
February 2017 DocID027643 Rev 4 1/56

1

AN4667
Application note

STM32F7 Series system architecture and performance

Introduction

The STM32F7 Series devices are the first ARM® Cortex®-M7 based 32-bit microcontrollers.
Taking advantage of ST’s ART accelerator™ as well as an L1-cache, the STM32F7 Series
devices deliver the maximum theoretical performance of the Cortex®-M7.

The benchmark scores steadily reach 1082 CoreMark and 462 DMIPS, whether the code is
executed from the embedded Flash memory, from the internal RAMs or from the external
memories (SRAM, SDRAM or Quad-SPI Flash memory).

The STM32F7 Series devices bring a high level of performance thanks to:

• A powerful superscalar pipeline and DSP capabilities providing a fast real time response
with a low interrupt latency

• An efficient access to the large external memories

• A high performance floating point capability for complex calculations

This application note presents the STM32F7 global architecture as well as the memory
interfaces and features which provide a high flexibility to achieve the best performance and
additional code and data sizes. It also presents the multi-master architecture that
contributes to the system performance and offloads the CPU.

The application note also provides a software demonstration of the architecture
performance of the STM32F7 Series devices in various memory partitioning configurations
(different code and data locations) as well as the performance of architecture where DMAs
are enabled.

This application note is provided with the X-CUBE-32F7PERF embedded software package
that includes two projects:

• Stm32f7_performances project aims to demonstrate the performance of the STM32F7
architecture in different configurations, that is, the execution of the code and the data
storage in different memory locations using ART accelerator™ and caches.

• Stm32f7_performances_DMAs aims to demonstrate the performance of the architecture
in multi-master configuration.

Each project is done for the following available boards: STM32756G-EVAL, STM32F769I-
EVAL and STM32F723E-DISCO boards.

www.st.com

http://www.st.com

Contents AN4667

2/56 DocID027643 Rev 4

Contents

1 STM32F7 Series system architecture overview 6

1.1 Cortex®-M7 core . 6

1.2 Cortex®-M7 system caches . 6

1.3 Cortex®-M7 bus interfaces . 7

1.3.1 AXI bus interface . 7

1.3.2 TCM bus interface . 8

1.3.3 AHBS bus interface . 8

1.3.4 AHBP bus interface . 8

1.4 STM32F7 bus matrix . 8

1.5 STM32F7 memories .11

1.5.1 Embedded Flash memory . 11

1.5.2 Embedded SRAM . 12

1.5.3 External memories . 15

1.6 DMAs . 18

1.7 Main differences between the STM32F7 Series devices from
architecture point of view . 20

2 Typical application . 21

2.1 FFT demonstration . 21

2.2 Project configuration of the CPU memory access demonstration 22

2.3 Project configuration of the CPU memory access with
DMA activation demonstration . 26

2.3.1 Step 1: configure the different DMA parameters 27

2.3.2 Step 2: check the configuration and the DMA transfer(s) 30

2.3.3 Step 3: get the results . 30

3 Results and analysis . 31

3.1 CPU memory access performance . 31

3.2 CPU memory access performance with DMA usage 38

4 Performance ranking and comparison inside the
STM32F7 Series devices . 46

4.1 Performance ranking inside the STM32F7 Series 46

4.2 Guideline to select an STM32F7 device . 48

DocID027643 Rev 4 3/56

AN4667 Contents

3

5 Software memory partitioning and tips . 49

5.1 Software memory partitioning . 49

5.2 Tips . 50

6 Conclusion . 52

7 Revision history . 53

List of tables AN4667

4/56 DocID027643 Rev 4

List of tables

Table 1. STM32F7 Series device cache sizes . 6
Table 2. Cortex®-M7 default memory attributes after reset . 7
Table 3. internal memory summary of the STM32F74xxx/STM32F75xxx devices. 14
Table 4. internal memory summary of the STM32F72xxx/STM32F73xxx devices. 14
Table 5. internal memory summary of the STM32F76xxx/STM32F77xxx devices. 14
Table 6. Main differences between the STM32F7 Series devices . 20
Table 7. MDK-ARM results for the STM32F74xxx and STM32F75xxx devices 33
Table 8. MDK-ARM results for the STM32F72xxx and STM32F73xxx devices 33
Table 9. MDK-ARM results for the STM32F76xxx and STM32F77xxx devices (single

bank/single precision FPU). 34
Table 10. MDK-ARM results for the STM32F76xxx and STM32F77xxx devices (dual

bank/single precision FPU). 34
Table 11. Single bank versus dual bank performance comparison . 37
Table 12. Configuration 1: execution from the Flash-ITCM / FFT CPU data storage in

the DTCM-RAM . 39
Table 13. Configuration 2: execution from the Flash-ITCM / FFT CPU data storage in

the SRAM1 . 40
Table 14. Configuration 3: execution from the Flash-AXI / FFT CPU data storage in the

DTCM-RAM . 40
Table 15. Configuration 1: execution from the Flash-ITCM / FFT CPU data storage in

the DTCM-RAM . 40
Table 16. Configuration 2: execution from the Flash-ITCM / FFT CPU data storage in

the SRAM1 . 41
Table 17. Configuration 3: execution from the Flash-AXI / FFT CPU data storage in the

DTCM-RAM . 41
Table 18. Configuration 1: execution from the Flash-ITCM / FFT CPU data storage in

the DTCM-RAM (single bank/single precision FPU). 42
Table 19. Configuration 2: execution from the Flash-ITCM / FFT CPU data storage in

the SRAM1 (single bank/single precision FPU) . 42
Table 20. Configuration 3: execution from the Flash-AXI / FFT CPU data storage in

the DTCM-RAM (single bank/single precision FPU). 43
Table 21. Configuration 3: execution from the Flash-AXI / FFT CPU data storage in

the DTCM-RAM (dual bank/single precision FPU) . 43
Table 22. Performance comparison between STM32F7 Series devices . 46
Table 23. Document revision history . 53

DocID027643 Rev 4 5/56

AN4667 List of figures

5

List of figures

Figure 1. STM32F7 Series system architecture. 9
Figure 2. Flash memory interfaces (paths: 1, 2, 3, 4) . 12
Figure 3. Different accesses of DMAs to some internal memories (paths: 5, 6, 7, 8) 13
Figure 4. External memory interfaces (paths: 9, 10) . 15
Figure 5. External memory mapping (mapping after reset) . 16
Figure 6. No memory concurrency between DMA and CPU . 19
Figure 7. Memory concurrency between one or more masters and CPU . 19
Figure 8. FFT example block diagram . 21
Figure 9. MDK-ARM flag configuration . 23
Figure 10. MDK ARM heap and stack configurations . 24
Figure 11. ST-Link utility settings for dual bank configuration . 25
Figure 12. Flash loader settings in dual bank mode . 26
Figure 13. How to split a memory A in case of concurrency between all the masters 29
Figure 14. STM32F74xxx and STM32F75xxx FFT relative ratio cycle number with

MDK-ARM. 35
Figure 15. STM32F72xxx and STM32F73xxx FFT relative ratio cycle number with

MDK-ARM. 35
Figure 16. STM32F76xxx and STM32F77xxx FFT relative ratio cycle number with

MDK-ARM. 36

STM32F7 Series system architecture overview AN4667

6/56 DocID027643 Rev 4

1 STM32F7 Series system architecture overview

1.1 Cortex®-M7 core

The STM32F7 Series devices are built on a high-performance ARM® Cortex®-M7 32-bit
RISC core operating up to 216 MHz frequency. The Cortex®-M7 core features a high
performance floating point unit (FPU). The core can feature a single precision floating point
unit or a double precision floating point unit (depending on the STM32F7 Series device),
which support all ARM® single-precision and double precision data-processing instructions
and data types. It also implements a full set of DSP instructions and a memory protection
unit (MPU) that enhances the application security. A forward compatibility from the Cortex®-
M4 to the Cortex®-M7 allows binaries, compiled for the Cortex®-M4 to run directly on the
Cortex®-M7.

The Cortex®-M7 features a 6/7-stage superscalar pipeline with a branch prediction and dual
issue instructions. The branch prediction feature allows the resolution of branches to
anticipate the next branch and therefore decrease the cycle number consumed by loops
from 4 and 3 cycles down to 1 cycle per loop. The dual instruction feature allows the core to
execute two instructions simultaneously and usually no matter of their order, to increase
instruction throughput.

1.2 Cortex®-M7 system caches

The devices embed the Cortex®-M7 that features a level1 cache (L1-cache), which is
splitted into two separated caches: the data cache (D-cache) and the instruction cache
(I-cache) allowing to have a Harvard architecture bringing the best performance. These
caches allow to reach a performance of 0-wait state even at high frequencies.

By default, the instruction and data caches are disabled.

The ARM CMSIS library provides two functions that enable data and instruction caches:

• SCB_EnableICache() to enable the instruction cache

• SCB_EnableDCache() to enable and invalidate the data cache

For more information how to enable and invalidate the cache, refer to the “ARMv7-M
architecture reference manual”.

Refer also to Level 1 cache on STM32F7 Series application note (AN4839) for more details
on L1-cache usage on STM32F7 Series.

Table 1 summarizes the cache size for each device in STM32F7 Series.

Table 1. STM32F7 Series device cache sizes

Device Instruction cache size Data cache size

STM32F74xxx and STM32F75xxx 4 Kbytes 4 Kbytes

STM32F72xxx and STM32F73xxx 8 Kbytes 8 Kbytes

STM32F76xxx and STM32F77xxx 16 Kbytes 16 Kbytes

DocID027643 Rev 4 7/56

AN4667 STM32F7 Series system architecture overview

55

1.3 Cortex®-M7 bus interfaces

The Cortex®-M7 has five interfaces: AXIM, ITCM, DTCM, AHBS and AHBP. This section
describes each of them.

All these interfaces are masters except the AHBS interface which is a slave allowing
another master to be connected to the Cortex®-M7.

1.3.1 AXI bus interface

AXI as Advanced eXtensible Interface. The Cortex®-M7 implements the AXIM AMBA4,
which is a 64-bit wide interface for more instruction fetch and data load bandwidth.

Any access that is not for the TCM or the AHBP interface, is handled by the appropriate
cache controller if the cache is enabled. The user should take into account that not all the
memory regions are cacheable, it depends on their types. The memory regions having the
types: Shared Memory, Device or Strongly Ordered are not cacheable. Only the Normal
Non-Shared memory type is cacheable.

For more information on the general rules about the memory attributes and behaviors, refer
to the “ARMv7-M architecture reference manual”.

In order to modify the type and the attribute of a memory region, the MPU can be used to
allow it cacheable. This is done by configuring the TEX field and S, C and B bits in the
MPU_RASR register.

Table 2 summarizes the memory region attributes after cortex®-M7 reset.

For more details on MPU usage, refer to the STM32F7 Series Cortex®-M7 processor
programming manual (PM0253) in Memory Protection Unit section.

Table 2. Cortex®-M7 default memory attributes after reset

Address range Region name Type Attributes
Execute
Never?

0x00000000-0x1FFFFFFF Code Normal
Cacheable, Write-Through,

Allocate on read miss
No

0x20000000-0x3FFFFFFF SRAM Normal
Cacheable, Write-Back,

Allocate on read and write miss
No

0x40000000-0x5FFFFFFF Peripheral Device Non-shareable Yes

0x60000000-0x7FFFFFFF RAM Normal
Cacheable, Write-Back,

Allocate on read and write miss
No

0x80000000-0x9FFFFFFF RAM Normal
Cacheable, Write-Through,

Allocate on read miss
No

0xA0000000-0xBFFFFFFF External Device Device Shareable Yes

0xC0000000-0xDFFFFFFF External Device Device Non-shareable Yes

0xE0000000-0xE000FFFF Private peripheral bus Strongly ordered - Yes

0xE0010000-0xFFFFFFFF Vendor system Device Non-shareable Yes

STM32F7 Series system architecture overview AN4667

8/56 DocID027643 Rev 4

In the STM32F7 Series devices, the 64-bit AXI Master bus connects the core to the bus
matrix through a high performance AXI to multi-AHB bridge device, which has four master
interfaces:

• 1x 64-bit AHB to the internal Flash memory

• 3x 32-bit AHB to the bus matrix

1.3.2 TCM bus interface

TCM as Tightly-Coupled Memory is provided to connect the core to the internal RAM
memory. The TCM interface has an Harvard architecture, so there are an ITCM (Instruction
TCM) and a DTCM (Data TCM) interfaces. The ITCM has one 64-bit memory interface while
the DTCM is splitted into two ports of 32-bit: D0TCM and D1TCM.

1.3.3 AHBS bus interface

The Cortex®-M7 AHBS (AHB slave) is a 32-bit wide interface that provides system access
to the ITCM, D1TCM, and D0TCM. However, in the STM32F7 architecture, AHBS allows
only data transfer from/to DTCM-RAM (see Figure 1). The ITCM bus is not accessible on
AHBS, so the DMA data transfer to/from ITCM RAM is not supported. For DMA transfer
to/from the Flash memory on ITCM interface, all the transfers are forced through AHB bus.
The AHBS interface can be used when the core is in sleep state, therefore, DMA transfers
can be performed in low-power modes.

1.3.4 AHBP bus interface

The AHBP interface (AHB peripheral) is a single 32-bit wide interface that is dedicated to
connect the CPU to the peripherals. It is used only for the data access. The instruction
fetches are never performed on this interface. In the STM32F7 architecture, this bus
connects the AHBP peripheral bus of the Cortex-M7 core to the AHB Bus Matrix. The
targets of this bus are the AHB1, AHB2, APB1 and APB2 peripherals.

1.4 STM32F7 bus matrix

The STM32F7 Series devices feature a 216 MHz bus matrix that interconnects the core,
masters and the slaves. It allows a number of parallel access paths between the core buses,
masters buses and the slaves buses enabling a concurrent access and efficient operation
even when several high-speed peripherals work simultaneously. The CPU and its bus matrix
can run at the same frequency, that is, 216 MHz.

An internal arbiter resolves the conflicts and the bus concurrency of masters on the bus
matrix. It uses a round-robin algorithm.

Figure 1 shows the overall system architecture of STM32F7 Series devices as well as the
bus matrix connections.

DocID027643 Rev 4 9/56

AN4667 STM32F7 Series system architecture overview

55

Figure 1. STM32F7 Series system architecture

1. I/D cache size:
- For STM32F74xxx and STM32F75xxx devices: 4 Kbytes.

- For STM32F72xxx and STM32F73xxx devices: 8 Kbytes.

- For STM32F76xxx and STM32F77xxx devices: 16 Kbytes.

2. Masters not available in STM32F72xxx and STM32F73xxx devices.

STM32F7 Series system architecture overview AN4667

10/56 DocID027643 Rev 4

STM32F7 bus matrix interconnects:

• Twelve bus masters or initiators:

– Three 32-bit AHB buses that outcome from the AXI to AHB bridge

– One 64-bit AHB bus connected to the embedded Flash memory that outcomes
from the AXI to AHB bridge

– Cortex®-M7 AHB peripherals bus

– DMA1 memory bus

– DMA2 memory bus

– DMA2 peripheral bus

– Ethernet DMA-bus(a)

– USB OTG HS DMA bus

– LCD-TFT controller DMA-bus(a)

– Chrom-Art Accelerator® (DMA2D) memory bus(a)

• And eight bus slaves:

– The embedded Flash memory on AHB bus (for Flash read/write access, for the
code execution and data access)

– Cortex®-M7 AHBS slave interface for DMAs data transfer on DTCM-RAM only

– Main internal SRAM1

– Auxiliary internal SRAM2

– AHB1 peripherals including AHB to APB bridges, APB1 and APB2 peripherals

– AHB2 peripherals

– FMC memory interface

– Quad-SPI memory interface

a. Unavailable for STM32F72xxx and STM32F73xxx devices.

DocID027643 Rev 4 11/56

AN4667 STM32F7 Series system architecture overview

55

1.5 STM32F7 memories

The STM32F7 devices embed a Flash memory with different sizes depending on the
STM32F72xxx/STM32F73xxx, STM32F74xxx/STM32F75xxx or the
STM32F76xxx/STM32F77xxx devices (refer to Table 3, Table 4 and Table 5), an SRAM with
different sizes, a scattered architecture and external memory interfaces such as the FMC
and the Quad-SPI. This configuration gives the flexibility to the user to partition his
application memory resources following his needs and to get the right compromise
performance versus the application code size.

1.5.1 Embedded Flash memory

Each STM32F7 Series device has its own Flash memory size (refer to Table 3, Table 4 and
Table 5). In the STM32F72xxx and STM32F73xxx devices, the Flash memory is accessible
with 128-bit wide data read while in the STM32F74xxx and STM32F75xxx devices, the
Flash memory is accessible with 256-bit wide data read. In the STM32F76xxx and
STM32F77xxx devices, the Flash memory is accessible with 128-bit or 256-bit wide data
read following the bank mode enabled (256-bit access in single bank mode and 128-bit
access in dual bank mode).

In all the devices the Flash memory is accessible via three main interfaces for read or/and
write accesses.

• A 64-bit ITCM interface:

It connects the embedded Flash memory to the Cortex-M7 via the ITCM bus (path1 in
Figure 2) and is used for the program execution and data read access for constants.
The write access to the Flash memory is not permitted via this bus.
The Flash memory is accessible by the CPU through ITCM starting from the address
0x00200000.

As the embedded Flash memory is slow compared to the core, the Adaptive Real-Time
accelerator (ART) is provided to unleash the Cortex-M7 core performance and allow 0-
wait execution from the Flash memory at a CPU frequency up to 216 MHz. The
STM32F7 ART is available only for a Flash memory access on the ITCM interface. It
implements a unified cache of instruction and a branch cache of 128 bits x 64 lines in

the STM32F72xxx and STM32F73xxx devices, 256 bits x 64 lines in the STM32F74xxx
and STM32F75xxx devices and 128/256 bits x 64 lines in the STM32F76xxx and
STM32F77xxx devices following the bank mode selected. The ART is available for both
the instruction and data access, which increases the execution speed of sequential
code and loops. The ART implements also a Prefetcher (ART-Prefetch).

• A 64-bit AHB interface:

It connects the embedded Flash memory to the Cortex-M7 via the AXI/AHB bridge
(path 2 in Figure 2). It is used for the code execution, read and write accesses. The
Flash memory is accessible by the CPU through AXI starting from the address
0x08000000.

• A 32-bit AHB interface:

It is used for DMAs transfers from the Flash memory (path 3 in Figure 2). The DMAs
Flash memory access is performed starting from the address 0x0800 0000.

For the control, configuration and status register accesses, the Flash memory interface is
accessible through the AHBP/ AHB1 peripheral path, which is a 32-bit AHB bus (path 4 in
Figure 2).

STM32F7 Series system architecture overview AN4667

12/56 DocID027643 Rev 4

If the access to the Flash memory is done starting from the address 0x0800 0000, it is
performed automatically via AXI/AHB. The instruction or/and data caches should be
enabled in this configuration to get 0-wait-state-like access to the Flash memory.

If the access to the Flash memory is done starting from the address 0x0200 0000, it is
performed automatically via the ITCM bus. The ART accelerator™ should be enabled to get
the equivalent of 0-wait state access to the Flash memory via the ITCM bus. The ART is
enabled by setting the bit 9 in the FLASH_ACR register while the ART-Prefetch is enabled
by setting the bit 8 in the same register.

Figure 2. Flash memory interfaces (paths: 1, 2, 3, 4)

1. The Flash memory wide size:
- For STM32F74xxx and STM32F75xxx devices: 256 bits.

- For STM32F72xxx and STM32F73xxx devices: 128 bits.

- For STM32F76xxx and STM32F77xxx devices: 256 bits in single bank and 128 bits in dual bank mode.

2. Masters not available in STM32F72xxx and STM32F73xxx devices.

3. The hatched path means several path possibilities.

1.5.2 Embedded SRAM

The STM32F7 Series devices feature a large SRAM with a scattered architecture. It is
divided into up to four blocks:

• The instruction RAM (ITCM-RAM) mapped at the address 0x0000 0000 and accessible
only by the core, that is, through path 1 in Figure 3. It is accessible by bytes, half-words
(16 bits), words (32 bits) or double words (64 bits). The ITCM-RAM can be accessed at
a maximum CPU clock speed without latency. The ITCM-RAM is protected from a bus
contention since only the CPU can access to this RAM region.

• The DTCM-RAM mapped on the TCM interface at the address 0x2000 0000 and
accessible by all AHB masters from the AHB bus Matrix: by the CPU through the
DTCM bus (path 5 in Figure 3) and by DMAs through the specific AHBS bus of the core
that is path 6 in Figure 3. It is accessible by bytes, half-words (16 bits), words (32 bits)

DocID027643 Rev 4 13/56

AN4667 STM32F7 Series system architecture overview

55

or double words (64 bits). The DTCM-RAM is accessible at a maximum CPU clock
speed without latency. The concurrency access to the DTCM-RAM by the masters
(DMAs) and their priorities can be handled by the slave control register of the Cortex-
M7 (CM7_AHBSCR register). A higher priority can be given to the CPU to access the
DTCM-RAM versus the other masters (DMAs). For more details of this register, refer to
ARM® Cortex®-M7 processor - technical reference manual.

• The SRAM1 is accessible by all the AHB masters from the AHB bus Matrix, that is, all
general purpose DMAs as well as dedicated DMAs. The SRAM1 is accessible by
bytes, half-words (16 bits) or words (32 bits). Refer to Figure 3 (path 7) for possible
SRAM1 accesses. It can be used for the data load/store as well as the code execution.

• The SRAM2 is accessible by all the AHB masters from the AHB bus matrix. All the
general purpose DMAs as well as the dedicated DMAs can access to this memory
region. The SRAM2 is accessible by bytes, half-words (16 bits) or words (32 bits).
Refer to Figure 3 (path 8) for possible SRAM2 accesses. It can be used for the data
load/store as well as the code execution.

Figure 3. Different accesses of DMAs to some internal memories (paths: 5, 6, 7, 8)

1. Masters not available in STM32F72xxx and STM32F73xxx devices.

2. The hatched paths mean several path possibilities.

STM32F7 Series system architecture overview AN4667

14/56 DocID027643 Rev 4

Table 3, Table 4 and Table 5 summarize the internal memory mapping and the memory
sizes of the STM32F7 Series devices:

Table 3. internal memory summary of the STM32F74xxx/STM32F75xxx devices

Memory type
Memory
region

Address start Address end Size
Access

interfaces

FLASH

FLASH-ITCM 0x0020 0000 0x002F FFFF

1 Mbyte

ITCM (64-bit)

FLASH-AXIM 0x0800 0000 0x080F FFFF
AHB (64-bit)

AHB (32-bit)

RAM

DTCM-RAM 0x2000 0000 0x2000 FFFF 64 Kbytes DTCM (64-bit)

ITCM-RAM 0x0000 0000 0x0000 3FFF 16 Kbytes ITCM (64-bit)

SRAM1 0x2001 0000 0x2004 BFFF 240 Kbytes AHB (32-bit)

SRAM2 0x2004 C000 0x2004 FFFF 16 KBytes AHB (32-bit)

Table 4. internal memory summary of the STM32F72xxx/STM32F73xxx devices

Memory type
Memory
region

Address start Address end Size
Access

interfaces

FLASH

FLASH-ITCM 0x0020 0000 0x0027 FFFF

512 Kbytes

ITCM (64-bit)

FLASH-AXIM 0x0800 0000 0x0807 FFFF
AHB (64-bit)

AHB (32-bit)

RAM

DTCM-RAM 0x2000 0000 0x2000 FFFF 64 Kbytes DTCM (64-bit)

ITCM-RAM 0x0000 0000 0x0000 3FFF 16 Kbytes ITCM (64-bit)

SRAM1 0x2001 0000 0x2003 BFFF 176 Kbytes AHB (32-bit)

SRAM2 0x2003 C000 0x2003 FFFF 16 Kbytes AHB (32-bit)

Table 5. internal memory summary of the STM32F76xxx/STM32F77xxx devices

Memory type
Memory
region

Address start Address end Size
Access

interfaces

FLASH

FLASH-ITCM 0x0020 0000 0x003F FFFF

2 Mbytes(1)

1. 2 Mbytes in single bank and 2 x 1 Mbyte in dual bank.

ITCM (64-bit)

FLASH-AXIM 0x0800 0000 0x081F FFFF
AHB (64-bit)

AHB (32-bit)

RAM

DTCM-RAM 0x2000 0000 0x2001 FFFF 128 Kbytes DTCM (64-bit)

ITCM-RAM 0x0000 0000 0x0000 3FFF 16 Kbytes ITCM (64-bit)

SRAM1 0x2002 0000 0x2007 BFFF 368 Kbytes AHB (32-bit)

SRAM2 0x2007 C000 0x2007 FFFF 16 KBytes AHB (32-bit)

DocID027643 Rev 4 15/56

AN4667 STM32F7 Series system architecture overview

55

1.5.3 External memories

In addition to the internal memories and storage controllers such as the USB and the
SDMMC, the user can extend the STM32F7 memories with the flexible memory controller
(FMC) and the Quad-SPI controller.

Figure 4 shows the possible paths that interconnect the CPU and the different DMAs with
these external memories via the AXI/AHB buses. As shown in Figure 4, the external
memories can benefit of the Cortex®-M7 cache, therefore, can get the maximum of the
performance whether the data load/store or the code execution location. This allows to mix
the performance and the large memory size.

Path 9 in Figure 4 shows the possible FMC accesses using the CPU or the DMAs.

Path 10 in Figure 4 shows the possible Quad-SPI accesses using the CPU or the DMAs.

Figure 4. External memory interfaces (paths: 9, 10)

1. Masters not available in STM32F72xxx and STM32F73xxx devices.

2. The hatched paths mean several path possibilities.

All the external memories are accessible by all the masters (CPU and DMAs). So the
memory to memory DMAx transfers or peripheral/memory DMAx transfers are allowed.

STM32F7 Series system architecture overview AN4667

16/56 DocID027643 Rev 4

Figure 5 summarizes the memory mapping of the external memories and their address
ranges after reset (SWP_FMC[1:0] bits are set to 0 in SYSCFG_MEMRMP register).

Figure 5. External memory mapping (mapping after reset)

Flexible memory controller (FMC) interface

The STM32F7 FMC controller interfaces the memory mapped devices including SRAMs,
ROMs, NOR/NAND Flash memories and SDRAM devices. It is used either for the program
execution (except for NAND Flash) or the data load/store operations.

STM32F7 FMC features:

• 4 banks to support different memories at the same time

• Independent chip select control for each memory bank

• Independent configuration for each memory bank

• Programmable timings to support a wide range of devices

• 8/16/32-bit data bus

• External asynchronous wait control

• Interfaces with synchronous DRAM (SDRAM) that provides two SDRAM banks

All the FMC external memories share the addresses, data and control signals with the
controller.

Each external device is accessed with a unique chip select. The FMC performs only one
access at a time to an external device.

DocID027643 Rev 4 17/56

AN4667 STM32F7 Series system architecture overview

55

The two default regions of SDRAM banks are not cacheable. So even if the cache is
enabled, the data or instructions will not go through the cache. To benefit from the cache
acceleration, the SDRAM banks can be remapped from 0xC000 0000 and 0xD000 0000 to
0x6000 0000 and 0x7000 0000 respectively, which are, by default, cacheable regions. This
is done by setting the field SWP_FMC [1:0] = 01 in the SYSCFG_MEMRMP register. If the
remapping is not suitable for the application, the Cortex®-M7 MPU can be used to modify
the propriety of the default SDRAM memory region to be cacheable.

All the external memories that would be connected to the FMC will benefit from the data and
the L1-cache (path 9 in Figure 4) allowing to have more data or/and code sizes with the
maximum of performance.

Quad-SPI interface

The STM32F7 Series devices embed a Quad-SPI memory interface, which is a specialized
communication interface targeting single, dual or Quad-SPI Flash memories. This multiple
width interface supports a traditional SPI single bit serial input and output as well as two bits
and four bit serial commands. In addition, the interface supports double data rate (DDR)
read commands, meaning that the address transfer and data read are performed on both
edge of the communication clock. It allows to multiply by two the data/instruction throughput
and therefore to increase the access efficiency to an external Quad-SPI Flash memory.

It can work in one of the three following modes:

• Direct mode: all the operations are performed through the Quad-SPI registers

• Status polling mode: the external Flash memory status register is periodically read and
an interrupt can be generated in case of a flag setting

• Memory mapped mode: the external Flash is memory mapped and is seen by the
system as if it was an internal memory

The STM32F7 Quad-SPI interface is able to manage up to 256 Mbyte Flash memory
starting from 0x9000 0000 to 0X9FFF FFFF in the memory mapped mode. It is mapped on
an executable area, so the remap is not needed.

Compared to the FMC, the Quad-SPI allows to connect an external Flash memory with a
reduced cost with small packages (reducing PCB area) and a reduced GPIOs usage. 6
GPIOs are used in single-quad mode (4-bit) for any Flash memory size or 10 GPIOs in dual-
quad mode (8-bit).

As shown in Figure 4 (path 10), the Quad-SPI is mapped on a dedicated layer on the AHB
and can benefit from the L1-cache. This allows to execute the code and load the data from
the Quad-SPI with good performances.

The Quad-SPI is also accessible by all the masters on the AHB bus matrix, especially the
Chrom-ART accelerator® and the LCD-TFT, enabling an efficient data transfer, particularly
images, for graphical applications where a high frame rate of display is needed.

Refer to Quad-SPI (QSPI) interface on STM32 microcontrollers application note (AN4760)
to learn how to configure, program, and read the external Quad-SPI memories with STM32
microcontrollers.

STM32F7 Series system architecture overview AN4667

18/56 DocID027643 Rev 4

1.6 DMAs

The STM32F7 Series devices embed two general purpose Direct Memory Access (GP
DMAx) that can provide a high speed data transfer between memories and between a
memory and a peripheral. The DMAs are provided to offload the CPU and to allow some
transfers when the core is in a low-power mode. Each DMA has 8 streams and 8 channel
per stream.

The STM32F7 Series devices embed also other dedicated DMAs for Ethernet, USB OTG,
LCD-TFT and Chrom-ART accelerator®, except the STM32F72xxx and STM32F73xxx
devices that embed only one dedicated DMA which is USB OTG. All the DMAs have access
to the following internal memories: embedded Flash memory, SRAM1, SRAM2 and DTCM
through the AHBS bus of the Cortex®-M7. All the DMAs also have an access to external
memories through FMC and Quad-SPI controllers via the bus matrix.

The ITCM bus is not accessible on the AHBS. So the DMA data transfer to/from the ITCM
RAM is not supported. For the DMA transfer to/ from the Flash memory on the ITCM
interface, all the transfers are forced through the AHB bus that is all the transfers addresses
are translated automatically from ITCM addresses to AXI addresses.

The possible GP DMAs transfers are listed below:

• GP DMA1 transfers:

– DMA1 cannot address AHB1/AHB2 peripherals

– DMA1 can only make APB1 from/to memory transfers

• GP DMA2 transfers:

– DMA2 can do all possible transfers

Thanks to the AXI-to-multi-AHB Bridge and the bus matrix architecture, the concurrent
access by the CPU and the DMAs to different slaves are managed efficiently in order to
minimize the latency. The contention is also managed in the Cortex-M7 at the TCU level
between the LSU (Load/Store Unit) and AHB Slave bus accesses when the CPU and other
system master attempt to access simultaneously to the DTCM-RAM. Only one Master can
gain the access to the AHBS, which is managed by the bus matrix arbitration.

The CPU and the DMA access to the same memory may impact the system performance.

If the CPU and the DMA(s) do not access the same memory at the same time, no contention
is present. Therefore the performance remains the same as if there is no other master
active with the CPU (see Figure 6).

If there is an access concurrency to a memory between CPU and one or more master (see
Figure 7), the performance decreases depending on the access speed of the memory
accessed by the DMAs (the access to internal memory is relatively fast versus external
memory) and if the concurrency is done on read or write.

The latency generated by concurrent master accesses, depends on several factors that
some of them are treated in Section 3.2: CPU memory access performance with DMA
usage.

DocID027643 Rev 4 19/56

AN4667 STM32F7 Series system architecture overview

55

Figure 6. No memory concurrency between DMA and CPU

Figure 7. Memory concurrency between one or more masters and CPU

Section 2.3 presents the demonstration of the system performance when enabling multi
masters (DMAs) in different scenarios.

Section 3.2 provides the different results and analysis obtained in typical scenarios based
on the figures 6 and 7.

STM32F7 Series system architecture overview AN4667

20/56 DocID027643 Rev 4

1.7 Main differences between the STM32F7 Series devices from
architecture point of view

Table 6 summarizes only the differences between the STM32F7 Series devices linked to the
architecture (peripheral differences not included).

Table 6. Main differences between the STM32F7 Series devices

STM32F74xxx/
STM32F75xxx

STM32F72xxx/
STM32F73xxx

STM32F76xxx/
STM32F77xxx

Cortex-M7 revision r0P1 r1P0 r1P0

Instruction and Data
cache sizes

4 Kbytes 8 Kbytes 16 Kbytes

FPU
Single precision
floating point

Single precision
floating point

Single and double
precision floating point

Flash size 1 Mbyte 512 Kbytes 2 Mbytes

Bank mode/Flash width
Single bank with
256-bit access

Single bank with
128-bit access

– In single bank:
256-bit access

– in dual bank:
128-bit access

DTCM-RAM
Size: 64 Kbytes
@ 0x20000000

Size: 64 Kbytes
@ 0x20000000

Size: 128 Kbytes
@ 0x20000000

SRAM1
Size: 240 Kbytes
@ 0x20010000

Size: 176 Kbytes
@ 0x20010000

Size: 368 Kbytes
@ 0x20020000

SRAM2
Size: 16 Kbytes
@ 0x2004C000

Size: 16 Kbytes
@ 0x2003C000

Size: 16 Kbytes
@ 0x2007C000

ETH-DMA, LCD-TFT-DMA
and Chrom-ART

Available Not available Available

DocID027643 Rev 4 21/56

AN4667 Typical application

55

2 Typical application

This application note provides two software examples that show, first, the STM32F7
performance of the CPU memory access either for the data storage or the code execution
and either for internal or external memories. Secondly, the examples show the impact of the
DMA usage when the CPU is loading/storing data in a memory in typical scenarios.

The example used is the FFT example provided in the CMSIS library. The
stm32f7_performances project can be used as a skeleton where the user can integrate his
application. The same example is used for the stm32f7_performances_DMAs project except
the magnitude calculation that has been removed to allocate more RAM for DMAs transfers.

2.1 FFT demonstration

The FFT example is used as it benefits from the floating point unit of the Cortex-M7,
contains several loops and data load/store operations, and can be done in different
paths/memories. The code can be executed from internal or external memories. The
example consists in the calculation of the maximum energy in the frequency domain of the
input signal with the use of complex FFT, complex magnitude, and maximum functions. It
uses the FFT 1024 points and the calculation is based on a single precision floating point.
The input signal is a 10 KHz sine wave merged with white noise. Figure 8 shows the block
diagram of the transformation.

The number of cycles consumed by the FFT process is also calculated based on the
system-tick timer. The example has been run on the STM32F732E-DISCO,
STM32756G-EVAL and STM32769I-EVAL boards. The results are shown on the
Hyperterminal through the UART or on the IDE printf viewer for all the boards and also on
the LCD-TFT only for STM32F7xxxx-EVAL boards.

The FFT demonstration shows the current project configuration, the system frequency, the
different configuration of caches, the ART, the ART-Prefetch (ON/OFF) and the memory
configuration in case of an external memory (SDRAM or Quad-SPI).

Figure 8. FFT example block diagram

Typical application AN4667

22/56 DocID027643 Rev 4

2.2 Project configuration of the CPU memory access
demonstration

The CPU memory access demonstration is provided with the Keil MDK-ARM, IAR
Embedded Workbench, and System Workbench for STM32 toolchains. The eight/nine
configurations of this project allow the data selection and code locations.

The configurations are named using the following rules:

N-ExecutionRegionPath_rwDataRegion where:

N: the number of the configuration.

ExecutionRegionPath: the memory location and the path of the code execution. The user
must differentiate between the execution region and the load region. The execution region is
the memory location where the application is executed. The load region is the memory
location where the application has been loaded initially by the Flash loader and copied later
on (by subroutine generated automatically by some toolchains), in the execution region if
the two address locations are different.

rwDataRegion: the memory location of RW/Zero Initialized data, stack and heap.

The following configurations are proposed:

• 1-FlashITCM_rwRAM-DTCM: the program is executed from the Flash-ITCM at 7 wait
states with the ART and the ART-prefetch enabled and the data are loaded/stored in
the DTCM-RAM.

• 2-FlashITCM_rwSRAM1: the program is executed from the Flash-ITCM at 7 wait
states with the ART and the ART-prefetch enabled and the data are loaded/stored in
the SRAM1 with the D-cache enabled.

• 3-FlashAXI_rwRAM-DTCM: the program is executed from the Flash-AXI at 7 wait
states with the I-cache enabled and the data are loaded/stored in the DTCM-RAM. The
data cache is also enabled because some constants are loaded from the Flash-AXI to
compute the FFT.

• 4-FlashAXI_rwSRAM1: the program is executed from the Flash-AXI at 7 wait states
with I-cache enabled and the data are loaded/stored in the SRAM1 with D-cache
enabled.

• 5-RamITCM_rwRAM-DTCM: the program is executed from the ITCM-RAM and the
data are loaded/stored in the DTCM-RAM. In this configuration nothing should be
enabled.

• 6-Quad SPI_rwRAM-DTCM: this configuration covers two cases for which the Quad-
SPI Flash memory runs at 54 MHz with the DDR mode enabled:

– Case 1 (6_1-Quad SPI_rwRAM-DTCM): the code is executed from the Quad-SPI
Flash memory with I-cache enabled and the data are loaded/stored in the DTCM-
RAM. Since the FFT process uses huge constants, the read-only data are located,
in this case, in the Quad-SPI Flash memory. So, D-cache is also enabled.

– Case 2 (6_2-Quad SPI_rwRAM-DTCM): only the code is located and executed in
the Quad-SPI Flash memory. The read-only data are located in the Flash-ITCM.
The read/write data are located in the DTCM-RAM. The I-cache, the ART and the
ART-prefetch are enabled in this case.

• 7-ExtSDRAM-Swapped_rwDTCM: this configuration is not available for the
STM32F723E-Discovery workspace. Here, the program is executed from the FMC-
SDRAM and the data are loaded/stored in the DTCM-RAM. The I-cache and D-cache
are enabled. Note that in this configuration the constant data are placed in the SDRAM,

DocID027643 Rev 4 23/56

AN4667 Typical application

55

that is why the D-cache is enabled. In this configuration the CPU clock is 200 MHz
while the SDRAM runs at 100 MHz.

• 7-ExtPSRAM_rwDTCM: this configuration is available only for the STM32F723E-
Discovery workspace. Here, the program is executed from the FMC-PSRAM and the
data are loaded/stored in the DTCM-RAM. The I-cache and D-cache are enabled. In
this configuration the constant data are placed in the PSRAM, that is why the D-cache
is also enabled.

• 8-FlashAXI-ROFTCM_rwSRAM1: this configuration is available only for the
STM32F723E-Discovery workspace. Here, only the code is located and executed from
the Flash-AXI. The read-only data are fetched from the Flash-ITCM. The read/write
data are located in the SRAM1. I-Cache, D-Cache, ART and the ART-prefetch are
enabled.

Each configuration has its own flag set. These flags are settable on the configuration
project. Figure 9 shows where these flags are defined for the MDK-ARM tool chain.

Figure 9. MDK-ARM flag configuration

The code is optimized for time level 3 for all the configurations.

Project flags description:

• DCACHE_ENABLE: if defined in the configuration project, the data cache is enabled.

• ICACHE_ENABLE: if defined in the configuration project, the instruction cache is
enabled.

• ART_ENABLE: if defined in the configuration project, the ART Accelerator is enabled.

• PF_ART_ENABLE: if defined in the configuration project, the prefetch of the ART
Accelerator is enabled.

• FLASH_WS: configures the number of the internal Flash wait states:

FLASH_WS=FLASH_LATENCY_X, where X= 0 (0 wait state) to 15 (15 wait states).

• DATA_IN_ExtPSRAM: if defined in the configuration project, the external PSRAM is
configured to be used either for data storage or for code execution.

• PSRAM_MEM_BUS_WIDTH: configures the bus width of the external PSRAM and the
configuration is as following:

PSRAM_MEM_BUS_WIDTH= FMC_NORSRAM_MEM_BUS_WIDTH_X, where X= 8,
16 or 32. The PSRAM available on the STM32F723E-DISCO board, is a 16-bit
PSRAM.

• DATA_IN_ExtSDRAM: if defined in the configuration project, the SDRAM is configured
to be used either for data storage or for code execution.

• SDRAM_MEM_BUS_WIDTH: configures the bus width of the external SDRAM and the
configuration is as following:

SDRAM_MEM_BUS_WIDTH= FMC_SDRAM_MEM_BUS_WIDTH_X, where X= 8, 16
or 32.

Typical application AN4667

24/56 DocID027643 Rev 4

• SDRAM_ADDRESS_SWAPPED: if defined in the configuration project, the SDRAM
address is remapped from 0xC000 0000 to 0x6000 0000. Remapping SDRAM, allows
to relocate it in a cacheable region.

• DATA_IN_QSPI: if defined in the configuration project, the Quad-SPI Flash memory is
configured to be used for the read-only data storage or for code execution.

• QSPI_CLK_PRESCALER: defines the Quad-SPI clock prescaler and the configuration
is as following:

QSPI_CLK_PRESCALER=X, where X = 0 to 255.

• QSPI_DDRMODE: if defined in the configuration project, the Quad-SPI is configured in
DDR mode.

• QSPI_INSRUCTION_1_LINE, QSPI_INSRUCTION_4_LINES: the first flag is to
configure the Quad-SPI Flash instruction to one line, while the second configures the
instruction to four lines. If no flag is present, the Quad-SPI will be configured to one line
instruction. These flags are not available for the STM32F723E-DISCO board.

• QSPI_XIP_MODE: if defined in the configuration project, the Quad-SPI is configured in
XIP mode, that is, only the instruction is sent first. Note that XIP mode has no effect on
the performance when the cache is enabled.

PRINTF_LCD, PRINTF_UART, PRINTF_VIEWER: these flags are used to display the
results of the demonstration, respectively, on LCD, through hyperterminal (115200,
7 bits, parity odd, one stop bit, no HW flow control) or on IDE printf viewer.
For the STM32F723E-DISCO board, only PRINTF_UART and PRINTF_VIEWER
should be used. For more details on how to use the different mode of display, refer to
readme file that belongs to the correspondent project in the X-CUBE-32F7PERF
embedded software package.

The user can create new code execution/data storage location configurations based on
these templates: by merging the adequate settings, by modifying the scatter files or linkers
and by setting the adequate Flash loader.

Note also, that for the MDK-ARM tool chain, in order to modify the RAM regions in the
scatter files, that is, the stack and heap regions, the user must modify accordingly the stack
and heap sizes in the ASM menu. The size of the region in the scatter file is not considered
as the real stack size of the main application. The user must modify the
STACK_SIZE_APPLICATION and HEAP_SIZE_APPLICATION flag values in order to force
their values in line with the heap/stack size regions configured in the scatter files.

Figure 10 shows where to modify these flags (framed in blue). There is also an initial stack
pointer that is used when external memories are used for data storage. Its size is 1 Kbyte
and can be modified by Stack_Size_Init variable in startup_stm32f723xx.s,
startup_stm32f756xx.s and startup_stm32f769xx.s start-up files. The initial stack pointer
base address is configurable in the ASM menu as shown in Figure 10 framed in pink.

Figure 10. MDK ARM heap and stack configurations

The scatter files of different configurations are located under MDK-ARM\scatter_files path in
the project of the demonstration.

DocID027643 Rev 4 25/56

AN4667 Typical application

55

For the IAR (EWARM) toolchain, the linkers are located under EWARM\icf_files.

For the System Workbench toolchain, the linkers are located under SW4STM32\<project
folder configuration>.

Note also that in the project template, the interrupts are executable from the internal Flash
memory: only the system tick timer interrupt is used.

In case of the STM32F769I EVAL board, the project does not contain the environment for
dual bank configuration. However, the user can use the same project in single bank but he
must follow the two following steps:

1. Configure the Flash memory in dual bank using ST-Link utility (v3.8.0 or later). See
Figure 11.

Un-check the nDBANK box to set the Flash memory in dual bank mode.

Figure 11. ST-Link utility settings for dual bank configuration

Typical application AN4667

26/56 DocID027643 Rev 4

2. Set the Flash loader dual bank in the toolchain. See Figure 12.

If the user uses the Flash-TCM, the Flash loader (framed in pink) must be selected. In
case of a Flash-AXI usage the Flash loader (framed in blue) must be selected as
shown in Figure 12.

Figure 12. Flash loader settings in dual bank mode

Note: The user can get back to the single bank configuration by restoring ST-Link/Flash loader
older configurations.

2.3 Project configuration of the CPU memory access with
DMA activation demonstration

The DMA activation demonstration is provided with the Keil MDK-ARM, IAR Embedded
Workbench, and System Workbench for STM32 toolchains. The project configurations are
based on the same template described previously in Section 2.2. The project has three
configurations:

1. FlashITCM_rwRAM-DTCM

2. FlashITCM_rwSRAM1

3. FlashAXI_rwRAM-DTCM

The DMA activation demonstration uses the same configurations than the CPU memory
access demonstration with the following differences:

– The SDRAM access is used for all the configurations for DMA transfers.

– The CPU frequency used is 200 MHz instead of 216 MHz for SDRAM access.

– The scatter files are modified to separate the execution/data memories used by
the FFT process and the other modules of the demonstration in order to avoid
indeterminism inducted by the linker that impacts the results.

– The data cache is enabled for all projects.

DocID027643 Rev 4 27/56

AN4667 Typical application

55

The same FFT demonstration already used for the CPU memory access performance
(stm32f7_performances) is used for the DMA activation demonstration performance
(stm32f7_performances_DMAs).

Only the FFT computation part is kept, the magnitude calculation part has been removed in
order to allocate more RAM for DMA transfers.

Two masters are used in the demonstration to perform the transfers: the two general
purpose DMAs: DMA1 and DMA2. The DMA2 is configured to perform memory to memory
transfers, while the DMA1 is used to perform memory to SPI3 and SPI3 to memory
transfers. The memory source and destination are configurable for each DMA separately.
The configuration is done in main.h file, which contains all the needed definition to perform
DMA1/2 transfers.

To activate the DMA1/SPI3 transfer, the SPI3_MOSI (PC12) must be connected to the
SPI3_MISO (PC11). The microSD card must be removed from its slot in case of the
STM32F7xxxx-EVAL boards usage.

There are three steps to get a result for a given scenario:

– Step 1: configure the different DMA(s) parameters in main.h

– Step 2: check mode: check the configuration and the DMA(s) transfer(s)

– Step 3: result mode: get the results in term of cycles number

2.3.1 Step 1: configure the different DMA parameters

There are basically four parameters for each master to be configured:

– Enable/disable of the DMA transfer

– The DMA source address configuration

– The DMA destination address configuration

– The DMA transfer size configuration

Enable/disable of the DMA transfer:

To enable or disable a DMA the define “#define USE_DMAX” has to be settled to 1 or 0 to
respectively enable or disable DMAX. Where X = 1 or 2.

The user can enable each DMA separately or enable them together by setting the defines
USE_DMA1 and USE_DMA2 to 1.

The DMA source and destination address configurations:

The memory source and destination addresses should be configured by the following
defines:

For the DMA1:

#define DMAX_SRC_ADDRESS: the start address of the memory source

#define DMAX_DST_ADDRESS: the start address of the memory destination

The DMA1 transfers the data from memory source to memory destination through SPI3
(memory source -> DMA1_Stream5 -> SPI3_TX -> SPI3_RX -> DMA1_Stream0 -> memory
destination).

The DMA2 transfers data directly from memory A to memory B.

Typical application AN4667

28/56 DocID027643 Rev 4

The DMAX_SRC_ADDRESS and DMAX_DST_ADDRESS possible values:

– FLASHAXI_DMA_START_ADDRESS

– FLASHTCM_DMA_START_ADDRESS

– DTCMRAM_DMA_START_ADDRESS

– SRAM1_DMA_START_ADDRESS

– SRAM2_DMA_START_ADDRESS

– SDRAM_DMA_START_ADDRESS(b)

Do not modify these defines provided in dma_utilities.h file, which are in line with the
mapping configured in the scatter files.

The DMA transfer size configuration:

The DMAX transfer size must be configured by the following define:

#define DMAX_TRANSFER_SIZE: the transfer size in byte

The transfer size must be the smallest value between the available size of the DMA memory
source and the available size of the DMA memory destination. The macro MIN(a,b) is
provided for this purpose. This to prevent any DMA to access to an invalid memory zone.

The DMAX_TRANSFER_SIZE possible values:

– DTCMRAM_DMA_AVAILABLE_SIZE

– SRAM1_DMA_AVAILABLE_SIZE

– SRAM2_DMA_AVAILABLE_SIZE

– SDRAM_DMA_AVAILABLE_SIZE(b)

– FLASHAXI_DMA_AVAILABLE_SIZE

– FLASHTCM_DMA_AVAILABLE_SIZE

Example of the DMA2 transfer size configuration where the SRAM1 is the source and the
DTCMRAM is the destination:

#define DMA2_TRANSFER_SIZE MIN(SRAM1_DMA_AVAILABLE_SIZE,
DTCMRAM_DMA_AVAILABLE_SIZE)

If the minimum size is greater than 64 Kbytes the transfer size is forced to 64 Kbytes.

When the user runs DMAX with concurrency with the CPU on memory A, he must split the
memory as shown in Figure 13. The figure shows how to partition a memory A (for example
the SRAM1) in case of concurrency between two and three masters in the software. The
partitioning at the top of the figure shows the memory A shared between the CPU and the
DMA2. The partitioning at the bottom of the figure shows the memory A shared between
three masters: CPU, DMA1 and DMA2. This partitioning allows each DMA to complete its
transfer after the FFT process to ensure that concurrency is guaranteed during all the FFT
process. The RAM size reserved for the FFT is 9216 bytes in the scatter file (for CPU
access).

b. Not available for the STM32F723E-DICO board.

DocID027643 Rev 4 29/56

AN4667 Typical application

55

Figure 13. How to split a memory A in case of concurrency between all the masters

Two examples below to show how to configure the DMA1 and the DMA2 in two scenarios
(see Section 3.2: CPU memory access performance with DMA usage on page 38):

Configuration 2 /scenario 3:

/* DMA2 */

#define DMA2_SRC_ADDRESS DTCMRAM_DMA_START_ADDRESS

#define DMA2_DST_ADDRESS SRAM1_DMA_START_ADDRESS

#defineDMA2_TRANSFER_SIZE MIN (DTCMRAM _REMAINING_SIZE,
SRAM1_REMAINING_SIZE)

Configuration 1 /scenario 4:

/* DMA2 */

#define DMA2_SRC_ADDRESS SRAM1_DMA_START_ADDRESS

#define DMA2_DST_ADDRESS DTCMRAM_DMA_START_ADDRESS

#defineDMA2_TRANSFER_SIZE MIN (SRAM1_REMAINING_SIZE,
(DTCMRAM_REMAINING_SIZE*6/7))

/* DMA1 */

#define DMA1SPI_SRC_ADDRESS SRAM2_DMA_START_ADDRESS

#define DMA1SPI_DST_ADDRESS (DTCMRAM_DMA_START_ADDRESS +
(DTCMRAM_REMAINING_SIZE*6/7))

#define DMA1SPI_TRANSFER_SIZE MIN (SRAM2_REMAINING_SIZE,
(DTCMRAM_REMAINING_SIZE/7))

Typical application AN4667

30/56 DocID027643 Rev 4

2.3.2 Step 2: check the configuration and the DMA transfer(s)

After the configuration of the different parameters of the DMAs, the user must check this
configuration and the DMA transfer(s) before getting the results by running the example in
“check mode”.

The check is done for two purposes:

– The DMA transfer integrity of data is correct.

– The DMA transfer is completed after the FFT process to ensure that during all the
FFT process the DMA still stresses the bus matrix.

– No hard fault has occurred (the LCD (or the Hyperterminal) displays all the
configurations and there is at least a LED lit).

If any of the above conditions is not matched, the result is not consistent and the user has to
modify the DMA configuration(s).

To run any scenario in “check mode”, the following define should be set to 1:

#define CHECK_TRANSFER 1

Then compile the example and run it.

If the three check conditions are met, the LCD (or the Hyperterminal) displays the current
configuration and the green LED is lit. In this case, the chosen scenario is ready for Step 3
to get the results.

If the red LED is lit, there is at least one DMA transfer that has not been performed properly.
The error message is displayed on the LCD (or on the Hyperterminal) showing which DMA
has the error and the offset of the wrong data. At this stage the user has to verify the
memory address ranges used by the DMA(s) and recompile the example in order to have
only the green LED ON before to proceed to the step 3. In the case of the SPI1 transfer,
check the SPI3_MOSI/SPI3_MISO connection.

If the red LED is blinking, the data transfers integrity is correct but there is at least one DMA
transfer that is completed before the FFT transfer completion. An error message is
displayed that provides which DMA has the issue. At this stage the user has to increase the
transfer size of this DMA.

If a hard fault occurred, or the application crushed, this indicates that a DMA overwrote data
used by the application including the stack. The user must be careful on the address
choices accessed by the DMA mainly when the CPU, the DMA1 and the DMA2 access the
same memory to reproduce the concurrency presented in Figure 7.

2.3.3 Step 3: get the results

If only the green LED is lit and the configuration is displayed on the LCD, the result will be
consistent and ready to be got for the current scenario.

At this stage, the user can recompile the example in “result mode” (CHECK_TRANSFER =
0), load it and run it. The LCD (or the hyperterminal in case of the STM32F723E-DISCO
board) displays the current configuration as well as the cycles number at the bottom of the
display.

DocID027643 Rev 4 31/56

AN4667 Results and analysis

55

3 Results and analysis

3.1 CPU memory access performance

This section explains each feature activation following the configuration used and presents
the obtained results in term of number of cycles consumed by the FFT process.

For the STM32F74xxx and STM32F75xxx devices, the results are obtained with the KEIL
MDK-ARM v5.14.0 tool chain, the STM32F7xx pack version 1.1.0 and the Cube firmware
version 1.0.0.

For the STM32F76xxx and STM32F77xxx devices, the results are obtained with the KEIL
MDK-ARM v5.17.0 tool chain, the STM32F7xx pack version 2.6.0 and the Cube firmware
version 1.4.0.

For the STM32F72xxx and STM32F73xxx devices, the results are obtained with the KEIL
MDK-ARM v5.21.1 tool chain, the STM32F7xx pack version 2.9.0 and the Cube firmware
version 1.6.0.

The MDK-ARM code optimization configuration is level 3 (optimize for time).

For all the configurations that have the code execution from the Flash-ITCM, the ART
accelerator and the ART-prefetch are enabled since the instructions and/or read-only data
(constant variables) flow through the ITCM (path 1 in Figure 2). This is the case of the
following configurations:

– “1-FlashITCM_rwRAM-DTCM”

– “2-FlashITCM_rwSRAM1”

– "6_2-QuadSPI_rwRAM-DTCM"(c)

– "8-FlashAXI-ROFTCM_rwSRAM1"(c)(d)

For all the configurations that have the code execution from the Flash-AXI (AXI/AHB), the
instruction cache is enabled since the instructions flow through the path 2 in Figure 2. In this
configuration, the read-only data (constant variables) flow also through the path 2 (same
figure) that is why the data cache is also enabled. This is the case of the following
configurations:

– “3-FlashAXI_rwRAM-DTCM”

– “4-FlashAXI_rwSRAM1”

In the case of “5-RamITCM_rwRAM-DTCM” configuration, nothing is enabled since the
code and data are located in the ITCM-RAM and the DTCM-RAM respectively.

In the case of “6-Quad SPI_rwRAM-DTCM” configuration, two cases are present to show
the difference of the performance between:

– Locating the read-only data in the Quad-SPI Flash memory, that is, the same
location as the instruction (case 1).

– Locating the read-only data in a memory other than the Quad-SPI Flash memory,
it will be in the Flash-ITCM (case 2).

c. Only the read-only data flow through the ITCM bus.

d. Available only for the STM32F723E-DISCO board.

Results and analysis AN4667

32/56 DocID027643 Rev 4

For the "6_1-QuadSPI_rwRAM-DTCM" configuration, since the instruction and data are
located in the Quad-SPI Flash memory for case 1, only the I-cache and D-cache are
enabled.

For the "6_2-QuadSPI_rwRAM-DTCM" configuration, since the read-only data are located
in the Flash-ITCM, the ART and the ART-prefetch are enabled and the D-cache is OFF. For
the two Quad-SPI cases, the read/write data are located in the DTCM-RAM.

For all the configurations that have the access to the DTCM-RAM as the data storage
memory (path 5 in Figure 3), they do not have any specific feature to activate since the core
is coupled directly to this RAM with 0-wait state access.

For all the configurations that have the access to the SRAM1 as the data storage memory
(path 7 in Figure 3), the data cache is enabled. This is the case for the following
configurations:

– “2-FlashITCM_rwSRAM1”

– “4-FlashAXI_rwSRAM1”

– "8-FlashAXI-ROFTCM_rwSRAM1"(d)

If the application has the access to the external memory through the FMC for the data
storage data memory and/or the code execution (path 9 in Figure 4), the data and/or the
instruction caches are enabled. This is the case for the following configuration:

– “7-ExtSDRAM-Swapped_rwDTCM”(e)

– "7-ExtPSRAM_rwDTCM"(f)

Note: For the “7-ExtSDRAM-Swapped_rwDTCM” configuration, the SDRAM has been swapped
(remapped from 0xC000 0000 to 0x6000 0000 in order to allow the cache usage) since the
default MPU attribute region starting from 0xA000 0000 to 0xDFFF FFFF is not cacheable
as it is a Device memory type region.

Results

The results are obtained with the STM32F723E-DISCO, STM32756G-EVAL and
STM32769I-EVAL boards. The CPU running at 216 MHz, VDD=3.3 V and with 7-wait state
access to the internal Flash memory.

e. Available only for the STM32F7xxx-EVAL boards.

f. Available only for the STM32F723E-DISCO board.

DocID027643 Rev 4 33/56

AN4667 Results and analysis

55

Table 7, Table 8 and Table 9 show the obtained results for the FFT demonstration for MDK-
ARM in each configuration for the STM32F74xxx/STM32F75xxx, the
STM32F72xxx/STM32F73xxx and the STM32F76xxx/STM32F77xxx devices respectively:

Table 7. MDK-ARM results for the STM32F74xxx and STM32F75xxx devices

Feature configuration Memory location configuration
CPU cycle
number(1)

1. The cycles number values may change from a version to another of the tool chain.

ART + ART-PF ON 1-FlashITCM_rwRAM-DTCM 118577

ART + ART-PF + D-cache ON 2-FlashITCM_rwSRAM1 135296

I-cache + D-cache ON 3-FlashAXI_rwRAM-DTCM 118653

I-cache + D-cache ON 4-FlashAXI_rwSRAM1 145917

- 5-RAMITCM_rwRAM-DTCM 112428

I-cache + D-cache ON

(Const data in Quad-SPI)
6_1-QuadSPI_rwRAM-DTCM 176441

I-cache + ART + ART-PF ON

(Const data in Flash TCM)
6_2-QuadSPI_rwRAM-DTCM 126900

I-cache + D-cache ON

(Const data in SDRAM)
7-ExtSDRAM-Swapped_rwDTCM(2)

2. HCLK is running at 200 MHz.

128398

Table 8. MDK-ARM results for the STM32F72xxx and STM32F73xxx devices

Feature configuration Memory location configuration
CPU cycle
number(1)

1. The cycles number values may change from a version to another of the tool chain.

ART + ART-PF ON 1-FlashITCM_rwRAM-DTCM 123192

ART + ART-PF + D-cache ON 2-FlashITCM_rwSRAM1 120615

I-cache + D-cache ON 3-FlashAXI_rwRAM-DTCM 109667

I-cache + D-cache ON 4-FlashAXI_rwSRAM1 122785

- 5-RAMITCM_rwRAM-DTCM 106030

I-cache + D-cache ON

(Const data in Quad-SPI)
6_1-QuadSPI_rwRAM-DTCM 149442

I-cache + ART + ART-PF ON

(Const data in Flash TCM)
6_2-QuadSPI_rwRAM-DTCM 121630

I-cache + D-cache ON

(Const data in PSRAM)
7-ExtPSRAM_rwDTCM 188340

I-cache + D-cache ON + ART +
ART-PF ON

(Const data in Flash TCM)
8-FlashAXI-ROFTCM_rwSRAM1 115437

Results and analysis AN4667

34/56 DocID027643 Rev 4

In Table 10 the configurations 5, 6_1, 6_2 and 7 are removed since they do not depend on
the internal Flash memory. They have the same performance as the single bank
configuration.

The charts in Figure 14, Figure 15 and Figure 16, show the relative ratio of each
configuration versus the configuration 5 that has the best results for the
STM32F74xxx/STM32F75xxx, STM32F72xxx/STM32F73xxx and
STM32F76xxx/STM32F77xxx devices respectively.

Relative ratio = cycles_number_config_X / cycles_number_config_5

The relative ratio calculation allows to compare the performance versus the best
performance (5-RamITCM_rwRAM-DTCM) and to compare a configuration with another
one.

Table 9. MDK-ARM results for the STM32F76xxx and STM32F77xxx devices (single
bank/single precision FPU)

Feature configuration Memory location configuration
CPU cycle
number(1)

1. The cycles number values may change from a version to another of the tool chain.

ART + ART-PF ON 1-FlashITCM_rwRAM-DTCM 117059

ART + ART-PF + D-cache ON 2-FlashITCM_rwSRAM1 115004

I-cache + D-cache ON 3-FlashAXI_rwRAM-DTCM 108491

I-cache + D-cache ON 4-FlashAXI_rwSRAM1 112372

- 5-RAMITCM_rwRAM-DTCM 106275

I-cache + D-cache ON

(Const data in Quad-SPI)
6_1-QuadSPI_rwRAM-DTCM 142177

I-cache + ART + ART-PF ON

(Const data in Flash TCM)
6_2-QuadSPI_rwRAM-DTCM 120315

I-cache + D-cache ON

(Const data in SDRAM)
7-ExtSDRAM-Swapped_rwDTCM(2)

2. HCLK is running at 200 MHz.

117744

Table 10. MDK-ARM results for the STM32F76xxx and STM32F77xxx devices (dual
bank/single precision FPU)

Feature configuration Memory location configuration
CPU cycle
number(1)

1. The cycles number values may change from a version to another of the tool chain.

ART + ART-PF ON 1-FlashITCM_rwRAM-DTCM 123237

ART + ART-PF + D-cache ON 2-FlashITCM_rwSRAM1 119645

I-cache + D-cache ON 3-FlashAXI_rwRAM-DTCM 109209

I-cache + D-cache ON 4-FlashAXI_rwSRAM1 112844

DocID027643 Rev 4 35/56

AN4667 Results and analysis

55

Figure 14. STM32F74xxx and STM32F75xxx FFT relative ratio cycle number with
MDK-ARM

Figure 15. STM32F72xxx and STM32F73xxx FFT relative ratio cycle number with
MDK-ARM

Results and analysis AN4667

36/56 DocID027643 Rev 4

Figure 16. STM32F76xxx and STM32F77xxx FFT relative ratio cycle number with
MDK-ARM

Analysis

STM32F74xxx and STM32F75xxx devices:

If the user fixes the data memory location into the DTCM-RAM and varies the code
execution memory location, the relative ratios demonstrate that whether the code is
executed from the Flash-ITCM or the Flash-AXI, the performance is almost the same if the
ART or the instruction cache are respectively enabled.

This is the case for the configurations:

– “1-FlashITCM_rwRAM-DTCM”

– “3-FlashAXI_rwRAM-DTCM”

If the user fixes the execution memory location into the Flash-ITCM or the Flash-AXI and
varies the R/W data memory location, the respective ratios show that no matter which
internal RAM is used for the data storage, the results are almost the same since the R/W
data cache is enabled for RAMs connected to the AXI/AHB.

This is the case for the couple of configurations:

– “1-FlashITCM_rwRAM-DTCM” and “2-FlashITCM_rwSRAM1”

– “3-FlashAXI_rwRAM-DTCM” and “4-FlashAXI_rwSRAM1”

If the ratio of the “7-ExtSDRAM_Swapped_rwDTCM” configuration is compared to the “1-
FlashITCM_rwRAM-DTCM” or “3-FlashAXI_rwRAM-DTCM” configurations, the results are
close since the cache is enabled for this configuration. Thus, the code execution or the data
storage from the external memory does not impact the performance.

Note that the case of the “5-RamITCM_rwRAM-DTCM” configuration has the best
performance (the lowest cycle number). It is due to the fact that there is no contention on the
ITCM and the DTCM buses and there is no cache maintenance performed (if no cache
usage compared to the cache usage). Also, there is no concurrent access of the CPU to the
DTCM-RAM with other masters in the provided FFT example.

DocID027643 Rev 4 37/56

AN4667 Results and analysis

55

If the two ratios of the case 1 and case 2 of the “6-Quad SPI_rwRAM-DTCM” configuration
(case X) are compared, note that there is a significant difference in term of a performance
since the demonstration uses a huge constant data.

For the case 1 (6_1-Quad SPI_rwRAM-DTCM), since the read-only data and the
instructions are located in the Quad-SPI Flash memory, a latency occurs due to the
concurrency access of the instruction fetch and the read-only data loaded on the bus matrix.

For the case 2 (6_2-Quad SPI_rwRAM-DTCM), the read-only data and code are separated.
The read-only data are located in the Flash-TCM, therefore, the concurrency of the read-
only data and the instruction fetch is avoided and the CPU can fetch the instruction from AXI
and the data loaded from TCM at the same time. That is why the performance of the second
case is clearly better than the first one.

STM32F76xxx and STM32F77xxx devices:

For these devices the analysis is almost the same as for the STM32F74xxx and
STM32F75xxx devices except in case when the cache is used.

If the configuration 5 of Table 7 and the configuration 5 of Table 9 are compared, one can
notice that the performance is increased of about 5% for the STM32F76xxx and
STM32F77xxx devices versus the STM32F74xxx/ STM32F75xxx devices. This is possible
thanks to some enhancements that have been done in the FPU of the Cortex-M7 version,
which is embedded in the STM32F76xxx and STM32F77xxx devices.

Thanks to the cache size of the STM32F76xxx and STM32F77xxx devices, the performance
is increased in all the cases using the cache, SRAMx, and AXI path.

For example the configurations 3 and 4 lead the first place ranking versus the
STM32F74xxx and STM32F75xxx devices thanks to the increase of the cache size from
4 Kbytes to 16 Kbytes.

In the case of the Quad-SPI and more precisely in the configuration 6_2, the performance is
increased of about 19.5% versus the STM32F74xxx and STM32F75xxx devices including
the performance increase thanks to the FPU enhancement.

In the case of external memories such as the SDRAM, the performance is also increased of
about 10% versus the STM32F74xxx and STM32F75xxx devices thanks to the cache size
increase and including the performance increase thanks to the FPU enhancement.

In the case of a dual bank usage and even if the Flash memory interface width is decreased
from 256-bit down to 128-bit, the performance is similar to or better than the STM32F74xxx
and STM32F75xxx device performance for some cases when the Flash memory is
accessed through the AXI/AHB and the cache is enabled.

Table 11. Single bank versus dual bank performance comparison

Project Configuration
Single bank mode

(CPU cycle number)

Dual bank mode

(CPU cycle number)
Decrease dual bank
vs Single bank (%)

1-FlashITCM_rwRAM-DTCM 117059 123237 5.28

2-FlashITCM_rwSRAM1 115004 119645 4.04

3-FlashAXI_rwRAM-DTCM 108491 109209 0.66

4-FlashAXI_rwSRAM1 112372 112844 0.42

Results and analysis AN4667

38/56 DocID027643 Rev 4

Table 11 shows that in case of a Flash memory access through the AXI/AHB, the
performance is the same either in single or dual bank mode. If the Flash memory access is
done through the TCM, the performance is decreased of about 5% with the current
algorithm.

STM32F72xxx and STM32F73xxx devices:

Based on Table 8, the STM32F72xxx and STM32F73xxx results remain almost the same as
for the other devices in the STM32F7 Series except for the Flash-TCM accesses. The
STM32F72xxx and STM32F73xxx devices have smaller Flash memory width of 128-bit than
the other devices in the STM32F7 Series but have the same ART accelerator of 64 lines.

Compared to the other STM32F7 Series devices, the STM32F72xxx and STM32F73xxx
performance is decreased when the Flash memory is accessed in read through the TCM
interface. They have the same performance as the STM32F76xxx/STM32F77xxx devices in
dual bank mode.

By accessing the Flash memory through the AXI interface, the performance increases
versus the Flash-ITCM access. In that case, the cache effect compensates the Flash
memory width decrease. See the “1-FlashITCM_rwRAM-DTCM” and “3-FlashAXI_rwRAM-
DTCM” configuration results in Table 8.

The access performance to the TCM-RAMs remains the same as for the other devices since
there is no difference when accessing these RAMs in term of architecture.

For the PSRAM results, compared to the SDRAM results got with other STM32F7 Series
devices the performance is decreased because the PSRAM available on the STM32F723-
DISCO board has slow timings and has a 16-bit data access.

The “8-FlashAXI-ROFTCM_rwSRAM1” configuration shows a higher performance than the
“4-FlashAXI_rwSRAM1” configuration by separating the read-only data and instructions. In
the configuration 8 the read-only data are accessed through the Flash-ITCM and the
instructions are fetched through the Flash-AXI while in the configuration 4 the read-only
data and the instructions are fetched on the same bus interface which is the AXI.

3.2 CPU memory access performance with DMA usage

This section treats the performance where one or more masters are activated.

For the STM32F74xxx and STM32F75xxx devices, the results are obtained with the KEIL
MDK-ARM v5.16.0 tool chain, the STM32F7xx pack version 2.2.0 and the cube firmware
version 1.0.0.

For The STM32F76xxx and STM32F77xxx devices, the results are obtained with the KEIL
MDK-ARM v5.17.0 tool chain, the STM32F7xx pack version 2.6.0 and the cube firmware
version 1.4.0.

For the STM32F72xxx and STM32F73xxx devices, the results are obtained with the KEIL
MDK-ARM v5.21.1 tool chain, the STM32F7xx pack version 2.9.0 and the Cube firmware
version 1.6.0.

The MDK-ARM code optimization configuration is level 3: optimize for time.

DocID027643 Rev 4 39/56

AN4667 Results and analysis

55

Results

(Table 12, Table 13, Table 14), (Table 15, Table 16, Table 17) and (Table 18, Table 19,
Table 20) summarize the number of cycles consumed by the FFT process in different
scenarios, for the STM32F74xxx/STM32F75xxx, STM32F72xxx/STM32F73xxx and
STM32F76xxx/STM32F77xxx devices respectively, and the performance decrease in
percent in case where one or more masters access to the same memory as the CPU.

The results are obtained with the STM32F723E-DISCO, STM32756G-EVAL and
STM32769I-EVAL boards, the CPU running at 200 MHz (to allow the SDRAM access
@100 MHz), VDD=3.3 V and with 6-wait state access to the internal Flash memory. The
estimated error of measurement is 0.4% due to some alignments of data and instructions in
the Flash memory, and in the cache.

The conditions of the results:

– The DMA1 and the DMA2 access priority level has been configured to the high
priority and the data size is a byte.

– The SPI3 baudrate is 25 Mbit/s.

– The CM7_AHBSCR register is kept at its reset value.

STM32F74xxx and STM32F75xxx devices:

Table 12. Configuration 1: execution from the Flash-ITCM / FFT CPU data storage in
the DTCM-RAM

Scenario Master Source Destination
FFT cycles

number
Decrease (%)

1
DMA2 - -

69247 -
DMA1_SPI3 - -

2
DMA2 SDRAM SRAM1

69247 0
DMA1_SPI3 - -

3
DMA2 SRAM1 DTCM-RAM(1)

1. Memories with a concurrency on write access between CPU and DMA(s).

70929 2.43
DMA1_SPI3 - -

4
DMA2 SRAM1

DTCM-RAM(1) 71275 2.93
DMA1_SPI3 SRAM2

5
DMA2 SDRAM

DTCM-RAM(1) 70830 2.29
DMA1_SPI3 SRAM2

6
DMA2 DTCM-RAM(2)

2. Memories with a concurrency on read access between CPU and DMA(s).

SRAM1
70140 1.29

DMA1_SPI3 - -

7
DMA2 Flash-AXI(2) SRAM1

69596 0.50
DMA1_SPI3 - -

Results and analysis AN4667

40/56 DocID027643 Rev 4

STM32F72xxx and STM32F73xxx devices

Table 13. Configuration 2: execution from the Flash-ITCM / FFT CPU data storage in
the SRAM1

Scenario Master Source Destination
FFT cycles

number
Decrease (%)

1
DMA2 - -

79925 -
DMA1_SPI3 - -

2
DMA2 SDRAM SRAM2

79925 0
DMA1_SPI3 - -

3
DMA2 DTCM-RAM SRAM1(1)

1. Memories with a concurrency on write access between CPU and DMA(s).

81720 2.25
DMA1_SPI3 - -

4
DMA2 DTCM-RAM

SRAM1(1) 81828 2.38
DMA1_SPI3 SRAM2

5
DMA2 SDRAM

SRAM1(1) 81674 2.19
DMA1_SPI3 SRAM2

6
DMA2 SRAM1(2)

2. Memories with a concurrency on read access between CPU and DMA(s).

DTCM-RAM
81410 1.86

DMA1_SPI3 - -

Table 14. Configuration 3: execution from the Flash-AXI / FFT CPU data storage in the
DTCM-RAM

Scenario Master Source Destination
FFT cycles

number
Degradation

(%)

1
DMA2 - -

68206 -
DMA1_SPI3 - -

2
DMA2 Flash-AXI(1)

1. Memories with a concurrency on read access between CPU and DMA(s).

SRAM1
68865 0.97

DMA1_SPI3 - -

Table 15. Configuration 1: execution from the Flash-ITCM / FFT CPU data storage in
the DTCM-RAM

Scenario Master Source Destination
FFT cycles

number
Decrease (%)

1
DMA2 - -

73406 -
DMA1_SPI3 - -

2
DMA2 SRAM1 DTCM-RAM(1)

74568 1.58
DMA1_SPI3 - -

DocID027643 Rev 4 41/56

AN4667 Results and analysis

55

3
DMA2 SRAM1

DTCM-RAM(1) 74788 1.88
DMA1_SPI3 SRAM2

4
DMA2 DTCM-RAM(2) SRAM1

74321 1.25
DMA1_SPI3 - -

5
DMA2 Flash-AXI(2) SRAM1

74214 1.10
DMA1_SPI3 - -

1. Memories with a concurrency on write access between CPU and DMA(s).

2. Memories with a concurrency on read access between CPU and DMA(s).

Table 16. Configuration 2: execution from the Flash-ITCM / FFT CPU data storage in
the SRAM1

Scenario Master Source Destination
FFT cycles

number
Decrease (%)

1
DMA2 - -

78416 -
DMA1_SPI3 - -

2
DMA2 DTCM-RAM SRAM1(1)

1. Memories with a concurrency on write access between CPU and DMA(s).

79129 0.91
DMA1_SPI3 - -

3
DMA2 DTCM-RAM

SRAM1(1) 79145 0.93
DMA1_SPI3 SRAM2

4
DMA2 SRAM1(2)

2. Memories with a concurrency on read access between CPU and DMA(s).

DTCM-RAM
79115 0.89

DMA1_SPI3 - -

Table 17. Configuration 3: execution from the Flash-AXI / FFT CPU data storage in the
DTCM-RAM

Scenario Master Source Destination
FFT cycles

number
Degradation

(%)

1
DMA2 - -

66374 -
DMA1_SPI3 - -

2
DMA2 Flash-AXI(1)

1. Memories with a concurrency on read access between CPU and DMA(s).

SRAM1
66982 0.92

DMA1_SPI3 - -

Table 15. Configuration 1: execution from the Flash-ITCM / FFT CPU data storage in
the DTCM-RAM (continued)

Scenario Master Source Destination
FFT cycles

number
Decrease (%)

Results and analysis AN4667

42/56 DocID027643 Rev 4

STM32F76xxx and STM32F77xxx devices:

Table 18. Configuration 1: execution from the Flash-ITCM / FFT CPU data storage in
the DTCM-RAM (single bank/single precision FPU)

Scenario Master Source Destination
FFT cycles

number
Decrease (%)

1
DMA2 - -

69250 -
DMA1_SPI3 - -

2
DMA2 SDRAM SRAM1

69250 0
DMA1_SPI3 - -

3
DMA2 SRAM1 DTCM-RAM(1)

1. Memories with a concurrency on write access between CPU and DMA(s).

70873 2.34
DMA1_SPI3 - -

4
DMA2 SRAM1

DTCM-RAM(1) 71191 2.80
DMA1_SPI3 SRAM2

5
DMA2 SDRAM

DTCM-RAM(1) 70825 2.27
DMA1_SPI3 SRAM2

6
DMA2 DTCM-RAM(2)

2. Memories with a concurrency on read access between CPU and DMA(s).

SRAM1
70150 1.30

DMA1_SPI3 - -

7
DMA2 Flash-AXI(2) SRAM1

69587 0.49
DMA1_SPI3 - -

Table 19. Configuration 2: execution from the Flash-ITCM / FFT CPU data storage in
the SRAM1 (single bank/single precision FPU)

Scenario Master Source Destination
FFT cycles

number
Decrease (%)

1
DMA2 - -

72648 -
DMA1_SPI3 - -

2
DMA2 SDRAM SRAM2

72648 0
DMA1_SPI3 - -

3
DMA2 DTCM-RAM SRAM1(1)

73071 0.58
DMA1_SPI3 - -

4
DMA2 DTCM-RAM

SRAM1(1) 73086 0.60
DMA1_SPI3 SRAM2

5
DMA2 SDRAM

SRAM1(1) 72964 0.43
DMA1_SPI3 SRAM2

6
DMA2 SRAM1(2) DTCM-RAM

73082 0.60
DMA1_SPI3 - -

DocID027643 Rev 4 43/56

AN4667 Results and analysis

55

Analysis

STM32F74xxx and STM32F75xxx devices:

1. If the CPU and one or more masters do not access the same memory, no contention is
present. The same result is obtained from scenario 1 and 2 for the configuration 1 and
2. Refer to the results given by:

 - Configuration 1/scenario 2 versus configuration 1/scenario 1.

 - Configuration 2/scenario 2 versus configuration 2/scenario 1.

2. When the CPU and one DMA access the same memory, a contention occurs since
there is an arbitration either on the bus matrix for memories connected to the bus
matrix including external memories (SRAM1, SRAM2, SDRAM, etc...) or to the CPU
side (Tightly-Coupled Unit interface: TCU unit) where the concurrency is performed at
the DTCM-RAM level. Refer to the results given by:

 - Configuration 1/scenario 1 versus configuration 1/scenario 3.

 - Configuration 2/scenario 1 versus configuration 2/scenario 3.

As shown by the results, the concurrency of the CPU and the DMA2 on write on the DTCM-
RAM is about 2.5% of the performance decrease.

1. Memories with a concurrency on write access between CPU and DMA(s).

2. Memories with a concurrency on read access between CPU and DMA(s).

Table 20. Configuration 3: execution from the Flash-AXI / FFT CPU data storage in
the DTCM-RAM (single bank/single precision FPU)

Scenario Master Source Destination
FFT cycles

number
Degradation

(%)

1
DMA2 - -

65897 -
DMA1_SPI3 - -

2
DMA2 Flash-AXI(1)

1. Memories with a concurrency on read access between CPU and DMA(s).

SRAM1
66155 0.39

DMA1_SPI3 - -

Table 21. Configuration 3: execution from the Flash-AXI / FFT CPU data storage in
the DTCM-RAM (dual bank/single precision FPU)

Scenario Master Source Destination
FFT cycles

number
Degradation

(%)

1
DMA2 - -

66370 -
DMA1_SPI3 - -

2
DMA2 Flash-AXI(1)

1. Memories with a concurrency on read access between CPU and DMA(s).

SRAM1
66960 0.89

DMA1_SPI3 - -

Results and analysis AN4667

44/56 DocID027643 Rev 4

In case of SRAM1/SRAM2, the CPU and DMA2 concurrency on write access is about 2.5%
of the performance decrease.

3. There is an increase of about 0.5 % of latency when additional master has a write
access to the same memory as the CPU. Refer to the results given by:

 - Configuration 1/scenario 3 versus configuration 1/scenario 4.

 - Configuration 2/scenario 3 versus configuration 1/scenario 4.

4. The contention effect on read on a given memory between the CPU and a DMA is less
than a contention effect on write access. Refer to the results given by:

 - Configuration 1/scenario 3 versus configuration 1/scenario 6.

 - Configuration 2/scenario 3 versus configuration 2/scenario 6.

As shown by the results, the concurrency of the CPU and the DMA2 on read access at the
DTCM-RAM level is between 1% and 2% of the performance decrease.

In case of SRAM1/SRAM2, the CPU and DMA2 concurrency on read access is between
1.5% and 2.5% of the performance decrease.

5. If the memory source is relatively slow, such as the SDRAM, the concurrency effect
decreases since there is some latency on this memory, which provides a bandwidth for
the CPU access to this memory on the bus matrix. Refer to the results given by:

 - Configuration 1/scenario 4 versus configuration 1/scenario 5.

 - Configuration 2/scenario 4 versus configuration 2/scenario 5.

In the configuration 1, the DTCM-RAM in scenario 4 is replaced by the SDRAM in
scenario 5. The same case applies for the configuration 2.

6. There is no significant contention when executing data from the Flash-AXI or the Flash-
ITCM and at the same time performing a transfer from the Flash memory to another
memory. This due to the fact that the access of the DMA to the Flash memory is slow
compared to the CPU access that uses the cache. The DMA access to the Flash
memory is cadenced by the number of wait states configured in the Flash memory
interface (in our case six wait states) while the instructions/data are fetched to the
cache at the CPU side or in the ART in the case of the Flash-ITCM access. This
configuration allows to cancel the latency effects. Refer to the results given by:

 - Configuration 1/scenario 7 versus configuration 3/scenario 2.

Since the DMA1 can perform transfers between memory and peripheral, the impact of the
concurrency on the memory between the CPU and the DMA1 depends on the speed of the
peripheral. The faster the peripheral is, the more visible the impact of the concurrency is.
For example if the SPI3 that has the maximum speed of 25 MHz is replaced by the SPI4
that has the maximum speed of 50 MHz, the latency will be more important since the data
transfer bandwidth is high. Nevertheless, the latency is still reasonable.

In summary, there is a very low performance decrease of about 3% due to the concurrency
between the CPU and the DMA in all the scenarios for all different memories access on read
or write (DTCM-RAM, SRAMx, external memory). The overall performance is not impacted
by the multi-master concurrency thanks to the smart system architecture and bus matrix.

DocID027643 Rev 4 45/56

AN4667 Results and analysis

55

STM32F76xxx and STM32F77xxx devices:

For the STM32F76xxx and STM32F77xxx devices the analysis is almost the same as for
the STM32F74xxx and STM32F75xxx devices except when the AXI/AHB is used for the
CPU access.

In Table 18 the performance is the same as that of the STM32F74xxx and STM32F75xxx
devices (see Table 12) because the devices are in the same architecture configuration.

But in Table 19 the performance decrease does not exceed 0.6%, since the access
concurrency to a memory between the CPU and one or more masters does not impact the
performance. This is possible thanks to the effect of the cache size increase of the
STM32F76xxx and STM32F77xxx devices.

In the case of the dual bank Flash configuration (see Table 21), and if the access
concurrency is done to the Flash memory, the performance decrease is the same as the
STM32F74xxx and STM32F75xxx devices. However in the case of the single bank Flash
configuration (see Table 20), the decrease of the performance is insignificant as if there was
no access concurrency.

STM32F72xxx and STM32F73xxx devices:

For the STM32F72xxx and STM32F73xxx devices, globally, the analysis remains the same
as for the other devices. The cache size has a direct impact on the performance when there
is an access concurrency on read or write from/to SRAM1 or SRAM2. Also, if there is a
concurrency in read on the Flash-AXI (see Table 17), and even if the Flash width is less than
the width of the other STM32F7 Series devices, the concurrency effects are still very low
thanks to the cache size that has been increased versus the STM32F74xxx and
STM32F75xxx devices.

So the more the cache size is, the fewer the contention effects on the memory are.

Performance ranking and comparison inside the STM32F7 Series devices AN4667

46/56 DocID027643 Rev 4

4 Performance ranking and comparison inside the
STM32F7 Series devices

This section provides a global positioning overview of a STM32F7xxxx device inside the
STM32F7 Series devices and how to select a STM32F7xxxx device to fit the application
needs in term of performance and cost.

4.1 Performance ranking inside the STM32F7 Series

The size of the cache is very important and has a direct impact on the performance: the
more cache size is, the faster the application is executed.

When the code is executed from the Flash-AXI and the data are located in SRAM1, the
performance from a device to another depends on the cache size. For example in the case
of the “3-FlashAXI_rwRAM-DTCM” and “4-FlashAXI_rwSRAM1” configurations:

– The STM32F76xxx and STM32F77xxx devices have the best performance since
they embed the largest cache size of 16 Kbytes,

– The STM32F74xxx and STM32F75xxx devices have the lowest performance
since they embed the lowest cache size of 4 Kbytes.

– The STM32F72xxx and STM32F73xxx devices have an intermediate performance
ranking because of the cache size of 8 Kbytes. With these devices by accessing
the Flash through the AXI bus, the cache size compensates the decrease of the
Flash width (128-bit) versus the 256-bit access to the Flash of the other devices.

The same ranking is obtained for the “6_1-QuadSPI_rwRAM-DTCM” configuration where
the code is executed from the Quad-SPI Flash.

The Flash memory width has also an impact on the performance especially when the
data/instruction are fetched from the TCM bus (Flash-ITCM). In the case of the “1-
FlashITCM_rwRAM-DTCM” configuration, the STM32F72xxx and STM32F73xxx devices
have the lowest performance due to their 128-bit access to the Flash memory compared to
the other STM32F7 Series devices with a 256-bit access.

Table 22 summarizes the results obtained for all the STM32F7 Series devices.

Table 22. Performance comparison between STM32F7 Series devices

Memory location configuration
STM32F74xxx/
STM32F75xxx

(1)

STM32F72xxx/
STM32F73xxx

(1)

STM32F76xxx/
STM32F77xxx
Single bank

(1)

STM32F76xxx/
STM32F77xxx

Dual bank
(1)

1-FlashITCM_rwRAM-DTCM 118577 123192 117059 123237

2-FlashITCM_rwSRAM1 135296 120615 115004 119645

3-FlashAXI_rwRAM-DTCM 118653 109667 108491 109209

4-FlashAXI_rwSRAM1 145917 122785 112372 112844

5-RAMITCM_rwRAM-DTCM 112428 106030 106275 -

6_1-QuadSPI_rwRAM-DTCM 176441 149442 142177 -

1. Expressed in cycle number.

DocID027643 Rev 4 47/56

AN4667 Performance ranking and comparison inside the STM32F7 Series devices

55

Performance ranking by STM32F7 device and by memory access using the
same algorithm

The ranking is presented from the highest to the lowest performance:

Flash-ITCM access (in read) + ART enabled:

1. STM32F76xxx and STM32F77xxx devices in single bank mode.

2. STM32F74xxx and STM32F75xxx devices.

3. STM32F72xxx and STM32F73xxx devices / STM32F76xxx and STM32F77xxx devices
in Dual bank mode.

Flash-AXI access (in read) + cache enabled:

1. STM32F76xxx and STM32F77xxx devices in Single bank mode.

2. STM32F76xxx and STM32F77xxx devices in Dual bank mode.

3. STM32F72xxx and STM32F73xxx devices / STM32F74xxx and STM32F75xxx
devices(g).

4. STM32F74xxx and STM32F75xxx devices(g).

SRAM1 and SRAM2 accesses + Cache enabled

1. STM32F76xxx and STM32F77xxx devices.

2. STM32F72xxx and STM32F73xxx devices.

3. STM32F74xxx and STM32F75xxx devices.

TCM-RAMs accesses:

All the devices have the same performance.

As stated before, there is an enhancement in the FPU of the cortex-M7 embedded in the
STM32F76xxx/STM32F77xxx devices and the STM32F72xxx/STM32F73xxx devices
versus the STM32F74xxx/STM32F75xxx devices, that explains the cycle number
differences with the FFT demonstration in the case of the “5-RamITCM_rwRAM-DTCM”
configuration (see Table 22).

External memories accesses + Cache enabled:

1. STM32F76xxx and STM32F77xxx devices.

2. STM32F72xxx and STM32F73xxx devices.

3. STM32F74xxx and STM32F75xxx devices.

g. The STM32F74xxx/STM32F75xxx devices and STM32F72xxx/STM32F73xxx devices can have the same
performance depending on the used algorithm.

Performance ranking and comparison inside the STM32F7 Series devices AN4667

48/56 DocID027643 Rev 4

4.2 Guideline to select an STM32F7 device

If the user looks for the best performance with the largest internal memories sizes, the
STM32F76xxx and STM32F77xxx devices are suitable for his application.

If the user looks for less performance, less internal memories sizes at least-cost, the choice
can be the STM32F72xxx, STM32F73xxx, STM32F74xxx or STM32F75xxx devices.

However, if the user targets graphical applications, with less performance than the
STM32F76xxx and STM32F77xxx devices, the STM32F74xxx and STM32F75xxx devices
are more suitable than the STM32F72xxx and STM32F73xxx devices which do not feature
the DMA2D and the LCD-TFT DMA.

For high-end graphical applications, the STM32F76xxx and STM32F77xxx devices are
more suitable than the STM32F74xxx and STM32F75xxx devices since they feature a DSI
interface that allows a high speed graphical data throughput.

If the application needs the Ethernet connectivity, the STM32F74xxx, STM32F75xxx,
STM32F76xxx and STM32F77xxx devices are suitable for the user application since the
STM32F72xxx and STM32F73xxx devices do not feature the Ethernet peripheral.

The STM32F7x3xx devices embed a USB OTG PHY high speed which is not available in all
the other STM32F7 Series devices.

DocID027643 Rev 4 49/56

AN4667 Software memory partitioning and tips

55

5 Software memory partitioning and tips

This section provides some tips on how to partition the code and the data in the STM32F7
memory to get the best compromise performance depending on the code and the data
sizes.

5.1 Software memory partitioning

As the CPU has a direct access to TCM memories with 64-bit wide and 0-wait state access,
the DTCM-RAM and the ITCM-RAM locations are the best locations for the read/write data
and the instruction fetch respectively.

Therefore, the ITCM-RAM (16 Kbytes) is reserved for a critical code with a deterministic
execution, such as interrupt handlers that cannot wait for cache misses and some critical
control loops targeting motor control applications.

The DTCM-RAM is reserved for the data storage operations with regular access and for a
critical real time data, such as stack and heap. In real time applications that use RTOS,
generally, heap is massively used. For example if the DTCM-RAM is 64 Kbytes and if that
size is enough for the application, the DTCM-RAM scattering (32 Kbytes for heap, 8 Kbytes
for stack and 24 Kbytes for global variables) would be relatively reasonable. In
foreground/background applications, heap is not almost used, the DTCM-RAM will be
scattered between stack and global variables.

When the code size of the user application fits into the internal Flash memory, the latter
would be the best execution region either:

– Through TCM (Flash-ITCM) by enabling the ART-accelerator or

– Through AXI/AHB by enabling the cache in order to reach 0-wait state at 216 MHz

Note that the execution from the Flash-ITCM/data in the DTCM-RAM and the Flash-
AXI/data in the DTCM-RAM have the same CoreMark score, which is 5 CoreMark/MHz.

The SRAM1 can be reserved for a graphic frame buffer in graphical applications using
QVGA TFTs in 16-bit mode that need a relatively huge graphic data and performance of
display, achieved by the LCD-TFT and the DMA2D DMAs.This memory can be used also for
the data storage operations when no more space is available in the DTCM-RAM. In that
case a region from the SRAM1, with the data cache enabled, can be reserved for global
variables to leave more space for critical data.

The SRAM2 can be reserved for peripherals such as Ethernet and USB to store data such
as buffers and descriptors. This memory can also be used for global variables.

When the application needs more memory and its code or data, or both, do not fit in the
internal memories, the external memories can be used to expand the memory size without a
loss of performance.

For example, an external NOR Flash memory up to 250 Mbytes of size connected through
the FMC, can contain the application instructions with the instruction cache enabled, while
the constant data are located in the internal Flash memory (by enabling the ART or the
cache). This is the case where huge constants are used in the application and to avoid a
concurrency access of instructions and data on the same path (path 9 in Figure 4) on the
bus matrix.

Software memory partitioning and tips AN4667

50/56 DocID027643 Rev 4

In case of a lack of internal RAMs, the data storage can be achieved on the external SRAM
or the SDRAM through the FMC interface and by enabling the data cache. These memories
can contain either frame buffers for graphical applications or for non-critical data. At the
same time, more priority is given for very critical data to be fitted in the DTCM-RAM.

The Quad-SPI Flash memory could be used either to store read-only data (relatively huge
image files or waves) or to keep almost the same level of performance as an internal Flash
memory access by enabling the data cache.

The Quad-SPI Flash memory can be used also to contain the application in the memory
mapped mode up to 256 Mbytes and at the same time to save several GPIOs in smaller
STM32F7 packages, compared to parallel Flash memories that have to be connected to the
FMC interface. In that case, when the CPU accesses regularly to read-only data, the latter
should be mapped in the internal Flash memory. If the application needs more size and
more execution performance the user can load his application in the Quad-SPI (load region)
and use an external SDRAM, where the application is copied and executed (execution
region).

5.2 Tips

In the case where the DMA accesses to the DTCM-RAM at the same time as the CPU, the
application speed can decrease if the CPU does not have the highest priority access. This
priority can be managed by software using the CM7_AHBSCR register in the critical code
section that loads/stores data in the DTCM-RAM.

To get the best performance with the STM32F76xxx and STM32F77xxx devices, and in the
case of dual bank usage, it is recommended to access the Flash memory through the
AXI/AHB interface instead of the TCM to take advantage of the performance induced by the
cache size.

To get the best performance with the STM32F72xxx and STM32F73xxx devices, it is
recommended to access the Flash memory through the AXI/AHB interface instead of the
TCM to take advantage of the performance induced by the cache size.

When an external memory is used for an execution region, care should be taken if this
memory is mapped in a region having the default attribute Execute-Never (XN). In that case
the user has to modify the memory into an executable region using the MPU, otherwise a
hard fault occurs. This is the case of the SDRAM bank regions after reset. Refer to Table 2
for the default executable regions of ARM.

When an external memory is used for the data storage and it is not mapped in a cacheable
region, either use the remapping when the relocation to a cacheable region is possible,
which is the case for SDRAM banks (SWP_FMC [1:0] = 01 in the SYSCFG_MEMRMP
register) or use the MPU to modify the memory type to normal-type memory.

The performance access to an external memory depends on the timing of the memory as
well as its data bus width. The fewer the access timing to the external memory is, the better
the performance is. The larger data bus width is, the better the performance is.

When huge constants are loaded by the CPU in the application (which is the case of the
FFT), the user should verify if they are located in the correct memory location and if they are
intended to be located other than in the internal Flash memory. In some cases, if the
variables are unintentionally located in the internal Flash memory (TCM or AXI) and the
ART accelerator or D-cache, or both, are not enabled, the application bangs all the Flash
wait states and the application slows down significantly.

DocID027643 Rev 4 51/56

AN4667 Software memory partitioning and tips

55

When it is possible, try to separate the data and code locations especially when their
memory is connected to the AHB/AXI, in order to avoid a concurrent access on the bus
matrix, that is, data are fetched through the AHB/AXI and instructions are fetched through
the TCM.

For the Flash accesses, and in order to increase the performance, try to separate the
instructions and the read-only-data accesses. For example the read-only data are accessed
through the Flash-TCM and the instructions through the Flash-AXI or vice versa.

If the DTCM-RAM is used as data location and the variables used are byte or/and halfword
types, since there is no ECC management in this RAM on the STM32F7 Series, it is
recommended to disable the read-modify-write of the DTCM-RAM in the DTCM interface (in
the DTCMCR register) to increase the performance.

To do this, add the following C code in SystemInit() in system_stm32f7xx.c file or at the
beginning of the main function:

__IO uint32_t * CM7_DTCMCR = (uint32_t*)(0xE000EF94);

* CM7_DTCMCR &= 0xFFFFFFFD; /* Disable read-modify-write */

Or it can be done in assembly code in the start-up file:

CM7_DTCMCR EQU 0xE000EF94

 LDR R2, =CM7_DTCMCR

 LDR R0, [R2]

 BFC R0, #1, #1 ;Reset CM7_DTCMCR.RMW field

 STR R0, [R2]

 DSB

 ISB

It is not recommended to enable the cache before calling the main function, that is, before
the scatter load phase, because a hard fault may occur.

Conclusion AN4667

52/56 DocID027643 Rev 4

6 Conclusion

Today, the applications are becoming more and more complex and require more
microcontroller efficiency and performance. Thanks to the STM32F7 smart architecture, the
STM32F7 Series device is a suitable platform for the Internet of Things (IoT) application. It
enables the developers that need a fast microcontroller to ease the code optimization.

A better application responsiveness is obtained thanks to STM32F7 two independent
mechanisms to reach 0-wait execution performance: ST’s ART Accelerator™ for the internal
Flash memory, the L1-cache (instruction and data caches) for the internal Flash memory
and other memories (internal and external). Thanks to the cache, the user spends less time
optimizing the code and the data size by adding external memory resources with no
performance penalty. Even the DMA transfers are done at the same time as the CPU, the
performance is not impacted thanks to the STM32F7 system architecture.

For a higher performance the user can choose the STM32F76xxx and STM32F77xxx
devices to take advantage of the cache size increase.

For low-cost devices and for an acceptable performance, the user can select the
STM32F72xxx/STM32F73xxx or the STM32F74xxx/STM32F75xxx devices depending on
whether or not a graphical application is targeted.

DocID027643 Rev 4 53/56

AN4667 Revision history

55

7 Revision history

Table 23. Document revision history

Date Revision Changes

19-Jun-2015 1 Initial release.

18-Nov-2015 2

Updated cover page.

Updated Figure 2: Flash memory interfaces (paths: 1, 2, 3, 4) and
Figure 4: External memory interfaces (paths: 9, 10).

Updated Section 1.6: DMAs description adding Figure 6: No memory
concurrency between DMA and CPU and Figure 8: FFT example block
diagram.

Updated Section 2: Typical application adding Section 2.3: Project
configuration of the CPU memory access with DMA activation
demonstration.

Updated Section 3: Results and analysis adding Section 3.2: CPU
memory access performance with DMA usage.

27-May-2016 3

Updated Section 1.2: Cortex®-M7 system caches adding STM32F76xxx
and STM32F77xxx cache sizes.

Updated Section 1.4: STM32F7 bus matrix description.

Updated Figure 1: STM32F7 Series system architecture L1-cache,
memory size and adding note 1.

Updated Section 1.5: STM32F7 memories:

– Updated Figure 1.5.1: Embedded Flash memory adding
STM32F76xxx and STM32F77xxx Flash memory description.

– Updated Figure 2: Flash memory interfaces (paths: 1, 2, 3, 4) L1-
cache size and adding note 1.

Updated Section 1.5.2: Embedded SRAM:

– Added Table 5: internal memory summary of the
STM32F76xxx/STM32F77xxx devices.

– Updated Figure 3: Different accesses of DMAs to some internal
memories (paths: 5, 6, 7, 8) and Figure 4: External memory interfaces
(paths: 9, 10) removing L1-Cache size.

Added Section 1.7: Main differences between the STM32F7 Series
devices from architecture point of view.

Updated Section 2.2: Project configuration of the CPU memory access
demonstration:

– Added Figure 11: ST-Link utility settings for dual bank configuration.

– Added Figure 12: Flash loader settings in dual bank mode.

Revision history AN4667

54/56 DocID027643 Rev 4

27-May-2016
3

(continued)

Updated Section 3.1: CPU memory access performance.

– Added Table 9: MDK-ARM results for the STM32F76xxx and
STM32F77xxx devices (single bank/single precision FPU).

– Added Table 10: MDK-ARM results for the STM32F76xxx and
STM32F77xxx devices (dual bank/single precision FPU).

– Updated Figure 14: STM32F74xxx and STM32F75xxx FFT relative
ratio cycle number with MDK-ARM.

– Added Figure 16: STM32F76xxx and STM32F77xxx FFT relative ratio
cycle number with MDK-ARM.

– Added STM32F76xxx and STM32F77xxx analysis.

– Added Table 11: Single bank versus dual bank performance
comparison.

Updated Section 3.2: CPU memory access performance with DMA
usage.

– Added Table 18: Configuration 1: execution from the Flash-ITCM /
FFT CPU data storage in the DTCM-RAM (single bank/single
precision FPU).

– Added Table 19: Configuration 2: execution from the Flash-ITCM /
FFT CPU data storage in the SRAM1 (single bank/single precision
FPU).

– Added Table 20: Configuration 3: execution from the Flash-AXI / FFT
CPU data storage in the DTCM-RAM (single bank/single precision
FPU).

– Added Table 21: Configuration 3: execution from the Flash-AXI / FFT
CPU data storage in the DTCM-RAM (dual bank/single precision
FPU).

– Added STM32F76xxx and STM32F77xxx analysis.

– Updated Section 5: Software memory partitioning and tips.

– Updated Section 6: Conclusion.

Table 23. Document revision history (continued)

Date Revision Changes

DocID027643 Rev 4 55/56

AN4667 Revision history

55

16-Feb-2017 4

Updated whole document adding reference to the STM32F72xxx and
STM32F73xxx devices.

Updated Figure 1: STM32F7 Series system architecture.

Updated Figure 2: Flash memory interfaces (paths: 1, 2, 3, 4).

Updated Table 1: STM32F7 Series device cache sizes.

Added Table 4: internal memory summary of the
STM32F72xxx/STM32F73xxx devices.

Updated Figure 3: Different accesses of DMAs to some internal
memories (paths: 5, 6, 7, 8).

Updated Figure 4: External memory interfaces (paths: 9, 10).

Updated Figure 5: External memory mapping (mapping after reset).

Updated Figure 6: No memory concurrency between DMA and CPU.

Updated Figure 7: Memory concurrency between one or more masters
and CPU.

Updated Table 6: Main differences between the STM32F7 Series
devices.

Updated Figure 13: How to split a memory A in case of concurrency
between all the masters.

Updated Section 3.1: CPU memory access performance description:

– Added Table 8: MDK-ARM results for the STM32F72xxx and
STM32F73xxx devices.

– Added Figure 15: STM32F72xxx and STM32F73xxx FFT relative ratio
cycle number with MDK-ARM.

Updated Section 3.2: CPU memory access performance with DMA
usage description:

– Added Table 15: Configuration 1: execution from the Flash-ITCM /
FFT CPU data storage in the DTCM-RAM.

– Added Table 16: Configuration 2: execution from the Flash-ITCM /
FFT CPU data storage in the SRAM1.

– Added Table 17: Configuration 3: execution from the Flash-AXI / FFT
CPU data storage in the DTCM-RAM.

Added Section 4: Performance ranking and comparison inside the
STM32F7 Series devices.

Updated Section 5.2: Tips.

Updated Section 6: Conclusion.

Table 23. Document revision history (continued)

Date Revision Changes

AN4667

56/56 DocID027643 Rev 4

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

	1 STM32F7 Series system architecture overview
	1.1 Cortex®-M7 core
	1.2 Cortex®-M7 system caches
	Table 1. STM32F7 Series device cache sizes

	1.3 Cortex®-M7 bus interfaces
	1.3.1 AXI bus interface
	Table 2. Cortex®-M7 default memory attributes after reset

	1.3.2 TCM bus interface
	1.3.3 AHBS bus interface
	1.3.4 AHBP bus interface

	1.4 STM32F7 bus matrix
	Figure 1. STM32F7 Series system architecture

	1.5 STM32F7 memories
	1.5.1 Embedded Flash memory
	Figure 2. Flash memory interfaces (paths: 1, 2, 3, 4)

	1.5.2 Embedded SRAM
	Figure 3. Different accesses of DMAs to some internal memories (paths: 5, 6, 7, 8)
	Table 3. internal memory summary of the STM32F74xxx/STM32F75xxx devices
	Table 4. internal memory summary of the STM32F72xxx/STM32F73xxx devices
	Table 5. internal memory summary of the STM32F76xxx/STM32F77xxx devices

	1.5.3 External memories
	Figure 4. External memory interfaces (paths: 9, 10)
	Figure 5. External memory mapping (mapping after reset)

	1.6 DMAs
	Figure 6. No memory concurrency between DMA and CPU
	Figure 7. Memory concurrency between one or more masters and CPU

	1.7 Main differences between the STM32F7 Series devices from architecture point of view
	Table 6. Main differences between the STM32F7 Series devices

	2 Typical application
	2.1 FFT demonstration
	Figure 8. FFT example block diagram

	2.2 Project configuration of the CPU memory access demonstration
	Figure 9. MDK-ARM flag configuration
	Figure 10. MDK ARM heap and stack configurations
	Figure 11. ST-Link utility settings for dual bank configuration
	Figure 12. Flash loader settings in dual bank mode

	2.3 Project configuration of the CPU memory access with DMA activation demonstration
	2.3.1 Step 1: configure the different DMA parameters
	Figure 13. How to split a memory A in case of concurrency between all the masters

	2.3.2 Step 2: check the configuration and the DMA transfer(s)
	2.3.3 Step 3: get the results

	3 Results and analysis
	3.1 CPU memory access performance
	Table 7. MDK-ARM results for the STM32F74xxx and STM32F75xxx devices
	Table 8. MDK-ARM results for the STM32F72xxx and STM32F73xxx devices
	Table 9. MDK-ARM results for the STM32F76xxx and STM32F77xxx devices (single bank/single precision FPU)
	Table 10. MDK-ARM results for the STM32F76xxx and STM32F77xxx devices (dual bank/single precision FPU)
	Figure 14. STM32F74xxx and STM32F75xxx FFT relative ratio cycle number with MDK-ARM
	Figure 15. STM32F72xxx and STM32F73xxx FFT relative ratio cycle number with MDK-ARM
	Figure 16. STM32F76xxx and STM32F77xxx FFT relative ratio cycle number with MDK-ARM
	Table 11. Single bank versus dual bank performance comparison

	3.2 CPU memory access performance with DMA usage
	Table 12. Configuration 1: execution from the Flash-ITCM / FFT CPU data storage in the DTCM-RAM
	Table 13. Configuration 2: execution from the Flash-ITCM / FFT CPU data storage in the SRAM1
	Table 14. Configuration 3: execution from the Flash-AXI / FFT CPU data storage in the DTCM-RAM
	Table 15. Configuration 1: execution from the Flash-ITCM / FFT CPU data storage in the DTCM-RAM
	Table 16. Configuration 2: execution from the Flash-ITCM / FFT CPU data storage in the SRAM1
	Table 17. Configuration 3: execution from the Flash-AXI / FFT CPU data storage in the DTCM-RAM
	Table 18. Configuration 1: execution from the Flash-ITCM / FFT CPU data storage in the DTCM-RAM (single bank/single precision FPU)
	Table 19. Configuration 2: execution from the Flash-ITCM / FFT CPU data storage in the SRAM1 (single bank/single precision FPU)
	Table 20. Configuration 3: execution from the Flash-AXI / FFT CPU data storage in the DTCM-RAM (single bank/single precision FPU)
	Table 21. Configuration 3: execution from the Flash-AXI / FFT CPU data storage in the DTCM-RAM (dual bank/single precision FPU)

	4 Performance ranking and comparison inside the STM32F7 Series devices
	4.1 Performance ranking inside the STM32F7 Series
	Table 22. Performance comparison between STM32F7 Series devices

	4.2 Guideline to select an STM32F7 device

	5 Software memory partitioning and tips
	5.1 Software memory partitioning
	5.2 Tips

	6 Conclusion
	7 Revision history
	Table 23. Document revision history

