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On June 26, 2007, IBM announced the Blue Gene/Pe system as
the leading offering in its massively parallel Blue Genet
supercomputer line, succeeding the Blue Gene/Le system. The
Blue Gene/P system is designed to scale to at least 262,144 quad-
processor nodes, with a peak performance of 3.56 petaflops. More
significantly, the Blue Gene/P system enables this unprecedented
scaling via architectural and design choices that maximize
performance per watt, performance per square foot, and mean time
between failures. This paper describes our vision of this petascale
system, that is, a system capable of delivering more than a
quadrillion (1015) floating-point operations per second. We also
provide an overview of the system architecture, packaging, system
software, and initial benchmark results.

Introduction

The Blue Gene/L* (BG/L) supercomputer was introduced

in November 2004, and its architecture, packaging, and

system software were described previously [1]. While

originally intended to be used for applications related to

life sciences, such as large-scale molecular dynamics

computations of protein folding, the repertoire of

applications running on the BG/L systems has increased

dramatically [2], with users reaping the benefits of its

scalability, superior cost/performance, low power/

gigaflop, high reliability, and high sustained flops

(floating-point operations per second) when compared

to competitive supercomputer systems. Applications on

the BG/L system have won four Gordon Bell Prizes

[3–6]. The largest BG/L installation had been in the

number one position of the TOP500** list [7] for an

unprecedented seven consecutive times since November

2004, and benchmark applications running on this system

have won most of the High Performance Computing

Challenge awards [8] for 2005–2007.

The BG/L supercomputer was designed for high-power

efficiency, with a ratio of dissipated power to flops

(W/flops) that is much lower than that of competitive

supercomputer systems. This power efficiency made the

BG/L system the ‘‘greenest’’ (i.e., most energy efficient)

supercomputer [9], until the introduction of the

IBM Blue Gene/P* (BG/P) system, and it has enabled

computer facilities with limited power budgets to

accommodate systems far more powerful than previously

imagined, enabling substantial increases in the precision

and complexity of the applications being run.

However, the simulation demands for broad classes of

scientific phenomena continue to increase, and with it,

the demand for ever more powerful machines also

increases. In order to meet these demands, on June 26,

2007, IBM announced the BG/P system as the successor

to the BG/L system. The largest installed BG/P system so

far (a 16-rack installation in Juelich, Germany) achieved

the number two spot of the November 2007 TOP500 list

[7] and took over the top position in the Green500 list [9]

as the most energy-efficient supercomputer. In this

overview paper, we emphasize the major enhancements to

the BG/P system over its predecessor. While our aim with

the BG/P system is to push high-performance computing

(HPC) to an unprecedented petascale, it maintains

backward compatibility to BG/L application software.

Table 1 highlights the progression from the BG/L system

to the BG/P system.

At a system architecture level, the BG/P system

maintains many of the design choices of the BG/L system.

A single ASIC (application-specific integrated circuit), the

BG/P compute (BPC) chip, is used as the processor chip

for both compute nodes and I/O nodes. Compute nodes

are connected in a three-dimensional (3D) torus topology.

Each compute node is also connected to a collective

network, rooted at the I/O nodes. Thus, the network
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topology for the BG/P system is the same as that for the

BG/L system. However, the BG/P system incorporates

significant enhancements to the hardware and software

architectures. Most notably, BG/P nodes are now four-

way symmetric multiprocessors (SMPs). The torus

network logic has been enhanced with a direct memory

access (DMA) engine, thereby offloading communication.

Software provides flexibility for the ways in which the

SMP nodes are used by applications in order to attain the

most efficient parallelism. In the BG/P system, a

significant portion of the software stack is open source,

permitting a wide community of users to understand,

leverage, and contribute to BG/P system software.

The BPC chip is based on IBM Cu-08 ASIC technology

[10] (90-nm generation), which is the technology

generation following the Cu-11 (130-nm) technology of

the BG/L system. The denser Cu-08 technology allows

the integration of roughly double the function on a

similarly sized chip. As depicted in Figure 1, the BPC chip

is a single ASIC with four IBM PowerPC 450 (PPC450)-

embedded 32-bit processor cores, arranged as an SMP. A

dual-pipeline floating-point unit (FPU) is attached to

each PPC450 core. The design of this dual FPU is

logically identical to the one used in the BG/L system. It

supports two simultaneous double-precision floating-

point calculations in SIMD (single-instruction, multiple-

data) fashion, along with instruction set extensions for

complex number arithmetic. The dual-pipeline FPUs can

simultaneously execute two fused multiply–add

instructions per machine cycle, each of which is counted

as 2 FLOPs (floating-point operations). Thus, each

processor unit (PPC450 and FPU) has a peak

performance of 4 FLOPs per machine cycle, and the BPC

chip with quadruple processor units rates at a peak

performance of 16 FLOPs per cycle 3 850 MHz, or 13.6

gigaflops (Gflops).

Figure 2 is a photograph of the BPC chip with its major

regions indicated. Along with the above described

quadruple processor units, the chip integrates a memory

subsystem and a number of I/O subsystems to network

the chips to one another and to external computers and

Table 1 Comparison of the BG/L and BG/P systems.

Property Blue Gene/L Blue Gene/P

Node properties Node processors Two PowerPC* 440 Four PowerPC 450

Processor frequency 0.7 GHz 0.85 GHz

Coherency Software managed SMP

L1 cache (private) 32-KB I-cache þ 32-KB

D-cache per processor

32-KB I-cache þ 32-KB

D-cache per processor

L2 cache (private) Seven-stream prefetching Seven-stream prefetching

Two-line buffers/stream Two-line buffers/stream

L3 cache size (shared) 4MB 8MB

Main store 512 MB and 1 GB 2 GB and 4 GB

Main store bandwidth 5.6 GB/s (16 bytes wide) 13.6 GB/s (2 3 16 bytes wide)

Peak performance 5.6 Gflops/node 13.6 Gflops/node

Torus network Bandwidth Core injects/receives packets

6 3 2 3 175 MB/s ¼ 2.1 GB/s

DMA injects/receives packets

6 3 2 3 425 MB/s ¼ 5.1 GB/s

Hardware latency (nearest

neighbor)

,1 ls ,1 ls

Hardware latency (worst case,

72 racks)

7 ls (68 hops) 5 ls (68 hops)

Collective network Bandwidth 3 3 2 3 350 MB/s ¼ 2.1 GB/s 3 3 2 3 850 MB/s ¼ 5.1 GB/s

Hardware latency (round-trip

worst case, 72 racks)

6.0 ls 5.0 ls

System properties

(e.g., 72 racks)

Area 150 m2 200 m2

Peak performance 410 Tflops 1 Pflops

Total power (LINPACK) 1.9 MW 2.9 MW
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file systems. The memory subsystem and I/O networks are

more fully described below.

Each BPC chip is packaged on a compute card, along

with its associated memory chips. This combination of a

BPC chip with its associated private memory represents a

node. The BG/P system currently offers 2 GB of main

memory per node, in the form of double-data-rate-2

(DDR2) SDRAM (synchronous dynamic RAM). As the

DRAM market evolves, a future offering may increase

this to 4 GB per node.

With 2 GB of main memory per node, the BG/P system

has a ratio of 512 MB per processor core, if the memory is

evenly divided among the four cores. The same ratio

exists for the latest BG/L model, which has 1 GB per

node, or 512 MB per core. Thus, with the transition from

the BG/L to the BG/P system, the relative memory size

per core has been maintained, easing software migration.

The performance improvement of the BG/P system

over the BG/L system can mainly be attributed to two

sources: 1) a twofold boost from dual cores to quad cores,

and 2) a frequency enhancement from 700 MHz to

850 MHz. Other characteristics, such as memory

subsystem performance and network performance, have

been maintained or improved on a per-FLOP basis, so we

expect the BG/P system to be 2.43 times faster on a per-

node basis, when compared with the BG/L system. (This

Figure 1
A BG/P compute (BPC) chip integrates four PowerPC 450 (PPC450) cores (each with a double FPU and an L1 cache consisting of a 32-KB 

instruction cache and a 32-KB data cache) with L2 and L3 cache, memory controllers, and various external network interfaces. (FPU: 

floating-point unit; torus: 3D torus network interface; DMA: direct memory access unit; collective: collective network interface; global 

barrier: global barrier interface; Arb: arbiter between DMA and 10-Gb Ethernet access to L3 cache; DDR: double-data rate; ECC: error 

checking and correction; PMU: performance monitor unit. JTAG stands for Joint Test Action Group and refers to an IEEE 1149.1 interface 

for control, monitoring, and debug.)
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comparison assumes that the BG/L and BG/P systems

both use the same L1-cache write-through mode.)

Another performance improvement, as mentioned, is due

to the addition of a DMA engine to the torus network,

which enables most of the network overhead to be

offloaded from the cores. The DMA engine is described

further in the section on DMA.

In addition to the compute nodes, the BG/P system

contains a configurable number of I/O nodes. The I/O

nodes are physically the same compute cards as described

above, but their position in the system differentiates their

logical function. I/O nodes have the 10-Gigabit Ethernet

(GbE) interface enabled for communication with a file

system and host computers. This is an upgrade from the

1 GbE used in the BG/L system. The peak unidirectional

bandwidth of an I/O port is limited to 6.8 Gb/s by the

internal collective network that feeds it. The number of

I/O nodes is configurable, with a maximum I/O-to-

compute-node ratio of 1:16, whereas the corresponding

ratio for the BG/L system is 1:8. Combining these factors,

the BG/P system has a net 3.4-fold increase in I/O

bandwidth per physical unit (node card or rack, for a rack

that is maximally configured with I/O cards) over the

BG/L system, or 40% more I/O bandwidth per FLOP.

The packaging of the BG/P system is similar to that of

the BG/L system (Figure 3). Thirty-two compute cards

and, optionally, up to two I/O cards are packaged onto

the next-level board, called the node card. Sixteen node

cards are plugged from both sides into a vertical midplane

card, completing an assembly of 512 compute nodes in an

8 3 8 3 8 configuration. The inbound and outbound

network connections for this 512-way cube are routed to

four link cards that carry a total of 24 Blue Gene/P link

(BPL) chips. The assembly of 16 node cards, 4 link cards,

and an additional service card is called a midplane or a

512-way. The BPL chips are relatively simple switches

that, depending on the size and configuration of a user

partition of the system, route network signals back into

the midplane (completing the wraparounds for an 8 3

8 3 8 torus) or route the network signals through cables

to another midplane for larger partitions. Two midplanes,

one on top of the other, complete a rack. Thus, a rack has

1,024 nodes, or 4,096 cores, giving a peak performance of

13.9 teraflops (Tflops). Scaling upward, a 72-rack system

can package 72K nodes (288K cores) (where K stands for

1,024) into a 1-petaflops (Pflops) (peak) system, and

larger configurations up to 256 racks (3.56 Pflops peak)

are possible.

Blue Gene/P system integration
A critical component of any large supercomputer

installation is a high-capacity and scalable parallel file

Figure 2

The Blue Gene/P compute (BPC) chip, showing the four PowerPC 

450 processors (PPC_00, PPC_01, PPC_10, PPC_11) and their 

associated floating-point units (FPU_00, FPU_01, FPU_10, 

FPU_11), network interface controllers (torus with DMA, 

collective network, JTAG, and 10-Gb Ethernet), and memory 

hierarchy (L2 and L3). The four large arrays are 2-MB embedded 

DRAMs (eDRAMs), each used as L3 data caches. The BPC chip 

dimensions are 13.16 mm � 13.16 mm, and it contains 208M 

transistors, of which 88M are in the eDRAM arrays. (UPC: 

universal performance counter; PLL: phase-locked loop; serdes: 

serializer/deserializer; DMA: direct memory access.) 
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system. While customers are free to specify a file system of

their choice to attach to a Blue Gene* system, IBM offers

an integrated solution based on the General Parallel File

System* (GPFS*). The GPFS implementation on the

BG/P system remains largely the same as on the BG/L

system. The GPFS runs on BG/P I/O nodes in much the

same way as it does on conventional GPFS clusters.

Because the I/O bandwidth of the BG/P system has

significantly increased with respect to the BG/L system,

the presence of a large number of I/O nodes in a BG/P

configuration may pose significant challenges to a parallel

file system from the perspective of sustained bandwidth

delivery and network connectivity. The architecture of a

host system that supports the BG/P system must take

these requirements into consideration. In Figure 4, we

show a proposed system configuration for a 111-Tflops

eight-rack BG/P system, with 16 I/O nodes per rack, each

operating at its unidirectional bandwidth limit of

850 MB/s. Apart from the eight BG/P racks, this example

system proposal includes IBM System p5* 550Q servers

used as front-end and service nodes, connected via

Force10 S50 and Myricom 10G switches for the 1 GbE

control networks and the 10 GbE user-data networks,

respectively. IBM System x3655 GPFS file system servers

and an IBM System p5 550 server, used as an IBM

Tivoli* Storage Manager (TSM) backup server, drive the

storage functions. The proposed GPFS storage system is

based on IBM DCS9550 storage units, which under

GPFS can each deliver approximately 2.1 GB/s of I/O

throughput in a cost-effective manner, as well as IBM

DS7400 storage units for GPFS metadata and for

backup, and an IBM System Storage TS3500 Tape

Library.

Cost/performance
One of the key design objectives for the Blue Gene family

of supercomputers is to achieve a cost/performance ratio

on par with the COTS (commodity-off-the-shelf)

Figure 4
A typical architecture of a 111-Tflops, eight-rack Blue Gene/P system with a storage system supporting the IBM GPFS. Blue connections 

represent a 1 GbE (Gigabit Ethernet), green connections represent a 10 GbE, and red connections represent FiberChannel (FC). See text for further 

explanation. (SR: short-range optical fiber; CX4: copper connection; SATA: serial advanced technology attachment; LTO: linear tape-open.)
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approach. Three components dominate the cost of a

modern supercomputer: memory, processor, and

interprocessor networks. In order to minimize the cost,

the BG/L and BG/P supercomputers use a balanced

approach in which the memory cost and processor cost

are roughly equal. Furthermore, we integrate the

interprocessor networks directly onto the processor chip

in order to avoid the expensive industry-standard links.

This approach has attracted top-tier customers in HPC

such as Lawrence Livermore National Laboratory

(LLNL) and Argonne National Laboratory (ANL) to

partner with IBM to develop future Blue Gene systems.

Low power

A hallmark of the Blue Gene family is the low-power

design. We have previously demonstrated experimentally

[1] and theoretically [11] that by using a clock frequency

that is judiciously chosen to be relatively low, we can

achieve an overall gain in rack-level performance and in

power efficiency in terms of Gflops per watt.

In the current CMOS (complementary metal-oxide

semiconductor) 90-nm generation, leakage power is as

high as an average of 4 W per BPC chip, whereas leakage

power was negligible in the previous generation.

Nevertheless, the BG/P system has improved the ratio of

Gflops per watt by about 50% compared with the BG/L

system. A low-power design results in a higher integration

level (more function per physical unit such as a chip,

board, or rack), higher reliability, smaller footprint (i.e.,

floor space), energy savings, and an overall reduction in

total cost of ownership over the lifetime of the system.

Table 2 provides a comparison of current supercomputers

from the June 2007 TOP500 list. The last two rows

highlight the space and power savings normalized to a

petaflop. (Note that we scale these values to a petaflop for

comparison purposes, regardless of whether a particular

architecture can be scaled to a petaflop.)

Figure 5 compares the system power efficiency of the

BG/P to the top systems on the November 2006 TOP500

list [7]. IBM systems are in yellow. Red Storm is a

Cray XT3 system with AMD Opteron chips.

Thunderbird is a Dell PowerEdge** cluster, using Intel

Xeon** EM64T chips. Both Red Storm and Thunderbird

are located at Sandia National Laboratories. ASC

(Advanced Simulation and Computing) Purple is at the

LLNL and is based on IBM chips. Consistent with this

data, the BG/P and BG/L machines now occupy the top

positions of the Green500 list [9].

Memory system
Each PPC450 core contains a separate L1 instruction

cache (I-cache) and L1 data cache (D-cache). Both caches

are 32 KB in size, have a line size of 32 bytes, and are 64-

way set-associative with 16 sets. The PPC450 I-cache is

virtually tagged (which means that the tag for any cache

line is based on the upper bits of the virtual address),

whereas the PPC450 D-cache is physically tagged, which

means that the tag for a cache line is based on the upper

bits of the real or physical address. For both caches, lines

are replaced in round-robin order. I-cache line fills are

performed through a dedicated 128-bit bus for each

respective PPC450 core. The D-cache has two separate

128-bit data buses to and from L2, one for reading and

one for writing. A line transfer between the L1 and L2

caches requires two consecutive 16-byte transfers and

optimally returns the critical word first. The peak fill rate

is 6.8 GB/s. The PPC450 memory system allows pages of

memory to be mapped as write-through, cacheable, or

cache inhibited. The D-cache supports a snooping cache

coherence protocol, more specifically a write-invalidate

cache coherence protocol.

Table 2 Power and space consideration for petascale systems based on various architectures (see Reference [7]).

IBM BG/P IBM BG/L IBM POWER5* 575 Cray XT3** Silicon Graphics

Altix** 4700

Nodes per rack 1,024 1,024 12 96 1

Processors per node 4 2 16 2 64

Clock speed (GHz) 0.85 0.7 1.5 2.4 1.6

FLOPs/clock 4 4 4 2 4

Peak performance per rack (Gflops) 13,926.4 5,734.4 1,152.0 921.6 409.6

Power required per rack (kW) 40.0 27.0 35 14.8 20.6

Gflops/kW 348.16 212.4 33 62.3 19.9

Racks required for 1 petaflops 72 174 868 1,085 2,441

Total power for 1 petaflops (MW) 2.9 4.7 28.6 16.2 50.2
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The architecture of L2 remains almost the same as that

of the BG/L system. Each L2 cache includes a read-only

line store (L2R) and a write buffer (L2W). The L2R is

small and essentially serves as a prefetch buffer for line

fills. On L1-cache misses, it not only delivers the requested

data to the L1, but also requests the data for the

subsequent line from the L3 cache and stores this

prefetched data for potential future L1-cache misses. The

prefetch improves latency and sustainable bandwidth for

regular access patterns such as streams or array accesses.

The L2R is fully associative and includes 15 lines, each

of which is 128 bytes. An L2R hit is expected to have a

latency of 12 cycles and tomatch the peak fill rate of the L1

cache. The L2 prefetch is complemented by a prefetch unit

inside the L3, which prefetches data from main memory

into L3, anticipating future requests from the L2 cache.

The write-through policy of the L1 D-cache required

that the coherence management of the prefetch buffer be

improved with respect to the BG/L system. The

granularity of prefetch buffer invalidation was changed

from 128 bytes to 32 bytes, allowing the prefetcher to

function efficiently in the presence of writes that modify

the streamed-in data. The presence of the L2 write buffer

allows the core to complete write-through stores very

quickly and allows for the larger L2 and L3 line size to be

aggregated.

The four L2 caches are connected via multiplexing

switches to the L3 cache (see Figure 1). The L3 cache is

constructed with embedded DRAM (eDRAM) and is

8 MB, organized as two banks of 4 MB each. It is shared

by instructions and data. The L3 provides much higher

bandwidth, lower power, and lower latency access to the

working set of applications than off-chip memory. For

many workloads, the bandwidth and latency restrictions

of the off-chip main memory on performance are,

therefore, significantly mitigated.

Since the L1 D-caches are designed to be operated in

write-through mode on the BG/P system, the L3 cache

has been improved for write throughput with respect to

the BG/L system. The total number of on-chip L3 write-

combining buffer entries has been increased from four

128-byte lines in the BG/L system to sixty in the BG/P

system. In addition, the L3 directory has been optimized

for write throughput, allowing a total of four write

requests to complete every 425-MHz cycle.

The BPC chip also integrates dual DDR2 memory

controllers, one associated with each L3 bank, and each

with a 128-bit-wide data interface, running at half the

processor frequency. This results in an off-chip memory

bandwidth to floating-point performance ratio of 1 byte/

FLOP. For a processor clock frequency of 850 MHz, the

total memory bandwidth is 13.6 GB/s. The main memory

is external to the BPC chip and is built from commodity

DDR2 SDRAM devices. A flexible memory controller

design and ECC (error checking and correction)

algorithm allows the BG/P system to progress between

512-Mb, 1-Gb, and 2-Gb DRAM chip technologies as the

DRAM industry evolves. For a 2-GB/node design, each

BPC ASIC can address forty 512 Mb x8 DRAM chips

(where x8—i.e., ‘‘by eight’’—denotes the data bus width

of an individual DRAM chip) or twenty 1 Gb x16 chips.

For a 4-GB/node design, forty 1 Gb x8 chips or twenty

2 Gb x16 chips can be used. These configurations of

DRAM chips provide strong ECC protection and can

tolerate failed DRAM chips, as described below.

Finally, the node memory subsystem additionally

includes a shared SRAM. The shared SRAM is used for

loading boot code and for out-of-band communication

between the node kernels and host service processor. In

addition, the shared SRAM provides the backing-store

for a flexible number of low-latency 32-bit atomic

counters. This builds on the functionality of the BG/L

lockbox device that provided a fixed number of atomic

single locks and two-core barrier operations. Using an

active address decoder, the BG/P lockbox implements

atomic counting operations (including fetch, fetch with

increment, fetch with decrement, and fetch with clear),

providing traditional counting semaphores in hardware.

System and application software can build on these

primitives to perform resource management,

interprocessor communication, and barriers and state

exchange, in addition to simple locking.

In summary, on a per-core basis, the L1, L2, and L3

cache sizes remain the same in the BG/P system as in the

BG/L system. The L1, L2, and L3 caches as well as main

memory bandwidths, measured in terms of bytes per

Figure 5
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FLOP, also remain the same as in the BG/L system.

Thus, the BG/P platform maintains the overall memory

system characteristics for applications, easing the

migration of code from the BG/L system to the BG/P

system while introducing improvements in performance

and flexibility.

Node coherence

The BG/L system was based on the PowerPC 440

processor core, which did not support cache coherence. In

the BG/P system, however, the PPC450 core provides

hardware support for cache coherence and, therefore,

allows BG/P nodes to be used as SMPs. As mentioned,

data integrity between the processors is maintained with a

cache coherence protocol based on write-invalidates, with

all L1 caches operating in write-through mode. Every

store not only updates the L1 cache of the issuing core but

also immediately sends the write data via the L2 write

buffer to the shared L3 cache. If two or more processors

attempt to write to the same location simultaneously,

then only one of them succeeds at the L3. The L2s

broadcast an invalidate request for the write address to

ensure that no stale copy of the same data will remain in

the other L1s and L2s.

In SMP architectures, invalidate requests represent a

significant fraction of all cache accesses, but only a small

fraction of the invalidate requests will typically hit in any

of the remote caches. This is particularly true of

supercomputing applications in which optimization

techniques such as data partitioning and data blocking

will have increased locality of reference.

On the BPC chip, we designed a snoop filter (also

known as a coherence request filter) that is associated with

each of the four processor cores, as illustrated in Figure 6.

By filtering out irrelevant invalidate requests, it

significantly reduces the interference of invalidate

requests with processor operations while adding minimal

chip area, latency, or complexity. The snoop filter

compares incoming invalidate requests to its own copy of

the L1 address tags. If the L1 cache does not contain the

address tag, the invalidate request is not relevant to the

L1 cache of its processor, and the snoop filter suppresses

transmission of the irrelevant invalidate request to the L1

cache. Thus, the number of actual invalidate requests

presented to the L1 cache is reduced, thereby increasing

performance and reducing power consumption.

Each L2 cache broadcasts invalidate requests to the

remote snoop filters using a point-to-point coherence

network. Memory system coherence also extends to the

DMA engine. The DMA connects to the memory system

at the L3. Because of the L1 write-through policy, all core

writes are visible in the L3. When the DMA writes data

from the network into the L3, corresponding invalidate

requests are generated and sent to all four cores.

The snoop filters, therefore, receive multiple concurrent

requests. Each snoop filter implements a separate block

(or port filter) for each interconnect port. Thus, each

snoop filter in Figure 6 has four separate port filters,

three to handle requests from a remote L2 and one to

handle requests from the DMA.

Each snoop port filter implements three different and

complementary filtering algorithms, capturing various

characteristics of the memory references. The first is a

snoop cache that filters invalidate requests on the basis of

temporal locality. This means that if a single invalidate

request for a particular location was made, it is probable

that another request to the same location will be made

soon. This filter unit effectively records a subset of

memory blocks that are not cached. The second filter, a

set of stream registers, uses an orthogonal snoop filtering

technique, exploiting the regularity of memory accesses.

This filter unit records a superset of blocks that are

cached. The third filter is a range filter, in which a range

of addresses is specified. Depending on the selected mode,

address ranges are set to filter all coherence requests with

addresses either within or outside of the specified address

range. Results of the three filter units are considered in a

combined filtering decision. If any one of the filtering

units decides that a snoop request should be discarded,

the snoop request is discarded.

Early measurements show that the snoop filters reject

about90%ofunnecessary invalidates, resulting inperformance

improvements up to 35%, depending on the application.

To ensure that memory synchronization occurs among

the processors, our design supports the PowerPC

Figure 6
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instructions msync and lwarx/stwcx. The lwarx

instruction loads a word and sets a reservation bit

internal to the PPC processor. The stwcx instruction

updates memory, but only if the reservation bit is set.

Together, these two instructions allow the

implementation of atomic memory updates. The msync

instruction ensures that all scheduled instructions

complete prior to completion of the msync. This is

necessary because the PowerPC architecture supports

out-of-order execution. When necessary, a global

synchronization enforces completion of all snoops and

memory writes before proceeding.

Networks
In the BG/P system, as in the BG/L system, three

networks are used for node-to-node communication: a

3D torus network, a collective network, and a global

barrier network. The internal logic of the torus and

collective networks remains essentially unchanged from

those of the BG/L system. However, on the BG/P system,

these networks deliver more than twice as many bytes per

cycle than on the BG/L system. This was accomplished by

doubling the internal clock rates of the network logic and

by raising the signaling rate by a factor of 2.43 with

respect to the BG/L system through the use of IBM high-

speed serial (HSS) I/O technology (see Serdes area in

Figure 2). As a result, the ratio of I/O bandwidth to

floating-point performance, as measured in bytes per

FLOP, is preserved, easing the migration of BG/L code to

the BG/P system.

DMA
On the BG/L system, the processor cores were responsible

for injecting (or receiving) packets to (or from) the

network. As mentioned, on the BG/P system, a DMA

engine has been added to offload most of this

responsibility from the cores, thus enabling better overlap

of communication and computation. Specifically, the

DMA interfaces with the torus network. Cores are still

responsible for handling packets on the collective

network. Because most Message Passing Interface (MPI)

calls that use the collective network are both global in

nature and blocking, there is little performance to be

gained by offloading collective network traffic. The DMA

is rich in function yet occupies only a small fraction of the

chip. The major DMA constructs include injection and

reception memory FIFO (first-in, first-out) buffers,

injection and reception byte counters, and short (32-byte)

message descriptors. The FIFOs and counters are

organized into four groups so that each core can

potentially reserve, manage, and use its own DMA

resources. The DMA can send messages to other nodes or

to itself, resulting in a local, intranode memory copy (or,

optionally, simply a prefetch into L3).

Three message types exist: memory FIFO, direct put,

and remote get. Each message is defined by a 32-byte

message descriptor that contains such information as the

message type, DMA resources used, a torus packet

header specifying the destination, and a message length

and pointer to the start of the message. For a memory

FIFO message, the packets (including torus headers) are

placed in a reception FIFO on the destination node. For a

direct put, the payloads of the packets are deposited

directly into an arbitrary memory buffer, for example, the

reception buffer of an MPI_Irecv call. For a remote get,

the payload of the message is itself one or more message

descriptors. These descriptors are placed into an injection

FIFO on the destination node for eventual processing by

the DMA. This descriptor may correspond to a direct put

of a long message back to the source node.

A memory FIFO can be of arbitrary length and located

anywhere in (physically contiguous) memory. The DMA

maintains pointers to the start, end, head, and tail of the

FIFO. It is managed as a producer–consumer queue in a

circular buffer. For (non-remote get) injection FIFOs,

cores are the producers, placing message descriptors into

the FIFO and advancing the tail pointer. The DMA is the

consumer, reading the descriptor at the head of the FIFO,

interpreting the descriptor, fetching the data from the

memory, packetizing the data, injecting the packets into

the torus network, and advancing the head pointer. For

an injection FIFO that is used (exclusively) for remote get

messages, the DMA is both the producer and the

consumer. For reception FIFOs, the DMA is the

producer, placing network packets into the FIFO and

advancing the tail pointer. Cores are the consumers,

reading packets in the FIFO and advancing the head

pointer. There are 32 injection FIFOs per group (128

total) and 8 reception FIFOs per group.

In addition, there are 64 injection and 64 reception

counters per group (for a total of 256 each). Each counter

has a base physical address and a byte counter. Reception

counters also have a maximum physical address. Each

message must have an injection counter, and all direct put

messages have a reception counter, each specified as a

1-byte identifier. Upon injection, the payload of the

message is pulled from the base address of the injection

counter plus an offset specified in the descriptor. This is

done on a packet-by-packet basis. For each packet, the

injection counter is decremented by the number of

payload bytes in the packet. For direct put packets, the

reception counter ID is placed in each packet, and the

DMA computes the appropriate put offset for the packet.

Upon reception, the payload of a packet is written

starting at the base address of the reception counter plus

the offset of the packet, and the reception byte counter is

decremented by the number of payload bytes in the

packet. To test for message completion, software can poll
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a counter to see whether it has reached an appropriate

value (usually zero). Because only a limited number of

counters exist, a variety of counter sharing and

management techniques have been developed and

implemented in the messaging software.

Torus packets can be up to 256 bytes in length (in

multiples of 32). The torus hardware routing header

occupies the first 8 bytes, and the DMA header occupies

the next 8 bytes, leaving up to 240 bytes of payload data

per packet.

The DMA uses physical addresses; thus, a single put

message must read (or write) data from (or to) a

physically contiguous buffer. The BG/P compute node

kernel (CNK), which is optimized for scientific

applications, has a simplified memory management policy

in which, for most of user memory, the physical address

equals the virtual address plus an offset. Under the CNK,

DMA messaging occurs entirely in user space, and

efficient user-space calls exist to do the virtual-to-physical

translation. For most (nonstrided) large messages, a

single descriptor and a single memory translation call can

be used for the entire message.

The DMA can also generate interrupts for events such

as a counter hitting zero, a FIFO becoming full, or an

attempt to write to an invalid memory address.

The combination of the DMA, torus network, and

memory system is capable of supporting high-bandwidth

communications. Our measurements show that for a full

3D nearest-neighbor exchange (six neighbors per node),

up to 93% of peak performance can be sustained. Because

each link corresponds to 425 MB/s and the payload

utilization of the link is 88% [payload bytes/(packet-sizeþ
CRC þ acknowledgment packet)], the node

simultaneously sends and receives 2.09 GB/s (equal to

425 MB/s 3 6 3 0.88 3 0.93) for an aggregate rate of

4.18 GB/s.

Performance counters

Performance counters are particularly important for HPC

systems, such as the Blue Gene system, in which

performance tuning is critical to achieve high efficiency.

Most traditional processor architectures support a limited

number of counters for processor events and system

events. In the BG/P system, we provide a performance

counter unit that implements 256 64-bit counters. At any

time, 256 events out of more than 1,000 events can be

monitored concurrently. To efficiently implement this

large number of counters, we designed a novel hybrid

performance monitor. The 64-bit counters are split into a

12-bit low-order portion that is implemented as classical

fast counters, as well as a 52-bit high-order portion that is

implemented densely using an SRAM array. The SRAM

array logic sequentially polls the low-order counters and

increments an SRAM word if the overflow bit of the

corresponding low-order counter is set.

Each counter can be configured individually to count in

one of four different signal-level modes: level-sensitive

events (low- or high-active) and edge-sensitive events

(low-to-high or high-to-low transition). In addition, each

counter can be configured to generate an interrupt if a

specified threshold value is reached. The counter

configuration is specified in a memory-mapped register

block, which can be accessed from all processors in a

shared memory space, if given access by the operating

system.

Reliability, availability, and serviceability
For supercomputers, the sheer number of components

requires a strong focus on reliability, availability, and

serviceability (RAS), in both the hardware and the

software design. The BG/P system reliability target is less

than one fail per rack per year. In order to meet or exceed

this reliability standard, the hardware features for RAS in

the BG/P system largely follow the successful BG/L

approach, with N þ 1 redundant power supplies at all

levels, Nþ 1 redundant fans, reliability-grade-1 processor

chips, direct soldered memory, and spare wires in cables.

The L1 and L2 caches and all major on-chip buses are

parity-protected and the L3 cache is protected by ECC.

The L1 cache and L2 cache will operate in write-through

mode so that any new data is written directly to ECC-

protected L3.

A major enhancement to the BG/P system is the ECC

protection of the external DRAMs against both hard and

soft errors. This was required because each BPC chip has

two on-chip DRAM controllers, controlling twice the

number of DRAMs as a BG/L compute (BLC) chip. In

the BG/P system, each controller communicates with the

external DDR2 SDRAMs via a 160-bit-wide bus, of

which 128 bits are user data. In the BG/L system, the

DRAM data bus was 144 bits wide. The additional bits in

the BG/P system allow for storing address parity bits,

spare bits, and enhanced ECC protection data. The ECC

protection is such that it can correct either single or

double symbol errors (where a symbol is three adjacent

physical bits) and can tolerate the failure of a full x16

DRAM chip (or, equivalently, two adjacent x8 DRAM

chips)—a feature called IBM Chipkill. Because DRAM

chips constitute the vast majority of chips in the BG/P

system, this strong ECC scheme is a major factor in

maintaining the reliability of the system against both hard

and soft errors. With the DRAMs thus protected, the

principal remaining failure mode of a BG/P system is

expected to be a hard fail of a BPC chip. Although all

BPC and BPL chips are burnt-in (i.e., prestressed at

elevated temperature and voltage), the failure rate of the

machine is expected to be somewhat higher during the
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first year or so of operation, and thereafter to improve as

early fails are removed from the system.

Software architecture overview
This section presents the software architecture for the

BG/P system. A software overview article [12] appeared

after the release of the BG/L system. Thus, while we

present the overall BG/P software model here, we focus

on the areas that involve the most significant changes

between the BG/L and BG/P systems.

The BG/P system is being released at a transition point

in computing. Previously, Moore’s Law was satisfied

by increasing the speed of each of the cores. For

numerous reasons, upcoming generations of computers will

achieve Moore’s Law by increasing the number of cores.

This will have a profound impact on the way in which we

must perform computation. In the generation after the

BG/P architecture, the number of processing elements

in a supercomputer will be sufficiently large that a

programming model other than a flat MPI programming

model will be required. On the BG/P system, this

upcoming need was taken into account as we designed the

software and represents one of the significant differences

from the BG/L system. For example, in this section, we

discuss the SMP runtime mode, different potential models

for producing a two-tiered programming model, and

what we have done to make those efficient. Although

potentially only a few applications will require such

models to fully take advantage of the BG/P system, the

BG/P system represents an excellent test vehicle, both for

Blue Gene and for other platforms, on which application

programmers can transition from the programming

model of the previous generation to the necessities of

next-generation programming models.

We address the following challenges associated with the

system software on the BG/P system:

Scalability—The design of system software that scales to

hundreds of thousands of cores requires careful software

design and strict adherence to the principles embodied by

the design. It is possible to approach scalability and, to a

lesser extent, performance from two directions. Existing

system software can be scaled by identifying the location

of bottlenecks and addressing those areas, one by one,

that are associated with a machine of a given size. As

larger machines become available, new bottlenecks arise

and are then addressed. An alternative approach is to

start with a minimal-functionality system stack, but one

that is designed to scale. The Blue Gene strategy to

achieve scalability and high performance has been to start

simply, for example, with space sharing, one job per

partition, no paging, and one thread per core.

Performance—System software should not be the

performance-limiting factor.Wemaintained theBlueGene

design philosophy that the machine speed should be

driven by hardware constraints and that the system

software should not impede the performance obtainable

by hardware and application design.

Functionality—One of our ongoing goals with the BG/P

system is to make the machine useful to more HPC

applications, as well as to applications outside the HPC

arena while continuing to maintain the performance

required by HPC applications. To this end, we have

increased the set of POSIX** (Portable Operating System

Interface) functions we support and added binary

compatibility with Linux**. By generalizing the

messaging stack, we now have the ability to support a

range of programming models including MPI,

OpenMP**, ARMCI (Aggregate Remote Memory Copy

Interface), Global Arrays, Charmþþ, and UPC (Unified

Parallel C, a global address space extension of C). As with

the BG/L system, we also provide a variety of important

optimized numerical libraries, including ESSL

(Engineering Scientific Subroutine Library), MASS

(Mathematical Acceleration Subsystem) and MASSV,

ScaLAPACK (Scalable Linear Algebra Package), FFTW

(an implementation of fast Fourier transform developed

at MIT), and glibc (GNU C library).

Wider accessibility—The Blue Gene platform currently

excels at watts per FLOP [9], making it an attractive

capacity machine in addition to a capability machine (see

Figure 5). In order to enhance accessibility, we are

exploring Linux on the compute node and using compute

nodes as accelerators for programs such as MATLAB**

or Java**, while still maintaining the necessary scalability

and performance.

In the following sections, we describe each of the

system software components. We focus on the areas that

have undergone the most change comparing the BG/L

and BG/P systems. We start by describing our open-

source strategy on the BG/P system, which marks a

significant change from the BG/L system. This is followed

by a section on compiler support. We then describe the

messaging stack and programming models. Following

that, we describe the CNK (compute node kernel). We

then describe the I/O node Linux, followed by a

presentation of the BG/P control system. We finish this

section by presenting our efforts to broaden the user base

by describing our compute node Linux strategy and other

efforts to make Blue Gene computing cycles available to a

wider audience, including work on system-level

acceleration on the Blue Gene platform.

Other crucial pieces of the software stack, for example,

the IBM LoadLeveler* scheduler and the IBM GPFS, are

available for BG/P systems. These have been described in

the original BG/L software paper [12].
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Open source

A foundation of the BG/P initiative is the fostering of

collaboration around the core system software. A

significant portion of the BG/P software stack is provided

as open-source software that allows customers,

laboratories, and universities to customize and optimize

the code to meet their needs and to return innovations to

the community. These innovations may be integrated

back into the product.

All software that has a direct impact on an application

in the system software stack is open-source software. This

includes all layers of the communication libraries, for

example, the highest level of MPI and Global Arrays

down through the system programming interfaces that

control the hardware through direct register access.

Application owners are given the opportunity to fully

understand performance by including these layers directly

in their analysis.

To further computer science research in operating

systems, we have made the lightweight CNK and the

associated I/O path open source, and we include source

for all system daemons on the I/O node. Linux and all

drivers are open source as well. This gives users outside

IBM a better understanding of performance impacts of

modifications to the I/O paths in the existing system and

allows development of alternative kernels and methods.

Enabling this open-source strategy are two software

components, the Bootloader and Common Node Services

(CNS), which provide a firmware layer resident on

compute and I/O nodes. These components collaborate

with the control system service node to perform early chip

initialization, device configuration, and kernel load and

to provide a common functional interface, used by all

kernels, for RAS event capture and reporting.

Finally, administration and efficient use of the system

via job scheduling often has unique requirements from

installation to installation. The Web-based Blue Gene

Navigator and scheduler APIs (application programming

interfaces) are open source in order to allow for

experimentation as well as advanced customization and

automation.

Compiler support

BG/P system users develop code and run applications

from front-end nodes (FENs), which are 64-bit POWER*

systems typically in a blade form-factor. The FENs are

installed with Blue Gene system-specific compilers. The

application may be executed using a standard mpirun

launch interface or more typically using a job scheduler

such as LoadLeveler.

For Blue Gene systems, IBM provides XL C, Cþþ, and
Fortran compilers and supports the widely available gcc

compiler. Only the XL compilers exploit the dual-pipeline

FPU. For an individual core, the XL compiler

optimization work done for the BG/L system [13–16] is

readily applicable to the BG/P system, because the 16-

byte aligned loads and stores and the dual-pipeline FPU

retain their BG/L characteristics. Throughout the

availability of the BG/L system, the optimizing capability

of the XL compilers has steadily improved, particularly

with respect to exploiting the dual-pipeline FPU. In a

September 2007 release, the XL C/Cþþ 9.0 and XL

Fortran 11.1 compilers have continued this trend.

Additionally, the latest compiler release supports

OpenMP directives, allowing users and developers to

leverage OpenMP parallelism on the node while using

other mechanisms such as MPI to communicate between

nodes. Some examples of the use of OpenMP are

provided in the section ‘‘BG/P application performance

and scaling.’’

Messaging framework and programming models

The BG/P system messaging framework has been

redesigned, enhanced, and generalized. The new

framework is implemented primarily in Cþþ and provides

multiple levels of abstraction. One of its key design goals

was to provide support for multiple programming

models. Although MPI applications are still considered

the primary targets of the BG/P system, alternative

programming models that can exist on top of the new

messaging stack include ARMCI from the PNNL (Pacific

Northwest National Laboratory), GA (Global Arrays,

matrix operations on large distributed matrices),

Converse/Charmþþ (an asynchronous parallel

programming language from the University of Illinois),

and UPC. Figure 7 depicts the hierarchical structure of

the messaging framework.

The foundation of the messaging stack is the Deep

Computing Messaging Framework (DCMF) and the

Component Collective Messaging Interface (CCMI).

DCMF is a Cþþ library implementing efficient point-to-

point messaging on top of the System Programming

Interface (SPI). The SPI consists of a collection of C

functions for low-level access and control of the network

hardware. DCMF provides abstract interfaces that are

based on Cþþ classes for the relevant pieces of the

hardware, including the collective network, the torus

network, and the global interrupt network (depicted in

Figure 7 as a row of three device boxes), and for

communication protocols using those devices. In addition

to the standard point-to-point protocols, DCMF

implements a novel multisend protocol. A multisend

protocol is a type of aggregation of many point-to-point

messages into one abstract operation that makes specific

hardware-dependent optimizations possible for groups of

messages. The multisend protocol in DCMF is the bridge

that connects the abstract implementations of collective
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operations (in CCMI) to specific BG/P communication

networks.

DCMF also provides a simple but powerful C language

API that serves as the primary public interface for higher-

level messaging systems such as MPI or ARMCI. The

public DCMF API exposes three types of message-

passing operations: a two-sided send, a multisend,

and a one-sided get. All three have nonblocking

semantics to facilitate overlapping of computation and

communication. The user is notified about completions of

communication events by means of completion callback

functions. The API is based on the active message model.

A reception callback function, registered through the

API, is activated automatically at the receiving node on

arrival of the message. One-sided messaging is supported

by the get API call. It takes full advantage of the

DMA hardware. In particular, its remote get mechanism

avoids CPU intervention on the remote node by using the

DMA hardware to fulfill the requested data transfer.

The API also provides a registration framework for the

supported messaging operations that enables coexistence

of different higher-level messaging systems within the

same application. For example, an application may issue

both MPI and ARMCI calls.

SMP mode within a compute node is fully supported

because the API calls are thread-safe. In particular,

MPICH (a portable implementation of MPI) on the

BG/P system can run in thread multiple mode, which is

the highest possible MPI thread level. DCMF is fully

compliant with MPI progress semantics by utilizing

interrupts and dedicated lightweight communication

threads.

Optimized collective operations for the BG/P system

are implemented in the CCMI Cþþ library (see Figure 7).

CCMI defines a set of components representing a flexible,

programming-paradigm-independent framework for

implementing collectives. In particular, it uses schedule

and executor components to express the algorithm of a

collective operation. A schedule defines the sources or

targets of the incoming or outgoing messages at each step

of the algorithm on the basis of a virtual network

topology of the contributing processes. The executor

queries the schedule in each step and performs the sending

or receiving operations. Typically, each type of collective

operation requires one executor that implements the

necessary operation-specific optimizations. CCMI

provides executors for barrier, broadcast, reduce,

allreduce, and all-to-all collectives. An executor can take

different schedules, optimized for different network

hardware and physical topology; for example, rectangular

blocks in the torus network have an optimized schedule

that takes advantage of the deposit bit hardware feature.

The actual data transfer in the executor is done by means

of the multisend component. The executor can pick

different multisend instances in order to perform the same

collective operation on top of any of the various hardware

networks. The actual multisend implementations come

from the DCMF library. The CCMI framework is

sufficiently flexible to support both synchronous and

asynchronous collectives. An asynchronous low-latency

broadcast is part of CCMI.

Compute node kernel

The BG/P CNK provides a 32-bit PowerPC SMP

operating system that is binary compatible with I/O node

Linux at the system call interface. To enhance

performance and scalability, CNK restricts the number of

processes per node to a maximum of four and the number

of threads per process to a maximum of one per

processor. CNK provides three major modes of operation

to high-performance parallel applications: 1) SMP mode,

supporting a single multithreaded application process per

compute node, 2) dual mode, supporting two

multithreaded application processes per compute node,

and 3) quad mode, supporting four single-threaded

application processes per compute node. In the BG/L

literature [12], these application processes were typically

called virtual nodes. Unlike normal fork/exec semantics,

Figure 7

The Blue Gene/P messaging framework. (CCMI: component 

collective messaging interface; UPC: universal parallel C; DCMF: 

deep computing messaging framework; API: application- 

programming interface; DMA: direct memory access; GI: global 

interrupt; SPI: system programming interface.)
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these application processes are created at application load

time by CNK. Processor cores are statically assigned, or

bound, to application processes. This strategy allows

CNK to fairly apportion CPU and memory to processes,

ensuring that all nodes and threads in the parallel job

have the opportunity to sustain equal performance.

Further, this strategy ensures minimal memory

fragmentation, allowing the virtual memory manager

(VMM) of the CNK to statically map the address space

for each process using large translation lookaside buffers

(TLBs), thereby avoiding any overhead and asynchrony

due to TLB-miss handling. To ensure the most efficient

use of memory, CNK application processes are single

program, multiple data (SPMD), sharing a single copy of

the text and read-only constant data, but with per-process

private data and stack areas. CNK also supports

POSIX shared memory allocation interfaces, allowing a

flexible amount of memory to be set aside for sharing

between the processes. This capability allows

communication libraries, such as MPI, to more easily

coordinate activities within a physical node while

allowing applications to share a single copy of dynamic

data, which is often large and read-mostly. This

allocation strategy also enhances performance of the

DMA SPI, described below, by simplifying virtual-to-

physical address translation and allowing large messages

to be sent with a single DMA operation.

Multithreading in the CNK is implemented with

support for the complete Native POSIX Threading

Library (NPTL), primarily for use in dual and SMP mode

because the CNK restricts the number of application

threads to one per core. An optional second pthread per

core is supported. This additional thread, available to

applications or system runtime environments, is intended

to be used as a communication thread (CommThread).

CommThreads are a nonportable extension to NPTL.

They provide stateless user-space pthreads that are

launched upon communication interrupts, global

interrupts, and interprocessor (core-to-core) interrupts.

In this way, CommThreads provide high-performance

interrupt-driven communication to user-space threads. In

the CNK, threads are managed with a per-core scheduler

and in the typical case amounts to a single count-leading-

zeros instruction, indicating which, if any, threads are

ready to run on that core.

Functionally, the CNK provides a broader choice of

application environments than that which is available on

the BG/L system. In addition to MPI and OpenMP, the

CNK supports scripting environments including Python.

This was motivated by the fact that several applications

of interest on the BG/P system use Python scripts to

manage dynamically linked modules and application

kernels that change as the application proceeds through

phases and states.

A major component of CNK is a rich set of SPIs that

provide low-level access to all devices in the BG/P system,

as well as kernel and job state interfaces. The network

SPIs of the CNK include torus packet-layer and torus

DMA, collective network packet-layer and configuration,

and global interrupt barrier and notification handling.

Additionally, SPIs are provided for devices local to the

node, including the lockbox, and the universal

performance counters.

The SPIs closely follow the hardware interfaces. Thus,

making effective use of the interfaces requires detailed

knowledge of the hardware. Carefully coded applications,

such as Blue Matter [17], have exploited these interfaces

with unprecedented performance and scalability results.

Typically, however, the SPI is used by higher-level

libraries, as described in the previous section ‘‘Messaging

framework and programming models.’’ In the following

paragraphs, we describe the SPIs.

The DMA messaging SPI provides access to all DMA

resources such as counters and FIFO pointers. In

addition, SPI system-level calls exist for allocating DMA

resources such as counters and injection FIFOs. This

permits a mixed-messaging mode in which, for example,

MPI and an optimized SPI-based library each have their

own FIFOs and counters. Although there is less flexibility

in assigning reception FIFOs (as compared to the

counters and injection FIFOs), the SPI permits software

to register its own packet-handling functions. The SPI

calls (which poll reception FIFOs) then dispatch the

correct packet-handling function for each packet, thereby

allowing packets from MPI and an SPI-based library to

be received in the same reception FIFOs.

The collective network SPI includes optimized packet

injection and reception functions and status polling

operations. In addition, interfaces are provided to

program the collective network route registers for

construction of virtual trees within the collective network.

The global interrupt SPI allows applications to quickly

establish a global barrier, a global notification, or an

alert. These global operations are delivered to

CommThreads as an interrupt.

The lockbox SPI provides interfaces to enable the

allocation and use of atomic counters. Within each

physical compute node, the lockbox is a shared resource

among the application processes. Functions in the SPI

include simple locks, barrier operations among a flexible

number of participants, barrier with status notification to

the participants, and the full set of PV (Proberen–

Verhogen) counting semaphore operations.

The universal performance counters SPI provides the

ability to configure, initialize, and query counters and to

enable interrupts on the basis of count values. Typically,

the universal performance counters are made available to
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applications via higher-level libraries such as PAPI

(Performance Application Programming Interface).

The CNK SPI provides interfaces to quickly query the

application process and thread mapping that is currently

in effect, and to translate virtual to physical addresses as

required for DMA. This SPI also supports RAS functions

and parallel job query and management functions. The

kernel SPI is also used extensively by CommThreads to

selectively enable and acknowledge communication

interrupts and to deliver interprocessor interrupts (IPIs).

Unlike the BG/L system, which used a separate kernel

for verification, manufacturing tests, and diagnostics, the

CNK directly supports all of this functionality via its

kernel-extension interface. Hundreds of special CNK-

extension test cases have been developed that run with

full kernel privileges and, thus, can take advantage of the

hardware beyond what is typically possible from

applications. Further, unusual configuration scenarios

can be created by these kernel-extension diagnostics that

stress the hardware in nonstandard ways. In support of its

use in verification, testing, and diagnostics, the CNK has

a strong emphasis on reporting error conditions (also

known as RAS events). The reporting is comprehensive

and efficient and is done in a way that does not burden

each compute node with large amounts of error-condition

description code.

I/O node Linux

The BG/P system presents a challenge for Linux on the

I/O node with a 10-Gb/s Ethernet interface. In order to

obtain performance consistent with the philosophy of

driving the hardware at its maximum rate, Linux on the

I/O node requires an efficient SMP implementation.

While Linux has support for SMP, there was no such

support for the PPC450 processor. Fortunately, the

PPC450 core supports the standard PowerPC locking

primitives; thus, the PPC450 Linux implementation

required modification only to the initialization paths and

the TLB handling, which are unique to this processor and

to Blue Gene systems. Because I/O nodes do not

participate in torus communication, a DMA device was

not needed for I/O node Linux.

The control and I/O daemon (CIOD) has been

enhanced on the BG/P system to take advantage of the

SMP environment and to provide better Linux semantics

for redirected system calls from the CNK. The CIOD is

organized in such a way that a Linux process represents

each CNK that allows Linux to track file descriptors, file

locks, current working directory, and similar state. This

provides a CNK-based application with true Linux

process semantics.

Control system

Blue Gene computers are configured, booted, and

monitored using a control system [Midplane

Management and Control System (MMCS)] that runs on

a service node (SN). The SN is a commercial-grade 64-bit

POWER5 processor-based server, located externally to

the Blue Gene compute racks. The SN uses SUSE**

Linux Enterprise Server version 10 (SLES10) as an

operating system and is usually configured so that it is

accessible only to administrators of the system.

Through a dedicated external Ethernet switch, the SN

is attached to the service card of each midplane via a

1-Gb/s Ethernet connection and from there to a control

FPGA (field programmable gate array chip) on each node

card or link card. The FPGA controls card functions such

as power supplies and temperature sensors, and it drives

an IEEE 1149.1 interface, known as a JTAG interface,

to each BPC or BPL chip for configuring, boot-code

loading, monitoring, and debugging. This private control

network has been upgraded from 100 Mb/s Ethernet for

the BG/L system to 1 Gb/s Ethernet for the BG/P system,

to better support these functions.

The software architecture of the MMCS for the BG/P

system has been built on the strengths of its predecessor

for the BG/L system, and it has improved areas that

were previously weak. Decisions that proved successful

on the BG/L system were adopted as elements of the

MMCS, such as having one central process that spawned

threads for each booted partition and using an IBM

DB2* database as the active central communication

mechanism for components of the control system.

Much of the BG/P system architecture remains the

same as that of the BG/L system, such as the basic

hardware layout, partitioning, and job handling. Thus, in

order to provide a consistent feel for users, the associated

aspects of the control system remain similar. The areas of

improvement for the BG/P control system include the

handling of RAS events, the Blue Gene Navigator

(administrator console), the partitioning capability, and

overall scalability. These four aspects are described in

more detail below.

Control system RAS events

Any error event detected in any part of the system

hardware will give rise to a RAS event message, which is

sent to the MMCS server process and stored in a RAS

database. In the BG/L system, the kernel software

running on compute and I/O nodes can issue RAS

messages as free-form text messages. Storing these RAS

messages on each compute or I/O chip required

significant code space.

For the BG/P system, we have designed a more

structured RAS architecture. RAS messages are issued by

the CardController processes of the control system for

events related to power supplies, temperature monitors,

and other support hardware. Also, the CNK software

running on compute nodes and the Linux kernel running
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on I/O nodes may issue binary RAS messages. In all

cases, the RAS messages are decoded and further handled

by the control system software stack running on the SN.

This design substantially reduces the kernel code space

required for RAS messages. Concentrating the RAS

handling in the control system has resulted in a more

scalable and flexible RAS architecture. The identifying

information is standardized, and supporting detail is

given where necessary. Message text, severity codes, and

recommended service actions can be adapted on the basis

of the operational context of the machine (i.e., contexts

relating to a card test, a manufacturing test, or in an

installation at the customer site), with the aim of giving

system operators in each context accurate and meaningful

information upon an error event.

Control system Navigator

The Blue Gene Navigator is a browser-based

administrator console that provides a comprehensive

view of the status and activity of the machine (Figure 8).

While the BG/L Navigator was received positively by

users, a demand existed for additional customization

features. On the BG/P system, the Navigator allows users

to create plug-ins to suit their particular needs. For

example, in the BG/L system, the Attention bar at the top

would be activated whenever fatal RAS events occurred

or when hardware was in an error state. For the BG/P

system, users can write their own pieces of code to make

the Attention flag active for their own purposes, such as

for use when file system storage, certain hardware

readings, or even utilization of the machine exceeds a

Figure 8
The integrated Blue Gene Navigator.
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certain threshold. The Navigator also supports custom

plug-ins for the graphs in the dashboard section at the

bottom of the screen and for the navigation pane of links

along the left side. An end-user version of the Navigator

has also been created for the BG/P system, which gives a

read-only view of the machine but hides some features of

the administrator console, such as those that relate to

service actions and diagnostics. These changes improve

the power and usefulness of the Blue Gene Navigator.

Control system partitioning

Blue Gene systems allow considerable flexibility in

logically partitioning the machine into smaller blocks so

that multiple smaller jobs can be run simultaneously for

different users. Typically, such partitions are the size of

one midplane (512 nodes) or, typically in powers of 2, up

to the full size of the installed machine. Each such user

partition will have a complete torus, tree, and global

interrupt network. On the BG/L system, the smallest

allowable partition sizes were 32 and 128 nodes. On these

sub-midplane partitions, one or more torus dimensions

cannot be closed, and the node topology will be a 3D

mesh. On the BG/P system, we have extended the system

software to support sub-midplane partitions of 16, 32, 64,

128, and 256 nodes. We also addressed the challenging

problem of dynamic partitioning and provide such

partitioning on the BG/P system. On the basis of user

feedback, we have provided real-time notification APIs.

Using this model, we do not provide all information but

only provide change information, and we move from a

poll model to an event model in which schedulers and

application programs can be notified of state changes to

partitions and active jobs.

Customer feedback also led us to address the issue of

rebooting only a portion of a Blue Gene partition. On the

BG/L system, a reboot of a partition required that all I/O

nodes and compute nodes be rebooted. For the BG/P

system, we allow users to reboot only compute nodes or

to reboot only a subset of the I/O nodes. This is a

significant improvement, because it allows a partition that

is booted normally (with all I/O nodes having Linux

started and with their Ethernet connections and mounted

file systems functioning properly) to remain unaffected by

a reboot of the compute nodes. This can lead to better

stability of the I/O node complex while still giving users

the flexibility of either leaving the compute nodes booted

across multiple jobs or performing a reboot before each

job starts. It also means that a failure on a single I/O node

can be resolved without having an impact on the other

I/O nodes.

Control system scalability

The Blue Gene control system must configure, track, and

monitor systems ranging from 32-node test stands to

large installations of hundreds of thousands of compute

nodes and associated components. For the BG/P system,

we have aggressively addressed bottlenecks that were

experienced in the BG/L control system on larger

installations, resulting in much better scalability.

Broader use of Blue Gene cycles

On the BG/P system, we provide support for using Blue

Gene compute cycles beyond HPC applications while still

maintaining the high performance mandated by HPC

applications. This initiative for broader application

support began in the later stages of BG/L system work.

The work is currently in progress and is proceeding along

many fronts. Here, we describe two such initiatives. The

first investigates how to run Linux on the compute nodes

in a scalable manner, and the second involves an

infrastructure to allow Blue Gene to be used as a broader-

based compute engine, taking full advantage of its

tremendous ratio of flops to watts [9].

Blue Gene/P and Linux

The CNK described in previous sections is carefully

designed for minimal overhead; thus, performance on the

BG/P system is very close to the limits imposed by the

hardware. On the other hand, the BG/P system is not

confined to running specialized kernels on the compute

nodes. Running Linux, for example, broadens the range

of applications that can run on a Blue Gene system.

Many issues must be considered when using Linux.

These issues concern how to boot Linux, how to launch

applications, how to handle communication and file I/O,

how to effectively utilize the DMA device, and how to

ensure that it scales to machines that are the size of the

Blue Gene machine. Booting Linux on a compute node

leverages the work done to run a Linux image on the I/O

nodes. The major change arises from the fact that the

ramdisk must accommodate a larger number of dynamic

libraries that are usually not required on the I/O nodes.

Launching applications requires cooperation between

the control system and the I/O nodes and between the I/O

nodes and the compute nodes. This is done using

specialized daemons on the I/O nodes that accept

application-launch instructions from the control system

over the Ethernet network and pass the executable image

to the compute nodes over the collective network. On the

compute nodes, a different set of daemons copies the

image into the ramdisk and launches the executable image

using fork and exec.

Communications may occur between a compute node

and external computers; between different compute nodes

and, for example, a Web server running on one node and

a database on another; or between compute nodes and a

file system. The communication patterns can be handled

in several ways. One option is to implement a complete

TCP driver for the collective and torus networks and use
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the I/O nodes as routers to external systems. This allows

standard file system clients, such as NFS** (network file

system) clients, directly on the compute nodes, solving the

file I/O issue as well. Another option is to use specialized

file system clients on the compute nodes that can trap file

I/O requests and forward them over the collective

network to the I/O nodes, where they will be served by the

locally or the remotely mounted file system. In this model,

requests for connections will also be forwarded to the I/O

nodes, which will issue them on behalf of the compute

nodes.

When running Linux on the compute nodes, a question

exists as to how this will affect the performance of HPC

applications and what can be done to mitigate any

performance penalty. At least three important issues exist

that must be addressed for high-performance Linux on

compute nodes. First, noise is caused by daemons, and

this can be ameliorated by synchronizing the daemons.

Second, minimization of TLB misses can be accomplished

by using very large pages. However, in a long-running

Linux kernel, fragmentation can become an impediment

to using very large pages, and careful coding must occur

to allow very large pages after a Linux kernel has been

running for a long time. Third, Linux must be

programmed to be able to take advantage of the DMA

hardware available on the BG/P system.

Utilizing the DMA device in the general case is

challenging, because over time, after many processes have

run, memory becomes fragmented, thereby making it

difficult to obtain contiguous chunks for the DMA

device. Currently, our approach is to simplify the

problem and handle the common cases of few

applications being run. Future work involves the

examination of how to manage space for the DMA in

general, without major modifications to Linux.

System-level acceleration

The cost of operating a Blue Gene system, especially in

terms of power per FLOP, is significantly better than that

of any other general-purpose scalable system available.

To date, the Blue Gene system has been used to satisfy the

capability needs of HPC customers. With the ever-

increasing power concerns of data centers, the potential

for the Blue Gene system to be an attractive offering for

more generic computing cycles is great. A solution is

needed, both in terms of system software stack support

and a data manager that can make Blue Gene cycles

available in a capacity manner as well. We have

developed prototype architecture (depicted in Figure 9)

that allows applications such as MATLAB running on a

laptop, desktop, or other workstation to be offloaded to a

Blue Gene system. Ametadata server tracks the placement

of data for particular applications. This information

can then be used to run successive applications,

such as a visualizer, on that data. While still in the early

stages, this work provides an opportunity for allowing

access to Blue Gene cycles to a much wider user base.

System software conclusion

In this ‘‘Software architecture overview’’ section, we have

presented the system software on the BG/P system.

Achieving the scalability and performance goals of Blue

Gene software is a challenging and rewarding effort and

requires applying the correct combination of discipline

and innovation. The software solution available on the

BG/P system will address wider needs of the community

than those addressed by the previous generation while

maintaining the performance that customers have come

to expect from Blue Gene systems.

We also have presented two examples of software

architecture and design that we are using to broaden the

use of Blue Gene compute cycles. Work on both the

Linux and the system-level acceleration is ongoing. When

sufficient progress has been made, subsequent

publications will report in detail on each of these areas.

BG/P application performance and scaling
Application enablement for petascale computation

remains a challenging task and much work remains to

develop petascale applications for the future. One of the

key accomplishments of the BG/L project has been to

provide clear proof that a broad spectrum of

applications, spanning many different application

domains, can be engineered to run efficiently on systems

with hundreds of thousands of cores.

Of particular note are the applications ddcMD

(domain decomposition and molecular dynamics) [3] and

Qbox [4], which resulted in the winning of Gordon Bell

Prizes in 2005 and 2006, respectively. DdcMD is a

classical molecular dynamics program that has achieved

Figure 9

An architecture for system-level acceleration. Blue and black 

arrows indicate data and control paths, respectively. (PPC: 

PowerPC; SMP: symmetric multiprocessing.)
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more than 100 Tflops of sustained performance on the

LLNL 64-rack BG/L system. Qbox carries out quantum

electronic structure calculations and has achieved a

sustained performance of more than 200 Tflops on the

LLNL system.

Our key design goals for the BG/P system were to

maintain and increase the strong application performance

and scalability that the BG/L system has provided while

simultaneously increasing the breadth of applications that

the BG/P system supports. In this section, we provide

some comparisons of application performance on the

BG/L and BG/P systems, some examples of new

applications enabled by the increased memory and SMP

mode of the BG/P system, and finally a preliminary look

at application scalability on the BG/P system.

A BG/L node has two cores, each capable of executing

two fused floating multiply–add instructions per cycle,

and runs at 700 MHz. This gives a BG/L node a peak

performance of 5.6 Gflops [(0.7 GHz) 3 (4 FLOPs) 3 (2

cores)]. A BG/P node has four cores, each also capable of

executing two fused floating multiply–add instructions per

cycle, and runs at 850 MHz. This gives a BG/P node a peak

performance of 13.6 Gflops [(0.85 GHz) 3 (4 FLOPs) 3 (4

cores)]. Thus, a BG/P node has a peak performance that is

2.43 times that of a BG/L node. Direct comparisons of

BG/L and BG/P node performance are complicated because

two different cache configurations are generally used on the

BG/L system. One of these cache configurations is

write-through mode with full recovery enabled for L1 cache

parity errors. The second cache configuration is write-back

mode with no recovery enabled for L1 cache parity errors.

The first of these configurations is the normal execution

mode on the BG/L system for jobs executing on large

system partitions. The second configuration is often used for

jobs running on smaller partitions because it can increase

performance but at the cost of leaving an application

vulnerable to soft errors. On the BG/P system, write-

through is required to enable SMP mode, and the only

cache configuration used is write-through mode with full

recovery enabled. Table 3 shows BG/P node performance

relative to that of the BG/L system for a number of

applications. These applications include MILC [MIMD

(multiple-instruction stream, multiple-data stream) lattice

computation] [18] (a quantum chromodynamics code), POP

(Parallel Ocean Program) [19] (an ocean circulation code),

UMT2k (Unstructured Mesh Transport) (see Reference

[20]) (a photon transport code), sPPM (Simplified Piecewise

Parabolic Method) (see Reference [20]) (which models 3D

gas dynamics), SPHOT (see Reference [20]) (a 2D photon

transport code), and CPMD [21] (which implements the

Car–Parrinello molecular dynamics algorithm for materials

modeling). We see that a BG/P node systematically

outperforms a BG/L node, running in write-through mode

with full recovery, by at least a factor of 2.43, which is the

ratio of BG/P to BG/L peak performance. Improvements

over the 2.43 factor are directly attributable to the changes

in the memory system from the BG/L to the BG/P system.

When comparing a BG/P node to a BG/L node running in

write-back mode with no L1 recovery, we see performance

improvements of 2.0 or more in all cases.

Applications on the BG/P system can use a variety of

run modes. These run modes include the following:

1. SMP mode: one MPI process per node, with one,

two, three, or four threads per process.

2. Dual mode: two MPI processes per node, with one or

two threads per process.

3. Quad mode: four MPI processes per node, with one

thread per process.

In SMP or dual mode, OpenMP is the normal application

method used to enable multiple threads. OpenMP is fully

supported by the IBM XL compiler suite. Table 4 shows

some examples of performance achieved in dual and SMP

modes using OpenMP to enable additional threads.

Perfect speedups for OpenMP-enabled applications

would correspond to achieving a factor-of-2 performance

increase in dual mode and a factor-of-4 performance

increase in SMP mode. Usually, however, this perfect

speedup is not possible because most codes contain non-

parallelizable elements. However, the table clearly shows

significant performance improvements for all the

applications listed.

The SMP and dual modes provide the added benefit of

the ability to run applications that require large memory

footprints per node by reducing the active processes per

node. A BG/P node has 2 GB of memory. MPI

applications that require less than 0.5 GB of memory per

process can be executed in quad mode and take

Table 3 Performance of a BG/P node relative to a BG/L node

for a selection of applications. The BG/P system operates only in

write-through (WT) mode with full L1-recovery enabled. BG/L-

WT denotes a similarly configured BG/L node. BG/L-WB denotes

a BG/L node configured for cache write-back without L1 recovery.

This mode gives additional performance on a BG/L node but

leaves the node exposed to soft errors.

BG/P compared

to BG/L-WT

BG/P compared

to BG/L-WB

MILC 2.46 2.08

POP 2.61 2.01

UMT2k 2.81 2.28

sPPM 3.10 2.28

SPHOT 2.44 2.30

CPMD 2.40 2.27
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advantage of all four cores by running one process on

each core of the BG/P node. MPI-only applications that

require more than 0.5 GB but less than 1 GB of memory

per processor can be executed in dual mode. In this mode,

only two processes are active, and peak performance is

reduced by a factor of 2. Finally, MPI applications that

require more than 1 GB of memory per process but less

than 2 GB of memory per node can be run in SMP mode

with only a single process active. This reduces peak

performance by a factor of 4. It is possible to regain the

lost performance by modifying MPI-only codes to use

OpenMP. In this mode, there is one process per node, but

multiple threads within that process allow utilization of

some or all of the cores on the node. However, even

before enabling OpenMP, these new BG/P run modes

broaden the applications range of the BG/P system

significantly beyond that available to the BG/L system.

Two specific applications that illustrate this point are

CTH [22] and AVUS [23]. CTH is an application from

Sandia National Laboratory for modeling complex

multidimensional, multimaterial problems. AVUS (Air

Vehicles Unstructured Solver) is a computational fluid

dynamics code. Running CTH in SMP mode with only

one process active per node and AVUS in dual mode with

only two processes active per node allowed the BG/P

team to complete a submission to the TI 08 benchmark

process of the U.S. government. Such a submission would

not have been possible on the BG/L system because many

of the required applications and workloads simply did not

fit in the BG/L memory footprint.

As a final comment on BG/P application performance,

note that in the BG/P network design, we paid very

careful attention to scale network bandwidth with the

increase in clock speed and number of cores per node.

The BG/P system provides the same bytes-to-flops ratio

as the BG/L system. This contributes to maintaining the

application scaling properties that were demonstrated on

the BG/L system, both in weak scaling (where

performance per node is maintained as the problem size

grows with increasing partition size) and in strong scaling

(where performance increases with partition size for a

constant size problem). As examples, we show strong

scaling curves for two applications on the BG/P system.

Figure 10(a) shows strong scaling for LAMMPS (Large-

scale Atomic/Molecular Massively Parallel Simulator)

[24], a molecular dynamics code, and Figure 10(b) shows

strong scaling for the ocean modeling code HYCOM

(HYbrid Coordinate Ocean Model) [25].

Conclusions

The BG/P system is the second generation of the

Blue Gene family of supercomputers. It enables petascale

computing within the power and floor-space budgets of

Table 4 OpenMP scalability of a BG/P node for a selection of

applications. Numbers are normalized to single-thread

performance. The sPPM code superscales because the four threads

accidentally cooperate to bring data to the caches from main

memory. The SPHOT application shows perfect scaling for its

main code segment. However, SPHOT has a serial component

outside its main code segment that does not take advantage of

OpenMP. Blank entries are not yet measured.

Two OpenMP

threads; dual mode

Four OpenMP

threads; SMP mode

UMT2k 1.87 3.57

sPPM — 4.30

SPHOT

(main code)

— 4.00

CPMD 1.91 3.60

Figure 10

Scalability of (a) the LAMMPS application and (b) the HYCOM 

application. This figure is a “strong scaling plot” that shows the 

relative performance of the application for the same problem, as 

distributed across different numbers of BG/P processors.
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existing data centers, and with high standards of RAS.

With respect to its predecessor, the BG/L system,

significant advances have been made in system

architecture and system software, leading to a simpler

programming model and increased usability and

flexibility, while maintaining excellent performance and

scalability. Consequently, a broader spectrum of

applications will be able to run on the BG/P platform.

Given its high power efficiency and reliability, resulting in

a low total cost of ownership, the BG/P system is a

compelling platform for HPC.
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