
Introduction
This document describes the error correction code (ECC) management and implementation on STM32H7 Series. This
application note describes both hardware and software aspects linked to the ECC mechanism used to protect content of internal
memories. ECC protection with external memories is possible but its implementation is out of the scope of this document.

This document presents general information about ECC protection, detailed hardware ECC fault management and details on
how ECC is implemented in the STM32H7 Series microcontrollers. This document proposes a specific implementation of the
software part of the safety solution.

This document is complementary to reference manual STM32H745/755 and STM32H747/757 advanced Arm®-based 32-bit
MCUs (RM0399) and STM32H7A3/B3 advanced Arm®-based 32-bit MCUs (RM0455) available at www.st.com.

 Error correction code (ECC) management for internal memories protection on
STM32H7 Series

AN5342

Application note

AN5342 - Rev 2 - January 2020
For further information contact your local STMicroelectronics sales office.

www.st.com

http://www.st.com

1 General information

The table below presents a list of the acronyms used in this application note.

Table 1. Acronyms used in this document

Acronym Definition

ECC Error correction code

CPU Central processing unit (part of the MCU)

CRC Cyclic redundancy check

DED Double-error detection

DTCM Data-tightly coupled memory

ISR Interrupt service routine

ITCM Instruction -tightly coupled memory

MCU Microcontroller unit

MDMA Master direct-memory access

POR Power-on reset

RAM Random access memory

SEC Single-error correction

SRAM Static RAM

The STM32H7 Series microcontrollers are Arm®-based devices.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

AN5342
General information

AN5342 - Rev 2 page 2/15

2 ECC overview

The first ECC was invented by mathematician Richard Hamming. The first Hamming code uses 7 bits to store 4
bits of information with redundancy bits used for correction and detection of errors. In STM32H7 Series devices,
both RAM and Flash memories are protected using a SEC-DED algorithm based on Hamming principles, but
improved with one extra parity bit. The ECC code is capable of detecting and correcting a single-bit error and of
detecting a two-bit error in the stored word of data.
In SRAM volatile memory, a stray alpha particle may cause a bit value to flip either way. This is a constant threat
and the probability of single-bit failure is the same regardless the age of the hardware. A single-bit or two-bit error
failure is a problem especially in applications where large amount of data is stored for long periods of time without
reset, for example a battery-powered data logger.
In Flash memory, the data decays over time, particularly at high temperatures. Storage temperatures have an
impact on Flash memory data, but cycling (programming) temperature has an even stronger impact . The Flash
memory can sustain only a certain amount of rewrites to each memory word, this leads to the need of
implementation of wear leveling in case of data storage. The typical retention time and life cycle of Flash memory
for a given product is published in the product datasheet.
Both types of failures (single-bit error and two-bit error), are inevitable, but the correct use of the ECC can prevent
data loss.

Table 2. Number of extra check bits used for SEC-DED

Data word width Number of redundancy bits

16 6

32 7

64 8

128 9

256 10

2.1 ECC implications

ECC is a key element in embedded systems that aim to comply with requirements of safety standards such as
IEC60730 Class C or IEC 61508 SIL2 and higher.
A system without hardware ECC may still meet target safety standards compliance but it requires a deployment of
considerable software overhead. The use of ECC memory to increase the overall diagnostic coverage above 90%
is easy to do and increases the system’s possibility to comply with high safety standards. Another advantage of
using ECC is the potential improvement of security as ECC usage may lead to detection of hardware tampering.

2.2 RAM ECC

The RAM ECC functionality of the STM32H7 Series devices has a peripheral-like interface: with registers for
settings and with interrupts that permit a quick reaction to detected fault. All STM32H7x5 and x7 SRAM and
instruction/data cache memories are protected with ECC. The data width is 64-bit for AXI-SRAM and for ITCM-
RAM. All other volatile memories are accessed by 32-bit bus width (word size). On STM32H7x3 only the tightly
coupled memories and instruction/data cache memories are protected with ECC, other SRAM are not.
The main difference between the RAM ECC compared to a regular peripheral is that the RAM ECC cannot be
turned off. The ECC is powered and clocked along with the RAM and it is an integral part of the RAM interface.
For example, backup SRAM can be disabled. This also disables the RAM ECC controller associated with it.
The ECC is computed on data word. If a data smaller than word is written in the volatile memory, the modification
is done on read-modify-write basis. On an incomplete access, the ECC does not write the value immediately. As it
may be the very next byte or half word, it waits for the next write access. This is a common case in applications
dealing with the backup SRAM. For example in an array of characters, energy is conserved. However, a write
operation will not be completed in case of reset (the memory contents will be retained without the last incomplete
word write).

AN5342
ECC overview

AN5342 - Rev 2 page 3/15

The workaround for this limitation is to write a dummy incomplete word write after each regular one. The dummy
write address must be within the same memory (backup SRAM in this case).

Figure 1. Unaligned access handling in preserved SRAM

uint16_t myArray[3];

 myArray[0] = 1 ;
 myArray[1] = 2 ;
 myArray[2] = 3 ; RESET

uint16_t myArray[3];
 uint8_t dummy = 0;

 myArray[0] = 1 ;
 myArray[1] = 2 ;
 myArray[2] = 3 ;
 dummy = 1 ;

RESET

Figure 2. RAM ECC controller interfaced with memory unit

EC
C

 w
ra

pp
er

RAM memory

Bus protocol

ecc_diag_event

Ctrl

Data in

Signal line Data bus

Data out

RAM ECC controllers are assigned to each internal SRAM block. The controllers are divided among the three
system domains: D1, D2 and D3. Diagnostics from all internal SRAM units/controllers are gathered into a global
control block. This global control block has a set of configuration registers and a global interrupt signal with the
possibility of event masking .

AN5342
RAM ECC

AN5342 - Rev 2 page 4/15

Figure 3. ECC RAM simplified block diagram

RAM ECC

Register interface

Event monitor

SRAM1 ECC controller

SRAM2 ECC controller

SRAMx ECC controller

ecc_diag_event

ecc_diag_event

ecc_diag_event

Nx

Masking

ramecc_hclk

32-bit AHB bus interface

remecc_it

Signal line 32-bit bus

The particular RAM ECC controller assigned to a specific SRAM block checks the data integrity at each read
access to that SRAM block. Some read access types are not obvious, as certain write include an implicit read
phase. An example of not-obvious read access is an incomplete RAM write performed as a read/modify/write in
two cycles. This can be either write of data smaller than RAM word, or an unaligned write.

2.3 Flash memory ECC

For STM32H7x5 and STM32H7x7 lines, the Flash memory word (smallest programmable amount of memory) is
256-bits, while on STM32H7x3 line it is 128-bits. This is also the portion of memory protected by the 10 ECC
(9ECC bits for STM32H7x3) bits required to achieve SEC and DED functionality on the Flash memory word. Write
access to any smaller unit of memory is only possible on read-modify-write basis, this action results in higher
stress to memory hardware. The STM32H7x3 line also features added robustness on the 1 kilobyte OTP area,
where each 16bits are protected with 6 bits of ECC redundancy. There is no OTP memory area on STM32H7x5
and STM32H7x7 lines.
The ECC functionality is integrated into the Flash memory controller and cannot be disabled. If the application is
not designed to take advantage of the ECC, it can disable the associated interrupt and ignore the flag bits in the
Flash memory status registers.
The disadvantage of an integrated ECC solution is that programming single bits in the Flash memory word is not
possible without prior erase of this word. As programming without erase is sometimes used by implementations of
EEPROM emulation or a monotonic counter, another algorithm must be selected for applications on STM32H7
Series MCUs.
The Flash memory controller of STM32H7 Series implements also a hardware CRC integrity protection. The CRC
is a complementary mechanism, not an ECC replacement. If the automated background CRC check is activated,
the read access to the Flash memory also implicitly checks the ECC in the whole range.

AN5342
Flash memory ECC

AN5342 - Rev 2 page 5/15

2.4 Cache memory ECC

Cache is a memory that does not have its own address range. Its purpose is to reduce the latency of accessing
the addressed memory by preserving a copy of frequently accessed contents (either code of data) or contents
which are likely to be needed soon (current address+1 for example). Physically it is an SRAM with different
addressing.
By default, the Cortex®-M7 L1 cache is also protected by ECC by using the same SEC DED code. The word
width is 256-bit as the entire line of cache is covered. The cache ECC protection can be disabled. To modify the
state of the cache ECC, the code must first disable and flush the cache. Then the ECC settings can be modified
and the cache re-enabled with new setting.
The CPU cache is only involved in AXIM bus accesses, the ITCM and DTCM address range does not require
cache – the tightly coupled memories are almost exclusively dedicated to the use of the Cortex®-M7 core. The
Cortex®-M7 processor can automatically recover from any detected ECC fault in instruction cache. One-bit errors
are covered by the automatic correction. For two-bit errors, the line is invalidated and the instructions are loaded
again from the program memory. In the case of data cache, a two-bit error detection may result in losing the
ongoing modifications while reloading old data. Note that write through practice is not recommended as a
countermeasure to this rare event.
The ART Accelerator cache that supports the Cortex®-M4 core on dual-core STM32H7 Series devices is not
protected by ECC.
As there is no failure notification or interface to ECC detection results of the CPU cache, the only solution to avoid
the rare event of two-bit data cache ECC error is to manually periodically clean or even disable the cache.
Flushing the cache periodically prevents the accumulation of more than one failing bit to single cache line.
Disabling the cache may be extreme, but it is a valid preventive action when dealing with critical data.

AN5342
Cache memory ECC

AN5342 - Rev 2 page 6/15

3 ECC use in applications

In order to correctly use the ECC capabilities, basic routines to deal with detected errors immediately must be
implemented in the firmware. It is recommended to log and monitor the error presence for maintenance, failure
prediction and hazard warning. This recommendation is especially important for safety and industrial applications.

3.1 Dealing with ECC errors in RAM

Static volatile memory is based on a symmetric arrangement of unipolar transistors. The unipolar transistors flip
between two states that represent a logical 0 or 1. The amount of energy necessary to make this transition is low,
hence the device keeps a low-power consumption.
A stray alpha particle may cause that a bit in the RAM changes its stored value. If the ECC mechanism is not
used properly, these rare errors may accumulate over time and cause a data damage or even a system failure.
These events are random by nature and occurrence of error on some address does not provide any indication
where or when the next error may occur.

3.1.1 Initialization
When ECC is being used in the RAM, all memories that are to be accessed by the code must be initialized. A
read access or an unaligned write to uninitialized memories is likely to trigger the ECC error due to the random
initial setting of both the stored value and the redundant bits.
Any pattern is fine for the memory initialization. Find below a proposed list of steps to follow:

Step 1. Proceed with RAM initialization after POR or after wakeup from Standby mode or after domain standby.

Step 2. Clear the RAM ECC status register flags after RAM initialization.

Step 3. Activate the ECC error latching. Even if optional, this action is important for subsequent correction of
errors and for reliability errors.

Step 4. Enable the interrupts for error correction and detection.
It is possible to selectively enable interrupts only for some memory regions by using register flags for
particular RAM ECC controller units.

Step 5. Enable the global RAM ECC interrupts.

3.1.2 ECC ISR
The interrupt service routine provides an opportunity to immediately react to an event of ECC error. The ISR
implemented in CubeHAL generated in projects using STM32CubeMX tool is however just a start. The HAL ISR
branches to a callback function. This function is not part of the HAL and this section proposes how it could be
implemented..
The single-bit errors are automatically corrected by the ECC controller, but only in the data read. It is then
necessary to write back the corrected data. In this case, the data and the address latching feature is very helpful.
It is appropriate to write the corrected data back to its address. Failing to do so may result in a two-bit failure later
(in the case of another bit within the same word is damaged).
Should the two-bit error happen anyway, the subsequent action depends on what exactly was damaged. If the
affected word is an instruction of code loaded to RAM, the load region within the original code in the Flash
memory should be identified and the code should be reloaded to the SRAM. The same kind of action is suitable
for any other initialized section, for example a copy of the interrupt vector table.
In case of the damaged address falling into a stack area, to avoid further damage caused by executing in
incorrect context, a system reset must be performed. If the affected word address lies within boundaries of data
RAM (a heap or global variables), it is up to the developer to decide which action to take. Generally a reset is
recommended, but risk analysis conclusion may differ case by case.

AN5342
ECC use in applications

AN5342 - Rev 2 page 7/15

Figure 4. RAM ECC interrupt actions example

RAMECC
IRQ

Log the error

DEBWDF

DEDF

SEDCF

Can correct data be
obtained?

Get the data Program
termination

Rewrite the failing
address data

Return Reset

1

1

1

NO

YES0

0

0

NOTE: The abbreviations are register flags in the RAMECC monitor x status register (RAMECC_MxSR)

Logging the error for subsequent analysis can be an optional part of the post-failure operation.

3.1.3 Preventive actions for ECC in RAM
The RAM ECC events are random, hence some damage can be prevented by performing a periodic check on the
used RAM area. The ECC check is activated by reading from each word; if the checkup period is appropriate,
most erroneous words are detected while there is still only one wrong bit. An appropriate period can vary from
hours to several days, it depends on the radiation hazard in the outside environment, and the role of the
microcontroller.
A preventive ECC checkup does not need to be completed in a single round. It is a background task that may be
performed during idle moments, either by a background process or by a low-priority DMA transfers. A single loop
or a DMA transfer is not possible as the SRAM is divided into non continuous address ranges.
The MDMA is particularly suited for this task, as it can access the ITCM/DTCM. When using the Cortex®-M7 CPU
for memory check-by-read, the cache is involved (if cache is enabled). Accessing the SRAM through the Cortex®-
M7 cache (so ITCM and DTCM are excluded from this rule), each read from memory fills the cache line of 256
bits. The loop that activates the ECC check on each memory word read only the first word of each 256-bit and the
cache line loading continues with the remaining words. This action lowers the CPU load, but the bus remains
heavily loaded.

AN5342
Dealing with ECC errors in RAM

AN5342 - Rev 2 page 8/15

3.2 Dealing with ECC errors in Flash memory

Typical failures for the Flash memory are fail due to memory cell wear and fail due to charge leakage. Some
factors that might contribute to failure are interference from adjacent cell or voltage instability during
programming. Unlike to SRAM, failure in certain Flash memory address may indicate a slightly higher probability
of a subsequent failure in the same page. Flash memory errors should be non-existent on a new device, with
probability of failure increasing towards the end of projected lifetime. The Flash memory lifetime depends mainly
on temperature conditions and in amount of erase cycles.

3.2.1 Flash memory ECC ISR
For Flash memory, the interrupts that notify of an ECC error are included in the Flash memory global interrupt
vector. The ISR checks the Flash memory status register FLASH_SR1 for ECC flags “single error correction” and
“double error detection” and take the appropriate action (which depends on the Flash memory use). As the
interrupt vector is shared with normal Flash memory operations (such as “end of programming”), the ISR should
then pass control to HAL to deal with the other flags.

3.2.2 Flash memory code
The on-chip non-volatile memory is primarily intended to be used for code. The code is not likely to be frequently
rewritten, so if a damage occurs it is most likely caused by aging and by charge leakage. On a dual-bank device it
is possible to have a second copy of the same code and swap to this second copy when an ECC error is
indicated. This solution implies that the health of both bank contents is monitored. It is possible to reprogram the
failing contents of the other bank from the healthy bank, however there is no guarantee on how much this action
might improve the device life expectancy.

3.2.3 EEPROM emulation
If the failing Flash memory cell is used to store data, the failure cause is likely to be linked to a program/erase
cycling. Advanced EEPROM emulation implementations include mechanisms that deals with failing memory cells
and are able to exclude them from the cycling.

3.2.4 Preventive action for ECC in Flash memory
The CRC hardware module is a useful tool to monitor the embedded Flash memory health. CRC can check either
the whole bank or a specific address range autonomously; ECC is implicitly checked on read as well. The
program must then implement a reaction to a detected problem.

AN5342
Dealing with ECC errors in Flash memory

AN5342 - Rev 2 page 9/15

4 Conclusion

With a higher level of integration of the microelectronics in a system, memory cells are more prone to failure,
hence ECC memory integrity protection becomes more important. The main difference between the RAM ECC
compared to a regular peripheral is that the RAM ECC cannot be turned off as it is an integral part of the RAM
interface.
This application note is a description of the ECC in RAM, flash memory and cache memory.
It provides also procedures to deal with ECC errors in RAM and flash memory.

AN5342
Conclusion

AN5342 - Rev 2 page 10/15

Revision history

Table 3. Document revision history

Date Version Changes

27-May-2019 1 Initial release.

6-Jan-2020 2

Updated:
• Section Introduction
• Section 2.2 RAM ECC
• Section 2.3 Flash memory ECC

AN5342

AN5342 - Rev 2 page 11/15

Contents

1 General information .2

2 ECC overview .3

2.1 ECC implications . 3

2.2 RAM ECC. 3

2.3 Flash memory ECC. 5

2.4 Cache memory ECC. 5

3 ECC use in applications .7

3.1 Dealing with ECC errors in RAM . 7

3.1.1 Initialization . 7

3.1.2 ECC ISR . 7

3.1.3 Preventive actions for ECC in RAM. 8

3.2 Dealing with ECC errors in Flash memory . 9

3.2.1 Flash memory ECC ISR . 9

3.2.2 Flash memory code. 9

3.2.3 EEPROM emulation . 9

3.2.4 Preventive action for ECC in Flash memory . 9

4 Conclusion .10

Revision history .11

Contents .12

List of tables .13

List of figures. .14

AN5342
Contents

AN5342 - Rev 2 page 12/15

List of tables
Table 1. Acronyms used in this document . 2
Table 2. Number of extra check bits used for SEC-DED . 3
Table 3. Document revision history . 11

AN5342
List of tables

AN5342 - Rev 2 page 13/15

List of figures
Figure 1. Unaligned access handling in preserved SRAM . 4
Figure 2. RAM ECC controller interfaced with memory unit . 4
Figure 3. ECC RAM simplified block diagram . 5
Figure 4. RAM ECC interrupt actions example . 8

AN5342
List of figures

AN5342 - Rev 2 page 14/15

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved

AN5342

AN5342 - Rev 2 page 15/15

http://www.st.com/trademarks

	Introduction
	1 General information
	2 ECC overview
	2.1 ECC implications
	2.2 RAM ECC
	2.3 Flash memory ECC
	2.4 Cache memory ECC

	3 ECC use in applications
	3.1 Dealing with ECC errors in RAM
	3.1.1 Initialization
	3.1.2 ECC ISR
	3.1.3 Preventive actions for ECC in RAM

	3.2 Dealing with ECC errors in Flash memory
	3.2.1 Flash memory ECC ISR
	3.2.2 Flash memory code
	3.2.3 EEPROM emulation
	3.2.4 Preventive action for ECC in Flash memory

	4 Conclusion
	Revision history
	Contents
	List of tables
	List of figures

