
Porting and Using Newlib in Embedded Systems
William Gatliff

Table of Contents
Copyright..3
Newlib...3
Newlib Licenses ..3
Newlib Features ..3
Building Newlib ...7
Tweaks ..8
Porting Newlib ..9
Onward! ..19
Resources..19
About the Author..19

$Revision: 1.5 $

Although technically not a GNU product, the C runtime library newlib is the best
choice for many GNU-based embedded systems that require a modest C runtime
environment. With some minor modifications, newlib can also be used in embedded
systems that are not built using GNU tools. The following shows you how to do this,
and more.

TODO: how to use newlib as a linux runtime.

Copyright
This article is Copyright (c) 2001 by Bill Gatliff. All rights reserved. Reproduction
for personal use is encouraged as long as the document is reproduced in its entirety,
including this copyright notice. For other uses, contact the author.

Newlib
Newlib is a freely-available C runtime library with a portable and flexible architecture
that makes it suitable for use in resource-constrained embedded systems. Newlib is
an actively supported and mature product, and is the preferred choice for GNU-
based embedded environments, except perhaps in some Linux-based devices that
require the full functionality supplied by GNU’s glibc1.

This whitepaper discuss some of newlib’s functionality and portabilty features, and
provides examples on how to integrate newlib into an embedded environment based
on a popular Real Time Operating System (RTOS).

Newlib Licenses
Newlib is actually a collection of source code, assembled by Cygnus Solutions, Inc.
(now a part of Red Hat, Inc.)2. Because of this, newlib is actually distributed under
the terms of several different licenses--- all of which are either public domain or BSD-
like. Proprietary applications can use newlib because these licenses do not require
distribution of the final article’s source code.

All of newlib’s licenses are gathered into the file COPYING.NEWLIB, which is included
with the newlib source code. You should read this file before you decide to use
newlib, the same way you do with the license for any other software you use.

Newlib Features
Some of newlib’s functionality provides useful enhancements to a "typical" embed-
ded setting (whatever that is), while others allow newlib to be about as POSIX-like as
a compact C runtime setting can be. These capabilities can be a big help when porting
desktop-tested applications to an embedded environment.

3

Porting and Using Newlib in Embedded Systems

Printf() vs. iprintf()

Newlib contains a complete implementation of the C standard printf() and fam-
ily. By the implementation’s own admission, "this code is large and complicated" 3,
but essential for systems that need full ANSI C input and output support, including
capabilities for representing and parsing floating point numbers.

Many embedded systems do not use floating point math, however, and great pains
are taken in most embedded runtime libraries to cull this code-bloating functionality
whenever possible. Newlib approaches this problem in two ways: a FLOATING_POINT
macro that allows selective disabling of floating point support in each of the library
functions that can offer it, and an iprintf() function that only knows how to display
integer objects.

If an embedded system needs floating point support in only a few of the standard
input and output functions, then newlib can be rebuilt to exclude floating point
from places where it isn’t needed. You can omit floating point for everything except
scanf() , for example, by either undefining the FLOATING_POINT macro every-
where except in the scanf.c source file, or by modifying newlib’s Makefile to do
the same thing.

For situations where only integer output is required, newlib provides the iprintf()
function: a version of the printf() function built with the FLOATING_POINTmacro
undefined. It behaves exactly like printf() , except that it does not understand the
%f, %F, %g, and %Gtype specifiers, and therefore has a much smaller code footprint.

More on stdio
Newlib’s standard input and output facilities are surprisingly complete, even beyond
the printf() et al implementations. The complete C file API is also provided, com-
plete with read and write buffering, seeking, and stream flushing capabilities. Varia-
tions like sprintf() , fprintf() and vfprintf() (takes va_list arguments) are also
included, which makes a newlib environment look strikingly similar to one you’d
expect to see in a more workstation-oriented programming environment.

An unfortunate limitation of newlib’s stdio library is that it requires at least a minimal
malloc() for complete and proper operation. Fortunately, newlib includes a pretty
good dynamic memory allocator that is straightforward to set up and use. One can
also build a malloc() based on a fixed size memory block allocator, to eliminate
fragmentation worries in systems where this is a concern.

If you constrain your use of stdio to just iprintf() , you do not need a working
malloc() .

UNIX API
Newlib includes a lot of the familiar UNIX API functions like open() and write() .
Most of these functions map directly to the code stubs newlib uses to invoke external
system resources, so their simplicity eliminates the need for malloc() . A notable
omission is the ioctl() function, which may be easily corrected by providing your
own stub, modeled after one of the existing functions.

4

Porting and Using Newlib in Embedded Systems

Libm
Newlib includes a complete IEEE math library called libm. In addition to offering
the standard math functions like exp() , sin() and pow() , this library also
provides matherr() : a modifiable math error handler invoked whenever a serious
math-related error like an underflow or loss of precision is detected. By customizing
this function, you can handle these situations in whatever way is appropriate for
your application.

As a surprising bonus, libm also includes functions that take float parameters, in-
stead of double. These extensions are named after their full precision equivalents, i.e.
sinf() is the single precision version of the sin() function. The reduced precision
functions have a considerable speed advantage over their IEEE-compliant double
precision counterparts, which can put some floating point operations within reach of
hardware that is too weak for full double precision computations.

Reentrancy
Newlib’s C and math libraries are reentrant when properly integrated into a multi-
threaded environment. The implementation is not obvious at first glance, so the next
paragraphs describe how it works. Once you know the details, it will be clear how to
set it up properly in your system.

The errno variable

The ANSI C standard specifies a global integer called errno , that the runtime li-
brary asserts when an error occurs. Once asserted, errno ’s value persists until the
application clears it. This simplifies error notification by the library, but can create
reentrancy problems when multiple execution threads are working in the library at
the same time: even if the error occurs in only one processing context, both threads
see the error code that results.

Making errno reentrant

Newlib encloses errno and several related values into a structure of type struct
_reent, and redefines the symbol errno as a macro that references a global _reent*
pointer named __impure_ptr . As a result, when a statement refers to the value of
errno , it is actually doing an indirect structure lookup that resolves to the errno
field in a data structure.4

The code in Figure 1 describes in general how errno is modified under newlib. The
code in Figure 2 is a common example of how to use errno in an ANSI C environ-
ment; because the reimplementation of errno is transparent to the application, this
code works without modification under newlib.

#define errno (*__errno())
extern int *__errno _PARAMS ((void));

#define _REENT _impure_ptr
#define _REENT_INIT(var) \

{ 0, &var.__sf[0], &var.__sf[1], &var.__sf[2], 0, "", 0, "C", \
0, NULL, NULL, 0, NULL, NULL, 0, NULL, { {0, NULL, "", \

5

Porting and Using Newlib in Embedded Systems

{ 0,0,0,0,0,0,0,0}, 0, 1} } }

static struct _reent impure_data = _REENT_INIT (impure_data);
struct _reent * _impure_ptr = &impure_data;

int *
__errno ()
{

return &_REENT->_errno;
}

Figure 1. How errno is modified under newlib.

fp = fopen("myfile.txt", "rw");
if(fp == NULL) {

switch(errno) {
case EACCES:

/* we don’t have permissions */
...

Figure 2. How to use errno .

Managing _reent structures

Newlib declares one _reent structure and aims _impure_ptr at it during initializa-
tion, so everything starts out correct for situations where only one thread of execu-
tion will be in the library at a time. To provide the capability to have multiple library
processing contexts, allocate multiple _reent structures, and move _impure_ptr be-
tween them during context switches.

The _reent structure also contains fields for the standard input (stdin), standard output
(stdout), and standard error (stderr) descriptors. This allows each task to define its own
set of streams for reading and writing data: tasks A and B could both use printf()
simultaneously, with each task’s output going to different locations.

Reentrancy in memory management

To permit multiple processing contexts in newlib’s malloc() implementation, you
must also provide the functions __malloc_lock() and __malloc_unlock() to pro-
tect your memory pool from corruption during simultaneous allocations. If you are
using an RTOS’s reentrant memory pool implementation for dynamic memory allo-
cation, however, this heap protection is unnecessary--- the RTOS protects the heap
itself.

Designed for portability
All of newlib’s functionality builds on a set of seventeen stub functions that newlib
uses to hook into the host’s execution environment. By modifying this integration
layer, you can adapt newlib to just about any system imaginable, from one with no

6

Porting and Using Newlib in Embedded Systems

operating system at all, to one based on an embedded RTOS, to one with a complete
POSIX operating system.

Newlib’s documentation provides details on which stubs are needed for each library
function, and you only need to provide stubs for the portions of newlib that you
intend to use. For example, newlib has a stub called _fork , but you don’t need to do
anything with it unless you intend to use system() or fork() .

An embedded filesystem?!
Newlib does not include a filesystem, but it may seem like it requires one for proper
operation--- especially considering that it provides file-oriented functions like
fprintf() and fseek() . However, although newlib likes to think that there is a
stream-oriented filesystem working behind the scenes, its integration layer has been
conveniently organized to not require this.

Do not dismiss the utility of a filesystem-like abstraction in an embedded system,
even in the most minimal designs. In addition to enabling greater portability be-
tween workstation and embedded environments, a file-oriented device API gives a
consistent look and feel to your applications, regardless of the target system’s un-
derlying implementation. This helps make code more reusable, more cleanly defines
the logical boundaries between application-specific and platform-specific code in a
system, and provides a more familiar environment for new developers.

Building Newlib
Building newlib for a supported target is a straightforward process that follows the
conventions adhered to by most open source and Free Software projects. After down-
loading and decompressing the source code, you simply configure and build it using
a cross compiler like gcc.

You start the build process using the commands shown in Figure 3, and then go get
a copy of your favorite caffeinated beverage. When you get back, the build process
will have produced the files libc.a , libg.a (a debugging-enabled libc), and libm.a ,
in the directory /usr/local/ <target-name >. If the target you specify has several
variants, the build process will produce multiple files, each with compilation settings
specific to each variant. Link one or more of these files with your application, and
there you have it: a free C runtime environment.

Note that if you provided a --prefix option when building your GNU cross com-
piler, then you must provide the same --prefix here for newlib, if you want every-
thing to compile and link seamlessly. The default value for --prefix is /usr/local/ .

$ tar xzvf newlib-1.9.0.tar.gz
$ mkdir build-newlib && cd build-newlib
$../newlib-1.9.0/configure --target=$TARGET --prefix=$PREFIX
$ make all install info install-info

Figure 3. Building newlib

Newlib does not require use of the GNU compiler collection, but if you use something
else then you will have to make adjustments to newlib’s Makefiles after the configu-

7

Porting and Using Newlib in Embedded Systems

ration step, to provide the name of the compiler you intend to use. You may also have
to tweak your environment before configuring newlib, so that newlib’s setup process
can properly identify your cross compiler.

In extreme cases, you may end up discarding newlib’s automated configuration pro-
cess entirely, and construct Makefiles by hand. More about this is available in the
mailing lists at newlib’s website.

Newlib’s build process produces documentation, in the files libc.info and
libm.info . By default these files go into /usr/local/info 5, and they can
be browsed using info, a documentation browser included with most Linux
distributions. Just change to the directory containing these files, and type:

$ info -f ./libc.info

Newlib’s configuration script supports several options, not the least of which are
the definition of the target system (what CPU and OS the library will run under),
and where to put the files generated during the build. As an example, the following
command will set up a build for the Hitachi SH CPU using the ELF" output file for-
mat, and put the library files in /home/bgat/newlib-install . Since the command
doesn’t specify any target operating system, the build script assumes that the target
system does not have one.

$../newlib-1.9.0/configure --target=sh-elf \
--prefix=/home/bgat/newlib-install

Use the --help option a complete list of command line options. The following are
some of the --target specifications that newlib supports.

• arm-elf

• m68k-coff

• h8300-coff

• sh-elf

• z8k-coff

• mn10300-elf

• i386-elf

Tweaks
Newlib’s source code has a few configuration points, and you will want to use them
to eliminate unneeded stubs, to optimize for code size instead of speed, or to re-
move floating point support. Don’t spend much time with this in the early stages of a
project, before you have enough of a system in place to evaluate the benefits of your
changes, but tinker liberally once you can test your refinements. If you add any use-
ful configuration points, be sure to mention them in the newlib mailing lists so that
they may be considered for inclusion in the next version of the library.

To modify a configuration point, change its value in the Makefile generated by
the configure command, before you type make. Look for the variable called
CFLAGS_FOR_TARGET, and add flags there like:

8

Porting and Using Newlib in Embedded Systems

-DINTEGER_ONLY

to build an integer-only library, or

-DPREFER_SIZE_OVER_SPEED

to enable a few small changes that reduce library code size.

You can also adjust the value of the CFLAGSsetting, to affect the way the library is
compiled. For example, if you are using the GNU C compiler then use:

-Os (instead of -O2)

to tell it to optimize for code size over performance, or:

-O3 (instead of -O2)

to tell the compiler to optimize for raw performance over everything else.

Add:

-fomit-frame-pointer

to tell the compiler to not build stack frames for functions in the library that do not
need them, which saves some space and boosts library performance. Don’t eliminate
stack frames if you intend to step through code inside of newlib itself, however, be-
cause it likely won’t work--- most debuggers need a valid stack frame at all times.

You can discover additional, minor source code configuration points by using the
find program on the library source code, to locate sections of conditional compilation.
Here is one way to do it:

$ find . -name "*[ch]" -type f | xargs grep "#if"

One other thing: if you decide you don’t like your changes and want to try again, you
don’t need to repeat the entire configuration process. Instead, simply edit Makefile
and then do a clean rebuild, like this:

$ make clean all install

Porting Newlib
Newlib supports more than a dozen target CPU architectures, but it doesn’t come
with code to connect it to very many operating systems or target hardware plat-
forms. This makes the odds almost certain that you will need to do some work to get
newlib running in your system. Fortunately, the process is both straightforward and
relatively painless.

All of newlib’s functionality sits on top an integration layer of seventeen stubs of code
that supply capabilities that newlib cannot provide itself: low-level filesystem access,
requests to enlarge its memory heap, getting the time of day, and various types of
context management like process forking and killing. Newlib supplies templates for
each of these stubs, which either return "not implemented", or fail silently.

The requirements for each stub are fully documented in newlib’s libc.info file, in
the section called Syscalls. The key to a successfully ported newlib is providing stubs

9

Porting and Using Newlib in Embedded Systems

that bridge the gap between the functionality newlib needs, and what your target
system can provide.

To demonstrate this, the following sections show how to use newlib in an embedded
system that also uses uC/OS6, a pragmatic, superbly written RTOS that features a
reentrant memory pool implementation, but lacks any concept of a device driver or
filesystem API. Despite the operating system’s modest feature set, the combination of
uC/OS and newlib yields a practical and perfectly usable system, and offers insights
into how you would use newlib in both larger and smaller settings.

Reentrant vs. nonreentrant stubs
In many places newlib offers two types of stubs: reentrant ones, and nonreentrant
ones. The only difference between the two is that the reentrant stubs include a _reent
structure pointer in their signatures, which allows the implementer to carry context-
specific information between the library and the target operating environment.

In order for newlib to use reentrant stubs, you add
-DREENTRANT_SYSCALLS_PROVIDEDto the CFLAGS_FOR_TARGETvariable in the top
level Makefile before building newlib. This is a strongly encouraged configuration
point, and the example stubs that follow will assume that you have done so.

If you choose not to use the reentrant versions of the stubs, then eliminate the _r from
each stub’s name (_fork_r becomes _fork) in the code in the following sections, and
eliminate the portions of the stubs that relate to the _reent structure. The result is an
implementation that is not reentrant when the nonreentrant stubs are invoked.

_fork_r

Newlib calls upon this stub to do the work for the fork() system call, which in
POSIX environments is used to create a clone of the current processing context. A
hardcore POSIX enthusiast could implement this stub with help from uC/OS’s OS-
TaskCreate() function, but that is a challenging exercise because the semantics of
the conventional fork() do not coexist peacefully with uC/OS’s way of managing
task creation and identification.

In fact, trying to implement fork() in uC/OS is probably a bad idea, because it raises
task priority and synchronization issues that uC/OS already addresses quite well
on its own. So save joining the two for another day, and leave this stub essentially
unimplemented. The code is in Figure 4.

int
_fork_r (struct _reent *ptr)
{

/* return "not supported" */
ptr->errno = ENOTSUP;
return -1;

}

Figure 4. The _fork_r stub.

Take this approach for several other context management-related stubs, including
_execve , _kill , _wait_r and _getpid_r .

10

Porting and Using Newlib in Embedded Systems

_write_r and _read_r
These stubs are a bit more interesting to implement, because uC/OS does not provide
any type of device driver or filesystem model--- we must provide one ourselves.

Newlib calls _write_r any time it wants to send data to a device, be it due to a
write() call, printf() or fprintf() , or anything similar. The _reent parameter pro-
vides a place for the stub to communicate errors should they occur, and the file de-
scriptor parameter, fd , tells the stub which device is being addressed. The remaining
arguments supply a source data buffer and number of bytes to write.

The tricky part here is the semantics. The stub doesn’t need to write all the bytes that
newlib asks it to, but if it doesn’t then newlib will simply invoke it again with the
remaining data. So if the return value never eventually equals the number of bytes
requested, newlib will misbehave.

Furthermore, newlib doesn’t call open() for file descriptors 0, 1, or 2, which means
that the _write_r call is the first activity the stub will see on those streams. Stream
zero is defined by convention to be the "standard input" stream, which newlib uses
for the getc() and similar functions that don’t otherwise specify an input stream.
Stream number one is "standard output", the destination of printf() and puts() .
Stream number two refers to standard error", the destination conventionally reserved
for messages of grave importance. You may use any other positive integers you like
for file descriptors.

To implement _write_r , start by defining a simple "device operations" table, with
function pointers for all the kinds of activities you would expect a stream-like device
driver to support. The structure for this table is shown in Figure 5.

typedef struct {
const char *name;
int (*open_r)(struct _reent *r, const char *path,

int flags, int mode);
int (*close_r)(struct _reent *r, int fd);
long (*write_r)(struct _reent *r, int fd,

const char *ptr, int len);
long (*read_r)(struct _reent *r, int fd,

char *ptr, int len);
} devoptab_t;

Figure 5. The devopttab_t structure.

Each device driver will supply its own operations table:

/* devoptab for an example stream device called "com1" */
const devoptab_t devoptab_com1 = { "com1",

com1_open_r,
com1_close_r,
com1_write_r,
com1_read_r };

Each driver provides its own implementations of open_r , close_r , write_r and
read_r functions to handle device initialization and shutdown, and data movement
to and from the physical device hardware. In the sample declaration above, these
functions are named com1_open_r() , etc.

11

Porting and Using Newlib in Embedded Systems

Somewhere in the application, gather up all the devoptab_t declarations into on
place, sorted by file descriptor:

const devoptab_t *devoptab_list[] = {
&dotab_com1, /* standard input */
&dotab_com1, /* standard output */
&dotab_com1, /* standard error */
&dotab_com2, /* another device */
... , /* and so on... */
0 /* terminates the list */

};

With all of that done, the _write_r stub is straightforward to implement because all
it has to do is map a file descriptor to the proper set of device operations. Figure 6
shows how to do this.

long
_write_r (struct _reent *ptr,

int fd,
const void *buf,
size_t cnt)

{
return devoptab_list[fd].write_r(ptr, fd, buf, cnt);

}

Figure 6. The _write_r stub.

The _read_r stub is identical, except that it calls the driver’s read_r method.

The devoptab_t strategy leaves device drivers free to use whatever uC/OS services
they need in order to manage reentrancy, mutual exclusion and performance issues.
For example, a driver’s write_r function could use a semaphore as a mutex to pre-
vent two concurrent write requests, or it could use a message queue send the data
to a pending task. Such details are well beyond newlib’s concern, of course, but they
illustrate the flexibility that is possible.

_open_r

This stub translates a device or file "name" to a file descriptor. With the exception
of the standard input, standard output and standard error devices, this function can
also be used to provide advance notice of an impending write() or read() request.

Continuing with our approach utilizing device operation tables, the _open_r stub
can be very simple. The code is shown in Figure 7.

int
_open_r (struct _reent *ptr,

const char *file,
int flags,
int mode)

{
int which_devoptab = 0;
int fd = -1;

12

Porting and Using Newlib in Embedded Systems

/* search for "file" in dotab_list[].name */
do {

if(strcmp(devoptab_list[which_devoptab].name, file) == 0) {
fd = which_devoptab;
break;

}
} while(devoptab_list[which_devoptab++]);

/* if we found the requested file/device,
then invoke the device’s open_r() method */

if(fd != -1) devoptab_list[fd].open_r(ptr, file, flags, mode);

/* it doesn’t exist! */
else ptr->errno = ENODEV;

return fd;
}

Figure 7. The _open_r stub.

You can choose to ignore the _open_r stub’s flags and mode parameters, unless you
want to add enhanced functionality like read-only or write-only file descriptors.

_close_r

This stub is almost a clone of _write_r and _read_r , as shown in Figure 8.

long
_close_r (struct _reent *ptr,

int fd)
{

return devoptab_list[fd].close_r(ptr, fd);
}

Figure 8. The _read_r stub.

_sbrk_r

Newlib calls this stub whenever malloc() runs out of heap space and wants more.
As it turns out, this happens frequently--- newlib’s memory allocator will only ask
for incremental chunks of memory, a benign artifact of its UNIX heritage.

Assuming a reserved a heap memory area using a character array called _heap , the
_sbrk_r stub would look like the code in Figure 9.

unsigned char _heap[HEAPSIZE];

caddr_t _sbrk_r (int incr)
{

static unsigned char *heap_end;
unsigned char *prev_heap_end;

/* initialize */

13

Porting and Using Newlib in Embedded Systems

if(heap_end == 0) heap_end = heap;

prev_heap_end = heap_end;

if(heap_end + incr - heap > HEAPSIZE) {

/* heap overflow--- announce on stderr */
write(2, "Heap overflow!\n", 15);
abort();

}

heap_end += incr;

return (caddr_t) prev_heap_end;
}

Figure 9. The _sbrk_r stub.

Each time malloc() calls _sbrk_r the heap end grows by incr bytes. When it en-
counters the end of the allocated heap space (which hopefully never occurs), the stub
sends a message to the standard error stream, then forcibly terminates the program.
Another approach to a heap overflow would be to return NULL, and let the application
find a way to muddle through on its own.

__malloc_lock and __malloc_unlock

Newlib’s memory management routines like malloc() call these functions when
they need to manipulate the memory heap. By implementing mutual exclusion in
them, you make newlib’s memory management code reentrant--- or at least thread
safe.

Portions of newlib’s memory management code are recursive, so you will often see
the following sequence of invocations in response to a malloc() function call:

__malloc_lock, __malloc_lock, __malloc_unlock, __malloc_unlock

The tricky part here is that, if you aren’t careful, the second __malloc_lock will cause
itself to wait for a lock that it already holds from the first __malloc_lock .

There are two ways to solve this problem. The first is to simply punt, and reimple-
ment malloc() in its entirety using uC/OS’s reentrant memory pool API. The second
option is to really implement a working __malloc_lock and __malloc_unlock . Both
approaches have their advantages, and which one you choose will depend on how
your application needs to use dynamic memory.

Figure 10 is an example of how to use uC/OS memory pools to implement mal-
loc() . In this code, each allocation request consumes one block from the memory
pool, whether the allocation needs that much space or not. Furthermore, if the allo-
cation size exceeds the block size then the request fails, because uC/OS’s memory
block manager does not permit this.

14

Porting and Using Newlib in Embedded Systems

/* number of bytes per allocation */
#define HEAPBLKSIZE 64

/* number of allocations available */
#define HEAPBLKS 1024

/* our heap */
OS_MEM *heap;
unsigned char heapmem[HEAPBLKS * HEAPBLKSIZE];

void *malloc (size_t size)
{

INT8U err = OS_NO_ERR;
void *alloc = 0;

/* initialize, if necessary */
OS_ENTER_CRITICAL();
if(!heap)

heap = OSMemCreate(heapmem, HEAPBLKS,
HEAPBLKSIZE, &err);

OS_EXIT_CRITICAL();

if(heap && err == OS_NO_ERR) {

/* if the request fits the heap block length,
then make the allocation from the heap */

if(size <= HEAPBLKLEN)
alloc = OSMemGet(heap, &err);

/* otherwise, we’re sunk */
else err = OS_MEM_NO_FREE_BLKS;

}

/* deny the allocation on errors */
if(err != OS_NO_ERR)

alloc = 0;

return alloc;
}

Figure 10. Implementing malloc() with a memory pool.

Using uC/OS’s memory pools eliminates fragmentation worries and makes mal-
loc() reentrant, but wastes memory if the pool’s block size doesn’t match up with
the typical allocation request. You reduce some of the waste by providing buffer
pools of several different sizes (perhaps corresponding to the sizes of data structures
you know you will be frequently allocating memory for), but this approach is hardly
generic--- particularly when a distribution of sizes is needed.

For situations where you need a range of allocation sizes, or the size of the largest po-
tential allocation request is unknown, use newlib’s memory allocator and implement
__malloc_lock and __malloc_unlock functions. Figure 11 shows how to do that.

15

Porting and Using Newlib in Embedded Systems

/* semaphore to protect the heap */
static OS_EVENT *heapsem;

/* id of the task that is
currently manipulating the heap */

static int lockid;

/* number of times
__malloc_lock has recursed */

static int locks;

void
__malloc_lock (struct _reent *_r)
{

OS_TCB tcb;
OS_SEM_DATA semdata;
INT8U err;
int id;

/* use our priority as a task id */
OSTaskQuery(OS_PRIO_SELF, &tcb);
id = tcb.OSTCBPrio;

/* see if we own the heap already */
OSSemQuery(heapsem, &semdata);
if(semdata.OSEventGrp && id == lockid) {

/* we do; just count the recursion */
locks++;

}

else {
/* wait on the other task to yield the

heap, then claim ownership of it */
OSSemPend(heapsem, 0, &err);
lockid = id;

}

return;
}

void
__malloc_unlock (struct _reent *_r)
{

/* release the heap once the number of
locks == the number of unlocks */

if((--locks) == 0) {
lockid = -1;
OSSemPost(heapsem);

}
}

Figure 11. The __malloc_lock and __malloc_unlock functions.

16

Porting and Using Newlib in Embedded Systems

__env_lock and __env_unlock

These stubs protect the application’s environment memory space, similar to what
__malloc_lock and __malloc_unlock do for heap space. They are related to
newlib’s setenv() and getenv() functions; you can ignore them if you don’t use
environment variables, or you can duplicate the strategy used for heap memory
protection.

_exit

This stub forcibly terminates the application in response to the exit() or system()
functions. There are several possiblities here, from allowing a watchdog timeout, to
passing control to some kind of secondary application, to simulating a powerup reset
in software. The Hitachi SH-2 CPU reads its initial program counter and stack pointer
from the first eight bytes of memory, so the code in Figure 12 can be used to simulate
a powerup reset.

mov #-1, r0 ; disable interrupts
ldc r0, sr

mov #4, r0 ; reset the stack pointer
mov.l @r0, r15

mov #0, r0 ; reset the program counter
mov.l @r0, r0
jmp @r0
nop

Figure 12. Simulating a powerup reset (Hitachi SH).

The same approach can be used for most other processors, but you have to be careful
here: this technique does not restore all of the target CPU’s registers and peripher-
als to their powerup states, so application code can not depend on initial values for
proper operation. In particular, device drivers cannot enable device interrupts prior
to clearing any pending interrupt requests, or a spurious interrupt will result.

_stat_r , _fstat_r , _link_r , _unlink_r , and _lseek_r

These stubs implement newlib’s stat() , fstat() , link() , unlink() and lseek()
functions. These functions all involve files, so they’re of little importance when the
target environment lacks an underlying filesystem.

For _stat_r and _fstat_r , just tell the caller that the requested file or descriptor is
a character device. This code is shown in Figure 13.

int
_stat_r (struct _reent *_r, const char *file,

struct stat *pstat)
{

pstat->st_mode = S_IFCHR;
return 0;

}

17

Porting and Using Newlib in Embedded Systems

int
_fstat_r (struct _reent *_r, int fd, struct stat *pstat)
{

pstat->st_mode = S_IFCHR;
return 0;

}

Figure 13. The _stat_r and _fstat_r stubs.

For _link_r and _unlink_r , claim that the operation always fails. See Figure 14.

int
_link_r (struct _reent *_r, const char *oldname,

const char *newname)
{

r->errno = EMLINK;
return -1;

}

int
_unlink_r (struct _reent *_r, const char *name)
{

r->errno = EMLINK;
return -1;

}

Figure 14. The _link_r and _unlink_r stubs.

For _lseek_r , pretend that the request is always successful. See Figure 15.

off_t
_lseek_r(struct _reent *_r, int fd,

off_t pos, int whence)
{

return 0;
}

Figure 15. The _lseek_r stub.

getpid

This function returns the context’s process id, which we can emulate using uC/OS’s
OSTaskQuery() function, as we did for __malloc_lock . The code is in Figure 16.

int
getpid (void)
{

OS_TCB tcb;
INT8U err;
int id;

/* use our priority as a task id */
OSTaskQuery(OS_PRIO_SELF, &tcb);
id = tcb.OSTCBPrio;

18

Porting and Using Newlib in Embedded Systems

return id;
}

Figure 16. The getpid stub.

_times_r

This stub returns various time measurements for the current context. uC/OS doesn’t
keep statistics on a task’s run time, so leave this unimplemented as shown in Figure
17.

int
_times_r (struct _reent *r, struct tms *tmsbuf)

{
return -1;

}

Figure 17. The _times_r stub.

Onward!
The code I provide in this article is just the minimum set needed to get newlib up
and running on your system. As you grow into newlib, you are likely to find places
where it makes sense to replace newlib’s implementations with your own, as I often
do for malloc() . I won’t claim that newlib was designed with this in mind, but its
clean implementation makes this and many other kinds of modifications simple and
easy.

I hope that this document encourages you to get started on a newlib-based project of
your own.

Resources
For more information about newlib, see the newlib project’s home page, at
http://sources.redhat.com/newlib/7.

About the Author
Bill Gatliff is an independent consultant with almost ten years of embedded develop-
ment and training experience. He specializes GNU-based embedded development,
and in using and adapting GNU tools to meet the needs of difficult development
problems. He welcomes the opportunity to participate in projects of all types.

Bill is a Contributing Editor for Embedded Systems Programming Magazine8, a
member of the Advisory Panel for the Embedded Systems Conference9, maintainer
of the Crossgcc FAQ, creator of the gdbstubs10 project, and a noted author and
speaker.

19

Porting and Using Newlib in Embedded Systems

Bill welcomes feedback and suggestions. Contact information is on his website, at
http://www.billgatliff.com11.

Notes
1. http://sources.redhat.com/glibc

2. http://www.redhat.com/

3. newlib/libc/stdio/vfprintf.c:144

4. Actually, the errno macro calls the function __errno() , which in turn references
__impure_ptr [errno.c:11]. This behavior is permitted by ANSI.

5. This location moves with the --prefix option.

6. http://www.ucos-ii.com/

7. http://sources.redhat.com/newlib

8. http://www.embedded.com/

9. http://www.esconline.com/

10. http://sourceforge.net/projects/gdbstubs

11. http://www.billgatliff.com

20

	Table of Contents
	Copyright
	Newlib
	Newlib Licenses
	Newlib Features
	Printf() vs. iprintf()
	More on stdio
	UNIX API
	Libm
	Reentrancy
	The errno variable
	Making errno reentrant
	Managing reent structures
	Reentrancy in memory management

	Designed for portability
	An embedded filesystem?!

	Building Newlib
	Tweaks
	Porting Newlib
	Reentrant vs. nonreentrant stubs
	forkr
	writer and readr
	openr
	closer
	sbrkr
	malloclock and mallocunlock
	envlock and envunlock
	exit
	statr, fstatr, linkr, unlinkr, and lseekr
	getpid
	timesr

	Onward!
	Resources
	About the Author

