Упражнение № 2

Параметричен и шумов анализ

Изображения, които Ви трябват за протокола от това упражнение:

- Електрическа схема за изследване на изходни характеристики на MOS транзистор;
- Параметричен анализ резултати за семейство изходни статични характеристики на MOS транзистор;
- Схема за изследване на коефициента на шума на MOS транзистор;
- Шумов анализ разпределение на шума, генериран от елементите в схемата прозорец с текстова информация.
- Шумов анализ резултати от изследването на коефициента на шума при параметър V_{gate}.

I. Параметричен анализ (Parametric Analysis).

транзистор.

1. Задаване на променлива.

Изчертава се схемата от фиг. 1 в прозореца на схемния редактор (Virtuoso Schematic Editor). Транзисторът nmos4 е реален и се взима от библиотеката PRIMLIB, обвързана със съответната технология. Стойностите на ширината и дължината на канала на транзистора се оставят по подразбиране – w=10µm и l=0.35µm. Задаващите източници на напрежение (vdc), които се използват при симулация, се извикват от библиотеката analogLib. В полето DC voltage на входния източник, задаващ напрежението гейт-сорс, се присвоява променлива Vgate. Тази

променлива трябва се копира в прозореца на средата за аналогова симулация **ADE L** като от менюто **Variables** се избира командата **Copy from cellview**. Стойността й може да се зададе от командата **Edit** на същото меню (ще го използвате в зад. II).

2. Задаване на постояннотоков анализ (dc).

За задаване на постояннотоков анализ от менюто Analyses се избира команда Choose и се маркира dc. За получаване на изходните характеристики на MOS транзистора е необходим избор на режим Component parameter на секцията Sweep variable и развивка по напрежението дрейн-сорс. Зa ce бутон Select целта натиска component, посочва се в схемата източникът, задаващ напрежението дрейн-сорс. В появилия се прозорец се избира параметъра му dc и се посочва диапазон на изменение на стойностите му от 0 V до 3.XX V, където XX е 3 плюс последните 2 цифри от факултетния Ви номер, разделени на 100. Напр. за 101318001 ще бъде 3.31 V, а за 101318020 -**3.50** ∨.

В системата за автоматизирано проектиране CADENCE по подразбиране се запазват стойностите на напреженията във възлите на симулираната схема. За да могат да се визуализират токовете, те трябва предварително да се запазят като в менюто **Outputs** се избере команда **Save all** и се маркира опцията **all** на **Select device currents** (currents).

3. Задаване на параметричен анализ (Parametric Analysis).

Формата за задаване на параметричен анализ се извиква от менюто **Tools** чрез команда **Parametric analysis**. Като изменящ се параметър се задава напрежението гейт-сорс чрез променливата **Vgate**. В полето **variable** се изписва името на променливата или се избира от падащия списък. Стойностите й могат да бъдат например от **From** = 0 до **To** = 2.5, **Total Steps** = 5.

4. Стартиране на симулация.

Симулацията се стартира от формата за параметричен анализ като се избира командата **Start All** от менюто **Analyses**.

5. Визуализиране на резултатите.

За визуализиране на изходния ток след приключване на симулацията, от менюто **Tools** се избира **Results Browser**. В горния прозорец се кликва на знака [+], избира се **dc** (фиг. 2а), а в долния с двойно кликване - **MN0:d** (фиг. 2б). Получава се резултат (фиг. 2в).

Като променливи при параметричен анализ могат да се задават параметри на транзистора (ширина **w** и дължина на канала I), а така също и параметри на други елементи, честота, температура и др.

Фиг. 2а. Избор на резултати от симулация.

Фиг. 26. Избор на дрейнов ток.

(w=10µm, I=0.35µm, брой гейтове=1).

II. Коефициент на шум (Noise Figure)

За изследване на коефициента на шума на транзистор се ползва схемата от фиг. 3. Необходимо е да се поставят на входа и изхода източници, използвани при изследване на шум (портове). Такива са компонентите **psin** от библиотеката **analogLib**. Във формата за задаване на параметри на всеки един от тях се попълва единствено номер на порта (**Port number**), който трябва да бъде цяло положително число, например 1 за PORT0 и 2 за PORT1. Бобините (**ind**) и кондензаторите (**cap**) са идеални елементи и се взимат от **analogLib**. Задават им се големи стойности – за капацитета **1 F** и за индуктивността **1 H**.

Фиг.3. Схема за определяне на коефициента на шума на NMOS транзистор.

Симулаторът **Spectre** дава възможност да се изследват шумови характеристики като: еквивалентен входен и изходен шум, квадратичен входен и изходен шум и др. Тези шумови характеристики се изследват чрез **noise** анализ. Пример за задаване на такъв тип анализ е показан на фиг. 4. в интервал от 10 до XG (гигахерца). X = 100 + последните 2 цифри от факултетния Ви номер.

Необходимо е да се копира променливата Vgate от електрическата схема чрез Variables ⇒ Copy From Cellview. След това й се задава типична стойност 2.5, като се кликне в полето Value на подпрозореца Design Variables на ADE L.

🗙 Choosing	Analyses -	- Virtuoso Ana	alog Desig	–	• x		
Analysis	 tran sens en∨lp pxf qpxf 	 ⊖ dc → dcmatch → pss → psp → qpsp 	 ac stb pac qpss hb 	 noise pz pstb qpac hbac 	 xf sp pnoise qpnoise hbnoise 		
		Noise An	alysis				
Sweep Var Freque Design Temper Compo Model f	iable ncy Variable rature nent Parar Parameter	meter					
Sweep Range Image Start_Stop Image Start_Stop Image Center_Span Sweep Type Image Points Per Decade Image Logarithmic Image Points Per Steps							
Output Noise	se Posit Nega	ive Output No ative Output N	ode 7 Iode 7	out gnd! 20RT0	Select Select		
Enabled 🖌		K Cano	el Def	aults A	Options pply Help		

Фиг. 4. Настройка на **noise** анализ.

1. Визуализиране на резултатите при изследване на шум и разпределението му върху всички елементи в схемата (фиг. 5).

Results \Rightarrow **Print** \Rightarrow **Noise Summary** Избира се: **Frequency spot:** 2G

Бутон Include All Types Truncate by number top: 10

👫 Results	Display Window			x				
Window	Expressions Info <u>H</u>	elp	cād	ence				
Device	Param	Noise Contribution	% Of Total	- A				
/PORTI /MN0 /PORTO /MN0 /MN0 /L1 /L1 /PORT0 /PORT1	rn id rn fn rs rd fn rn ext_file_noise ext_file_noise	7.93346e-19 7.92927e-20 1.14418e-20 1.86614e-21 1.48446e-21 4.34426e-24 0 0 0	89.40 8.94 1.29 0.21 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.0					
Spot Noise Summary (in V^2/Hz) at 26 Hz Sorted By Noise Contributors Total Summarized Noise = 8.87436e-19 Total Input Referred Noise = 1.5527e-17 The above noise summary info is for noise data								

Фиг. 5. Разпределение на шума, генериран от елементите в схемата за изследване на MOS транзистор.

2. Задаване на анализ на разпределени параметри (sp).

Избирате Analyses ⇒ Choose ⇒ sp. Задава се честотната област, в която ще се изследва коефициента на шум и се посочват източниците на шум – входен и изходен порт (фиг. 6).

За изследване на коефициента на шума при различно гейтово напрежение се стартира <u>параметричен анализ</u> с променлива Vgate, както е показано в точка I.3. Тук за крайна стойност трябва да сложите **To** = 2.5 плюс последните 2 цифри на факултетния Ви номер, разделени на **100**, т.е. за **101318001** ще бъде **2.51**, а за **101318020** – **2.7**. Резултатите от такъв анализ за целия зададен честотен обхват са показани на фиг. 7.

🗙 Choosing A	Analyses	- Virtuoso Ana	log Desig		□ x			
Analysis	 tran sens envlp pxf qpxf 	 ○ dc ○ dcmatch ○ pss ○ psp ○ qpsp 	 ac stb pac qpss hb 	 noise pz pstb qpac hbac 	 xf sp pnoise qpnoise hbnoise 			
S-Parameter Analysis								
Ports			(Select	Clear			
Sweep Variable Frequency Design Variable Temperature Component Parameter Model Parameter 								
Sweep Rang Start-Sto Center-S Sweep Type Logarithmic Add Specific F	ge Span 9 Points	Start 10 Poin Num	ts Per Dec ber of Step	Stop ade os	1006			
Do Noise yes no	(Dutput port nput port	/POR:	r1 r0	Select Select			
Mode Single-Ended Mixed In/Out Other								
Enabled 🖌		K Cance	el Defa	(ults A	Options pply Help			

Фиг. 6. Настройка на **sp** анализ.

3. Визуализиране на NF.

От менюто **Results** се избира командата **Direct plot** ⇒ **Main Form.** В новия прозорец се избира **sp, NF** и отдолу **db10.** Натиска се бутона **Plot.** Резултатът е изобразен на фиг. 7.

Фиг. 7. Коефициент на шума на MOS транзистор за целия честотен обхват при различни стойности на променливата Vgate.

Шумовите анализи показват стабилността на схемата по отношение на смущаващи сигнали, които могат да бъдат външни или генерирани от елементите в схемата. Има възможност да се изследва влиянието на параметрите на транзистора, като брой гейтове, дължина I и ширина **w** на канала, площ и други параметри върху шумовите характеристики.