ЛЕКЦИЯ 7

доц. д-р Стела Стефанова

Времеви (транзиентен) анализ в PSpice

1. Същност на анализа във времева област

1.1. Времеви анализ при аналогова симулация

- Анализ на преходните процеси в аналоговите схеми, причинени от паразитни капацитети и индуктивности.

1.2. Времеви анализ при цифрова симулация

- Анализ на логическото поведение на цифрови устройства във времето.

1.3. Времеви анализ при смесена симулация

- Времеви анализ на смесени схеми с аналогови и цифрови компоненти;
- Използват се две стъпки във времето. Едната е за аналоговата част на схемата (от порядъка на ms, us) и отделна за цифровата част (от порядъка на ms). При смесена симулация стъпката по времето се изразява със стъпката на аналоговата част.

1.4. Преходен процес в аналогови схеми

1.4.1. Понятие за преходен процес

В реалните електрически вериги, в частност в електронните схеми, възникват периодични трептения, които се дължат на наличието на паразитни капацитети и индуктивности. Това е нежелателно явление, което предизвиква изкривявания на фронтовете и платото на импулса (Фиг.1).

Фиг. 1. Реален преходен процес на правоъгълен импулс

Преходен процес – процес на затихване на собствените паразитни трептения на електронна схема, след преминаването на които, схемата се установява в т.нар. стационарен режим.

Продължителност на преходния процес – времето, за което преминава преходният процес и системата се установява в стационарен режим.

1.4.2. Изисквания към преходния процес

Преходните процеси трябва да удовлетворяват следните изисквания:

- амплитудите на преходния процес трябва да бъдат малки;
- продължителността на преходния процес във времето трябва да бъде малка;
- преходният процес трябва да бъде затихващ т.е. амплитудата да намалява с течение на времето.

Отскоците δ_1 , δ_2 съответно на предния и задния фронт на импулса (Фиг.1) не трябва да превишават 5-10% U_m. Паразитните трептения трябва да затихнат (т.е. амплитудата им трябва да стане по-малка от 5% δ_1 или 5% δ_2) за време не по-голямо от 0.2-0.3 от t_{μ} . Числените стойности са ориентировъчни и зависят от конкретния случай.

Инертна система – система с по-продължителен преходен процес, която по-бавно достига стационарен режим.

На практика всички изисквания към преходния процес не могат да бъдат удовлетворени. Ако амплитудата на преходния процес е малка, то продължителността му във времето е по-голяма. Ако преходният процес е кратък във времето, то той е с много по-голяма амплитуда.

2. Общ формат на командата за транзиентен анализ

2.1. 1 Опция / ОР

- Незадължителен параметър;

- Съответства на изпълнението на командата .OP (Operating Point) и служи за изчисление и извеждане на подробна информация в изходния файл за постояннотоковия режим на изследваната схема;

- Преди изпълнението на транзиентния анализ задължително се изчислява режимът по постоянен ток, който определя началните условия за изчисления на преходните процеси във времето;

Диалогов прозорец Transient Output File Options, показан на Фиг. 2;

- Тази опция съответства на командата **PSpice=>Edit Simulation Settings =>** Analysis=>Output File Options => опция: Include detailed bias point information for nonlinear controlled source and semiconductors [OP]

2.2. 2 Стъпка за извеждане на данни

Задължителен параметър;

- Това е стъпката във времето, с която се извеждат резултати в изходния файл <име>.out във вид на стойности, графики или таблици. Съответства на командата PSpice=>Edit Simulation Settings=>Analysis=>Output File Options...=> поле: Print values in the output file every <стойност> seconds

- Диалогов прозорец *Transient Output File Options*, показан на Фиг. 2.

Transient Output File Options	;		×	
Print values in the output file every:		seconds	OK Cancel	
Center Frequency: Number of <u>H</u> armonics:	hz			
 Include detailed bias point information for nonlinear controlled sources and semiconductors (/OP) 				

Фиг.2. Диалогов прозорец Transient Output File Options

2.3. 3 Крайно време

- Задължителен параметър;
- Транзиентният анализ се извършва винаги от 0 до t_{крайно} т.е. в интервала [0, tкрайно];

- Преходните процеси възникват при включване на захранването на електронната схема;

- Диалоговият прозорец *Simulation Settings* е показан на Фиг. 3;
- Команда: *Pspice => Edit Simulation Settings => Analysis =>* поле: *Run to time*.

2.4. 4 Начален момент на извеждане на данни

Незадължителен параметър;

- Задава **t_{начало},** от което започва процесът на наблюдение на симулацията. Обикновено се задава, когато преходните процеси не представляват обект на изследване;

- Поради това, че времевият анализ винаги се стартира от нулевия момент, данните **[0, t_{начало}]** се изчисляват, но не се съхраняват в изходния файл и не се визуализират от графичния постпроцесор;

Диалоговият прозорец Simulation Settings е показан на Фиг. 3;

- Команда: PSpice=>Edit Simulation Settings=>Analysis=> поле: Start saving data after.

2.5. 5 Максимална стъпка на изчисление

- Незадължителен параметър;
- Задава се максимална стъпка на интегриране на процеса във времето;
- Ако не е зададена, по подразбиране стъпката е равна на:

t_{крайно}/50;

- При избора на подходяща стъпка е важно да се отбележи, че особено при изчисление на бързо изменящи се във времето функции с много екстремуми, системата автоматично разделя многократно максималната стъпка с цел да бъдат изчислени правилно минимумите и максимумите на функцията. Това довежда до увеличение на времето за изчисление, поради по-големия брой итерации на изчислителния процес, и до увеличаване на размера на изходния файл с резултати от симулацията **<име>.dat**.

- При моделиране на смесени схеми стъпката на моделиране е равна на стъпката на аналоговата част на схемата;

- Стъпката на интегриране на цифрови схеми се определя от времезакъснението на цифровите елементи;

Диалоговият прозорец Simulation Settings е показан на Фиг. 3;

- Команда: *PSpice=>Edit Simulation Settings=>Analysis=>* поле: *Maximum Step Size second.*

2.6. 6 Опция: Игнориране на изчисленията на постояннотоковата работна точка

(SKIPBP)

- Незадължителен параметър;
- Игнорира изчисленията на режима по постоянен ток Skip Bias Point (SKIPBP);

- Началните условия за изчисление на преходните процеси в този случай се задават с командата **.IC** (Initial Condition).

- Началната стойност на тока в бобините и напреженията на кондензаторите се задават със свойството IC на всеки елемент, което може да бъде променяно с Редактора на свойствата (Property Editor);

- Примери:

- .IC V(C1)=0.5V;
- .IC I(C5)=20m;
- .IC V(Nxxxx)=2.5V (за потенциал във възел Nxxxx).
- Ако нищо не е указано с .IC, системата подразбира нулеви начални условия;
- Диалоговият прозорец Simulation Settings е показан на Фиг. 3;

- Команда: Pspice => Edit Simulation Settings => Analysis=>опция: Skip the initial transient bias point calculation [SKIPBP]

3. Примери за дефиниране на транзиентен анализ

- Ако някой от параметрите не е дефиниран, задължително трябва да се постави "0" в позицията, в която се намира този параметър, за да не се обърка правилният ред на въвеждане на параметрите;

- Примери:

.TRAN 5m 500m

.TRAN/OP 5m 500m

.TRAN 0 500m 0 0.2m

- Фрагменти за дефиниране на анализа от входни файлове за симулация:

*Analysis directives:

.TRAN 0 10u 0

*Analysis directives:

.TRAN/OP 0 10u 0.5u 10n

Analysis directives:

.TRAN/SKIPBP 0 10u 0 0

Simulation Settings - VstDe	emo	×
Simulation Settings - VstDo General Analysis Configurat Analysis type: Time Domain (Transient) Options: General Settings Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point	ion Files Options Data Collection Probe Window <u>B</u> un to time: 10u seconds (TSTOP) <u>S</u> tart saving data after: 0 seconds <u>I</u> ransient options <u>Maximum step size: seconds</u> <u>Skip the initial transient bias point calculation (SKIPBP) Output File Options </u>	
J	OK Cancel <u>Apply</u> Help	

Фиг.3. Диалогов прозорец за дефиниране на параметрите на времевия анализ

Резултати от симулация с транзиентен анализ са демонстирани в графичния постпроцесор на Фиг. 4 и Фиг. 5. На Фиг. 4 са показани времедиаграми, илюстриращи поведението на схема с цифрови логически елементи (броене на синхронен 4 разреден двоичен брояч 74Is163). На Фиг. 5 е демонстирана импулсна поредица, получена в изхода на таймер 555 в автогенериращ режим, както и заряд-разряд на кондензатор, определящ параметрите на импулсната поредица.

Фиг.4. Резултати от симулация с транзиентен анализ на цифрова схема

Фиг.4. Резултати от симулация с транзиентен анализ на аналогова схема