wire ends are square and extend by half of their width.

Chapter 7: Technologies

204 Using the Electric VLSI Design System, version 9.07

7−3−3: GDS Control

GDS II (also called "Stream"
format) is used as an interchange
between design systems and
fabrication facilities. For
information on reading and writing
GDS, see Section 3−9−2 and
Section 3−9−3, respectively. In
GDS files, there are no names for
each layer, just a pair of numbers
(the layer number and type). It is
important that Electric know how
these values correspond with layers
so that it can properly read and
write GDS files. You can import
and export the correspondences by
using the GDS Map
File... command (in the File /
Import and File / Import menus).

If a GDS file makes reference to cells that are not defined in that file, Electric will look in any existing
libraries to see if those cells can be found.

You can also use the GDS Preferences (in menu File / Preferences..., "I/O section, "GDS" tab) to edit the
GDS numbers and control other aspects of GDS input and output.

Chapter 7: Technologies

 Using the Electric VLSI Design System, version 9.07 205

#chap03-09-02
#chap03-09-03

Project Preferences

The left side of the dialog shows the Project Preferences which control the mapping of GDS layer numbers to
Electric layers. The list on the left shows all of the Electric layers in the current technology. By clicking on a
layer name, its GDS numbers are shown in the top−right and can be edited. GDS numbers come in a few
different variations:

Normal for regular geometry.•
Pin for exports.•
Text for export names and special GDS text. You can use the Add GDS Text command (in menu
Edit / Text

•

High V for high voltage layers. You can use the Add HV GDS Text command (in menu Edit / Text•
To ignore a layer, clear the layer field (it is not sufficient to set it to zero...it must be blank).

This dialog element applies to the import of GDS:

"Scale by". This scales the GDS by the given factor when read from disk.•

Chapter 7: Technologies

206 Using the Electric VLSI Design System, version 9.07

These dialog elements apply to the export of GDS:

"Output merges Boxes". This controls the merging of adjoining geometry. It is an issue because of
the duplication and overlap that occurs wherever arcs and nodes meet. The default action is to write
each node and arc individually. This makes the file larger because of redundant box information,
however it is faster to generate and uses simpler constructs. If you check this item, all connecting
regions on the same layer are merged into one complex polygon. This requires more processing,
produces a smaller file, and generates more complex constructs.

•

"Output writes export Pins". This controls whether pins are written to the GDS file for each export. If
checked, and there is a valid pin layer, then it is written.

•

"Output all upper case". This controls whether the GDS file uses all upper case. The default is to mix
upper and lower case, but some systems insist on upper−case GDS.

•

"Output converts brackets in exports". This controls whether the square brackets used in array
specifications should be converted (to underscores). Some GDS readers cannot handle the square
bracket characters.

•

"Output collapses VDD/GND pin names". Requests that all names with the form "vdd_NNN" or
"gnd_NNN" (where "NNN" is digits) be merged into a single power or ground signal called "vdd" or
"gnd".

•

"Output writes export characteristics". Requests all GDS "pins" (Electric exports) contain
characteristics (input, output, etc.) This may be incompatible with some versions of GDS so it can be
disabled.

•

"Max chars in cell name". This limits the number of characters in a cell name. Names longer than
this are truncated, and adjusted to ensure uniqueness.

•

"Precision" and "Units/meter" define the scaling information written to a GDS file. The Precision is
the number of units available and the Units/meter defines the size of a unit. The default Units/meter
is a billion, meaning that the unit size is 1 nanometer. Note that some small feature−size technologies
may require a larger Units/meter field. If GDS Export encounters precision errors, you will be asked
to increase this value.

•

At the bottom is a setting for both export and import:

"Default text layer". This is the layer number to use for text. When exports are being written, and
there is a text layer number associated with the appropriate Electric layer, then that layer number is
used instead of this default number.

•

User Preferences

These dialog elements are available on the right side (the GDS User Preferences) for import control:

"Merge boxes (slow)". This requests GDS input to combine overlapping boxes into complex
polygons. It takes more time, but produces a more compact database.

•

"Expand cells". This controls whether cell instances are expanded or not in the Electric circuit. By
default, cell instances are not expanded (they appear as a simple box). If you check this item, cells
are expanded so that their contents are displayed. Expansion of cells can always be changed after
reading GDS by using the subcommands of the Expand Cell Instances and Unexpand Cell

•

Chapter 7: Technologies

 Using the Electric VLSI Design System, version 9.07 207

Instances commands of the Cells menu.
"Simplify contact vias". This requests GDS input to find combinations of metal and via cuts and
replace them with Electric contacts. It takes time, and may simplify some GDS.

•

"Instantiate arrays". This controls whether or not arrays in the GDS file are instantiated. By default,
arrays are instantiated fully, but this can consume excessive amounts of memory if there are large
arrays. If you uncheck this item, only the upper−left and lower−right instance are actually placed.

•

"Array simplification". This controls the simplification of special "array reference" objects in GDS.
When an array of cell instances is found, and each cell instance contains a single piece of geometry,
Electric can simplify the array specification so that a single pure−layer node is created instead of an
array of instances. This pure−layer node has outline information that covers each of the arrayed
objects (see Section 6−10−1 for more on outlines). This preference can be set to "None" (no
simplification of array references is used), "Merge individual arrays" in which the above
simplification is performed, and "Merge all arrays" in which multiple array references are combined
so that a single pure−layer node is place for each layer in the cell, regardless of the number of array
references that are used. This last choice can produce highly−complex pure−layer nodes, but is
fastest and uses the least amount of memory.

•

"Unknown layers". This controls how unknown layers in the GDS file are treated. The default is
"Convert to DRC Exclusion layer" which creates an orange DRC−Node wherever an unknown layers
appears. Each DRC−Node is tagged with the unknown layer number. If you set this to "Ignore", the
unknown layers are simply ignored. A final choice is "Convert to random layer" which picks a
different layer in the technology for each unknown GDS layer number. This allows the distinction
between layers to be seen, even if the correct layer associations are not known.

•

"Cadence compatibility". This forces a GDS import to do things that assume the GDS has come from
a Cadence system. Export locations are expanded to cover the geometry on which they reside,
because Cadence allows connections to be elsewhere on the layer.. Also, Cadence style bus
delimeters (<>) are converted to Electric style ([]).

•

"Dump readable data while reading" is a way to debug GDS files. When this is checked, the GDS
data is written to a text file during import, allowing you to see what is in the file.

•

These dialog elements are available on the right side (the GDS User Preferences) for export control:

"Export all cells in Library". Normally, only those cells that are part of the current hierarchy are
written to the GDS. The current hierarchy is the current cell and all of its sub−cells. When this is
checked, every cell in the library is written. This is useful when writing out standard cell libraries.

•

"Flat design". This fully−instantiates the circuit (flattens it) before writing. Output files may be much
larger because there is no hierarchy.

•

"Use NCC annotations for exports". The network consistency checker (NCC) allows special circuit
annotations to join two networks. For example, two separate power networks may be joined higher in
the circuit hierarchy, and the NCC needs to know this at the current level of design. This checkbox
requests that the NCC annotations be used when exporting GDS. It enables external circuit analysis
programs (such as Assura) to properly understand the circuit connectivity. Specifically, when this is
checked, all of a layout cell's exports which are linked by the NCC
exportsConnectedByParent annotation will be given the same GDS pin text (see Section 9−7−4 for
more on NCC annotations).

•

Chapter 7: Technologies

208 Using the Electric VLSI Design System, version 9.07

#chap06-10-01
#chap09-07-04

These dialog elements are available on the right side (the GDS User Preferences) for export and import
control:

"Use visibility as filter" uses the current layer visibility as a filter for what gets imported or exported.
For more on layer visibility, see Section 4−5−3.

•

"Include text". Text annotations in the GDS file can often clutter the display, so they are ignored
during input. If you check this item, annotation text will be read and displayed.

•

7−3−4: EDIF Control

EDIF (Electronic Design Interchange Format) is used to exchange design information between different
CAD systems. Although EDIF is currently at version "4 0 0", Electric reads and writes version "2 0 0".

For more
information on
reading and
writing EDIF,
see Section
3−9−2 and
Section 3−9−3,
respectively.
EDIF options
are controlled
with the EDIF
Preferences (in
menu File /
Preferences...,
"I/O" section,
"EDIF" tab).

These controls are supported by the dialog:

Use Schematic View when writing controls whether EDIF output writes schematic or netlist views
(the default is netlist).

•

Scale by lets you set a scale factor for EDIF input.•
Stitch cells when reading invokes the Auto Stitching router after EDIF import to make explicit
connections (see Section 9−6−2 for more)

•

Cadence compatibility affects both EDIF input and output. When checked, output of
multidimensional and symbolic busses is converted to simpler, all−numeric busses, and input of

•

Chapter 7: Technologies

 Using the Electric VLSI Design System, version 9.07 209

#chap04-05-03
#chap03-09-02
#chap03-09-02
#chap03-09-03
#chap09-06-02

properties starting with "def" are added to cells as parameters.
Show arc names and Show node names controls whether EDIF input makes arc and node names
visible.

•

Accepted Parameters lets you list those EDIF parameters that will be read (all others are ignored).•

The bottom section of the panel lets you specify a configuration file that will control EDIF I/O. This file has
conversions between coordinates and names inside of Electric and the EDIF file. The file has these lines of
text that control different aspects of conversion:

Primitives A line starting with "P" controls how primitives are converted to EDIF. The line has this
format:
 P ElTech ElPrim ElFunc ElRot ElPortOff EdTech EdPrim EdFunc EdPortOff

Where:
ElTech is the Electric technology name (e.g. "schematic").♦
ElPrim is the Electric primitive name (e.g. "Transistor").♦
ElFunc is the Electric function (e.g. "CONPOWER").♦
ElRot is the Electric rotation (e.g. "90").♦
ElPortOff is the Electric port offsets, enclosed in braces (e.g. "{ g(−1,0) }"). The offsets
are the values required to move the port to the origin, so if a port is at (2, −5), the offset
should be (−2, 5). Each port on the primitive must be listed, and an offset given. To ignore a
port, use "NA" instead of "port(x,y)". You can also specify an ignored port as "NA(x,y)" if
you want to affect how an attached wire's endpoint is modified. "NA" by itself is the same as
"NA(0,0)". If the port's name is "NA", use "\NA(x,y)" to specify the name as NA, and not be
ignored.

♦

EdTech is the EDIF technology name (e.g. "tsmc18").♦
EdPrim is the EDIF primitive name (e.g. "pmos2v").♦
EdFunc is the EDIF function (e.g. "symbol").♦
EdPortOff is the EDIF port offsets, enclosed in braces (e.g. "{ G(0,0) }"). Each port on
the primitive must be listed, and an offset given. The offsets are the values required to move
the port to the origin, so if a port is at (2, −5), the offset should be (−2, 5).

♦

For example:
P schematic Ground CONGROUND 0 { gnd(0,2) } basic gnd symbol { gnd!(0,0) }

•

Cells A line starting with "C" controls how cells are converted to EDIF. The line has this format:
 C ElLib ElCell ElView ElRot ElPortOff EdTech EdPrim EdFunc EdPortOff

Where:
ElLib is the Electric library name (e.g. "MyCells").♦
ElCell is the cell name in that library (e.g. "Inverter").♦
ElView is the view name of the cell (e.g. "ic" for Icon).♦

All other fields are the same as in the "Primitive" line.

•

Exports A line starting with "E" controls how exports are converted to EDIF. The line has this
format:
 E ElTech ElPrim ElFunc ElRot ElPortOff EdTech EdPrim EdFunc EdPortOff

Where:
ElTech is the Electric technology name (e.g. "schematic").♦
ElPrim is the Electric primitive name (e.g. "Transistor").♦

•

Chapter 7: Technologies

210 Using the Electric VLSI Design System, version 9.07

ElFunc is the Electric function (e.g. "CONNECT").♦
ElRot is the Electric rotation (e.g. "90").♦
ElPortOff is the Electric port offsets, enclosed in braces (e.g. "{ g(−1,0) }"). The offsets
are the values required to move the export to the origin, so if an export is at (2, −5), the offset
should be (−2, 5). Each port on the primitive must be listed, and an offset given.

♦

EdTech is the EDIF technology name (e.g. "tsmc18").♦
EdPrim is the EDIF primitive name (e.g. "pmos2v").♦
EdFunc is the EDIF function (e.g. "symbol").♦
EdPortOff is the EDIF port offsets, enclosed in braces (e.g. "{ G(0,0) }"). The offsets are
the values required to move the export to the origin, so if an export is at (2, −5), the offset
should be (−2, 5). Each port on the primitive must be listed, and an offset given.

♦

For example:
E schematic Off−Page CONNECT 0 input { a(−2,0), y(2,0) } basic ipin symbol {

NA, NA }

Variables A line starting with "V" controls how variables are converted to EDIF. The line has this
format:
 V ElVarName EdVarName Scale [Append]

Where:
ElVarName is the Electric variable name (e.g. "ATTR_M").♦
EdVarName is the EDIF primitive name (e.g. "m").♦
Scale is a scale from Electric to EDIF (e.g. "1").♦
Append is an optional string to append to EDIF (e.g. "u").♦

For example:
V ATTR_length l 0.9 u

•

FigureGroups A line starting with "F" controls how figure groups are converted to EDIF. The line
has this format:
 F ElName EdName

Where:
ElName is the Electric technology name (e.g. "ARTWORK").♦
EdName is the EDIF figure group name (e.g. "DEVICE").♦

For example:
F ARTWORK DEVICE

•

Globals A line starting with "G" controls how global names are converted to EDIF. The line has this
format:
 G ElName EdName

Where:
ElName is the Electric global name (e.g. "GND").♦
EdName is the EDIF global name (e.g. "gnd!").♦

For example:
G GND gnd!

•

Chapter 7: Technologies

 Using the Electric VLSI Design System, version 9.07 211

7−3−5: LEF/DEF Control

LEF (Library Exchange Format) and DEF (Design Exchange Format) are recent interchange formats for
CAD systems. For more information on reading and writing LEF and DEF, see Section 3−9−2 and Section
3−9−3, respectively.

LEF options are controlled
with the LEF Preferences
(in menu File /
Preferences..., "I/O"
section, "LEF" tab). You
can choose whether or not
to ignore ungenerated pins.
Ungenerated pins are those
that have no location
information, and are not
fully part of the design. If
they are not ignored (the
box is unchecked) they are
placed at the origin. You
can choose what to do with
unrecognized layers (either
ignore them or use the
DRC−exclusion layer). You
can also ask Electric to
ignore any technology
information when reading
the LEF file.

Chapter 7: Technologies

212 Using the Electric VLSI Design System, version 9.07

#chap03-09-02
#chap03-09-03
#chap03-09-03

DEF options are
controlled with the
DEF Preferences (in
menu File /
Preferences..., "I/O"
section, "DEF" tab).
This dialog controls
whether DEF reads
physical and/or logical
information. If a type
of interconnect is not
checked, the DEF
input reader ignores
those arcs.

DEF interconnect is specified in the NETS and SPECIALNETS sections. Typically, the SPECIALNETS are
pre−routed geometry (physical) and the NETS are routed geometry (physical) or unrouted information
(logical). Check "Ignore physical interconnect in NETS section" to skip any routed arcs (physical) found in
the NETS section. Check "Ignore logical interconnect in SPECIALNETS section" to skip any unrouted arcs
(logical) found in the SPECIALNETS section.

Physical NETS are read as arcs on different layers that connect the circuitry. This can take a lot of time to
place. If it takes too long, and if the connectivity information is not needed, check "Use pure−layer nodes
instead of arcs" to use pure−layer nodes instead of arcs.

When unknown cells are referenced by the DEF file, an error is issued. If "Make dummy cells for unknown
cells" is checked, the system resolves the problem by generating the appropriate cell.

The "Ignore ungenerated pins (with no location)" option determines how to handle ungenerated pins.
Ungenerated pins are those that have no location information, and are not fully part of the design. If they are
not ignored (the box is unchecked) they are placed at the origin.

The "Ignore vias block" option causes vias to be dropped from import.

The "Place and connect all pin geometry" option connects like−named exports (called "pins" by Cadence)
with unrouted arcs. Because Cadence systems give electrically−connected pins the same name, those
like−named pins should all be connected. This option connects them in such a way that routers can wire them
together.

Chapter 7: Technologies

 Using the Electric VLSI Design System, version 9.07 213

Finally, you can control what happens to unrecognized layers (either ignore them or convert them to the
DRC−exclusion layer).

7−3−6: CDL Control

CDL (Circuit Description
Language) is almost identical
to Spice format, and is used as
a netlist interchange method.
CDL options are controlled
with the CDL Preferences (in
menu File / Preferences...,
"I/O" section, "CDL" tab).
Additional CDL options that
are common to Spice options
can be found in the Spice/CDL
Preferences (in menu File /
Preferences..., "Tools"
section, "Spice/CDL" tab).

This dialog controls the library
name and path information
that is written when generating
a netlist. You can specify an
Include file which will be
inserted at the top of the
netlist. Also, you can choose
to convert square−bracket
characters (if your CDL cannot
handle indexed signal names).

Chapter 7: Technologies

214 Using the Electric VLSI Design System, version 9.07

7−3−7: DXF Control

DXF (Drawing eXchange Format) is a solid modeling format used by AutoCAD systems. For more
information on reading and writing DXF, see Section 3−9−2 and Section 3−9−3, respectively.

DXF I/O is controlled with the DXF Preferences (in menu File / Preferences..., "I/O section, "DXF" tab).

The Project Preferences part of the dialog controls the list of acceptable DXF layers.

These layers
can be typed
into the edit
field, separated
by commas. If
a layer name in
the DXF file is
not found in
the list of
acceptable
layers, it will
be ignored.

To control scaling, you can change the meaning of units in the DXF file. The default unit is "Millimeters",
which means that a value of 5 in the DXF file becomes 5 millimeters in Electric.

The User Preferences part of the dialog controls DXF input. By default, Electric flattens DXF input,
removing levels of hierarchy and creating a single cell with the DXF artwork. By unchecking the "Input
flattens hierarchy", Electric will preserve the structure of the DXF file.

If you uncheck "Input reads all layers", then unknown layers are not read into Electric.

Chapter 7: Technologies

 Using the Electric VLSI Design System, version 9.07 215

http://www.autodesk.com
#chap03-09-02
#chap03-09-03

7−3−8: SUE Control

SUE (Schematic User Environment) is the database format of the SUE schematic editor, from Micro
Magic (www.micromagic.com). For more information on reading SUE, see Section 3−9−2.

SUE options are controlled
with the SUE Preferences (in
menu File / Preferences...,
"I/O" section, "SUE" tab). This
dialog has two controls:

"Make 4−port
transistors" requests
that transistors be
4−port (with a
substrate connection).
The default is 3−port.

•

"Convert Sue
expressions to
Electric" requests that
SUE expressions be
analyzed for parameter
references and
converted to Electric
parameter form (with
an "@" in front of the
parameter name).

•

Chapter 7: Technologies

216 Using the Electric VLSI Design System, version 9.07

http://www.micromagic.com
http://www.micromagic.com
#chap03-09-02

7−3−9: Gerber Control

Gerber is a printed−circuit board layout format, originally from Gerber Scientific. For more information on
reading Gerber, see Section 3−9−2.

Gerber options are controlled
with the Gerber Preferences
(in menu File / Preferences...,
"I/O" section, "Gerber" tab).
This dialog has two controls:

"Fill polygons"
requests that polygons
be filled−in instead of
outlined.

•

"Read all .GBR files
in the directory"
requests that the
import function scan
for other files ending
in ".GBR" and read all
of them.

•

Chapter 7: Technologies

 Using the Electric VLSI Design System, version 9.07 217

#chap03-09-02

7−3−10: SVG Control

SVG (Scalable Vector Graphics) is a format for web browsers. For more information on writing SVG, see
Section 3−9−3.

SVG options are controlled with the
SVG Preferences (in menu File /
Preferences..., "I/O" section, "SVG"
tab). This dialog has two controls:

"Scale Factor" specifies how
Electric units are scaled into
SVG units. The default (1)
makes a SVG file that uses
exact Electric coordinates.

•

"Margin" is the number of
SVG units that are added to
the top and left.

•

Chapter 7: Technologies

218 Using the Electric VLSI Design System, version 9.07

#chap03-09-03

7−4: The MOS Technologies

7−4−1: Introduction to MOS Technologies

There are both nMOS and CMOS technologies available in Electric, with many different design rules. Use
the popup at the top of the component menu to select a different MOS technology.

There is one nMOS technology: "nmos" (the specifications used in the Mead and Conway textbook).

There are a few CMOS technologies available. The most basic is "cmos", which uses an idealized set of
design−rules from a paper by Griswold. The most popular CMOS technology is "mocmos" (MOSIS design
rules) which has two layers of polysilicon and up to 6 layers of metal with standard, submicron, or deep rules
(this is described more fully in the next Section). There is even "rcmos", which uses round geometry!

Each MOS technology has two transistors
(enhancement and depletion in nMOS
technologies, n and p in CMOS). These nodes
can have serpentine paths by highlighting
them and using "Outline Edit" mode (see
Section 6−10−1).

The contact nodes in the MOS
technologies automatically
increase the number of cut layers
when the contact grows in size.
For very large contacts, however,
the display of these cuts can waste
time. Therefore, when very large
contacts are displayed at small
scale, the interior cuts may not be
drawn (as shown on the right).

Be assured, however, that the cuts are actually there, and will appear in all appropriate output.

Chapter 7: Technologies

 Using the Electric VLSI Design System, version 9.07 219

#chap07-04-02
#chap06-10-01

Contact nodes also have the
ability to place the cuts
according to different rules.
The default (shown on the
left) is to pack them as
closely as possible in the
center of the contact.

Using the Object Properties... command (in menu Edit / Properties) you can change the "Cut Placement"
to "At node edges" (the middle example) or "In node corner" (the rightmost example).

Although individual MOS nodes and arcs have the proper amount of implant around them, a collection of
such objects may result in an irregular implant boundary. To clean this up, you can place pure−layer nodes of
implant that neatly cover the implant area. Also, you can do this automatically with the Coverage Implants
Generator command (in menu Tools / Generation, see Section 9−8−2).

7−4−2: The MOSIS CMOS Technology

The MOSIS CMOS technology describes
a scalable CMOS process that is fabricated
by the MOSIS project of the University of
Southern California. To obtain this
technology, use the popup menu at the top
of the component tab (in the side bar) and
select "mocmos".

This technology can have from 2 to 6
layers of metal (4 are shown here, 6 is the
default). It has 1 polysilicon layer but can
be changed to use 2. The technology can
be set to use either standard rules
(SCMOS), submicron rules, or deep rules.
You can choose whether to allow stacked
vias and whether or not to use alternate
contact rules. Finally, you can set the
technology into "Analog" mode, which
provides an NPN transistor, a Polysilicon
Capacitor, and many resistors. This is
done with the Technology Preferences (in
menu File / Preferences..., "Technology"
tab).

The default orientation of transistors (both in the menu, and when first placed) can be rotated by checking
"Rotate transistors in menu" in the Technology Preferences.

Chapter 7: Technologies

220 Using the Electric VLSI Design System, version 9.07

#chap09-08-02
http://www.mosis.org

Users of Electric version 6.02 or earlier will have a different MOSIS CMOS technology called
"mocmossub". This technology attempted to match the submicron rule set, but did not do so as accurately as
the current "mocmos" technology. If you have designs in that technology, they will be automatically
converted to the new "mocmos" when read in.

Scalable Transistors

The MOSIS CMOS technology has two transistor nodes that can take a text attribute to control their width.
These transistors also have contacts built into them. Without the text attribute, the maximum width is
displayed. However, by adding a "width" attribute, they shrink to that size. Note that the ports never change
location, thus allowing them to scale without triggering constraints. The scaling feature of these transistors is
not very useful because it is not possible to parameterize layout cells.

Chapter 7: Technologies

 Using the Electric VLSI Design System, version 9.07 221

The scalable transistor on
the left is 3 wide, and the
other two are 10 wide.
However, the scalable
transistor on the right has
the "width" set to 8, so it has
shrunk.

If you get Object
Properties... on a scalable
transistor, there are extra
controls that let you choose
to have fewer contacts (1 or
even none), and you can
tighten the contact spacing.

Chapter 7: Technologies

222 Using the Electric VLSI Design System, version 9.07

7−5: Schematics

7−5−1: Introduction to Schematics

The Schematic technology
allows you to design using
digital and analog schematic
components. To obtain this
technology, use the popup menu
at the top of the component
menu and select "schematics".

There are two arcs in the
Schematic technology: the wire
(blue) and the bus (green). These
arcs can be drawn at 45 degree
angles. One typically names
busses with array names (for
example "insig[0:7]"), and then
names wires with scalar names
(for example "insig[1]"). See
Section 6−9−3 for more on bus
naming.

To make a physical connection
from a wire to a bus, the bus pin
can connect to either, so it acts as
a tap. In addition, the Wire Con
node connects wires to busses, or
connects busses of different
width, replicating the narrower
side to make it as wide as the
wider side. Use the Rip
Bus command (in menu Edit /
Arc) to automatically add taps to
a bus.

There are four transistor entries in the menu. The two on the right are the n and p transistors. The two images
on the left are actually popup menus that let you select any style of transistor. The difference between the two
on the left is that the top one is for 3−port transistors, and the bottom one is for 4−port transistors. The
schematics technology understands these transistor types:

Chapter 7: Technologies

 Using the Electric VLSI Design System, version 9.07 223

#chap06-09-03

nMOS / pMOS n− and p−channel MOS transistors.•
nMOS−D / pMOS−D depletion MOS transistors.•
nMOS−NT / pMOS−NT native MOS transistors.•
nMOS−FG / pMOS−FG floating−gate MOS transistors.•
nMOS−CN / pMOS−CN carbon nanotube MOS transistors.•
nMOS−VTL / pMOS−VTL low−threshold MOS transistors.•
nMOS−VTH / pMOS−VTH high−threshold MOS transistors.•
nMOS−HV1 / pMOS−HV1 high−voltage (1: lowest voltage) MOS transistors.•
nMOS−HV2 / pMOS−HV2 high−voltage (2: medium voltage) MOS transistors.•
nMOS−HV3 / pMOS−HV3 high−voltage (3: highest voltage) MOS transistors.•
nMOS−NT−HV1 / pMOS−NT−HV1 native, high−voltage (1: lowest voltage) MOS transistors.•
nMOS−NT−HV2 / pMOS−NT−HV2 native, high−voltage (2: medium voltage) MOS transistors.•
nMOS−NT−HV3 / pMOS−NT−HV3 native, high−voltage (3: highest voltage) MOS transistors.•
PNP / PNP bipolar transistors.•
DMES / EMES MESFET transistors.•
pJFET / nJFET JFET transistors.•

Other primitives that can appear in different forms:

Capacitors can be normal or electrolytic.•
Diodes can be normal or zener.•
Resistors can be normal, n−Poly, p−Poly, n−Well, or p−Well.•
Off−page connectors appear differently depending on their export's characteristics (input, output, etc.)•

The "Spice" entry presents a popup menu of Spice parts. More information about the use of these parts can be
found in the Section 9−4−3.

The "Cell" entry presents a popup menu of all cell instances.

The "Global" entry provides two nodes: a "Global Signal" node defines a signal name that spans levels of
hierarchy, and a "Global Partition" node allows globals to be treated locally. See Section 6−9−5 for more on
global networks.

Some commands that analyze a schematic circuit need to know which layout technology will be used to
fabricate the design. For example, when generating a Spice deck from a schematic, it is necessary to know
the sizes and parasitics that are associated with the actual circuit. To set the layout technology to use for
schematic circuits, use the Technology Preferences (in menu File / Preferences..., "Technology" section,
"Technology" tab), and set the "Use scale values from this technology" popup.

Chapter 7: Technologies

224 Using the Electric VLSI Design System, version 9.07

#chap09-04-03
#chap06-09-05

Digital Schematics

Digital schematics are built with the And, Or, Xor, Buffer, Multiplexor, and Flip−Flop nodes that appear in
the component menu. By attaching arcs to these components and negating them (with the Toggle Port
Negation command, in menu Edit / Technology Specific), these turn into NAND, NOR, Inverter, and many
other specialized components (see Section 5−4−2).

The And, Or, Xor, and Multiplexor nodes can accept any number of input connections on the left, so they
require some care in wiring (see Section 1−11−5). The left side has one large input port that allows an
arbitrary number of connections. Initially, wires may attach at only three input locations, spaced evenly along
the left side. However, when all three locations are connected, the node automatically expands, adding
additional space along the side for new arcs.

To properly wire inputs to an And, Or, Xor, or Multiplexor node, cursor placement is very important, for it
determines which of the locations to use on the left side. If an arc gets connected in the wrong location, try
connecting more arcs until one appears in the right place, and then delete the unwanted ones.

The Switch node can also take an arbitrary number of poles on its left side. Simply stretch it along the line of
the poles and their number will grow.

Analog Schematics

The analog nodes (Resistor, Inductor, Capacitor, and Diode) have values on them which can be selected and
edited. Double−clicking on them brings up a special dialog for editing their value.

The Resistor can be treated as a connecting or nonconnecting node. By default, it does not connect the
networks on its two ends, and this is the correct way to treat it when doing low−level simulation such as
Spice. However, for higher−level simulations (such as Verilog) the resistor should be ignored and treated as
if it connects its two networks. To make this happen, use the Networks Preferences (in menu File /
Preferences..., "Netlists" tab), and check "Ignore Resistors when building netlists". Note that if resistors are
being ignored, Spice deck generation will temporarily include them while the netlist is being created.

Chapter 7: Technologies

 Using the Electric VLSI Design System, version 9.07 225

#chap05-04-02
#chap01-11-05

7−5−2: Multipage Schematics and Frames

Multipage schematics are implemented in Electric by having each page map to a different area of a vast
schematic cell. To create one of these multipage cells, use the Make Cell Multi−Page command (in menu
Cell / Multi−Page Cells). You will then be editing page 1 of the multi−page schematic.

You can add pages to the current multipage schematic with the Create New Page command (in menu Cell /
Multi−Page Cells). You can delete the current page with Delete This Page. To advance to the next page, use
Edit Next Page.

Older versions of Electric implemented multipage schematics with different view types ("p1", "p2", ...). If
these views appear instead of proper pages, use the Convert old−style Multi−Page Schematics command.

As a graphical aid to schematic design, frames can be displayed in a cell by using the Cell
Properties... command (in menu Cell). Multi−page schematics require a cell frame on every page, but their
presence is optional in other cells.

The frame size can be "Half−A", "A", "B", "C", "D", and "E". The frame can be horizontal (landscape) or
vertical (portrait). You can choose to display a title box in the lower−right corner. The designer name can
also be set for each cell.

Chapter 7: Technologies

226 Using the Electric VLSI Design System, version 9.07

Besides the designer name, cell frames have a company name and a project name. These values are not set
for each cell, but instead are preferences that are set for each user. Individual libraries can override these
defaults as well.

The Frame
Preferences (in menu
File / Preferences...,
"Display" section,
"Frame" tab) lets you
set all of these
defaults. Note that
the designer name is
taken first from the
cell, then from the
library if the cell does
not set a value, and
finally from the
general default if the
library and cell do
not set a value.

Chapter 7: Technologies

 Using the Electric VLSI Design System, version 9.07 227

7−6: Special Technologies

7−6−1: The Artwork Technology

The Artwork technology is an unusual technology that provides general−purpose sketching facilities. To
obtain this technology, use the popup menu at the top of the component menu and select "artwork".

This technology has nodes for
many typical graphic objects such
as rectangles, triangles, circles,
and arrowheads. Polygonal and
Spline nodes allow arbitrary
shapes to be defined. Of course,
nodes from all other technologies
can be used as special electronic
symbols when artwork is
generated. Conversely, these
artwork nodes can be used to
embellish designs done in all other
technologies.

Circles can be outlines (normal or
thick) or filled. The default shape
is round, but elongation of the
node produces an ellipse. In
addition, by using the Object
Properties... command (in menu
Edit / Properties), the outline
circles can be reduced to a portion
of the circle (from 1 to 360
degrees).

The "Export" entry creates an export for use in icons. After clicking on the entry, you have the choice of
selecting "Wire", "Bus", or "Universal" exports (see Section 3−11−4 for more on icon generation).

There are four different polygon styles: opened, closed, filled, and spline. The opened polygon can be drawn
with solid lines, dotted lines, dashed lines, or thicker lines. These nodes require that you use the "Outline
Edit" mode (see Section 6−10−1).

Chapter 7: Technologies

228 Using the Electric VLSI Design System, version 9.07

#chap03-11-04
#chap06-10-01

The illustration below shows how outline information, applied to Artwork nodes, results in different shapes.
In each of the shapes, the outline has the same 5 points, as illustrated in the upper−left. The nodes interpret
this outline information to produce their shape. Note that the spline curve does not run through the outline
points, only near them.

The final feature of the Artwork technology is its ability to set the appearance of any of its nodes or arcs. Use
the Artwork Color and Pattern... command (in menu Edit / Technology Specific) to set the color and
pattern of any Artwork node or arc. You can also invoke this dialog by clicking on the "Color and Pattern..."
button in the node or arc "Properties" dialogs. You can set the color, pattern, and outline texture of any
Artwork node and arc. Predefined patterns are available below the pattern−editing area. If transparent colors
are selected, they are taken from the current color map, which in turn is taken from the most recently selected
technology (other than the Artwork technology). Note that artwork elements which do not have a color
assigned use the DEFAULT−ARTWORK color (see Section 4−6−2).

Chapter 7: Technologies

 Using the Electric VLSI Design System, version 9.07 229

#chap04-06-02

7−6−2: The FPGA Technology

The FPGA technology is a "soft" technology that creates primitives according to an FPGA Architecture file.
Special commands in the Edit / Technology Specific / FPGA menu let you create the FPGA primitives,
build FPGA structures, and program them.

The FPGA Architecture file contains all of the information needed to define a specific FPGA chip. It has
three sections: the Primitive Definition section, the Block Definition section, and the Architecture section.
The Primitive Definition section describes the basic blocks for a family of FPGA chips (these are primitives
in the FPGA technology). The Block Definition section builds upon the primitives to create higher−level
blocks. Finally, the Architecture section defines the top−level block that is the FPGA.

An FPGA Architecture file must have the Primitive Definition section, but it need not have the Block
Definition or Architecture Sections. This is because the placement of the primitives can be saved in an
Electric library, rather than the architecture file. Thus, after reading the Primitive Definition section (which
creates the primitives), and reading the Block Definition and Architecture Sections (which places the
primitives to create a chip library) the library can be saved to disk. Subsequent design activity can proceed by
reading only the Primitive Definition section and then reading the library with the chip definition. This
avoids large FPGA Architecture files (the Primitive Definition section will be smaller than the Block
Definition and Architecture sections).

Chapter 7: Technologies

230 Using the Electric VLSI Design System, version 9.07

Primitive Definition Section

The Primitive Definition section defines the lowest−level blocks, which become primitive nodes in the FPGA
technology. A primitive definition looks like this:

(primdef
 (attributes
 (name PRIMNAME)
 (size X Y)
)
 (ports
 (port
 (name PORTNAME)
 (position X Y)
 (direction input | output | bidir)
)
)
 (components
 (pip
 (name PIPNAME)
 (position X Y)
 (connectivity NET1 NET2)
)
)
 (nets
 (net
 (name INTNAME)
 (segment FROMPART TOPART)
)
)
)

The attributes section defines general information about the block. The ports section defines external
connections. The components section defines logic in the block (currently only PIPs). The nets section
defines internal networks. There can be multiple segment entries in a net, each defining a straight wire that
runs from the FROMPART to the TOPART. These parts can be either port PORTNAME or coord X Y,
depending on whether the net ends at a port or at an arbitrary position inside of the primitive.

Chapter 7: Technologies

 Using the Electric VLSI Design System, version 9.07 231

For example, this block has two vertical nets and two horizontal nets. Four pips are placed at the
intersections. Six ports are defined (two on the left, two on the top, and two on the bottom). Here is the code:

(primdef
 (attributes
 (name sampleblock)
 (size 40 60)
)
 (ports
 (port (name inleft1) (position 0 40)
 (direction input))
 (port (name inleft2) (position 0 20)
 (direction input))
 (port (name outtop1) (position 10 60)
 (direction output))
 (port (name outtop2) (position 30 60)
 (direction output))
 (port (name outbot1) (position 10 0)
 (direction output))
 (port (name outbot2) (position 30 0)
 (direction output))
)

 (components
 (pip (name pip1) (position 10 20) (connectivity intv1 inth1))
 (pip (name pip2) (position 30 20) (connectivity intv2 inth1))
 (pip (name pip3) (position 10 40) (connectivity intv1 inth2))
 (pip (name pip4) (position 30 40) (connectivity intv2 inth2))
)

 (nets
 (net (name intv1) (segment port outbot1 port outtop1))
 (net (name intv2) (segment port outbot2 port outtop2))
 (net (name inth1) (segment port inleft2 coord 30 20))
 (net (name inth2) (segment port inleft1 coord 30 40))
)
)

Block Definition and Architecture Sections

The Block Definition and Architecture sections define higher−level blocks composed of primitives. They
looks like this:

(blockdef
 (attributes
 (name CHIPNAME)
 (size X Y)
 (wirecolor COLOR)
 (repeatercolor COLOR)
)

 (ports
 (port
 (name PORTNAME)
 (position X Y)
 (direction input | output | bidir)
)
)

Chapter 7: Technologies

232 Using the Electric VLSI Design System, version 9.07

 (components
 (instance
 (attributes ATTPAIRS)
 (type BLOCKTYPE)
 (name BLOCKNAME)
 (position X Y)
 (rotation ROT)
)
 (repeater
 (name BLOCKNAME)
 (porta X Y)
 (portb X Y)
 (direction vertical | horizontal)
)
)

 (nets
 (net
 (name INTNAME)
 (segment FROMPART TOPART)
)
)
)

The only difference between the Architecture section and the Block Definition section is that the Architecture
section has the keyword architecture instead of blockdef. There can be only one
architecture section, but there can be many blockdefs, defining a complete hierarchy.

The attributes section defines general information about the block.

The ports section defines external connections.

The components section defines logic in the block (currently instances of other blocks or repeaters). The
rotation of an instance is the number of degrees counterclockwise, rotated about the center. The
attributes section of the instance assigns name/value pairs (this can be used to program the FPGA).

The nets section defines internal networks. There can be multiple segment entries in a net, each defining
a straight wire that runs from the FROMPART to the TOPART. These parts can be either component
INSTNAME PORTNAME, port PORTNAME, or coord X Y, depending on whether the net ends at a
component, port or at an arbitrary position inside of the block.

Chapter 7: Technologies

 Using the Electric VLSI Design System, version 9.07 233

Here is an example of block definition code and its layout.

(blockdef
 (attributes
 (name testblock)
 (size 80 150)
)
 (components
 (instance (type sampleblock) (name block0)
 (position 30 80))
 (instance (type sampleblock) (name block1)
 (position 30 10))
 (repeater (name r0) (porta 10 120)
 (portb 20 120) (direction horizontal))
 (repeater (name r1) (porta 10 100)
 (portb 20 100) (direction horizontal))
 (repeater (name r2) (porta 10 50)
 (portb 20 50) (direction horizontal))
 (repeater (name r3) (porta 10 30)
 (portb 20 30) (direction horizontal))
)

 (ports
 (port (name top0) (position 40 150)
 (direction bidir))
 (port (name top1) (position 60 150)
 (direction bidir))
 (port (name left0) (position 0 120)
 (direction input))
 (port (name left1) (position 0 100)
 (direction input))
 (port (name left2) (position 0 50)
 (direction input))
 (port (name left3) (position 0 30)
 (direction input))
 (port (name bot0) (position 40 0)
 (direction bidir))
 (port (name bot1) (position 60 0)
 (direction bidir))
)

 (nets
 (net (name iv0) (segment port top0 component block0 outtop1))
 (net (name iv1) (segment port top1 component block0 outtop2))
 (net (name iv2) (segment component block0 outbot1 component block1 outtop1))
 (net (name iv3) (segment component block0 outbot2 component block1 outtop2))
 (net (name iv4) (segment component block1 outbot1 port bot0))
 (net (name iv5) (segment component block1 outbot2 port bot1))
 (net (name ih0) (segment port left0 component r0 a))
 (net (name ih1) (segment component r0 b component block0 inleft1))
 (net (name ih2) (segment port left1 component r1 a))
 (net (name ih3) (segment component r1 b component block0 inleft2))
 (net (name ih4) (segment port left2 component r2 a))
 (net (name ih5) (segment component r2 b component block1 inleft1))
 (net (name ih6) (segment port left3 component r3 a))
 (net (name ih7) (segment component r3 b component block1 inleft2))
)
)

Chapter 7: Technologies

234 Using the Electric VLSI Design System, version 9.07

Commands

To read an architecture file, use the Read Architecture And Primitives... command (in menu Edit /
Technology Specific / FPGA). You will be prompted for an architecture file. To read only the primitives
from an architecture file, use the Read Primitives... command.

Once an FPGA is on the screen, two aspects of its display can be controlled: the wires and the text. Three
commands control the display of wires: Show All Wires displays every wire, Show No Wires hides every
wire, and Show Active Wires shows only the wires that have been connected to PIPs that have been
programmed. Two commands control the display of text: Show Text displays text and Hide Text turns text
display off.

Once an FPGA has been created, you can program the PIPs by selecting a component and using the Edit
Pips... command. This will display a list of active PIPs on the component. For example, after clicking on one
of the "SampleBlock" instances, you can type the string "pip1 pip4" to program two of the pips in that
instance.

7−6−3: The Generic Technology

One particularly interesting technology is the Generic technology, which is a grab bag of miscellaneous
facilities. It is not necessary to actually switch into this technology, for all of its nodes and arcs are available
through other means.

Special Arcs

The Universal arc in the Generic technology is able to make a connection between any two components,
even if they are in different technologies. This is useful when mixing technologies while still maintaining
proper connectivity, for example when simulating.

The Invisible arc attaches any two components, but makes no electrical connection. It is useful for
constraining otherwise unrelated components.

The Unrouted arc makes arbitrary electrical connections, like the universal arc, but routers know to replace
them with real geometry.

None of these arcs produce any actual geometry in IC descriptions, but they make important conceptual
connections. Any existing arc in a normal technology can be converted to one of these three special arcs by
using the Change... command (in menu Edit).

Chapter 7: Technologies

 Using the Electric VLSI Design System, version 9.07 235

Special Nodes

There are also special nodes in the Generic
technology. They are all available from the
"Misc." entry of the component menu.

A special primitive, called Cell Center, defines
the origin of any cell. Once the node is placed,
its location is at (0,0) for the cell. Since
instances of the current cell use the origin as
the anchor point for cursor−based references,
the location of this node defines the anchor.
For example, if you place this node in the
upper−right corner of a cell, then creation
commands place instances such that their
upper−right corner is at the cursor. See Section
3−3 for more information on cell centers.

A special primitive, called Essential Bounds,
defines an alternate boundary of any cell. At
least two of them must be placed in opposite
corners, although 4 can be place to make it
look better.

Note that the Cell Center and Essential Bounds
nodes are made "hard−to−select" by default,
which means that they can be selected only by
using "Special Select" mode (see Section
2−1−5 for more).

The Spice Code and Spice Declaration entries create text for Spice decks (see Section 9−4−3). The Verilog
Code, Verilog Declaration, Verilog Parameter, and Verilog External Code entries create text for Verilog
decks (see Section 9−4−2). These entries actually create Invisible Pin nodes with appropriate text on them.

A special primitive, called Simulation Probe is recognized by simulators and visually modified to reflect
whatever it is connected to. The simulators that reflect the state of the circuit by drawing lines along arcs also
fill−in these probe nodes. It provides a visual display of simulation activity, and works especially well with
the VCR controls in the waveform window. See Section 4−11 for more.

The DRC Exclusion node is used by the design−rule checker (see Section 9−2−3). The Routing
Exclusion node is used by routers to tell them to avoid certain layers under this node (see Section 9−6−1).
Currently only the Sea−of−Gates router handles this. The AFG Exclusion node is used by the auto−fill
generator (see Section 9−8−2).

Chapter 7: Technologies

236 Using the Electric VLSI Design System, version 9.07

#chap03-03
#chap03-03
#chap02-01-05
#chap02-01-05
#chap09-04-03
#chap09-04-02
#chap04-11
#chap09-02-03
#chap09-06-01
#chap09-08-02

The Invisible Pin is used for holding text, and it does not appear in hardcopy output (this is what is created
when you use place Annotation Text). This pin can connect to any arc.

The Universal Pin is a node that can connect to any arc. This is useful as an intermediate component when
replacing (first you replace the unwanted node with a Universal−Pin to allow it to fit with the existing arcs;
then you replace the arcs; finally you put the desired new node in place).

The Unrouted Pin is used when joining unrouted arcs. It can also connect to anything.

Chapter 7: Technologies

 Using the Electric VLSI Design System, version 9.07 237

Chapter 7: Technologies

238 Using the Electric VLSI Design System, version 9.07

Chapter 8: Creating New Technologies

8−1: Technology Editing

Although there are many technology descriptions in Electric, there are many more in the world. To
accommodate this, there are three ways to define a technology in Electric:

The Technology Editor allows you to modify existing technologies and create new ones. The
technology editor is describe here and in Sections 8−2 through 8−9.

•

The Technology Creation Wizard constructs technologies from simple process parameters. The
technology creation wizard is described in Section 8−11.

•

The Technology XML Files define technologies and can be created or hand−edited. The file format is
described in Section 8−10.

•

The technology editor works by converting a technology into a library of cells. You then edit the cells, using
familiar Electric commands, and make changes to the technology. Finally, the technology editor translates
the library back into a new technology.

 Using the Electric VLSI Design System, version 9.07 239

#chap08-02
#chap08-09
#chap08-11
#chap08-10

Libraries which describe a technology are
called technology libraries. They use
elements from the Artwork technology to
describe their information. Special
commands from the Edit / Technology
Editing menu aid in the manipulation of
these libraries.

There are four types of cells in a
technology library which describe the
layers, arcs, nodes, and support. They are
separated into these groups in the cell
explorer. The layer cells all begin with the
name "layer−" and each one defines a
layer in the technology. For example, the
cell called "layer−Metal" defines the
metal layer. The node and arc cells
correspond to the primitives in the
technology. Their names always begin
with "node−" and "arc−". The support cell
is always called "factors". Any other cell
in the library is ignored.

Chapter 8: Creating New Technologies

240 Using the Electric VLSI Design System, version 9.07

8−2: Converting between Technologies and Libraries

Converting Technologies to Libraries

The best way to create a new technology is to change an existing one. Use the Convert Technology to
Library for Editing... command (in menu Edit / Technology Editing) and select a similar technology.
Unfortunately, the Schematic and Artwork technologies are too complex to edit and cannot be converted.

Conversion of a technology to a library creates a library with the same name as the technology. Note that
technologies with settings (such as MOSIS CMOS) will be converted with their current settings only, and the
options will no longer be available.

Technology−Editing Mode

Once a technology−library has been created, editing of its cells is done in a special technology−editing mode.
The system knows to use technology−editing mode because the cells are marked as being "Part of a
technology editor library" (see the Cell Properties... command of the Cells menu, see Section 3−7−3).

Converting Libraries to Technologies

To convert a technology−library into a technology, use the Convert Library to Technology... command.

You are given the opportunity of
naming the technology, and can also
request that XML code be produced
(this code can be used to install the
technology permanently).

If a technology already exists with the name you want, you can request that it be renamed, or you can choose
a different name for the new technology.

If there is an error in the library, conversion is aborted and you are given a chance to fix the library.
Generally, the offending part of the library is highlighted. If no errors have occurred in the translation, there
will be a new technology in Electric and it will be the current one.

Before creating any circuitry with the new technology, it is advisable to create a new library (use the New
Library... command of menu File) so that the test circuitry is not stored with the library that describes it.

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 241

#chap03-07-03

Once a technology has been created, you can make it a permanent part of Electric by adding its XML code to
the system. This is done with the Added Technologies Preferences (in menu File / Preferences...,
"Technology" section, "Added Technologies" tab).

Use the "Add"
button and browse
to the XML file
that was produced
by the technology
editor or wizard. If
you no longer want
to have a
technology
installed in Electric,
select it and use the
"Remove" button.
Note that removing
an installed
technology does
not take effect until
Electric is next
started.

Since XML files describe technologies, you can also edit technologies manually by editing these files (see
Section 8−10 for the XML file format). To generate the XML file for a given technology, use the Write
XML of Current Technology... command (in menu Edit / Technology Specific). It is also possible to
extract an XML file for a technology from an older version of Electric. To do this, you need the JAR file for
that release. Use the command Write XML of Technology from Old Electric Build... and specify both the
Electric JAR file and the desired technology from that build. Note that XML files cannot be produced for the
special technologies: Schematics and Artwork.

Cleaning Up

After a few rounds of technology editing, there may be many libraries and technologies. You can delete the
current library with the Close Library command of the File menu (to make another library current, use the
Change Current Library... command of the File menu).

Using Technology Libraries

Once a library has been successfully built that describes a technology, it can be saved to disk with the Save
Library command of the File menu. Then, in another session of Electric, it can be read from disk and
converted to a technology. Alternatively, the XML for the technology can be installed into Electric with the
Added Technologies Preferences.

Chapter 8: Creating New Technologies

242 Using the Electric VLSI Design System, version 9.07

#chap08-10

8−3: Hierarchies of Technology Libraries

Although a technology is normally described with a single library, it is also possible to string together a
sequence of libraries to describe a technology. The sequence forms an inheritance hierarchy, where later
libraries in the sequence can override elements found in earlier libraries. For example, one library could be a
base description for a family of technologies, and another library could be a tailoring description that
describes a specific family member. The tailoring library might be very small, consisting of a single node
description. That information would then override or augment the base library.

To connect a sequence of libraries, a list is placed in the bottommost library pointing to the earlier, or
dependent libraries. In the example below, the current library is "smallPads" and it is tailored with two other
libraries: "pads" and "cmos" (the base library). Note that the list implicitly begins with the current library,
and continues in reverse order. In this example, the first library examined is "padsSmall", followed by "pads"
and finally the base library "cmos".

When a piece of technology information is found in more than one library, the latest one is used (i.e. the
current library's version is used before a dependent library's version, and a dependent library's version is used
before that of another dependent library higher up the list). Note that the version which is used is expected to
be the most recently created version, and a warning message will be issued if this is not the case.

Control of the library list is done with the Edit Library Dependencies... command (in menu Edit /
Technology Editing).

A dialog is presented
with two lists of
libraries. The list on
the left shows the
dependent libraries
and the list on the
right shows all
current libraries.

By selecting a library name from the list on the right and clicking on the "<< Add" button, it is added to the
list on the left. To add a library not shown, type its name into the box on the right and click the "<< Add"
button. To remove a library from the list on the left, select it and click the "Remove" button.

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 243

8−4: The Layer Cells

Creating and Deleting Layer Cells

Layers are used to construct primitive nodes and arcs in a technology. Because of this, the layers must be
edited before the nodes and arcs. To edit an existing layer, select it from the cell explorer or the Edit
Cell... command (in menu Edit).

To create a new layer, use the context menu on the
"TECHNOLOGY LAYERS" entry of the cell
explorer and choose "Add New Layer". A layer can
be deleted simply by deleting its cell. A layer can be
renamed by renaming its cell, but remember to use
the name "layer−" in front (i.e. the old name is
"layer−metal" and the new name is
"layer−metal−1"). Finally, you can rearrange the
order in which the layers will be listed with the
"Reorder Layers" command from the context menu.

Editing Special Layer Information

There are many pieces of
information in a layer,
most of which can be
updated by
double−clicking on them.
There is a 16x16 stipple
pattern, a large square of
color above that, and a
number of pieces of
textual information along
the right side.

Chapter 8: Creating New Technologies

244 Using the Electric VLSI Design System, version 9.07

The stipple pattern can be changed by double−clicking on any grid squares. You can also do operations on
the entire stipple pattern ("Clear Pattern", "Invert Pattern", "Copy Pattern", and "Paste Pattern") by
double−clicking on their name below the pattern area.

The color of the layer can be changed by
double−clicking on the "Color" entry.
The dialog lets you choose a color,
opacity, and foreground factor for the
layer. Opacity ranges from 1.0 (fully
opaque) to 0 (transparent). The
foreground flag is "on" to indicate that
the non−opaque colors can be combined
with others.

Transparency lets a layer have a unique appearance where it overlaps other layers. The overlap is defined in
the technology's color map. You can double−click on the "Transparency" entry to assign this factor to a layer.
Non−transparent layers (with "Transparency: none") are opaque, so they obscure anything under them when
drawn. In general, the most commonly used layers should be transparent. See Section 4−6−1 for more
information on transparency.

The "Style" entry on the right can be "solid" or "patterned", with varying outline types around the pattern
("None", "Solid", "Solid−Thick", "Solid−Thicker", "Dotted−Close", "Dotted−Far", "Dashed−Short",
"Dashed−Long", "Dotted−Dashed−Short", "Dotted−Dashed−Long", "Dotted−Close−Thick",
"Dotted−Far−Thick", "Dashed−Thick", "Dotted−Close−Thicker", "Dotted−Far−Thicker"). The "Style" can
also specify printer patterns "PRINTER−Solid" and "PRINTER−Patterned". When using "solid" styles, the
16x16 stipple pattern is ignored (except for hardcopy). Transparent layers should be solid because they
distinguish themselves in the color map. Layers with opaque colors should probably be patterned so that their
combination is visible.

Many of the entries on the right side of the layer cell provide correspondences between a layer and various
interchange standards. The "CIF Layer" entry is the string to use for CIF I/O (see Section 7−3−2). The
"GDS−II layer" entry can be as simple as a single layer number, but it can also be two numbers separated by
a "/" (the layer number and its type). You can also add a comma and then another layer/type pair with the
letter "t" (for text) or "p" (for pin) at the end (see Section 7−3−3).

Another set of options on the right side of the layer cell is for Spice parasitics. You may assign a resistance,
capacitance, and edge capacitance to the layer for use in creating Spice simulation decks (see Section
9−10−1).

The "3D Height" and "3D Thickness" are used when viewing a chip in 3−dimensions. The height and
thickness are arbitrary values which describe the location and thickness in the third axis (out of the screen).
For example, to show how poly and diffusion interact, the poly layer can be at height 21 and the diffusion
layer at height 20, both with 0 thickness. This will appear as two ribbons, one over the other. See Section
4−10−2 for more information on 3D display.

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 245

#chap04-06-01
#chap07-03-02
#chap07-03-03
#chap09-10-01
#chap09-10-01
#chap04-10-02
#chap04-10-02

The last option on the right side of the layer cell specifies the minimum coverage percentage (see Section
9−2−4 for more).

Layer Function

The "Function" entry allows a general−purpose description to be attached to the layer. Metal layers can have
"−C1", "−C2", or "−C3" appended to them to describe multiple patterns (colors 1, 2, or 3).

A function consists of a single base
description plus optional additional
modifiers. The additional modifiers
are found in the last entries of the
function list.

These additional modifiers can be added to the base function:

"p−type," "n−type," "depletion," "enhancement," "light," "heavy", and "thick" describe layer types
that are process−specific.

•

"pseudo" indicates that this layer is a pseudo−layer, used for pin construction. •
"nonelectrical" indicates that this layer is decorative and not part of a real circuit. •
"connects−metal," "connects−poly," and "connects−diff" indicate that this contact layer joins the
specified real layers.

•

"inside−transistor" indicates that the polysilicon is not field−poly, but is part of a transistor. •

For example, you can double−click the function entry many times, selecting "Diffusion", "p−type", and
"heavy" to indicate a Diffusion layer that is heavily−doped p−type. To clear the layer function, set it to
"unknown."

A number of rules apply to the selection of layer functions. There must be a "pseudo" layer for every layer
used to build arcs. This is because every arc needs a pin, and pins are constructed from "pseudo" layers. The
"pseudo" layers are virtual geometry that do not appear in the fabrication output. It is important that every
"pseudo" layer have an associated real layer, with similar descriptive fields. The technology editor will issue
a warning if pins are not constructed from pseudo−layers.

Note that the layer functions must be treated carefully as they form the basis of subsequent arc and node
definitions. One consideration to note is the use of "Wells" and "Substrates". If the technology requires a
separate contact to the well, then it will typically contain a metal layer, and a piece of heavily doped material
under the metal to make ohmic contact to the well; i.e. p++ in a P−well. This will have the same doping as
the well, unlike a device diffusion, which is of opposite type to the well in which it is located.

Chapter 8: Creating New Technologies

246 Using the Electric VLSI Design System, version 9.07

#chap09-02-04
#chap09-02-04

Two rules apply here:

There must be a separate diffusion layer for the p++ or n++ used as a contact in a P−well or N−well,
respectively; it cannot be the same layer that is used for diffusions in active devices.

1.

A p++ or n++ layer that is used to make a contact in a well of the same semiconductor type (for
example p++ in a P−well) must not be defined with the layer function Diffusion; it must be declared
as "Well". In the well contact shown below, both the p++ layer and the P−well layer will be defined
with the layer function "Well, P−type".

2.

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 247

8−5: The Arc Cells

Creating and Deleting Arc Cells

Arcs are the wires in a technology, and they are constructed from pieces of geometry on the layers. To edit an
existing arc, select it from the cell explorer or the Edit Cell... command (in menu Edit).

To create a new arc, use the context menu on the
"TECHNOLOGY ARCS" entry of the cell explorer
and choose "Add New Arc".

An arc can be deleted simply by deleting its cell. An arc can be renamed by renaming its cell, but remember
to use the name "arc−" in front (i.e. the old name is "arc−metal" and the new name is "arc−metal−1").
Finally, you can rearrange the order in which the arcs will be listed with the "Reorder Arcs" command from
the context menu.

Editing Special Arc Information

Arc cells show a sample arc on the bottom and a few pieces of textual information above it. The textual
information can be updated by double−clicking on it.

"Function" describes the arc's function,
which is a different set than the layer
functions. As with layer functions, the arc
functions should be carefully considered.

•

"Fixed−angle" lets you choose whether or
not default arcs of this type are drawn at
fixed angles (see Section 5−2−1). In many
layout technologies, the correct state is "yes".
The particular fixed angle is specified by the
"Angle increment" field below.

•

"Wipes pins" lets you choose whether or not these arcs completely erase connecting pins (the
sensible state is "yes" because pins are drawn in the same layer and would not be visible anyway).

•

"Extend arcs" lets you choose whether or not these arcs extend beyond their endpoints by half of
their width (see Section 5−4−3). The typical state is "yes".

•

"Angle increment" is the preferred angle granularity of this type of arc (see Section 5−5).•
The typical state is "90" which requests Manhattan arcs.
"Antenna Ratio" is used in antenna rules calculations (see Section 9−3−2).•

Chapter 8: Creating New Technologies

248 Using the Electric VLSI Design System, version 9.07

#chap05-02-01
#chap05-04-03
#chap05-05
#chap09-03-02

A well arc that contains a well layer and does not contain device diffusion (i.e. opposite doping to the well)
must not be defined as "diffusion"; it must be defined as "well−diffusion". This prevents the Spice extractor
from incorrectly adding any p or n doped area found in the well arc to the source or drain area of a transistor
on the same network. This does not mean that a device arc cannot contain a well layer. Device arcs will be
declared as "p−diffusion" or "n−diffusion", and their well layer will be handled correctly; the arc connectivity
is really defined by the device diffusion layer. For example, a p−device arc will have an N−well, or N
substrate under it, and a p−type diffusion will end up as part of the drain or source of the P transistor to which
it is connected.

Editing Arc Geometry

In addition to the above information, the arc must also be described with pieces of geometry on the various
layers. Thus, a prototypical arc must be drawn in this cell. The length of the arc is not important, but the
smaller dimension is presumed to be the width and defines the default for this arc type.

Use the entries from the component menu of the side
bar to create new layers. The typical layer in an IC
technology is a Filled box (third from the top).

After the geometry is created, it can be moved and
resized with standard Electric commands. Remember
to keep all arc geometry separate from the
information messages in the cell so that the
technology editor can distinguish them. Once a piece
of geometry is created, its layer can be set by
double−clicking on it. A menu is then presented with
possible layers (ignore the last entries,
"SET−MINIMUM−SIZE", and
"CLEAR−MINIMUM−SIZE" which are used only
for nodes).

Besides geometric layers, the graphical arc
description must have a highlight layer to show where
the arc will be outlined when used in a circuit.
Although the highlighting is typically drawn around
the outside of all geometry, implant layers may
extend beyond the highlight (see the CMOS diffusion
arcs for an example of this). Select the "HIGH" entry
in the component menu to create this special type of
layer.

After geometry has been created, there may be some confusion as to what is there. To find out, use the
Identify Primitive Layers command (in menu Edit / Technology Editing), which temporarily labels each
piece of geometry in the arc cell.

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 249

8−6: The Node Cells

Creating and Deleting Node Cells

Nodes are the components in a technology, and they are constructed from pieces of geometry on the layers.
To edit an existing node, select it from the cell explorer or the Edit Cell... command (in menu Edit).

To create a new node, use the context menu on the
"TECHNOLOGY NODES" entry of the cell
explorer and choose "Add New Node".

A node can be deleted simply by deleting its cell. A node can be renamed by renaming its cell, but remember
to use the name "node−" in front (i.e. the old name is "node−metal" and the new name is "node−metal−1").
Finally, you can rearrange the order in which the nodes will be listed with the "Reorder Nodes" command
from the context menu.

Editing Special Node Information

The node cell contains four pictures of the
node on the bottom and textual information
above that. You can update the textual
information entries by double−clicking on
them.

The "Serpentine transistor" entry indicates
that this is a MOS transistor and it can take
arbitrary outline information to describe its
geometry (see Section 7−4−1).

The "Square" entry forces the node to
always have the same X and Y dimension
when scaled.

The "Invisible with 1 or 2 arcs" entry indicates that the node will not be drawn if it is connected to exactly
one or two arcs. This is useful in schematic pins, which are visible only when unconnected or forming a
junction of 3 or more wires.

Chapter 8: Creating New Technologies

250 Using the Electric VLSI Design System, version 9.07

#chap07-04-01

The "Lockable" entry indicates that this node can be made unchangeable along with other lockable
primitives, when the lock is turned on during editing (see Section 6−2 for more on locking these primitives).
This is typically used in array technologies such as FPGA (see Section 7−6−2).

The "Spice template" entry is an overriding line of Spice code to be emitted for this primitive. See Section
9−4−4 for more on Spice templates.

The "Function" entry describes
the node's function, which is a
different set than the arc and
layer functions. A dialog offers a
list of possible node functions.

Editing Node Geometry

For nodes, it is common to sketch four different examples of the node in varying scales, so that X and Y
scaling rules can be derived (square nodes need only two examples). If only one example is specified, linear
scaling rules will be presumed.

The smallest example, called the main example, is used as the default size and also contains all of the special
port information. Needless to say, it is important to keep the geometry of each example well apart from the
others so that the technology editor can distinguish them.

Each example must contain the same geometric layers (only stretched). As in the Arc cells, pieces of
geometry can be created by selecting from the component menu of the side bar, creating the geometry, and
then double−clicking to assign a layer. If any polygonal geometry is used (for example, the Filled polygon
entry, sixth from the top), they require outline information to be assigned (see Section 6−10−1). If the
Opened circle arc entry is selected (second from the bottom), you can specify the number of degrees of the
circle with the Object Properties... command (in menu Edit / Properties).

Each example must also contain a highlight layer to indicate the correct highlighting on the display. Select
the "HIGH" entry from the component menu to create this special type of layer.

Each example must also contain port information. Select the "PORT" entry in the component menu to create
this special type of layer. You will have to provide a name for each port, and the name must be the same on
each example.

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 251

#chap06-02
#chap07-06-02
#chap09-04-04
#chap09-04-04
#chap06-10-01

Ports on the main example must also have
connectivity information (which arcs can
connect to them) and range information (the
permissible angle of connected arcs).
Double−click on the port to set this.

The range consists of two numbers: an angle
(in degrees counterclockwise from 3 O'clock)
and an angle range. For example, a port angle
of 90 with a port angle range of 45 describes a
port that points upward and can connect at
angles up to 45 degrees off from this direction.
The range will be graphically depicted.

The ports on the main example must also indicate any internal electrical connectivity by actually connecting
them together. For example, the two polysilicon ports on a MOS transistor should be connected in the main
example. Join the ports with a universal arc. Do not put this internal connection on any example other than
the main one. To see the location of all ports on the main example, use the Identify Ports command (in
menu Edit / Technology Editing).

For simple nodes, such as pins and contacts, there is typically one port which is in the center of the node.
However, some of Electric's built−in technologies give these ports a nonzero size. The idea behind doing this
is to allow arcs to "slide" within that port (see Section 5−2−2). Many disagree with the idea of having
nonzero ports on pin nodes, and so it is now recommended that all pin nodes have zero size ports.

As with arcs, use the Identify Primitive Layers command to label each piece of geometry in the main
example.

Chapter 8: Creating New Technologies

252 Using the Electric VLSI Design System, version 9.07

#chap05-02-02

Node Variations

It is sometimes the case that two or more primitive nodes are nearly the same and differ only by the shape of
their layers. When this happens, it is possible to define them all in the same cell using the notion of
variations. To create a variation on a node, create a 5th example in the cell (for two variations, create a 5th
and 6th example). Each variation example must follow these rules:

It must have the same layers as the
main four examples. Variations are not
able to add or remove layers...this is
done by creating separate nodes.

•

A central node must be named. Pick
any piece of geometry that is centered
in the example (contact cuts are good
choices). This piece of geometry must
be named (using the Object
Properties... command in menu Edit /
Properties). The name on the piece of
geometry will be the name of the
variation.

•

The only rule used to compute layer size is the distance from the outer edge. It is not possible to use
other stretching rules because only one example is being provided.

•

The picture shown here illustrates a variation in which the polysilicon layer is inset. The text "Small−Poly" is
the name of the cut node (moved up to make it readable).

Special Node Considerations

There are some special cases available in node descriptions. A piece of geometry in the main example may
be changed (by double−clicking on its function) to "SET−MINIMUM−SIZE". This indicates that the current
size is the smallest possible, and it cannot scale any smaller (this is used by the "mocmos" technology for the
metal layer in contacts). The restriction can be removed with the "CLEAR−MINIMUM−SIZE" description.
This option cannot be used in serpentine transistors.

Another special case in node description is the ability to specify multiple cut layers. If the larger examples
have more cut layers, rules are derived for cut spacing and indentation so that an arbitrary numbers of cuts
can be inserted as the contact scales.

Although serpentine MOS transistors are a special case, they cannot be automatically identified, but must be
explicitly indicated with a textual indicator. Besides this explicit indication, the transistor node must contain
four ports: two on the gate layer (polysilicon) and two on the gated layer (active). A standard geometry must
be used that shows polysilicon and diffusion crossing in a central transistor area. Any deviation from this
format may cause the technology editor to be unable to derive serpentine rules for the node.

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 253

Besides the standard nodes for transistors, contacts, and other circuit elements, it is necessary to build pin and
pure−layer nodes. There should be one pin for every arc, so that the arc can connect to others of its type. The
pin should be constructed of pseudo−layers (i.e. it has no real geometry), should have the "pin" function, and
should have one port in the center that connects to one arc. The technology editor will issue a warning if
there is no pin node associated with an arc.

The pure−layer nodes should also be built, one for each layer. They should have only one piece of geometry
and have the "pure−layer" function. The technology editor will issue a warning if there is no pure−layer node
associated with a layer.

Chapter 8: Creating New Technologies

254 Using the Electric VLSI Design System, version 9.07

8−7: Miscellaneous Information

The Support Cell

Each cell in a technology library describes a different aspect of the technology. The support cell contains
technology−wide information. To see this, edit the cell "factors" under the "TECHNOLOGY SUPPORT"
section of the cell explorer.

The support cell contains many items, any of which can be changed by double−clicking on it.

"Scale" is the scaling factor between grid units and nanometers.•
"Description" is the full description of the technology.•
"Minimum Resistance" is the minimum resistance for the technology (see Section 9−10−1 for this
and other parasitics).

•

"Minimum Capacitance" is the minimum capacitance for the technology.•
"Gate Shrinkage" is the gate shrinkage for the technology.•
"Gates Included in Resistance" tells whether to include a transistor's gate in resistance computations.•
"Parasitics Includes Ground" tells whether to include ground networks in parasitics computations.•

Transparent Colors

Double−clicking on the "Transparent
Colors" entry shows a dialog for
selecting the transparent colors. You
must define as many colors as you
have used in the layers.

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 255

#chap09-10-01

Design Rules

Unfortunately, it is not possible to edit design rules associated with the technology. However, you can add
design rules to the XML files produced by the technology editor. To do this, examine the XML files for some
existing technologies (for example, CMOS) and copy these lines to the new XML file, editing where
appropriate for layer names and spacings.

The Component Menu

To customize the
layout of the
component menu, use
the Edit Component
Menu... command (in
menu Edit /
Technology Editing).
This dialog works
exactly the same as
the Component Menu
Preferences (see
Section 4−5−1).

Chapter 8: Creating New Technologies

256 Using the Electric VLSI Design System, version 9.07

#chap04-05-01

8−8: How Technology Changes Affect Existing Libraries

Once a technology is created, the components are available for design. Soon there will be many libraries of
circuitry that makes use of this new technology. What happens to these libraries when the technology
description changes? In most cases, the change correctly affects the existing libraries. However, some
changes are more difficult and might invalidate the existing libraries. This section discusses the possible
changes and shows workarounds for the difficult situations.

Technology information appears in four different places: the layers, the arcs, the nodes, and miscellaneous
information on the technology (the support cell and color tables). Information in these areas can be added,
deleted, or modified. The rest of this section outlines all of these situations.

Adding layers, arcs, nodes, and miscellaneous information

Adding information has no effect on the existing circuitry. All subsequent circuit design may make use of the
new technology elements.

Deleting layers, nodes, arcs, and miscellaneous information

All references to a deleted layer, in any nodes or arcs of the technology, will become meaningless. This does
not invalidate libraries that use the layers, but it does invalidate the node and arc descriptions in the
technology. The geometry in these nodes and arcs will have to be moved to another layer.

Deleting nodes or arcs will cause error messages when libraries are read that make use of the deleted objects.
When the library is read, you can substitute another node or arc to use in place of the now−unknown
component.

Deleting miscellaneous information depends entirely on where that information is removed. For example, an
analysis tool may fail to find the information that it requires.

Modifying layers, nodes, arcs, and miscellaneous information

Modifying layers is a totally transparent operation. Any change to the color, style, or stipple information
(including changes to the color map) will appear in all libraries that use the technology. Changes to I/O
equivalences or Spice parasitics will be available to all existing libraries. A change of the layer function may
affect the technology editor's ability to decode the nodes and arcs that use this layer (for example, if you
change the function of the "polysilicon" or "diffusion" layers that form a transistor, the editor will be unable
to identify this transistor). Renaming a layer has no effect.

Modifying arcs and nodes is not as simple as layer modification because the arcs and nodes appear in the
circuit libraries, whereas the layers do not. If you rename a node or arc, it will cause errors when libraries are
read that make use of nodes with the old name. Therefore, you must create a new node or arc first, convert all
existing ones to the new type, and then delete the old node or arc.

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 257

Many of the pieces of special information on the top of the node and arc cells apply to newly created
circuitry only, and do NOT affect existing components already in libraries. The arc factors "Fixed−angle",
"Wipes pins", "Extend arcs", and "Angle increment" have no effect on existing libraries. The node factor
"Square node" also has no effect on existing circuitry and gets applied only in subsequent designs.

Other factors do affect existing circuitry. Changes to the "Function" field, in both arcs and nodes, pass to all
existing components, thus affecting how analysis tools treat the old circuits. If the "Serpentine Transistor"
field in nodes is turned off, any existing transistors that have serpentine descriptions will turn into large
rectangular nodes with incorrect connections (i.e. get trashed). Unfortunately, it may become impossible to
keep the "Serpentine Transistor" field on if the geometry does not conform to standards set by the technology
editor for recognizing the parts. If a node is not serpentine, turning the factor on has no effect. Finally, the
node factors "Invisible with 1 or 2 arcs" and "Lockable" correctly affect all existing circuitry.

A more common modification of arcs and nodes is to change their graphical descriptions. A simple rule
applies to all such changes: the size of existing nodes and arcs is the amount that their highlighted area is
larger than the default highlighted area. Thus, an arc or node that is at its default size will be saved with a
zero size increase. If you change the default size, it will make all default−sized nodes and arcs change as
well. If the node is larger than the default size, it will grow accordingly.

For example, assume that
an arc has a default width
of 2, and there are two of
these arcs, one that is 2
wide (an increase of 0
beyond the default) and
one that is 3 wide (an
increase of 1 beyond the
default).
If you redefine the technology such that these arcs are now 4 wide by default, then the old 2−wide arc
becomes 4 wide and the old 3−wide arc becomes 5 wide.

Because of these changes, it may be preferable to keep the old technology and give the new technology a
different name. Then the old libraries can be read into the old technology, and the Make Alternate Layout
View... command (in menu View) can be used to translate into the new technology. This command uses node
and arc functionality to associate components, scaling them appropriately relative to their default sizes. The
change is completed by deleting the old technology, renaming the new technology to the old name, and then
saving the library.

Finally, modifying miscellaneous information is typically transparent: changed information appears in all
existing libraries, and affects those subsystems that make use of the information. For example, a change to
the Spice resistance will be seen when a Spice deck is next generated.

Chapter 8: Creating New Technologies

258 Using the Electric VLSI Design System, version 9.07

8−9: Examples of Use

To fully understand technology editing, some examples are appropriate. Two examples will be given: a
simple one that modifies the appearance of a pattern, and a more complex example in which a new primitive
node is created. Both examples are based on the MOSIS CMOS technology, so they presume that the
Convert Technology to Library for Editing... command (in menu Edit / Technology Editing) has been
issued and the "mocmos" entry was selected.

Example: Modifying a Layer's Appearance

In this first example, the user simply wishes to change the Metal−2 layer from a solid fill to a stipple pattern.

This particular task is so basic that it can be done with the Layers Preferences, but it illustrates the basic steps
of making a change. First, edit the layer cell for "metal−2". The display will show the layer with all of its
associated information.

Because every layer has a default stipple pattern used for printing, all that is necessary is to change the
"Style" field from solid to patterned. To do this, double−click on the "Style" text and select
"Patterned/Outline=None". The technology is now modified and can be converted back with the Convert
Library to Technology... command.

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 259

Example: Creating a New Node

The second example is more extensive: creation of a new primitive node. In this case, the new node is a
contact between metal−2 and polysilicon.

To create the node, use the context menu
on the "TECHNOLOGY NODES" tab of
the explorer window, select "Create New
Node", and name the node appropriately.

At this point, the display will show only the textual information about the node (because the graphical
information is yet to be supplied). The textual information consists of five factors that now fill the screen.

You should begin by changing the
"Function" factor to "contact"
(double−click it and select the appropriate
function). Then pan back so there is room
to describe the node graphically. The other
factors are properly set for a contact.

To place a piece of geometry (for
example, some polysilicon), click over
the Filled Box entry in the component
menu (third from the top) and then
click in the edit window. This
geometry now has shape, but no layer
associated with it. To assign a layer,
double−click on the geometry. Then
choose "polysilicon−1". The black
box will change appearance to that of
a polysilicon layer. You can move and
stretch this box appropriately.

In this example, assume that a contact between polysilicon and metal−2 has three layers: polysilicon−1,
metal−2, and contact cut. Therefore, the above operation must be done two more times to place the metal−2
and contact cut layers.

Chapter 8: Creating New Technologies

260 Using the Electric VLSI Design System, version 9.07

Besides this pure geometry, there must be two other items in the node: a highlight layer and a port. The
highlight layer is obtained by selecting the "HIGH" entry from the component menu. It is then placed and
stretched so that it encloses the contact (highlight layers define the size of the node, and this means that they
will typically surround the geometry).

The other item that must be created is a port
(more than one can be created, but for
contacts, one is sufficient). Select the
"PORT" entry from the menu on the left and
place it in the display. You will be prompted
for a port name, after which you can further
move or stretch the port. Besides a location
and a name, ports must specify which arcs
may connect to them. To do this,
double−click on the port.

The resulting menu lists all of the arcs and
indicates possible connectivity. Note that
the last two entries define the permissible
range of angles to which arcs may connect.
For a contact such as this, arcs may connect
at any angle, so the default values are
correct.

When all of the geometry, highlighting, and
ports have been placed, you can
double−check your work with the Identify
Primitive Layers command (in menu Edit
/ Technology Editing), which will display
this information (note that the port name
"Center" has been moved away for clarity):

The final step in the definition of this node is to create three more copies that illustrate scaling in both axes.
This is done simply by selecting all five objects and using the Duplicate command (in menu Edit). Once
duplicated in a new location, each piece must be stretched appropriately. In this example, the contact cut is
designed so that the number of cut elements grows with the node. Thus, when stretched horizontally or
vertically, there are two cuts, and when stretched in both directions there are four cuts. The technology editor
will determine precise multicut rules from the cut spacing and the amount of stretch, so that even more cuts
will appear as the node grows larger. The finished node definition is shown below. All that is necessary is to
convert this library back to a technology, and the new technology will have this node.

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 261

Of course, the newly created technology is valid only during the current session. Therefore, to preserve this
technology, write XML and add it to the Added Technologies Preferences.

Chapter 8: Creating New Technologies

262 Using the Electric VLSI Design System, version 9.07

8−10: Technology XML File Format

Introduction

Layout technologies in Electric can be described by Xml technology files. These files are automatically
generated by the technology editor and the technology−creation wizard, but some users may prefer to edit
them by hand. For these users, the following is a description of the technology XML file format.

Electric currently has Xml technology files that are unparameterized (all values are explicitly entered and
there is no symbolic information). Technology distances are specified as double−precision numbers in
display units. Future versions of Electric may implement a symbolic style of Xml technology files.

Currently technology files contain two kinds of information:

Electric−independent information. This includes physical and electrical details of the foundry
process. Most of these details are attached to Layers and includes design rules, simulation
information, etc.

1.

Electric−specific information. This includes the primitive nodes and arcs that Electric uses for
design. It also has connectivity rules, display and print styles, component menus for the technology,
etc.

2.

Primitive nodes and arcs can be considered to be layout macros. Node description consists of a set of
two−dimensional shapes. Arcs description consists of a set of one−dimensional intervals, which are stretched
in the other dimension. The technology file describes primitive nodes and arcs of a standard size (usually the
DRC minimum) and also includes information about how they can grow larger. Instances of these nodes and
arcs in Libraries can be larger than standard.

A primitive node or arc can consists of many shapes in different technology Layers. Each shape in a
primitive node is called a NodeLayer. Each interval in a primitive arc is called an ArcLayer.

The minimum bounding box of all NodeLayers of a primitive node is called its FullRectangle. Description
of a primitive node can also define the FullRectangle explicitly. The largest of all ArcLayers in a primitive
arc defines its FullWidth.

Primitive nodes and arcs also have the notion of a BaseRectangle and a BaseWidth. They relate to the shape
of the most important layer in this node or arc. The BaseRectangle of a primitive node is described explicitly.
The BaseWidth of primitive arc is the width of the first 'ArcLayer' in the arc description. The BaseRectangle
and BaseWidth are highlighted in the Edit Window and they appear in Properties dialogs.

Instances of nodes and arcs in a library can have sizes larger than standard. Electric writes size information of
each instance in the library files. Since release 8.05 of Electric (or more precisely since the 8.05o
development version) library files contain the extent of the node/arc over its standard size described in the

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 263

technology file. When you switch a design library from one technology to another compatible technology,
the standard size node/arc in old technology is converted to the standard size node/arc in the new technology.
The node/arc which extends by 1 unit beyond the standard node/arc in old technology is converted to a
node/arc which extends by 1 unit beyond the standard node/arc in new technology.

Older Electric releases wrote sizes of node/arc instances in another way. Jelib format before Electric 8.05
(actually, the 8.05g development version) and all Elib files saved the size of the FullRectangle and
FullWidth. Jelib format between 8.05g and 8.05n wrote sizes of BaseRectangle and BaseWidth. The Full and
Base sizes can be redefined in future versions of technology file. To be able to read older Jelib formats
correctly after redefinition of Full and Base, Technology file can contain explicit sizes of standard nodes and
arcs in older library files.

All sizes in technology files are in display units. There is a scale declaration which relates this unit to
nanometers.

Overall Structure

Here is a description of Xml technology file in Electric releases 8.05 and 8.06.

<technology> is the main element of the Xml technology file. It has many Xml−specific attributes:

"name" contains the name of this technology inside Electric. •
"class" (optional) contains the name of a Java class which is a subclass of
"com.sun.electric.technology.Technology". It can be used to describe things which are not described
by the Xml technology class yet. The interface with this class is not specified and can be changed. If
you need a non−standard technology feature, the better way is to contact Electric developers about
this.

•

Example:
 <technology name="mocmos"
 class="com.sun.electric.technology.technologies.MoCMOS"
 xmlns="http://electric.sun.com/Technology"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"
 xsi:schemaLocation="http://electric.sun.com/Technology
 ../../technology/Technology.xsd">

Inside of the <technology> element are these subelements:

<shortName> a more descriptive name for the technology (optional) •
<description> the most descriptive name for the technology. •
<version> describes Electric versions when Jelib changed and how it affects sizes. The "tech"
attribute contains an identifier of this version used in subsequent <diskOffset> subelements of
<arcProto> and <primitiveNode> descriptions. The "electric" attribute is a corresponding Electric
version. These elements are usually fixed in all technology files.
Examples:
 <version tech="1" electric="8.05g"/>
 <version tech="2" electric="8.05o"/>

•

Chapter 8: Creating New Technologies

264 Using the Electric VLSI Design System, version 9.07

<numMetals> describes a possible range for the number of metall layers in the technology. There is
no good support for Xml technology files with a variable number of metal layers. Therefore, this
element should contains the same value for all three attributes.
Example:
 <numMetals min="6" max="6" default="6"/>

•

<scale> defines how many nanometers are in a display unit. Electric uses dimensionless "units" in its
interface, where a transistor may be "2x3" without specifying actual distances. This scale converts
the units to real spacings. The "relevant" attribute should be true for layout technologies.
Example:
 <scale value="200.0" relevant="true"/>

•

<resolution> defines the minimum resolution value in grid units used in DRC, a parameter to
determine which points are off−grid.
Example:
 <resolution value="2.0"/>

•

<defaultFoundry> is a name of the default foundry for this technology. The name references one of
the <foundry> elements found later in the Xml file.
Example:
 <defaultFoundry value="MOSIS"/>

•

<minResistance> global minimum resistance (for parasitics).
Example:
 <minResistance value="4.0"/>

•

<minCapacitance> global minimum capacitance (for parasitics).
Example:
 <minCapacitance value="0.1"/>

•

<logicalEffort> defines default project preferences for the Logical Effort tool.
Example:
 <logicalEffort gateCapacitance="0.167" wireRatio="0.16"
 diffAlpha="0.7"/>

•

<transparentLayer> defines the transparent layers in the technology. All layers can be drawn in
either a "transparent" or "opaque" style. Transparent layers can overlap other transparent layers
without obscuring each other (they blend where they overlap). Opaque layers cover all other layers
without blending. Because the system needs to store all combination of transparent layers, it is not
possible to make every layer transparent. Instead, less−used layers should be opaque and use a
stipple−pattern so that they do not cover everything. The exception is the Layer−Display
Algorithm which does not use the transparent/opaque distinction (see Section 4−3 for more on the
display algorithms). This element lists the number of transparent layers, and provides the color of
each. The system automatically determines the blending colors where multiple transparent layers
overlap.
Example:
 <transparentLayer transparent="1">
 <r>96</r>
 <g>209</g>
 255
 </transparentLayer>

•

<layer> a list of layer descriptions (see below). •
<arcProto> a list of primitive arc descriptions (see below). •
<primitiveNode/primitiveNodeGroup> a list of primitive node and primitive node group•

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 265

#chap04-03

descriptions (see below).
<spiceHeader> default spice models. •
<menuPalette> description of the default component menu (optional). •
<foundry> information for the Foundry. Each has default DRC rules and default GDS mapping. •

Layers

The <layer> elements define layers in the technology. They contains these attributes:

"name" the name of this layer. Layer names are not referenced in Library files. They are used only
in the description of primtive nodes and arcs and in DRC rules.

•

"fun" the function of this layer, taken from this list:
 UNKNOWN
 METAL1 ... METAL12 (metal)
 METAL1C1 ... METAL12C1 (metal)
 METAL1C2 ... METAL12C2 (metal)
 METAL1C3 ... METAL12C3 (metal)
 POLY1 ... POLY3 (polysilicon)
 GATE (gate polysilicon)
 DIFF DIFFP DIFFN (active)
 IMPLANT IMPLANTP IMPLANTN SUBSTRATE WELL WELLP WELLN (implants)
 CONTACT1 ... CONTACT12 (cuts)
 RESISTOR CAP (resistor/capacitor)
 TRANSISTOR (transistor)
 EMITTER BASE COLLECTOR (bipolar parts)
 DMY* DEXCL* (dummy and dummy−exclusion for different layers)
 BUS ART (schematics and artwork)
 PLUG OVERGLASS GUARD ISOLATION (specialty)
 TILENOT CONTROL (specialty)

•

"extraFun" optional functions for this layer, taken from this list:
 nonelectrical
 connects−metal connects−poly connects−diff
 heavy light depletion_heavy depletion_light enhancement_heavy enhancement_light
 vt thick native
 inside_transistor deep carb−nano
 n−type deprecated: use fun=IMPLANTN
 p−type deprecated: use fun=IMPLANTP

•

Example:
 <layer name="Poly−Cut" fun="CONTACT1" extraFun="connects−poly">

Inside of the <layer> element are these subelements:

<transparentColor> the transparent color to use (if omitted, this is an opaque layer). •
<opaqueColor> the opaque color to use. •
<patternedOnDisplay> true to use the <pattern> when drawing on the screen. •

Chapter 8: Creating New Technologies

266 Using the Electric VLSI Design System, version 9.07

<patternedOnPrinter> true to use the <pattern> when printing. •
<pattern> the stipple pattern to use (if requested on either the screen or printed page). •
<outlined> true to outline the layer (sensible only for patterned layers). •
<opacity> intensity of this layer (from 0 to 1). •
<foreground> true to place this layer in the foreground. •
<display3D> defines thickness and height above the substrate for 3D display and parasitics. The
element has these attributes:

"thick" 3D thickness of the layer in display units ♦
"height" 3D height of the bottom of the layer in display units ♦
"mode" 3D display style ♦
"factor" 3D display style ♦

Example:
 <display3D thick="0.75" height="15.75" mode="NONE" factor="0.2"/>

•

<cifLayer> CIF layer name. •
<skillLayer> Skill layer name. •
<parasitics> parasitic extractor subelements. •
<pureLayerNode> description of the pure−layer node for this layer. This node is used to represent
arbitrary polygons of this Layer. It is also used when importing from external formats like GDS. The
standard pure−layer node has zero FullRectangle and BaseRectangle. So library files contain exact
geometric information for instances of pure−layer node. All the shape of pure−layer node is
considered a port shape of the single port of the node. There are these optional subelements:

<oldName> if the pure−layer node has another name in older versions of the technology. ♦
<lambda> the default width of this pure−layer−node (in grid units) when it is placed
manually.

♦

<portArc> the list of arc names which can connect to this pure−layer node. ♦
Example:
 <pureLayerNode name="Transistor−Poly−Node" port="trans−poly−1">
 <lambda>2.0</lambda>
 <portArc>Polysilicon−1</portArc>
 </pureLayerNode>

•

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 267

Arcs

<arcProto> elements describe primitive arcs in the technology. They have these attributes:

"name" is the name of the arc prototype. The instances of the primitive arc in Electric libraries
reference this name.

•

"fun" describes the arc function:
 UNKNOWN
 METAL1 ... METAL12 (metal)
 POLY1 ... POLY3 (polysilicon)
 DIFF DIFFP DIFFN DIFFS DIFFW (active)
 BUS (busses)
 UNROUTED (unrouted, for routers)
 NONELEC (non−electrical, for constraints)

•

Example:
 <arcProto name="P−Active" fun="DIFFP">

Inside of the <arcProto> element are these subelements:

<oldName> the name of this primitive arc in previous versions of the technology (optional). •
<wipable> flag to mark that the arc erases its pins. This flag is usually present in layout
technologies.

•

<curvable> flag to described round arcs. It is not supported in the current implementation. •
<special> flag related to the component menu. •
<skipSizeInPalette> flag related to the component menu. •
<notUsed> flag to forbid use of this primitive arc in libraries. •
<extended> default state of end−extension for this arc. •
<fixedAngle> default state of the fixed−angle constraint on this arc. •
<angleIncrement> default state of the angle−increment amount on this arc (grids placement angles). •
<antennaRatio> value used by the ERC tool. •
<diskOffset> tells how sizes were written in older library files. The attribute "untilVersion"
references the "tech" attribute of the <version> element above. This disk offset is applied to Jelib
libraries with Electric versions prior to the "electric" attribute of that <version> element. Attribute
<width> is actually half of the value written to Jelib file. For example, the "P−Active" arc described
above will be:
 15.0 wide with Jelib prior to Electric version "8.05g";
 3.0 wide with Jelib prior to Electric version "8.05o";
 0.0 wide with Jelib in Electric versions since "8.05o".
More formally, let a.extend be the internal value associated with the arc instance in the Electric
database. The value written to libraries prior to "diskOffset.untilVersion" was 2*(a.extend +
diskOffset.width). The <diskOffset> element is necessary only in legacy technologies.
Example:
 <diskOffset untilVersion="1" width="7.5"/>

•

<defaultWidth> factory default value of arc width. This element is not used now and should be
omitted.

•

Chapter 8: Creating New Technologies

268 Using the Electric VLSI Design System, version 9.07

<arcLayer> a list of ArcLayers that comprise this Arc. The attribute "layer" references the layer of
the ArcLayer. The attribute "style" is either "FILLED" or "CLOSED". Layout arcs should be
"FILLED". The <lambda> subelement describes extent (half width) of the ArcLayer from the central
line of the arc.
More formally, let a.extend be the internal value associated with the arc instance in the Electric
database. The width of the "P−Select" <arcLayer> below is 2*(a.extend + 3.5) The FullWidth of the
arc instance is the width of the widest ArcLayer. It is 2*(a.extend + 7.5) in the above "P−Active" arc.
The BaseWidth of the arc instance is the width of the first ArcLayer in the list. It is 2*(a.extennd +
1.5) in the above "P−Active" arc.
Example:
 <arcLayer layer="P−Select" style="FILLED">
 <lambda>3.5</lambda>
 </arcLayer>

•

Example:
 <arcProto name="P−Active" fun="DIFFP">
 <wipable/>
 <extended>true</extended>
 <fixedAngle>true</fixedAngle>
 <angleIncrement>90</angleIncrement>
 <antennaRatio>200.0</antennaRatio>
 <diskOffset untilVersion="1" width="7.5"/>
 <diskOffset untilVersion="2" width="1.5"/>
 <arcLayer layer="P−Active" style="FILLED">
 <lambda>1.5</lambda>
 </arcLayer>
 <arcLayer layer="N−Well" style="FILLED">
 <lambda>7.5</lambda>
 </arcLayer>
 <arcLayer layer="P−Select" style="FILLED">
 <lambda>3.5</lambda>
 </arcLayer>
 </arcProto>

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 269

Nodes

<primitiveNode> elements describe primitive node in the technology. They have these attributes:

"name" is the name of the node prototype. Instances of this primitive node in Electric libraries
reference this name.

•

"fun" describes the node function:
 UNKNOWN
 PIN (pins connect arcs)
 NODE (pure layer nodes)
 CONTACT CONNECT (nodes that connect all arcs)
 TRANMOS TRAPMOS TRA4NMOS TRA4PMOS (CMOS transistors)
 TRADMOS TRA4DMOS (nMOS transistors)
 TRANPN TRAPNP TRA4NPN TRA4PNP (Bipolar transistors)
 TRANJFET TRAPJFET TRA4NJFET TRA4PJFET (JFET transistors)
 TRADMES TRAEMES TRA4DMES TRA4EMES (MESFET transistors)
 TRANS TRANS4 (generic transistors)
 TRANSREF (reference transistors)
 RESIST PRESIST WRESIST ESDDEVICE (resistors)
 CAPAC ECAPAC (capacitors)
 DIODE DIODEZ (diodes)
 INDUCT (inductors)
 METER (meters)
 BASE EMIT COLLECT (Bipolar transistor parts)
 BUFFER GATEAND GATEOR GATEXOR (logic gates)
 FLIPFLOPRSMS FLIPFLOPRSP FLIPFLOPRSN (RS flipflops)
 FLIPFLOPJKMS FLIPFLOPJKP FLIPFLOPJKN (JK flipflops)
 FLIPFLOPDMS FLIPFLOPDP FLIPFLOPDN (D flipflops)
 FLIPFLOPTMS FLIPFLOPTP FLIPFLOPTN (T flipflops)
 MUX (multiplexors)
 CCVS CCCS VCVS VCCS TLINE (two−port gates)
 CONPOWER CONGROUND SOURCE (power/ground)
 SUBSTRATE WELL (implants)
 ART (artwork)
 ARRAY (array nodes)
 ALIGN (alignment nodes)

•

Example:
 <primitiveNode name="Metal−1−Metal−2−Con" fun="CONTACT">

Inside of the <primitiveNode> element are these subelements:

<oldName> optional name of this primitive node in previous versions of the technology. •
<shrinkArcs> flag to shrink arcs connected to the node. This flag should be "on" only for PIN
nodes.

•

<square> flag to restrict the node to be square. It is used in round layout technologies. •

Chapter 8: Creating New Technologies

270 Using the Electric VLSI Design System, version 9.07

<canBeZeroSize> flag to allow the size to become zero (not used in layout technologies). •
<wipes> flag which is not used in layout technologies. •
<lockable> flag which is used in arrayed technologies (like FPGA). •
<edgeSelect> flag which is not used in layout technologies. •
<skipSizeInPalette> flag related to the component menu. •
<notUsed> flag to forbid use of this primtive node in libraries. •
<lowVt> flag to mark a low vt transistor. •
<highVt> flag to mark a high vt transistor. •
<nativeBit> flag to mark a native transistor. •
<od18> flag to mark an od18 transistor. •
<od25> flag to mark an od25 transistor. •
<od33> flag to mark an od33 transistor. •
<diskOffset> tells how sizes were written in older library files. It has this attribute:
"untilVersion" references the "tech" attribute of <version> elements above. This disk offset is applied
to Jelib libraries with Electric version prior to "electric" attribute of that <version> element.
Attributes <x> and <y> are actually half of the values written to Jelib file. So the
"Metal−1−Metal−2−Con" node example shown below will be written:
 5.0 width/height with Jelib prior to Electric version "8.05g";
 4.0 width/height with Jelib prior to Electric version "8.05o";
 0.0 width/height with Jelib in Electric versions since "8.05o".
More formally, let n.extendX and n.extendY be the internal values associated with the node instance
in the Electric database. The values written to library prior to "diskOffset.untilVersion" were

2*(n.extendX + diskOffset.x) and 2*(n.extendY + diskOffset.y).
The <diskOffset> element is necessary only with legacy technologies.
Example:
 <diskOffset untilVersion="1" x="2.5" y="2.5"/>

•

<defaultWidth> and <defaultHeight> factory default values of the node size. The subelement
<lambda> contains the value of extendX/extendY in display units. Usually these elements are
omitted because the default values of extendX and extendY are 0. So, the factory defaults of extendX
and extendY are defaultWidth.lambda and defaultHeight.lambda The factory defaults of BaseWidth
and BaseHeight are

BaseRectangle.width + 2*defaultWidth.lambda
and

BaseRectangle.height + 2*defaultHeight.lambda .
The factory defaults of FullWidth and FullHeight are

FullRectangle.width + 2*defaultWidth.lambda
and

FullRectangle.height + 2*defaultHeight.lambda .

•

<nodeBase> defines the BaseRectangle of the node. It has a subelement <box> which has in it a
subelement <lambdaBox>. In the <lambdaBox>, the attributes "klx", "khx", "kly", and "khy" are the
coordinates of the base rectangle of a standard−size node.

•

<sizeOffset> is deprecated. •
<protection> defines the protection frame of the cell. •
<nodeLayer> a list of NodeLayers (described below). •
<primitivePort> a list of primitive ports on the node. The "name" attribute describes the port name.•

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 271

To make a library conversion from one technology to another it would help to unify port names in
some manner. Port names of single−port nodes are not very important because the library reader can
unambiguously connect arcs to the renamed port. However, port names of transistors could have
compatible names like "poly−top", "poly−bottom", "diff−left", "diff−right". <primtivePort> has these
subelements:

<portAngle> can restrict direction of arcs which can connect to this port ♦
<portTopology> is a small integer that is unique among PrimitivePorts on the
PrimitiveNode. When two PrimitivePorts have the same topology number, it indicates that
these ports are connected.

♦

<box> a rectangle which constraints the position of end point of connected arc ♦
<portArc> a list of primitive arcs from this technology which can connect to this port ♦

Example:
 <primitivePort name="metal−1−metal−2">
 <portAngle primary="0" range="180"/>
 <portTopology>0</portTopology>
 <box>
 <lambdaBox klx="−1.0" khx="1.0" kly="−1.0" khy="1.0"/>
 </box>
 <portArc>Metal−1</portArc>
 <portArc>Metal−2</portArc>
 </primitivePort>

<serpTrans> marks this node as serpentine transistor. It supplies 6 special values. •
<polygonal> marks that this node can be an arbitrary polygon. Usually is not used in layout
technologies.

•

<minSizeRule> overrides the FullRectangle of the node and supplies the name of a minimal size
rule The attributes "width" and "height" describe the size of the FullRectangle. The attribute "rule" is
the name of minimal size rule. By default the FullRectangle is calculated as the minimum bounding
box of all points found in the NodeLayers of a standard primitive node. For the
"Metal−1−Metal−2−Con" node example shown below, the FullRectangle is calculated as a box with
endpoints

[x = −2.0, y = −2.0] and [x = 2.0, y = 2.0].
The FullBox of a node instance with n.extendX and n.extendY is:

[x = FullRectangle.minX − n.extendX, y = FullRectangle.minY − n.extendY]
and

[x = FullRectangle.maxX + n.extendX, y = FullRectangle.maxY + n.extendY]
This may be not accurate if shapes which made the minimum bounding box of the standard−size
node grows more slowly than other shapes when extents are increased. The <minSizeRule> element
defines the FullRectangle manually as a rectangle with its center at the origin. The FullRectangle in
the presence of <minSizeRule> is

[x = −0.5*minSizeRule.width, y = −0.5*minSizeRule.height]
and

[x = +0.5*minSizeRule.width, y = +0.5*minSizeRule.height]
This element defines FullRectangle of the "Metal−1−Metal−2−Con" as

[x = −2.5, y = −2.5] and [x = 2.5, y = 2.5]
Example:
 <minSizeRule width="5.0" height="5.0" rule="8.3, 9.3"/>

•

<spiceTemplate> optional spice template of this node. •

Chapter 8: Creating New Technologies

272 Using the Electric VLSI Design System, version 9.07

Example:
 <primitiveNode name="Metal−1−Metal−2−Con" fun="CONTACT">
 <diskOffset untilVersion="1" x="2.5" y="2.5"/>
 <diskOffset untilVersion="2" x="2.0" y="2.0"/>
 <sizeOffset lx="0.5" hx="0.5" ly="0.5" hy="0.5"/>
 <nodeLayer layer="Metal−1" style="FILLED">
 <box>
 <lambdaBox klx="−2.0" khx="2.0" kly="−2.0" khy="2.0"/>
 </box>
 </nodeLayer>
 <nodeLayer layer="Metal−2" style="FILLED">
 <box>
 <lambdaBox klx="−2.0" khx="2.0" kly="−2.0" khy="2.0"/>
 </box>
 </nodeLayer>
 <nodeLayer layer="Via1" style="FILLED">
 <multicutbox sizex="2.0" sizey="2.0" sep1d="3.0" sep2d="3.0">
 <lambdaBox klx="0.0" khx="0.0" kly="0.0" khy="0.0"/>
 </multicutbox>
 </nodeLayer>
 <primitivePort name="metal−1−metal−2">
 <portAngle primary="0" range="180"/>
 <portTopology>0</portTopology>
 <box>
 <lambdaBox klx="−1.0" khx="1.0" kly="−1.0" khy="1.0"/>
 </box>
 <portArc>Metal−1</portArc>
 <portArc>Metal−2</portArc>
 </primitivePort>
 <minSizeRule width="5.0" height="5.0" rule="8.3, 9.3"/>
 </primitiveNode>

Node Layers

<nodeLayer> elements describe NodeLayers in the primitive nodes. They have these attributes:

"layer" references the layer of the NodeLayer. •
"style" is either "FILLED", "CLOSED" or "CROSSED". Layout nodes should be "FILLED".
"CROSSED" is used only with pins.

•

"portNum" relates a primitive port to this NodeLayer. It is the 0−based index of the
<primitivePort> subelement of <primitiveNodeElement>. It does not correspond to the
"portTopology" attribute of the associated NodeLayer. If you find that auto−stitch behaves strangely,
it is possible that you have set this attribute incorrectly. Negative values mean that this NodeLayer is
not related to any port. If this attribute is omitted, the first primitive port in the list is chosen.

•

"electrical" marks this NodeLayer be used only in either electrical or non−electrical node layers.
For example a transistor's Polysilicon is defined with electrical layers as a gate−poly and two
poly−ends. The same transistor's Polysilicon is defined with one long stripe in non−electrical layers.
If this attribute is omitted, the NodeLayer appears in both electrical and non−electrical lists. This
feature may be removed in future Electric versions. So the recommended style is to define
NodeLayers of a transistor in electrical style and to omit "electrical" attribute in NodeLayers.

•

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 273

Example:
 <nodeLayer layer="Metal−2" style="FILLED">

Inside of the <nodeLayer> element are these subelements:

<box> defines a rectangular shape. It has attributes "klx", "khx", "kly", and "khy". If these attributes
are omitted, their default values are "klx=−1", "khx=1" "kly=−1" "khy=1". There is also a
subelement <lambdaBox> which has attributes "klx", "khx", "kly", and "khy". Attributes of a
<lambdaBox> describe the shape of the NodeLayer on a standard size node. Attributes of a <box>
describe how this shape grows when the node instance is larger than standard. In other words, the
<box> values are multiplied by the node size (and divided by two) and then the <lambdaBox> values
are added to get the coordinates. More formally, let n.extendX and n.extendY be the internal values
associated with the node instance in the Electric database. The shape of the <nodeLayer> with <box>
shape is a rectangle with endPoints:

[x = lambdaBox.klx + n.extendX*box.klx, y = lambdaBox.kly + n.extendY*box.kly]
and

[x = lambdaBox.khx + n.extendX*box.khx, y = lambdaBox.khy + n.extendY*box.khy]
For example, the shape of the "Metal−2" NodeLayer below is a rectangle with endPoints:

[x = −2 − n.extendX, y = −2 − n.extendY] and [x = 2 + n.extendX, y = 2 + n.extendY]
Example:
 <nodeLayer layer="Metal−2" style="FILLED">
 <box>
 <lambdaBox klx="−2.0" khx="2.0" kly="−2.0" khy="2.0"/>
 </box>
 </nodeLayer>

•

<points> is followed by <techPoint> elements which describe vertices of a polygon. <techPoint>
elements have attributes "xm", "xa", "ym", and "ya" which define a point:

[x = techPoint.xa + 2*n.extendX*techPoint.xm, y = techPoint.ya + 2*n.extendY*techPoint.ym]
Notice that meaning of techPoint.xm and techPoint.ym is inconsistent with meanding of box.klx,
box.khx, box.kly, box.khy .

•

<multicutbox> a rectangular region where centers of contact−cuts are placed in a uniformly spaced
array. This is similar to <box>, but it has additional attributes:

"sizex" and "sizey" describe the size of a contact cut. ♦
"sep1d" describes the separation between contact cuts in a one−dimensional array. ♦
"sep2d" describes the separation between contact cuts in a two−dimensional array. ♦

The centers of contact cuts are constrained to be in the box defined by the <lambdaBox> subelement
and multicutbox's attributes "klx", "khx", "kly", and "khy". The NodeLayer of a "Via1" layer on a
standard size node will generate a single contact cut of size 2x2 with the center in origin. When the
n.extendX 2.5 [(2.0 + 3.0)/2] or n.extendY 2.5 then the NodeLayer will generate more contact cuts.
Example:
 <nodeLayer layer="Via1" style="FILLED">
 <multicutbox sizex="2.0" sizey="2.0" sep1d="3.0" sep2d="3.0">
 <lambdaBox klx="0.0" khx="0.0" kly="0.0" khy="0.0"/>
 </multicutbox>
 </nodeLayer>

•

<serpbox> a box used in serpentine transistors. A serpentine transistor consists of many segments of
the transistor gate. Each segment is described when viewed from one end of the segment to the other

•

Chapter 8: Creating New Technologies

274 Using the Electric VLSI Design System, version 9.07

end. Thus, going to the left or right indicates how far from the centerline of the segment the
geometry extends. Going top or bottom indicates how far past the end of the segment the geometry
extends. So, in addition to the attributes found in the <box> element, it has these additional
attributes:

"lWidth" the distance from the centerline to the "left" edge. ♦
"rWidth" the distance from the centerline to the "right" edge. ♦
"tExtent" the extension beyond the "top" point of the centerline. ♦
"bExtent" the extension beyond the "bottom" point of the centerline. ♦

When there are multiple primitive nodes that are similar, a <primitiveNodeGroup> can be used to define
them. A <primitiveNodeGroup> has <primitiveNode> subelements that define the variations among the
primitives in the group. Individual nodes in a <primitiveNodeGroup> can differ from each other only by
name, function, some flags, and their node layers. Specifically:

The <name> and <fun> attributes are moved from the <primitiveNodeGroup> element and appear
inside the <primitiveNode> subelements.

1.

The <oldName>, <lowVt>, <highVt>, <nativeBit>, <od18>, <od25>, and <od33> subelements are
also moved into the <primitiveNode> subelements.

2.

The <nodeLayer> elements inside of a <primitiveNodeGroup> may have an optional <inNodes>
subelement. This subelement defines a list of primitive nodes in the group where this <nodeLayer>
can occur.

3.

Example:
 <primitiveNodeGroup>
 <primitiveNode name="P−Transistor" fun="TRAPMOS"/>
 <primitiveNode name="Thick−P−Transistor" fun="TRAPMOSHV1">
 <od18/>
 </primitiveNode>
 <nodeBase>
 <box><lambdaBox klx="−1.5" khx="1.5" kly="−1.0" khy="1.0"/></box>
 </nodeBase>
 <nodeLayer layer="P−Active" style="FILLED" portNum="1" electrical="true">
 <serpbox kly="1" lWidth="4" rWidth="0" tExtent="0" bExtent="0">
 <lambdaBox klx="−1.5" khx="1.5" kly="1" khy="4"/>
 </serpbox>
 </nodeLayer>
 <nodeLayer layer="Thick−Active" style="FILLED" portNum="−1">
 <inNodes>
 <primitiveNode name="Thick−P−Transistor"/>
 </inNodes>
 <serpbox lWidth="8.0" rWidth="8.0" tExtent="4.0" bExtent="4.0">
 <lambdaBox klx="−5.5" khx="5.5" kly="−8.0" khy="8.0"/>
 </serpbox>
 </nodeLayer>
 <primitivePort name="poly−left">
 <portAngle primary="180" range="90"/>
 <portTopology>0</portTopology>
 <box khx="−1.0">
 <lambdaBox klx="−3.5" khx="−3.5" kly="0.0" khy="0.0"/>
 </box>
 <portArc>Polysilicon−1</portArc>

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 275

 </primitivePort>
 </primitiveNodeGroup>

Foundry

The Foundry section has design rules and GDS layers. The section is usually found at the end of the XML
file. This section starts with:
 <Foundry name="foundryname">

where foundryname is the name of the integrated−circuit manufacturer whose rules are enclosed. The section
ends with </Foundry> .

Each rule in the section has some common attributes:

ruleName gives the name of the rule, used when printing error messages.•
when tells when the rule applies. Most rules apply all the time, in which case the attribute has the
value ALL. If a rule only applies in certain states of the technology, then the when field will limit its
use. For example, the "mocmos" technology has Deep rules which are triggered by when="DE".

•

type tells what kind of rule is being described.
The choices vary with the different rule formats.

•

value tells the value of the rule, which varies
with the type of the rule. If two numbers are
given, they are X and Y values for asymetric
rules.

•

maxW and minLen control the use of spacing
rules in the presence of long and wide wires. If
maxW is given, then at least one of the pieces of
geometry must be that wide. If minLen is
given, then the length of the common parallel
run must be at least that long.

•

Here are the possible rules:
LayerRule is a rule for one or more layers. In addition to the standard attributes, this rule has one or
more layer names to which it applies. The type of information can be MINWID (minimum width of
the layer), MINAREA (the minimum area of the layer), MINENCLOSEDAREA (the minimum area
of any hold in a polygon), SURROUND (minimum extension of a layer beyond another),
DIAGONALVIA (diagonal via rules), or G0CPL (G0 rules). Example:
 <LayerRule ruleName="1.1 Mosis" layerName="{P−Well, N−Well}" when="ALL"
 type="MINWID" value="12.0"/>

•

LayersRule is a rule for the interaction of two different layers. In addition to the standard attributes,
it has the names of the two layers. The type of information can be CONSPA (minimum spacing of
two connected layers), UCONSPA (minimum spacing of two unconnected layers), SPACING
(minimum spacing in both connected and unconnected situations), UCONSPA2D (minimum spacing
of a two−dimensional array of contact cuts), FORBIDDEN (disallowed combination of layers
anywhere in the design), EXTENSION (minimum overlap of a layer extended from another),
SURROUND (minimum extension of a layer beyond another), DIAGONALVIA (diagonal via
rules), or G0CPL (G0 rules). Example:
 <LayersRule ruleName="15.4 Mosis" layerNames="{Metal−3,Metal−3}"

•

Chapter 8: Creating New Technologies

276 Using the Electric VLSI Design System, version 9.07

 when="ALL" type="SPACING" value="6" maxW="100" minLen="0"/>

NodeRule gives rules for Electric nodes. In addition to the standard attributes, it has a node name.
The type of information can be NODSIZ (the minimum size of a node), or FORBIDDEN (the node is
not allowed). Example:
 <NodeRule ruleName="5.2 Mosis" nodeName="Metal−1−Polysilicon−1−Con"
 when="ALL" type="NODSIZ" value="5"/>

•

NodeLayersRule gives rules for specific layers in a single node. In addition to the standard
attributes, it has both layer names and a node name. The type of information can be SURROUND
(for layers in a node) or ASURROUND (for layers in an arc). Example:
 <NodeLayersRule ruleName="2.3 Mosis" layerNames="{P−Well, N−Active}"
 nodeName="N−Transistor" when="ALL" type="SURROUND" value="5"/>

•

In addition to design−rules, the GDS layer assignments are also found in the Foundry section. Each GDS
layer line has this format:
 <layerGds layer="XXXX" gds="YYYY"/>

Where XXXX is the layer name and YYYY is the GDS information for that layer. The GDS information can
include multiple layer numbers, for example "21,49,98". GDS layers can have type information if separated
by a slash, for example layer 14 type 141 is "21/141". GDS layers can be used for Pins (export locations) and
Text (export names) by appending a "p" or "t" to the layer number, for example "21,49p,74/2t". Example:
 <layerGds layer="Metal−1" gds="49,80p,80t"/>

 <layerGds layer="Metal−2" gds="41/40,141p"/>

 <layerGds layer="Metal−3" gds="98"/>

Defines Metal−1 to be on GDS layer 49, or 80 for pins or text; defines Metal−2 to be on GDS layer 41, type
40 or on layer 141 for pins; and defines Metal−3 to be on GDS layer 98.

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 277

8−11: The Technology Creation Wizard

The technology creation
wizard generates a new
technology from a few
simple parameters. To start
it, use the Technology
Creation
Wizard... command (in
menu Edit / Technology
Editing). The wizard has a
set of panels that describe
various aspects of the
technology. The first panel
that appears, "General"
describes the wizard and
requests some basic
information.

The Unit size is the number of nanometers per grid square. The Resolution is the smallest feature size
allowed. The "Psubstrate process" controls well generation. The "Horizontal transistors" controls the
orientation of transistors.

The values in these panels can be saved into a text file with the "Save Parameters" button and restored from
disk with the "Load Parameters" button. When all parameters have been filled−in, use the "Write XML"
button to generate an XML file for the technology. This file can then be installed into Electric with the
Added Technologies Preferences panel (see Section 8−2 for more). Due to the constant extension of the
technology wizard capabilities, not all features are reflected in the GUI but they can be described in same text
file. See to the "Importing Data from a Text File" section below for more information.

Chapter 8: Creating New Technologies

278 Using the Electric VLSI Design System, version 9.07

#chap08-02

The "Active" panel lets
you specify size and
spacing values for the
Active layer. Note that
all sizes are in
nanometers. For
example, if the Active
Width (A) is set to 200,
and the Unit size (in the
General panel) is set to
100, then Active arcs
will be 2 units wide.
The "Rule Name" fields
let you describe the rule
so that the design−rule
checker can report error
names.

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 279

The "Poly" panel
lets you specify
size and spacing
values for the
Polysilicon layer.
The "Rule Name"
fields let you
describe the rule so
that the design−rule
checker can report
error names.

The "Gate" panel lets
you specify size and
spacing values for the
Polysilicon layer in
transistors. The "Rule
Name" fields let you
describe the rule so that
the design−rule checker
can report error names.

Chapter 8: Creating New Technologies

280 Using the Electric VLSI Design System, version 9.07

The "Contact" panel
lets you specify size
and spacing values for
the Contact layer. The
"Rule Name" fields
let you describe the
rule so that the
design−rule checker
can report error
names. Note that
"inline" spacing is for
one−dimensional
arrays of contacts and
"array" spacing is for
two−dimensional
arrays.

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 281

The "Well/Implant"
panel lets you specify
size and spacing values
for the Well and
Implant layers. The
"Rule Name" fields let
you describe the rule so
that the design−rule
checker can report
error names.

Chapter 8: Creating New Technologies

282 Using the Electric VLSI Design System, version 9.07

The "Metal" panel lets
you specify size and
spacing values for the
Metal layer. You can
change the number of
Metal layers with the
"Add Metal" and
"Remove Metal"
buttons. The number
of metal layers should
be established in this
panel before using
subsequent panels that
depend on this. The
"Rule Name" fields
let you describe the
rule so that the
design−rule checker
can report error
names.

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 283

The "Via" panel lets
you specify size and
spacing values for the
Via layer. A popup lets
you select the desired
via. Note that the
"Metal" panel should be
completed before
filling−in this panel so
that the proper number
of via layers is shown.
The "Rule Name" fields
let you describe the rule
so that the design−rule
checker can report error
names.

Chapter 8: Creating New Technologies

284 Using the Electric VLSI Design System, version 9.07

The "Antenna" panel lets you
specify antenna ratios for all
layers. Note that the "Metal"
panel should be completed before
filling−in this panel so that the
proper number of metal layers is
shown. The values here are the
maximum ratio of polysilicon
and metal layers to the area of
connected transistors. For
example, if the Metal−1 ratio is
200, then it is an error to have
Metal−1 connected to transistors
if the area of the Metal−1 is more
than 200 times the area of the
transistors. See Section
9−3−2 for more on antenna ratio
checking.

The "GDS" panel lets
you specify GDS layer
numbers for all layers.
Note that the "Metal"
panel should be
completed before
filling−in this panel so
that the proper number
of metal layers is
shown.

Importing Data from a Text File

This section details features not covered by the Technology Creation Wizard GUI. These features are defined
in the same text file used to backup the panel values. Once they are uploaded into Electric with the "Load
Parameters" button, the new features will be included in the XML file describing the technology (after
pressing the "Write XML" button). You can edit the Parameters file and add these commands:

@extra_layer allows you to add non−standard layers to a given technology. New layers have a
name, and a list of attributes, separated by ":"

1.

Chapter 8: Creating New Technologies

 Using the Electric VLSI Design System, version 9.07 285

#chap09-03-02
#chap09-03-02

Format: @extra_layer = (<layer name>, attribA=<valueA>:attribB=<valueB>)

The possible attributes are:

G: GDS number♦
C: Layer color and pattern♦
F: Layer function♦
W: Layer width♦
S: Layer spacing rule♦
M: Layer min. width rule♦
A: Enables layer arc♦
T: Layer thickness♦
H: Layer height for 3D view♦

Example: @extra_layer = (LayerA,

G=1:C=[0.0.255.{32896/16448/8224/4112/2056/1028/514/257/32896/16448/8224/4112/2056/1028/514/257}]:F=METAL2:W=1:A:S={2/"LayerA
Rule1"}:M={3/"LayerA Rule2"}:T=4:H=1);

@metal_contacts_series is an alternative method to define the typical metal contacts. In this case,
the two metal contact sizes are defined and the system will include the corresponding via. Since DRC
rules are identical for a group of metals, a set of metal pairs can be specified for the same rules. This
method allows to defined crossed contacts or zero−enclosure contacts.

2.

Format: @metal_contacts_series = [(metalALayerValueX, "metalALayerRuleX",

metalALayerValueY, "metalALayerRuleY")(metalBLayerValueX, "metalBLayerRuleX",
metalBLayerValueY, "metalBLayerRuleY")][{metalA#,metalB#}...{,}];

Example: @metal_contacts_series = [(30, "VIAx.EN.2", 30, "VIAx.EN.2")(30,

"VIAx.EN.2", 30, "VIAx.EN.2")][{1,2}{3,2}{3,4}{5,4}];

@nomulti_contacts_series defines contacts that do not add extra cuts when large; they always have
just one cut, centered in the middle. There is no limit in the number of layers however the last layer
is considered the cut of the contact.

3.

Format: @nomulti_contacts_series = [(firstLayerValueX, "firstLayerRuleX",

firstLayerValueY, "firstLayerRuleY")...(nLayerValueX, "nLayerRuleX",
nLayerValueY, "nLayerRuleY")][{firstLayerName,...,nLayerName}];

Example: @nomulti_contacts_series = [(−40000, "ZeroSize", −40000,

"ZeroSize")(5000, "Given.Ext", 5000, "Given.Ext")(40000, "Given.CutSize", 40000,
"Given.CutSize")][{Metal−1,RDL,AL_PAD}];

Chapter 8: Creating New Technologies

286 Using the Electric VLSI Design System, version 9.07

Chapter 9: Tools

9−1: Introduction To Tools

There are many different tools available in Electric for doing both synthesis and analysis of circuitry.
Synthesis tools include routers, compactors, circuit generators, and so on. Analysis tools include design−rule
checkers, network comparison, and many simulators. To see a list of tools, including which ones are active,
use the List Tools command (in menu Tools). This chapter covers many of the tools available in Electric.

When a tool is running, it may take a long time. You can see it under the "JOBS" entry of the cell explorer
(see Section 4−5−2). After a tool has run, it may report errors in the ERRORS section of the cell explorer. To
browse these errors, use the Show Next Error and Show Previous Error commands (in menu Edit /
Selection) or type the ">" and "<" keys. To force an error to be shown in the current window instead of
popping−up a new window for each cell, use Show Next Error, same Window and Show Previous Error,
same Window (the "[" and "]" keys). There are also display preferences to control error display (in menu
File / Preferences..., "Display" section, "Display Control" tab, see Section 4−3): "Show cell results in new
window" forces errors to display in a different window for each different cell; "Shift window to show errors"
pans and zooms the window to focus on each new error. If an error involves multiple objects, use Show
Single Geometry (the "/" key) to cycle through them individually. Use Show Current Collection of
Errors to highlight all errors.

A number of common tool controls are available in the General Preferences (in menu File / Preferences...,
"General" section, "General" tab), especially in the "I/O" and "Jobs" section.

The I/O section lets you control the reading and writing of files. Most of the commands to generate an input
deck for a simulator (a netlist) prompt the user for the desired file. If "Show file−selection dialog before
writing netlists" is unchecked, however, the file is written (or overwritten) without prompt. This is useful in
repetitive iterations of design/simulate, and saves the cumbersome file−selection dialog. However, it can be
dangerous because it overwrites files without asking.

When reading and writing files, Electric remembers the last directory and uses it in subsequent file selection
dialogs. Since different types of files are often stored in different locations, the system remembers many
different directories, organized by type. Thus, there may be a current directory for "Database" work (library
files), for Spice simulation, etc. Choose the type of file to examine and change the directory associated with
it.

In the "Jobs" section, "Beep after long jobs" requests that any job which runs longer than a minute make a
beep sound when done. The "Verbose mode" requests that all changes made by a job be described in the
messages window.

You can set the maximum number of errors that will be reported at once. By default, there is no limit to the
number of errors.

 Using the Electric VLSI Design System, version 9.07 287

#chap04-05-02
#chap04-03

For more information about "Maximum undo history", see Section 6−7.

The "Logging Options" section controls Electric log files. By default, log files are placed in the system's
temporary directory (java.io.tmpdir), but this can be disabled by unchecking "Enable logging." By
default, only one log file is created which is overwritten in subsequent Electric sessions. Checking "Multiple
logs" causes each log file to have a unique name so that multiple files are saved.

For more information about the "Memory" section, see Section 1−3.

The "Database"
section controls
aspects of the Electric
database that do not
affect most users.
Electric can run as
two processes: a client
that manages the
display and a server
that manages the
database. By checking
"Use Client / Server
interactions", Electric
will use this
experimental
configuration.
Checking "Snapshot
Logging" requests
debugging
information on the
client/server
interactions.

Chapter 9: Tools

288 Using the Electric VLSI Design System, version 9.07

#chap06-07
#chap01-03

9−2: Design Rule Checking (DRC)

9−2−1: Introduction to DRC

There are three built−in design−rule checkers: incremental, hierarchical, and schematic. After analysis of the
circuit, you can review the errors by typing ">" and "<" to step to the next and previous error that was found.
You can also see a list of errors in the cell explorer (see Section 4−5−2).

Incremental DRC

The incremental design−rule checker is always running, examining your layout, and issuing error messages
when an error is detected. It checks only the current cell, and does not consider the contents of cell instances,
lower in the hierarchy. It therefore offers an instant analysis, but not a complete one.

The incremental DRC also shows simple design−rules violations when a node or arc is being moved. See
Section 2−4−1 for more on this.

Hierarchical DRC

The hierarchical design−rule checker uses the same rules and techniques as the incremental checker, but it
checks all levels of hierarchy below the current cell. To run it, use the Check Hierarchically command (in
menu Tools / DRC). To check only a selected subset of the current cell, use Check Selection
Hierarchically.

When checking hierarchically, it may be the case that a cell is not designed to be checked in isolation, but
must have higher levels of the hierarchy considered. For example, notches in the well areas may be covered
at higher levels of hierarchy. When this happens, tell the DRC to ignore the cell by using the command Add
Skip Annotation to Cell.

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 289

#chap04-05-02
#chap02-05-01

Schematic DRC

The schematic design−rule checker looks for issues that make drawing or editing of the cell difficult. These
are the errors that is finds:

Nodes:
Nodes whose parameters don't match the cell definition (check export names, units, and
visibility).

♦

"Stranded" pins: with no connections, exports, or attached text.♦
"Inline" pins: those that sit in a line between two arcs (both of which could be replaced by a
single straight arc).

♦

Nodes whose ports touch but are not connected.♦
Invisible pins with text that is offset from the node center (this is an internal consistency
check).

♦

Nodes whose names are the same as network names in the cell.♦
Schematic exports whose characteristics are different from the equivalent export in the icon.♦

1.

Arcs:
Unnamed arcs that "dangle": one end is unconnected and unexported (does not apply to
busses).

♦

Arcs that end on another arc without connecting to them.♦
Bus arcs whose width is inconsistent with its two nodes.♦
Bus pins that "float": do not connect to bus arcs and are not exported.♦
Bus taps that connect to a wire which is not part of the bus.♦
Bus pins that connect to more than 1 wire.♦
Network names that differ only by their case (i.e. networks "A" and "a" are actually different
networks).

♦

2.

Chapter 9: Tools

290 Using the Electric VLSI Design System, version 9.07

9−2−2: DRC Preferences

To control the DRC,
use the DRC
Preferences (in menu
File / Preferences...,
"Tools" section,
"DRC" tab).

By default, the
incremental
design−rule checker
is on. To turn it off,
uncheck the "On"
checkbox in the
"Incremental DRC"
section. You can also
control the
incremental display
of design−rule
violations that occurs
when moving nodes
and arcs (see Section
2−4−1).

There are three levels of checking that can be requested for the Hierarchical DRC. Each level of checking
consumes more time and finds more errors.

"Report just 1 error per cell" tells the system to stop checking a cell after the first error has been
found. By using this option, you can more quickly determine which cells in the design are correct,
without knowing exactly where the errors lie. Then, you can go to the cells with errors and do a more
complete check.

•

"Report just 1 error per pair of geometries" is the default. The algorithm works by checking design
rules per each possible pair of geometries and it stops when the first violation for a given pair is
found in this mode.

•

"Report all errors" tells the system to continue checking all possible violations in a pair of
geometries, even if an error has already been found. This is the exhaustive mode and therefore time

•

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 291

#chap02-04-01
#chap02-04-01

consuming that will report all violations found.

Hierarchical errors appear in the cell explorer (see Section 4−5−2). Since there can be many errors involving
many different rules, you can control how they appear by setting "Report Errors" to:

"By Cell" creates a separate error section for each cell. This is the default.•
"By Rule" creates a separate error section for each different design rule.•
"Flat" creates a single error section with all errors.•

Users with multiprocessor computers can check "Multi−threaded DRC" to speed−up the hierarchical
design−rule checking process.

The design−rule checker remembers the date of the last clean check. If a cell has not changed since then, it
does not need to be rechecked. This date information can be stored in the libraries (requiring them to be
saved) or can be held only in Electric's memory (requiring them to be rechecked if Electric is restarted). You
can also request that all date information be removed so that a full recheck is done. To see which cells have
passed DRC, use the General Cell Lists... command (in menu Cell / Cell Info) A "D" is shown in on the
right for cells that are DRC current (see Section 3−7−1).

MOS contact nodes automatically increase the number of cuts when they grow larger (see Section 7−4−1).
Because of this, very large contact nodes can create excessive work for the design−rule checker as it
examines each of the cuts. To save time, check the "Ignore center cuts in large contacts" check box, which
will examine only the cut layers around the edges of contact nodes.

DRC rules for new technologies might require special rules, which can be time consuming. To ignore these
errors, check "Ignore area checking" (for minimum area rules) and "Ignore extension rules" (for special
overlap rules).

After DRC is complete, errors are available in the the cell explorer. If you wish to see errors while DRC is
running, check "Interactive logging", and the errors will appear incrementally.

The final DRC control is how minimum area detection is done. Setting "MinArea Algorithm" to "Simple"
uses an algorithm that is slower. Setting "MinArea Algorithm" to "Local" uses an algorithm that is faster but
consumes more memory.

Chapter 9: Tools

292 Using the Electric VLSI Design System, version 9.07

#chap04-05-02
#chap03-07-01
#chap07-04-01

9−2−3: Design Rules

Four types of errors are detected by the incremental and hierarchical design−rule checkers. Spacing errors are
caused by geometry that is too close, but not connected. Notch errors are caused by geometry that is too
close, but connected. Minimum size errors are caused by geometry that is too small. Resolution errors are
caused by geometries that are smaller than a specified limit.

In addition to examining geometry, the design−rule checkers use connectivity information to help find
violations. This use of network information helps the designer to debug circuit connectivity. For example, if
two overlapping nodes are not joined by an arc, they may be considered to be in violation, even if their
geometry looks right. This is because the checkers know what is connected and have a separate set of rules
for such situations.

To help guide the design−rule checker, an "exclusion" layer can be placed over areas that are not to be
examined. This exclusion layer is created by clicking the "Misc." entry of the component menu and selecting
"DRC Exclusion" (see Section 7−6−3). Any errors that fall inside of this node's area are ignored.

To edit the design rules, use the Design Rules Preferences (in menu File / Preferences..., "Technology"
section, ""Design Rules" tab). The dialog allows you to examine and modify the spacing limits for the current
technology. Each rule has a numeric value (size or distance) as well as a textual description of the rule. The
dialog is divided into two parts: "Node Rules" and "Layer Rules".

In the "Node Rules" section, you may set the minimum size of each node in the current technology.

In the "Layer Rules" section, you may set the minimum size, area, and enclosure area of each layer. You may
also set the inter−layer spacing (between the "From Layer" and the "To Layer"). Use the "Show only 'to'
entries with rules" to restrict the displayed rules to those with valid values.

The layer−to−layer spacing rules appear in 3 forms: normal, wide, and multicut. Normal rules come in three
flavors: connected, unconnected, and edge. The connected rules apply to pieces of geometry that are
electrically connected; the unconnected rules apply to unconnected geometry; edge rules apply to
unconnected layers and ignore overlap when considering spacing distance.

The wide rules apply to large geometry. Although some technologies may have many different rules for
different definitions of "large", the MOSIS CMOS technology has only one such rule. Additional rules can be
controlled with the "Add Wide Rule" and "Delete Wide Rule" buttons.

The bottom of the dialog has a "Min resolution" field, which is the minimum resolution that can be
manufactured.

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 293

#chap07-06-03

If zero, no resolution
check is done. When
checking resolution,
all geometry of that
size or less will be
flagged as resolution
errors. For example,
current MOSIS rules
require that no
boundaries be
quarter−unit or less,
so a value of .25 in
this field will detect
such violations.

When rules have
been changed, they
are saved with your
Preferences. To save
them independently
of the Preferences,
use the Export DRC
Deck... command (in
menu Tools / DRC)
to write an XML file
with the design rules.
Use the Import DRC
Deck... command to
restore these rules.

Note that the MOSIS CMOS design rule 6.7b is not checked by Electric because it is difficult to detect
properly. This error is never fatal, and the worst case of missing this error is that active and poly are closer by
1/2 grid unit, which merely results in an increase in capacitive coupling between them. If this fringing
capacitance is important, you've probably got so much polysilicon in your circuit that it has bigger problems.

9−2−4: Coverage Rules

Some foundries request that each layer occupy a minimum percentage of the chip. To enforce such rules,
additional pieces of geometry must be placed around the chip to fill that layer.

Chapter 9: Tools

294 Using the Electric VLSI Design System, version 9.07

To check for proper minimum
layer coverage, use the Check
Area Coverage command (in
menu Tools / DRC). To control
the coverage rules, use the
Coverage Preferences (in menu
File / Preferences..., "Tools"
section, "Coverage" tab). Each
layer in the technology has a
minimum percentage of coverage
that is needed.

The coverage check proceeds in
a "tiled" manner, checking
rectangular areas of the cell. For
example, to check each 100x100
unit area of the cell, set "Width"
and "Height" to 100, and set
"DeltaX" and "DeltaY" to 100.

The List Layer Coverage on Cell command is another way to compute the percentage of the cell that is
covered by each layer. This command examines the entire cell without breaking it into tiled rectangles.

Use the Fill (MoCMOS)... command (in menu Tools / Generation) to automatically generate fill (see
Section 9−8−2).

9−2−5: Assura and Calibre DRC

Electric is able to read the output of Cadence's Assura and Mentor's Calibre design−rule checkers.

Assura error files (with the extension ".err") can be read with the Import Assura DRC Errors for Current
Cell... command (in menu Tools / DRC).

Calibre error files (with the extension ".db") can be read with the Import Calibre DRC Errors for Current
Cell... command.

After reading the error file, you can review the errors by typing ">" and "<" to step to the next and previous
error that was found. You can also see a list of errors in the cell explorer (see Section 4−5−2).

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 295

#chap09-08-02
#chap04-05-02

9−3: Electrical Rule Checking (ERC)

9−3−1: Well and Substrate Checking

To check the well and substrate layers, use the Check Wells command (in menu Tools / ERC). This does a
more thorough job of checking the layers than the design−rule checker.

After analysis is done, you can review the errors by typing ">" to see the next error and "<" to see the
previous error. You can also see the list of errors in the cell explorer (see Section 4−5−2).

You can control the Well Checker with the Well Check Preferences (in menu File / Preferences..., "Tools"
section, "Well Check" tab).

The Well Checker makes sure that there are well contacts in every area of well. The dialog allows you check
for just 1 well contact in each cell, or not to check for contacts at all.

Chapter 9: Tools

296 Using the Electric VLSI Design System, version 9.07

#chap04-05-02

The Well Checker also checks that there is a connection to power and ground in the appropriate places. You
can disable these checks in the "Well Check" dialog.

An additional well check is to find the farthest distance from a substrate contact to the edge of that area. This
check takes more time to do, and so it can be disabled.

The Well Checker can check spacing rules between well areas. Although this is generally the domain of the
Design Rule Checker (DRC), it can be requested here by checking "Check DRC Spacing Rules for Wells".
Since the well checker has not been designed for DRC purposes, the algorithm is not efficient and therefore
the option is off by default.

Finally, the Well Checker is able to use multiple processors to speed up its task. This can be disabled, or the
number of processors can be reduced with the "Use multiple processors" checkbox and field.

9−3−2: Antenna Rule Checking

Antenna rules are required by some IC manufacturers to ensure that the transistors of the chip are not
destroyed during fabrication. In such processes, the wafer is bombarded with ions in order to create the
polysilicon and metal layers. These ions must find a path through the wafer (to the substrate and active layers
at the bottom). If there is a large area of poly or metal, and if it connects ONLY to gates of transistors (not to
source or drain or any other active material) then these ions will travel through the transistors. If the ratio of
the poly or metal layers to the area of the transistors is too large, the transistors will be destroyed.

To check for antenna rule violations, use the Antenna Check command (in menu Tools / ERC). After
analysis is done, you can review the errors by typing ">" to see the next error and "<" to see the previous
error. You can also see the list of errors in the cell explorer (see Section 4−5−2).

You can control the Antenna
Checker with the Antenna
Rules Preferences (in menu
File / Preferences..., "Tools"
section, "Antenna Rules"
tab). The dialog lets you
modify the required ratio of a
layer (poly or metal) to the
transistor area.

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 297

#chap04-05-02

9−4: Simulation Interface

9−4−1: Introduction to Simulation

Electric has two built−in simulators: IRSIM (see Section 9−5−1) and ALS (see Section 9−5−2). It also can
generate decks for many other simulators. The ability to interface to external simulators is controlled with the
Tools / Simulation (Spice), Tool / Simulation (Verilog), and Tools / Simulation (Others) menus.

Be aware that the Electric distribution does not come packaged with these external simulators. You must get
your own copy of Spice, Verilog, or any other simulator mentioned here.

Electric can write netlists for these simulators:

Simulator Level Netlist Command

CDL circuit Tools / Simulation (Spice) / Write CDL Deck...

COSMOS switch Tools / Simulation (Others) / Write COSMOS Deck...

ESIM/RNL switch Tools / Simulation (Others) / Write ESIM/RNL Deck...

FastHenry inductance Tools / Simulation (Others) / Write FastHenry Deck...

IRSIM switch Tools / Simulation (Others) / Write IRSIM Deck...

Maxwell circuit Tools / Simulation (Others) / Write Maxwell Deck...

MOSSIM switch Tools / Simulation (Others) / Write MOSSIM Deck...

PAL gate Tools / Simulation (Others) / Write PAL Deck...

RSIM switch Tools / Simulation (Others) / Write RSIM Deck...

SILOS functional Tools / Simulation (Others) / Write SILOS Deck...

Spice circuit Tools / Simulation (Spice) / Write Spice Deck...

Tegas functional Tools / Simulation (Others) / Write Tegas Deck...

Verilog functional Tools / Simulation (Verilog) / Write Verilog Deck...

For more control of netlist generation, see Section 3−9−3.

For more information on Spice, see Section 9−4−3; for Verilog, see Section 9−4−2; and for FastHenry, see
Section 9−4−5.

Chapter 9: Tools

298 Using the Electric VLSI Design System, version 9.07

#chap09-05-01
#chap09-05-02
#chap03-09-03
#chap09-04-03
#chap09-04-02
#chap09-04-05

9−4−2: Verilog

Electric can produce input decks for Verilog simulation with Write Verilog Deck... command (in menu
Tools / Simulation (Verilog)). For VerilogA format, use the Write VerilogA Deck... command. After this
has been done, you must run Verilog externally to produce a ".dump" file. Note that the Electric distribution
does not come with a Verilog simulator: you must obtain it separately.

After running a Verilog simulation, you can read the ".dump" file into Electric and display it in a waveform
window. This is done with the Plot Simulation Output, Choose File... command (in menu Tools /
Simulation (Verilog)). You can also use the Plot Simulation Output, Guess File command if the cell name
and file name are the same. The Verilog simulation information is then shown in a digital waveform window
(see Section 4−11 for more). Electric also understands the output of Modelsim and can plot it.

Before generating Verilog decks, it is possible to annotate circuits with additional Verilog text that will be
included in the deck. To add Verilog code to this cell, select "Verilog Code" under the "Misc." entry in the
component menu of the side bar. To add a Verilog declaration in this cell, select "Verilog Declaration" under
the "Misc." entry in the component menu. To add a Verilog parameter to this cell, select "Verilog Parameter"
under the "Misc." entry in the component menu. To add external Verilog code, outside of this cell, select
"Verilog External Code" under the "Misc." entry in the component menu. These pieces of text can be
manipulated like any other text object (see Section 6−8−1 on text). For an example of Verilog layout and
code, look at the cell "tool−SimulateVERILOG" in the Samples library (get this library with the Load
Sample Cells Library command, in menu Help).

Additional control of Verilog deck generation is accomplished with the Verilog Preferences (in menu File /
Preferences..., "Tools" section, "Verilog" tab).

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 299

#chap04-11
#chap06-08-01

The left side is the Verilog Project Preferences which has two controls:

"Use ASSIGN Construct" lets you choose whether or not to use the Verilog "assign" construct.•
"Default wire is Trireg" lets you control the type of Verilog declaration that will be used for wires
("wire" by default, "trireg" if checked). Note that this can be overridden with the Set Verilog
Wire command (in menu Tools / Simulation (Verilog)).

•

Another property that can be assigned to transistors is their strength. The Weak command (in menu Tools /
Simulation (Verilog) / Transistor Strength) sets the transistor to be weak. The Normal command restores
the transistor to be normal strength.

Still more control of Verilog deck generation is accomplished with the Verilog User Preferences in the right
side of the dialog.

"Run Placement after import" requests that the Placement tool be used to organize components after
reading Verilog (see Section 9−13 for more on Placement).

•

"Make Layout Cells (not Schematics)" requests that conversion from Verilog to circuitry produce
layout instead of schematics. The difference is that layout has unrouted arcs for connectivity and
breaks busses into their individual components.

•

"Do not netlist Standard Cells" writes a netlist that excludes Standard Cells. Any cell marked as a
Standard Cell will be netlisted only as instances, but no module definition will be written. This
allows Standard Cell based simulation or Static Timing Analysis to be performed on the netlist. See
Section 3−7−3 for more on marking cells as "standard cells".

•

"Netlist Non−Standard Cells" allows you to write Standard Cell Verilog netlists that include
non−Standard Cells.

•

"Preserve Verilog formatting" keeps the indentation and other formatting of all inserted text.•
"Parameterize Verilog module names" causes Verilog deck generation to create multiple Verilog cell
descriptions when the cells are parameterized.

•

"Write Separate Module for each Icon" requests that schematic cells with multiple icons be written
multiple times to the Verilog deck, once for each icon variation. This preserves the hierarchical
structure of the circuit, but creates duplicate modules.

•

"Do not include empty modules" requests that empty cells be dropped from the Verilog output.•

Chapter 9: Tools

300 Using the Electric VLSI Design System, version 9.07

#chap09-13
#chap03-07-03

A final set of Verilog controls can be found in the Verilog Model Files Preferences (in menu File /
Preferences..., "Tools" section, "Verilog Model Files" tab). The Verilog Model Files Preferences dialog lets
you control how each cell is represented in the Verilog.

The default is to construct the Verilog from the actual cell contents. If there is an equivalent layout cell, it can
be used (instead of the schematic). You can also choose to use the "Verilog" view, which contains Verilog
text for that cell. Finally, you can request that an external model file be used. These choices allow you to
create your own definitions in situations where the derived Verilog would be too complex or otherwise
incorrect.

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 301

9−4−3: Spice

Electric can produce input decks for Spice simulation with the Write Spice Deck... command (in menu
Tools / Simulation (Spice)). Since there are may formats of Spice output, you must first set the "Spice
Engine" field of the Spice/CDL Preferences (in menu File / Preferences..., "Tools" section, "Spice/CDL"
tab). After the Spice deck has been written, you must run Spice externally to produce a simulation output file.
Note that the Electric distribution does not come with a Spice simulator: you must obtain it separately.

After Spice has finished running, use the Plot Simulation Output, Guess File command (in menu Tools /
Simulation (Spice)) to read the Spice output and plot the waveforms. If the file cannot be guessed from the
cell name, you can use Plot Simulation Output, Choose File..., to select the desired Spice output file. The
Spice simulation information is shown in a waveform window (see Section 4−11 for more).

Special Spice Nodes

There are many powerful
facilities for running Spice
with Electric. The example
shown here illustrates some of
these facilities. This example
is available in the Samples
library as cell
"tool−SimulateSpice" (you can
read the library with the Load
Sample Cells
Library command, in menu
Help).

All input values to Spice are
controlled with special nodes,
found in the "Spice"
component menu entry. Note
that the first time any Spice
node is placed, the library of
Spice parts is loaded into
Electric, so there may be a
delay.

Chapter 9: Tools

302 Using the Electric VLSI Design System, version 9.07

#chap04-11

The Spice nodes described here are Electric's default set. However, additional sets can (and have) been
written. To choose another set, use the Spice/CDL Preferences (in menu File / Preferences..., "Tools"
section, "Spice/CDL" tab). Under the setting "Spice primitive set", choose another set. A second set of nodes,
called "SpicePartsS3", is tailored towards special Spice3.

In this example, there is a 5−volt supply on the
left. It was created by using the "DC Voltage"
entry under "Spice" entry of the component
menu. Once placed, the text that reads
"Voltage=0V" can be selected and modified
(either with Object Properties... or by
double−clicking on it). The Pulse input signal on
the right is created with the "Pulse" entry under
"Spice" (it has 7 parameters).

There are both voltage and current sources, in
AC and DC form. There is a piecewise−linear
(PWL) source, and two pulses (voltage and
current). A set of "two−gate" devices are also
available: "CCCS", "CCVS", "VCCS", "VCVS",
and "Transmission".

It is possible to specify Transient, DC, or AC
analysis by using the "Transient Analysis", "DC
Analysis", and "AC Analysis" subcommands.
The "Probe" lets you graphically specify signals
of interest to Spice. Only one such element may
exist in a circuit.

For advanced users, there are two special Spice nodes: "Node Set" and "Extension". The Node Set may be
parameterized with an arbitrary piece of Spice code. Truly advanced users may create their own Spice nodes
by modifying the cells in the Spice library (see next Section).

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 303

#chap09-04-04

Spice Text

This example also shows the ability to add arbitrary text to the Spice deck, as shown in the lower−right. To
create this text, use the "Spice Code" or "Spice Declaration" entries under the "Misc." button in the
component menu. These command create text that can be modified arbitrarily. Whatever the text says will be
added to the Spice deck (declarations go near the top).

Another option that can be used when modeling transistors and other component is to set a specific Spice
model to use for that component. To set a node's model, select it and use the Set Spice Model... command (in
menu Tools / Simulation (Spice)).

The Add Multiplier subcommand places a multiplier on the currently selected node. Multipliers (also called
"M" factors) scale the size of transistors inside of them.

Another piece of text that can be added to a circuit is for separate flattened analysis files. This is useful for
Nanosim timing assertions, hierarchical measurements, etc. The Add Flat Code subcommand places a piece
of text in the circuit that will be flattened and written to a separate file with the "flatcode" extension.
Flattening adds global scope to these statements. For example, if you place a Nanosim timing assertion in a
cell with the flat code

tv_node_setuphold $(clk) rf $(in) rf 100p 100p

and there are 3 instances of the cell, then there will be 3 flattened assertions in the flatcode file:
tv_node_setuphold xtop.xflop1.clk rf xtop.flop1.in rf 100p 100p

tv_node_setuphold xtop.xflop2.clk rf xtop.flop2.in rf 100p 100p

 tv_node_setuphold xtop.xflop3.clk rf xtop.flop3.in rf 100p 100p
If clk is actually a single signal that comes from the top level, it is smart enough to recognize this:

tv_node_setuphold clk rf xtop.flop1.in rf 100p 100p

tv_node_setuphold clk rf xtop.flop2.in rf 100p 100p

tv_node_setuphold clk rf xtop.flop3.in rf 100p 100p

Chapter 9: Tools

304 Using the Electric VLSI Design System, version 9.07

Spice/CDL Preferences

Some nongraphical information can also be given to the Spice simulator with the Spice/CDL Preferences (in
menu File / Preferences..., "Tools" section, "Spice/CDL" tab).

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 305

The top part of this dialog allows you to control Spice deck generation:

Spice engine Can be Spice 2, Spice 3, HSpice, PSpice, Gnucap, SmartSpice, Spice Opus, Xyce,
HSpice for Assura, or HSpice for Calibre.

•

Spice level Can be 1, 2, or 3 (not used anymore).•
Resistor shorting Specifies which resistors get shorted when writing a Spice netlist from a
schematic. Choices are:

"none" no resistors are shorted. This preserves all resistors (useful for simulations).♦
"normal only" only normal schematic resistors are shorted. This is useful when running
external LVS tools like Calibre and Assura against a Spice netlist because it shorts out
parasitic resistors (such as from wire models) but preserves poly resistors which are actual
devices in the layout.

♦

"normal and poly" both normal and poly schematic resistors are shorted. This is available
only because the Verilog netlister uses the same netlisting subsystem; it is unlikely that you
will want this setting for Spice netlisting.

♦

•

Parasitics Controls the writing of parasitics in the Spice deck. Choices are:
"Trans area/perim only" which writes the area and perimeter of transistor active but does not
write any Resistor/Capacitor information.

♦

"Conservative RC" writes Resistor/Capacitor information (in addition to the area/perimeter).♦

•

Globals Has three options for the treatment of global signals (such as power and ground):
"No special treatment" causes globals to be treated like other signals.♦
"Use .GLOBAL block" places global signals in a .GLOBAL block (not supported by all
versions of Spice).

♦

"Create .SUBCKT ports" causes globals to be added to .SUBCKT headers as explicit ports.
Note that this preference should be used when Global Partitions are in use (see Section
6−9−5).

♦

•

Spice primitive set Switches between Spice primitive sets. Currently there are only two: "spiceparts"
and "spicepartsG3".

•

Max chars per line: Sets the maximum number of characters that will be written on a single line of
SPICE output. Lines longer than this will be split into multiple lines.

•

Write VDD/GND in top cell Whether to write power and ground signals in the top−level cell.•
Use cell parameters When set, any parameters defined on a cell will be turned into a Spice
parameter (this assumes that your Spice engine can handle parameters). When not checked, each
parameterized cell appears multiple times in the deck, once for each different parameter combination.
See Section 6−8−5 for more on parameters.

•

Write trans sizes in units Requests that the Spice deck contain scalable size information instead of
absolute size information.

•

Write .subckt for top cell Requests that a the top−level cell be written as a subcircuit, and a call
made to it. The default is to write the top−level cell without a subcircuit wrapper.

•

Write .end statement Requests that an .end statement be written at the end of the deck. This can be
disabled in situations where the deck is part of a larger Spice deck.

•

Write empty subcircuits Requests that all subcircuits be written to the deck, even those with
nothing in them.

•

Use Header cards from files with extension specifies that header cards (placed at the start of the
Spice deck) can be found in a file with the cell's name and the given extension.

•

Chapter 9: Tools

306 Using the Electric VLSI Design System, version 9.07

#chap06-09-05
#chap06-09-05
#chap06-08-05

Use Header cards from file lets you specify the file with header cards.•
No Header cards prevents any header cards from being written to the Spice deck.•
Use Trailer cards from files with extension specifies that trailer cards (placed at the end of the
Spice deck) can be found in a file with the cell's name and the given extension.

•

Use Trailer cards from file lets you specify the file with trailer cards.•
No Trailer cards prevents any trailer cards from being written to the Spice deck.•

Note that the header and trailer information is specific to a particular technology. If you set this information
for one technology, but then use another technology when generating the Spice deck, the information that
you set will not be used. Note also that schematics, although a technology in Electric, are not considered to
be Spice technology. You can set the proper layout technology that you want to use when dealing with
schematics by using the "Layout technology to use for schematics" popup. This popup can be found in the
Technology Preferences (in menu File / Preferences..., "Technology" tab, see Section 7−1−2).

The middle part of the dialog controls how Spice can be run after a deck has been written:

After writing deck Electric can create an external process as specified by the user to run Spice on
the generated netlist. If the pull−down box is set to "Don't Run", nothing is done. If the pull−down
box is set to "Run, Ignore Output", the external process is run, and the user is notified when it is
finished. If set to "Run, Report Output", a dialog box is opened to show the user the output produced
by the process. Please note that this is a process, and not a command line command. For example,
echo blah > file will NOT work. Encapsulate it in a script if you want to do such things.

•

Run program Identifies the Spice program to run.•
With args the arguments passed to the program.•
Use dir if specified, this is the working directory of the program.•
Overwrite existing file (no prompts) this will overwrite the existing netlist without prompting the
user.

•

Run probe this will run the waveform viewer on the output of the Spice run.•
Help tells which environment variables are exported to be used by the process.•

The following variables are available to use in the program name and arguments:

${WORKING_DIR} The current working directory.•
${USE_DIR} The Use Dir field, if specified (otherwise defaults to WORKING_DIR).•
${FILENAME} The output file name (with extension).•
${FILENAME_NO_EXT} The output file name (without extension).•
${FILEPATH} The full path to the output file.•

The bottom part of the dialog has two controls:

How Spice decks are handled after being read into Electric. The only option is whether the placement
tools should be run on the circuits to make them look cleaner.

•

How CDL decks are handled. The only option is whether or not to include slashes in instance names
(some CDL implementations need this).

•

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 307

#chap07-01-02

Another set of controls can be used is the Spice Model Files Preferences (in menu File / Preferences...,
"Tools" section, "Spice Model Files" tab). This dialog allows you to control how each cell is represented in
the Spice deck.

The default is to construct the Spice from the actual cell contents. If there is an equivalent layout cell, it can
be used (instead of the schematic). You can also choose to use the "Verilog" view, which contains Verilog
text for that cell (it will be converted to Spice). Finally, you can request that an external model file be used.
Note that in the case of external model files, the specified disk file is referenced by adding "include" lines in
the deck. These choices allow you to create your own definitions in situations where the derived Spice would
be too complex or otherwise incorrect.

Another way to change the Spice representation of a cell is to use the Set Netlist Cell From File command
(in menu Tools / Simulation (Spice)). This prompts for a file which will be included in the Spice deck
instead of the actual subcircuit of the cell. The file name can be seen as a piece of text in the cell, and you can
edit this text to change the desired file.

Chapter 9: Tools

308 Using the Electric VLSI Design System, version 9.07

9−4−4: Special Spice and Verilog Nodes

For both Spice and Verilog, you can place special nodes in your circuit that augment the generated deck.
Spice even has a predefined set of these nodes, available from the "Spice" entry in the component menu. A
second set, called "SpicePartsS3", is tailored towards Spice3 (use the Spice/CDL Preferences in menu File /
Preferences..., "Tools" section, "Spice/CDL" tab, to switch to this set). There are no Verilog nodes in the
current release of Electric. Users who define new nodes for Spice or Verilog are encouraged to share these
with the entire community by contacting Static Free Software.

Users can define their own Spice or Verilog nodes by creating new icon cells. The icon cell should have:

Graphics. This is an icon cell, so it typically will have nodes from the Artwork technology to
describe its appearance. See Section 7−6−1 for more on the Artwork technology.

•

Exports (optional). This allows the icon cell to be connected to the circuitry.•
Parameters (optional). This allows custom values to be specified on each node. Parameters are
created with the Cell Parameters... command (in menu Edit / Properties). See Section 6−8−5 for
more on parameters.

•

At least one template. The template is the essential part of the Node because it describes exactly what
Spice or Verilog will be emitted. The Spice template is created with the Set Generic Spice
Template command (in menu Tools / Simulation (Spice)). If the template is specific to a particular
version of Spice, use the appropriate template command (Set Spice 2 Template, Set Spice 3
Template, Set HSpice Template, Set PSpice Template, Set GnuCap Template, Set SmartSpice
Template, Set Xyce Template, Set CDL Template, Set Assura HSpice Template, or Set Calibre
Spice Template). You can also create a Verilog template by using the Set Verilog
Template command (in menu Tools / Simulation (Verilog)). And can customize instances of the
current cell (by prepending per−instance parameters) with Set Verilog Default Parameter. Note that
a single cell can contain both Verilog and Spice templates. Once a template has been created,
double−click on the text to edit it.

•

To explain the format of
a template, a DC Voltage
Source primitive is used
as an example. Graphics
is placed to describe the
look of the symbol (a
"battery" look). Exports
are created at the top and
bottom of the battery
with the names "plus"
and "minus".

A single parameter is defined called "Voltage" with a default value of "0V". Finally, a Spice template is
created that has the string:

V$(node_name) $(plus) $(minus) DC $(Voltage)

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 309

mailto:info@staticfreesoft.com
#chap07-06-01
#chap06-08-05

This string contains substitution expressions of the form $(SOMETHING) where SOMETHING can be an
export, a parameter, or "node_name". In this example, $(node_name) will be replaced with the name of
the voltage node; $(plus) will be replaced with the net name attached to the positive export;
$(minus) will be replaced with the net name attached to the negative export; and $(Voltage) will be
replaced with the voltage value specified by the user.

When defining technologies, it is possible to place Spice templates onto primitive nodes (see Section 8−6).
These templates can make use of two additional substitution expressions: $(width) and
$(length) which access the size of the node.

9−4−5: FastHenry

FastHenry is an inductance analysis tool (see the papers of Jacob White). When a FastHenry deck is
generated, a subset of the arcs in the current cell are written. To include an arc in the FastHenry deck, select
it and use the FastHenry Arc Properties... command (in menu Tools / Simulation (Others)).

This command presents a dialog
with FastHenry factors for the
selected arc. The most important
factor is at the top: "Include this
arc in FastHenry analysis". By
checking this, the arc is described
in the FastHenry deck. Once this
is checked, other fields in the
dialog become active. You can set
the thickness of this arc (the
default value shown will be used
if no override is specified). You
can set the number of
subdivisions that will be used in
height and width (again, defaults
are shown). You can even set the
height of the two ends of the arc.

Arcs can be partitioned into different groups. Click the "New Group" button to define a group. After that,
arcs can be assigned to one or more groups.

After all arcs have been marked, generate a FastHenry deck with the Write FastHenry Deck... command (in
menu Tools / Simulation (Others)). Before doing that, however, you can set other options for FastHenry
deck generation. To do this, use the FastHenry Preferences (in menu File / Preferences..., "Tools" section,
"FastHenry" tab).

Chapter 9: Tools

310 Using the Electric VLSI Design System, version 9.07

#chap08-06
http://rleweb.mit.edu/rlestaff/p-whit.htm

This dialog allows you to set the type of frequency analysis (single frequency or a sequence specified by a
start, end, and number of runs per decade). You can choose to use single or multiple−pole analysis (and if
multiple, you can specify the number of poles). The FastHenry Preferences dialog also allows you to set
defaults for the individual arcs that will be included in the deck. You can specify the default thickness, and
the default number of subdivisions (in height and width).

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 311

9−5: Simulation (built−in)

9−5−1: IRSIM

Electric has a built−in simulator, Stanford's IRSIM, which uses RC models to accurately simulate transistors
at a gate−level. IRSIM is not packaged with the standard Electric distribution. To obtain it, you must get the
additional "plugin" JAR file from Static Free Software (see Section 1−5 for instructions on installing
plugins).

To simulate the current cell with IRSIM, use the IRSIM: Simulate Current Cell command (in menu Tools /
Simulation (Built−in)). After issuing this command, a waveform window will appear to control the
simulation (see Section 4−11 for more). To generate an input deck for IRSIM without running the simulator,
use the IRSIM: Write Deck... command. To simulate an IRSIM deck (that is, simulate the file, not the
circuit), use the IRSIM: Simulate Deck... command. Note: if these commands do not appear in the menu,
then IRSIM has not been installed.

Since the IRSIM engine is
running inside of Electric, you
can place stimuli on the circuit
and see the results immediately
(also described in Section
4−11). Note that the command
to save stimuli (Save Stimuli to
Disk... of menu Tools /
Simulation (Built−in)) writes
an IRSIM "command file"
which can be edited by hand.

The Simulators Preferences (in
menu File / Preferences...,
"Tools" section, "Simulators"
tab), offers some controls for
IRSIM. The general controls at
the top are discussed in Section
4−11.

Chapter 9: Tools

312 Using the Electric VLSI Design System, version 9.07

http://www.staticfreesoft.com
#chap01-05
#chap04-11
#chap04-11
#chap04-11
#chap04-11
#chap04-11

IRSIM uses a parameter file to describe timing and parasitic information. Two of these files come packaged
with Electric ("scmos0.3.prm" and "scmos1.0.prm"), but you can create your own and tell IRSIM to use it. In
addition to the parameter file, you can select the simulation model that IRSIM uses. The default is a RC
model, but a Linear model is also available.

Advanced users who edit their own command files may enter specialized IRSIM debugging commands.
These commands depend on a set of flags to determine the type of debugging to do. Checkboxes in the
"IRSIM Debugging" section control these debugging flags.

The bottom section has two miscellaneous IRSIM controls.

"Show IRSIM commands" requests that the system display the command file instructions as they are
applied during simulation.

•

"Use Delayed X propagation" does less conservative, but potentially more accurate calculation of the
time required to propagate an undefined (X) value in the circuit. This improved propagation delay
calculation has been shown to be effective in asynchronous circuits.

•

9−5−2: ALS

Electric has a built−in gate−level simulator called ALS that can simulate schematics, IC layout, or VHDL
descriptions. The simulator already knows about MOS transistors and some digital logic gates. It can be
augmented with functional descriptions of any circuit using the hardware description language described later
in this section.

For an example of ALS simulation, load the "samples" library and simulate the cell
"tool−SimulateALS{sch}". You can load the samples library with the Load Sample Cells
Library command (in menu Help).

To begin simulation of the circuit in the current window, use the ALS: Simulate This Cell command (from
menu Tools / Simulation (Built−in)). After issuing this command, a waveform window will appear to
control the simulation (see Section 4−11 for more). Since the ALS engine is running inside of Electric, you
can place stimuli on the circuit and see the results immediately.

ALS is able to handle transistors with varying strength. To set a transistor to be weak, use the
Weak command (in menu Tools / Simulation (Verilog) / Transistor Strength). To restore the strength to
normal, use the Normal command. Note that this must be done before simulation begins.

Preferences

The Simulators Preferences (in menu File / Preferences..., "Tools" section, "Simulators" tab) has some
controls that affect ALS simulation. The "Multistate display" check tells the simulator to show waveform
signals with different colors to indicate different strengths. Without this, a single color is used everywhere.
The other general controls at the top are discussed in Section 4−11.

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 313

#chap04-11
#chap04-11

9−5−3: ALS Concepts

The user should be aware that the
ALS simulator translates the circuit
into VHDL, then compiles the VHDL
into a netlist for simulation. This
means that when a layout or
schematic is simulated, two new
views of that cell are created:
{VHDL} and {net.als}. Use the Edit
VHDL View (in menu View) to see
the VHDL code.

When simulation is requested, the cell in the current window is simulated. Date checking is performed to
determine whether VHDL translation or netlist compilation is necessary. If you are currently editing a VHDL
cell, it will not be regenerated from layout, even if the layout is more recent. Similarly, if you are currently
editing a netlist cell, it will not be regenerated from VHDL, even if that VHDL is more recent. Thus,
simulation of the currently edited cell is guaranteed.

Note that the presence of VHDL in the path to simulation means that it can simulate VHDL that is entered
manually. You can type this VHDL directly into the cell (see Section 4−9 for more on text editing). Also,
you can explicitly request that VHDL be produced from schematics or layout with the Make VHDL
View command (in menu View).

This complete VHDL capability, combined with the Silicon Compiler which places and routes from VHDL
descriptions, gives Electric a powerful facility for creating, testing, and constructing complex circuits from
high−level specifications. See Section 9−12 for more on the Silicon Compiler.

Behavioral Models

When the VHDL for a circuit is compiled into a netlist, both connectivity and behavior are included. This is
because the netlist format is hierarchical, and at the bottom of the hierarchy are behavioral primitives.
Electric knows the behavioral primitives for MOS transistors, AND, OR, NAND, NOR, Inverter, and XOR
gates. Other primitives can be defined by the user, and all of the existing primitives can be redefined.

To create (or redefine) a primitive's behavior, simply create the {net.als} view of the cell with that primitive's
name. Use the New Cell... command (in menu Cell) and select the "netlist.als" view. For example, to define
the behavior of an ALU cell, edit "alu{net.als}", and to redefine the behavior of a two−input And gate, edit
"and2{net.als}". The compiler copies these textual cells into the netlist description whenever that node is
referenced in the VHDL.

The netlist format provides three different types of entities: model, gate, and function. The model entity
describes interconnectivity between other entities. It describes the hierarchy and the topology. The gate and
function entities are at the primitive level. The gate uses a truth−table and the function makes reference to
Java−coded behavior (which must be compiled into Electric, see the module

Chapter 9: Tools

314 Using the Electric VLSI Design System, version 9.07

#chap04-09
#chap09-12

"com.sun.electric.tool.simulation.als.UserCom.java"). Both primitive entities also allow the specification of
operational parameters such as switching speed, capacitive loading and propagation delay. (The simulator
determines the capacitive load, and thus the event switching delay, of each node of the system by considering
the capacitive load of each primitive connected to a node as well as taking into account feedback paths to the
node.)

A sample netlist describing an RS latch model is shown below. Note that the "#" character starts a comment.

model declaration for the figure
model main(set, reset, q, q_bar)
inst1: nor2(reset, q_bar, q)
inst2: nor2(q, set, q_bar)

gate description of nor2
gate nor2(in1, in2, out)
t: delta=4.5e−9 + linear=5.0e−10
i: in1=L in2=L o: out=H@2
i: in1=H o: out=L@2
i: in2=H o: out=L@2
i: o: out=X@2

When combined, these entities represent a complete description of the circuit. Note that when a gate,
function, or other model is referenced within a model description, there is a one−to−one correspondence
between the signal names listed at the calling site and the signal names contained in the header of the called
entity.

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 315

Simulator Internals

The ALS simulator simulates a set of simulation nodes. A simulation node is a connection point which may
have one or more signals associated with it.

A simulation node can have 3 values (L, H, or X) and can have 4 strengths (off, node, gate, and VDD, in
order of increasing strength). It is thus a 12−state simulator. In deciding the state of a simulation node at a
particular time of the simulation, the simulator considers the states and strengths of all inputs driving the
node.

Driving inputs may be from other
simulation nodes, in which case the driving
strength is "gate" (i.e. H(gate) indicates a
logic HIGH state with gate driving
strength), from a power or ground supply
("VDD" strength) or from the user (any
strength). If no user vector has been input at
the current simulation time, then the input
defaults to the "off" strength.

In the above example, the combination of a high and a low driving input at the same strength from the signals
"out" and "in2" result in the simulation algorithm assigning the X (undefined) state to the output signal
represented by "q". This example also shows the behavior of part of the simulation engine's arbitration
algorithm, which dictates that an undefined state exists if a simulator node is being driven by signals with the
same strength but different states, providing that the strength of the driving signals in conflict is the highest
state driving the node.

Another important concept for the user to remember is that the simulator is an event−driven simulator. When
a simulation node changes state, the simulation engine looks through the netlist for other nodes that could
potentially change state. Obviously, only simulation nodes joined by model, gate or function entities can
potentially change state. If a state change, or event, is required (based on the definition of the inter−nodal
behavior as given by the model, gate or function definition), the event is added to the list of events scheduled
to occur later in the simulation. When the event time is reached and the event is fired, the simulator must
again search the database for other simulation nodes which may potentially change state. This process
continues until it has propagated across all possible nodes and events.

Chapter 9: Tools

316 Using the Electric VLSI Design System, version 9.07

9−5−4: ALS Gates

The gate entity is the primary method of specifying behavior. It uses a truth−table to define the operational
characteristics of a logic gate. Many behavioral descriptions need contain only a gate entity to be complete.

The gate entity is headed by the gate declaration statement and is followed by a body of information. The
gate declaration contains a name and a list of exported simulation nodes (which are referenced in a higher
level model description). The format of this statement is shown below:

Format: gate name(signal1, signal2, signal3, ... signalN)

Example: gate nor2(in1, in2, out)
gate and3(a, b, c, output)

There is no limit on the number of signal names that can be placed in the list. If there is not enough room on
a single line to accommodate all the names, simply continue the list on the next line.

The i: and o: Statements (Input and Output)

The i: and o: statements are used to construct a logical truth table for a gate primitive. The signal names and
logical assertions which follow the i: statement represent one of many possible input conditions. If the logic
states of all the input signals match the conditions specified in the i: statement, the simulator will schedule
the outputs for updating (as specified in the corresponding o: statement). The logical truth table for a two
input AND gate is shown below:

 gate and2(in1, in2, output)
 i: in1=H in2=H o: output=H
 i: in1=L o: output=L
 i: in2=L o: output=L
 i: o: output=X

The last line of the truth table represents a default condition in the event that none of the previous conditions
are valid (e.g. in1=H and in2=X). It should be noted that the simulator examines the input conditions in the
order that they appear in the truth table. If a valid input condition is found, the simulator schedules the
corresponding output assignments and terminates the truth table search immediately.

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 317

Signal References in the i: Statement

Besides testing the logical values of a signal, the i: statement can also compare them numerically. The format
of a signal references, which follow the i: statement, is show below:

Format: signal <operator> state_value

or: signal <operator> other_signal

Operators: = Test if equal
! Test if not equal
< Test if less than
> Test if greater than

Example: node1 = H
input1 ! input2

There is no limit on the number of signal tests that can follow an i: statement. If there is not enough room on
a single line to accommodate all the test conditions, the user can continue the list on the next line of the
netlist.

Signal References in the o: Statement

The signal references which follow the o: statement are used as registers for mathematical operations. It is
possible to set a signal to a logic state and it is possible to perform mathematical operations on its contents.
The format for signal references which follow the o: statement is shown below:

Format: signal [<operator> operand [@ <strength>]]

Operators: = equate signal to value of operand
+ increment signal by value of operand
− decrement signal by value of operand
* multiply signal by value of operand
/ divide signal by value of operand
% modulo signal by value of operand

Strengths: 0 off
1 node
2 gate
3 VDD

Example: qbar = H@3
out1 + 3
out + out1@4

It should be noted that the logic state of the operand can be directly specified (such as H, 3) or it can be
indirectly addressed through a signal name (such as out1, modulus_node). In the indirect addressing case, the
value of the signal specified as the operand is used in the mathematical calculations. The strength declaration
is optional and if it is omitted, a default strength of 2 (gate) is assigned to the output signal.

Chapter 9: Tools

318 Using the Electric VLSI Design System, version 9.07

The t: Statement (Time Delay)

The propagation delay time (switching speed) of a gate can be set with the t: statement. The format of this
statement is shown below:

Format: t: <mode> = value { + <mode> = value ... }

Mode: delta: fixed time delay in seconds
linear: random time delay with uniform distribution
random: probability function with values between 0 and 1.0

Example: t: delta=5.0e−9
t: delta=1.0e−9 + random=0.2

It is possible to combine multiple timing distributions by using the + operator between timing mode
declarations. The timing values quoted in the statement should represent the situation where the gate is
driving a single unit load (e.g. a minimum size inverter input).

The t: statement sets the timing parameters for each row in the truth table (i: and o: statement pair) that
follows in the gate description. It is possible to set different rise and fall times for a gate by using more than
one t: statement in the gate description. Assuming that a 2 input NAND gate had timing characteristics of
t(lh) = 1.0 nanoseconds and t(hl) = 3.0 nanoseconds, the gate description for the device would be as follows:

 gate nand2(in1, in2, output)
 t: delta=3.0e−9
 i: in1=H in2=H o: output=L
 t: delta=1.0e−9
 i: in1=L o: output=H
 i: in2=L o: output=H

This example shows that when both inputs are high, the output will go low after a delay of 3.0 nanoseconds
and that if either input is low, the output will go high after a delay of 1.0 nanosecond.

The Delta Timing Distribution of the t: Statement

The Delta timing distribution is used to specify a fixed, non−random delay. The format of a delta timing
declaration is shown below:

Format: delta = value

Example: delta = 1.0
delta = 2.5e−9

The value associated with the delta declaration represents the fixed time delay in seconds (1.0 = 1 second,
2.5e−9 = 2.5 nanoseconds, etc.)

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 319

The Linear Timing Distribution of the t: Statement

The Linear timing distribution is used to specify a random delay period that has a uniform probability
distribution. The format of a linear timing declaration is shown below:

Format: linear = value

Example: linear = 1.0
linear = 2.0e−9

The value associated with the linear declaration represents the average delay time (in seconds) for the
uniform distribution. This means that there is an equally likely chance that the delay time will lie anywhere
between the bounds of 0 and 2 times the value specified.

The Random Probability Function of the t: Statement

The random probability function enables the user to model things which occur on a percentage basis (e.g. bit
error rate, packet routing). The format for random probability declaration is shown below:

Format: random = value

Example: random = 0.75

The value associated with random declaration must be in the range 0.0 <= value <= 1.0. This value represents
the percentage of the time that the event is intended to occur.

A gate which uses the random probability feature must be operated in parallel with another gate which has a
common event driving input. Both these gates should have the same timing distributions associated with
them. When the common input changes state, a probability trial is performed. If the probability value is less
than or equal to the value specified in the random declaration, the gate containing the random declaration will
have its priority temporarily upgraded and its outputs will change state before the outputs of the other gate.
This feature gives the user some level of control (on a percentage basis) over which gate will process the
input data first.

Here is an example of a system which corrupts 1% of the data that passes through it:

 model main(in, out)
 trans1: good(in, out)
 trans2: bad(in, out)

 gate good(in, out)
 t: delta=1.0e−6
 i: in>0x00 o: out=in in=0x00

 gate bad(in, out)
 t: delta=1.0e−6 + random=0.01
 i: in>0x00 o: out=0xFF in=0x00

Chapter 9: Tools

320 Using the Electric VLSI Design System, version 9.07

The netlist describes a system where ASCII characters are represented by 0x01−0x7F. The value 0x00
indicates there is no data in the channel and the value 0xFF indicates a corrupted character. It is assumed that
there is an external data source which supplies characters to the channel input. It should be noted that the
random declaration is placed on only one of the two gate descriptions rather than both of them. Unpredictable
events occur if the random declaration is placed on both gate descriptions.

The Fanout Statement

The fanout statement is used to selectively enable/disable fanout calculations for a gate when the database is
being compiled. The format for a fanout statement is shown below:

Format: fanout = on

or: fanout = off

When fanout calculation is enabled (the default setting for all gates), the simulator scans the database and
determines the total load that the gate is driving. It then multiplies the gate timing parameters by an amount
proportional to the load. If an inverter gate was found to have a propagation delay time of 1 nanosecond
when driving a single inverter input, an instance of that gate would have a propagation delay time of 3
nanoseconds if it was driving a load equivalent to 3 inverter inputs.

If fanout calculation is turned off for a gate primitive, fanout calculations for all instances of that gate will be
ignored. This feature allows the user to force switching times to a particular value and not have them
modified by the simulator at run time.

The Load Statement

The load statement is used to set the relative loading (capacitance) for an input or output signal. The format
of a load statement is shown below:

Format: load signal1 = value { signal2 = value ... }

Example: load in1=2.0 in2=1.5 in3=1.95
load sa=2.5

The value associated with the signal represents the relative capacitance of the simulation node. When the
timing parameters are specified for a gate description, it is assumed that they are chosen for the situation
where the gate is driving a single (1.0) unit load such as a minimum size inverter input. The load command
tells the simulator that some input structures are smaller or larger (more capacitive) than the reference
standard. The simulator, by default, assumes that all signals associated with gate primitives have a load rating
of 1.0 (unit load) unless they are overridden by a load statement.

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 321

The Priority Statement

The priority statement is used to establish the scheduling priority for a gate primitive. The format for a
priority statement is shown below:

Format: priority = level

Example: priority = 1
priority = 7

In the event that two gates are scheduled to update their outputs at exactly the same time, the gate with lowest
priority level will be processed first. All gate primitives are assigned a default priority of 1 unless they
contain random timing declarations in the gate description. In this case the primitive is assigned a default
priority of 2. This base priority can be temporarily upgraded to a value of −1 if a random trial is successful
during the course of a simulation run. The user is advised to leave the priority settings at their default values
unless there is a specific requirement which demands priority readjustment.

The Set Statement

The set statement is used to initialize signals to specific logic states before the simulation run takes place.
The format for the set statement is shown below:

Format: set signal1 = <state> @ { <strength> }
signal2 = <state> @ { <strength> }

Example: set input1=H@2 input2=L input3=X@0
set count=4 multiplier=5 divisor=7@2

If the user does not specify a strength value, the signal will be assigned a default logic strength of 3 (VDD).
This default setting will override any gate output (because the default strength of 2 is used for gate outputs).

The user will find this feature useful in situations where some of the inputs to a logic gate need to be set to a
fixed state for the entire duration of the simulation run. For example, the set and reset inputs of a flip flop
should be tied low if these inputs are not being driven by any logic circuitry. All instances of a gate entity
which contains a set statement will have their corresponding simulation nodes set to the desired state.

Chapter 9: Tools

322 Using the Electric VLSI Design System, version 9.07

9−5−5: ALS Functions

The function entity is an alternate method of specifying behavior. It makes reference to a Java method that
has been compiled into Electric. Because there are only a limited number of these methods, and because the
source code isn't always easy to update, the function entity is of limited use. However, the facility is very
powerful and can be used to efficiently model complex circuits. It permits the designer to work at higher
levels of abstraction so that the overall system can be conceived before the low level circuitry is designed.
Examples of this include arithmetic logic units, RAM, ROM, and other circuitry which is easier to describe
in terms of a software algorithm than a gate level hardware description. To add a function to the simulator,
edit the module "com.sun.electric.tool.simulation.als.UserCom.java".

The function entity is headed by a function declaration statement that gives a name and a list of exports
(which are referenced in a higher level model description). The format of this statement is shown below:

Format: function name(signal1, signal2, signal3, ... signalN)

Example: function JK_FF(ck, j, k, out)
function DFFLOP(data_in, clk, data_out)
function BusToState(b7,b6,b5,b4,b3,b2,b1,b0, out)

The name refers to a Java method, which will find the signal parameters in the same order that they appear in
the argument list. The only four functions currently available are listed above. There are two flip−flops (JK
and D) and two numeric converters that translate between a bus of 8 signals and a composite hexadecimal
digit.

Declaring Input and Output Ports

The i: and o: statements which follow the function declaration are used to tell the simulator which signals are
responsible for driving the function and which drive other events. If any signal in the event driving list
changes state, the function is called and the output values are recalculated. The format of an i: statement,
which contains a list of event driving inputs, is shown below:

Format: i: signal1 signal2 signal3 ... signalN

Example: i: b7 b6 b5 b4 b3 b2 b1 b0
i: input phi phi_bar set reset

The format of an o: statement which contains a list of output ports is shown below:

Format: o: signal1 signal2 signal3 ... signalN

Example: o: out1 out2 out3
o: q q_bar

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 323

Other Specifications

Just as there are special statements that affect the operating characteristics of a gate entity, so are these
statements available to direct the function entity. The t: statement is used to set the time delay between input
and output changes. The load statement is used to set the relative loading (capacitance) for the input and
output ports. The priority statement is used to establish the scheduling priority. The set statement is used to
initialize signals to specific logic states before the simulation run takes place. The format of these statement
is identical to that of the gate entity. Note that the Java method does not have to use the values specified in
these statements and can schedule events with values that are specified directly inside the code.

Example of Function Use

The specification for a 3 bit shift register (edge triggered) is shown below. This circuit uses a function
primitive to model the operation of a D flip−flop:

 model main(input, ck, q2, q1, q0)
 stage0: DFFLOP(input, ck, q0)
 stage1: DFFLOP(q0, ck, q1)
 stage2: DFFLOP(q1, ck, q2)

 function DFFLOP(data_in, clock, output)
 i: clock
 o: output
 t: delta=10e−9
 load clock=2.0

It should be noted that the clock is the only event driving input for the flip−flop function. There is no need to
call the function if the signal "data_in" will be sampled only when the event driving signal ("clock") changes
state. The designer can write the function so that it samples the data only when the function is called and the
clock input is asserted high (rising edge triggered). If the clock signal is low when the function is called
(falling clock edge) the procedure can ignore the data and return control back to the simulation program.

The calling arguments to the Java method are set up as a linked list of signal pointers. The simulator places
the arguments into this list in the same order that they appear in the declaration of the function entity. The
programmer requires some knowledge of the internals of the simulator to extract the correct information from
this list and to schedule new events. A complete discussion of function entity programming is beyond the
scope of this document.

Chapter 9: Tools

324 Using the Electric VLSI Design System, version 9.07

9−5−6: ALS Models

As previous examples have shown, the model entity provides connectivity between other entities, including
other model entities. The model may be used in conjunction with gate and function entities to describe the
behavior of any circuit.

The model entity is headed by a model declaration statement and followed by a body which references
instances of other entities, lower in the hierarchy. The model name and a list of exports (which are referenced
in a higher level model description) are included in this statement. The format of the model declaration
statement is:

Format: model name(signal1, signal2, signal3, ... signalN)

Example: model dff(d, ck, set, reset, q, q_bar)

References to instances of primitive objects (gates and functions) and lower level models are used to describe
the topology of the model to the simulator. The format of an instance reference statement is:

Format: instance : model (signal1, signal2, signal3, ... signalN)

Example: gate1: subgate(input, en, mix)

It should be noted each instance reference in a model entity must have a unique instance name. The following
is an example of the use of a model entity:

model latch(input, en, en_bar,
out)
gate1: xgate(input, en, mix)
gate2: xgate(out, en_bar, mix)
gate3: inverter(mix, out_bar)
gate4: inverter(out_bar, out)

gate xgate(in, ctl, out)
t: delta=8.0e−9
t: delta=8.0e−9
i: ctl=L o: out=X@0
i: ctl=H in=L o: out=L
i: ctl=H in=H o: out=H
i: o: out=X@2

gate inverter(in, out)
t: delta=5.0e−9
i: in=L o: out=H
i: in=H o: out=L
i: o: out=X@2

This example contains the description of a simple latch. When the enable signal is asserted high (en=H,
en_bar=L) the input data passes through the transmission gate (gate1) and then through two inverters where it
eventually reaches the output. When enable is asserted low (en=L, en_bar=H) the input connection is broken
and the feedback transmission gate (gate2) is turned on.

The Set Statement

The set statement is used to initialize signals in the model description to specific logic states before the
simulation starts. This feature is useful for tying unused inputs to power(H) or ground(L).

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 325

9−6: Routing

9−6−1: Introduction to Routing

The routing tool contains a number of different subsystems for creating wires. Two stitching routers can be
used in array−based design to connect adjoining cells. A maze−router runs individual wires. A river−router is
available for running multiple parallel wires. The sea−of−gates router handles many wires in arbitrary
connection situations. The clock−router builds balanced trees that guarantee constant−length paths to each
destination cell. Finally, there are six experimental routers, based on the A* and the Lee/Moore algorithms.

Unrouted Arcs

All of the non−stitching
routers make use of the
"Unrouted Arc", a
thin−line arc that can
connect any two
components. Creating
"rats nests" of these
arcs forms a graphical
specification that the
router can use. The
unrouted arc is from the
Generic Technology
(see Section 7−6−3). To
create one, use the Get
Unrouted
Wire command (in
menu Tools / Routing).

Then use standard wiring commands to run the unrouted arc. Another way to get unrouted wires is to select
all or part of an existing route (made with any arc) and use the Unroute Network or Unroute
Segment commands. Unroute Network replaces all arcs on the selected network whereas Unroute
Segment only removes the selected segment of the network that runs between termination or forking points.

Another way to get Unrouted arcs for router input is to use the Copy Routing Topology and Paste Routing
Topology commands. These copy the network topology from one cell (the "copied" cell) to another cell (the
"pasted" cell). The copied cell should be properly routed. The Paste Routing Topology command uses node

Chapter 9: Tools

326 Using the Electric VLSI Design System, version 9.07

#chap07-06-03

and arc names to associate the two cells.

Routing Exclusion

You can tell routers to avoid certain layers in specified areas by placing a "Routing Exclusion" node in those
areas. This exclusion layer is created by clicking the "Misc." entry of the component menu and selecting
"Routing Exclusion" (see Section 7−6−3). When first placed, you are prompted for a list of metal layers that
are not allowed to run underneath it. This list can be a single number ("2" to exclude Metal−2), a
comma−separated list ("4,6" to exclude Metals 4 and 6), or a range ("3−5" to exclude Metals 3, 4, and 5).
You can also use "ALL" to exclude all layers under this node.

Currently, only the Sea−of−Gates router handles routing exclusion (see Section 9−6−6).

Routing Mode

When a circuit has been correctly placed, and the unrouted arcs are connected, all that remains is the routing.
During this phase, it is important that the circuit not change. To ensure this, check "Routing mode (cannot
change connectivity)" (in menu File / Preferences..., "General" section, "Selection" tab). While in Routing
Mode, you can select only arcs (not nodes) and you cannot make changes to the circuit.

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 327

#chap07-06-03
#chap09-06-06

Preferences

The Routing Preferences (in menu File / Preferences..., "Tools" section, "Routing" tab) controls all of the
different routers. The section in the upper−left applies to the two stitching routers (Mimic and Auto). Specific
sections apply to specific routers (see Section 9−6−3 for the Mimic Stitcher, Section 9−6−2 for the Auto
Stitcher, and Section 9−6−6 for the Sea−of−Gates router).

Experimental Routers

Six experimental routers are available under the Experimental Routers submenu. Three of them are based
on the A* algorithm and three are based on the Lee/Moore algorithm. In each case, the first one is the most
stable.

Chapter 9: Tools

328 Using the Electric VLSI Design System, version 9.07

#chap09-06-03
#chap09-06-02
#chap09-06-06

9−6−2: Auto Stitching

The auto−stitching router looks for adjoining nodes that make implicit connections, and places wires at those
connections to make them explicit. For example, if a cell has power and ground rails at the top and bottom,
and there are ports on the left and right of each rail, then the auto−stitching router can be used to connect all
of these rails in a horizontal string of these cell instances.

The auto−stitcher places a wire when all of these conditions are met:

The design is layout (auto stitching does not work in schematics). •
Ports exist on both nodes. Because wires must run between two ports, you must make exports at
every location where wiring may occur. If "Create exports where necessary" is checked in the
Routing Preferences (in menu File / Preferences..., "Tools" section, "Routing" tab), then it is not
necessary to have ports at all connection sites: the router will create them for you.

•

The nodes inside of the cells (the ones with the exports) must touch or overlap, thus creating an
implicit connection. When a pin node has an export, it should be the same size as any wires
connected to it inside of the cell. This is because a small pin which is deep inside of a wide arc will
not make an implicit connection when the arc touches something.

•

The ports must not already be connected to each other. •

To run the auto−stitcher, use the Enable Auto−Stitching command (in menu Tools / Routing). The router
will make all necessary connections, and incrementally add wires as further changes are made to the circuit.
To stop stitching, select the menu entry again to disable it. To run the auto−stitcher only once for the current
cell, use Auto−Stitch Now To run it once, and in the highlighted area only, use the Auto−Stitch
Highlighted Now command. Note that this auto−stitches all cell instances that intersect the highlighted area,
so even if only a portion of a cell falls into the highlighted area, the entire cell is stitched.

The auto−stitcher allows you to specify a particular type of wire to use in routing. By default, the router
figures out which wire to use. However, in the Routing Preferences a specified wire can be given (or
automatic selection can be resumed by selecting the "DEFAULT ARC" entry). First check "Use this arc in
stitching routers" and then select the arc.

9−6−3: Mimic Stitching

One problem with the auto−stitcher is that it may take a different view of the circuit than originally intended.
In an area where more than two cells meet, the auto−stitcher may place many wires in an attempt to connect
all touching ports. Another problem with the auto−stitcher is that it makes explicit only what is already
implicit, and so does not always add all necessary wires.

To control the wiring of arrays of cells more directly, there is the mimic−stitcher. This tool lets the designer
place a wire, and then it adds other wires between all other similar situations in the circuit. Thus, it mimics
your actions. The router also mimics your wire removals, removing arcs similar to the ones that you delete.

To turn on the mimic−stitcher, use the Enable Mimic−Stitching command (in menu Tools / Routing). To
disable the stitcher, use the command to uncheck it. You can also request that the mimic−stitcher run just

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 329

once (mimicking the very last wire that was created or deleted) by using the Mimic−Stitch Now command.
Finally, you can request that the mimic−stitcher run just once, mimicking the currently selected arc, by using
the Mimic Selected command.

A set of restrictions applies to the mimic stitcher. These restrictions prevent mimicking from happening. Use
Routing Preferences (in menu File / Preferences..., "Tools" section, "Routing" tab) to control these exact
conditions in which arc creation and deletion will be mimicked.

When "Interactive mimicking" is checked, the mimic stitcher will ignore the restrictions, and present all
possible mimic situations for your approval. These situations will be organized by the restrictions that apply
to them, in order of increasingly relaxed acceptance criteria.

The "Keep Pins" checkbox requests that deleted arcs keep their pins (typically, pins at the ends of deleted
arcs are also deleted).

When running noninteractively, these are the restrictions that may be applied:

"Ports must match" indicates that the specific ports at the end of the arcs must be the same.•
"Bus ports must have same width" applies to schematics: the ports must have the same bus−width.•
"Number of existing arcs must match" counts the number of arcs already connected to the other ports
and ensures that they match.

•

"Node sizes must match" applies to primitives, and forces their sizes to be equal.•
"Node types must match" demands that the mimicked connections be on the same type of node.•
"No other arcs in the same direction" prevents arc creation when there are existing arcs wired in the
same location as the proposed new arcs.

•

"Ignore if already connected elsewhere" prevents arc creation in situations where the two ports are
already electrically connected.

•

9−6−4: Maze Routing

The maze router replaces unrouted arcs with actual geometry. To run it, use the Maze Route command (in
menu Tools / Routing). If unrouted arcs are selected when the command is issued, those connections are
routed. If nothing is selected, the all unrouted arcs in the current cell are routed. Note that the router is not
able to handle routes that connect more than two points, so collections of unrouted arcs that daisy−chain to
multiple locations must be routed one−at−a−time.

Maze routing is done with a single arc, and cannot change layers. Therefore, if the two ends of an unrouted
arc are not able to connect to a common layout arc, routing will fail.

Maze routing is done one wire at a time, and may fail if no path can be found. Therefore it may be preferable
to route the unrouted wires one−at−a−time in order to better control the process.

Note also that maze routing constructs an array which is the size of the route, and searches the array for a
routing path. Therefore, long wires will use large amounts of memory and time.

Chapter 9: Tools

330 Using the Electric VLSI Design System, version 9.07

For an example of maze routing, open the Samples library and edit the cell "tool−RoutingMaze" (you can
read the library with the Load Sample Cells Library command, in menu Help). This cell has a number of
unrouted wires that can be routed.

9−6−5: River Routing

River routing is the running of
multiple parallel wires between
two facing rows (presumably
two cell instances or two rows
of instances). The wires must
remain in sequential order and
cannot cross each other. Thus,
they appear as a flowing stream
of lines, and have the
appearance of a river.

To specify an intended path for the river−router, every connection must be made with an Unrouted arc. Thus,
before river−routing, there should be a series of direct (and presumably nonmanhattan) unrouted arcs. These
arcs are replaced with the appropriate geometry during river−routing.

To convert the unrouted wires into layout, use the River−Route command (in menu Tools / Routing). If
there are unrouted arcs selected, these will be the only ones converted. Otherwise, all unrouted arcs in the cell
will be converted. If it is necessary, nodes may be moved to make room for the river−routed wires.

The river router always routes to the left or bottom side of the routing channel. Thus, if there is a vertical
channel that is very wide, the wires will run to the left side and then jog to their proper location there. The
only way to force routing to the right or top side is to rotate the entire circuit so that these sides are on the left
and bottom.

For an example of river routing, open the Samples library and edit the cell "tool−RoutingRiver" (you can
read the library with the Load Sample Cells Library command, in menu Help).

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 331

9−6−6: Sea−of−Gates Routing

The sea−of−gates router is able to take an arbitrary set of unrouted arcs and convert them to layout. To run it,
use the Sea−Of−Gates Route this Cell command (in menu Tools / Routing). If there are unrouted arcs
selected, these will be the only ones converted. Otherwise, all unrouted arcs in the cell will be converted. If
sub−cells below the current cell need to be routed, use Sea−of−Gates Route Sub−Cells.

Sea−of−Gates Routing Preferences

The router can be controlled by the Routing Preferences and by cell−specific properties. The Routing
Preferences (in menu File / Preferences..., "Tools" section, "Routing" tab) has these options:

Maximum arc width lets you set the maximum width of a route segment. By default, each segment
is made as wide as the widest arc already connected to that segment. However, sometimes there are
very wide arcs, and the connecting routes should not be that wide. By setting the maximum width,
this limits the size of generated layout.

•

Search complexity limit sets the maximum number of steps that the router will take to find a route.
The larger the value, the longer the router will run before it gives up.

•

Maximum search factor controls the maximum area that will be considered for a route. This value
is multiplied by the largest design−rule spacing, so a factor of 10 and a maximum spacing of 15
means that the router will consider up to 150 units outside the bounding rectangle of a route.

•

Do Global Routing requests that a global routing preprocessing step be done to plan the path of each
route. Global routing divides the cell into a grid, and forces each routes to run in certain grid squares.
This distributes congestion uniformly and can give better routing results.

•

Do Spine Routing requests that special spine routing techniques be applied where applicable. The
Spine routing option finds the longest route in a daisy−chained network and then adds "taps" to the
spine for the intermediate points on the daisy−chain. When enabled, spine routing is done on any
daisy−chained network with an aspect ratio of 50:1 or more.

•

Rerun routing with failed routes requests that the router run again after it finishes in an attempt to
complete those routes that failed the first time. You can set a different complexity limit for this step.

•

Run even on connected routes requests that the router connect points that are already connected
geometrically. When unchecked, routes that already connect are ignored by the router.

•

Contact options There are four ways to place contacts in the routed circuit:
Contacts at top level place contacts where they are needed at the top level of the cell.1.
Contacts use existing subcells or place at top look for subcells that have the desired
contact geometry and place instances of those subcells instead of actual contacts. Other
contacts are placed at the top level.

2.

Contacts use existing subcells or create new ones look for subcells that have the desired
contact geometry and place instances of those subcells instead of actual contacts. Other
contacts cause new subcells to be created.

3.

Contacts create new subcells all contacts are placed in newly−created subcells.4.

•

Use two processors per route tells the router to use two threads for each route (one tries to run a
path from end 1 to end 2, the other tries to run a path from end 2 to end 1). The thread that completes
first terminates the other thread. When not checked, the router alternates steps in the two directions,
stopping when one of the directions reaches its goal.

•

Chapter 9: Tools

332 Using the Electric VLSI Design System, version 9.07

Do multiple routes in parallel uses multiple processors to run routes in parallel.•
Forced processor count tells the router to ignore the actual number of processors on the machine
and to use the specified number of threads.

•

Sea−of−Gates Cell Properties

Users can set cell−specific properties that control how a particular cell is routed. Use the Sea−Of−Gates
Cell Properties... command in the Tools / Routing menu to control this.

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 333

The upper−left part of the dialog controls routing properties for the entire cell.

Alternating Metal Layer Usage controls the placement of alternating layers for horizontal and
vertical wires. You can choose to force this usage, favor the usage (enforces it most of the time,
but not always), or ignore the usage. You can then choose whether odd−numbered arcs are
horizontal or vertical.

•

Contact inclusion pattern and Contact exclusion pattern let you specify which contacts in the
technology to use for routing. You can also select contacts to use in 2X routing. For example, to
force only contacts that start with the letters "X−", set the inclusion pattern to "X−(\w+)"

•

Do not place rotated contacts Requests that asymmetric contacts not be tried in a rotated
orientation.

•

Do not make Steiner Trees (already done) Before routing begins, the unrouted arcs are
reorganized so that daisy−chains (multiple arcs on a single network that connect more than two
ports) run in the most efficient way. This efficient path is called a "Steiner Tree". If you believe
that the routes are already optimized, you can request that this step be skipped.

•

Contacts down avoided layers and Contacts up avoided layers Requests that nets which start
or end on forbidden layers be allowed to place a contact up or down to a permitted layer. The
contact cannot create new geometry on the forbidden layer, so the necessary area on that layer
must already exist.

•

Routing bounds layer sets the layer which will limit the bounds of routing. If geometry exists
in that layer, the extent of the geometry will define the bounds of routing.

•

The lower−left part of the dialog controls individual layers in the cell. It lets you disable the use of any layer,
or favor it above others. You can also request that a layer be a taper by setting a Maximum taper length
Tapers are the initial or final segments of a route which use the width of the geometry at the end, rather than
the default width. They have a limited run length. You can also request that a given layer be available only
for tapers, and not for intermediate routing. For each layer, you can also override the default width and
spacing rules on that layer. The "2X width threshold" is the width above which a wire is considered to be
"2X" in size. When that happens, special contacts may be used, and mask colors are flipped (only relevant in
technologies that have multiple masks on a layer). The Remove Geometry Layer is a layer which will
remove the presence of the given layer. For example, if the Remove Geometry Layer for Metal−1 is set to a
layer called "DM1", then the presence of the DM1 layer will actually remove any Metal−1 under it for the
purposes of routing.

Another layer control is the use of grids. Grids can be Fixed (with a spacing and an offset) or
Arbitrary (with multiple grid coordinates). When editing arbitrary grids, icons on the right let you create
new grid coordinates, delete existing ones, and even draw the location on the screen. Click Show to draw the
grids on the cell to help you see where the grids actually are.

The upper−right side of the dialog controls individual nets that are to be routed. If nothing is listed at the top,
then all highlighted nets are routed (or all nets, if nothing is highlighted). Use the Add NetRemove
Net button to remove selected nets from the list. When a net is selected, you can even override the layers that
will be used to route that net and you can override the width and spacing rules for that layer on that net.

Chapter 9: Tools

334 Using the Electric VLSI Design System, version 9.07

The lower−right part of the dialog lets you add arbitrary rectangles in the chip on given metal layers which
will act as blockages, preventing routing in that area. The "add" icon creates new blockages, the "delete" icon
removes them, the "edit" icon modifies the selected blockage, and the Show button shows all blockages in
the circuit.

At the bottom, the "Import..." button reads a command file that can fill this dialog with values.

9−6−7: Clock Routing

The clock router connects multiple clocked cells to a single clock generator, ensuring a constant wire length
to each clocked cell. It does this by building tree structures in user−specified routing channels, adding
serpentine wires if necessary to balance the length. The router can also insert balanced repeaters and can
route multiple, independent trees, all with the same wire lengths.

The Clock Router is run with the Clock Routing... command (in menu Tools / Routing). The command
prompts for a command file that specifies the clock routing task. The command file contains directives that
describe the source and destination nodes, the routing channels, and other routing parameters. These are the
directives that can appear in the command file:

UNITS describes the scale to be applied to distances in this file. It has these parameters:
MICRONS specifies the number of units (in this file) per micron. For nanometer design, this
value should be 1000.

♦
•

START−PATH declares the beginning of a synchronized path. Since multiple trees can be routed
with the same length wires in each, the START−PATH and END−PATH directives are used to mark
the individual trees.

•

END−PATH declares the end of a synchronized path.•
SOURCE describes the clock−generator cell. It has these parameters:

NODE specifies the cell name that generates clock signals.♦
PORT specifies the port on the clock generator cell to connect.♦
STUBX / STUBY (optional) is the X/Y delta of a "stub" arc that will be drawn out of the
clock generator port (in UNITS).

♦

•

DESTINATION describes the cells that are being clocked. It has these parameters:
NODE specifies the cell name for instances being clocked.♦
PORT specifies the port on the clocked instances to connect.♦
STUB (optional) is the length of a "stub" arc that will be drawn out of the clocked instances
(in UNITS).

♦

•

LAYERS describes the horizontal and vertical layers to use for routing. It has these parameters:
HORIZONTAL specifies the metal layer number for horizontal arcs. "1" means Metal−1,
etc.

♦

VERTICAL specifies the metal layer number for vertical arcs. "1" means Metal−1, etc.♦
HORIZONTAL−SCALE (optional) is a width−scale for horizontal arcs. The default value
is 1, but anything larger will cause horizontal arcs to scale by that factor over their default
width.

♦

VERTICAL−SCALE (optional) is a width−scale for vertical arcs. The default value is 1,
but anything larger will cause vertical arcs to scale by that factor over their default width.

♦

•

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 335

CHANNEL describes a routing channel. It has these parameters:
NAME specifies the name of this routing channel.♦
IN specifies the side of the channel that has the input (from the clock generator).♦
OUT specifies the side of the channel that has the output (to the clocked instances).♦

After the parameters comes a list of destinations. The destinations can be cell instance names for the
clocked instances, or it can be the name of a previous routing channel.

•

REPEATER describes rules for placing repeaters. It has these parameters:
CELL specifies the cell to be used as a repeater. The cell must have exactly one input port
and one output port.

♦

DIST specifies the distance between repeaters (in UNITS).♦
CONNECT specifies the metal layer number to use when approaching the ports of the
repeater cell.

♦

INSTNAME specifies an instance name to give repeater cells (default is CLK_BUF).♦
NETNAME specifies a network name to give repeater networks (default is CLK).♦

•

ROW describes rules for grid locations of repeaters. Unlike the other directives, the ROW command
follows the DEF syntax, allowing blocks of ROW specifications to be copied directly from a DEF
file. The ROW statement has this structure:
 ROW Name UNIT X−loc Y−loc Orient DO X−repeat BY Y−repeat STEP X−step Y−step ;
Where:

Name is the name of this row (ignored). ♦
X−loc / Y−loc is the coordinate (in UNITS) of the start of the row. Coordinates define the
lower−left corner of the repeater cell instance.

♦

Orient is the orientation of the repeater placement. Possible orientations are N (no rotation),
S (180 degree rotation), E (270 degree rotation), and W (90 degree rotation). If the letter
F preceeds the orientation (for example FN) then the orientation is flipped after rotation.

♦

X−repeat / Y−repeat is the number of times in X or Y that the repeater may appear in the
row.

♦

X−step / Y−step is the distance (in UNITS) along the row of each step. ♦

•

Chapter 9: Tools

336 Using the Electric VLSI Design System, version 9.07

Here is an example of clock routing. This is the command file:
 # Clock routing command file
 START−PATH
 SOURCE NODE=clockGen PORT=clkOut STUBX=25 STUBY=0
 DESTINATION NODE=destCell PORT=clk STUB=10
 LAYERS HORIZONTAL=1 VERTICAL=2
 CHANNEL NAME=a IN=down OUT=left d1 d2 d3 d4
 CHANNEL NAME=b IN=down OUT=right d5 d6 d7 d8
 CHANNEL NAME=whole IN=left OUT=up a b
 END−PATH

Note that there are two CHANNELs named "a" and "b" that connect the two columns of four cells. Then
there is a third CHANNEL ("whole") that connects the "a" and "b" channels.

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 337

9−7: Network Consistency Checking (NCC)

9−7−1: Introduction to NCC

Electric can compare two different cells and determine whether their networks have the same topology. This
operation is sometimes called Layout vs. Schematic (LVS), but because Electric can compare any two
circuits (including two layouts or two schematics) we use the term Network Consistency Checking (NCC).

The Electric Network Consistency Checker has two algorithms for matching networks:

NCC firsts attempts to discover circuit mismatches using an algorithm called "Local Partitioning".
Local Partitioning provides precise and intelligible mismatch diagnostics.

•

After Local Partitioning, NCC uses the Gemini algorithm (Ebeling, Carl, "GeminiII: A Second
Generation Layout Validation Program", Proceedings of ICCAD 1988, p322−325.) In practice
upwards of 95% of all errors are found by Local Partitioning.

•

NCC has a "hierarchical" mode which starts at the bottom of the hierarchy in the leaf cells and proceeds
upward. This mode is recommended because it allows the Local Partitioning algorithm to provide even more
precise and intelligible mismatch diagnostics.

Example

For an example of network consistency checking, open the Samples library with the Load Sample Cells
Library command (in menu Help) and compare the cells "tool−NCC{lay}" and "tool−NCC{sch}". These
two cells are equivalent and the checker will find them to be so.

Calibre

Electric is able to work with Calibre LVS, and it can read the results of that program. Use the Import
Calibre LVS Errors for Current Cell... command (in menu Tools / NCC) and select the Calibre error file
(with the ".db" extension).

9−7−2: Commands

To run NCC, use these commands (in menu Tools / NCC):

Schematic and Layout Views of Cell in Current Window Use a heuristic to figure out what to
compare against the cell in the current window. If the current cell is a schematic then compare it
against some layout cell in the same cell group. If the current cell is a layout then compare it against
some schematic cell in the same cell group. Since most cell groups have one layout cell and one
schematic cell, this form of the NCC command is usually the most convenient. NCC expects that all

•

Chapter 9: Tools

338 Using the Electric VLSI Design System, version 9.07

http://www.cs.washington.edu/research/projects/lis/www/gemini/gemini.html

layout cells in given group match the corresponding schematic cells found in the that group
regardless of the dependencies between them.
Cells from Two Windows Compare the two cells that are displayed in the two opened windows
(there must be exactly two windows). This is useful when the schematic and layout are not in the
same cell group. The command can also be used to compare schematics with schematics or layout
with layout. However, the command will not compare icon cells since they don't have connectivity.

•

Run NCC for Schematic Cross−Probing This command runs NCC and saves the net associations
between schematic and layout. The user can generate a Spice netlist (for example) from an Electric
layout cell. Simulating this netlist will result in a waveform file that uses layout hierarchy and net
names. If this waveform file is loaded into Electric, it cannot be cross−probed from the schematic. It
can be cross−probed from the layout, but that is often difficult to do. In this case, the user can run
this NCC command, which will save net associations between schematic and layout. Then, the user
can cross−probe from the schematic, and Electric will automatically translate the schematic net to the
appropriate layout net contained in the waveform file.

•

These commands control NCC and analyze its results:

Copy Schematic User Names to Layout and Copy All Schematic Names to Layout For each pair
of matching schematic and layout cells, rename networks and nodes in the layout cell to have the
same name as the equivalent networks in the schematic cell. The first command copies only
user−assigned names from the schematic to the layout; the second command copies all names.
Furthermore, it only changes the names of layout networks and nodes that have no user−assigned
names. If a layout network or node has a user−assigned name that does not match the schematic then
this command prints a warning. This command also warns when non−equivalent networks or nodes
have the same user−assigned name.

•

Notes:

These commands use the result generated by the most recent run of NCC. That NCC run
should be hierarchical without size checking.

♦

These commands clear the saved result from the last run of NCC. If you need to run a
command that needs the last result, for example "Highlight Equivalent", then you must rerun
NCC.

♦

Highlight Equivalent Highlight the network or node that is equivalent to the currently selected
network or node, using the result of the most recent NCC run. The user should be aware of a number
of limitations:

This command works best for networks in the top level cells compared by the most recent
NCC run.

1.

This command also works for nodes in the top level cells compared by the most recent NCC
run as long as those nodes are primitive transistors or were treated as primitives because
NCC compared them hierarchically.

2.

Because NCC combines MOS transistors that are in series into a single NMOS_*STACK,
NCC can't find equivalents for certain networks and nodes. For example, when NCC merges
two series MOS transistors into a single NMOS_2STACK it removes the network between
them from NCC's database. Therefore if you click on that network and ask to highlight the

3.

•

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 339

equivalent, NCC won't be able to find an equivalent.
Because NCC combines MOS transistors that are in parallel, it can't find equivalents for
certain networks and nodes. For example when NCC detects two parallel MOS transistors, it
removes one from NCC's database but adds it's width to the other. Therefore if you click on
the transistor that was discarded and ask to highlight the equivalent, NCC won't be able to
find an equivalent.

4.

Add NCC Annotation to Cell This is a submenu that allows user to select which NCC annotation to
add to a cell. Note that the designer should replace text surrounded by angle brackets: "<See Section
9−7−4 on "NCC Annotations" for a description of each NCC annotation.

•

9−7−3: Preferences

NCC options are available in the NCC Preferences (in menu File / Preferences... , "Tools" section, "NCC"
tab).

Chapter 9: Tools

340 Using the Electric VLSI Design System, version 9.07

#chap09-07-04
#chap09-07-04

Operation Section

This section allows you to select what kind of NCC operation to perform. You can either compare
hierarchically, compare flat, or list all the NCC annotations in the design.

It is recommended that you use hierarchical comparison because it is faster and the mismatch diagnostics are
much more precise and intelligible. However, transistor size checking limits what NCC can compare
hierarchically because the size of a schematic transistor may depend upon the instance path.

The best way to use NCC is to initially perform all comparisons hierarchically. This will typically require
many iterations. Once the circuit has passed hierarchical comparison, turn on size checking. This will report
transistor size mismatches.

Size Checking Section

The "Size Checking" section controls how NCC compares transistor widths and lengths. This section affects
two distinct NCC phases: netlist comparison and series / parallel combination.

Netlist comparison

After each topological comparison, NCC can optionally perform size checking. If NCC finds no topological
mismatches, and if "Check transistor sizes" is checked, then NCC checks, for each pair of matching
transistors, that the widths and lengths are approximately equal.

The two tolerance values allow the user to specify how much more the larger of the two matched transistors
may be than the smaller before NCC reports a size mismatch. The "Relative size tolerance" is the difference
in percentage. The "Absolute size tolerance" is the difference in units. NCC reports a size mismatch when
both tolerances are exceeded.

If you choose "Check transistor sizes" and "Hierarchical Comparison" simultaneously then NCC restricts
which cells it treats hierarchically to ensure a correct answer in the presence of automatically sized
transistors. For this case it compares a pair of cells hierarchically if and only if each cell is instantiated
exactly once.

Series / Parallel Combination

When NCC builds the netlist, it performs series / parallel combination. When NCC finds a number of
transistors with the same channel length wired in parallel, NCC substitutes a single transistor whose width is
the sum of the widths of those transistors. When NCC finds a number of transistors with the same channel
width and channel length wired in series, NCC substitutes a single multi−gate transistor that represents all the
series transistors.

NCC uses the "Relative size tolerance" and the "Absolute size tolerance" fields to determine how close
transistor widths and lengths have to be before it will combine them in series or in parallel.

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 341

Body Checking Section

The check box "Check transistor body connections" allows the user to select whether NCC checks
connections to the body port of transistors. By default, body checking is disabled and NCC ignores
connections to transistor body ports.

If the user wishes to check body connections, then she must check this box. Then, the NCC will make sure
that the schematics and layout have matching connections to all transistor body ports.

Note that only certain versions of schematic transistors have body ports. The designer must use those
schematic transistors. In addition, in this version of Electric, layout transistors also have body ports. The
designer must specify the connectivity of the body port of layout transistors using well arcs.

Note that the body port of the layout transistors are in the very center of the transistor and are "hard to
select". If you wish to connect to the body port of a layout transistor you may need to push the "Toggle
Special Select" button in the Electric tool bar (see the Section 2−1−5 for more).

At the moment, only the MoCMOS layout technology has been augmented to allow body connections. This
is because this implementation of body checking is experimental. We'd like to get some feedback from users
before we go to the effort of generalizing all other technologies.

Checking All Cells Section

In hierarchical mode, NCC attempts to compare all cells in the design starting with those at the leaves and
working it's way toward the root. For that mode it is often best if NCC stops as soon as it finds an export or
topology mismatch. To get this behavior the user should check "Halt after finding the first mismatched cell".
Note that size mismatches never cause NCC to stop.

It is occasionally useful to continue checking even after mismatches have been detected. For example, the
designer might find that although a cell mismatches, it cannot be fixed because someone else designed it.
When asked to continue, NCC will do the following when comparing cells that use the mismatched one:

If NCC found no export mismatches when comparing the mismatched cell then NCC will use the
export names to identify corresponding ports in the layout and schematic.

•

If NCC found export mismatches when comparing the mismatched cell then NCC will flatten that
one level of hierarchy before performing the comparison.

•

If the check box "Don't recheck cells that have passed in this Electric run" is checked, then NCC skips a cell
if that cell passed NCC in a previous run and the designer hasn't since changed the cell.

Note that NCC only remembers when cells were last checked during a single run of Electric. If you run NCC,
quit Electric, restart Electric, and rerun NCC, all cells will be checked.

Chapter 9: Tools

342 Using the Electric VLSI Design System, version 9.07

#chap02-01-05

Reporting Progress Section

This panel controls how verbose NCC is in reporting its progress. Most users should leave this at 0.

Error Reporting Section

The error reporting section controls how many error messages are printed when the Local Partitioning
algorithm has failed to find a mismatch but the Gemini algorithm has. Most users will want to leave these at
the default setting of 10.

9−7−4: Annotations

For certain situations, NCC cannot figure out that two cells are equivalent unless the designer supplies extra
information. The designer supplies this information by adding NCC annotations to layout and/or schematic
cells. This is done with the subcommands of the Tools / NCC / Add NCC Annotations to Cell menu.

NCC annotations are represented by attributes placed on cells. The attribute's name is NCC and it contains
one or more lines of text, each with a separate NCC annotation. Thus, although a cell can have at most one
attribute named NCC, that attribute can contain any number of NCC annotations.

exportsConnectedByParent <string or regular expression>

Layout cells sometimes contain multiple exports that are supposed to be connected by the parent cell. For
example, a layout cell might export "vdd", "vdd_1", "vdd_2", and "vdd_3". The designer expects that
instances of this cell will connect all the vdd exports to a single network. However, because the
corresponding schematic cell usually only contains a single export, "vdd", the NCC of the schematic and
layout cells fails. This situation is most common for the power and ground networks, although it occasionally
arises for signal networks such as clock or precharge.

The Exports Connected by Parent vdd and Exports Connected by Parent gnd commands create this
annotation which tells NCC which exports will be connected by the parent. The keyword is followed by a list
of strings and/or regular expressions (regular expressions must begin and end with a '/'). These two example
solve the problem, but the second example is more general:

exportsConnectedByParent vdd vdd_1 vdd_2 vdd_3

exportsConnectedByParent vdd /vdd_[0−9]+/

Note that any special characters inside of the regular expression must be quoted with a backslash. So, for
example, to merge the exports A and B[0], B[1], B[2], ..., use this:

exportsConnectedByParent A /B\[[0−9]+\]/

When NCC compares a cell with an exportsConnectedByParent annotation it performs the comparison as if
those exports were connected. It is safe for NCC to believe this annotation because NCC also checks the
assertion. When NCC encounters an instance of a cell with an exportsConnectedByParent annotation it
reports an error if that assertion isn't satisfied.

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 343

exportsToIgnore <exportNames>

This annotation, created with the Exports To Ignore command, tells NCC to ignore certain exports in the
cell. At the next level up, the equivalent ports on instance of the cell are also ignored, so the network
connected to that port does not see the port or the instance. If the port is further exported up the hierarchy, the
new export needs to be ignored and another exportsToIgnore annotation is required.

The exportNames field can be a set of names or a regular expression (surrounded by "/").

The annotation works only on the current cell (not any associated cells in the same cell group).

For example, suppose a layout cell has extra exports: "E1" and "E2" which do not exist in the schematic. This
can happen when there are exports on dummy polysilicon. In the layout cell, add the annotation
exportsToIgnore E1 E2. This will ignore the extra layout cells, and it will also ignore the use of these
exports, higher up the hierarchy.

skipNCC <comment>

The skipNCC annotation should be added to a cell when:

Its schematic and layout won't pass either flat or hierarchical NCC and•
You want a hierarchical NCC of the cell's parent to flatten the cell.•

If a cell has a skipNCC annotation, then a hierarchical comparison won't check it and will flatten through that
cell's level of hierarchy.

A common reason for needing this annotation is the unfortunate situation in which the exports of the
schematic and the layout don't match. A skipNCC prevents NCC from reporting export mismatches because
1) The cell is not checked by itself and 2) When a parent of the cell is checked, the cell's exports are
discarded because NCC flattens through the cell. Although not always possible, it's better to fix export
mismatches, because fixing them will yield clearer mismatch diagnostics when there is a problem.

All the characters following the keyword to the end of the line serve as a comment. This is useful for
documenting why this annotation was necessary. When you ask NCC to compare every cell in the design,
NCC will tell you which cells it is skipping and why. For example, if a cell includes the NCC annotation:

skipNCC layout is missing ground connection

then NCC will print:
Skipping NCC of A because layout is missing ground connection.

The skipNCC annotation is created by the Skip NCC command and may be placed on any schematic or
layout cell in the cell group. In general, it is preferable to place the annotation on the schematic cell because
it's more visible to the designer.

Chapter 9: Tools

344 Using the Electric VLSI Design System, version 9.07

flattenInstances <string or regular expression> ...

Hierarchical NCCs do not require a perfect match between the schematic and layout hierarchies. Instead,
hierarchical NCC uses heuristics to determine which cell instances must be flattened and which can be
compared hierarchically. The heuristic sometimes make mistakes. When that happens, the
flattenInstances annotation can guide the heuristic.

The list of strings and/or regular expressions are used to match instance names within the cell. Those cell
instances that match are always flattened.

notSubcircuit <comment>

The designer should add the notSubcircuit annotation to a cell if:

The schematic and layout will pass NCC when compared separately but•
Hierarchical NCC of a parent of the cell should not treat the cell as a hierarchical element but should,
instead, flatten it.

•

One reason for using this annotation is to correct errors made by the heuristic that determines which cells to
flatten and which to compare hierarchically. For example, suppose that the schematic instantiates cell B{sch}
1000 times and the layout instantiates cell B{lay} 500 times. In principle one could use the
flattenInstances annotation to inform NCC which instances to keep and which to flatten. However sometimes
that's more work than it's worth and it's better to add a single notSubcircuit annotation to cell B{sch} or
B{lay} to tell NCC to never treat the cell as a hierarchical entity.

When hierarchical NCC encounters a notSubcircuit annotation it prints a message that includes the comment
in a manner similar to skipNCC.

The notSubcircuit annotation only affects hierarchical NCC; it is ignored by flat NCC.

The notSubcircuit annotation is created by the Not a Subcircuit command and may be placed on any
schematic or layout cell in the cell group. In general, it is preferable to place the annotation on the schematic
cell because it's more visible to the designer.

joinGroup <cell name>

Memberships in cell groups is important when NCC performs hierarchical comparisons because NCC
assumes that cells in the same cell group are supposed to be topologically equivalent.

Occasionally it is impractical to place the layout and schematic views of a cell in the same cell group. For
example when layout is automatically generated from hand drawn schematics it may be better to place the
layout in a different library than the schematics.

The designer should use the Join Group command to add a joinGroup annotation to a cell if NCC should
behave as if that cell belongs to a different cell group (which may be in a different library). The cell group to
move the cell to is the cell group that contains the cell named in the annotation. That specification should be

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 345

fully qualified: "library:cell{view}".

transistorType<type>

This annotation, created with the Transistor Type command, changes the nature of transistors in the cell.
The type field has the following structure:
 <MOSOPTION>nMOS−<STYLE>transistor
 <MOSOPTION>pMOS−<STYLE>transistor
 NPN−<STYLE>transistor
 PNP−<STYLE>transistor
 n−type−JFET−<STYLE>transistor
 p−type−JFET−<STYLE>transistor
 <STYLE>depletion−mesfet
 <STYLE>enhancement−mesfet

 <MOSOPTION>: <blank> | depletion− | native− | floating−gate− | carbon−nanotube− | low−threshold− |
high−threshold− |
 high−voltage−1− | high−voltage−2− | high−voltage−3− | native−high−voltage−1− |
native−high−voltage−2− | native−high−voltage−3−

 <STYLE>: <blank> | 4−port−

So, for example, you can have a "high−voltage−1−nMOS−transistor" (typically a 1.8 volt transistor).

resistorType<type>

This annotation, created with the Resistor Type command, changes the nature of all polysilicon resistors in
the cell. The type field may be one of the following: N−Poly−RPO−Resistor, N−Poly−RPO−Resistor,
P−Poly−RPO−Resistor, or P−Poly−RPO−Resistor. Unlike all other resistors, polysilicon resistors are
not treated as short circuits by NCC. Instead, NCC tries to match these schematic polysilicon resistors with
layout polysilicon resistors.

Warning: This annotation is used very infrequently. Typically it is used only inside special libraries such as
the "red" library (see Section 9−9). Most designers simply instantiate resistors from those special libraries.

forcePartMatch <partName>

This annotation, created with the Force Part Match command, forces nodes with the given name in the
schematic and layout to be associated. This annotation is useful when local partitioning fails to detect a
mismatch but hash code partitioning does. In that case forceWireMatch can be used to tell NCC that certain
node were intended to match. With luck, a strategically placed forcePartMatch can cause NCC to display
fewer hash code mismatches and help the user narrow in on the actual error.

After fixing the problem, you should try to remove all forcePartMatch annotations.

Chapter 9: Tools

346 Using the Electric VLSI Design System, version 9.07

#chap09-09

forceWireMatch <wireName>

Same as forcePartMatch except that this command works on wires rather than nodes.

blackBox <comment>

This annotation, placed with the Black Box command, tells NCC to ignore the cells in this cell group and
assume they are topologically equivalent. This annotation is useful when a particular arrangement of layout
geometry implements a construct that Electric doesn't understand. For example, to handle resistors and
parasitic bipolar transistors in the layout.

The blackBox annotation should be used with care because, unlike the other annotations, NCC has no way of
double checking the assertion to insure that it is correct.

The blackBox annotation may be placed on any schematic or layout cell in the cell group. In general, it is
preferable to place the annotation on the schematic cell because it's more visible to the designer.

9−7−5: Graphical User Interface (GUI)

Introduction

When NCC finds mismatches, a window pops up displaying the mismatches. Below is a typical display with
some essential features.

The left side of the window is a tree providing an overview of the kinds of mismatches that NCC found. The
right side has information corresponding to the currently selected tree node(s).

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 347

Each top−level tree node corresponds to a comparison of two cells. In the above example, the label on the
top−level node indicates that the comparison that failed was between the cells: "bitslice{sch}" and
"bitslice{lay}" in the library: "mipscells". If the two cells have different names or are from different libraries,
then their names are shown individually. For example, "libraryA:gateA{sch} & libraryB:gateB{sch}". The
number in square brackets at the right end of the cell names, in this example "[34]", is the number of
mismatches.

In general, if you see a tree node with a number in square brackets, then this number is the total number of
mismatches grouped under this node.

Selecting a top−level tree node displays the number of parts, wires, and ports in the compared cells in the
right part of the window. For all other nodes, the right side of the window displays a list of component names
arranged in different ways, as described in subsequent sections. Some components are highlightable, in
which case their names are printed as blue, red, or green hyperlinks.

A top−level node has one or more subnodes. Subnodes can have the following types: Exports, Parts, Wires,
Parts (hash code), Wires (hash code), Sizes, Export Assertions, Export/Global Network Conflicts,
Export/Global Characteristics Conflicts, and Unrecognized Parts.

For more information on the NCC graphical user interface, see:
 Kao, Russell, Ivan Minevskiy, and Jon Lexau, "Design Notes for Electric's Network Consistency
Check", Sun Microsystems Laboratories Technical Report 2006−152, January 2006.

Exports

The exports node is always a leaf node with the name "Exports [X]", where "X" is the number of export
mismatches in this comparison. Selecting an exports node displays a table on the right side of the NCC
graphical window (see below). The table has two columns − one per compared cell. The header contains cell
names. Each row corresponds to a mismatch. A table cell has zero or more export lists. An export list is a list
of all the exports found on a network and is displayed as a list of export names surrounded by curly brackets
"{ }". Each export list is a single hyperlink which highlights all the exports in the list.

Multiple export lists in a table cell occur when a single network in one design (e.g. the schematic) has one or
more exports that match multiple exports attached to more than one network in the other design (e.g. the
layout). For example, the mismatch on the third row from the top in the figure below has layout exports (the
second column) attached to a single network matching schematic exports (the first column) attached to two
networks.

Chapter 9: Tools

348 Using the Electric VLSI Design System, version 9.07

An empty table cell means one design has exports that match no exports with the same names in the other
design. For example, the mismatch in the top row above has the layout export "E_core_sclk" matching no
exports in the schematic.

Some exports are implied. For example, if a schematic cell uses a global ground, but does not contain an
export for that ground, then NCC will automatically insert an implied export for ground. This is done because
most often the corresponding layout cell has a ground export, and we want the schematic and layout cells to
match. Implied exports are not hyperlinked and have ": implied" added to their names (see below).

When NCC does not find any topological mismatches, it attempts to suggest possible matches for exports
that failed to match by name. Such suggestions are printed in green. The first row of the table below indicates
that the "outO[1][T]" export in the layout topologically matches the "outO[T]" export in the schematic, even
though they have different names. The second row indicates that the "outE[1][F]" export in the layout
topologically matches the "net@4[1]" wire in the schematic, even though the "net@4[1]" wire has no
exports. Note that a wire name is not an export list and is not surrounded by curly brackets.

Implied exports are marked by "implied". Suggestions are printed in green.

Exports that match by name, but are not on equivalent networks, have red hyperlinks. Such exports might
have suggested matches as well, which are printed in green. In the first row of the table below, the "jtag[1]"
export in the schematic does not topologically match the "jtag[1]" export in the layout, but does match the
"jtag[8]" export in the layout.

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 349

Exports that match by name, but are not on equivalent networks have red hyperlinks

Parts and Wires

NCC finds mismatches by applying two partitioning techniques in sequence. First it uses local
partitioning and then it uses hash code partitioning. If local partitioning finds mismatches, then NCC reports
only those. The mismatches in local partitioning of parts and wires are grouped under nodes with names
"Parts [X]" and "Wires [X]", where "X" is the number of mismatched local partitioning classes (see figure
below). Each class node represents a class of parts or wires sharing the same local characteristics.

Parts

Parts are partitioned into equivalence classes based upon their type and the number of wires attached to them.
The figure below shows a list of two part classes.

The tree node corresponding to the first class is selected and has the name
 #3 [4]: mipscells:mux2
which has the following meaning:

#3 The sequence number of this class•
[4] The number of mismatched parts in one of the two cells, whichever is bigger. In our example,
the schematic cell has 4 mismatched part in this class and the layout has 3 mismatched parts in this
class. The maximum of 4 and 3 is 4 and, therefore, the tree node has "[4]" in its name.

•

mipscells Part library•
mux2 Part type•

In the example above, part types were enough to partition parts into classes. In many other cases, like the one
in the figure below, types are not enough and the number of different wires attached to a part is employed as

Chapter 9: Tools

350 Using the Electric VLSI Design System, version 9.07

an additional partitioning criterion.

When a part class node is selected, the right half of the window displays a two−column table. Each column
corresponds to one of the compared cells and has a list of that cell's parts which belong to the selected part
class. Matched parts are printed in green.

The number of attached Wires as a Part class characteristic

Parts on the same line match each other. Mismatched parts are printed in red in no particular order.

Wires

NCC partitions wires into equivalence classes based upon the number of different port types attached to
them. Examples of port types include an NMOS "gate" port, a PMOS "diffusion" port, and a NAND "output"
port. Port type counts are represented as a list of leaf nodes under the wire class node. Since zero−value
counts at the beginning of the list tend to be numerous and are rarely used by designers, they are further
grouped under a "0's"; node.

For example, in the figure below, the second wire class is expanded and we can see its four characteristics,
the first three of which are "zero". The first characteristic has a leaf node called
"pads180nm_150um:PAD_raw welltapL ports", which means that wires in this class are not attached to the
port "welltapL" of the part "PAD_raw" from the library "pads180nm_150um".

The fourth characteristic is "1 = number of pads180nm_150um:PAD_raw padRaw ports". The name suggests
that all wires in this class are connected to the "padRaw" ports of 3 instances of parts with type "PAD_raw"
from library "pads180nm_150um".

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 351

When a wire class node is selected, the right half of the window displays a two−column table (see figure
below). Each column corresponds to one of the compared cells and has a list of that cell's wires which belong
to the selected wire class. Matched wires are printed in green, the two wires on the same line match each
other. Mismatched wires are printed in red in no particular order.

The tree node names contain the first mismatched wires from both lists. For example, in the above figure, the
first wire class has the node name

#1 : {alucontrol[2],...} { } [3]
which has the following meaning:

#1 The sequence number of this class.•
{alucontrol[2],...} The first mismatched wire in the first cell's list is called "alucontrol[2]"
The ellipsis after the name suggest that there is more than one wire in the list.

•

{ } The name of the mismatched wire in the second cell's list (nothing is found).•
[3] The number of mismatched wires in one of the two cells, whichever is bigger. In our example,
the schematic cell has 3 mismatched wires in this class, and the layout has 0 mismatched wires in this
class. The maximum of 3 and 0 is 3, and therefore, the tree node has "[3]" in its name.

•

Chapter 9: Tools

352 Using the Electric VLSI Design System, version 9.07

Hash Code Partitioning

If local partitioning fails to find a mismatch, then NCC reports mismatches found by hash code
partitioning under the nodes labeled "Parts (hash code)" and "Wires (hash code)". Unlike their local
partitioning counterparts, hash code partitioning classes do not have any characteristics.

Selecting Multiple Classes

It is possible to select more than one class by holding the Control (Command on Macintosh) or the Shift key
during selection. In this case, the right side will have multiple rows, one row per class. The figure below
shows what is displayed when the three wire classes in the figure above are selected. Up to five classes can
be displayed at once. Rows are arranged in the order in which the classes are selected.

Up to five equivalence classes can be selected simultaneously

Selecting one or more subnodes of a class node is equivalent to selecting the class node itself. This means
that no class appears twice in the table on the right. If some node of a type different from Parts, Wires, Parts
(hash code), or Wires (hash code) is selected as well, then it has a higher display priority and its contents are
displayed instead. For example, if an exports node was selected with the three wire class nodes, then the
export table would be displayed on the right.

Sizes

Both length and width mismatches in transistor and resistor sizes are collected under "Sizes [X]" node, where
"X" is the total number of size mismatches. Resistor size mismatches are reported here, because polysilicon
resistors in both schematics and layout have lengths and widths.

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 353

The size mismatches table is sorted in the descending order of the relative error

On the right side of the window, mismatches are arranged into a table sorted in the descending order of the
relative error (see example above). Each mismatch occupies one row and has four columns. The first column
contains the relative error of the mismatch. The second and third columns have widths and lengths of the
corresponding parts in two cells. The mismatched value is printed in red. The last column has hyperlinked
part names.

If a transistor has both a length and a width mismatch, then these mismatches are displayed in separate rows
(e.g. the first and the second rows above).

Export Assertions

It is very common for a layout cell, A, to have multiple ground wires that are connected by it's parent cell, B.
For example, cell A may have a wire with the export "gnd" and a different wire with the export "gnd_1".
When cell B instantiates A, cell B connects A's exports "gnd" and "gnd_1". However, A's schematic typically
has only one combined "gnd" wire. When NCC compares A's schematic and layout, it finds that the ground
wires mismatch. As a solution, the designer adds the following NCC annotation into A's layout cell:

exportsConnectedByParent gnd gnd_1

This annotation constitutes a promise that whenever A is instantiated, its exports "gnd" and "gnd_1" will be
connected. Then, when NCC compares A's schematic and layout, it assumes that the promise has been kept
and the comparison passes. However, when NCC compares B's schematic and layout, it checks to see if the
designer is keeping the promise. If the promise is not kept, and no new promise to connect exports in the next
parent is given, then NCC reports an export assertion error in the "Export Assertions" leaf node.

When an "Export Assertions" node is selected, it displays a table with two columns and one or more rows
(see below). Each row corresponds to a broken promise. The first column has cell names. The second column
lists exports that the designer promised would be connected, but which remained disconnected. The exports
are organized into two or more export lists. Each export list is a comma−separated list of exports enclosed in
curly brackets "{ }". Exports in the same list are connected. Exports in different lists are disconnected. The
designer promised that all exports in all lists would be connected.

Chapter 9: Tools

354 Using the Electric VLSI Design System, version 9.07

All exports are individually highlightable. For example, if the designer clicks on the "vdd_1" export then
NCC will open up a window for cell "scan3{lay}" and highlight the net connected to the export "vdd_1".

Tip: If it the design includes multiple instances of cell "rectifier{lay}" then the designer can find out which
particular instance failed to keep the promise by typing control−U which will pop up a level in the hierarchy.

Export/Global Network and Characteristics Conflicts

In an export/global network conflict, a cell has both an export and a global signal with the same name, but
their networks are topologically different (see below). Both the global network export and the cell export are
highlightable.

In an export/global characteristics conflict, one cell also has both an export and a global signal with the same
name, but their characteristics differ (see below). The cell export can be highlighted by clicking on its
characteristics.

Unrecognized Parts

This node has a list of parts (transistors and resistors) with unrecognized types (see below). Each part can be
highlighted by clicking on its type.

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 355

Advanced Features

The total number of mismatched cell comparisons is displayed in square brackets on the top of the tree. Only
comparisons that did not pass NCC tests are counted and displayed. Each failed comparison corresponds to
one top−level tree node. By default, NCC halts after the first failed comparison and, therefore, the tree
contains just one failed comparison. If the user configures the NCC Preferences to continue even after
finding mismatched cells, then NCC compares all cells and displays all that mismatch. When multiple cells
have mismatches, the left pane will display more than one top−level node as shown below.

Right−clicking on a tree node or a table cell pops up a menu with an option to copy the node name or the cell
text to the system clipboard (see below).

Chapter 9: Tools

356 Using the Electric VLSI Design System, version 9.07

9−8: Generation

9−8−1: Pad Frame Generation

The Pad Frame generator reads a disk file and places a ring of pads around your chip. The pads are contained
in a separate library, and are copied into the current library to construct the pad frame. The format of the pad
frame disk file is as follows:

celllibrary LIBRARYFILE [copy]
cell PADFRAMECELL
views VIEWS
core CORECELL
align PADCELL INPUTPORT OUTPUTPORT
export PADCELL IOPORT [COREPORT]
place PADCELL [GAP] [PORTASSOCIATION]
rotate DIRECTION

; Identifies the file with the pads
; Creates a cell to hold the pad frame
; A list of views to generate
; Places cell in center of pad frame
; Defines input and output ports on pads
; Defines exports on the pads
; Places a pad into the pad frame
; Turns the corner in pad placement

The file must have exactly one celllibrary and cell statement, as they identify the pad library and the
pad frame cell. If the celllibrary line ends with the keyword copy, then cells from that library are
copied into the library with the pad ring (by default, they are merely instantiated, creating a cross−library
reference to the pads library). If there is a views statement, it identifies a list of views to generate (such as
sch or lay). Requesting multiple views will produce multiple pad frame cells.

The file may have only one core statement to place your top−level circuit inside of the pad frame. If there is
no core statement, then pads are placed without any circuit in the middle.

The align statement is used to identify connection points on the pads that will be used for placement. Each
pad should have an input and an output port that define the edges of the pad. These ports are typically the on
the power or ground rails that run through the pad. When placing pads, the output port of one pad is aligned
with the input port of the next pad.

Each pad that is placed with a place statement is aligned with the previous pad according to the alignment
factor. A gap can be given in the placement that spreads the two pads by the specified distance. For
example, the statement:
 place padIn gap=100

requests that pad "padIn" be placed so that its input port is 100 units from the previous pad's output port.

If a core cell has been given, you can also indicate wiring between the pads and the core ports. This is done
by having one or more port associations in the place statements. The format of a port association is simply
PADPORT = COREPORT. For example, the statement:
 place padOut tap=y

indicates that the "tap" port on the placed pad will connect to the "y" port on the core cell.

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 357

The port association can also create an export on the pad. The statement:
 place padOut export io=o7 export tap=core_o7

creates two exports on the pad, "o7" on its "io" port, and "core_o7" on its "tap" port. For many instances of
this pad type, this notation can be condensed with the use of the name keyword in conjunction with exports
defined for the pad at the start of the file. For example, defining the IO ports as
 export padOut io tap

and then changing the place statement to
 place padOut name=o7

results in the same ports being exported with the same names. This shorted notation always prepends name
with "core_" on the core port export.

The rotate statement rotates subsequent pads by the specified amount. The statement has only two forms:
rotate c to rotate clockwise, and rotate cc to rotate counterclockwise.

Here is an example of a pad frame disk file, with the finished layout. There is a cell in the Samples library
called "tool−PadFrame" (get it with the Load Sample Cells Library command, in menu Help). This text
makes use of the cell, so save it to disk and use the Pad Frame Generator... command (in menu Tools /
Generation).

; specify library with pads
celllibrary pads4u.txt

; create cell "padframe"
cell padframe

; place this cell as the "core"
core tool−PadFrame

; set the alignment of the pads
; (with input and output export)
align PAD_in{lay} dvddL dvddR
align PAD_out{lay} dvddL dvddR
align PAD_vdd{lay} dvddL dvddR
align PAD_gnd{lay} dvddL dvddR
align PAD_corner{lay} dvddL dvddR
align PAD_spacer{lay} dvddL dvddR

; place the top edge of pads
place PAD_corner{lay}
place PAD_gnd{lay} gnd_in=gnd
place PAD_vdd{lay} m1m2=vdd

; place the right edge of pads
rotate c
place PAD_corner{lay}
place PAD_in{lay} out=pulse
place PAD_spacer{lay}

; place the bottom edge of pads
rotate c
place PAD_corner{lay}
place PAD_out{lay} in=out1
place PAD_out{lay} in=out2

; place the left edge of pads
rotate c
place PAD_corner{lay}
place PAD_in{lay} out=in1
place PAD_in{lay} out=in2

Chapter 9: Tools

358 Using the Electric VLSI Design System, version 9.07

This file places 8 pads in
a ring (2 on each side)
and also places corner
"pads" for making bends.
The input pads connect
to the 2 input ports "a1"
and "a2". The output
pads connect to the 3
output ports "out1",
"out2", and "out3" The
power and ground pads
connect to the "vdd" and
"gnd" ports.

Connections between pads
and ports of the core cell
use Unrouted arcs (from the
Generic technology, see
Section 7−6−3). After these
connections are routed with
real geometry, the finished
layout is shown here, fully
instantiated.

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 359

#chap07-06-03

9−8−2: Other Generators

There are other generators built into Electric. These commands (in menu Tools / Generation) may be used:

Coverage Implants Generator Although individual MOS nodes and arcs have the proper amount of
implant around them, a collection of such objects may result in an irregular implant boundary. To
clean this up, you can place pure−layer nodes of implant that neatly cover the implant area (see
Section 7−1−1). This command does it automatically. It removes previous pieces of coverage
implant before running, so that the result is a clean cover.

•

ROM Generator... The ROM generator constructs many cells to describe a ROM from a personality
file. You will be prompted for the personality file. The first line of the ROM personality file lists the
degree of folding. For example, a 256−word x 10−bit ROM with a folding degree of 4 will be
implemented as a 64 x 40 array with 4:1 column multiplexors to return 10 bits of data while
occupying more of a square form factor. The number of words and degree of folding should be a
power of 2. The remaining lines of the file list the contents of each word. The parser is pretty picky.
There should be a carriage return after the list word, but no other blank lines in the file. Here is a
sample ROM file:
 1
 010101
 011001
 100101
 101010
 4
 00000000
 10000000
 01000000
 11000000

•

MOSIS CMOS PLA Generator... The MOSIS CMOS PLA generator reads two personality files
(AND and OR) and generates a PLA array. Each file has only two numbers on the first line to define
the size of the array, and the values of the array on subsequent lines. Both the AND file and the OR
file are similar. Here is some sample PLA logic:

f = (a and b and (not c)) or ((not b) and (not a))

g = (a and c) or ((not a) and (not c))

Here is the AND file for the above logic:
 4 3
 1 1 0
 0 0 X
 1 X 1
 0 X 0

•

Chapter 9: Tools

360 Using the Electric VLSI Design System, version 9.07

#chap07-01-01

Fill (MoCMOS)... Fill cells are used to meet metal density rules in modern fabrication processes by
filling spaces with certain metal layers. Fill cells are also created to improve chip power distribution
and to avoid voltage drops by inserting cap transistors. Electric has a coverage facility to evaluate the
amount of fill (see Section 9−2−4). This command generates fill cells.

•

Unlike other fill generators, Electric's fill generator creates cells containing power and ground grids
of specified layers, usually starting at Metal−2. These cells can also be arrayed into tile cells to cover
larger areas. When Metal−1 is filled, the generator will cover the area with cap transistors whose
functionality is to prevent voltage drops in the power grid.

The Fill dialog has two tabs: "Floorplan" and "Tiling". The Floorplan section specifies what is inside
of a single fill cell. The Tiling section specifies how those cells are arrayed.

The Floorplan section offers two fill techniques: Template Fill and Fill Cell (not yet available).
Template Fill generates fill cells of a given width and height. The default values reflect the minimum
spacing rules given by the technology. The "Reserved Space" section lets you specify which layers of
metal will be in the fill cells. These metal layers alternate running horizontally and vertically (the
"Even layer orientation" controls which layer runs horizontally first).

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 361

#chap09-02-04

The fill cell will have four
metal wires running in each
direction: the outer two are
Ground and the inner two
are Power. The spacing
between the inner two is
given in the "Vdd Space"
section next to the selected
metal layer. The spacing
between the ground wires
and the edge is half of the
"Gnd Space" value. The
spacing between the power
and ground wires is the
minimal design−rule
spacing for that layer of
metal. The width of the
wires is then adjusted to fill
the remaining space in the
cell.

The Tiling section lets you
request arrays of fill cells to be
generated. Check the desired
sizes and they will be generated.
Each generated array cell will
contain the specified−size array,
and it will be internally wired.

Chapter 9: Tools

362 Using the Electric VLSI Design System, version 9.07

Stitch−Based Fill Generator Similar to the previous fill generator, this stitch−based fill also creates
cells or tiles to meet metal density conditions, but it is a more generic tool for signal distribution.
Unlike the previous tool, it allows you to generate fill cells that drive any signal, not just power and
ground. The fill takes a set of metal arcs stored in cells and stitches them together based on the
export names. The metal arcs can all be located in the same cell or distributed in different cells. If the
arcs are in different cells, the tool will flatten all cells into one with all the signals. Networks are
matched by name up to the first "_" character. For example, arcs in the networks "Vdd_1" and
"Vdd_2" will be stitched together. The tool also allows you to stitch cell instances without flattening
them; it will use the cell exports for the stitching process instead. This is the typical case for cells
containing cap transistors.

•

There are two ways to run the tool: (1) by using a documentation cell containing the fill instructions
and issuing the Stitch−Based Fill Generator from doc input command and (2) by opening all the
relevant cells in different windows and using the Stitch−Based Fill Generator from open
windows command.

When using a documentation cell to control the fill, different combinations of fill cells can be
generated at once. It also has the advantage of being easy to re−run when the fill operation must be
iterated. Each line in the documentation cell follows the syntax below:

fillCellName (< options >) : cell1(< option >) cell2(< option >) ... cellN(< option >)
@exports = {layerName1, layerName2}

Where option(s) can be "W" and/or a sequence of title sizes (e.g. 2x2, 4x4, 3x4). The option "W"
allows the insertion of exports in the middle of the lowest metal arcs and different tile sizes can be
arrayed depending on the area to cover.

By default all input cells are flattened unless option is "I". In that case, the input cell will be
instantiated instead of being flattened in the fill cell.

The @exports line specifies that exports in the generated cells should use only the layers specified. If
this directive is not present, exports are in the two top layers.

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 363

Here is an example:
 fillAB: fillA fillB
 fillC(W): cap(I) fillA fillB metals45
 fillD(2x4, 2x2): fillB metals45 metal6

In the example above, the first line takes the cells "fillA" and "fillB" and stitches the metal bars in
"fillAB". Note that the "signalB" bars did not get stitched because the metal 2 bar does not overlap
100% with the metal 3 bar. The second line generates the fill cell "fillCW" with an instance of "cap"
and metal arcs from the rest of the input cells. The third line generates the cells "fillD", "fillD2x4",
and "fillD2x2" where "fillD2x4" and "fillD2x2" are 2x4 and 2x2 arrays of "fillD" that contains all
arcs defined in the input cells "fillB", "metals45" and "metal6".

Chapter 9: Tools

364 Using the Electric VLSI Design System, version 9.07

Generate gate layouts (MoCMOS) Generates the layout for schematic cells in the Purple and Red
libraries (see Section 9−9). To use this command you must have a schematic in the current window.
The command then hierarchically scans the schematic looking for instances of the Purple and Red
library cells. When it finds such instances it generates layout for them and places the layout in a
library called "autoGenLibMOCMOS". If the cell already exists, it is not regenerated.

•

The gate layout generator recognizes these gates from the Purple and Red libraries:

inv mullerC_sy nand2HTen nms2K

inv2i nand2 nand3 nms2_sy

inv2iKn nand2HLT_sy nand3LT nms3_sy3

inv2iKp nand2LT nand3LT_sy3 nor2

invCLK nand2LT_sy nand3LTen nor2kresetV

invCTLn nand2PH nand3MLT pms1

invHT nand2_sy nand3en pms1K

invK nand2en nms1 pms2

invLT nand2k nms1K pms2_sy

inv_passgate nand2LTen nms2

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 365

#chap09-09

Multi−Finger Transistor Cell... This command builds a cell with a multi−finger transistor (multiple
transistors connected with contacts).

•

You can specify the type of transistor and
contact to use as well as the number of fingers
(transistors) and the transistor size. Other
optional factors include the pitch (extra
spacing around the contacts), number of cuts
in the contacts (overrides the default), and
extra length of the polysilicon (gates). The
dialog on the left produces the cell on the
right.

Acute Angle Fill•
This command fills in corners
where arcs make acute angles. The
fill has a bend in the middle, and
each piece of the bend is the
minimum width of the arc.

Chapter 9: Tools

366 Using the Electric VLSI Design System, version 9.07

9−9: Logical Effort

The Logical Effort tool examines a digital schematic and determines the optimal transistor size to use in
order to get maximum speed. The tool is based on the book Logical Effort, by Ivan Sutherland, Bob Sproull,
and David Harris (Morgan Kaufmann, San Francisco, 1999). It is highly recommended that the user be
familiar with the concepts of this book before using the Logical Effort Tool.

To control Logical
Effort, use the
Logical Effort
Preferences (in
menu File /
Preferences...,
"Tools" section,
"Logical Effort"
tab). This lets you
control a number
of settings for
Logical Effort
analysis.

Logical Effort Gates

A design that is intended to be analyzed with Logical Effort must be composed of special Logical Effort
gates. A Logical Effort gate is simply a schematic or layout cell that conforms to the following
specifications:

The cell has an attribute "LEGATE" which is set to "1". •
The cell has only one output, which may have a logical effort attribute (explained below). •
The cell has zero or more inputs/bidirectional ports. Each of these must have a logical effort attribute
(explained below).

•

The cell has an attribute whose name does not matter, but whose value is "LE.getdrive()", and whose
code is set to "Java".

•

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 367

http://www.mkp.com/books_catalog/catalog.asp?ISBN=1-55860-557-6

On the input and output exports of the cell, we can define an attribute named "le" (use the Add LE Attribute
to Selected Export command in menu Tools / Logical Effort to add this attribute). The value of this
attribute is the logical effort of that port. For example, a NAND gate typically has a logical effort on each
input of 4/3, and an output logical effort of 2. An inverter is defined to have an input logical effort of 1, and
an output logical effort of 1.

The size assigned to the logical effort gate is retrieved via the "LE.getdrive()" call. This value can then be
used to size transistors within the gate. The size retrieved is scaled with respect to a minimum sized inverter
(as are all other logical effort parameters). So a size of "1" denotes a minimum sized inverter.

While these attributes are defined on the layout or schematic cell definition, they must also be present on the
instantiated icon or instance of that definition. By default this will be so.

Finally, there must be at least one load that is driven by the gates in order for them to be sized. A load is
either a transistor or a capacitor. Gates that do not drive loads, or that do not drive gates that drive loads, will
not be assigned sizes.

Logical Effort Libraries

Electric comes with a set of libraries that are specially designed for Logical Effort. Use the Load Logical
Effort Libraries (Purple, Red, and Orange) command (in menu Tools / Logical Effort) to read these
libraries.

The Purple library is a set of logic gates that have been tailored for Logical Effort, as described
above.

•

The Red library is a similar set of gates, but they are not setup for Logical Effort. The Red gates can
be used in places where Logical Effort is not to be done.

•

The Orange library is a low−level set of gates that is parameterized for a specific fabrication
process. Orange gates are used in the Purple and Red libraries, but should not be used elsewhere. The
Orange library that comes with Electric is tailored for a generic 180 nanometer process.

•

Chapter 9: Tools

368 Using the Electric VLSI Design System, version 9.07

Advanced Features

There are several advanced features that may be added to the cell definition:

Attribute "LEKEEPER=1". This cell is defined as a keeper, whose size will be the size of the
smallest Logical Effort gate driving against it, multiplied by the Keeper Ratio.

•

Attribute "LEPARALLGRP=0". If set to 0, this gate drives by itself. If an integer greater than zero,
all gates with that value whose outputs drive the same network are assumed to drive in parallel. The
size needed to drive the load on the network will be equally divided among those gates.

•

Attribute "su=−1". This specifies the step−up (fanout) of the gate, and overrides the global fanout
specified in the preferences. If set to −1, this attribute is ignored, and the global value is used.

•

LEWIREs

A cell marked with an attribute "LEWIRE=1" denotes a wire load. There are two ways to specify the
capacitance of an LEWIRE. The first is to use the LEWIRECAP attribute to specify the capacitance in fF.
The second is to use two attributes "L" and "width" to specify the size of the wire − however this method has
been deprecated because it unnecessarily complicates the defintion of the Wire Ratio setting.

The LEWIRECAP is converted to X size by the following formula:

X size = LEWIRECAP * wire_ratio / x1inverter_totalgate

In this case, "wire_ratio" is defined as lambda of gate per fF of wire capacitance. "x1inverter_totalgate" is the
total lambda of gate of an X=1 inverter, which is defined as the sum of "x1inverter_nwidth" plus
"x1inverter_pwidth" (see LEsettings).

Capacitors are likewise converted to X size by the formula:

X size = Capacitance / gate_cap / 1e−15 / x1inverter_totalgate

Commands

These commands may be given to the Logical Effort tool (in menu Tools / Logical Effort):

Optimize for Equal Gate Delays Optimizes all logical effort gates (cells) to have the same delay.
The delay is specified by the Global fan−out (step−up) project setting. This is NOT a path
optimization algorithm.

•

Optimize for Equal Gate Delays (no caching) It is intended that both the caching and non−caching
algorithms obtain exactly the same result, however due to the difficulty in obtaining and maintaining
correctness when it comes to caching, the non−caching algorithm is also available.

•

List Info for Selected Node After running sizing, information about a specific logical effort gate can
be found by selecting the gate instance and running this command.

•

Back Annotate Wire Lengths for Current Cell Runs NCC on the current cell against it's matching
layout or schematic cell. Assuming they match, for each LEWIRE in the schematic cell, it finds the

•

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 369

half−perimeter of the matching wire in the layout cell (as if the layout was flattened), and then
changes the "L" parameter on the LEWIRE to the value. Note, back−annotation is only performed on
top level LEWIREs, and it takes into account the wire's length throughout the layout hierarchy.
Clear Sizes on Selected Node(s) Logical effort sizes are stored as parameters on the LEGATE.
Sometimes the sheer number of sizes can overwhelm the allocated process memory, and can also
bloat file sizes when they are no longer needed. This command deletes saved sizes on a per−node
basis.

•

Clear Sizes in all Libraries This command deletes saved sizes everywhere.•
Estimate Delays This command computes load factors for every network in the cell.•

The LEsettings cell

There is a cell called LEsettings with the following attributes:

su The step−up (or fan−out) per stage.•
wire_ratio The lambda of gate per fF of wire capacitance, to convert wire capacitance to
equivalent gate size (see LEWIREs).

•

epsilon The convergence limit. Make smaller to get more accurate results, but requires more
iterations.

•

max_iter The maximum number of iterations the algorithm will go through before giving up.•
gate_cap The fF per lambda of gate.•
alpha A modulation applied to the logical effort defined on each gate's output. It is defined as the
ratio of diffusion capacitance to gate capacitance and it converts the output self−loading (diffusion)
capacitance to equivalent units of input loading capacitance. The self−loading is calculated as:

selfXsize * outputLE * alpha

Therefore, if you set alpha to 0, the self−loading load is ignored for logical effort calculation.

•

x1inverter_length The length in lambda of the gates in a X=1 inverter.•
x1inverter_nwidth The width in lambda of the nmos gate in a X=1 inverter.•
x1inverter_pwidth The width in lambda of the pmos gate in a X=1 inverter.•

Chapter 9: Tools

370 Using the Electric VLSI Design System, version 9.07

9−10: Extraction

9−10−1: Parasitic Extraction

Parasitic Extraction is used by netlisters and other parts of the system that need to know about geometric
factors. Control of parasitic extraction is done with the Parasitic Preferences (in menu File / Preferences...,
"Tools" section, "Parasitic" tab).

The left side of the dialog has Project Preferences. Each layer of every technology is listed, and you can set
its unit resistance, area capacitance, and edge capacitance. The bottom section controls values for every layer
in a technology. You can set the minimum resistance and capacitance, as well as the maximum series
resistance. The maximum series resistance breaks long single PI models into series of distributed PI models.
"Include Gate In Resistance" requests that a transistor's gate area be included in overall area calculations for
resistance determination. "Include Ground Network" requests that ground networks be analyzed. The "Gate

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 371

Length Shrink" is a compensation factor for gate lengths. Some process technologies shrink the gate length
by a fixed amount.

The right side of the dialog has User Preferences.

"Use Verbose Naming" The parasitic extractor inserts resistors, and thus makes multiple networks
out of a single network. The new networks are automatically named by the netlister. Normally, the
names are simple, such as "oldnetworkname#1". When verbose naming is requested, the network
names include the nodes to which they connect, for example
"oldnetworkname#m1m2conn−conn@0". This makes it possible for the user to cross−probe back to
the layout from the expanded Spice file, but it makes the file larger.

•

"Back Annotate Layout" transfers schematic net names to layout net names after NCC completes and
matches. This allows one to probe networks in layout with the same name as in the schematics,
making it easier to compare schematic simulations against layout simulations.

•

"Extract Power/Ground" Always dimmed in the dialog: this feature is not available.•
"Extract R" / "Extract C" allow you to uncheck one of these to remove the R or C from RC parasitics
computations.

•

"Use exemptedNets.txt file" looks for the file 'exemptedNets.txt' in your library directory. This file
specifies nets that are exempted from simple parasitic extraction. There are two ways these nets are
treated, depending on subsequent setting: if "Extract all but exempted nets" is selected, all networks
are extracted except the ones in the exempted nets file. If "Extract only exempted nets", only the nets
in the exempted nets file are extracted. All nets connected to this net in subcircuits are also treated
the same way.

•

Exempted Nets file format. One line per network. A network is specified by a library name, cell name, and
net name. When nets are not extracted, a lumped capacitance value may be specified to use on the network.
This last argument is optional (0 if not specified) and ignored when the exempted nets are the only nets
extracted.

libraryName cellName netName [replacementCapValue]

Example:
myLib myCell{lay} net@0

myLib myCell{lay} in_a

9−10−2: Node Extraction

Because Electric captures connectivity information during design, there is no need for "node extraction", the
process of extracting connectivity from layout. However, there are situations where a circuit has only layout
and no connectivity, specifically when a circuit has been read into Electric from CIF, GDS, or other formats
that have no connectivity information in them (see Section 3−9−2).

When CIF, GDS, and other foreign file formats are read into Electric, the cells they create are composed
entirely of pure−layer nodes (see Section 7−1−1). These nodes appear to represent the circuit correctly, and
can even be written back out to CIF or GDS correctly. But the missing connectivity information means that

Chapter 9: Tools

372 Using the Electric VLSI Design System, version 9.07

#chap03-09-02
#chap07-01-01

Electric cannot properly analyze these circuits (cannot do DRC, simulation, etc.)

The solution is to convert this geometry into properly connected components. To convert the current cell into
connected geometry, use the Extract Current Cell command (from menu Tools / Network). To convert the
current cell and all subcells, use the Extract Current Hierarchy command. Electric creates new versions of
the layout cells that have higher−level nodes and arcs in them.

Although the process of converting layout into connectivity information is difficult, it can usually be done
correctly. In Electric, this process is complicated by the fact that the resulting connectivity information must
be expressed as a set of "high−level" primitives (transistors and contacts) which have their own ways of
appearing in the layout. Therefore, it is not always possible to extract layout precisely. For example, the
design rules for a transistor typically require that polysilicon extend beyond the gate area by 2 units, so
transistor primitives typically have this extra geometry built into them. But what would happen if the
geometry to be extracted extends by 3 units? Electric adds an extra 1−unit arc to fill−out the geometry that it
finds. Worse yet, what would happen if the geometry extends by only 1 unit? Electric simply cannot
represent this with its primitives. It will create the transistor, but it will no longer match the original
geometry. In general, the system attempts to create high−level primitives that mimic the original geometry. It
often leaves small pure−layer nodes behind to complete the extraction. As an aid in debugging the extraction
process, these extra pure−layer nodes are highlighted in the resulting cell.

Control of node extraction is done with the Network User Preferences (in menu File / Preferences..., "Tools"
section, "Network" tab).

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 373

"Grid−align to minimum technology resolution" causes all coordinates to be adjusted so that they are are not
less than the minimum technology resolution given in the design rules (see Section 9−2−3). This is useful for
data that has precision problems.

"Approximate cut placement" relaxes the requirement that the cut (or via) locations appear exactly in the
same place, once extracted. When this preference is checked, Electric will find contact areas and replace
them with contact nodes regardless of where those nodes place the cuts. Without this preference, Electric will
place contact nodes in such a way that the cut layers land in the correct original locations. The disadvantage
of forcing exact cut placement is that Electric will create many contact nodes, one for each cut layer. In
multi−cut situations, this may be many more nodes than are necessary.

"Ignore polygons smaller than" limits the size of extracted polygons. When unusual geometries are extracted,
there can be many tiny polygons needed to fill in gaps. By default, any polygon smaller than 1/4 unit in area
is ignored.

"Use pure−layer nodes for connectivity" requests that all wires in the extracted layout be run using
pure−layer nodes. When unchecked, arcs and pins are created to make connections. Because complex layout
can cause many little arcs and pins to be created in order to mimic the geometry, this preference lets a
simpler set of pure−layer nodes do the wiring. Pure−layer nodes are harder to edit, but simpler when
modeling complex geometry.

Active and implant regions can be handled in a number of different ways, depending on the way that these
layers are defined in the original CIF/GDS.

"Require separate N and P active; require proper select/well" assumes that there are distinct N and P
active layers being extracted and that they are surrounded by the proper select and well layers.
Extraction is easiest when all of this information is guaranteed to be correct.

•

"Ignore N vs. P active; require proper select/well" assumes that there is only one active layer for N
and P regions and so the correct select and well implants will be used to determine the type of active.

•

"Require separate N and P active; ignore select/well" assumes that the N and P active layers are
correct, but that the implant regions are not N/P distinct and must be derived from the active
information.

•

"Flatten cells whose names match this" is a way to automatically flatten the hierarchy when extracting. This
is useful in situations where parts of a node are encapsulated in subcells. For example, some designers place
all via layers into a subcell, and construct all contacts with instances of these cells. The node extractor does
not examine subcells when extracting, and so it will not detect the contacts. By placing the subcell names
into this field, the extractor will extract those cells and find the contacts. Note that wildcards can be used
here.

"Flatten Cadence Pcells" requests that Cadence Pcells be flattened without having to list their names.
Cadence Pcells can be recognized by the fact that their cell name ends with "$$" and a number.

Chapter 9: Tools

374 Using the Electric VLSI Design System, version 9.07

#chap09-02-03

9−11: Compaction

The compaction tool squeezes layout down to minimal design−rule spacing. It does this by doing single−axis
compaction, alternating horizontal and vertical directions until no further space can be found. Each pass of
compaction squeezes either to the left or to the bottom of the circuit.

To compact, use the Do Compaction command (in menu Tools / Compaction).

The Compaction Preferences (in
menu File / Preferences...,
"Tools" section, "Compaction"
tab) can tell the compactor to
expand the circuit if it is too close
for the design rules.

For an example of compaction,
open the Samples library and edit
the cell "tool−Compaction" (you
can read the library with the Load
Sample Cells Library command,
in menu Help).

Be warned that the compaction tool is experimental and doesn't always achieve optimal results.

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 375

9−12: Silicon Compiler

Silicon compilation is the process of converting from a hardware description language (such as Verilog or
VHDL) directly to placed and routed silicon. Electric has two ways of accomplishing this task. The old way
uses a silicon compilation system called QUISC (the Queen's University Interactive Silicon Compiler).

The second way, which is more modern and powerful, uses Electric's separate tools for converting hardware
description code, placing it, and routing it.

The Old Way: QUISC

QUISC is a powerful tool that can do placement and routing of standard cells from a schematic or a structural
VHDL description. The VHDL is compiled into a netlist which is then used to drive placement and routing.
Schematics are first converted into VHDL, then compiled to a netlist and laid−out. Thus, a byproduct of
silicon compilation will be a {net.quisc} view of a cell, and potentially a {vhdl} view.

Be warned that the silicon compiler is rather old, and so it produces layout that alternates standard cell rows
and routing rows. Modern silicon compilers use multiple metal processes to route over the standard cells, but
this system does not. This system uses two layers: a vertical routing arc to run in and out of cells, and a
horizontal routing arc to run between the cells in the routing channel. It also uses power arcs to bring power
and ground to the cell rows, and main power arcs to connect the rails on the left and right.

The VHDL description is normally placed in the "vhdl" view of a cell (see Section 4−9 for more on text
editing). There is a VHDL example in cell "tool−SiliconCompiler{vhdl}" of the "samples" library. To access
it, use the Load Sample Cells Library command (in menu Help).

To convert a schematic or VHDL cell into layout, use the Convert Current Cell to Layout command (in
menu Tools / Silicon Compiler). To compile VHDL or Verilog to the {net.quisc} view, use the Compile
VHDL to Netlist View or Compile Verilog to Netlist View commands. (these are typically not needed,
since the previous command does it automatically).

When creating a schematic or VHDL cell to be compiled, it is important to know what primitives are
available in the standard cell library. Electric comes with a CMOS cell library in the MOSIS CMOS
("mocmos") technology. This library is not correct, and exists only to illustrate the Silicon Compiler. These
component declarations are available:

component and2 port(a1, a2 : in bit; y : out bit); end component;
component and3 port(a1, a2, a3 : in bit; y : out bit); end component;
component and4 port(a1, a2, a3, a4 : in bit; y : out bit); end component;
component inverter port(a : in bit; y : out bit); end component;
component nand2 port(a1, a2 : in bit; y : out bit); end component;
component nand3 port(a1, a2, a3 : in bit; y : out bit); end component;

Chapter 9: Tools

376 Using the Electric VLSI Design System, version 9.07

#chap04-09

component nand4 port(a1, a2, a3, a4 : in bit; y : out bit); end component;
component nor2 port(a1, a2 : in bit; y : out bit); end component;
component nor3 port(a1, a2, a3 : in bit; y : out bit); end component;
component nor4 port(a1, a2, a3, a4 : in bit; y : out bit); end component;
component or2 port(a1, a2 : in bit; y : out bit); end component;
component or3 port(a1, a2, a3 : in bit; y : out bit); end component;
component or4 port(a1, a2, a3, a4 : in bit; y : out bit); end component;
component rdff port(d, ck, cb, reset : in bit; q, qb : out bit); end component;
component xor2 port(a1, a2 : in bit; y : out bit); end component;

The Silicon Compiler Preferences (in menu File / Preferences..., "Tools" section, "Silicon Compiler" tab) let
you control many aspects of placement and routing.

The "Layout" section controls the number of rows of cells that will be created. A one−row circuit
may be exceedingly wide and short, so you may wish to experiment with this value. For a square
circuit, the number of rows should be the square root of the number of instances in the circuit (the
number of instances appears as the sum of the unresolved references, listed by the VHDL Compiler).

•

The "Arcs" section lets you set the horizontal and vertical routing arcs, as well as the power rails.•
The "Well" section gives you the option of placing blocks of P−well and N−well over the cell rows.•
The "Design Rules" section lets you control Via size, metal spacing, feed−through size, port distance,
and active distance.

•

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 377

The New Way: Individual Tools

To do silicon compilation of Verilog or VHDL using the more advanced tools, a three step process is
necessary:

Compile to a rats−nest circuit. Read in a standard cell library, and bring the hardware description
language code (Verilog or VHDL) into a cell. Make sure to check "Make Layout Cells (not
Schematics)" in the "Verilog" preferences (see Section 9−4−2). With this cell, use the Convert
Current Cell to Rats−Nest Structure command (in menu Tools / Silicon Compiler). This
generates a cell that has all of the standard cells, placed randomly, and connected with "Unrouted"
arcs.

1.

Place the cells. Now use the Floorplan and Place Current Cell command (in menu Tools /
Placement). This takes the rats−nest cell and redoes the placement so that subcells are in the right
place. You may want to set the "Run routing after placement" in the Placement Preferences. You
may also want to set the "Padding" around placed subcells, also in the Placement Preferences.

2.

Route the cells. If you did not ask for routing after placement, you can do the routing now. Use the
Sea of Gates Route this Cell command (in menu Tools / Routing). If the placement system broke
the circuit into subcells (complex circuits have this happen), then you will want to route the subcells
first, with the Sea of Gates Route Sub−Cells command.

3.

After routing, you may want to redo the placement with different padding. You may also want to adjust the
routing parameters to get better results, and you can always unroute and re−route individual networks.

Chapter 9: Tools

378 Using the Electric VLSI Design System, version 9.07

#chap09-04-02

9−13: Placement

Electric has a number of placement tools that can rearrange a circuit so that routing is easier. The tools can
handle schematic or layout cells.

To run placement, use the
Floorplan and Place Current
Cell command (in menu Tools /
Placement). This selects an
appropriate placement
algorithm to run.

For more precise control over
placement, you can select a
particular algorithm in the
Placement Preferences (in menu
File / Preferences..., "Tools"
section, "Placement" tab) and
then use the Place Current
Cell with Preferred
Algorithm command. The
Placement Preferences not only
lets you select the algorithm,
but also lets you set parameters
for controlling its operation.

The bottom of the Placement Preferences dialog has controls for all placement operations. These controls set
a padding percentage around each placed cell (the default is 0: make the cells touch). You can also ask the
placement system to run the Sea of Gates router after placement is done (see Section 9−6−6).

Chapter 9: Tools

 Using the Electric VLSI Design System, version 9.07 379

#chap09-06-06

These are the possible placement algorithms:

Algorithm Placer Notes

Force
Directed

#1
Gives good results quickly (seconds). Additional time and threads does not
improve results

#2
Recommended for highly−symmetric cell layouts (pads, memory), but may be
unstable

row/col Useful for fixed−pitch cells

Genetic #1 / #2 Needs long runtime. Additional threads do not help

Simulated
Annealing

#1 Not recommended for use

#2 Has best overall results. Useful for non−fixed pitch cells.

row/col Useful for fixed−pitch cells

Bottom−up partition Used to break large circuits into subproblems

Bottom−up placement Fast and good quality for placing random−sized nodes

Min−cut Simple placer that does not use multiple threads

Simple and Random Places linearly/randomly: not recommended

Chapter 9: Tools

380 Using the Electric VLSI Design System, version 9.07

Chapter 10: The JELIB and DELIB File Format

10−1: Introduction to File Format

This chapter describes Electric's native file format, which ends in "jelib". These files contain an entire library
of cells. There are two earlier file formats which remain undocumented and are no longer recommended:
"elib" is a binary format and "txt" is a text−readable format. Electric can still read and write these files, but
support for them is limited and for legacy use only.

JELIB files are text−readable files. Each line of a JELIB file starts with an identifying character that
distinguishes the line. Blank lines, and those that start with the comment identifying character (#) are
ignored. There is no limit to the length of a line of text.

After the identifying character at the start of a line, there are a set of fields. All of the fields are separated by
the separator character (|) except for the first field, which begins immediately after the identifying character.
No blank spaces are allowed on a line (that is, any blank spaces are treated as valid characters). Control
characters (such as the identifying characters) must be upper case. In order to insert a '|' or '\n' or '\r' into a
field, it must be enclosed in the quotation mark characters ("). Backslash character can be used inside
enclosed strings to denote special characters:

Each of the different types of lines in the file has a fixed set of fields that must appear. Some line types also
allow additional fields at the end to add variables (attribute/value pairs, see Section 10−4−1).

The JELIB file has 3 parts: the header, cells, and trailer.

The header has these elements:

H Header information; variable fields are allowed

V View information

L External library information

R External cell in the above external library

F External export in the above external cell

T Technology information; variable fields are allowed

O Tool information; variable fields are allowed

 Using the Electric VLSI Design System, version 9.07 381

#chap10-04-01

The cells have these elements:

C Cell header; variable fields are allowed

N Primitive node information in the current cell; variable fields are allowed

I Cell instance information in the current cell; variable fields are allowed

A Arc information in the current cell; variable fields are allowed

E Export information in the current cell; variable fields are allowed

X Cell termination

The trailer has this optional element:

G Group information

Everything in the file is completely ordered. There is an ordering to the external libraries, cells in those
libraries, technologies, tools, cells, nodes/arcs/exports in a cell, etc. Even the extra variables on a line are
ordered. The ordering is usually a name sort. By ordering everything in the file, the exact same file is
generated every time, and text comparison operations will accurately find differences between two files.
Note, however, that the JELIB reader does not require any sorting, and can handle the data in any order.

DELIB Format

In order to enable CVS version control (see Section 6−13) Electric also has a "delib" format. This format is
actually a directory (with the ".delib" extension) that contains multiple "jelib"−format files. Each of the files
in a "delib" directory contains a single view of a single cell (although it may contain multiple versions of that
cell). Instead of naming these files with the "jelib" extension, they use the cell name for their file name and
the cell view for their file extension.

The cell−files in a "delib" directory have no "V" (views), "T" (technologies), "O" (tools), or "G" (group) lines
(see above). Instead, these lines appear in a separate file called "header", which also has a copy of the "H"
line. Where "C" (cell) lines should appear, the "header" file contains this text:

C____SEARCH_FOR_CELL_FILES____

For example, assume that library "X" has cells A{lay}, A{sch}, and two versions of cell B{lay}: B{lay} and
B;1{lay}. When written as a "jelib", all four of these cells will be stored in the file "X.jelib". When written as
a "delib", there will be a directory called "X.delib" with the files "A.lay", "A.sch", "B.lay" (with two cells in
it), and "header".

When a cell is deleted from a library, its "delib" file is not deleted, but is retained for archival purposes. To
mark it as deleted, however, it is renamed so that it has the extension "deleted."

Chapter 10: The JELIB and DELIB File Format

382 Using the Electric VLSI Design System, version 9.07

#chap06-13

10−2: Header

10−2−1: Header, View, and Tool

Headers

The first line in the JELIB file should be the "H" header line. The syntax is:

H<name> | <version> [| <variable>]*

<name> the name of the library.

<version> the version of Electric that wrote the library.

<variable> a list of variables on the library (see Section 10−4−1).

The name of the library is used in the JELIB file to identify references to this library. The actual name of this
library is obtained from the file path of this JELIB file.

Example:

Hlatches|8.01

Declares that library "latches" was written from Electric version 8.01.

Views

All views used in the library must be declared.

V<full name> | <name>

<full name> the full name of the view.

<name> the abbreviation name of the view.

Example:

Vlayout|lay

Declares view with abbreviation name "lay" and full name "layout".

Chapter 10: The JELIB and DELIB File Format

 Using the Electric VLSI Design System, version 9.07 383

#chap10-04-01

Tools

There is no need to declare all tools in the header. The only reason for a tool declaration to exist is if the tool
has project setting variables stored on it. If there are multiple tool lines, they are sorted by the tool name. The
syntax is:

O<name> [| <variable>]*

<name> the name of the tool.

<variable> a list of preferences on the tool (stored as variables, see Section 10−4−1).

Example:

Ologeffort|GlobalFanout()D12.0

Declares a project setting on the "Logical Effort" tool object. The "GlobalFanout" is set to the floating point
value 12.

10−2−2: External References

After the header line, all external libraries cells and exports must be declared. This allows the file reader to
quickly find all libraries that will be needed for the design, and to reconstruct any missing cells and exports.
The cells are listed under their libraries. The exports are listed under their cells. If there are multiple external
library lines, they are sorted by library name; where there are multiple external cells in a library, they are
sorted by their name; and where there are multiple external exports in a cell, they are sorted by their name.

The syntax of an external library reference is:

L<name> | <path>

<name> the name of the external library.

<path> the full path to the disk file with the library.

The name of the library is used in JELIB file to references to this library. The actual name of this library is
obtained from the path.

The syntax of an external cell reference is:

R<name> | <lowX> | <highX> | <lowY> | <highY>

<name> the name of the external cell.

<lowX> reserved for the low X bounds of the cell contents.

<highX> reserved for the high X bounds of the cell contents.

<lowY> reserved for the low Y bounds of the cell contents.

Chapter 10: The JELIB and DELIB File Format

384 Using the Electric VLSI Design System, version 9.07

#chap10-04-01

<highY> reserved for the high Y bounds of the cell contents.

The syntax of an external export reference is:

F<name> | <centerX> | <centerY>

<name> the name of the external export.

<centerX> reserved for the X coordinate of the center of export polygon.

<centerY> reserved for the Y coordinate of the center of export polygon.

Examples:

Lspiceparts|/home/strubin/electric/spiceparts.jelib

Rgate;1{sch}|−4|4|0|2

Fout|0|2

Declares that an external library called "spiceparts" will be used by the current library, and that it can be
found at "/home/strubin/electric/spiceparts.jelib". In that library is a cell called "gate;1{sch}" whose contents
run from −4 to 4 in X and 0 to 2 in Y. In that cell is an export called "out" with center at (0,2).

10−2−3: Technologies

All technologies used in the library must be in the header. The other reason for a technology declaration to
exist is if the technology has preferences stored on it. If there are multiple technology lines, they are sorted
by technology name. The syntax is:

T<name> [| <variable>]*

<name> the name of the technology.

<variable>
a list of preferences on the technology (stored as variables, see Section
10−4−1).

Examples:

Tmocmos

Declares that there should be a technology called "mocmos".

Tmocmos|ScaleFORmocmos()D200

Declares the technology "mocmos" and also creates a project setting on that technology object called
"ScaleFORmocmos" which is a double−precision value equal to 200.

Chapter 10: The JELIB and DELIB File Format

 Using the Electric VLSI Design System, version 9.07 385

#chap10-04-01
#chap10-04-01

10−3: Body

10−3−1: Cells

After the header information, each cell is described. A cell consists of a cell declaration ("C") followed by a
number of node ("N"), instance ("I"), arc ("A"), and export ("E") lines. The cell is terminated with a cell−end
line ("X"). Inside of a cell, all nodes come first and are sorted by the node name; arcs come next and are
sorted by the arc name; finally come exports, sorted by the export name. Also, when there are multiple cells,
their appearance in the file is sorted by the cell name. The syntax is:

C<name> | <group> | <tech> | <creation> | <revision> | <flags> [| <variable>]*

<name> the name of the cell in the form "NAME;VERSION{VIEW}".

<group>
the name of this cell's group (if different than expected). This field may be
omitted in earlier−format libraries.

<tech> the technology of the cell.

<creation> the creation date of the cell (Java format).

<revision> the revision date of the cell (Java format).

<flags> flags for the cell.

<variable> a list of variables on the cell (see Section 10−4−1).

The Java format for dates (the creation and revision dates) is in milliseconds since the "epoch" (Midnight on
January 1, 1970, GMT).

The <flags> field consists of any of the following letters, (sorted alphabetically):

"C" if this cell is part of a cell−library.
"E" if the cell should be created "expanded".
"I" if instances in the cell are locked.
"L" if everything in the cell is locked.
"T" if this cell is part of a technology−library.

Example:

CrxArray;1{lay}||mocmos|1092185029000|1092185060000|I

Declares cell "rxArray{lay}", version 1, associated with the "mocmos" technology. The cell was created at
date 1092185029000 and last modified at date 1092185060000. All instances in the cell are locked.

Chapter 10: The JELIB and DELIB File Format

386 Using the Electric VLSI Design System, version 9.07

#chap10-04-01

Groups

In older JELIB files, the group information appears in special group lines. Each group line consists simply of
a list of cells in that group. The first cell listed is the "main schematics" of the group. If there is no such cell,
the first field is empty. After that, the cells appear in alphabetical order. When multiple groups are declared,
they appear sorted by the group name (which is derived from the cell names in it). The syntax is:

G<cell> | <cell> | ... | <cell>

<cell>
the name of the cells in the group. <cell> may consists only of proto name, because
all cells with the same base name are put into the same group.

10−3−2: Node Instances

Inside of a cell definition, node instances are declared with the "N" and "I" lines. "N" is for primitive nodes
and "I" is for cell instances. All nodes are sorted by the node name. The syntax is:

N<type> | <name> | <nameTD> | <x> | <y> | <width> | <height> | <orientation> | <flags> [|
<variable>]*

I<type> | <name> | <nameTD> | <x> | <y> | <orientation> | <flags> | <TD> [| <variable>]*

<type>

the type of the node instance. For primitive node instances, this has the form:
[<technology>:]<primitive−node>. If <technology> is omitted, the technology
of the cell is assumed. For cell instances, it has the form:
[<library>:]<cell>;<version>{<view>}. If <library> is omitted, the library
defined by this JELIB file is assumed.

<name> the name of the node instance.

<nameTD> a text descriptor for the name (when displayed).

<x> the X coordinate of the anchor point of the node instance.

<y> the Y coordinate of the anchor point of the node instance.

<width>
the difference between width of the primitive node and the standard width of
this primitive

<height>
the difference between height of the primitive node and the standard height of
this primitive

<orientation> the orientation of the node (see below).

<flags> flags for the node instance (see below).

<TD> a text descriptor for the cell instance name (does not apply to primitives).

<variable> a list of variables on the node instance (see Section 10−4−1).

The <orientation> field is any of the following letters, followed by an optional numeric part:

Chapter 10: The JELIB and DELIB File Format

 Using the Electric VLSI Design System, version 9.07 387

#chap10-04-01

"X" if the node instance is X−mirrored (mirrored about Y axis).
"Y" if the node instance is Y−mirrored (mirrored about X axis).
"R" each letter rotates the node instance at 90 degrees counter−clockwise.
Num Any digits at the end are additional rotation in tenths of a degree.

The <flags> field is any of the following letters, sorted alphabetically, followed by a numeric part:

"A" if the node instance is hard−to−select.
"L" if the node instance is locked.
"V" if the node instance is visible only inside the cell.
Num Any digits at the end are the technology−specific bits.

Examples:

Nschematic:Transistor|mos@0||2|0|||R|2|ATTR_length(D5G0.5;X−0.5;Y−1;)S2

Places a schematic Transistor called "mos@0" at (2,0), standard size, rotated 90 degrees. The flag field "2" is
numeric, and therefore is technology−specific information (in this case, it makes the transistor be pMOS).
There is one attribute on the node, called "length", with the value "2" (a string). This attribute is displayed,
anchored at its center ("D5"), is 1 half grid unit in size ("G0.5;"), and is offset (−0.5, −1) from the node center
("X−0.5;Y−1;").

Ilow;1{lay}|HAPPY||14|12|Y|A|D5G4;

Places an instance of cell "low{lay}" from the library defined in this JELIB file. The instance is named
"HAPPY". It is at (14,12), mirrored in Y, and rotated 0. The "A" means that the node is hard−to−select. Its
name is described by D5G4; (D5 for a centered anchor point; G4 for 4 units size).

10−3−3: Arc Instances

Inside of a cell definition, arc instances are declared with the "A" line. All arcs are sorted by the arc name.
The syntax is:

A<type> | <name> | <nameTD> | <width> | <flags> | <headNode> | <headPortID> |
<headX> | <headY> | <tailNode> | <tailPortID> | <tailX> | <tailY> [| <variable>]*

<type>
the type of the arc instance. It has the form: [<technology>:]<arc>. If
technology is omitted, the technology of the cell is assumed.

<name> the name of the arc instance.

<nameTD> a text descriptor for the name (when displayed).

<width>
the difference between width of the arc instance and standard width of this arc's
prototype.

<flags> flags for the arc instance (see below).

<headNode> the name of the node at the head of the arc instance.

<headPortID> the ID of the port on the head node (may be blank if there are no choices).

Chapter 10: The JELIB and DELIB File Format

388 Using the Electric VLSI Design System, version 9.07

<headX> the X coordinate of the head of the arc instance.

<headY> the Y coordinate of the head of the arc instance.

<tailNode> the name of the node at the tail of the arc instance.

<tailPortID> the ID of the port on the tail node (may be blank if there are no choices).

<tailX> the X coordinate of the tail of the arc instance.

<tailY> the Y coordinate of the tail of the arc instance.

<variable> a list of variables on the arc instance (see Section 10−4−1).

The <flags> field consists of any of the following letters, sorted alphabetically, with the numeric part at the
end:

"A" if the arc instance is hard−to−select.
"B" if the arc instance has an arrow line on the body (use "X" and "Y" for arrow heads).
"F" if the arc instance is NOT fixed−angle (fixed−angle is more common).
"G" if the arc instance has its head connection negated.
"I" if the arc instance has its head NOT extended.
"J" if the arc instance has its tail NOT extended.
"N" if the arc instance has its tail connection negated.
"R" if the arc instance is rigid.
"S" if the arc instance is slidable.
"X" if the arc instance has an arrow on the head (use "B" for an arrow body).
"Y" if the arc instance has an arrow on the tail (use "B" for an arrow body).
Num Any digits at the end are the angle of the arc (in tenths of a degree).

Examples:

AMetal−1|net@0||1|S1800|contact@0||10|10|pin@0||20|10

Places a metal−1 arc (from the technology of the cell). The arc is named "net@0", is 1 wider than standard,
slidable, and at a 180 degree angle. The arc runs from (10,10) on node "contact@0", to (20,10) on node
"pin@0".

Aschematic:bus|net@161|||IJ2700|busHat@4|s[1:8]|42|14|conn@15|y|42|25

Places a bus arc (from schematic) named "net@161", standard width, not end−extended on either end, at 270
degrees angle. The bus runs from (42,14) on node busHat@4 (port "s[1:8]") to (42,25) on node "conn@15"
(port "y").

Chapter 10: The JELIB and DELIB File Format

 Using the Electric VLSI Design System, version 9.07 389

#chap10-04-01

10−3−4: Exports

Inside of a cell definition, exports are declared with the "E" line. All exports are sorted by their name. The
syntax is:

E<portID> | <name> | <TD> | <originalNode> | <originalPort> | <flags> [| <variable>]*

<portID> the export ID of the export.

<name> the name of the export. If empty, the <portID> field is used.

<TD> the text descriptor for writing the port (described later).

<originalNode> the name of the node instance in this cell that the export resides on.

<originalPortID>
the ID of the port on the exported node instance (may be blank if there are no
choices).

<flags> flags for the export (see below).

<variable> a list of variables on the export (see Section 10−4−1).

The <flags> field has the format:
<characteristics> [/A] [/B]

Where <characteristics> is the nature of the export. Choose from the following:

"U" unknown. "C2" clock phase 2.

"I" input. "C3" clock phase 3.

"O" output. "C4" clock phase 4.

"B" bi−directional. "C5" clock phase 5.

"P" power. "C6" clock phase 6.

"G" ground. "RO" reference output.

"C" clock. "RI" reference input.

"C1" clock phase 1. "RB" reference base.

/A indicates that the export is always drawn
/B indicates that the export is body−only (no equivalent on the icon)

Example:

Es[18]||conn@14|a|D5G2;|I/B

Exports port "a" of node instance "conn@14" and calls it "s[18]". The text of the export is attached at the
center of the port ("D5") and is 2 units high ("G2;"). It is of type input, and only appears in the contents (not
the icon).

Chapter 10: The JELIB and DELIB File Format

390 Using the Electric VLSI Design System, version 9.07

#chap10-04-01

10−4: Miscellaneous

10−4−1: Variables

Variables may be attached to any object in the Electric database. They appear at the end of many of the lines
in the file. When more than 1 variable is listed on an object, they are sorted by the variable name. The syntax
is:

<name> (<TD>) <type> <value>

<name> the name of the variable.

<TD> the text descriptor (when the variable is visible).

<type> the type of data attached.

<value> the data. If it starts with "[", it is an array of the form [, , ...]

<name> and <value> fields may be enclosed in quotation marks if the contain special characters (square
brackets, vertical bar, double−quote, backslash, or newline). Backslash character can be used inside enclosed
strings to denote special characters (such as backslash or quote).

The <type> field can be one of these:
"B" Boolean ("T" or "F")
"C" Cell (of the form <library> : <cell>)
"D" Double
"E" Export (of the form <library> : <cell> : <exportID>)
"F" Float
"G" Long
"H" Short
"I" Integer
"L" Library name
"O" Tool name
"P" Primitive Node prototype (of the form <technology> : <node name>)
"R" Arc prototype (of the form <technology> : <arc name>)
"S" String
"T" Technology name
"V" Point2D (of the form <x> / <y>)
"Y" Byte (0−255)

Examples:

ART_message(D5G8;)StxArray4x4B

Chapter 10: The JELIB and DELIB File Format

 Using the Electric VLSI Design System, version 9.07 391

Adds a variable called "ART_message" with the string "txArray4x4B". The text descriptor indicates centered
text ("D5") that is 8 units tall ("G8;").

ART_degrees()F[0.0,3.1415927]

Adds a variable called "ART_degrees" with an array of 2 floating point values: 0.0 and 3.1415927.

EXPORTS()E[ccc:gate;1{sch}:a,"ccc:hate;1{sch}:b[0:4]"]

Adds a variable called "EXPORTS" with an array of 2 exports: export "a" of cell "ccc:gate{sch}" and export
"b[0:4]" from the cell "ccc:hate{sch}".

ATTR_z0(D5G0.5;NPY1;)I50

Adds an attribute called "z0" with the integer value 50. It is displayed anchored at the center ("D5"), 0.5 unit
tall ("G0.5;"), written as "name=value" ("N"), is a parameter ("P"), and is offset by 1 in Y ("Y1;").

10−4−2: Text Descriptors

Text descriptors appear in every Variable, and also in other places (cell instances and exports). All text
descriptors have an anchor factor ("D0" through "D9"). If the anchor starts with a lower−case "d", the text is
hidden (but the descriptor information is remembered). Here are the fields of a text descriptor:

A <size> ; Text is absolute size (in points).

B Text is bold.

C <color> ; Text is drawn in the color index given.

D0 / d0 Text is anchored at its center, limited to the size of its owner.

D1 / d1 Text is anchored at its upper−right.

D2 / d2 Text is anchored at its top.

D3 / d3 Text is anchored at its upper−left.

D4 / d4 Text is anchored at its right.

D5 / d5 Text is anchored at its center.

D6 / d6 Text is anchored at its left.

D7 / d7 Text is anchored at its lower−right.

D8 / d8 Text is anchored at its bottom.

D9 / d9 Text is anchored at its lower−left.

F ; Text is shown in the named font.

G <size> ; Text has relative size (in grid units).

H Variable is inheritable (only for variables on Cells or Exports).

I Text is italic.

L Text is underlined.

N Variable is written in the form "NAME=VALUE".

OJ Text is Java code.

Chapter 10: The JELIB and DELIB File Format

392 Using the Electric VLSI Design System, version 9.07

OL Text is Spice code.

OT Text is TCL code.

P Variable is a parameter.

R Text is rotated 90 degrees.

RR Text is rotated 180 degrees.

RRR Text is rotated 270 degrees.

T Text is interior (seen only when inside the cell).

UR Value is in Resistance units.

UC Value is in Capacitance units.

UI Value is in Inductance units.

UA Value is in Current units.

UV Value is in Voltage units.

UD Value is in Distance units.

UT Value is in Time units.

X <xoff> ; Text is offset in X from object center.

Y <yoff> ; Text is offset in Y from object center.

Example:

D4G8;

The text is anchored on the left ("D4") and is 8 units tall ("G8;").

Chapter 10: The JELIB and DELIB File Format

 Using the Electric VLSI Design System, version 9.07 393

10−4−3: Example

As an example of the JELIB format, let us
assume a design with two levels of
hierarchy. The bottom level of hierarchy
(cell "low") has 3 nodes, two arcs, and an
export, as shown here.

The top level of
hierarchy (cell "high")
has two instances of
the cell (the right
instance is rotated 90
degrees) and an arc
connecting them, as
shown here.

Here is the JELIB file for the above layout:

header
information:
HExample|8.09

Views:
Vlayout|lay

Technologies:
Tmocmos

Cell high;1{lay}
Chigh;1{lay}||mocmos|1093555876000|1094258888640|
Ngeneric:Facet−Center|art@0||0|0||||AV
Ilow;1{lay}|low@0||−14|12|||D5G4;
Ilow;1{lay}|low@1||15|12|R||D5G4;
AMetal−1|net@0|||S0|low@1|a|5|22|low@0|a|−4|22
X

Cell low;1{lay}
Clow;1{lay}||mocmos|1093555232000|1094258870406|
Ngeneric:Facet−Center|art@0||0|0||||AV
NMetal−1−Metal−2−Con|contact@0||−10|10||||
NMetal−1−Pin|pin@0||10|10||||
NMetal−2−Pin|pin@1||−10|−10||||
AMetal−1|net@0|||S1800|contact@0||−10|10|pin@0||10|10
AMetal−2|net@1|||S900|contact@0||−10|10|pin@1||−10|−10
Ea||D5G2;|pin@0||U
X

Chapter 10: The JELIB and DELIB File Format

394 Using the Electric VLSI Design System, version 9.07

	ElectricManual-9.07Body.pdf
	Table of Contents
	Chapter 1: Introduction
	1-1: Welcome
	1-2: About Electric
	1-3: Running Electric
	1-4: Building Electric from Source Code
	1-5: Plug-Ins
	1-6: Fundamental Concepts
	1-7: The Display
	1-8: The Mouse
	1-9: The Keyboard
	1-10: IC Layout Tutorial
	1-11: Schematics Tutorial
	1-12: Schematics and Layout Tutorial

	Chapter 2: Basic Editing
	2-1: Selection
	2-2: Circuit Creation
	2-3: Circuit Deletion
	2-4: Circuit Modification
	2-5: Changing Size
	2-6: Changing Orientation

	Chapter 3: Hierarchy
	3-1: Cells
	3-2: Cell Creation and Deletion
	3-3: Creating Instances
	3-4: Examining Cell Instances
	3-5: Moving Up and Down the Hierarchy
	3-6: Exports
	3-7: Cell Information
	3-8: Rearranging Cell Hierarchy
	3-9: Libraries
	3-10: Copying Cells Between Libraries
	3-11: Views

	Chapter 4: Display
	4-1: The Tool Bar
	4-2: The Messages Window
	4-3: Creating and Deleting Editing Windows
	4-4: Zooming and Panning
	4-5: The Sidebar
	4-6: Color
	4-7: Grids and Alignment
	4-8: Printing
	4-9: Text Windows
	4-10: 3D Windows
	4-11: Waveform Windows

	Chapter 5: Arcs
	5-1: Introduction to Arcs
	5-2: Constraints
	5-3: Setting Constraints
	5-4: Other Properties
	5-5: Default Arc Properties

	Chapter 6: Advanced Editing
	6-1: Making Copies
	6-2: Creation Defaults
	6-3: Preferences
	6-4: Making Arrays
	6-5: Spreading Circuitry
	6-6: Replacing Circuitry
	6-7: Undo Control
	6-8: Text
	6-9: Networks
	6-10: Outlines
	6-11: Interpretive Languages
	6-12: Project Management
	6-13: CVS Project Management
	6-14: Emergencies

	Chapter 7: Technologies
	7-1: Introduction to Technologies
	7-2: Scaling and Units
	7-3: I/O Control
	7-4: The MOS Technologies
	7-5: Schematics
	7-6: Special Technologies

	Chapter 8: Creating New Technologies
	8-1: Technology Editing
	8-2: Converting between Technologies and Libraries
	8-3: Hierarchies of Technology Libraries
	8-4: The Layer Cells
	8-5: The Arc Cells
	8-6: The Node Cells
	8-7: Miscellaneous Information
	8-8: How Technology Changes Affect Existing Libraries
	8-9: Examples of Use
	8-10: Technology XML File Format
	8-11: The Technology Creation Wizard

	Chapter 9: Tools
	9-1: Introduction To Tools
	9-2: Design Rule Checking (DRC)
	9-3: Electrical Rule Checking (ERC)
	9-4: Simulation Interface
	9-5: Simulation (built-in)
	9-6: Routing
	9-7: Network Consistency Checking (NCC)
	9-8: Generation
	9-9: Logical Effort
	9-10: Extraction
	9-11: Compaction
	9-12: Silicon Compiler
	9-13: Placement

	Chapter 10: The JELIB and DELIB File Format
	10-1: Introduction to File Format
	10-2: Header
	10-3: Body
	10-4: Miscellaneous

