‘,—l AN4296
life.augmented

Application note

Use STM32F3/STM32G4 CCM SRAM with IAR™ EWARM, Keil® MDK-ARM and
GNU-based toolchains

Introduction

This document gives a presentation of the core-coupled memory (CCM) SRAM available on STM32F3/STM32G4
microcontrollers and describes what is required to execute part of the application code from this memory region using different
toolchains.

The first section provides an overview of the CCM SRAM, while the next sections describe the steps required to execute part of
the application code from CCM SRAM using the following toolchains:

« IAR™ EWARM

+ KEIL® MDK-Arm®
¢ GNU-based toolchains

The procedures described throughout the document are applicable to other SRAM regions such as the CCM data RAM of some
STM32F4 devices, or external SRAM.

The table below lists the STM32 microcontrollers embedding CCM SRAM.
Table 1. Applicable products

Reference s]

STM32F303 line, STM32F334 line

STM32F328C8, STM32F328K8, STM32F328R8
STM32F3/STM32G4 STM32F3 STM32F358CC, STM32F358RC, STM32F358VC

STM32F398RE, STM32F398VE, STM32F398ZE

STM32G4 STM32G4 Series

AN4296 - Rev 4 - April 2019 www.st.com

For further information contact your local STMicroelectronics sales office.

AN4296
Overview of STM32F3/STM32G4 CCM SRAM

3

1 Overview of STM32F3/STM32G4 CCM SRAM

This document applies to STM32F3/STM32G4 Arm®- based microcontrollers.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

1.1 Purpose

The CCM SRAM is tightly coupled with the Arm® Cortex® core, to execute the code at the maximum system clock
frequency without any wait-state penalty. This also brings a significant decrease of the critical task execution time,
compared to code execution from Flash memory.

The CCM SRAM is typically used for real-time and computation intensive routines, like the following:

. digital power conversion control loops (switch-mode power supplies, lighting)

. field-oriented 3-phase motor control

. real-time DSP (digital signal processing) tasks

When the code is located in CCM SRAM and data stored in the regular SRAM, the Cortex-M4 core is in the
optimum Harvard configuration. A dedicated zero-wait-state memory is connected to each of its I-bus and D-bus
(see the figures below) and can thus perform at 1.25 DMIPS/MHz, with a deterministic performance of 90 DMIPS

in STM32F3 and 213 DMIPS in STM32G4. This also guarantees a minimal latency if the interrupt service routines
are placed in the CCM SRAM.

Figure 1. STM32F3 devices system architecture

BusMatrix-S
I-bus
Arm <—>| 3 _é J)_é
Cortex-M4
D-bus
<—>| » —T—O0—0O0——0O
S-bus
5 O O—O0—O0——
GPDMA1 DMA 3 (> C
GPDMA2 DMA || 3
MO M1 M2| M3 M4 Mm5] Me
<« | AHB dedicated
ICODE to GPIO ports
FLASH |le—»| FLTIF
64 bits < DCODE_,
< » ADCs
.| RCC, TSC, CRC and
SRAM |« > "| AHB to APB1 and APB2
[CCM
"| SRAM

AN4296 - Rev 4 page 2/22

AN4296

3

Purpose
Figure 2. STM32G4 devices system architecture
Cortex-M4
with FPU DMA1 DMA2
» 7} 7}
2 2 2
- [a) (%)
— — — — —
l [] ICode
>
) @) FLASH
7 DCode | 512 Kbytes
O O O (o
O O O O O SRAM1
O O O O O CCM SRAM
O O O SRAM2
- 5 -] AHB1
T T T 1 peripherals
)))] AHB2
T T T 1 peripherals
Q Q O O Q FsSmc®
T T T T T QUADSPI™
BusMatrix-S (1) Not available on STM32G431 STM32G441
devices

Example

A benchmark between the STM32F103 and STM32F303 microcontrollers using the STMicroelectronics MC
library V3.4 shows that, in case of single motor control using three shunt algorithm, the FOC total execution time
for STM32F303 is 16.97 us compared to 21.3 ys for the STMF103 (see the note below), with FOC core and
sensorless core loops running from CCM SRAM for STM32F303. This means that the STM32F303 is 20.33 %
faster than the STM32F103 thanks to the CCM SRAM.

Note: FOC routines are programmed in structured C, so the values provided above do not represent the fastest
possible execution both for STM32F103 and STM32F303. In addition, the execution time is also function of the
compiler used and of its version.

When the CCM SRAM is not used for code, it can hold data like an extra SRAM memory. It is not recommended
to place both code and data together in the CCM, since the Cortex core has to fetch code and data from the same
memory with the risk of collisions. The core is then in the Von Neuman configuration and its performance drops
from 1.25 DMIPS/MHz to below 1 DMIPS/MHz.

AN4296 - Rev 4 page 3/22

AN4296
CCM SRAM features

3

1.2 CCM SRAM features

The table below summarizes the CCM SRAM features on various STM32 products. More details are provided in
the next sections.

Table 2. CCM SRAM main features

Feature/ STM32F303xB/C LSRR L STM32F303xD/E STM32G47xx STM32G431x

STM32F334xx
products STM32F358xx STM32F328xx STM32F398xx STM32G84xx STM32G441x

Size (Kbytes) 32 10
0x1000 0000 and can | 0x1000 0000 and can
Mapping 0x1000 0000 be aliased at be aliased at
0x2001 8000 0x2000 5800
Parity check Yes
Write . .
protection Yes, with 1-Kbyte page granularity
Read . No Yes
protection
Erase No Yes
No if mapped at No if mapped at
0x1000 0000 0x1000 0000
DMA access No . .
Yes if mapped at | Yes if mapped at
0x2001 8000 0x2000 5800
1.21 CCM SRAM mapping

The CCM SRAM is mapped at address 0x1000 0000.

On the STM32G4 devices, the CCM SRAM is aliased at the address following the end of SRAM2 offering a
continuous address space with the SRAM1 and SRAM2.

1.2.2 CCM SRAM remapping
Unlike regular SRAM, the CCM SRAM cannot be remapped at address 0x0000 0000.
1.2.3 CCM SRAM write protection

The CCM SRAM can be protected against unwanted write operations with a page granularity of 1 Kbyte.

The write protection is enabled through the SYSCFG CCM SRAM protection register. This is a write-1-once
mechanism: once the write protection is enabled on a given CCM SRAM page by programming the corresponding
bit to 1, it can be cleared only through a system reset. For more details refer to the product reference manual.

1.24 CCM SRAM parity check

The implemented parity check is disabled by default and can be enabled by the user when needed through an
option bit (SRAM_PE bit). When this option bit is cleared, the parity check is enabled.

1.2.5 CCM SRAM read protection (only on STM32G4 devices)

The CCM SRAM can also be readout-protected via the RDP option byte. When protected, the CCM SRAM cannot
be read or written by the JTAG or serial-wire debug port, and when the boot in the system Flash memory or the
boot in the SRAM is selected.

The CCM SRAM is erased when the readout protection is changed from Level 1 to Level 0.

1.2.6 CCM SRAM erase (only on STM32G4 devices)

The CCM SRAM can be erased by software by setting the CCMER bit in the CCM SRAM system configuration
control and status register.

The CCM SRAM can also be erased with the system reset depending on the option bit CCMSRAM_RST in the
user option bytes.

AN4296 - Rev 4 page 4/22

AN4296

Execute application code from CCM SRAM using the IAR EWARM toolchain

3

2 Execute application code from CCM SRAM using the IAR EWARM
toolchain
2.1 Execute a simple code from CCM SRAM (except for interrupt handler)

A simple code can be composed of one or more functions that are not referenced from an interrupt handler. If the
code is referenced from an interrupt handler, follow the steps described in Section 2.2 .

EWARM provides the possibility to place one or more functions or a whole source file in CCM SRAM. This
operation requires a new section to be defined in the linker file (.icf) to host the code to be placed in CCM SRAM.
This section is copied to CCM SRAM at startup. The required steps are listed below:

1. Define the address area for the CCM SRAM by indicating the start and end addresses.

2. Tell the linker to copy at startup the section named .ccmram from the Flash memory to the CCM SRAM.
3. Indicate to the linker that the code section .ccmram must be placed in the CCM SRAM region.

The figure below shows an example of code implementing these operations.

Figure 3. EWARM linker update

S*###ICF### Section handled by ICF editor, don't touch! ****/

/*-Editor annotation file-*/

/* IcfEditorFile="¢TOOLKIT DIRf‘\confighide\IcfEditor\cortex vl 0O.xml"™ */
f*-Specials-*/

define symbol _ ICFEDIT_ intvec start_ = 0x08000000;
f*-Memory Regiona-*/
define symbol ICFEDIT region ROM start_ = 0x08000000;

define symbol _ ICFEDIT region ROM end

define symbol _ ICFEDIT region RREM start_
define symbol _ ICFEDIT region RAM end
/*-Sizes-*/

define symbol _ ICFEDIT size_cstack_ = 0x400;
define symbol _ ICFEDIT size heap = = 0x200;
/***+% End of ICF editor section. ##3ICF##8+/

OX0E03FFEE;
0x20000000;
0x20009FFF;

define memory mem with size = 4G;

define region ROM_region = mem: [from _ ICFEDIT_region ROM start to _ ICFEDIT_region ROM end]:
define region RAM region = mem:[from _ ICFEDIT region REM start to _ ICFEDIT region RAM end]
Defines the address zone for
1 |c1efine region CCMREM region = mem:[from 0x10000000 to 0x10001]:‘]:‘]:‘]:| - CCM SRAM
define block CSTACK with alignment = 8, size = _ ICFEDIT_size_cstack_ { b7
define block HERP with alignment = &, size = ICFEDIT_size heap {}:

2 [inivialize by copy (reaawrite, section .comran) | <—— ‘Initialize by copy ‘ tells the linker to copy
this section at startup time.

do not initialize | section .neinit };
place at address mem:_ ICFEDIT intwvec start { readonly section .intwvec };
place in ROM region { readonly }:

3 |place in CCMREM region {section .ccmram}; | 4—

place in BEM region [readwrite,
block CSTACKE, block HERF };

Places .ccmram section at CCM SRAM
defined above.

Note: This procedure is not valid for interrupt handlers.

211 Execute a source file from CCM SRAM
Execute a source file from CCM SRAM means that all functions declared in this file are executed from this
memory area.
To place and execute a source file from CCM SRAM, use the EWARM file Options window as follows:
1. Add the section .ccmram (for example) in the linker file as defined in Section 2.1 .
2. Right click on the file name from the workspace window.
3. Select Options from the displayed menu.

AN4296 - Rev 4 page 5/22

m AN4296

Execute a simple code from CCM SRAM (except for interrupt handler)

4. Check Override inherited settings from the displayed window

5. Select the Output tab and type the name of the section already defined in the linker file (.ccmram in this
example) in the Code section name field (see the figure below).

Figure 4. EWARM file placement

Exclude fram build

Category: [#] Override inherited settings > [Factory Settings]

Custom Build

| Language 1 | Language 2 | Code | OpﬁmizaﬁonsKOUtpUt,Lisl | Preproce: * | 4

Generate debug information

Code section name:

< .ccmram >

I 0K I l Cancel

21.2 Executing one or more functions from CCM SRAM
The steps required to execute a function from CCM SRAM are the following:
1. Add the section .ccmram in the linker file as described in Section 2.1 .
2. Using the key word pragma location, specify the function to be executed from CCM SRAM (see the figure

below).
Figure 5. EWARM function placement
j‘ﬂ-ﬂ-
* gbrief Inserts a delay time.
@param nTime: specifies the delay time length, in milliseconds.
* @retval None
#/
Toraga Tocavion = 7-coaran’| Pragma key word to precise the
function placement
woid Delay({_ IO uint32_t nTime)
{
TimingDelay = nlime;
while (TimingDelay !'= 0):
}
Note: To execute more than one function from CCM SRAM, the pragma location keyword must be placed above each

function declaration.

AN4296 - Rev 4 page 6/22

AN4296

Execute an interrupt handler from CCM SRAM

2.2

2.21

AN4296 - Rev 4

Execute an interrupt handler from CCM SRAM

The vector table is implemented as an array named __vector_table and referenced in the startup code.

The EWARM linker protects the sections that are referenced from the startup code from being affected by an
'initialize by copy' directive. The symbol __vector_table must not be used to allow copying interrupt handler
sections via the 'initialize by copy' directive. A second vector table must be created and placed in CCM SRAM.

The steps required to execute an interrupt handler from CCM SRAM are listed below:

1.

2.
3.
4

Update the linker file (.icf)

Update the startup file.

Place the interrupt handler in CCM SRAM.
Remap the vector table to CCM SRAM.

Updating the linker file (.icf)

The following steps are needed to update the linker file .icf (see the figure below):

1.
2.
3.

Define the address where the second vector table is located: 0x1000 0000.
Define the memory address area for the CCM SRAM by specifying the start and end addresses.

Tell the linker to copy at startup the section named .ccmram and the second vector table
section .intvec_CCMRAM from Flash memory to CCM SRAM.

Tell the linker that the second vector table must be placed in the .intvec_ CCMRAM section.
Indicate that the .ccmram code section must be placed in CCM SRAM.

Figure 6. EWARM linker update for interrupt handler

S*$#$ICF##%# Section handled by ICF editor, don't touch! #*#%%%/

/*-Editor annotation file-*/

/* IcfEditorFile="$TOOLKIT DIR#\config\ide\IcfEditor\cortex_vl 0.xml"™ */
f*-Specials-—*/

define symbol _ ICFEDIT intvec start = 0x08000000;

S*-Memory Regions-*/

define symbol _ ICFEDIT region ROM start
define symbol _ ICFEDIT region ROM end
define symbol _ ICFEDIT region EAM start
define symbol _ ICFEDIT region REM end
S*-Sizes-*/

define symbol _ ICFEDIT size cstack_ = 0x1000;
define symbol _ ICFEDIT size heap = 0x0000;
f***% End of ICT editor section. #3#ICF#3#*/

0x08000000;
0x0B03FFFE;
0x20000000;
0x20009FFF;

1 |define symbol CCMREAM intvec start = 0x10000000;

define memory mem with size = 4G;
define region R0M region = mem: [from _ ICFEDIT region ROM start = to _ ICFEDIT region ROM end]:
define region RAM region = mem: [from ICFEDIT region REM start to _ ICFEDIT region REM end];

2 'define region CCMRAM region = mem: [from 0x10000000 to 0xlUOUlFFF]:|

define block CSTACK with alignment = 8, size = _ ICFEDIT size cstack = { };
define block HEAP with alignment = &, size = ICFEDIT size heap {1z

3 |in1tialize by copy { readwrite, section .intvec CCMRAZM, section .ccmram, ro cbject stm32£30_it.o };

do not initialize | section .noinit };

place at addresa mem: ICFEDIT intvec start { readonlv section .intwvec 1;

4 |place at address mem: CCMRAM intvec start { section .intwvec CCMRIM };

5 |place in CCMRIM region { section .ccmram };

place in ROM region [readonly }:
place in RAM region { readwrite,
block CSTACK, block HERP };

page 7/22

m AN4296

Execute an interrupt handler from CCM SRAM

222 Updating the startup file
The following steps are needed to update the startup file:

1. Make a second vector table to be stored in CCM SRAM. The startup_stm32f30x.s file must be modified by
removing all entries except for sfe(CSTACK) and Reset_Handler from the original vector table
___vector _table.

2. Add a second vector table to be placed in CCM SRAM. It must contain all entries. As an example this table
can be called __vector_table CCMRAM. This vector table must be placed in the .intvec_ CCMRAM section
defined in the linker file.

Figure 7. EWARM startup file update for interrupt handler

;0 Forwerd declaration of sections.
SECTION CSTACE:DATA:NOROOT(3)

SECTION . intvec:;CODE:NOROOT(Z)
EXTERH _ iar program sStart
EXTERH 3SystenInit

PUBLIC _ wvector_table

DATA

_ wector_table

Sre
1 jile i} fe (CHTACKE

DCp Reset_Handler 7 Reset Handler
2 SECTION . intwec_CCMRAM: CODE:ROOT(Z)

PUBLIC _ wvector_tabhle_ CCMRAM

DATR
_ wector_tahle CCHMRAM
DCD sfe (CSTACK)
DCD Reset_Handler ; Reset Handler
DD NMI_Handler s NMT Handler
DCp HardFault Handler 7 Hard Fault Handler
DD HemManage Handler ; MM Fault Handler
DCD BusFault Handler ; Bus Fault Handler
DCD TUzageFault_Handler ; Usage Fault Handler
DCD 0 ¢ Reserved
DCD 0 ¢ Reserved
DD u] s Reserved
223 Place the interrupt handler in CCM SRAM

Place the interrupt handler to be executed in CCM SRAM as described in Section 2.1.2 or the whole stm32f_it.c
file as described in Section 2.1.1 .

224 Remap the vector table to CCM SRAM
In Systeminit function, remap the vector table to CCM SRAM by modifying the VTOR register as follows:

SCB->VTOR = 0x10000000 | VECT TAB OFFSET;

AN4296 - Rev 4 page 8/22

m AN4296

Execute a library (.a) from CCM SRAM

2.3 Execute a library (.a) from CCM SRAM

EWARM allows the execution of a library or a library module from CCM SRAM. The required steps are listed
below:

1. Define the memory address area corresponding to the CCM SRAM by specifying the start and end
addresses.

Figure 8. CCM SRAM area definition

define memory mem with size = 4G;

define region ROM region = mem:[from _ ICFEDIT region ROM start = to _ ICFEDIT region ROM end |-

define region EZM region = mem:[from _ ICFEDIT region RAM start to _ ICFEDIT region RAM end]

|define region CCMEZM region = mem: [from 0x10000000 to 0x10001FFF] '|<— DeflneS the addreSS zone for
CCM SRAM.

define block CSTACK with alignment = 8, size = _ ICFEDIT size_cstack = [}r

define block HERP with alignment = 8, size = _ ICFEDIT size_heap [

2. Update the linker to copy at startup the library or the library module in CCM SRAM using the 'initialize by
copy' directive.

Figure 9. EWARM section initialization

initiglize by copy { readwrite,ro object iar cortexM4lf math.a };

do not initialize | secticn .neoinit }:

3. Indicate to the linker that the library must be placed in CCM SRAM.

Figure 10. EWARM library placement

place in ROM region { readonly };

place in CCMRAM region {section .text object iar cortexM41f math.a}:

To execute a library module from CCM SRAM, follow steps 1, 2 and 3 using the library module name.

AN4296 - Rev 4 page 9/22

m AN4296

Execute a library (.a) from CCM SRAM

The example in the figure below shows how to place arm_abs_f32.0 (a module of iar_cortexM4l_math.a library) in
CCM SRAM.

Figure 11. EWARM library module placement

S*###ICF#4# Section handled by ICF editor, don't touch! #ess/s

/*-Editor annotation file-*/

/* IcfEditorFile="$#TOOLKIT DIRf‘\config\ide\IcfEditor\cortex wl_O.xml"™ */
f*-Specials-*/

define aymbol _ ICFEDIT intvec start = 0x08000000;

f*-Memory Regions-*/

define symbol _ ICFEDIT region ROM start = 0x08000000;

define symbol _ ICFEDIT_region ROM end = = Ox0803FFFF;

define symbol _ ICFEDIT region RAM start = 0x20000000;

define symbol _ ICFEDIT region RAM end = = Ox20009FFF;

f*-3izes-*/

define symbol _ ICFEDIT size cstack = 0x400;

define symbol _ ICFEDIT size heap = 0x200;

f¥%*% End of ICF editor secticn. $$8ICF#Es*/

define memory mem with size = 4G;

define region ROM region = mem:[from _ ICFEDIT region ROM start to _ ICFEDIT region ROM end]:

define region RZM region = mem:[from _ ICFEDIT region REM start to _ ICFEDIT region RAM end];
1 |define region CCMRAM region = mem: [from 0x10000000 to O0x10001FFF]; |

define block CSTACK with alignment = &, size = _ ICFEDIT size_cstack_ | }:

define block HERP with alignment = 8, size = ICFEDIT size heap {1}

2 |inir.ialize by copy { readwrite, ro object arm abs f32.o }; |

do not initialize | section .noinit };

place at address mem: ICFEDIT intwvec start_ | readonly section .intvec |};
place in ROM region { readonly };

3 |Dlace in CCMRAM region {section .text object arm abs f£32.o0 }; |

place in BRAM region | readwrite,
block CSTACK, block HERF };

AN4296 - Rev 4 page 10/22

m AN4296

Execute application code from CCM SRAM using the MDK-ARM toolchain

3 Execute application code from CCM SRAM using the MDK-ARM
toolchain

MDK-ARM features make it possible to execute simple functions or interrupt handlers from CCM SRAM. The
following sections explain how to use these features to execute code from CCM SRAM.

3.1 Execute a function or an interrupt handler from CCM SRAM

The steps required to execute a function or an interrupt handler from CCM SRAM are listed below:
1. Define a new region (ccmram) in the scatter file by indicating the start and end addresses of CCM SRAM.
2. Indicate to the linker that the sections with ccmram attribute must be placed in the CCM SRAM region.

Figure 12. MDK-ARM scatter file

| ¥ i = x
1 Projectsct [#] system stm32f30x.c | @ stmwocite | [H statup stm320es |
1 H ol o o ol o e ol o o o o ol B o e ol e o o o o e o
2 » *F% SBpgtter-Loading Description File generated by uVision *%%
3 = e A a a a
4
5 LR _TROM1 Ox03000000 Ox00040000 : load region size_region
4] ER_IRON1 0Ox0OS000000 Ox00040000 ; load address = execution address
7 *.0 (RE3ET, +First)
g * (InRoot§§Sections)
a LAWY [+RO)
10 ¥
11 RI_IRAM1 0Ox20000000 Ox0000A000 { ; RW data
1z LINY [+RW +ZI)
13 3 Defines CCM SRAM as
14 RU_IRAMZ 0x10002000 0x00001000 execution region
15 LAWY (+RW +ZI)
16 ¥
17
1E 1 | ER 0x10000000 Ox0ooozaoo : load address = execution address
15
2C 2 Places code in ccmram section.
21
iz i

3. Refer to the modified scatter file for the project options.

AN4296 - Rev 4 page 11/22

m AN4296

Execute a function or an interrupt handler from CCM SRAM

Figure 13. MDK-ARM Options menu

¥ Options for Target 'STM32303C-EVAL'

Device | Target | Dutput | Listing | User | C/C++ | Asm Linker |Debug| Utiltes |

e Memorny Layout from T arget Dialog

™ Make RW Sections Position Independent R/0 Base: |IJ::IJBGDDDDD
[Make RO Sections Position Independent A/w Base |0420000000

[Don't Search Standard Libraries))
¥ Report might fail' Conditions as Errors disable Warnings: | .

—

.\STM323D3C-EVAL\F'rq'ect;ct) EI Edit..

Scatter
File

Misc
controls
Linker |-cpu Cortex-t4.fp .o ~
contral |-ibrary_type=microlib -strict --scatter " ASTM32303C-EVAL \Project sct" :
shiing

[ok][Cancel | [Defauts |

4. Place the part of code to be executed from CCM SRAM in the ccmram section defined above. This is done
by adding the attribute key word above the function declaration.

Figure 14. MDK-ARM function placement

El'fﬁ*
* @brief This function handles SysTick Handler.
* @param None
* @retval None

L %/

__attribute ((section ("ccmram"))

void SysTick Handler (void)
=R
TimingDelay Decrement();

}

Note: To execute more than one function from CCM SRAM, the attribute keyword must be placed above each function
declaration.

AN4296 - Rev 4 page 12/22

m AN4296

Execute a source file from CCM SRAM

3.2 Execute a source file from CCM SRAM

Executing a source file from CCM SRAM means that all functions declared in this file are executed from the CCM
SRAM region.

Follow the steps below to execute a file from CCM SRAM:
1. Define the CCM SRAM as a memory area in the project option window (Project>option>target).

Figure 15. MDK-ARM target memory

an-chip

v |RAM{- |0s20000000 [0xA000 .

@ IRamz [0x10000000 [0+2000

2. Right click on the file to place it in CCM SRAM and select Options.
3. Select the CCM SRAM region in the Memory assignment menu.

Figure 16. MDK-ARM file placement

Memory Azzsignment:

OO Ro R 12 [0:+1 D000000-0x1 0001 FFF

Zero Initialized D1ata: I<default>

Other Data; i<dEf~3U|t>

Ll L]

3.3 Execute a library or a library module from CCM SRAM
Follow the steps below to execute a library or a library module from CCM SRAM:
1. Define CCM SRAM as a memory area as shown in the figure below.
2. Right click on the library from the workspace and select Options.
3. Place the complete library or a module from a library in CCM SRAM.

Figure 17. MDK-ARM library placement

b ernon Azgzignrment; ¥ Select Maodules
(BT R prre o || A4 2 [0 OOO0000-01 0001 FEF [] armn_abs f32.0 A
o [] arm_abs_gf.o =
Zera |nitialized Data: |<default> _V_l [] am _abs gi5.0
Other D ata: |<d'3ff"-4|t> ;‘ [armn_abs_g31.0
arm_add_F:

] armn_add_g7¢.o
] armn_add_q15.a

[

AN4296 - Rev 4 page 13/22

3

AN4296

Execute application code from CCM SRAM using a GNU-based toolchain

Execute application code from CCM SRAM using a GNU-based
toolchain

41

AN4296 - Rev 4

GNU-based toolchains allow executing simple functions or interrupt handlers from CCM SRAM. The following
sections explain how to use these features to execute code from CCM SRAM.

Execute a function or an interrupt handler from CCM SRAM

The steps required to execute a function or an interrupt handler from CCM SRAM are listed below:

1. Define a new region (ccmram) in the linker file (./d) by defining the start address and the size of CCM SRAM
region .

Figure 18. GNU linker update

/* Entry Point */
ENTRY (Reset_Handler)

/* Highest address of the user mode stack */
_estack = 0x2000a000; /* end of 40K RAM on AHB bus*/

/* Generate a link error if heap and stack don't fit into RAM */
_Min_Heap_size = 0; /* required amount of heap */
_Min_stack_Size = 0x400; /* required amount of stack */

/* Specify the memory areas */

MEMORY
{
FLASH (rx) : ORIGIN = 0x08000000, LENGTH = 256K
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 40K
MEMORY_B1 (rx) : ORIGIN = 0x60000000, LENGTH = 0K
— 0x10000000. LENGTH — 8k | Defines the address zone for

[comramM (xrw) : ORIGIN
¥

CCM SRAM.

2. Tell the linker that code sections with ccmram attribute must be placed in CCM SRAM.

Figure 19. GNU linker section definition

+{.data) /% .data sections %/

[.data¥) /* .data* sections */

. = ALIGN(4):

_edata = .: /% define a global symbol at data end */

¥ oRALM AT> FLASH

_Siccmrem = LOADADDER (. comesm) !
/% CCM-RAM section
x

IMPORTANT MNOTE!
#* If initialized wvariskles will be placed in this section,
* the startup code needs to be modified to copy the init-wvalues.
*
«Comram G
i
. = LLIGN(4):
_scomram = L /% create a global symbol at ccmram start */
WL oomestn)
[.comeam®)

. = ALIGN(%):
_eccmram = L /* create a global symbol at ccmram end */
>CCMRAN AT> FLASH

/% Uninitialized data section */
. = ALIGN(4):
Jhss

3. Modify the startup file to initialize data to place in CCM SRAM at startup time (see updated code lines in
bold):

.section .text.Reset Handler
.weak Reset Handler

.type Reset Handler, %function
Reset Handler:

page 14/22

m AN4296

Execute a function or an interrupt handler from CCM SRAM

/* Copy the data segment initializers from flash to SRAM and CCMRAM */
movs rl, #0

b LoopCopyDataInit

CopyDatalInit:

ldr r3, =_sidata

1dr 3, [r3, rl]

str r3, [x0, rl]

adds rl, rl, #4

LoopCopyDatalInit:

ldr r0, = sdata

ldr r3, = edata

adds r2, r0, ril

cmp r2, r3

bcc CopyDatalnit

movs rl, #0

b LoopCopyDataInitl

CopyDataInitl:

ldr r3, = siccmram

1dr r3, [r3, rl]

str r3, [r0, rl]

adds rl, rl, #4

LoopCopyDataInitl:

ldr r0, = sccmram

ldr r3, = eccmram

adds r2, r0, rl

cmp r2, r3

bcc CopyDataInitl

ldr r2, =_sbss

b LoopFillZerobss

/* Zero fill the bss segment. */

FillZerobss:

movs r3, #0

str r3, [r2], #4

LoopFillZerobss:

ldr r3, = _ebss

cmp r2, r3

bcc FillZerobss

/* Call the clock system intitialization function.*/

bl SystemInit

/* Call the application's entry point.*/

bl main

bx 1r

4. Place the part of code to be executed from CCM SRAM in the .ccmram section by adding the attribute key
word in the function prototype.

Figure 20. GNU function placement

wvoid NMI_Handler (void)

void HardFault Handler (void):
wvolid MemManage Handler (void):
wold BusFault_Handler (woid) :
wvoid UsageFault Handler (woid):
woid 5VC _Handler (void);

wvold DebugMon Handler (void) ;
wvold Pend3V_Handler (void) ;

wvoid SyaTick Handler (wvoid) _ attribute ((section (".ccmram")));

AN4296 - Rev 4 page 15/22

m AN4296

Executing a file from CCM SRAM

4.2 Executing a file from CCM SRAM

Executing a source file from CCM SRAM means that all functions declared in this file are executed from CCM
SRAM.

To execute a file from CCM SRAM, follow the steps listed below:
1. Add the .ccmram section in the linker file as defined in Section 4.1 .
2. Place the file in CCM SRAM as shown below.

Figure 21. GNU file placement

_sicomram = LOADADDR(.ccmrem)

/* CCM-RAN section
*
* IMPORTANT MOTE!
* If initialized variables will ke placed in this section,
* the startup code needs to be modified to copy the init-wvalues.
=/
.comram :
i
. = ALIGN(4):
_scowram = . /* create a global sywbol at comram start +/
* | .comram)
*{.comram®T)

Stm3Zf30x_it.o(*)

« = ALIGHN(4):
_eccmram = .7 /% create a global synbol at comram end %/

} »>CCHMRAM AT> FLASH

4.3 Execute a library from CCM SRAM

Follow the steps below to execute a library from CCM SRAM:
1. Add the .ccmram section in the linker file as defined in Section 4.1 .
2. Place the library in CCM SRAM as shown below.

Figure 22. GNU library placement

/% CCHM-RAM =zection

%

* IMPORTANT MOTE!

* If initimlized wariasbles will be placed in this section,

* the startup code needs to be modified to copy the init-wvalues.

2
.Comram
{
. = ALIGM[4):
_Scomram = L) /7 create a global symbol at comrsam start #/

[LocmEsm)
¥ [.ccmeam®)

[mylib.a(*) |

. = ALIGN(4);
_ecomram = . /% create a global symbol at comrsam end */

¥ >CCHMRAM AT> FLASH

AN4296 - Rev 4 page 16/22

m AN4296

Revision history

Table 3. Document revision history

23-Jul-2013 1 Initial release.
Changed STM32F313xC into STM32F358xC.

25-Mar-2014 2 Reworked Section 1: Overview of STM32F303xB/C and STM32F358xC CCM
RAM.

Added STM32F303x6/x8, STM32F328x8, STM32F334x4/x6/x8 in Table 1:
Applicable products.

Updated step 2 in Section 2.1: Executing a simple code from CCM RAM
(except for interrupt handler), step 3 in Section 2.2.1: Updating the linker file
(.icf) and updated Figure 5: EWARM linker update for interrupt handler.

Updated Figure 11: MDK-ARM scatter file.

2-Sep-2014 3

Updated:
. Title of the document
. Introduction

. CCM RAM replaced by CCM SRAM in the whole document
. Figure 1. STM32F3 devices system architecture

16-Apr-2019 4 Added:
. Figure 2. STM32G4 devices system architecture
. Table 2. CCM SRAM main features
. Section 1.2.5 CCM SRAM read protection (only on STM32G4 devices)
. Section 1.2.6 CCM SRAM erase (only on STM32G4 devices)

Removed Table 2. CCM RAM organization.

AN4296 - Rev 4 page 17/22

m AN4296

Contents

Contents
1 Overview of STM32F3/STM32G4 CCM SRAMt ieaeeaaaneeens 2
1.1 PUIPOSE . . e e 2
1.2 CCM SRAM features e e e 3
1.21 CCM SRAM Mapping . . . oottt e e e e 4
1.2.2 CCM SRAM remapping. . .« o oo e e 4
1.2.3 CCM SRAM write protection 4
1.2.4 CCM SRAM parity Check 4
1.2.5 CCM SRAM read protection (only on STM32G4 devices).oovvi ... 4
1.2.6 CCM SRAM erase (only on STM32G4 devViCes)o v v i vt e 4
2 Execute application code from CCM SRAM using the IAR EWARM toolchain........ 5
2.1 Execute a simple code from CCM SRAM (except for interrupt handler) 5
2141 Execute a source file from CCM SRAM. 5
21.2 Executing one or more functions from CCM SRAM. 6
2.2 Execute an interrupt handler from CCM SRAM. it 7
221 Updating the linker file ((icf). o 7
222 Updating the startup file 8
223 Place the interrupt handlerin CCM SRAM i e 8
224 Remap the vector table to CCM SRAM. 8
2.3 Execute a library (.@) from CCM SRAM 9
3 Execute application code from CCM SRAM using the MDK-ARM toolchain......... 11
3.1 Execute a function or an interrupt handler from CCM SRAM 11
3.2 Execute a source file from CCM SRAM 13
3.3 Execute a library or a library module from CCM SRAM iiin... 13
4 Execute application code from CCM SRAM using a GNU-based toolchain 14
4.1 Execute a function or an interrupt handler from CCM SRAM 14
4.2 Executing afile from CCM SRAM 16
4.3 Execute alibrary from CCM SRAM. e 16
ReVISION NiStOry i i i ittt eaie i ana s ennnarannnnaennnnns 17
L0 o 1 =T 4 18

AN4296 - Rev 4 page 18/22

AN4296

"l Contents

=3 Ao Y 8 7= o] (=

List Of fiQUIres. i e

AN4296 - Rev 4 page 19/22

m AN4296

List of tables

List of tables

Table 1. Applicable products e 1
Table 2. CCM SRAM main features e e e 4
Table 3. Document revision history 17

AN4296 - Rev 4 page 20/22

m AN4296

List of figures

List of figures

Figure 1. STM32F3 devices system architecture. 2
Figure 2. STM32G4 devices system architecture e 3
Figure 3. EWARM linKer update 5
Figure 4. EWARM file placement 6
Figure 5. EWARM function placement. 6
Figure 6. EWARM linker update forinterrupt handler. e 7
Figure 7. EWARM startup file update forinterrupthandler 8
Figure 8. CCM SRAM area definition 9
Figure 9. EWARM section initialization 9
Figure 10. EWARM library placement 9
Figure 11. EWARM library module placement 10
Figure 12. MDK-ARM scatter file "
Figure 13. MDK-ARM Options MENU. e e e e e e e e e 12
Figure 14. MDK-ARM function placement 12
Figure 15. MDK-ARM target memOry e e 13
Figure 16. MDK-ARM file placement. 13
Figure 17. MDK-ARM library placement 13
Figure 18. GNU linkerupdate 14
Figure 19. GNU linker section definition 14
Figure 20. GNU function placement 15
Figure 21. GNUfile placement. 16
Figure 22. GNU library placement 16

AN4296 - Rev 4 page 21/22

m AN4296

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics — All rights reserved

AN4296 - Rev 4 page 22/22

http://www.st.com/trademarks

	Introduction
	1 Overview of STM32F3/STM32G4 CCM SRAM
	1.1 Purpose
	1.2 CCM SRAM features
	1.2.1 CCM SRAM mapping
	1.2.2 CCM SRAM remapping
	1.2.3 CCM SRAM write protection
	1.2.4 CCM SRAM parity check
	1.2.5 CCM SRAM read protection (only on STM32G4 devices)
	1.2.6 CCM SRAM erase (only on STM32G4 devices)

	2 Execute application code from CCM SRAM using the IAR EWARM toolchain
	2.1 Execute a simple code from CCM SRAM (except for interrupt handler)
	2.1.1 Execute a source file from CCM SRAM
	2.1.2 Executing one or more functions from CCM SRAM

	2.2 Execute an interrupt handler from CCM SRAM
	2.2.1 Updating the linker file (.icf)
	2.2.2 Updating the startup file
	2.2.3 Place the interrupt handler in CCM SRAM
	2.2.4 Remap the vector table to CCM SRAM

	2.3 Execute a library (.a) from CCM SRAM

	3 Execute application code from CCM SRAM using the MDK‑ARM toolchain
	3.1 Execute a function or an interrupt handler from CCM SRAM
	3.2 Execute a source file from CCM SRAM
	3.3 Execute a library or a library module from CCM SRAM

	4 Execute application code from CCM SRAM using a GNU-based toolchain
	4.1 Execute a function or an interrupt handler from CCM SRAM
	4.2 Executing a file from CCM SRAM
	4.3 Execute a library from CCM SRAM

	Revision history
	Contents
	List of tables
	List of figures

